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A class of nonparametric tests based on the third quad-
rant layer ranks has recently been studied by Woodworth i3]
in connection with the problem of testing for independence in
a bivariate distribution. . In the present work, exact one-sided
rejection regions are tabulated for the normal score layer rank
test which is asymptotically locally most powerful for positive
dependence in the bivariate rnormal distribution. The cut-off
points are tabulated for sample sizes n=4(1)9 and significance
levels 6if¥a:”.05, +025 and .0l. Normal and Fdgeworth approxi-
mations for the significance probabilities are also given. A
simplified version of the normal score test is proposed and its
rejection regions are tabulated. These tests are compared with
the correlation coefficient test, Kendall's t tes? and Spear-
man's rank correlation test for independence by means of Monte
Carlo evaluation of power employing 10,000 trials from each of
three different types of bivariate distributions. Also included
is a brief description of the computing aspects of the problem

that may prove useful in similar studies. (\
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1. Introduction

Let §i=(xi,Yi). i=1,2,:..,n be a random sample from a bi-
variate distribution having the continuous cumulative distri-
bution function (cdf) F(x,y). The problem of testing for in-
dependence between X and Y, that is, of testing the null hy-
.pothesis HO:F(x,y)pG(x)H(y) against the alternatives of positive
dependence has been studied extensively in the literature. The
UMP unbiased test under the bivariate normal model is based on
the sample correlation coefficient r. Various nonparametric
tests havL also been proposed. The two classical ones are the
tests based on Spearman's rank correlation Iy and Kendall's t.
A unified treatment of the asymptotic distribution theory of
these and other rank order tests has been given by Hajek and )
Sidak [6). Lehmann {10) gave some mathematical cparacterizations
of positive dependence and demonstrated that and Kendall's t
possess desirable properties for specific types of positive
deﬁendence.

A new class of distribution-free tests of independence
based upon the "3rd quadrant laycr ranks" has been studied.by.
Woodworth [13]. The 3rd quadrant layer rank of Z, is defined
as the number of points (xj-xi,Yj-Yi), 1<j<n, that lie in the
closed 3rd quadrant. Let x(1)<x(2)<...<x(n) and set
5(1)-(x(1),Y[1]), i=1,2,...,n where Y[i] is the.Y-component of
the vector having the jth smallest X~-component. The 3rd quad-

rant layer rank (henceforth to be called simply "layer rank")




2(j) of g(j) is then the rank of Y[j] among Y[l]'YIZI"'5Y[jl‘
The class of layer rank statistics considered in [13] has
n
the structure T = J E _(2(j),j), where E_(i,j), 1<i<j<n is a
n j=1 n n - —— ﬁ
triple sequence of constants representing the weight function 1
associated with the layer ranks. It includes Kendall's t as 3
a special case as can readily be seen by choosing En(i,j)-i.

Another important member is the normal score layer rank statistic

(1 _ 5
(1.1) T jzl bﬂjcj.z(j)

where cjksE(V;k)) with V§1)<...<V;j’ an ordered sample of size

LU

j from the standard normal distribution and

(1.2) bnj = 0 L3t for j=1
Cpy=(3-1) 121 ¢,y for 2<i<n.
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It is shown in [13] that for the alternatives of positive de-
pendence in the bivariate normal family, the test which rejects
Ho for large values of Tél’ is asymptotically locally most

powerful among all linear layer rank tests.

Although the asymptotic properties like the Pitman and
the Bahadur efficiencies of the layer rank tests were studied
in [13], no table of significance probabilities was given to
aid in carrying out the tests and the only existing tables are
for Kendall's t statistic [7,8]. In Section 2, we provide a

table of upper 10%, 5%, 2.5% and 1% points for Tél’ for sample




sizes n=4(1)9 as well as the normal and Fdgeworth approximations
to the significance probabilities. The handling of the dis-
tribution of Tél) is difficult dQue to the complicated form of

sequence {bnj}. Analogously to the Kendall's t statistic, a

(2)
n

constructed from Tél) by taking the bnj identically equal to 1.

simplified version T of the normal score layer rank test is

Thus,

n

(1.3) (2 - j£1 ¢ 005 °
A table of upper percentage points of Téz) is also provided in
Section 2.

The asymptotic relative efficiencies of the tests r, Fgr t
and Tél) have been studied by Konijn (9], Bhuchongkul (2],
Woodworth (13] and others. No information is, however, avail-
able about their performance in small and moderate sample sizes.
Computation of the exact power being extremely difficult, we
present in Section 3 tables of the empirical power of all these
tests and Téz) under three bivariate distributions. Frém the
enormous number of samples (10,000) used in the study, one
would expect that the empirical values are fairly close to the

exact power for the alternatives considered.
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2. Percentage points of Tél) and Téz)

Let 5-(1(1),&(2),...,L(n)) denote the vector of layer ranks

Of (Z(1)rZ(g)r+errZ(y) and (%) the set of all possible layer

rank vectors. Under H,, the different components of 5 are mutually

independent and £(j) is uniformly distributed over the set of
integers {1,2,...,j}, 1<j<n (cf. Lemma 1.1 of Brandoff-Nielsen
and Sobel [1])). Thus the n! vectors involved in the set ’e(&. )
are equally likely under Hye o Determination of the significance
points of a layer rank statistic Tn requires generation of the
set (L), calculation of the values of T, over the set and then

the ordering of these values.

Certain techniques have made it possihle to substantially
reduce the computing time. Both Tél) and Téz) are handled
simulteneously, thus avoiding regeneration of ’e(g). Secondly,

n -
it is found that an auxiliary statistic U (g)= ] £(j) (this is

i=1
equivalent to Kendall's t) helps to generate the layer rank

vectors £ leading to the high values of Tél) and Téz) due to
the monotonic nature of the weight functions involved. This
is made precise in the following lemma.

Lemma 2.1. For integers r, n<r<n(n+l)/2, define the subsets

S(r) of (%) by

(2.1) S(r) = {2 : U (4) = r}.

Then for i=1,2




(2.2) max TP (1) > max Téi’ (1) .
ch(r) o = gcs(r-l) *

n
Proof. Consider, in particular, T(l)(z) = j{ bnjcj,z(j)' For

every l eS(r-l), there exists a layer rank vector z €S (r) such
that for some integer i (l<i<n), z (i)+1-£ (1) and 2 (j) z (3)
for all j=1,2,...,n with j$1. The sequence {bnj} is non-n.gative
and non-decreasing in j. Also, for each fixed j, the sequence
{cji} is increasing in i. This entails T(l)(z ) < T(l)(z )
and hence (2.2) follows for i=l. The same argument applies
for ng) and this completes the proof.

To avoid generating all the n! elements of ﬂﬁ(%), the
layer rank vectors are generated in decreasing order of Un(g).
For instance with n=5, we start from s(15)={(1,2,3,4,5)} and
then generate the set S(14)={(1,2,3,4,4), (1,2,3,3,5), (1,2,2,4,5),
(1,1,3,4,5)) followed by the set S(13) and so on. ' For each n and
each test statistic T(i), a reference number Ci is chosen which
is sure to lie below the 10% cut off point (hence also below the 5%,
2.5% and 1% points). The sets S(r) are generated in decreasing

order of r and for each max T(i)(z) is computed. As soon as
LeS(r) b

this becomes less than min(cl,cz), the program is terminated.
(2.2) ensures that the set of all the layer rank vectors gen-
erated under this scheme contain the critical regions of the

desired sizes.

Even with the above technique, more than ni/10 values of

Téi) are calculated and these are to be ordered. The best

ordering program requires computing time proportional to NlogN,

L
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where N numbers are heing ordered. An even more serious pro-

s, s -

blem is the lack of sufficient storaqe space. With n=9, for
iﬁstance, about 45,000 values are to be ordered for each
statistic. It is frequently experienced that the computation
of the test statistics takes much less computer time than the
printing out of the computed values. The program is therefore
run in two stages. In the first stage, the computed values of
each statistic are grouped into a histogram having 1,000 cells.
The intervals containing the ‘four percentage points under con-
sideration are located. In the final run, the values within
these four intervals are ordered and printed out and from these,
the exact cut off points are determined. About 15 minutes werec
required for the case n=9,

The 10%, 5%, 2.5% and 1% upper cut off points of T(l) and
éZ) for n=4(1)9 are presented in Table 1. 1In some cases the
nominal n can only be attained through randomization on the
boundary. An entry within braces represents the nonrandomized
significance probability (in percentage) corresponding to the
cut off point marked by an asterisk immediately above it. The
number immediately below is the next lower value of the test
statistic which is to be randomized. For instance, with n=4,
a=,.10, the test based on Tgl) is the randomized test: reject
Ho with probability 1 if T;1)31.8260 and reject Ho with pro-

bability (.10-1/12) if T{}a1.8122.
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In order to investiqgate the accuracy of the larqge sample
approximation, we evaluate hoth the normal approximation and the
Edgeworth expansion containing the first non zero correction term.

Thé'la;ter expansion assumes the form (see Cramer (4) pp. 88)

Tn r4n

(4) -2
(2.3) P( < X) = o(x) + ¢ (x) + O(n °)
05 (Ty) nrgn(4n) G

where ¢ is the standard normal cdf, 0(‘) is its fourth derivative,

Og(Tn)'il the variance and nr\‘,n is the vth cumulant of Tn-under

the null hypothesis. By symmetry of the null distribution the

odd cumulants are zero for both Tél) and ng’. For Tél’, we have
4 2

Y B ST S | _ai=2 2

r
4n j=1 n £4 k=1

(2.4)

Py - o . 2
og(T,"') = nl, *21 bnjj kgl €y *

The corresponding expressions for‘Téz’ are obtained by setting
the bnj's equil to one. The resuits appear in Table 2 and they

show that both approximations are very good even for small

samples.
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3. Some dependence alternatives and empirical power

The following five tests of independence are included in
the present study for the evaluation of their relative perfor-
mance in small samples under specific types of dependence.

(1) The correlation coefficient r.

(ii) Spearman's rank correlation re = 12(n -n) ljf (}-E;l)kj,

where Rl,...,R are the ranks of Ylll""'Y[nl

(1i1) Kendall's statistic t = [(3)) 1j)j [2£(§)-(3+1)/2).
=1

(iv) The asymptotically locally most powerful normal score
layer rank test T(l) defined by (1.1) and k1.2).
(v) A simplified normal score layer rank test T(z) defined in

(1.3).

Three sample sizes n=5,7,9 and two significance levels
a=.05 and .025 are considered for each test. The one-sided
cut-off points of T(l) and T(z) are obtained from Table 1,
those of £, and Kendall's t are read from [8) and for the cut-
off points of r, we use the fact that the null distribution of
(n-z):|'/“"r/(1--:.-2)1/2 undef normality is student's t with (n-2)
degrees of freedom.

The following three essentially differént types of positive
wependence are included in the study.

(a) X and Y have the bivariate normal distribution with positive
correlation coefficient p. The tests r and T(l) are optimal for
this family in two different senses. It is interesting to in-

vestigate the comparison of the two as well as the manner in




which they compare with the other three tests which are not
optimal for this family. All the five tests are location and
scale invariant. Without loss of generality we take the means
to be zero, variances arbitrary and p=.1, .3, .5, .7 and .9 to
cover evenly the whcle range of positive dependence.

(b) A model of positive dependence which often arises in factor

analysis:

(3.1) X = V+02

Y = W+02

where V, W and 2 are independent random variables and O is the
parameter of positive dependence. The null h&pothesis is equi-
valent to HO:G-O. This model was considered by Bhuchongkul [2]
and also by Hajek and Sidak [6) in the derivation of locally
optimal rank tests for independence. The particular case of V,
W and 2 being independent uniform random variables on (0,1) is
treated here. The correlation coefficient between X and Y is
p-oz/(1+02) > 0. The values of O are selected to yield alter-
natives which correspond to the values of p in case (a).
(c) The bivariate exponential distribution introduced by Marshall
and Olkin [11]. It is essentially a three parameter family
with the cdf determined from

(3.2) P(X>x,Y>Yy) = exp[-xlx-lzy-klzmax(x,y)],

X,¥20, 1,0, 1,50, 1;,20.




The X and Y marginals are univariate exnonential with means

12)_1 12)-1 respectively and the correlation co-
1

efficient is given by °“"12“1“2”‘-12’- . Marshall and Olkin

(A1+A and (A2+A
[11) showed that the distribution (3.2) arises very naturally
in certain life testing situations. It has an interesting
feature in that al;houqh the marginals have exponential distri-
butions, the bivariate distribution has a singqular part in
addition to an absolutely continuous part. To reduce the number
of parameters, we consider the case of identical marginals
A1=Az-ko, say. Since all the tests are scale invariant, their
powers would dgpend only on e-xlz/xo and hence, without loss of
generality, we take Xosl and A12-0. Then we have p=0/(0+2).
The alternatives O are again chosen so as to have the same values
of p as mentioned in (a).

10,000 samples aré generated in each case fOF the evaluation
of empirical power. To reduce the time for generating the
samples and also to provide a possibly better hasis for comparison,
nine pairs of observations (xi,Yi) are generated each time. The
first five are used for the case n=5, the first seven for the
case n=7 and all nine for the case n=9, As a preliminary to
generating the (X,Y) observations, independent uniform (0,1)
random numbers are first generated following the scheme dis-
cussed in Moshman [12]). Appropriate tfansformations are then
used to convert to the distributions specified in (a), (b) and
(c). Specifically, let zl, Zy and 23 be three independent

uniform (0,1) random variables and set

At o

-

|
1
:
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(3.2) x = (-21nz1)1/2 sin(znzzno(l-pz)'l/z(-21nz1)1/2cos(znzz)
v a) . (-21:17,1)1/2 cos (212,,) ,

3.3 x®) = 2410/ (1-0)11 22,
v®) =z oetp/(2-0)11 22,

and

(3.4) x© - min[-1n(1-2,) , ={1-p)/(2p)1n(1-Z,)]
(®) < min(-1n(1-2,), ;(l-p)/(20)1n(1-z3].

(a)' Y(a)) is a bivariate

| It is easy to verify that (X
normal, (x(b), Y(b)) conforms to the model (b), (x(c), Y(c)) has
a bivariate exponential distribution and the correlation in
each case is p. The transformation (3.2) is due to Rox and
Muller [3] and (3.4) follows from the results in [1ll].

Independent sets of uniform random numbers are used for
each of the three different models. However for each model,
the same set of uniform random numbers are used to generate
each set of the (X,Y) observations corresponding to an alter-
native p. The observations in any set are obtained by merely
changing the value of p in the transformations introduced above.
The number of rejections of HO out of a total of 10,000 samples,
are presented in Table 3 for model (a), Table 4 for model (b)
and Table 5 for model (c). Hence the entries in these tables
need only be divided by 10,000 to yield the estimated power.
Finally, the number of rejections are also given for p=0 which

is equivalent to the hypothesis of independence in each model.
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This provides a check on the accuracy of the empirical type

I error.
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4, Remarks and Conclusions

It was felt that the generated data were quite reliable since
the histograms ot.the univariate marginal observations were well

within the limits of the goodness of fit tests in each case.

Moreover, to check the extent of internal variability of the re-
sults, the program was run in ten groups of 1,000 samples each. ;

The variation of the results of empirical power from group to

o

group was found to be quite small. This observation enhances

the reliability of the pooled empirical power presented in the

tables of Section 3. Further, the results for r were compared
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with selected values of the exact power under normal alternatives
(see David [5]) and were found to agree within + .01l.

Among the five tests included in the study, all but the
correlation coefficient test r are distribution-free. As men-
tioned earlier, the cut-off points for r were takén from student's
t distribution which holds only under the bivariate normal model.
The empirical significance probabilities for r in Table 3 are
as close to the nominal levels as they should be, Curiously
enough, they also tend to agree very closely in Table 4. The
underlying model in this case is the uniform distribution of
(X,Y) on the unit square. Thus, the significance levels for
the parametric test r seem to be robust with respect to the
uniform distribution. However, this property does not hold for
the bivariate exponential model. This is evident as one ex-

amines the empirical levels of r in Table 5.




Finally, we make a comparative study of the empirical powers
of the five tests under consideration. Regarding the bivariate
normal model (a), there is clear indication that r has substantially
higher power than all the other tests (see Table 3). r is even

(1), al-

noticeably better than the optimal layer rank test T
though asymptotically T(l) has Pitman efficiency 1 relative to r.
The r test also seems to be superior to all the others for the
model (b). However, for the bivariate exponential alternatives,
not only are its significance'levels seriously distorted, but
its power tends to lag behind those of all other tests. Thus
among the five tests, the r test is the best for the models (a)
and (b), but it is the poorest for model (c). The simplified
normal score layer rank test T(z), on the other hand, seems to
have the highest power among all five for the model (c¢), al-
though it has the lowest powers for (a) and (b). The difference
among the performances of T(l), ry and t are somewhat less pro-
nounced. Asymptotically, ry and t have relative efficiency 1
for all parent bivariate distributions and their efficiency re-
lative to T(l) is (3/w)2-.912 for the bivariate normal model
(a). In Table 3, their empirical powers are found to be quite
close to one another for all the alternatives p. For the model
(b) , the Spearman test r, seems to have more power than both
T(l) and t. The difference, though moderate, is noticeable for
all n, all alternatives p and for both the values of a. On

the other hand, ry has slightly lower power than T(l) and t

for the model (c).
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