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FOREWGRO

The method of screws made its appearance as a method of me-
ch-anics during the 'Seventies of the last century. The screw cal-
culus proper was formulated in its definitive form during the
'Nineties, based on the ideas of W. Clifford, A.P. Kotel'nikov
and E. Study, and is a generalization of vector calculus. It is
based both on the general theory of screws and a special "trans-
fer principle," wnich establishes correspondence bet'feen the free
vectors and the screws in such a way that if they are given a
special complex form, all relationships of the vector domain are
formally preserved for the screws. As a result, one "screw" equa-
tion with no differences in form from a vector equation is equiva-
lent not to three but to six scalar equations, which imparts par-
ticular compactness and clarity to all of the expressions.

Despite the long time that has elapsed since the origin of
screw calculus, there Is still only a select group of persons to
whom it is familiar owing to the lack of the necessary literature
on the problem.

The author has made an attempt to set forth the basic propo-
sitions of screw calculus on the basis of the elementary apparatus
of modem vector algebra and to indicate certain of Its applica-
tions. The book sets forth material from the theory of sliding
vectors, the algebra of complex numbers of the form a + wa with
a special multiplier w that possesses the property wa 0 0, the
algebra of screws, fundamentals of the differential geometry of I
the ruled surface, which are necessary for the kinematics of
solids, the foundations of screw analysis, and, finaliy, certain
data from the classical theory of screws in Its geometrical as-
pect, with indication of a number of applications in mechanics.

The author's purpose was to popularize (if a bit late) screw
calculus among specialists in mechanics; It Is hoped that a large
group of readers working in various fields of general and applied
mechanics will become conversant with it.

In compilation of the book, the work of A.?. Kotel'nikov and
D.N. Zeylinger was referred to most frequently, followed by the
papers of R. Ball, N. Zanchevskly, E. Study, R. MItes, S.O. Kis-
litsyn and other authors. Also included are certain results ob-
tained by the present author, some of which will be published at
a later date.

The book Is intended for the reader familiar with vector al-.

-l -
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gebra and the basics of the theory of functions of a vector argu-
ment.

The author acknowledges his debt to Abram Mironovich Lopshits
and Rivol't Ivanovich Pimenov, who offered valuable advice on in-
dividual problems in the course of work on the book.

-2-
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INTRODUCTION

The theory of screws made its appearance at the beginning ofI
the last century following the appearance of the papers of Poin-
sot,, Chasles and M4bius, in which the theory or force couples and
infinitesimally small rotations was studied and the analogy be-
tween the force and a sm&ll rotation and, as a corollary, the
analogy of their addition, were established for the first time.
The work of these authors established the equivalence of longi-
tudinal displacement of a body to screw displacement, and laidi
the foundations for study of kinematics and statics; the notion of
the screw, which was subsequently developed further in the papers
of PlUcker, was also formulated.

isaPlu-cker studied a ruled space, i.e., a space whose element
isastraight line. To describe the line, PlUcker introduced spe-

cial coordinates (PlUcker coordinates), which in the general case
define a screw; apart from the screw, he also considered other
figures of linear geometry (surfaces,, congruences, complexes).

As the combination of a vector and a couple whose plane is 4
perpendicular to the vector, the screw is a geometrical figure
that describes both arbitrary displacement of a solid body and an '

arbitrary system of forces acting on the body. In the study oft
motion, the screw as displacement is in many cases the most natu-
ral generalized displacement on which operations are performed
directly; at the same time, the force screw is the correspondingI
generalized force. This gives rise to the method of mechanic.- In
which all displaccme'nts and their derivatives as well as the
forces are expressed by screws,, and which yields results that c an
be treated in the language of screws.

Beginning in 1870, the theory of screws was studied compre-
hensively In the papers of Rt. Ball, whorpublished the monumental
work [1] in 18,06.

Examining arbitrary displacement& of the body, Sall reduce&
them to a combination of certain base screws, attaining clarity
in the geomtrical interpretation and pa~d mechanical palpability
In the results. In a story that he wrote [2] to popularize the es-
sentials of the method of screws, Ball very cleverly juxtaposes
the method of screws to the cartesian-coordinate method. The story
runs as follows: a certain technical comission was given the task
of determining the dynamic properties of a solid body (the housingd
of a miachine), which was secured to its base In a rather compli-
cated fashion. For this purpose, It was first necessary to ascer-

P'rD-HT-2 3-1632-67



tain the number of degrees of freedom of the body. One of the mem-
bers of the commission was a Cartesian. After a long and laborious
study of the mobility of the body with the aid of his "tested" co-
ordinate trihedron, he eventually arrived at a result that was
summed up in six numbers expressed in degrees and minutes of arc
end inches and providing a numerical expression for the possible
rotational and translational motions along the coordinate axes;
however, this res-lt told nothing of the essential nature of the
motion and won disapproving remarks from the president of the com-
mission. At the same time, another member of the commission, one
Helix, making use of the fact that any motion of a body is equiva-
lent to a screw motion, established, by comparatively simple
matching of screws with nuts of the appropriate pitch, several
possible variants of "screwing down," i.e., spatial motions of
the body, thus giving a clear interpretation of the motion inde-
pendently of the coordinate system.

In the Russian literature, Ball's theory found its reflection
in the work of 1.0. Zaiichevskiy [3J, who related the theory of
screws with the theory of the ruled complex.

Several years before the appearance of Ball's classical work,
W. Clifford [4] had given a highly interesting description of
screws using special complex numbers. It must be remembered that.
vector calculus was only developing during this period, and had
not at that time acruired the simple form in which we know it to-
day. Vector calculus was approached progressively from various di-
rections: on the one hdnd, with the aid of geometrical concep-
tions, and, on the other, with the aid of specially invented "hy-
percomplex" numbers or "quaternions," which consist of a scalar
part and a part that contains three more quantities of a different
nature. Clifford introduced the multiplier w, whose square is
equal to zero, as well as complex numbers that consist of a real
number and .the product of a real number by w. If the components
of the quaternion are considered as complex rather than real in
the sense Just indicated, the quaternions become biquaternions,
which have the same relation to the theory of screws as quanter-
nions have to ordinary vector theory. Clifford did not develop the
theory of screws in its applications to mechanics; his subsequent
research was concerned with application of the operation that he
had introd ned and the biquaternions to noneuclidian geometry.

TI' monumental work of A.P. Kotel'nikov [5) in which screw
calculus proper was constructed for the first time made its ap-
pearance in 189ý. This study used the above complex numbers with
the multiplier w, by means of which a vector is transformed into
a screw. The principal service rendered by KQtel'nikov consisted
in the fact that for the first time he formulated in its complete
form the special "transfer principle" on whose basis all opera-
tions of screw calculus can be constructed in exact correspondence
with operations of vector calculus if all real quantities in the
latter are replaced by cQ:wplex quantities with the multiplier-w..
t s a result, it becomes possible to substitute not three equa-
tions, as in the case of vector calculus, but six scalar equa-
tions for one equation, and the solutions of rather complex prob-
lems become more compact.

4i
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Kotel'nikov gave an even broader geometrical interpretation
to the transfer principle that he had formulated - the principle
establishes correspondence between geometrical figures in spaces
with different numbers of dimensions, and, in particular, between
objects of point and line spaces, and enables us to study the ge-
ometry of one space with the aid of the geometry of another.

The major work of the prominent German geometrician E. Study

[6) on the geometrical theory of screws appeared in its first edi-
tion in 1901 and its second in 1903. In this volume, which runs
to more than 600 pages, about 50 are devoted to exposition of a
method of describing screws and linear spaces with the aid of corn-
plex numbers with the multiplier w (Study calls them dual numbers),
and a transfer principle similar to that mentioned earlier is for-
mulated. In the second edition, in a short historical note obvi-
ously occasioned by the appearance cf a number of papers on the
same problem, the author makes an attempt to establish his pri-
ority in the application of complex numbers to screws. He cites
his work on the application of complex numbers in the linear ge-
ometry of euclidian and noneuclidian spaces, but nothing is said
concerning his formulation at some earlier time of the actual
transfer principle. The following references are made in this
brief outline: to a short paper of F. Schilling [7] dating from
1891, in which formulas of spherical trigonometry are first de-
rived for complex angles, and then to the above-mentioned work by
A.P. Kotel'nikov [5), which Study cites from a short abstract in
"kY.rtschritte der Mathematik," 1896, in connection with which
nothing is said of Kotel'nikov's formulation of the transfer prin-

Sciple, and also to an 1896 paper of R. Saussure [8), where complex
numbera are used, although, in his opinion, not quite correctly.
Incidentally, Saussure's paper actually does submit the idea of
applying a transfer principle to one problem of the displacements
of a solid body.

In his later work [9) (published posthumously in 1950), A.P.
Kotel'nikov makes the following remark: "The transfer principle in
all its generality was discovered and formulated independently
and, apparently, simultaneously by Study and myself. It must be
supposed that the transfer principle was already known to Study
when he wrote... his paper "Ueber neue Darstellung der Krifte" [A
New Representation of Forces].* But he formulated this principle
quite definitely in his paper "Ueber Nicht-Euklidische und Linien-
geometrie" [Noneuclidian and Linear Geometry).""a0 The first of
these papers dates from 1899 and, as can be seen from its text,
the transfer principle has not yet been formulated. As for the
second paper, which the author of the present volume has not been
able to obtain, it was published in 1900 and, in all probability,

is the work in which E. Study first gave his formulation of the
transfer principle.

Note should be taken of the well-known work of R. Mises,
which appeared in the form of two articles in 1 9 24 [12) and £13),
which sets forth the general part and applications of the so-
called "motor" calculus ("motor" is a combination of the words
"moment" and "vector," i.e., the screw). In this work, the author
first proceeds from geometrical description of the motor using
two straight lines and then. introduces six coordinates of the mo-

-5-
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tor and operations on the motors - scalar and motor multiplica-.
tion. This is followed by the introduction of motor dyads and af-
fine-transformation matrices. In motor calculus, as in sc-ew cal-
culus, analogies with vector operations are discernible. However,
the transfer principle was not reflected in the work of Mises.
Mises examined applications to the dynamics of the solid body,
elasticity theory, the structural mechanics of rod syftems, fluid
dynamics, etc.

Soon after A.P. Kotel'nikov (beginning in 1897), D.N. Zey-
linger began to develop the notions of screw calculus; in 1934,
he published his definitive work [14), which gives the results of
extensive investigations in linear geometry obtained by screw cal-
culus and indicates interesting applications to kinematics. Some
information on application of complex numbers with the multiplier
w in linear geometry is given in the book by Study's student W.
Blaschke [15); a description of complex vectors will also be found
in M. Lagalli's book [16].

Unfortunately, apart from D.N. Zeylinger, a contemporary and
adherent of A.P. Kotel'nikov, and certain other geometricians, it
can be said that screw calculus remained almost totally unrecog-
nized over a span of forty years. This is explained in large part
by the extreme rarity of the published works of A.P. Kotel'nikov,
which came out at Kazan' at the end of the last century and have
for the most part been lost; the work of Study, as an obscure ge-
ometrical treatise, also failed to attract the notice of those
who might have used the ideas embodied in it. Another highly prob-
able factor is that at the beginning of this century, many inves-
tigators were attempting to adapt various concepts and methods of
geometry for the most part to the developing mechanics of continu-
ous media, while screw calculus, which was associated with linear
geometry, was not suitable for description of the ordinary con-
tinuous medium; the need to use screw calculus for the mechanics
of the solid developed much later.

Only in 1937 did papers begin to appear that might be re-
garded as a continuation of the theory of screw calculus. S.G.
Kislitsyn developed "screw affinors" [17), which represent an ex-
tension of the operators of affine geometry to the screw space.
Complex numbers with the multiplier w serve as elements of the
matrices of the corresponding affine transformation.

Finally, in 1947, studies of applications of screw calculus
to the problems of technical mechanics began to appear (the the-
ory of hinge mechanisms, the theory of gear meshing). These in-
clude papers by the author of the present book [18], [19) [20),
by S.G. Kislitsyn [21], [22), [23), [24), by F.L. Litvin t25) and
certain others.

Among recent papers on the application of screw theory to
investigation of mechanisms, we might cite that of A. Yang and F.
Freidenstein [26).

Independently of screw calculus, the method of screws had
been applied to the theory of mechanisms somewhat earlier, in
1940, by Ya.B. Shor and the present author [27), [28).

-6-



Thus, the notions of screw calculus have been accorded a cer-
tain amount of recognition in the literature and have already be-
gun to find applications. Nevertheless, the number of investiga-
tors working in this area is quite limited, and for the most part
the screw calculus remains unknown to an enormous number of per-
sons concerned with the mechanics of the solid body and the con-
tinuous medium, and even more so to engineers working in industry.
It can nevertheless be assumed that the recent appearance of many
papers on application of the screw calculus will contribute sub-
stantially to popularization of this calculus. The author hopes
that the present book will also play a part in this trend.

Manu-
script Footnotes
Page
No.

5* [101 in References list.

5** [11) in References list.
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Chapter 1

THE SLIDING VECTOR. THE MOTOR AND THE SCREW

Si. Moment of a Vector with Respect to a Point. The Sliding Vec-
tor. The Sliding-Vector System. The Principal Vector and Prin-
cipal Moment of the System

We shall assume that the reader is familiar with the defini-
tion of the vector, as well as all operations on free vectors as
taught in conventional courses in vector algebra.

Let us recall certain information on the moment of a vector
with respect to a point and on systems of sliding vectors. The mo-
ment A of a vector r= A8, where A is a given origin and B is the

0
end of the vector, with respect to some point 0 is the vector

equal to the dot product of the radius vector p 6OA by the given
vector, i.e.,

rsm=pxr. (1.1)

By definition, the moment is perpendicular to the plane of trian-
gle OAB and points in the direction from which the circuit of the
triangle in the direction of the vector appears to be counter-
clockwise, and that the magnitude of the moment is equal to twice
the area of triangle OAB.

It also follows from the definition of the moment that the
moment of a vector with respect to any point will not change if
the vector is displaced along its line in an arbitrary fashion.

Two vectors which are equal and whose moments with respect
to any point of the space are also equal, are said to be equiva-
lent.

Thus, displacing a vector to any position along its line, we
obtain equivalent vectors.

In many problems of the mechanics of the solid body, the con-
ditions of the problem remain in force if the vectors represent-
ing various quantities are replaced by equivalent vectors. Vectors
that are defined accurate to equivalence, i.e., vectors that can
be displaced along the lines of their action, are known as sliding
vectors. As an example of a sliding vector, we might cite the vec-
tor representing the angular velocity of a solid body. Its posi-
tion in space is characterized by the position of the body's axis

Si-8-
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of revolution; at the same time, it may be placed anywhere we
S2ease on this axis.

This book will consider sliding vectors and systems of slid-
ing vectors.

The moment of a vector with respect to a point 0' is ex-
pressed in terms of the moment with respect to point 0 as follows:

,*,=P, (=o+P)xro.+o60x,.. (1.2)

It follows from Formula (1.2) that for two equal vectors to
be equivalent, it is sufficient that their moments with respect
to a given point in the space be equal.

Let there be given an arbitrary system of sliding vectors
ri, r,,. ., ra. Let us take an arbitrary po'nt 0 of the space and re-
late two vectors to it: the principal vector of the system, which
is the geometrical sum of all vectors of the system

and the principal moment of the system with respect to 0. which
is equal to the geometrical sum of the moments of all sliding vec-
tors of the system with respect to the point

where Pis P2 .... PR are the radius vectors of the initial points of
the vectors from 0.

The relation between the principal moment of a system of
sliding vectors with respect to a new point 0' and the principal
moment of this same system with respect to point 0 is as follows:

- , ,X,+p P ,
-,4+px,. (1.5)

where 9 is the vector connecting point 0' to point 0.

For a system of sliding vectors, the scalar product of the
principal vector by the principal moment taken with respect to an
arbitrary point 0 of the space is independent of selection of this
point. Actually, on scalar multiplication of (1.3) and (1.5) we
obtain for any two points 0 and 0'

P-0 + Xr.4x,)-,..
The scalar product of the principal vector by the principal

moment of the sliding-vector system is known as the Invariant of
the system and denoted by the letter J.

It follows from the above that on any change in the point 0,
only that component of the principal moment that is perpendicular

S.. .. . . .. . .. . .. . .



to the principal vector can change, while the component parallel
to the principal vector remains unchanged.

The following cases may present themselves as we examine sys-
tems of sliding vectors:

1) r-O. r'.1. J1O+;
2) r -= . r 1+o ; (1.6)
3) r•O r/0 = r-er-0;

4) r 0, r 0. 1

In the first case, the principal vector and principal moment
are arbitrary; in the second case the principal vector is zero; in
the third case the principal moment of the system with respect to
any point is perpendicular to the principal vector; the fourth
case characterizes the null system of vectors.

§2. Equivalent Vector System. The Vector Pair

We shall call two systems of sliding vectors equivalent if
their principal vectors are equal and the principal moments with
respect to any point of the space are also equal.

It follows from Formula (1.5) that if the principal vectors
of two systems are equal and the principal moments with respect
to any single point of the space are also equal, the noments with
respect to any point of the space will also be equal in these sys-
tems.

Let us examine an elementary system - a pair of vectors. The

system of two sliding vectors r, A- and r,-CD form; a pair if
the figure ABCD is a parallelogram. The distance between lines AB
and CD is the arm of the pair, while the area of ABCD is the mo-
ment of the pair. The moment of the pair is represented by a vec-
tor perpendicular to the plane of ABCD and pointing in the direc-
tion from which the point describing the perimeter of ABCD appears
to be moving counterclockwise. The pair represents the second of
the cases of the system that were enumerated earlier (1.6).

A pair whose arm is zero is known as a null pair. It corres-
ponds to the fourth of the cases of (1.6).

Obviously, the principal vector of a pair is zero. Hence the
principal moment of the pair, on the basis of (1.5), will be the
same for all points of the space. This principal moment is equal
to the moment of the pair.

It follows from equality of the principal vector to zero and
equality of the moments of the pair for any point of the space
that all pairs whose moments are equal are equivalent. Equivalence
is not violated if the pair is transferred and changed in any way
that preserves the direction and magnitude of its moment, i.e.,
if it is transferred with its plane left parallel to itself, and
if thi absolute value of its vector and the arm are changed while
preserving the same product.

- 10 -



The combination of two pairs is equivalent to zero if their
momnints have the same absolute value, ara parallel, and point in
opposite directions.

It follows from the fact that the sam value of moment cor-
responds to equivalent pairs that we may consider the moment of
any pair instead of that pair. Assigning the moment of a pair de-
fines any pair equivalent to the given pair, and therefore re-
places assignment of the pair with an accuracy equal to that of
equivalence.

§3. Reduction of a System of Sliding Vectors to an Elementary
System

There exist elementary geometrical operations by means of
which one system of sliding vectors can be replaced by another
system equivalent to it, in particular by an elementary system
consisting of the least number of vectors. These operations are
as follows:.

a) transfer of the vector along its line;

b) adding or dropping two equal and opposed vectors;

c) replacement of several vectors passing through the same
point by their geometrical sum, which passes through the same
point;

d) replacement of one vector by its components, obtained by
the parallelogram law and passing, together with it, through one
point.

The above operations do not change the principal vector and
principal moment of the system; as a result of applying them,
therefore, we obtain a system equivalent to the given system.

Let us examine the transfer of a sliding vector onto a line
parallel to its own line. Let r be a sliding vector on line a. On
the parallel line a' we construct a null pair consisting of two
vectors r' and r" with a common origin at point 0, with the former
equal to the assigned vector r. In other words, we add to the
given system two equal and opposed vectors, thus performing ele-
mentary operation "b" of the above list. The new system, which is
equivalent to the sliding vector r, will consist of vectors r, r'
and P"' and will represent the combination: ar., pair (r, r").

Thus, the vector r on line a is equivalent to the combination
of the equal vector r' on line a', which runs parallel to line a,
and the pair (r, r"), whose moment Is equal to the moment of vec-
tor r with respect to point 0. Since the given pair or the pair
equivalent to it is defined by its moment, the combination of vec-
tor r' on line a' and the pair (r, rf') is replaced by the combina-
tion of vector r' on line a' and the moment P9 of vector r with
respect to point 0 on line a".

It follows from this that a sliding vector is equivalent to
an elementary system composed of a vector originating from the

- 11 -
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point with respect to which the moment is taken and the moment.
For this vector-equivalent system, it is always the case that

:-ý 0.
The operation of equivalent substitution of a sliding vector

by the above elementary system at a point is known as reduction
of the sliding vector to this point.

Let us consider reduction of a system of sliding vectors in
the general case (the first case among those listed). Let there
be given a system of sliding vectors rl. r,. ra. Let us select a
certain point of space 0 and reduce each of the vectors of the
system to this point. We shall obtain a system of vectors r,,r,....,

.,r with a common origin at point 0 and equal to the given

sliding vectors, and a system of moments r, t ..... equal to the
moments of the given sliding vectors with respect to 0; the mo-
ments assign the corresponding pairs of the reduction.

Adding vectors and determining the sum

r --r, + r, + +. r..

and adding the moments and determining the sum

F W?+ +., + + r.

we arrive at the result that the system of assigned sliding vec-
tors is equivalent to a vector equal to V, which, in accordance
with operation "c" passes through point 0, and a pair with moment
p0 since the latter determines this pair or its equivalent.

The vector r is the principal vector and the moment V0 the

principal moment of the system with respect to point 0.

In the general case, the vectors r and r° form an arbitrary
angle. Generally speaking, therefore, for a system of vectors
r-r"• + 0.1

IT-the point of reduction is changed, the moment will change

in accordance with Formula (1.5), but the component of the moment

in the direction of the principal vector will remain unchanged;

only thp component perpendicular to the principal vector will

change. There exist points of reduction for which the system prin-

cipal moment is colinear with the system principal vector.

Let the principal vector be r, and let the moment be r and

not colinear with r for a certain reduction point 0. We pass a

straight line through point 0 perpendicular to r and P* and find

a point C on this line for which the radius vector-

"--•-X "

Taking C as the new point of reduction, we find the corres-

ponding moment from Formula (1.5):

"-~ -12-



rC-× ×rr.r- -' (1-7)
r•:r• t- r2 r2

from which it is seen that the moment r° is colinear with the

principal vector P. In addition to point C, there exists an Innu-
merable set of points that possess the same property. Indeed, for
any point C' lying with point C on a straight line parallel to r,
we shall have

c, =- r0c' +r x r r= rc.

A straight line for any point of which the principal moment
is colinear to the principal vector is known as the central axis
of a system of sliding vectors.

On the basis of application of Formula (1.5), we may arrive
at the conclusion that for any point not lying on the central
axis, the principal moment will not be colinear to the principal
vector. The central axis of the system is the only straight line
that satisfies the condition posed above.

The distribution of the principal moments in the space is
shown in Fig. I as a function of the position of the reduction
points.

In a particular case of the system, it may be found that the
principal moment is perpendicular to the principal vector for any
point of the space. Then JI r.G = 0 and we have the third of the
cases listed above (1.6). On reducing the system to the central

axis on the basis of (1.7), we find thatI, - 0 for points of the central axis. The
system will be equivalent to one sliding
vector, and the central axis will be the

"rj straight line on which this vector lies.
For example, a system of sliding vec-

tors passing through one point and a system

C of sliding vectors lying in the same plane
- reduce to this case, provided that r-1.

SfWhen a system of sliding vectors is re-

Fig. 1 duced to one equivalent sliding vector, the
latter is known as the resultant vector or
simply the resultant of the system in ques-
tion.

Let us consider another method of reducing a system of slid-
ing vectors r,.t 2 ..... r.. We take an arbitrary plane q that is paral-
lel to none of the assigned vectors and consider the points of in-
tersection A,.A, ... ,A, of this plane with the lines on which the
vectors lie. We then take an arbitrary line a that is not parallel
to plane q and is parallel to none of the given vectors. At each
of the points Ak, we substitute the sliding vector rk by its two

components according to the parallelogram law (elementary opera-
tion "d"), one of which, ak, lies in plane q, while the other, tk,
is parallel to line a. Instead of the given system of sliding vec-

- 13 -



tors, we shall have two systems of sliding vectors $,W.S" and
t,, t2. ..t I,. The first of these is a two-dimensional system equiva-
lent to one resultant a in plane q (provided that it is not equiv-
alent to a pair), while the second is a system of parallel vectors,
also equivalent to one resultant t (provided that, like the first,
it is not equivalent to a pair). These two resultants present a
system equivalent to the given system. In the general case, they
lie on crossed lines. Thus, an arbitrary system of sliding vectors
is equivalent to a system consisting of two sliding vectors lying
on lines that, generally speaking, do not intersect, or, in other
words, to a vector cross. Any system can be reduced to a vector
cross by an innumerable number of methods.

§4. The Motor and the Screw

The geometric figure-equivalent of a vector system, repre-
sented for any point of the space by the principal vector and
principal moment of the system with respect to this point, is
known as a motor (combination of the words "moment" and "vector").
For simplicity, we shall henceforth use the term motor for the
combination of a vector and a moment (r, ro), referred to some single
point, assuming that the origins of r and rO are at this point.

If the system of sliding vectors is reduced to a point on the
central axis, the principal moment will be colinear with the prin-
cipal vector.

A motor(r.?') whose moment ro is colinear to the vector is
known as a screw.

The line on which r lies is called the axis of the screw. In
other words, a screw is a system consisting of a sliding vector r
and a moment 0. colinear with it.

It follows from all of the above that in the general case, a
system of sliding vectors is equivalent to a screw. The axis of
the screw is a central axis of the system; the vector of the
screw is the principal vector; the moment of the screw is the
principal moment of the system with respect to an arbitrary point
on the central axis.

Since the vectors r and V° are colinear, r-Pr. where p is a
scalar multiplier. This multiplier is called the parameter of the
screw. The quantity p will be positive if V and pU point in the
same direction and negative if they point in opposite directions.

Any sliding vector is, at the same time, a screw with zero
parameter, and the straight line on which it lies is the axis of
this screw; any moment is a screw with an infinite parameter whose
axis may be any straight line parallel to it. Henceforth we shall
use the term "screw" for screws with arbitrary parameters, includ-
ing the zero-parameter screw, i.e., the sliding vector.

A zero-parameter screw whose vector is unity will be called

a unit screw (same as unit sliding vector).

Screws will be denoted by upper-case boldface letters.
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A screw R fully defines a motor (rc) for any point in space;
this motor, in turn, uniquely defines the screw.

Replacing a screw by the equivalent motor at point 0 is
known as reduction of the screw to point 0; the point 0 to which
the motor is referred will be called the reduction point.

The moment v is the moment of the screw with respect to
point 0.

§5. Kinematic Screw and Force Screw

Since the theory of screws has direct applications in me- j
chanics, it will be convenient to make reference here to the kine-
matic and force interpretations of the screw.

The most general case of displacement of a solid body in
space reduces to a screw displacement characterized by the axis,
the absolute value of the principal vector and the parameter. A
kinematic screw is a screw that characterizes the dtsplacement of
a body. The axis of this screw coincides with the axis of the
screw displacement, the modulus of the principal vector expresses
the magnLtude of the body's angle of rotation, and the parameter
gives the ratio of the translational displacement (slip) parallel
to the axis to the angle of rotation.

If the screw displacement is infinitesimal, its referral to
a time increment results in an instantaneous or velocity screw,
in which the vector is the angular velocity of the body and the
moment its translational Velocity. In this case, the velocity of
an arbitrary point of the body is represented by the moment of the
screw with respect to this point.

The most general system of forces acting on a body can be re-
duced to a force screw by the rules of reduction of a vector sys-
tem to a screw, if the vectors represent forces. The moment of a
system of forces with respect to any point of the space is the mo-
ment of the equivalent force screw with respect to this point, or,

-what is the same thing,.the moment obtained by reduction of the
force screw to this point.

§6. Relative Moment of Two Screws

The sum of the summands: a) the projections of the vector of
a first screw onto the axis of the moment of a second screw with
respect to some point, multiplied by the moment of the second,
and b) the projections of the vector of the second screw onto the
axis of the moment of the first with respect to the same point,
multiplied by the moment of the first, is known as the relative
moment of two screws.

If a force screw R acts upon a body performing an elementary
displacement characterized by a kinematic screw U, then the work
performed by the force screw on the displacement screw will be
equal to the relative moment of the force and kinematic screws R
and U.
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This familiar premise can easily be proven if we reduce both-
screws to the same point and then examine the sum of the works of
the force-screw principal vector on translational displacement of
the point and of the force-screw principal moment on angular dis-
placement of the body.

tF
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Chapter 2

THE MULTIPLIER AND INTRODUCTION OF COMPLEX VECTORS,
COMPLEX NUMBERS OF THE FORM a + wa'. ALGEBRA AND ANALYSIS

IN THE DOMAIN OF THESE COMPLEX NUMBERS

§1. The Multiplier w. The Complex Vector

As we have already stated, the direct definition of .a screw
by its axis, vector and parameter is replaced by definition of a
motor referred to a point of reduction and representing the com-
bination of a vector and a moment. By this substitution we gain
an advantage in that operation directly on the screw is replacedby operation on vectors and reduces to a problem of ordinary vec-
tor algebra.

Clifford introduced a highly original and important operation
by means of which a motor (r. r) is expressed formally in the form
of the complex vector

r+ w4,

where w is a multiplier whose square is equal to zero.

If we operate with a complex vector of this kind as with a
formal sum1 then w will play the part of a number possessing the
property W - 0.

Introduction of the complex vector with this multiplier w
has interesting consequences. Firstly, the results of operations
on the motors are found to be independent of the reduction point
for which the- motor was obtained and, secondly, the "vector" part
of the result of an operation on any motor is found equal to the
result of the corresponding operation on the vector of the motor.

Since we shall employ the conception of the motor as a com-
plex vector in the exposition to follow, it will be necessary at
this point to consider the general properties of complex numbers
of the forma+ we. where wa a 0.

S2. Operations on Complex Numbers of the Form a+u;4. Algebra and
Analysis

We shall use upper-case letter symbols to denote complex num-
bers of the form under consideration. Let us examine the complex
number

- 17 -
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"A= a +ua,

where w2 - 0. The number a is known as the principal part and the
number amo= mO (A) is the moment part of the complex number A. If
a' 2 0, then the number is said to be real. The ratio db-a':-.P(A)
is known as the parameter of the number A (for a ji 0).

Introducing the parameter P(a), we can present the complex
number in the form

Am-a(0+ a -24)'a[l+ wP (a)I. (2.1)

If P(a) 0 0, then the number is real.

In defining operations on complex numbers, we shall use,
firstly, the invariable principle according to which the equality
A--a+u ;O$means that the equalities a - 0 and a' = 0 are satis-
fied simultaneously, and, secondly, we shall consider each complex
number formally as a sum and the operation w as a number possess-
ing the formal property w 0.

Addition and subtraction of two of the complex numbers does
not differ from addition and subtraction of ordinary complex num-
bers:

A±5B (a±b).+f (de±•). (2.2)

For multiplication, we shall use the formula

AD - (a + -e) (b--•+ b ab + 0) (abe + ba). (2.3)

For division (with b P 0) we obtain

S*(2.4)

The operations of raising to a power and extracting a root
will be carried out by the formulas

An" (a + we)" d' + n'a"',
S(,mo).} (2.5)

To define a function of the complex variable X x + OX, It
will be expedient to represent this function also in the form of
a complex variable:

P (X) F (z +. &M I (x, jX + og (x, O), (2.6)

where ) and g(xz) are real functions of the two real variables
x and as.

Here and below, it will be convenient to consider differen-
tiable functions. For this purpose, it will be necessary to intro-
duce a requirement similar to that introduced in the conventional
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theory of functions of the complex variable for analytic func-
tions, namely, that the derivative, i.e., the limit of the ratio
of the increment of the function AF(X) to the increment AX of the
complex variable X as AX-.0. is independent of the ratio Ax'-: Ax.

Writing the expression for the derivative, we have
dF _(X-f + 0 dg(x.
AY dx+adx#

(a a o + w[if+ a( at d

To satisfy the above condition, it is necessary to set the
multipliers before dO:dx equal to zero in Expression (2.7). This
will give the relationships#

It follows from the first of these that the function f is a func-
tion only of the variable z, i.e.,

l(x.) = I(x). (2.9)

while the second implies the following expression for the func-
tion g:

g (x, =,Z +,(P) (2.10)

where f(s) is a certain function of s.

Consequently, the general expression for a function of the
complex variable

X - + e,

that satisfies the condition formulated will be

F(X-(O+ f .+ P (x)]. (2.11)

For X real, i.e., for ao a 0, the function must have the expres-
sion

F (X) -I(z) + (x). (2.12)

We shall assume that in the general case, the function of the

complex variable X-mx+xex depends both on the complex variable X
and on complex parameters A, B0 C0 ... and define it with the aid
of a Taylor series in which w?" takes the part of the increment
and all terms containing w in powers higher than the first are
set equal to zero. Thus,
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F (X, A, B, C,....) -- F x, a, b, c. .. .)
+ (O F + * bO OF _F c F+(-3•+a°-+ •-Fd&-+..). (2.13)

Comparing (2.11) and (2.13), we find

t(x)'=F(x, a, b, c,...), (
0()a/ I At +"CO of (2.14)

I(x)=a'+b• + •+...

Thus, the principal part of the function is equal to a func-
tion of the principal parts of the quantities on which it depends.

From Formulas (2.11) and (2.13), we recognize an important
fact -namely, that the function of the complex variable x-I-x9
is fully defined by a function of the principal part x.

It follows from this that if the principal parts f and q of
two functions F and 0 are identically equal, the functions them-
selves are also equal. Indeed, the equality 10q:e follows on the
basis of (2.14) from the equality f = V, and we may conclude on
the basis of (2.11) that

FP-.

An important theorem follows from the above.

Theorem 1. All identities per'taining to differentiabZe funo-
tione are preereed in the domain of oomptez quantities of the
form, a + e,.

For the function e0 we obtain the expression

*x = e40._e= +e e(• I +o=2).

On the other hand,

from which it follows that

ow, +=' V+ , (2.15)

or, in general, for any number p
I+op. (2.15')

Comparison with Formula (2.1) indicates that any complex number A
has the form

S°,+ -!.!-)--4( -O)or , pA aO.- ~e=a,= IejJ=.=ie.JWoP

It follows from this formula that
p (nCD... )-,P (A) +I P (8) +P (C) +P (D))..

-20-
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i.e., that the parameter of the product is equal to the sum of the
parameters of the cofactors, while the parameter -,f a fraction is
equal to the difference between the parameters of the numerator
and the denominator.

Since the parameter of the number wa is -, Lhe theorems de-

rived are not applicable to complex numbers that do not have a
principal part. As a consequence, the modulus !f the number's
principal part may be taken as the modulus of the number, and
hence complex numbers with the modulus zero are singularities.

For functions of the complex argument X we obtain

sinX = sinx + o.xcosx, P(sinX) 0 ,ictgx,

cos X = cos x-- w sin x,- P (cos X) -- -tg x,
tg x tgx +z €--', P (tg X) i'

S• " ,,(2.16)|
InX=lnx+w-t-- P(inX).=i

sin AX =sinax +- w(xoa + d'x) cos ax,
eA+4 = eAe"B, elx = cosX + isin X,
sin'X+cos'X =1

and so forth.

On the basis of (2.7) and Relationihips (2.8), (2.9) and
(2.10), we obtain an expression for the derivative of the func-
tion M(X). We have

- ~+.(~+~).(2.17)

It is seen from this formula that differentiation with respect to
the complex variable X reduces to differentiation with respect to
the real variable a.

If a certain function W(, which is the principal part of
*(X), is identically equal to 8f/Sa, then this will imply that
the function #(W) is equal to dF/ld. Indeed, differentiating
Equality (2.14) with respect to a, we shall have on the basis of
the equality T - 1lOX

W. ,.W(,) .(V-+ .. . +

from which, substituting in (2.17),

21 -
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Finally, if P is a given function of the complex variable X and
the complex parameters A, B, C, .... , then a function G of the
same quantities that identically satisfies the equation

dJ = dX, (2.18)

will be called the integral of PdZ and written as follows:

0 - FdX g-+w +db a + b ag(2.19)

It follows from (2.19) that
g (Z) (x) dX

If 0=0(X,A,B,...), with T=g, i.e., the principal part of the
function 0 is equal to the integral of the principal part of the
function F, the function itself is equal to the integral of F.

Indeed, substituting the function 9 in (2.19) instead of g,
we obtain

=' 26 .]=4

On the basis of the above, we can formulate the following theorem.

Theorem 2. AtZ theorems of differential ad integraZ oaZouZlu
are preserved in the domain of oompze numbers of the form a + weO.

For example, for the complex quantities

d~WMXM-b4, j(ex.utd In X.4.
$An -X x '-• =-snx, (2.20)

dx + C. jo (AX)dX A ++ C

and so forth.

We note the following peculiarities in the calculus of the
complex numbers: a) the product of complex numbers can be equal
to zero not only when one of the cofactors is equal to zero, but
also when the principal parts of the two oofaotors are equal to
zero; thus o -mb-0; b) division by wa is impossible for any a.

13. Algebraic Equations

Let us dwell on certain properties and singularities of al-
gebraic equations with complex coefficients.

Let the coefficients in the nth-degree equation

F (X) .4AX" + 8X-' CX4 + ... + RX + S 0 (2.21)
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be complex numbers:
A -a÷oeB =b+wV, C=c+we,...

R-r+04.s = s+W. (2.22)

Generally speaking, the roots of such an equation are complex num-
bers of the same form.

If we replace the coefficients in Eq. (2.21) by their complex
expressions (2.22) and X by the complex number x+uOxwe obtain two
equations on separation of the principal and moment parts:

"ax + b- + cr-+... + rx + s =0 (2.23)

Inax4, + (n- 1)bx"4-+...+ + rd X4
+ 400" + Or' + ex2 + tax '+ 0 -- 0. (2.24)

Solution of Eq. (2.21) reduces to determination of the principal
part a of the root of the real equation (2.23) (it may be real or
complex in the form a' + teal), and then, after substituting it in
Eq. (2.24), to determination of the moment part of the root:

- - + - . (2.25)

As we see, solution Is possible unless we have the singular
case in which the discriminant of the real equation (2.23) van-
ishes. In this case, of course, the equation has a multiple root
that causes the derivative of the left member of Eq. (2.23) to
vanish, as well as the left member itself. But the derivative of
the left member of Eq. (2.23) appear as a multiplier before the

CO in Eq. (2.24) and in the denominator of Expression (2.25) for
a so that In this case determination of the corresponding moment
part of the root becomes meaningless.

But it is obvious that when the disorlminant of Eq. (2.25)
vanishes, a solution nevertheless exists If the numerator of Ex-
pression (2.25) vanishes simultaneously with the denominator. This
is possible only in the case in which the multiple root of Eq,
(2.23) Is simultaneously a root of Eq. (2.24). L*et us suppose that
a is a root of the kth multiplicity of Sq. (2.23) and also a root
.of the (k - 1)th mult1plieity of Sq. (2.24).

We write short form of (2.23) and (2.20) with the assump-
tion made above:

IW z - W- 1 -2 o. (2.26)
Or M+ M - Ik -X - v (A +

+ (- lM"Me + (a--) 'S.(x)- O (2.27)

where g(Oa) and h(s) are polynomials that do not *ontaln the mul-
tiplier (a - a).

Differentiating the left members of Eqs. (2.26) and (2.27)
k -1 times, we obtain

P-, W(z) - a (x -)) +... + (X-- 440-a (A). (2.28)
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+•I'L (h.i r'-,)i(x) ) + ... + (X -- a )'g,\x)! .l-

The left -members of Eqs. (2.26) and (2.27' vanish fSr z - a
and aw, zo.

The derivatives of all orders up to and including the
(k - 1)th of the left mmber of Eq. (2.26) vanish for x - a.

The derivatives of all orders up to and Including the
(k - 2)th of the left member of Eq. (2.27) vanish for x a a and
any value of a$. However, the derivatives of the (k - 1)th order
of (2.29) vanish for

where g(a) and h(s) am the values of the polynomials g(s) and

h(a) for a - a.

We present Sq. (2.27) in the form

P -0) -1 ft Z) hM) 0 z -OW z))0. (2.30)

The expression in the square breckets,

N (X)- A(+hakg(S) (2,31)

vanilWss for., - a am z -:---tA*4(,)

//() M-' (a).-&Q Mai-• (a) - , 6

hanae for AP-;a** 32riaession (2. 31) Mat11 be equal tbo t~he ,product•-
Of (a - 0) by a certan p021"Ol•l. F Re)a ~. .

ky( -M • + &VOO) (M-,490400)

In. this easeo 1t. (2.2?) or (2.30) oe be, represented In th
form

. + 'Es1-@ (232)
[• + A* (8 4 (8)),- 0,

But we m ooeolude at *noe from the ••ove that the left mm-
her of the bas a complex equatice (2.21) OW he p resented as the
product of a certali compex polaynomia by the hk Power or the
diffe•renoe -A. AOe.,

VZ (X)- )@- M o (2,.33)
S~:tsbt;• (k - U11L~ MLm •11 be

amd that ts(c-) derivative Ailh
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Ii

F"-")(X) = hI(X - A) G (X) +.. (X-- A)A*Gt"-,,() (2.34)

where A-a + w is a complex root that causes Eq. (2.33) and all
of its derivatives up to and including the (k - 1)th order to
vanish, while the function G(.) takes the form

G(X) z(X) + 0xg' (x) + X (x)+ . (2.35)

Actually, expanding the complex expression (2.33), we obtain two
real algebraic equations:

(S-&)'(X) -o. (2.36)
(*-a)lk (X--) M(Z) + 0 (Z-- 4) " (Z) +

+ (x--e) M(x)l-0. (2.37)

These equations are the sam as (2.26) and (2.32). It Is seen at
once from Eq. (2.33) that it is satisfied for x - a and tor 0
equal to any number, since on substitution of Z by the quantity
A+ o-im a.(+* O n), where x Is an arbitrary real nunber, the left
meber will be equas to zero:

J. (A+e4.4 (-m#h(a +.)-O0.

sine* any power of' t higer than the first is equal to zero.

It follows froa the fact of the existence of a multiple root
of the complex equation ?(1) a 0 that the discrIminant of this
equation Is equal to zero.6 Papresenting the discriminant as the
resultant of the equatio• and Its derivatives, we obtain

relationships that are expressed accurate to the sigp by the de-
terminants

AJ C ........
* ,A (-1)8,
0 A M C 0. (2.389)
o1 0 caIi.I. .. # @. . . • •

andso forth.

It an equation with *o*plex ooeLtiolents has a real root
then in the nonsingualr ease, i.e., when the discrisinant or Ltsreal part is nonzero, the equations.

- + W4 t*,$-,+ ...+ rX + S 0.

mast be satisfied fotr a equal to this root. Per this It Is neoes-
oary and sufticlent that the msultant of these equations be equal
to seroa i.e.,
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a b d . . . .. ..
d"I' P e i ... ....
o a b c d *.' O. (2.39)

oa'b'tPd'

As an example, let us consider the simplest quadratic equa-
tion

F (V) - AX' + DX + c o, (2.40)

which is decomposed into two real equations:

+ I00=aO+bx+c 0 (2.41)

r~z)+r(x)=r�i2+b)x+aax,+b.*+e.O. (2.42)

If the discritmnant of Sq. (2.41) is sero, i.e., itf

b . (2.43)

then •q. (2.41) has a double root a- -b/2., which also satisfies
the derivative equation

and it Is necessary for solvability of the starting equation
(2.110) that the equation

+ box + , - (2.115)

have the same root. But since Sq. (2.115) cannot have common roots
with Eq. (2.141) other than the double root indicated above, it is
sufficient for solvability that the resultant of Eqs. (2.111) and
(2.115) or the resultant of Eqs. (2.1111) and (2.115) be equal to
zero. Taking the latter, we obtain

o 2b 0
o o

Expanding the determinant and applying (2.113), we obtain
0w- 4A-! 4 -0, (2.116)

Together With (2-.3), (2.116) Is equivalent to tne Complex relation

(2.117)

whilh is the mitiplicity condition sto te root of the starting
complex quadratic equation. 9xpandimg (2.117). we obtain•(2.113)
and (2.116).

To amearIsi evePrthlg said above concerning algebraie equa-
tions, we my regam the following theorem as having been proven.

i++i - 26 -
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Theorem 3. a. In the general vase, an algebraio equation with
oomplex ooefficients of the form a +oa has oomplex roots a
of the same form (a and a0 are real numbers or oomplex numbers
with the imaginary unity ,--).

b. The principal part a of a root is a root of a real equa-
tion representing the principal part of the given oomplex equa-
tion, white the moment part as, if the disorininant of the real
equation oited is nonsero, is determined uniquely by the moment
part of the starting oomplex equation.

c. If the dieoriminant of the principal part of the starting
oomplex equation is equal to sero, then the prinoipal part of the
equation has a multiple root (it is also the prinoipal part of the
oomplex root of the starting equation), but in this ease deter-
mination of the moment part of the root is, generally speaking,
impossible and the solution of the equation loses its weaning. In
this case, if the multiple root also oausee the moment part of
the equation to vanish, the moment part of the root is indeter-
minate.

d. If a root of the principal part of the equation is of mu.,
tiptioity k and it is at the same time a root of wmutiplpiity
k - 1 of the moment part of the equationm, then the dieoriminant of
the starting oomp le equation ts oero. In this case, the oomples
root has multiplioity k. rhis root also causes to vanish those
equations whose left membere are tuoesesive derivative, imnouding
the (k - iVth derivative, of the left member of the equation,
while the etarting equation ittelf ts catts•fed by the real part
of the root for arbitrary moment part of the unknown.

*. For an algebrati equation with omples. coefficiente to
heve a real root, it is necessary and sufftoient thatthe result-.
ant of the principal part of the equation and the equation ob-
tained by substituting the moment parts for the principal parts
of the ooefficienta in the latter vanish.

We note that the properties or alsgebric equations with com-
plex ooeffioients that were considered above ha1e t kinematic In-
terpretation that Aill be set forth later (see Chapter 0).

!4&nu-
soript Footnotes
PageNO.

19 These. relationships ae anaiogous to the CaUohy--Riem-on
regularity ognditions for tunotions of the oomplex var-
"l1able a + i , satisfaction of WOeh over the entire
range of variation of tbe function determines analytic-
Ity of the function.

25 Which foloWS from extsnsion ot the theorems of the &I-
pebwa of real numbers to the algebna of complex numbers.
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Chapter 3

OPERATIONS ON SCREWS - COMPLEX VECTOR ALGEBRA

S1. General Remarks

After having established the notion of the screw, construc-
tion of an algebra in which the screw is the object of various op-
.rations requires defining operations directly on the screws.

We shall base all operations on screws on operations on the
motors corresponding to these screws. In defining two or more
screws, we shall select one common point of reduction in the space
and refer the motors of all screws to it. Any algebraic operation
on screws (multiplication by a number, addition and multiplica-
tion) will be defined as the operation on the motors of these
screws, and since each motor, as we have already stated, is for-
mally expressed by a conplex vector, the algebra of screws will
be reduced to an algebra of complex vectors.

It is found that application of the basic vector operations
to the complex vectors (motors) results in quantities that pos-
sess the following properties: firstly, they do not depend on the
points to which the screws have been reduced and, secondly, the
principal part of the quantity obtained as a result of the opera-
tions is the quantity obtained by the corresponding operation on
the principal parts of the complex vectors. These properties ar•e
a comsequence of the property of the selected multiplier w that
is elressed by the equality W• * 0.

kxpressing the motor by a complex vector, we perform the op-
eration on it formally as on the sum of two vectors, In multipli-
cation. we use the distributive property of the product.

In' particular, for the unit screw E-' (e. el), #.eo-0, where the
sign + indicates correspondence of the motor (e, e) to the screw 1,
we shall have

r=(e. + = e.. (3.1)
§2. Multiplication of a Screw by a Number

We shall define multiplication of a screw by a real number
as the construction of a screw whose vector is equal to the vector
of the given screw multiplied by this number, and whose moment
with respect to any point of the space is equal to the moment of
the given screw with reepect to the same point, multiplied by thesame number.
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According to this definition, if 9 is a unit screw and (ee)
Is its motor for any point, with e'= I. e-e = 0, then the motor
(er, e",) for the same point will correspond to the screw R= Er,
where r is a real number.

'Applying Formula (1.1) for the moment of the vector with re-
spect to the new point, we arrive at the conclusion that this
definition is independent of the point for which the moment was
taken, i.e., that the screw Ir that satisfies the condition of
the definition for some single point will satisfy it for any point
of the space.

Using (1.7) to find the point of the central axis, we can

easily derive that the moment of the screw Ir with respect to the
axis of screw I is zero, and, consequently, the axis of the screw
SP is at the same time the axis of screw I (zero parameter). It V
follows from this that multiplication by a real number does not
change the axis of the unit screw.

On the basis of (3.1), we have

S- , R1 - r, Rr=. ; (3.2)

if r is a positive number, then the directions of . and Ir coin-
cide; if r is a negative number, the directions of 8 and Ir are
opposed.

To multiply aui arbitrary szcrew R whose mator is (r.m), r.-0+0
by a real number G, we construct the-screw Ra, for which the cor-
responding motor will be (Va, ra) by definition. Expressing the mo-
tor In terms of the complex vector, we shall have

R - r + wr. Ra -ra +ra (3.-3)

where the sign ÷ indicates correspondence of the motor to the
given screw. As can be shown, the axis of the screw is preserved
in multiplication by a.

Let us give the definition of multiplication of a unit screw

I by a complex number R'= r+-YrW.

Expressing the motor (e,'• of the screw I in terms of the
complex vector

w .e --o, e' 1= I e.e- =0,

we define the screw R=-ER as the screw corresponding to the flo•

tor of screw I multiplied by the complex number 'AI i.e.,

ER -. e +e•) (, + F or + e, r I- ero). (344)

For points on the axis of screw I, the moment .0 is equal to
zero; hence the motor of the screw R--,I for these points

or, + woer - r + cor

will also represent a screw, since the vector and moment are co-
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linear.

It follows from this that as a result of multiplying the unit
screw I by the complex number R= r + OA we obtain a screw R whose
axis is the axis of screw 9 and which can be represented by the
complex vector

R=ER=E(r+wr)=Ere*,p= p . ' (3.5)

If r is a positive number, the direction of the vector of
screw R coincides with the direction of 8; if it is negative, the
direction of this vector is opposed.

If a screw is defined by a motor r-For for an arbitrary re-
duction point O,"the parameter of the screw will be determined by
the formula

The complex number Irle'P. in which the principal part is equal
to the modulus of the screw vector and the parameter is equal to
the parameter of the screw, will be known as the complex modulus
of 'the screw R -.Erro.

'Multiplication of an arbitrary screw R= Erew' by the complexnumber A =a + *' will be defined as construction of a screw whose
motor is obtained for an arbitrary point by multiplying the motor
(ere~r+er') of the- given screw for the same point by this complex
numher. Presenting themotor as a complex vector, we obtain

RA - Ier +vo (jar + tr' (a +4-0() =
e r=a w (eara + era + era%), (3.6)

where 0.

Again in this case, we can easily satisfy ourselves that the
definition is independent of the reduction point for which the
motor was taken.

For points belonging to the axis of screw R, the moment .0

is zero; hence for this axis we shall have a motor

RA -. era + we (ra + ral),

in which the moment is colinear with the vector, i.e., a screw.
Consequently, the axis of screw RA is the axis of screw R and,
consequently, the axis remains unchanged on multiplication of an
a:rbitrary screw by .a complex number.

For the screw RA, we obtain

RA -Z Er I +a + - e)]
IRA i=It I a Ie(&V/,+01A). (3.7)

- 30 -
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i.e., the absolute magnitude of the principal vector is multiplied
by the absolute magnitude of the principal part of the multiplier,

and the parameter of the multiplier is added to the screw parame-
ter.

To summarize briefly:

a) on multiplication of a screw by a real number, the axis
of the screw remains unchanged, while the vector and moment are
multiplied by this number;

b) when a screw of zero parameter is multiplied by a complex
number, the axis of the screw remains unchanged, the vector is
multiplied by the principal part of the multiplier, and the param-
eter becomes equal to the multiplier parameter;

c) when an arbitrary screw is multiplied by a complex number,
its axis remains unchanged, the vector is multiplied by the prin-
cipal part of the multiplier, and the multiplier parameter - a
complex number - is added to the screw parameter.

A screw in which the "- ator is zero and, consequently, the
parameter is an infinitely .rge number will be called singular.
The principal part of the modulus of a singular screw is equal to
zero.

We shall henceforth denote the complex moduli of screws by
the ordinary upper-case italic forms of the upper-case boldface
letters used for the screws, and the principal parts of the moduli
are the corresponding lower-case letters, namely,

RI=R= r,,,few

where p is the parameter and r is a positive number.

53. Complex Angle Between Two Axes. The Brush

In our terminology, the complex angle A between two axes
whose unit screws are 11 and Is will refer to the figure formed
by these axes and the straight line segment mn intersecting these
axes at right angles, where m is a point on the first axis and n

is a point on the second axis (Fig. 2).

We assign the direction of line un by the
unit screw Is and call it the axis of the com-

£, a plex angle,

To bring N, to coincidence with t,. it is
A- necessary to impart a screw motion to axis I,,

consisting of rotation about the axis Ba
through the angle a between the directions of
BlN and Is and translational motion over a dise

>' tanoe a equal to the length of segment mn.

A complex angle is defined by a screw
Fig. 2

A E IEA El, (a + "-),w) (3.8)
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and the complex number A -. + wo* is taken as a measure of the com-
plex angle between axes 11 and 12.

As a convention for the signs of the numbers a and a@, the
.former will be considered positive if the rotation appears to be
counterclockwise to an observer at whom the unit screw It1 is
pointed, and the latter as positive if the translational motion
takes place in the positive direction of Zia.

Obviously,
z (811, Ej=-L.!: EJ.,

The set of axes crossing the same axis with unit screw I at
right angles is called a brush. The axis of I is the axis of the
brush, and axes belonging to the brush are rays of the brush.

The above implies that the following relation obtains between
the angles formed by the rays of the brush and defined by unit
screws,.. .BE,,:

+, + L + (E.,, E+

A o 4. (E 0E)=O. (3.9)

We can express the trigoometric functions of the complex angle
on the basis of FPaaulim (2.16):

c0sA - cdis-..a~slna, . : ,

a.A -'. dn+*0Cosr 1 (3.10)
tg A tg + .. tg + o (I + 1tg'

NotE. In defining the quantity a, we have a freedom in that
the rotation oa the axis S1 to coincidence with the axis Sa can
be performed by either of two different paths. If the rotation
through the angle a(<a) is performed counterclockwise, rotation
through the supplementary angle 2w - a will be performed clock-
wise, and the corresponding angle of rotation will be -(2,--)
.a--2n.but the trigonometric functions of the angle (3.9) will

be preserved. As a convention, we can take the angle smaller than
two right angles as the angle a.

54. Scalar Multiplication of Screws

We shall use the term scalar product of two screws for the
complex number equal to the scalar product of tneir motors, which
are referred to some reduction point.

We shall indicate scalar multiplication of screws by the
center dot.

Given the two screws

with the complex moduli
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R, •Rr,, ==tepr > 0, r=> 0,

and axes 1 and 2 of these screws forming a complex angle

A = a - o+=.

We take an arbitrary point 0 and refer the motors of the
given screws to it. Connecting point 0 with points m and n of axes

1 and 2, where mn Is the shortest line i

segment between these axes, we obtain thei,• radius vectors of points m and n from 0
*,"R 8  (Pig. 3):

P. On p.mnl-
P- P1 - PA

where It2 is the unit screw of line mn.

We shall express the motors of screws
Fig. R�, and R2 referred to point 0 as complex

vectors. Thus, we shall have a substitu-
tion of the screws by the complex vectors

,- r, + w.(p,,, + p, x rj),
(3.11)

-. r, 0 * (p,r, + p, x r,).

Performing scalar multiplication, we obtain in accordance
with our definition

RR -r 1.r, -I- o [(ps +i p,) r1*r, + psr~r .- r~p~r 2I

rlIr, o- s + oP I(p, + pt) r,-r, -- (pa -- )
Srjr-J Cosa -+ to• 1(p, + pj rlrj cosa -- r~rO• sin or)=

r1rgehec'P", (cosa - eW sin a) • RRa cos A. (3.12)

Hence a theorem.

Theorem 4. The eoalar product of two *crowe toe equal to the
produot of their oompZ~ez moduli by the coosine of the oomptes angle
betweef1 them.

The expression for the scalar product of screws in terms of
the moduli and angle agrees exactly with the expression for the
scalar product of free vectors provided that the real moduli in
the latter are replaced by complex moduli and ordinary angles by
complex angles.

As we see from the expanded expression (3.12), the principal
part of the scalar product of two screws is the ordinary scalar
product of the vectors of these screws, while the moment part is
the relative moment of the screws

rto,,(p0 + Q co"a-- ell n CI, (3.13)

a quantity that does not depend on the point for which the motors
are taken. The multiplier in the square brackets In Expression
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(3.13) iz known as the "possible coefficient" of the two screws

If the screws R, and R, on which scalar multiplication is to
&e performed are given by the general expression of the motors,
we obtain

R1 " R1 +: (#M1 -- .(rs + OrD(+ r..rj+ = (r,.r, + r,. •).

The expression rj'r:+r,'2r is the relative moment of the two
screws and is equal to Expression (3.13).

The scalar product of two screws for which the principal
parts of the moduli are not equal to zero vanishes if cos A a 0,
and, consequently, if

i.e., if the axes of the screws being multiplied intersect at

right angles.

It follows from Formula (3.12) that RII-R = RR,.

If P1 =P 0, i.e., if the screws being multiplied are sliding
vectors, the scalar product assumes the form

R. R rtr, cos A. (3.15)

Expanding Expression (3.15), we obtain

R1' R, r~r, cos a - wr,rjO sina,

i.e., the scalar product of two sliding vectors gives the scalar
product of these vectors in the principal part and the relative
moment of these vectors in the moment part.

If we perform scalar multiplication of the screw R by itself,
we obtain

R' = ', 0 = (rV')' =,Y-,.D, (3.16)

i.e., the square of the complex modulus of the screw.

It the screw R is given by the motor rt-f*, then the scalar
square of the screw has the expression

R' -- r. + 2W.r6. (3.16')

For the square of a unit screw I defined by the motor 8 + w.
s-*- 0. we have the formula derived above:

The square of the moment

3i4
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If one of the screws on which the scalar multiplication is
to be performed has an infinitely large parameter, the product
will be

wr,-Er.ee'. = 4,o, s ^ cos A - w4r. co a.

The principal part of the product is zero.

§5. Orthogonal Component of Screw Along Straight Line and Projec-
tion of Screw onto Axis

Let R be the given screw and let a be a straight line in the
space whose unit screw is I. We reduce the sczew to a certain
point A lying on this line; let (r, r) be the corresponding motor.
Let us project the vector r and the moment re orthogonally onto

.line a. The component of the vector r will be denoted by r2a and

the moment component re by re.a

The screw (ra.i) with its central axis on line a

R. --- E (r. + wtr.) (3.17)
will be called the orthogonal component of screw R on line a. It

is obvious that neither r nor r depends qn the selection of the

reduction point A on line a.

The complex number r.+-wr?. by which the unit screw I is to
be multiplied in order to obtain screw R will be called the or-

a
thogonal projection (or simply the projection) of screw R onto
the axis defined by the unit screw 1. For the same directions of
the screw vector Ra and the vector 9, the number ra is positive;

if they have opposite directions it is negative.

Let R be a screw and N a unit screw. We form their scalar
product

R-E R cos A = rew (cosa -- O sin a)
=r cos+ a + wr (p cu sa -- a* sin cc), (3.18)

where A =a+t-o zb is the complex angle between the axes R and 8. The
complex expression (3.18) has the following geometrical sense: its
principal part is the projection, onto the axis 3, of the screw
vector, while the moment part is the projection of the screw mo-
ment with respect to a point lying qn the axis onto the same axis.
This expression, therefore, is the projection of screw R onto axis
I by the definition just given.

Hence the projection of a screw onto the axis is a complex
quantity equal to the product of the screw complex modulus by the
cosine of the complex angle formed by the axis of the screw with
the given axis.

For the case in which R is a screw of zero parameter (i.e.,
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a sliding vector), p = 0 and Formula (3.18) is simplified, assum-

ing the form

R = r cos -cc- oro sil a, (3.19)

i.e., the principal part of the complex projection is equal to the
projection of the sliding vector onto the axis, while the moment
part is equal to the moment of the vector with respect to the axis.
Multiplication by the cosine of the complex angle automatically
yields both the projection and the moment.

§6. Screw Multiplication of Screws

In our terminology, the screw product of two screws will be
the screw whose motor is equal, for an arbitrary point of the
space, to the vector product of the motors of the given screws
for the same point.

We shall use the cross to indicate screw multiplication.

In order to determine the screw product of two screws R 1 and
R2 , it is necessary to perform vector multiplication of the motors
of Expressions (3.11). Since we are dealing with motors referred
to point 0, the motor obtained as the result of multiplication
will also be referred to point 0. We transfer point 0 to the point
m through which the sliding vector 31, (Fig. 3) passes, i.e., we
refer the final result to point m.

For point 0, we shall have

R, x R, = It, + ( (pir + p, X r9J X
X [r, + (p,r, + p, X r,)1 r, X r, + (o Ir, x

X (p,r, + px r.) + (pr, + Px r9 x r,1. (3.20)

For the final results to be referred to point m, we add the
moment of the vector r, X r,, which must be imagined to pass through
0, with respect to point m. We obtain

R, x R.2 -= r, X r, -[ w Jr, X (p,r, + p, x r9 +
+ (Pr,-I- P, X rJ x ril -- cp, x (r, x r.)
r, X r, + (a ((P{4- P9 PL X r, +- (P, - p,) (rL.r,)+

+ r, [(p, - p,)-ri} = r,. x r, + W 1(p, -- p,) r, x r, +
+ (s,- P,) (r..r,). (3.21)

Exactly the same result would be obtained if we had made the
transfer to point n or to any point on line mn.

In the expression obtained, the vector r, x rs appears in the
principal part and the linear combination of the vectors r, X r2
and P--P• , i.e., a moment parallel to 912, appears in the moment
part. It follows from this that the line i'n, the axis of unit
screw B12, is the axia of the screw product RIX R2. As a result,
we may write

R, x R,:' E1 r,,r, {sinf + ma [(p, + p,) sina+
-I" cP cos a]) :- Elr 1 r~e"P-e'oP,(si.i cc + (o:i cos a)

E.2,?RI si, A. (3.22)
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Thus the 'theorem has been proven.

Theorem 5. The screw product of two screws is the screw whose
axis intersects the axes of the screws being multiplied at right
angles and whose vector has the direction of the vector product
of the vectors of these screws, while its complex modulus [is
equalj to the product of the complex moduli of these screws by
the sine of the complex angle formed by their axes.

It follows from Formula (3.22) that

!, x R, -R -- x R1.

If the vectors of screws R1 and R2 are not equal to zero, then,
according to Formula (3.22), the screw product of the two screws
can vanish only if the axes of these screws coincide.

If one of the screws has an infinitely large parameter, the
screw product will be a screw of infinite parameter, since its
modulus

IR, X RI - or'rvd'h sin A = o lr2 sinc (3.23)

has no principal part. Such a screw is a pair, and any line in
the space that is perpendicular to the axes of the screws being
multiplied may serve as its axis.

§7. Addition of Screws

A screw R is called the sum of the given screws iR,. ....

R =R,"F +••..+ R. (3.24)

if its vector is equal to the sum of the vectors of these screws
and the moment with respect to any point in space is equal to the
sum of the moments of the added screws with respect to this same
point, i.e.,

r =r r, . .-. +rr.,
,* • :+r-l- .L :.J(3.25).

We can satisfy ourselves that the geometrical figure deter-
mined is indeed a screw on the basis of the fact that the scalar
product/'r"' does not depend on the point of reduction. Actually,
for any reduction point the scalar product

r.rO:- r.. + r,.r+F + r+.r8 * -+

- ,,(r.rI--r,.t1), i+k (3.26)

consists of the sum of the invariants of the screws and the sum
of the relative moments of all possible pairs of screws, and, con-
sequently, it does not depend on the reduction point.

On reduction of the screws to a new point O' 00 p),we shall
have on the basis of Formula (1.5)
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as I - .. .

... f.. p. x r --.2 p x •
a•-,| a•'1

a '

(rO + p x r) J (3.27)

from which we may conclude that if the condition of the definition
as regards the principal moment is satisfied for any one point of
the space, it will be satisfied for any point of the space.

Let Us consider the scalar product of the sum of several
screws R R-+R,.+,..+Rn by a screw S. Substituting motors re-
ferred to a certain point for the screws, we obtain

R-S = (R, , +-.. + R)'S - I(r 1 + ro)+
+ (r, + Wit + .. + (r. + Caro.).(S + G•)=,

•=(.+ -r• (S -F (OS) +i .
S- + (r+ + r).(S+S R.S+RS+

+- Rn.$. (3.28)

From this follows the distributive property of the scalar
product: the scalar product of the sum of several screws by a cer-
tain screw is equal to the sum of the scalar products of the ad-
ded screws by this screw. In particular, the projection of the
sum of several screws onto the axis is equal to the sum of the
projections of the added screws onto this axis.

We can satisfy ourselves in a similar manner of the existence
of the distributed property of the screw product.

Finding the screw R, the sum cver given screw terms Rv. R2e...
... , R,, reduces to determination of the central axis of this

screw, the modulus of its vector and its parameter.

Applying the distributive property of
the scalar product of screws, let us derive

R a formula for addition of screws by the use
of which we can construct a screw equal to

R, the sum of two given screws. This formula
SQ3formula for the sum of vectors. Given:

screws R, and R1 and required: determine the
sum screw R

R - R,+ R,. (3.29)

Performing scalar multiplication of
screw R by EF1, the unit screw of the axis

Fig. 4 of the angle formed by screws R1 and R:,

R-R,-Ei (R1 + R-3 -'E 2=- R,-.,62 "+ R,'Et, 0. (3.30)

we find that the axis of screw R intersects at right angles with
the axis of the angle formed by R, with R2 (Fig. i). We denote
the complex angles (R1. R.) and (R. R) by A -a + •x•o and B +
respectively.

- 38 -



We project all three screws onto the axis of screw R1 and
then onto the axis of screw R2, performing scalar multiplication
of these screws by the unit vectors of the axes of screws R, and
R2 by Formula (3.18). On the basis of the distributive property
of the scalar product we obtain

R cosB n 1 - R, cos A.
R cos (A - B) - R, cos A - RS. R IR I R, - I R, I. (3.31)

R, = I R29.
from which

R sin B -- R, sin A.
R sin (A - B) - R, sin B.

or, combining the two relationships obtained, we find

R R, 9,
"1WA TA. su(A- B) 7"a-ii-* (3.32)

Thus, we may regard the following theorem as having been
proven:

Theorem 6. If R is the sum of two screws R-1 - and R2, Relation-
ship (3.32), which is analogous to the relation between the sides
and angles in a triangle, but with the real quantities replaced
by comp Lex quantities, applies between the complex moduli of these
screws and the complex angles formed by their axes.

On the basis of (3.29) we have
(A' (R + R,)R R+ R+2RR.,

.R! + Rs+ 2RR, cos A. (3.33)

On the basis of

R - re"', R, , r1ep,, R, - fee

we obtain the relation

Oe!-* = re."e. + r-"r, + 2r1 rsev'"*.•) (cosm a -- m sin a), (3.34)

from which, on separation of the principal and moment parts, we
find the magnitude of the principal vector and the parameter of
the sum screw R:

0 -' + 4 +2rr, cos a. (3-35)
_ p,,+-• pr:+rr, I( +Ps) cosct-e-sinal

S . .... ,+ , + 2,,1 r .cosa (3.36)

The complex angle B is determined from (3.32):

sin B An R,.,A r.,, (sinz +,oafcgsa) .shnP+1 WI- cos P.
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Separating the principal and moment parts, we get

Sill 3 r --. . (3.37)

moreover,

-Ml l . .3" si, (B - i;) sin B cr,os -cris l3• siO'1I R~sn rRlr.u;t -' -.•<;' ~;'

After transformations,

SI . ,(3.38)

In exactly the same way
t .•~~~~~~ ~~ill (a -- 3) ,,,•:..... .,_..._

';;': "' •..• '(3.39)

- (3.40)

We have obtained a simple result: the equation of closure of
the vector triangle and the equation of moments are embodied in a

singl screw equation (3.29), ;which si-
multaneously expresses the parallelogram

. • law and the lever law.

As is easily seen, this result pro-
ceeds directly from the formula for

|• " -i sc•.lar multiplication of screws and tromX, 4 the distributive property of scalar mul-
tiplication, interpreted as equality of
the projection of the sum of the screws
onto the axis to the sum of the projec-
tions of the terms onto the same axis.

Fig. 5 The relationships given above can
be regarded as formulas for the "ex-
panded" triangle. This figure is cb-
tained by parallel translation of thesides of a plane triangle in the direction perpendicular to its

plane (Pig. 5).

Denotf.ng the complex angles of the triangle (i.e., the angles
together with the segments onto which the sides have been trans-
ferred) by the corresponding upper-case letters and assigning com-
plex values equal to the complex modu-i of the corresponding
screws to the sides of the triangle, we find that when the quan-
tities appearing in it are given the complex treatment, the fa-
miliar trigonometric relationship (3.32) expresses equality of
one cf the screws to the sum of the other two. With the use of
complex numbers, therefore, the geometry of the simple triangle
becomes the geomebry of the "expanded" triangle.
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We obtain the formula for the difference of screws Ri--J., by
substituting -Ri for R, in all of the formulas pertaining to addi-

S8. Ortnogonal Projections of a Screw onto Two Mutually Perpen- 1di cular Axes o

Let us imagine a screw R with modulus R-re"P, that intersects
a certain axis x at right angles, and two axes x and y such that

zys forms a coordinate system with its ori-
gin at point 0. Obviously, the axis of the
screw R is parallel to the xy-plane (Fig.
6).

Let the complex angle formed by the
axis of screw R with the x-axis be B = B +
+ wo; then the angle formed by the axis
of the screw with the y-axis will be B -

•I -Iw/2.
Let us determine the magnitudes of the

projections I and Y of screw R onto the
Fig. 6 axes z and y.

According to Formula (3.18), we have

?, R Cos B =ew rc(cos (4s ssinp
=r Cos P11 + (a (p - tgP)i,

RY RcB-2.) R sin B'- reo"'(sinP 0O1,0COS)
r sin/ +1 0-) (P -+1•, 1

Regarding the orthogonal components of screw , along the x-
and y-axes as the screws iR and JR ,where i and J are the unit

vectors of the x- and y-axes, and knowing the complex moduli R

and R of these screws and the parameters

p-- P tg P, p P tg P,

let us add these screws, i.e., find a screw equal to the sum

IR, + JR.

The angle formed by the axes oftthese screws is

A --- + o =.t .

and, consequently, s./2, cos =Osins zi. On the basis of the
addition formulas (3M33), (3.35), (3.37) and (3.38), we find the
length of the vector r'% the parameter p and the complex angle
11,' +- , of the resultant screw with the x-axis. We have

R"- R"+ R. + 2RR,R, " + X

- 41 -



p' ' ,P° '-"7 (P - tg P) r!" cos• P (p J-; 6-ct P)r; .-

"+" r 2cosp sin A {(2p - oc-- tg 3)]cosc-- IsilL}J -

pcos23 -+ psinI p,

sin P= .=sinjll
r-- "I• r sin Or cos P;P (tg A +- ctg P) j = 00.

It follows from the resulting formulas that the unknown screw
R' is identical with the original screw R. Hence follows a theo-
rem.

Theorem 7. A screw whose axis intersects the a-axis of a rec-
tangular coordinate system at right angZes is equal to the sum of
its orthogonal components on the x- and y-azes.

§9. Linear Combinatiorn of Two Screws. The Brush. The Cylindrotd

The linear combination of two screws is the generalization
of their sum.

Let Ri and R2 be two arbitrary screws and let A and B be com-
plex numbers. Consider the linear combination

R -AR, -+BR,, (3.41)

in which A and B are varied at will.

Let us take a unit screw 112 whose axis intersects the axes
of screws Ri and R2 at right angles. Expressing the scalar prod-
uct of screw R by '12, we obtain

R'El1 = ARJ.E, -. 4BR,.Ell = 0, (3.42)

from which it follows that the linear combination of screws R,
and RA2 for any values of A and B intersects the unit s(.rew B12 at
right angles, i.e., as A and B vary, the axis of screw R describes
a brush having the axis 12a.

Formula (3.41) is the complex analogue of the conventional

formula for the linear combination of two vectors:

r=, + br,, (3.43)

which describes a plane or a flat bundle of vectors on variation
of the real numbers a and b if the vectors r, and P2 are con-
structed from a common origin.

On complex treatment of Formula (3.43), i.e., on substitution
of Formula (3.41) for it, the geometrical locus of the lines on
which the screws lie will be a brush, which is thus the complex
analogue of the plane or flat bundle of vectors.

Let us now consider that particular case of the linear com-
bination of screws (3.41) in which it is formed with the aid of
real multipliers a and b, i.e.,
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R-aR, + bR, (3.4 4)

where R1 and R2 are the given screws.

Screw R intersects the axis of the unit screw 81, at right
angles, the latter intersecting the axes of screws R1 and R2 at
right angles. Assigning different values to the numbers a and b,
we cause the axis of the screw to describe a certain geometric
locus. As can be seen from Formula (3.14), neither the direction
nor the position of the axis changes on proportionas variation of
the numbers a and b, so that the change in one parameter - the
ratio a/b - will be essential. One direction and one point of in-
tersection of the axis of R with the axis of 812 will correspond
to each value of this parameter. From this it follows that for
all possible variations of the numbers a and b, the geometric lo-
cus described by the axis of screw R will be a ruled surface all
of whose generators intersect the axis of the shortest distance
between the axes of screws R, and R, at right angles. This sur-
face is known as a cylindroid. Let us determine certain of its
properties.

Let the complex moduli of screws R, and RI, which we shall
call the basic screws, be e"P and e-f. Let B' and R" be any two
screws defined by Formula (3.41), i.e.,

R= a'R1 + b*R,,
S•" R=o•R1 + b"R,.

We write the scalar product of screws B' and R":

R°e fad'e + b'b"* e"P + (a'b" + ,db'le'(pcos E,

where e is the complex angle between the axes of the basic screws
Ri and Ba.

Equating the scalar product to zero and dividing by a'ue"(''.+P÷),

we have
800841, + x.ep,',,) + Q%. -i P) Cos = 0, (3.145)

where ).= b'Ia','i b-/aO.

Separating the principal and moment parts of (3.45), we ob-
tain two equations, which yield

Sh (Pi - ps)os6 (3.46)

Since the quantity (XQ•i)'-4Xj& is, as can be verified, essen-
tially positive, A and IA are always real, and therefore (3.45)
can always be satisfied. Thus among the screws appearing in the
linear combination (3.44) and lying on a cylindroid, there are al-
ways two screws R1 and Ra whose axes intersect at right angles.
Two such screws are known as the principal screws of the cylin-
V:oid, and their parameters p' and p" as the principal parameters;
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the point of intersection is the center of the surface.

Principal parameters can be determined as follows. Since the
,.,unbrrýý A and i are known, we can take arbitrarV values c' a' an-d
a", for example, unit values, and obtain from them the values of
b- - A and b" = p. We shall havy

R, R + XR,, R" =' R, +- ItR.

By the rule of addition of screws on the basis of Formula (3.36),
we find

- pI+)'p2+-X1(p,-IPJ,)cosO--OOs* ";
P I +). 4 -+ 2ý,cos 0

p, + pp, + P P[(p, + p.) cos o- o0 sin o] (3.47)P" ---- " 1+ p~s +J 2.% Cos 0"

Thus, the principal parameters are known. Taking the axes of the
principal screws R' and R" as the axes x and y, the axis of the
surface as the x-axis, and the center as the coordinate origin,
we derive the equation of the cylindroid, i.e., we express the po-
sition of its generator as a function of its angle with the x-axis
and find an expression for the parameter of the screw whose axis
lies on this generator.

We take principal screws R'= R, and R' R2 such that the
moduli of their vectors are equal to unity, i.e.,

R, - e'P. R, = ew.; (3.48)

then the modulus of the vector of screw R -the linear combination

R = aR, -+bR, (3.49)

will be determined by the formula

R - ( 3 =.49 ' )

or, on separation of the principal part from the moment part,

r' a' + b', r'p a•p-I-b•, ( 3.50 )

from which

al'b A (3.51)

which gives an expression for the parameter p of screw R in terms
of the angle 9 and the principal parameters pi and p2:

P - PAC'os' P " p2 sin, (p. (3.52)

The screw R intersects the i-axis at right angles and forms a com-
plex angle(D".)F -pO with the x-axis. The projections of the screw
R onto the x- and y-axes will be, respectively,
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4!• ~ ~ ~ ~ ~ Ro _(,. a.... Rsn b.P,, (.3

S• C____From (3.53) we obtain

Stg '= e'.P,-,tgq,. (3.54)

IV Equation (3.54) is the cylindroid equa-
tion referred to the principal screws
and the center. From it we obtain the
distance of the generators as a function
of the angle q. We have

Fig. 7
from which

P' -- sin 2(. (3.55)

On variation of the angle q), the generator describes a cylin-
droid surface, which can be represented palpably as follows.

On the vertical axis, we lay off from point 0 - the center -
a segment OA- (p - p,)/2 upward and the same segment OA' downward.
The cylindroid generator is a straight line forming a right angle
with the vertical axis, which, as q varies, rotates uniformly
about the axis and at the same time slides along the axis, execut-
ing a harmonic motion within the limits of the segment AA ', with

two down-up motions completed in one
revolution of the generator. Genera-

-. I tors passing through the center 0
cross at right angles. Part of the
surface is shown in Fig. 7.

If we map the surface of a cir- !
cular cylinder whose axis coincides

V - with the axis of the cylindroid, the
cylindroid surface intersects the
cylinder surface along a curve whose

Fig. 8 involute will be a sinusoid with two
periods around the circumference of
the cylinder (Fig. 8).

§10. Projections of Screw onto Axes of Rectangular Coordinate
System. Complex Coordinates of a Straight Line

Let the screw

SR -w ER = Br-v

be given and let the complex angles formed by its axis with the
a-, M- and a-axes of the rectangular coordinate system be, re-
spectively,
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A a + ow, B = , + P', F = T + ,ore.

The project.o-is of the screw onto these axes will be

R, = r.-I-or= R cos A=
= r [Cosc + (,)(pCos - 0 sil C.),

Ry = r, + mrO = R cos B ; (3.56)
=rfcos13+(o(pcos1P--.Psin1P3)J,

R, = r-. + ore rý R cos r --
= r icos Y +- ( (p cosr .- Tosinr)1.

Expressions (3.56) are the complex orthogonal projections or
rectangular coordinates of the screw. The principal parts of these
expressions

r*=ro~ar,~~rcop~r~:rosT(3*57)

are the rectangular coordinates of the vector r, while the moment
parts of these expressions

,G = P •pCos"c -a S.ill a), r,* =,r (p cos 0 - 00 sill P),
' r (p cos T - TO sin T) (3•58)

are rectangular coordinates of the moment pr of the screw about
the coordinate origin or the moments of the screw with respect to
the coordinate axes.

Theorem 8. A sorew £ ie equaZ to the geometric sum of itso or-
thogonat components on the axee of the reotanguZar coordinate sys-
tem.

This theorem is easily proven if we reduce the screw to the
coordinate origin:

where p is the radius vector of an arbitrary point on the screw
axis from the coordinate origin. The vector 3 and the moment
a (pr + p x r) are the sums of their orthogonal components on the
coordinate axes; hence the same can be said regarding screw R,
which is equivalent to them.

Thus, we may write

R - ita + JR, + kR. I (rv + or:) +

*+ J (r, + wro) + k (ra + Oit). (3.59)

Taking the scalar square of this equality, we obtain

Jr - R' +-- R s -- 4-- A + ?+a
+ 2o (i/re, ',r. 'r/ + ar'). (3.60)

Consequently, the square of the complex modulus of the screw de-
composes into the square of the vector length and the scalar prod-
uct of the vector by the moment.
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After introduction of the complex coordinates of the screw,
we see that any screw equality is equivale t to three complex
sc lar equalities. But each complex equality decomposes into two
real ones, and hence any screw equality is equivalent to six
scalar equalities. .

On the basis of Equalities (3.56), We obtain

R2 R2 (coms A + cos' B + cos' 1),
from which

-cos'A cos' B + cos'1'= ], (3.61)

i.e., the sum of the squares of the complex direction cosines is
unity, asnin lhe real domain. Equality (3.61) breaks down intotwo:

ocos', icos' 0cos'7= 1,1
as cos ci sin a +-P cos sin + T cos¥ slnT --0. (3.62)

If R - 1, then R,. Ry, Rs are complex •coordinates of the unit

screw R and are equal in magnitude to the corresponding direction
cosines:

-, x - x +1 x• cosA,
R,=Y Y= p+,Sf#=-cosB,
R 8 = Zm- + u*-cosri.

The equality

X' + * +' P. (X &%V-') + (Y'+ *A 1+
- + x + •)" I. (3.63)

which is equivalent to (3.61), decomposes Into the two following
equalities: 5 '-t 8+uu- 1.

0 (3.64)

which express the equality of the squared vector length to unity
and the equality to sero of the ecalar- prodct of the vector by
the moment with respect to the coordinate origin.

If we have a given axis with unit screw N, whose coordinates
will be A. Bi. C (,' +fiB' + • I). then any axis with the coordinates X,
7, Z of the unit screw (X' + - + -V - I) that satisfies the equation

AX + BY•+ CZ, 0. (3.65)

will intersect the given axis at right angles; the aggregate of
all such axes forms a brush.

Consequently, Sq. (3.65) is the complex equation of a brush
(analogous to the equation of a plane in the cue of real quanti-
ties).
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i11. Expression of the Scalar and Screw Products of Screws in
Terms of the Complex Rectangular Coordinates of the Screws

For two screws defined by complex rectangular coordinates
Rjz R,, R,,, Ru,, R,, R,,, we have

R, -Ru + JRu, + MRi,
R& = R + jRs, 4 kRu.

We immediately find the scalar product

R," RRaRb + R1" R3, + R.A• ,
+(,a +. '•.). .(o, + WOO.) + .,ru + W)(roe• + WOW)

+ VALr + fi/16 + r.#.s + J4119 + r*,r + riel/." (3.66)

The scalar product of two screws decomposes into the scalar
product of the vectors of these screws and into their relative
moment, which is equal to the sum of the scalar products of the
vector of each by the moment of the other, taken witb respect to
a definite point, In this case the coordinate origin.

The screw product of two screws is the screw

R - £(RiRa- RRu,) + J (R..Ra - Ru.R) +
"+•(RaR,-- RR,). (3.67)

Indeed, performing scaler multiplication of screw . by screw R1
and by screw R1a we obtain

"R R, " (RURU - RITRR,) RU" + (RRaa - - RiR.,) Ri +
"+ (R•Rev - Rtld R1 , 0.

R1 -R, (RwRg. - RuR.) Res + (RuRa, -- R 1R,) Ru -1"
"+ (RURaa- RRI,) Ru - 0.

and taking the square of the modulus we shall have

Jt (RANR.-- RgSR +
+ (RUR,. -- RauR&) + (Ra.Rsv - RgaRsO)on•. + Jew + AMe•,)• + A,, + MU) --

- (RURU + R.Rug RUR,)?m-
RRI-eg(RaR* cos A)' (R1,Ri sin A)r, (3.68)

from which it follows that the axls of screw I intersects the axes
of screws R, and &I at right angles, and that its complex modulus
iIs equal to the product of the complex moduli of the factor screws
by the sine of the eclex angle A between them. Taking the prin-
cipal part of (3.68), we satisfy ourselves that the veotor r is
the vector nroduot rK',.

Consequently, the screw f Is the screw product of screws It
and ha.
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§12. Compound Multiplication of Screws. Morley-Petersen Theorem.
Formulas of Complex Spherical Trigonometry

Using the complex rectangular coordinates, we can easily de-
rive expressions for more complicated screw products: mixed
(scalar-screw), double screw, the scalar product of two screw
products and the screw product of two screw products.

On the basis of Formulas (3.66) and (3.67), we can write the
expression for the mixed product

RR,R3 = R," (R, x R1)

of three screws defined by their complex coordinates:

Ri iR1, + JR3, + kRi,.
R- iRu + j].=v +" kR,,,

R3 IR3 + JR,, -- kR+1.

We have it j

Rua R,, R.a

4 j (R.R,.-- R,.uRu) -i- k (Ru,1,R -- R,,Rs#),
Ri "(R, X R3) - R,, (RuRn - R3IR,) +

+ Ra, (RuR,- R,.1?.p) -1 Rio (R,.R-- RR,,) =
Rix Ri, Ri I
R- Ro, R. ' (3.69)a.• Ras R.o

Since in Determinant (3.69), the sign is not changed by any
"end-around" transposition of rows, it is accordingly possible to
transpose the parentheses and signs of scalar and screw multipli-
cation in the mixed product, i.e.,

RRiR, -R(R, x R) - R,'(Ra X R) R,'(R, X R). (3.70)

Using the coordinate expressions for the scalar and screw
products, we shall be able to obtain formulas for compound screw
products.

Double screw product:

Re x (Ro x Rdt R (RI:R, - R& (Ra'R). (3.71)

Scalar product of two screw products:

(R, X R)'(R& x R,) - (R," R (R,'R) -

-- (R'RJ (RR,. (3.72)

Screw product of two screw products:

(R, x R,) x (R, x Rj) "- R, (RjR,R) -- R, (R,,R1&,) "
" Rt(RIR3R. R)(RRR). (3.T3)
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The following theorem, wrhilch kr:own as the Morley-Petersen
tneorem F29], [3,], is a geometrical interpretation of a property
of three double screw products of screws, and consists in the fol-
lowing.

Let F,,:.E!,E be three unit screws whose axes do not belong to
the same brush. Let Ri. R, r?, be arbitrary screws whose axes have
right-angle interscctions with the respective pairs of axes (E, E.).
(r.:, E.), (L,, E). Then three screws Sj. S:. S.. whose axes have right-angle
intersections with the pairs (El. R1). (!.:. R), YI3. RA3. belong to the
same brush, i.e., there exists a line that intersects the axes of
the screws S,,Sa.33 at right angles.

For the proof, we recall that screw products may be taken
for the screwsR 1 . RRj, i.e.,

R, - Es x E3. R. = P., x Es. R3, -- E, x r..- ( 3.74•)

and screw products for the screws S$. S, and Ss:

St - E, X R×. St E. x R,. S, - , E R3.

Replacing R,. R, and 5, by their expressions (3.74), we obtain

SS1, ,X (& X Eý.Ss -E, x(XE, (3.75)
S,=- E. x (E, x .g). (3.75)

Expanding the double screw products by Formulas (3.71) and
then adding Equalities (3.75), we find

S&+ S + S, - E, (E" ,E,) )- E, (E..E) +
+ P* (E1 5 - Ej ,E (5,4 R + B(Es - .4

(z , (£-11,1) ,0.

from which it follows that the screws $,.S$ and 81 ire linearly
dependent and hence belong to the same brush. The axis of thI.."!
brush will intersect the axes of screws Sj,. S, ajd S at rignt an-
gles.

Let us now ionsider application of Forrnulaz (3.72) an•d (3173)
for the scalar and screw products of two vector produc~s to deri-
vation of a formula of complex spnerical trigonometry.

Let us replace all screws in Formula (3.72) by unit screws

1•,. i.. 1E.. P, and assume that I., ";. Remembering that scalar products
of unit screws are equal to the cosines of the corresponding com-
plex angles, we obtain the relation

(a, x E,(t, -WX C j '•k..-A (E'.A A..•,)

or

1.fraAn sin A,,caL' cos An- co.A,, cos A,,

from which
co% A,$ - cta A,, ci~.~ Av s.at A., &in A, c". 0,
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where 0 Is the angle between the axes of angles A12 and A23.

Formula (3.76) is an analogue of a familiar formula of' spher-
ical trigonometry. It is obtained as a corollary of the known for-
mula for the scalar product of two vector products, but it could
have been obtained without derivation from the ordinar'y spherical-
trigonometry formula by putting all angles complex, i.e., by mov-
ing the sides of the angles apart (Fig. 9).

a.4k

A 2

ve

Fig. 9 Fig. 10

Now let us consider the same triplet of unit screws 81, 12

and Ss and write the obvious relationship

Sine,,,

1!-m there foraul.i we ootain a relationship that is &Ai ana-

or~u Vt~esse t~ttt tormu the familiar theorem of sines In spberi-

113. Transformation of Complex Rectangular Coordinates of a Screw .

Having given expressions for the comp~lex rectangti.lar' coordi-
nates of a screw, we caon iesasly derive formualas for conversion
from one system of rectangular-coordinates to another.

Let there be given a system or rectangular coordinates with
Its origin at point 0 and with unit vectors of' the axes I. J. &
(unit screws). Let the coordinates of unit screw R In this system
bemoA.mn~.cmr; these will-be the complex direction cosines.
Screw I can be expressed as follows:
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'%e :•allar ýquare of screw I will be

S= costA + cos' B + cos r .(379)

For two unit screws 11 and 12 defined by the coordinates
cos A, , cos B1, cos r, and cosA.. cps B,, cos r,, the scalar product will have
the expression

'E, - s-cos A, cos A., + cos Bcos B+ cos rcos ioF. (3.80)

The condition of intersection of I3 with 12 at right angles
will be

cos A, cos A, +- cos B, cos B. "1" Cos r, cos 1' =- o. (3.81)

Visualize another system of rectangular coordinates with its
origin at point 0' and with the unit vectors of the axes i', J1,
k', with 0' not coincident with 0. Let the coordinates of the unit
screw I in the second system be cosA', cos B', cos r'. In the second
system, screw 9 will be expressed as follows:

R= I' cos A' + J' cos B' -1- k' cos 1l. (3.82)

The axes of the second coordinate system form nine complex
angles with the axes of the first system; their complex cosines
are equal to the scalar products of each pair of unit vectors
(unit screws) taken one from each system. Let

1.1'=cosA,, J.I' =cosA,, ki' =cos ,, (.3

I.J'=cosB,, J.J'=cosBt, k.j' cosB3, (3.83)
t-k.'= cos rj, j-k.k -.:cos r,, k .k'z==-cos r, .

where A, ot, +10, As - as + wao and so forth.

The following relations apply between these nine cosines:

cost A, -F cos' As + cost A, :I

cosA,cost B -+ cosB r+ c ol 0
cos A, cos B, + eos 13 cos, B+ cos As cos 1Ds = 0,
cos AL Cos As -+ cos B, cos Bs "+ cos I', cos I'll = 0.

cost B, ;F cost Bs + cos' B, 1,
cos'At " cos' B,-J. cost r 1, (3.84 )
cos A, cos r, + cos As cos rt + cos As cos 1',- 0,

cos AI cos As + cos %3 cos Bn + cos r, cos r - o,,
cost P, -I+ cost rg + cost rs - i,
cost As + cosBD + cos' r ,= 1,
cos %, cos r, + cos Bs cos r1 + Cos Bs Cos rs = 0,
cosAcos.A+ coslcosB, -i--coslrtcosr.- 0, )

which are equivalent to twenty-four real relationships. These
equalities state that all axis vectors are unit vectors and that
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tne s:Y;ttez7• a' xees are rectangular.

Six real quantities are sufficient to define the position of
the second system with respect to the first; hence twelve real re-
lationships must obtain between the nine complex angles (i.e., be-
tween the eighteen real quantities). Consequently, of the 24 real
relationships of (3.84), twelve will be independent.

Applying Formula (3.78), we can write formulas for the trans-
formation of unit screws:

1' ==Icos A.j JcosA, + kcos A3,
I = I'cosA1+ f cosJ 3, + k'cA Fr,

J' = i cos B& + j cos B, + k cos B, (3.85),

j = r'cos A, + 'cos B, + k'cos r,,
k, = t cos rj + j cos r, -F- k cos r,,

k = Ir CoS A -- j' cos 13 +k'coS1,3 ',

To obtain coordinate transformation formulas for any screw R,
we represent the screw in first one system and then the other:

R = IR. + JR, + kR, = 1'Rr + rR; + RW'. (3.86)

Performing successive scalar multiplications of this equation
by I. j, k and by 1'. J', V', we obtain the formulas

R, - R. cos.% 4 R cos A, + R, cos A,,
R. - R'. cosA, + R, cos B1 + R' cos rl,
R; R. cOSB, I+ RMCOS B. + R, cos Be, (3.87)
R R. cos As + R, cos B, + R,'cos r,,
R, R. cosr, + R, cos ra + R, cos r,,
R,= R' cos.A- + R, cos B, + R' cos r,.

The determinant of this transformation is
°COs A, cos A, cosA,

D= cosal cosBs cosBrCO• ', Cos l'a COSl',

Expressing its square and applying (3.84), we obtain

0 0 1 I

from which it follows that D - I1. Screw displacement of the coor-
dinate system corresponds to the + sign.

The formulas of transformation (3.87) are written as follows
in matrix form:
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Ru •Jc~s ¢o• I ,: onl ReR c% Ij ,l cm Ir, cot U3 R,
cos A, mo It. cos 1-r (3 88

R& ca A cos n Ia cos R 3.8

or, more concisely,

R' = A'R, R = AR'. (3.89)

The complex-element matrices A and A' considered here effect
an affine orthogonal transformation, one which, unlike that ef-
fected by matrices with real elements, is a screw displacement
that preserves the complex moduli of the screws and the complex
angles between the axes of any two screws.

§14. The Screw Dyad. The Screw Affinor

Let us consider an arbitrary triplet (base) of screws A, B,
0 with the condition that (ABC)ý :+O. Any given screw R can be rep-
resented as a linear combination

R = RA + R,+B --RC. (3.90)

The complex numbers R., Ry. R8 are scalar products of the
screw R by the screws A', B', C', which are reciprocal to the given
triplet and defined by the formulas

A B*' =B12S-,.'.- A x c . (391)
ABC ABC ' ABC (

We then obtaip

A-'xC" Cx' AA*_B (3.92)•-.. B:j-rj-;-, C=-'''

and

(ABC) (ABiC')i - 1. (3.93)

Thus,

R, - N.A', Rj - R.BO, R, -= R .C'. (3.94)

A screw N' referred to the base A',R',C' and having the same coor-
dinates as R can be brought into correspondence with a screw R ex-
pressed by Formula (3.90):

R' - Ra"4'-1 R&B' + RC', (3.95)

so that the following expression may be written for R':

R' R.A'A" 4 R.B'8 + R.C'C' (3.96)
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R" = A'A- R --' B'5 '-R + C CO R. 39 7)

Formulas (3.96) and (3.97) represent an affine transformation
that brings the three screws A', B',C' into correspondence with the
three scress A,B,C. Screw R' in the new system of base screws
A', ', C' has the same expression as screw R in the old system A,

B, C.

The expressions

0 = A'" + B'r + Cc'C, (3.98)

S= APA" + B'" + ¢'C" (3.99)

are known as conjugate screw dyads; they are sums of dyad prod-
ucts.

Transformations (3.96) and (3.97) are written symbolically
as follows:

R' = R.(D == iD.R. 30)

Screw R' can be referred to the original base A, BD C with the
aid of the coordinates. Denoting the coordinates of screw R in
this base by R'X, R'P, R's, we obtain

SR ' =A + RD-I R*C. (3.101)

The quantities R'I, R' Y, R'? are defined if we know the expres-

sions for screws A',B',C' In terms of A.B.C. Let

A'- A,,A + A12B + A 13CIB" - A.A +1 A328 +! A.2, ( 3.1]02 )•
C' AA + - A.B +f. AC, .

where the numbers A are the coordinates of the "new". base with
ilc

respect to the "old" one; further, D2 76 0, where

A,, A,, A,,
D= All A,, A.s ,

A,, Ass Ass

then, substituting (3.102) into (3.95). we obtain

R' R, (AA+ AB 01" AC) +1
+ R, (A.,A + AB "+ AuC) +

+ R(A,8A +A,8+ AC), (3.103)

or

R'- (Ai1R, + A,,Ri + A,,R,) A +. (A1.R, + A,,R + (3.104)
+ AnR,) B -1 (A18Rs 1 A.,R, + A3:R,a) C.
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In accordai-ce with 1"I. we hIi nave expresslons for the co-
ordlnates of 5crew hi in the rew system in terms of its coordi-
nates in the old system:

Ar A,,R, 4 .:, 2R, + As,R,, (3.105)
R' AjtR, -1 A13RRu + Ank,,

R . AuR, + AuRg +- A2R,.R!

The resulting affine transformation of the screw can also be
written as a multiplication:

R" - R.A -- A.R. (3.106)

where A is a transformation matrix with complex elements As---a,, +

All All A. •

A,, A, An.. (3.107)

Screw R' is a linear screw function of screw R, while the op-
erator A defined by the matrix in (3.107) is known as a screw af-
finor.

Screw affinors have been investigated and applied by S.0.
Kislitsyn.

Manu-
script Footnote
Page
No.

54 Here the usual requirement ABC t 0 is insufficient,
since the case in which the principal part of this mixed
product is zero is not excluded, and then division by it
is impossible.
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Chapter 4

THE TRANSFER PRINCIPLE AND ITS APPLICATION TO
THE GEOMETRY AND KINEMATICS OF THE SOLID BODY

§1. Transfer Principle in Complex Vector Algebra

On examining the formulas expressing the results of opera-
tions on screws, we are struck by their identity to the formulas
of ordinary vector algebra. This identity was found to be a con-
sequence of substitution of the vector in the vectcr-algebra for-
mulas by the motor and its formal expression in the form of a com-
plex vector with a special type of multiplier w, whose square is
equal to zero, and also of introduction of the complex modulus of
the vector and the complex angle between straight lines in space.

The formulas expressing the sum and the scalar and screw
products of screws in terms of "internal" quantities - moduli and
angles - were found to be quite identical to the corresponding
formulas for the sum and scalar and vector products of vectors on
condition that the modulus of the vector is replaced in the latter
by the complex screw modulus and the ordinary angle between the
lines by the complex angle. The identity of the basic formulas of
vector and screw algebras is illustrated by the table on the next
page.

The complete parallelism of the formulas that Is seen in thi6
table results in parallelism in a multitude of other formulas,
principally the formulas for more complex products of vectors and
screws (scalar-screw, double screw, scalar and screw products,
two screw products, and so forth), as well as in many other for-
mulas of vector and screw algebra.

This parallelism results in a highly important general propo-
sition that constitutes the transfer principle of complex vector
algebra, the algebra of screws. The principle that will be our
subject here is one of many examples of the familiar transfer
principle, which can be characterized as follows. Let there be
formulas that link analytically the elements of some space - vari-
ous geometrical figures (points, lines, etc.), and let us assume
that the corresponding relationships are also preserved if the
elements linked by them are substituted by other elements - total-
ly different geometrical figures - not excluding geometrical fig-
ures with a different number of dimensions. In this case, the same
formulas will express the relationships of two totally different
geometries, and these two geometries become identical to one an-
other. If some theorem is known for one geometry, it is automati-
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Vector P Screw R

Modulus of vector j,7-:r Complex modulus of screw
IRI-&R

Angle between two straight Complex angle between two
lines a straight lines A

Scalar product of two vectors Scalar product of two screws
r - rjf2 cc* a R'Rs 1- RI. mco A

Vector product of two vectors Screw product of two screws
r,ri.r e•.-ra,•sir, (012 is the unit R1 xR,=%-,I:Rz.I,nA (112 is the
vector forming right angles unit screw, whose axis in-
with the vectors r, and Pz) tersects the axes of screws

R, and R2 at right angles)
Sum of vectors r--r1-r, (r is a Sum of screws R "i-+R, (R is a

vector whose direction and screw whose direction and
modulus are determined from axis position, as well as
the closed triangle) its complex modulus, are de-

termined from the "expanded"
triangle)

cally transferred to the other geometry, and this second geometry
can be studied by means of the first, the only adjustment being
that the results are interpreted in the second geometry with the
aid of other geometrical concepts.*

The transfer (or expansion) principle of the complex vector
algebra that is the algebra of screws, as formulated by A.P. Ko-
tel'nikov and somewhat later by E. Study, reduces to the follow-
inK•

Let us consider a certain collection of vectors r,...,
whose origin is at a certain common reduction point 0. Assume
that, together with each of the vectors ri, we also consider a

certain moment P attributed to it and referred to point 0, with

the result that an additional set of moments P1, r4 ..... referred
to point 0. makes its appearance, so that we have sets of two vec-

tors, i.e., motors (r,,r.,r .... Each motor (ri,7), referred to point
0, naturally defines a certain screw R i - its axis, vector and

parameter. The set of motors (,, rV2, (r. r .... , referred to the reduc-
tion point 0, determines a set of screws R1.R, .... . The ends of
all vectors and moments with origins at point 0 form a six-dimen-
sional point space, while the axes of the snrews defined by them
form a four-dimensional linear space, with a two-dimensional space
of screws corresponding to each axis and, consequently, the screw
space will be six-dimensional. Thus, with the aid of the reduction
point, we establish correspondence between the space of vector
doublets or motors (or point pairs) on the one hand and the space
of screws on the other. To each motor in the first space there
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S.r m :onents r! are equal to zero, we snall have an ordi-

nary vector (point) space? and operations on'the vectors will give
the relationsiips of vector algebra for the vectors Vi. If, how-

ever, the moments V! are not equal to zero, then, as was shown in
Chapter 3, we may form complex vectors r, A (,re. for which the basic
vector-algebra formulas may be written similarly, but will at the
same time also be formulas for the screws Ri corresponding to
these complex vectors. We were able to satisfy ourselves that by
virtue of a property of the fortunately introduced multiplier W,
the basic formulas for the screws exactly reproduce the formulas
for the principal parts of the screws, i.e., for the vectors.
Hence the basic formulas of vector algebra, which are written
"lower-case," serve simultaneously as basic formulas for the the-
ory of screws when they are rewritten "upper-case."

The basic formulas are: a) the formula for the scalar square
of a vector (or screw) and b) the formula for the angle between
two vectors (or between screw axes), expressed with the aid of
the scalar product. Here we recognize that the complex modulus of
the screw corresponds to the modulus of the vector and the complex
angle between the screw axes to the angle between vectors, i.e.,

r'= + r 4 r'. R' = R1 + R- R!
"" R',

Cos (,"u Jr,)
Rusj, + +4+R4,jr+

Y, + •M + Pr, V RO, +'ut + k3,,CO (,,_, R,-R,, R,.R, + + iR,

If, however, identity exists between the basic formulas of
vector and screw algebras, we may conclude that identity exists
between all formulas that can be reduced to a finite number of
these basic formulas. This means that at least all of the formu-
las of vector algebra, written "lower-case," will serve as formu-
las for the algebra of screws if they are r•written *upper-case;"
here the complex modulus of the screw will correspond to the modu-
lus of the vector in the new formulas, and the complex angle be-
tween the axes of two screws will correspond to the angle between
two vectors.

The above constitutes the transfer principle for complex vec-
tor algebra, the algebra of screws. On the basis of this prinei-
ple, the correspondence table given above can be extended for
many other formulas in such a way that its right-hand column,
which pertains to the screws ("upper-case letters") will always
correspond to its left column, which pertains to the vector
("lower-case letters"); substitution of upper for lower case sig-
nifies substitution of complex quantities for real quantities. The
vector-algebra formulas may be regarded as "unexpanded" formulas
of screw algebra: writing the former in upper case, we impart corn-
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vai. to tnem and then expand them. As a result, we obtain
compi- . o.n. fiulas for transformation of coordinates, formulas of a
-,re E-reral complex affine transformation, formulas of complex
spheri.cal trigonometry, and others.

It is necessary to note here that transfer of the vector-
algebra formulas to the algebra of screws loses its significance
in cases in which the vector moduli vanish. In these cases, the
corresponding screws are degenerate. A special gnalysis is re-
quired for such exceptional cases.

It can be seen on the basis of the above that the transfer
principle establishes correspondence between the vector (point)
space and the screw space.

By means of the transfer principle, a flat bundle of straight
lines is transformed (is expanded) Into a brush (see 59 of Chap-
ter 3).

It was also shown in the same Chapter 3 that the basic for-
mulas of screw algebra are invariant with respect to selection of
the reduction point, i.e., they do not depend on the motor to
which the given screw is reduced. With the treatment of the trans-
fer principle just presented, this property is equivalent to the
property of all formulas characterizinR internal relationships be-
tween screws of remaining unchanged on addition of a term o x pis

where p Is the same vector for all ri, to each of the moments P!

of the motors. This transformation is equivalent to parallel
translation of the screw space. It could also be shown (but we
shall not dwell on this here) that the basic formulas cf screw al-
gebra remain unchanged on any motion of the space that preserves
the complex moduli of the screws and the angles between their
axes, or, In other words, on any orthogonal transformation.

Below, in Chapter 5, we shall indicate the possibility of es-
tablishing correspondence between the formulas of vector analybis
and those of screw analysis, in which complex scalar functions and
screw functione of a screw argument figure.

The transfer principle Is of great practical importance in
the theory of complex vectors. In solving problems in the kine-
matics of a solid body with a fixed point, the angular velocities
are expressed by vectors passing through a common point, and the
algebra of free vectors la applied. If it is necessary to solve a
problem of motion of a free solid body, velocity screws are sub-
atituted for t•P eneCul'r-velocity vectors In the formulas for the
correspondIng spherical motion, complex angles between screw axes A

replace argles between vectors, and the kinematic formulas of the
free solid body are obtained by simple recasting of the kinematic
formulas of a fixed-point body with substitution of "upper-case"
for "lower-case" letters; these formulas are then expanded. For
many problems in the kinematics of the arbitrarily moving body,
It is possible to formulate the corresponding problem of spherical
motion by artificial introduction of a fixed point; solution of
this simpler problem automatically leads to the solutlon of the
basic problem with the aid of the transfer principle.
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Problems of the motion of a system of solid bodies whose
relative motions are subject to geometrical linkage conditions
can be solved in the same way. As a result, it becomes possible
to solve with comparative ease problems concerning the motion of
three-dimensional hinge and other mechanisms.

The situation is quite similar in the statics of the solid
body, where many problems of the equilibrium of .a free solid body
can be solved by solving problems of the equilibrium of a point
and subsequent application of the transfer principle. It will be
appropriate to note here that the attempt to apply the transfer
principle to dynamics no longer produces such simple relationships
as can be obtained for kinematics and statics. This is because it
is necessary in writing the screw equations of solid-body dynamics
to establish correspondence between two spaces twice (first be-
tween the space of the angular-velocity vectors and the kinematic
screw space, and then between the force-vector space and the
force-screw space), and because the complex operator linking the
kinematic and force screws carnnot be obtained from the correspond-
ing effine operator linking the angular velocity vector with the
moment by substitution of complex for real quantities.* As a re-
sult, many dynamic and static problems must be solved on the basis
of general screw theory with the screws expressed by means of s~x
Plricker coordinates.

In this chapter and those that fullow, examples of applica-
ticn of this transfer princi&ple to certain problems of geometry
and kinematics will be presented.

S2. Finite Displacements of a Solid Body

Let us consider application of the transfer principle to the
theory of finite displacements of a solid body.

In the kinematics, we shall conolder screw displacements. A
displacement is expressed by a screw in which the vector Is equal
to the rotation angle and the moment is equal to the translational-
displacement vector; the screw axis coincides with the displacement

W&cia of the bod,.

A zero-parameter. screw (or sliding veator) oorresponds to
pure rotation of the body without tr*nslational displacement. A
screw of Infinite paramter corresponds to purely translational
displacement of the body.

Let us first dwell on the elementary theory of finite rota-
tions of a body with a fixed point.*#

I If solid body turns through a finite angle about a certain
axis, whose unl t vector will be 4enoted by #, we can relate the I

initial vawlu# of the raivius vector of a point of the body," r A
whore 0 Is a point an~ the rotation axIS, with Its t±.nal value at-
teri the rotatlon,, rPA'. where A" is the inal position of the
point (71S. 13), or. the iasis of the tollowing theorem.

Thearem 9. If Weis t"40# the *1.fV~t-mtt 009vtr
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0 re t !L- 0O, (4.1)

',Therrc in the unit vector of the axis of rotation and T is the
,ingle of rotatirn, then the final value r' of the radius vector
ia expressed by the following formula in terms of the initial
value r:"*

20
r' --: r--+ - x (V-A- 0 x r). (4.2)

Actually, if we consider a section passing through point A

perpendicular to the axis of rotation, we shall have in it a vec-

tor s = ' that becomes the vector oT0= 5 after the rotation.

We have the relationships

r = (r.e) e -- s, r' - (r.e) e + s'. (4.3)

For the final position we have
s' scoscP -ee x sinfp= sL- I-+ x 2s-0 -

20 202
a-I-e x s -- C----s. $

On the basis of (4.3), and remembering that e x s r-- e x r, we can
write

20 202s' = s A- e x r. .- _-,- Ul-: (r.e)e -- ]
20 202

=S +- Cx r .- 1 + iT+-b 6e x (e x r).

Adding (r.e)e to the left and right members of the equality
and substituting e for e0, we obtain Formula (4.2), whose validity
was to be demonstrated.

In the particular case in which p - w, i.e., when the body
makes a half-revolution, Formula (4.2) gives

r' = 2 (e.r) e--r. (4.4)

Any rotation of the body can be accomplished by two half-
revolutions on the basis of the following theorem.

Theorem 10. Rotation of a body through an angle p about a
certain axis is equivalent to two successive half-revolutions of
the body about axes that intersect at right angl.e at the same
point on the given axi, and form an angle (p/2 with one another.

Let the unit vector of the axis of rotation be o. and let
the unit vectors of the half-revolution axes be et and #a. The
radius vector r of the point of the body lying in plane e#et is
given, according to (4.4), by the following expression after a
half-turn about C:
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r (e -r) ex - r,

'4 and after the second half-turn by

r = 2 (e,.r')e,-r =r) e, -- r)e e -
-2 (e,-r) e,-! r.

If the angle between r and e* is denoted by o, we shall have

r" = r -- 2, cos* -- 2e, co, -

Forming the vector product of the initial radius vector and

the final radius vector, i.e., after the two half-turns, we obtain ~I

e- -
2i

It follows from this that the initial and final radius vectors lie
in a plane perpendicular to the vector 0 and form an angle T,
i.e., as a i esult of the two half-revolutions, the body has per-
formed rotation through an angle 4 about the axis e, Q.E.D.

Af lego

Ar ' 
- t.½S

'0'

Rig. 11 Fig. 12

Two successive rotations of the body about axes that pass
through a cormon point are equivalent to one rotation about an
axis passing through the same point. This rotation is a resultant
equivalent to the two rotations, which may be called component
rotations.

The following theorem makes it possible, given the unit vec-
tors e* and oa of the axes and the angles 91 and %, of the compo-
nent rotations, to find the unit vector ol of the axis and the an-
gle Tj of the resultant rotation.

Suppose that we know the axes @I and *a, which form the an-
gle a, and the corresponding rotation angles 91 and q) of the
body (Fig. 12). We construct planes Q, and Qa respectively per-
pendicular to the vectors *I and sa at the point 0 of intersection
of the vectors;, this will determine an axis with unit vector oi,
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that coincidr-s with the line of intersection of planes Q, and Q2,
with the vec;or pointing in the direction of the vector product
of the vectors @I and 02. In plane Ql, we draw frpm point 0 a ray
OA', which on rotation about 0 through an angle of qz/2 coincides
with the axis @12; in plane Q2, on the other hand, we draw a ray
OA" from point 0; the axis *I, will coincide with this ray if the
former is turned about 0 through an angle q)2 /2. We shall denotethe unit vectors along the rays OA' and OA" by *I and *I'.

We pass plane Q3 through rays OA' and OA" and pass an axis
with unit vector 3 t•hrough point 0 perpendicular to plane Q in
the direction of the vector product of the vectors e' and a".
This vector 03 defines the axis of a rotation equivalent to two
rotations about *i and *2, while twice the angle between rays OA'
and OA" determines the magnitude 93 of the angle of the unknown
rotation of the body.

By way of proof, we note that rotation about a, through an
angle cz is, according to Theorem 10, equivalent to a half-revolu-
tion about #' and a half-revolution about #,a; rotation about 02
through an angle 92 is equivalent to a half-revolution about 012
and a half-revolution about #" and, consequently, the complete
rotation is equivalent to the above four half-rotations. But the
two half-revolutions about e12 cancel one another, leaving the
half-revolution about a' and that about o", and these two are
equivalent, on the basis of the theorem, to rotation through an
angle 9s about 0s. It now remains to express the vector of the
resultant rotation in terms of the component-rotation vectors.

For this purpose, we write the expression

sin( ea) _e' × "es - ; ,. C= (if - --- = 3 * tg .T3 (4.5)

We express the vectors *' and e":
R. mLO3 " MAE Xes X sin I'

sna 2 slum 2

Performing vector and then scalar multipllcat:ýon of Equalities
(4.6), we find after rearranging

C' X ec A. si R -

V , ILScs!kcsi _sil5t511ýCs2 (4.8), ., .',

Substituting (4.7) and (4.8) in the numerator and denominator
of (41.5), we obtain after canceling cos(y/2)jcos(qý2)

9l Ig 4 1
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Again introducing the finite-rotation vectors

0 =o, g 02 t9A02= 3t9g (4.9)

we obtain the final result -. an expression for the vector of the
resultant rotatlon in terms Qf the vectors of the component rota-
tions:

s+O~OiX%(4.10)

This proves the following theorem.

Theorem 11.t If the umit vectors e., and ea of the axes and
the angles (pi and'q: of successive rotations of a body are given,
then the axis of the resultant rotation equivalent to these two
rotations is obtained by the following construction: through the
point 0 of i.nterse.6tion o.f el with s; we pass two planes perpen-
dioular to these two. veotore; in the first plane we draw a ray
that forms an anite -qa)/2 with the line of. intersection of the
planes, and in the esoond plane we draw a ray that forms an angle

1//2 with this line; we pass a plane thiough these rays, which
are defined by the unit vectors *' and e". The axis with unit veo-
tor es perpendicular to this plans at point 0 will be the axis of
the resultant rotation and the angle of rotation q•s will be twice
the angle between e' and e". The ihelation between the resultunt-
rotation vector and the oomponent-.rotation vectors is given by
Formulas (41.9) and (4.10).

Formula (4.10) indicates that the resultant rotation depends

on the order in which the component rotations were performed. For
rotation through small angles, when the products of the anglescan be disregarded, we obtain a "linear" addition formula:

03 • O, + 0,.

On the basis of the transfer principle, Formulas (4.1),
(4.2), (4.9) and (4.10) given here may be interpreted as formulas
with complex quantities. The finite-rotation angles that appear
in them may be put complex, the unit vectors may be made unit
screws of axes fixed in space, and the vector moduli may be made
complex. In this case, by virtue of the transfer principle, these
formulas admit of interpretation".in the language of screws, and
the theory of finite rotationb set forth above becomes a theory
of finite screw di*placements of a body. Theorems 9, 10 and 11 re-
main valid in this new* interpretation, with the following correc-
tions: firstly, screw displacements are imparted to the body about
axes arbitrarilV •positioned it space mnd, secondly, the initial
and final positions determined are not those of the radius vector
of a point, but those of a screw lying on a line belonging to the
body.

Thus, we can formulate the following theorems.

Theorem 12. If we introduce the complex vector of a finite
screw displao•ement
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e=e = E tg-~-, (4.11)

where I is the unit screw of thq sorew-diaplaoepent axis and 0 =

___p•.} is the complex rotatjqn angZq (dispZgoement sarew), then

for a screw (or vector) R lying on an arbitrary line of the body,
the finite position R' i4 *xproeaed by the farmn4a

2 (14.12)R'= + 109x (R +o XR), (.2

which is analogous to Pormuta (4.2).

A diagram of the displacement un4gr 0onsuderation appears in
Fig. 13.

Theorem 13. Screw dieplgoement pf a body Ahrough a complex
angZe ()=+w 0 . about an aise whose upii $crew if I is equivaZent
to two successive haZf-rqvolutfoje *eGotqd about lines with the
unit screws li and 12, whioh intoreeot the axie I at right angles
and form a complex angle */1 with one another (Fig. 14).

Fig. 13 Pi.g. 114 Pig. 15

Theorem 14. Two .uovegeue afnite esrew dieplaoements through
complex angles 41 and *g aeou* arbitrary axes in a *paoe with unit
screws Ii ang 11 can be eubstituted by a #in#&e equivalent result-
ant screw displacement. The axi. whoqe uni *cre'w will be denoted
.by B, and the complex angte Ol of the ree#gean$ qorew diaspl ae-
ment are obtained by the fo&;owig ooxleatr on (Fig. 15): we draw
the axis of the complex angle 1 i* and then 4 %aight line a'
that intereecte the aie Is and forme the oomp # ang~e fi/ 2 with
this angle axie and then a tin* a" that inteaeeote the asi* ha
and forma the pompLea angle Ol/2 with thie *ei4 angle axts; twice
the complex angle between a' and am te equal to the complex angle
4, of the resultant sorew disp.aosement and the apt* of angle
a'-a" with the unit eoreV Is it the axle of this diepLaoement.

If the copplex Meqtors qt the finite sorew displacements of
the components, and the resultant are equal, reopeotively, to
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E) E% El t9 E). EEO. E, tg--02 2- •1=E gT

Oe= E . E;=tg., (4.13)

then the relation between these screws is expressed by the formula

e1 + e,- elx es
i eves(4.14)

which is analogous to Yormula (4.10).

Theorems 12, 13 and 14 require no proof, since they follow
from the analogous formulas pertaining to simple rotations of a
body by virtue of the transfer principle.

Analysis of the analogy between the "vector" and "screw" for-
mulas indicates that with the transfer principle, point kinematics
become line kinematics and the kinematics of a body with a fixed
point become the kinematics of a free body.

§3. Determination of Displacement Screw from Initial and Final
Positions of a Solid Body

The problem of displacement of a solid body from one given
position to another by means of a single screw displacement is of
practical interest for production automation, especially when it
is necessary to accomplish a certain technological operation ac-
companied by an over-all displacement of a workpiece on a ma-
chine.* Practical execution of such a displacement requires a con-
verting fixture capable of imparting to the workpiece a single
screw displacement that transfers it from one position to the
other. Here the initial and final positions are considered to be
given, and the problem consists in determining the appropriate
displacement screw that effects this translation, i.e., an axis,
a rotation angle, and a translational displacement. The iiitial
and final positions of the workpiece can be defined by the ini-
tial and final positions of any two straight lines rigidly asso-
ciated with this workpiece.

First, let us solve a simpler problem, from the soluition of
which we may then pass to solution of the problem formulated
above, using the transfer principle. This simpler problem is as
follows: find the finite-rotation vector of a solid body that has

a fixed point 0 if it is known that the two unit vectors e,--7,"

and e,#= O,. which pass through point 0 and are inseparably asso-
ciated with the body, become, after the rotation, the vectors
, ,0• and 8, - , (here, naturally, 6,, -U.*a). This problem is
equivalent to the familiar problem of determining the center of a
finite rotation of a spherical segment AtAa that becomes a segment
AaA'a on a sphere of unit radius. For the solution, we first de-
termine the geometric locus of all axes rotation about which can
translate vector *s into vector e',. Obviouslyi the geometric lo-
cus of such axes will be a plane qj passing through 0 and perpen-
dicular to the plane OAIA',, with its line of intersection with
the latter bisecting the angle between the vectors @I and *'I.
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Then we determine the geometric locus of all axes rotation about
which can translate vector 02 into vector a' this will be a
plane q2 passing through 0, perpendicular to the plane OA2A'2,
and having a line of intersection with the latter that bisects
the angle between vectors 02 and S'2. Obviously, the line a of
intersection of the planes q, and q2 satisfies the condition that
rotation about it translates both #I into *'i and *a into s2
[sic]. This will be the solution of the problem of determining the
finite-rotation axes of a body with a fixed point 0.

In concrete terms, the solution on the above scheme is car-

ried out as follows. Wirst we determine the plane q, - its unit

vector is parallel .-o th;. vector e,, and then the plane 12

whose unit vector is parallel to the vector rta¢. e2. The unit

vector e, which is 'perpendicular simultaneously to vectors P, and

r2, will obviously be parallel to the line of intersection of

planes qi and q2 and will define the point of rotation of a spher-

ical segment AiA2 on a sphere of unit radius, with the result that
the latter goes over to AA. We have

X r, (ej -*,) , , ( -es)

(81 , -- e_--, es)e I e s - 4,1 1 sin (# ) - e )

,e,-- e,I-'2 si n (e', el)= C" ,• - e l,,

Ie-esl =2sin.¥(.,e,)=1/2IF- ,.e-, (4.15)

e--el;-s,I = 2 Y-e .e,V es - e'.l,
Cos# (*' -,)1,,- ),)

cos (ef - *I,- e,); (, -,. =,-.,,

Thus, the unit vector of the axis about which the body must

make a finite rotation will be

( i - * -1 i ' ( 4 . 1 6 )

It remains to find the finite.rotation a Sle. For this pur-

pose, we apply Formula (4.2) for the finite rotation, substituting

in it the initial and final vectors @I and #g, together with the

vector e. We obtain the formula

, - -68 + + -- 0),
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20 20'
C + - -- e C X ee+ -i- ex (e x e) =

20 20' 201

in which, in this case, all unit vectors are known, and the un-
known is the quantity 0=tg (p/2). Performing scal&r multiplicati.on
of both sides of the above equality by *I, we ,tta-n the scalar
equation

+t .ee -1J% (e#) F [ee)--,

from which
I

i = -(4.17)

The problem posed at the outset can be solved very easily
after solution of this problem.

Thus, there were given two unit screws 91 and 12 lying on
two straight lines inseparably connected with the body, screws
which, after the body has completed a certain displacement in
space, have been translated into the unit screws 8', and V'2,
which are known. It is necessary to find the corresponding finite-
displacement screw of the body.

We apply the transfer principle, using the procedure em-
ployed in solving the previous problem.

First we determine the geometric locus of all axes screw mo-
tion with respect to which can translate unit screw Ii into unit
screw E',. By virtue of the transfer principle, this will be a
plane analogue - a brush Q1, whose axis will be the axis of a
screw R,=- Ei--E,. This axis intersects the axis of screw E, X E at
right angles and bisects the segment between 11 and 1'1 on this
axis.

We then determine the geometric locus of all axes screw mo-
tion with respect to which can transfer unit screw Ig to unit
screw I'l. Once again, this will be a brush Qt, whose axis is the

axis of a screw , This axis intersects the axis of screw
RX E,' at right angles and bisects the segment between Is and I's
on this axis.

The axis I screw motion with respect to which can simultane-
ously translate 91 into 111 and Is into 8a, i.e., the screw-dis-
placement axis of the body, will belong simultaneously to both of
the above brushes and, consequently, this axis must intersect the
axes of screws Ri and Ra at right angles.

Now it remains to find all of these axes.

By analogy with Formulas (4.15), we have
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R, E-- E, R -R

R,2 Xt fs E; EaY -fi
• I•--E,=V•V--EE,.(4.18)

s"I': (E; -- El, E2*-- E2)-.=

The unit screw of the screw-displacement axis of the body is
obtained from a formula similar to (&.16):

(E, - E. ,)X I(F;- E!)-E-)I

Now, taking the initial and final positions of one of the
unit screws, namely 11 and 9'1, and the unit screw I that we have
found, we determine the complex angle t or, what is the same
thing, the modulus of the finite-rotation screw of the body, from
a relationship analogous to (4.17),

62 : tie- . (4.20)

so that the problem has been solved.

§4. Application of the Theory of Finite Screw Displacements to
Determination of Relative Displacements of Links in a Three-
Dimensional Mechanism

The theory of finite rotations set forth above and its screw
analogue, the theory of finite screw displacements, enable us to
derive formulas for the relation between the turn angles and slide
paths of the links of a three-dimensional mechanism with cylindri-
cal changes.

Let us consider a three-dimensional four-member mechanirm
with.a single rotary hinge 1 and three cylindrical hinges 2, 3
and 4 (Fig. 16). The rotary hinge permits relative rotation of
the adjacent links through arbitrary angles, while the cylindrical
hinges permit rotation together with sLip. The hinge axes occupy
arbitrary positions In space. Let us establish the term link for
a rIgid configuration consisting of two neighboring hinge axes
and the shortest-distance line segment between them. Geometrical-
ly, therefore, a link is characterized by a complex angle whose
principal part is the actual angle between the axes of the hinges
at Its ends, while the moment part is the length of the link. We
shall denote the complex angle of the links 1-2, 2-3, 3-4 and 4-1
by

A 4 . w-•, B v + a.p r wa +si-F Ar. -m 6 + 6w,

respectively; link 1-2 will be regarded as the driving link and
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link 4-3 as the driven link; we shall assume tnat link 4-1 is sta-
tionary. The angle between links 1-4 and 1-2 will be denoted by
4)I ( 1w?, and the angle between links 1-4 and 4-3 by 41 +j} -I .

r I

1 4

Fig. 16 Fig. 17

We pose the problem of determining the position of the driven
link 3-4 as a function of the position of the driving link 1-2,
or, in other words, determining the angle Y as a function of the
angle *. The problem Is most simply solved as follows. We tempo-
rarily remove link 2-3 and "stretch" links 1-2 and 4-3 into line
with *, fived link 1-4. Thus the argles 0 and 7 will have been
reduced to zero (Fig. 17). We then give link 1-2 a rotation about
axis 1 through a complex angle 0, and link 4-3 a rotation about
axis 4 through the complex angle Y. After these rotations, axes 2
and 3 will occupy positions 2' and 3'.

We replace link 2-1, requiring that the configuration of axes
2' and 3' corrsspond to the configuration of the temporarily re-
moved link 2-3, i.e., that the complex angle between axes 2? and
3' be equal to B +S ', which necessitates that the scalar prod-
uct of the unit screws of these axes be equal to the cosine of
the complex angle in question.

We shall denote the unit screws of the hinge axes In the
"stretched" state of the meehanlsm by E,. E,. £, ,

After rotation about Ii through an anole #, tho position of
axis 12 will be expressed as follows on the basis of Formula
(4.12):

f+ x (so+e x(.21)

where 0 aE, tg(WO) is the oomplex finite-rotation vector of link1-2.

After rotation about I% through an angle Y, the position of
axis to, again on the basis of Formula (4.12). will be

.�f�x �',t+,~2X( .I X(23 ( .XP.O.
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where

X :=Etg

Performing scalar multiplication of (4.21) and (4.22) and equating

cos B:

'.E', - J. EV 3 - X (E,+ 0 x E,)]. E--

+ -. X W3 + X , l- +

_[l, x + XIl.____ x (, &.XJx.E)V
= os B.

If we expand this oroduct and then remember that the scalar prod-
ucts of the unit screws of the mechanism's axes have the values

E-%ESB;=• zz E,.E == cos (A --A + i),E1 .E,s - A,
el.E, - cos A, E,.E, -" cos r,

we obtain the following quadratic equation in the unknown complex
quantity X:

(icos(A--A -- ) -cosB+ Ic=(A+A-- + )--
-cosBI )X' + 4sinAsin rx + [Ics(A--A +r-- (4.23)

- cos B + Ioms (A + A + I)-cos BI '0 0

or, concisely,

(M + N" X' + 2POX + (Q + Rol . O. (4.23')

This quadratic equation expresses X as a function of 6, i.e.,
properly speaking, the dependence of the turn angle Y of the
driven link on the turn angle 9 of the driving link.

We note that the angle 0 -9-1- W varies in such a way that
the quantity 91 remainqs constant (rotary hinge); hence the argu-
ment is the real quantity 9. while the change in the angle I *
".9 + ..9represents the change In the angle 0 and the segment *
proper.

It we take the principal part of the complex equation (4.23),
it will be the sam equation, but with real quantities substituted
for complex, i.e., with lower-case letters substituted for upper-
case letters:

Ilcos(bl--s -T)-- m3I-i Icos(O-I--t--'r--
"cc* F1) 01 4 4 Wna sin 10x-+

+ko( ( (A.I-T) . I4-I=s(4+04 T,)
(•.24)

or, in short form,

(at i ,,0) X"I 2 /-I (I I 20'0 0. (N . 2il ' )
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where

O=- tgkq. tg

Equation (4.24) or (4.24') describes a three-dimensional four-link
mechanism whose axes are parallel to the axes of the given mecha-
nism and intersect at one point.

Let us ascertain the conditions under which the discriminant
of the complex equation (4.23) vanishes, i.e., the conditions un-
der which the equality

P%2 - (M + Ne') (Q +,rO') .- 3

is satisfied. This equality represents an equation In the quan-
tity 0:

NR,, + (MR + QN--P2) a + MQ . o. (4.25)

We transform the expressions for the coefficients of this
equation:

a -+a &+A-r-DN'R- 4sinS+ A1r sin a +^rex

X SiAn+A +Fr+s.a+A+r-s_
tcos (B + r)- co(A + A)) cs (B--r)-

Q -- (A + A)) -up.
Mq Q4 sin A- A - r + n &A--- r-s

[Icos(B + 1)- -ca (A--A)3 few (13 -- r)-
-- cos (A -- A)I r,,,

MR +QN-_.P M
- (cos (A 1+ B)- os•(A + 1) ton (A- )3-

-- cos (A + A1)) +I (A + B) -- e (A-- 1 x
X Ilow (A -- B) ,- ca (A -- 1) -- 41 W. A sl.i' V -a

,O •A +I cml 2s + cas 2r- . am RA-- 4 cesA ems B X

x v-. 1*4 I m A ,. o e (HI !. 1) -- co (A +" A)Ix

x Ic H 1) - tip, (A - A)I q IM (1 ... I
-- s (A 4- A)I kA, (it +1)- r)- cos (A - - A

then Eq. (4.25) assumes the form

ap + Pit+ 0) + ei - 0. (4.251)

The roots of this equation will be

01 6 ýA('1.26)

Let us ascertain the position of the mechanism's links to which
these two values of 0 and, consequently, two values of the angle
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t correspond. We write the expression for the cosine of the angle
between the axes of hinges 2 and 4 on the basis of a formula of
complex spherical trigonometry

cos( E4) = cos A cos A + sin A sin A cos t=

cos.; cos A "1 sin A sin A (1 (4.27)

Now we replace 02 by its values Of and e| (4.26); then we obtain
in the one case

cos (E,, E 4) = cos A cos A - sin A sin A ± +-__

cos A cos A + son A sin A 2cos (- r)--2cos A cos A
•~2 sin A si n A

cos (B + r),

and similarly in the other case

cos (E,, E )- cos (B - Ir).

The result obtained indicates that for the values of 0 and, ac-
cordingly, 0 that cause the discriminant of Eq. (4.23) to vanish,
the complex angle betweeu axes 2 and 4 i' equal to the sum or dl f-
ference of' thp anzles B and r. From this it follows that in this
position of tie mechanism, axes 2, 3 and 4 are parallel to the
same plane, and that links 2-3 and 3-4 have become parallel. This
is the "dead" position (Fig. 18, a and b).

6 4

a b

Fig. 18 Fig. 19

On the other hand, since the discriminant of the complex al-
gebraic equation (4.23) is zero, the moment part is unknown, i.e.,
the moment part X and hený;e the quantity *0 can be selected ar-
bitrarily on the basis of Theorem 3 (Chapter 2). This purely al-
gebraic property is interpreted in this case as a kinematic fact:
when the three cylindrical hinges are positioned parallel to the
same plane, two links, together with the middle axis, can slip
indefinitely, and, consequently, *0 ceases to be a fixed quantity
(Fig. 19). In this case the dead position is a position of inde-
terminate slip for certain links.
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It is alsc possible to pose the following problem: determine

the relationships among the link dimensions (lengths and angles)
with which pure rotation will take place in hinge 2 on rotation
of the driving link 1-2. Obviously, these relationships will be
exceptional, because, generally speaking, rotation with slip must
occur in hinge 4; the requirement of pure rotation, however, is
a requirement that the slip vanish identically for any value of
the driving-link rotation angle.

Let us assume for simplicity that TO1'°0a i.e., that links
1-2 and 1-4 on the one hand and links 1-4 and 4-3 on the other
come into contact and that the angles 0 and Y are real.

Expressing the coefficients and the unknown in Eq. (4.23) in
ternis of principal and moment parts, we separate these parts:

(in -+ 40) y! + 2pOx (q +I- ro) 0,
(in + n02) 7! + 2pfOt (q* + •o') O.

Since the quantity X must satisfy both of the above equations,
the resultant of these equations must be identically equal to
zero, i.e.,

n+ nO' 2p0 q + r' 0 I
r"n+ itO 2pOO qo+r 0 0 0 I

0 o + nO' 2p q + rO, -- 0.
0 rn-I- nO' 2p^O qO +- rO' r

This will be a condition for a real root of the complex algebraic
equation. Expanding the determinant, we obtain a polynomial in 0.
Since the determinant must be equal to zero for any e, all expres-
sions appearing as coefficients of 6 and the absolute term must
be equated to zero. From this we obtain a number of conditions
that will contain only internal parameters of the mechanism, i.e.,
the link lengths and the angles between the hinge axes. Expanding
these conditions, we obtain the necessary relationships for the
parameters of the mechanism that satisfies the requirement im-
posed.

§5. Complex Euler Angles and Euler Kinematic Equations

Complex Euler angles, which are characterized by screw dis-
placements of a body, may be used to determine the position of
the body in space. If we take fixed rectangular axes x, y, z (Fig.
20) and axes x', y' and a' that belong to the moving body and may
be called the moving axes, the positions of the moving axes rela-
tive to the fixed axes can be characterized either by nine complex
cosines or three independent Euler angles. The body would have to
be rotated through these angles in order to occupy a given posi-
tion if the axes x', y' and x', which are inseparably associated
with the body, coincided with the axes x, y, x in the initial po-
sition.

The first such angle is the angle Y, which corresponds to
screw displacement with respect to the x-axis; after this dis-
placement the axes occupy the positions n, n', x. The second will
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be the angle 0 with respect to the n-axis;j' after rotation through this angle, the axes
l¥ will occupy the positions n, n", x'. The

third will be the angle 0 with respect to
the axis z'; after this displacement, the
axes will occupy the positions x'1 y', z'.

Sqth By virtue of the transfer principle,
the relation of the complex Euler angles
with the complex rectangular coordinates is
formally the same as the relation of the
real Euler angles to real rectangular coor-

Fig. 20 dinates. We shall therefore represent the
conversion from the xys (fixed) system to
the x', y', Z' (moving) system in the form
of the following table of "complex cosines:"

I x I __ z 7L !
X, IC.cos vY-sin0l o * Csin % Co 0sin I' J-8 100 Cos C51. 1 0Vcs s~n~ilne
Y. I-,nv COSe -CO ,0 sn Coa•e ln0#1-,I.c, A 0 cus ' C oleo$ D SIR9

Zsin 0sin ccl si 0 Cos

If we denote the unit vectors of the fixed-system axes by
1. J, k, and the unit vectors of the moving-system axes by 1', " k',

the cosine of an angle between unit vectors in the former and lat-
ter systems is determined at the intersection of the correspond-
ing column and line of the table. For example, cos(1, k') is equal
to sill sill 1,'

The unit-screw coordinates of any straight line belonging to
a solid body, given in the fixed system, can be expressed in terms
of the coordinates in the moving system by reference to this ta-
ble.

Without elaborating on this problem, we note that in much
the same way as the generally known Rodrigues-Hamilton and Cayley-
Klein parameters, complex analogues can be constructed for which
conversion to Euler angles and other coordinates is performed in
accordance with corresponding formulas with the real quantities
replaced by complex quantities.

The projections - of the velocity screw fl of sn arbi-
trarily moving body onto axes inseparably associated with the
body are connected to the complex Euler angles by the following
relationships, which are derived from the familiar Euler kine-
matic equations for a body having a fixed point by substitution
of complex for real quantities:

0, =Q e Psin4D siin -- )+ bcosM (429

Q,- +c 'Pos O + iD.

Solving the equation system (4.29) for the Euler angles, we
obtain
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(R = --o ... si, n + gy. cos 0)),
) q.csl-•,sin e ( 4.30 )

(I):= (,.-- (Q,. sine + Q,. cos T) ctgO.

Manu-
script Footnotes
Page
No.

58 One of the classical examples of the transfer principle
is the familiar principle of duality in projective ge-
ometry on a plane, on the basis of which all considera-
tions remain in force if the points in them are replaced
by lines and lines by points.

610 In the next chapter, we shall present considerations
pertaining to the range of applicability of the trans-
fer principle to solution of problems in mechanics.

61"* The presence of a fixed point is not necessary; Formulas
(4.1)-(4.10) apply, strictly speaking, only to displace-
ments due to rotations, irrespective of translational
displacements of the body.

62 This formula was given in A.l. Lur'ye's book [31).

67 Here we set forth a solution the idea for which was sug-
gested by R. Saussure [8].
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Chapter 5

ELEMENTS OF THE DIFFERENTIAL GEOMETRY OF THE RULED SURFACE
AND CERTAIN RELATIONSHIPS OF IHE KINEMATICS

OF THE STRAIGHT LINE AND THE SOLID BODY,
COMPLEX SCALAR FUNCTIONS AND SCREW FUNCTIONS OF A VECTOR ARGUMENT

S1. The Screw as a Function of a Scalar Argument

Let a screw R be referred to a fixed rectangular coordinate
system, and let "ts complex rectangular coordinates be functions
of a certain real scalar parameter t. Then screw R will be a ftuic-
tion of t:

The screw changes when t changes. When the argument changes
from a value t to t + At, the screw acquires a screw increment AR,
which is added to R:

R+AR- R(i+ A).

In our nomenclature, the derivative of screw R is the limit
of the ratio of the screw increment to the argument increment
when the latter approaches zero:

R (f + iAQ-R( AR dRk (5.1)
LQ -- I ii

The rules for differentiation of screws are the same as the rules
for differentiation of vectors, since a screw can be reduced to a
motor and the motor regarded as a complex vector. Thus,

aF (Re + .q).. = F V+T (5.2)

40*- A"; A-=,,,.(.3 (5.3)

In exactly the same way, we can demonstrate validity of the for-
mulas

MS( 89) 'Re+& Jts"r k'Re+R&' A (5.4)

aFRAt) JL+ ts ffim Axits+ &*2' (5.5)
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,y(&RAR.)RsR. + RisR + Rdtits- (5.6)

The following particular cases may arise in differentiation
of a screw:

a) The axis of the screw remains in the same position, and
only the complex modulus changes. Then

mu +' RA&,.~"Ti. (5.7)

i.e., the derivative is a screw coaxial with the given screw.

b) The axis of the screw changes position in space and the
complex modulus is constant. In this case

,,-Ed (M 2tMo.. (5.8)
from which it follows that screws R and R intersect at right an-

gles.

The function

5(t)mSR(OdI (5.9)

will be called the indefinite integral of the function R(t) if

's

The function 8(t) is determined to within a constant term,
which is the screw.

The screw

d-e -. # (A) (5.10)

is the definite integral. As in ordinary vector analysis, the gen-
erally familiar properties of Integrals are also preserved in
screw calculus. Thus, the Integral of a sum is equal to a sum of
integrals, and a constant multiplier can be taken out of the in-
tegrand.

52. The Spherical Curve

Let us recall the basic relationships of the differential
geometry of a space curve, limiting the discussion to the particu-
lar case in which the curve lies on a sphere of unit radius.

Let a be a point of a curve whose radius vector with respect

- 79 -



to the center 0 of the sphere will be •r then It- r-I.

If t is an arbitrary parameter, then the equation

is the parametric equation of the curve.

The vector defining the direction of the tangent at point a
is the first derivative of r with respect to the parameter

;w

As we know, the increment of the radius vector is equal at the
limit to the increment of arc length; therefore,

aI a1-;'.
It follows from this that

Ym'I1F - 4* 'PII'r (5.12)

and the arc length

8U iadfIv 1 . (5.13)

where the plus sign must be taken in front of the radical. On the
basis of (5.11), we have

IF. a[ " F ,. (5.14)

where v is the unit vector of the tangent at point a. Thus, intro-
ducing the parameter . instead of t. we find that the derivative
of the radius vector with respect to this parameter is a unit vec-
tor directed along a tangent. Since Irl-m r--I--sceed the direction

of the vector T Is perpendicular to that
of the vector P.

We shall call the plane passing
through the center 0 of the sphere,
point a, and the tangent vector the cen-

1 * tral plane; its Intersection with the
sphere forms a great circle (Fig. 21);
the normal to the curve at point a.
which is perpendicular to the central
plane, will be called the central normal
to the curve. We shall denote the lat-
ter's unit vector by k. The triplet of
semiaxes on which the unit vectors P,, T
and k lie will be called the trihedron

Fig. 21. 1) Osculat- of radius vector P. Lot us place this
ing plane. trihedron at the center 0 of the sphere.
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Moving tre point a along the curve, we shall vary r, T and k; the
vector T and its increment define the osculating plane in which
the principal normal at point a lies. We shall denote the unit
vector of the principal normal by V, the normal to the curve at
point a, which is perpendicular to the tangent and to the prin-
cipal normal, will be called the binormal; we shall denote its
unit vector by 0. The triplet of semiaxes on which vectors T, V
and 0 lie will be called the natural trihedron of the curve at
point a.

In Fig. 21, the osculating plane is intersected on a circle
whose plane is indicated by shading; the natural trihedron is
placed at point a.

As point a moves along the curve, the variation of the vec-
tors %'Af is determined by the familiar Prenet formulas:

S -(5.15)

These formulas describe the motion of the natural trihedron along
the curve. The kinematic interpretation of these formulas is as
follows: the trihedron performs two rotations: one about the bi-
normal, the derivative of whose angle with respect to the arc has
an absolute value equal to the curvature l/p, of the curve, where
p, is ,he radius of the curve, and another about the tangent, the
derivative of whose angle with respect to the arc has an absolute
value equal to the torsion of the curve, I/pg, where pg is the
radius of torsion. On addition, these two motions define the mo-
tion of the ends of the trihedron vectors, whose origins are
placed at point 0.

Let us denote by de' the element of the arc described by the
end of vector t; we then have

on the basis of Formulas (5.15) and (5.16). we have

"I°

i.e., the curvature is the derivative of arc a' with respect to s.

It follows from (5.15) that

The relative positions of the radius-vector and natural tri-
hedra are determined as follows. We denote the angle between the

radius vector P and the unit vector 6 of the binormal, or, what
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is the same thing, the angle between the unit
vectors k and V of the central normal and
principal normal, by q (Fig. 22):

We then have

-J- sa. ., (5.17)

Pig. 22 On the basis of Formulas (5.15) and (5.16)

On the other hand, differentiating the equality r.-, 0 with re-
spect to a, we obtain

I4-+,.- 1-

from which

P do uq, (5.18)

i.e., the radius of curvature is equal to the sine of the angle
between the radius vector and the binormal. The section shown in
Pig. 21 as being cut on the unit sphere by the osculating plane
does not coincide with the section cut by the central plane; as
these planes move closer together, the angle q will tend to w/2
and the radius of curvature will tend to unity.

Differentiating the equality

P- mf

with respect to @,, we obtain

from which, remembering that 'I -0 and that o -, -W .s q, we find

t._a (5.19)

1.e., the torsion Is equal in magnitude but opposite in sign to
the derivative of the angle q with respect to a.

We introduce a fixed system of rectangular cartesian coordl-
nates and examine the projections of the vectors t, i onto the
axes of this system:

It is obvious that each triplet of these numbers with iden-
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tical indices satisfies the equation system (5.15); thus the above
numbers are three systems of integrals of the following differen-
tial equations:

49 j an 1 (5.20)-R, --W X -

where

P+a+P-MI. (5.21)

If we introduce the variable 6 defined by the formula

am In 1-Y'z:;7 (5.22)

then, by differentiating 6 with respect to a and applying the re-
lationships of System (5.20), we can reduce the system to a single
equation of the Riccati type:

(5.23)

It is assumed that the functions

a-a(1).q-.q(Ika- sq.pa--• (5.24)

are known. Equations (5.24) are intrinsic equations of the curve,
since they do not contain the coordinates.

If 6 is found as a result of integration of the equation, we
shall be able to find Z, a and x from (5.22) by separating the
latter into parts containing and not containing i and applying
(5.21).

To convert from cartesian coordinates to Euler angles, we
follow S.P. Flnikov [32] and express the vectors %vp in terms of
the latter:

'• --I(cssce9-- ayn ,dagnq .4

-j(,Is9utay--asfmdnge+ ken&I

If av V and a are the rectangular coordinates of the vector
P. then the vector equation

yields the following equations In projections:
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i- csamyg-sin scasycse,

Cos cmfsa + can1ncosi . (5.26)

If we now apply Relationships (S.25), three groups of three
equations each can be obtained from the Prenet formulas (5.15)
for the rectangular projections of vectors %Y.p. However, only
three of them will be independent, so that any three of these pro-
jections, and, in particular, the projections T 5 , VS and A may
be used. On substituting them in the Prenet formulas, we obtain

C a (5.27)

The system of equations (5.26) and (5.27) Is a Cauchy system
for the unknown functions x.a..,O.9. The right-hand members of
the system are assumed to be regular functions of s, so that the
system admits of a unique regular solution

a I Me 9(-., 9 (S), (5.28)

which satisfies this system and the initial conditions with a *
S89:

(5.29)

These Initial conditions define the Initial point of the curve
and the initial position of the natural trihedron.

As we know, assigning the two quantities p1 and pa as func-
tions of are length determines the curve to within its position
in space, while assigning the Cauchy system fully defines the
curve, with its ftie-in to the point and to the given direction.

63. The Ruled Surface

After this brief exposition on the differential geometry of
a ourve on a sphere of unit radius, we can go on to the basic
concepts and relationships of the differential geometry of ruled
surfaces.

A ruled surface is a surface formed by motion of a straight
line. This line is known as the generator of the surface.

In analyzing the notion of a point along a spherical curve,
we are also dealing with a surfaoe, namely one demoribed by the
radius vector of the point from the center of the sphere. In this
case, however, the radius vector describes a conical surface;
moreover, it Is sufficient to follow only the angular displace-
ments of the natural trihedron to characterize the curve. In the
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motion of a generator ov,.r a ruled surface, the unit screw of the
generator executes a three-dimensional motion of general form,
and to characterize the motion of the unit screw and some tri-
hedron associated with it, it is necessary to know both the rota-
tional and translational displacements, i.e., generally speaking,

screw displacements. Nevertheless, an
" analogy with the spherical curve is ob-

tained in description of the ruled sur-
face when these screw displacements are
expressed with the aid of complex quan-
tities on the basis of the transfer prin-
ciple.

Let straight line a be the generator
of a ruled surface, and let the unit
screw lying on a be R (Fig. 23). Let the
generator vary together with a certain
real parameter t; then R--(A.

Fig. 23
Consider the generator a' corres-

ponding to the parameter value t + dt;
let its unit screw be R'.

We shall the complex angle (a, a') an element of the complex
arc of the surface and introduce the symbol

A M Ob + aU -. dUeP. (5.30)

for it; here, do is the real angle between lines a and a', dW' is
the shortest distance between these lines and the parameter

do 10 AV(5.31)

is the limit of the ratio of the shortest distance 6£0 between
generators to the angle AS between them as the complex angle £e
between the generators tends to zero. The quantity p is cllled
the distribution parameter of the planes tangent to the surface
at the points of its generator, or simply the paramter of the
generator a.

We note that the principal part de of the complex-arc element
of the surface is numerically equal to the length of the elemen-
tary arc of the spherical cur"e that would be described by the end
of the unit vector of the surface generator if its origin were
placed at the center of the sphere.

It Is quickly seen that at the limit . the difference Ri--R
A £ Is a screw dR whose complex modulus Is equal to dO. Indeed,

since IRI- t

Il~a OW(a.) am •(d) •an A it x ( + dR)l

4IX x4R d*.
so that we have

I1l1l-a. (5.32)
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We shall denote by b the straight line passing through the axis
of complex angle (a, a'), and by A and A' the points of intersec-
tion of line b with a and a'; at the limit, line b will be tangent
to the surface at point A, which "se shall call the center of the
generator a. We shall call line b the central tangent and denote
its unit screw by X.

Obviously, X may be obtained as the screw product

I KM ',-!+.R) -x ;K (5.33)

Thus, the unit screw £ is perpendicular to unit screw R. Finally,
we construct a vector lying on line c, which is perpendicular to
a and b:

A (5.34)

According to what was said above, its modulus will be equal to
unity; hence T is a unit screw. Since R = const,

it- & R-T - .O

i.e., the screw dRMdS intersects screw R at right angles; further,
performing scalar multiplication of T by X, we obtain

T.Kmj. (RXj>dQT.K- Mx

and, consequently, unit screw T intersects R and X at right angles
at point A. Line o, the axis of unit screw T, will be called the
central normal to the surface.

The geometric locus described by the central normal will be
known as the normalia.

The geometric locus of the centers of the generator is known
as the line of striction of the surface (or throat line).

The triplet of unit screws R, T and X with a common origin
at point A forms a trihedron, which we shallcall the generator
trihedron. It is easily seen that the unit screw R plays the same
roli for the surface as the radius vector Pdoes for a spherical
curve; the unit screw T of the central normal corresponds to the
vector T of the tangent to the curve, while the unit screw X c
the central tangent corresponds to the vector k of the central
normal of the curve.

Setting

we find the following expression for dS:
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S-t I.(5.35)

In our terms, the complex arc of a surface will be the quantity

s8uaYi (5.36)

where we arbitrarily take the plus sign in front of the radical.

Let (Fig. 24) o be the central normal to the surface, and
let is also be the generator of the latter's normalia, i.e., also
the generator of a certain surface. Consequently, line c has its
own center, which we shall denote by the letter B; the geometric
locus of these centers will be the line of striction of the nor-
malia.

We construct at point B the central normal to the c-surface
and the central tangent to this same surface. We shall call the
former the principal normal to the surface and the latter the bi-
normal of the surface; point B will be called the center of curva-
ture of the a-surface at point A.

We shall denote the unit screws of the principal normal and
binormal by N and B, respectively; then we shall have at point B
a triplet of unit screws T, N, B;. the three half-lines on which
they lie will be called the natural trihedron of the surface. This
trihedron is perfectly analogous to the same trihedron for a
curve.

R T

. |4.

Fig. 24 Fig. 25

We denote by

S ' - ds'c, (5.37)

the element of arc described by unit screw T, i.e., the elementary 1
arc of the normalia.

Since the principal normal is at the same time the central
normal to the normalia, there exists for N and T a relationship
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analogous to (5.34) between T and R, i.e.,

N N.TO=0. (5.38)

Since B is the unit screw of the central tangent to the normalia,

B.T.- 0, B.N -P0.O

Let us determine the relative positions of the generator and nat-

ural trihedra. Let (Fig. 25)

Q - L (R,.B) ML ,N)

be the complex angle between the vnit screws of the generator and
the binormal, or, what is the same thing, between the unit screws
of the central tangent and the principal normal. Since the gerera-
tor and natural trihedra have an axis in common - the central nor-
mal - the angle Q fully characterizes the relative inclixiation of
one trihedron to the other.

We find that

R.B-comQ, R.N=-N-inQ, Q (5.39)
K.B-sin Q, K.N= cosQ.

We shall call the complex angle Q the measure of curvature of tile
surface. On the basis of Formula (5.38), we have

.W" -W=Nj (5.40)

from which, on the basis of (5.39), we obtain

R-7 onR-N --Wsin

Further, differentiating the formula R.T-0 with respect to S, we
obtain

R.W+T. dAm-0.

and since T. we have

Wh~InQ + 1-0.

whence

(5.41)

The ratio dS'"dS is the ratio of the rate of change of the
unit screw T of the central normal to the rate of change of unit
screw R -the generator -and characterizes the curvature of the
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2urface. We may therefore set

(5.42)

where P1 is the radius of curvature of the surface. We have

P, - sin Q. (5.43)

Now (5.40) can be rewritten

eT i N
(5.44)

Differentiating the relation

with respect to S, we obtain

J---JxNJ, Tx•=Tc . (5.45)

Since the screw defined by Formula (5.45) simultaneously inter-
sects B and T at right angles, its axis coincides with the axis N,
so that we may write

-.-sN. (5.46)

On the other hand, on differentiating one of Equalities (5.39)
with respect to S, we obtain

or, on the basis of (5.39) and (5.46),

it.o M--sin Q0

from which

and, consequently,

The quantity dQldS determines the rapidity of change of the angle
of the binormal to the generator in motion along the surface, and
characterizes the flexure of the surface, a quantity analogous to
the torsion or second curvature of a :urve. By analogy with
(5.19), we take
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Further, differentiating the equality

N-BxT

with respect to S, we obtain

S+xTBx +Tx-m

(5.49)

Combining Formulas (5.44), (5.48) and (5.49), we obtain a
system of complex Frenet formulas for the ruled surface:

* T a
W. 'W (5.50)

The Prenet formulas of the ruled surface characterize the
following motion of the natural trihedron: the latter performs a
complex rotation (rotation and slip) about the unit screw of the
binormal B, whose complex angle has a derivative with respect to
the complex arc of the surface whose absolute value is equal to
the curvature of the surface, and a complex rotation about the
unit screw of the central normal T, whose complex angle has a de-
rivative with respect to the complex arc of the surface whose ab-
solute value is equal to the flexure (second curvature) of the
surface.

Formulas analogous to the lrenet formulas can be derived for
the motion of the generator trihedron. Thus, first of all, we
have Formula (5.34),; then, expressing the vector N in terms of
the vectors R and 1.

N---sia Q+ KM Q,

we shall have on the basis of the second of the Frenet formulas
and (5.43)

41 N N

and then, differentiating the equality

M-Rxt.

we find

dK 40 xT+ Rx of =RxI~ctg Q m -TcISQ. (5.52)
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Combining (5.33), (5.51) and (5.52), we obtain the system of re-
lationships

d'

4ri--R +ctgQ, (5.53)

WO- -TctgQ.

This system gives an indication a,• to the elementary dis-
placement of the generator trihedron. Namely, this displacement
consists of two screw displacements - one, dS, with respect to K,
and another, -dS cot Q - dS*, with respect to P. If we add these
two displacements and apply (5.41), we obtain

--S-RSctQ=-N--- N d1.' (5.54)

0 8 ... from which it is seen that the elemen-
tary displacement of the trihedron is a

a *,screw displacement dS' with respect to
the binormal.

TT The elementary motion of the gen-
erator and central tangent of the sur-
fa'e can be represented as follows. Let
R, T, X and RW T, X" be the unit screws
of two infinitesimally close trihedra

Fig. 26. 1) Line of of the surface generator (Pig. 26). The
strlction. vertices A and A' of the trihedra arepoints infinitesimally close together

on the line of striction. The element
AAI - do is the element of the line of

striction and iL(R.Z 4I the real angle between the central
tangent and the tangrnt to the line of striction. To bring the
figure R.T.K and the figure RTIC into coincidence, it is neces-
sary to rotate the former about U through a complex angle dS ac-
curate to wittin second-order infinitesimals, at which point R
coincides wit.i R', and then roi;ate it about RI through a complex
angle -dS cot Q.

The (linear) displacement with respect to element AA' along
the line of, striction is composed of (linear) displacements along
X and R that are equal to the moment parts of the screw displace-
ments

so that

(5.55)

- 91 -

. .. .



Formula (5.55) expresses the relation between the angle formed by
the tangent to the line of striction with the central tangent,
the generator distribution parameter, and the angle between the
generator and binormal. This formula is essential for study of the
axoids of a moving solid body.

Introducing the complex rectangular coordinates of the unit
screws T, N and B, we can write, on the basis of (5.50), three
groups of equations for the nine quantities

Ts. T1, Ts, Nx. Nj, N8, , Ba.,g Br.

Of these quantities, each group of three with the same index sat-
isfies the system of differential equations

EW W, EM-W W Wp H- (5.56)

with

L'+M++P"I. (5.57)

*l Introducing, by analogy with (5.22). the new variable

A--m L I-M-T (5.58)

we reo.ace System (5.56) to a single complex equation of the Ric-
cati tjre, which Is similar to Eq. (5.23):

A +I a + --tMo. (5.59)

The functions
W- • 0- M ( M- PA(W. P,- P,• (5.60)

must be known; Equalities (5.60)*represent the intrinsic equations
of the ruled surface, which do not contain coordinates. Assigning
the above functions defines the ruled surface accurate to its po-
sition in space.

Use may be made of the complex Euler an les T e and #, in
term of which the components of vectors Ts N and 8 are expressed,
with the aid of formulas similar to (5.25):

T l d(amex*--do Tole @eea S)+
+J(daVa*e+=Vda®m ) +kda Oda 9Ni-8(m" On @ + nWn V•I eft is)-q8- (5.61)

J•Nm-mme-amam~eqse)+-e.

flulsdY vd @ -- jewTm do +bfueO I
The equation
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is reduced by taking complex rectangular coordinates of the unit
screws R and T, to the system

-dm CWTcos--sInVs1n0cowe,

4IW-• M in os )+ coe' sn OD cg.0 (5.62)

a- $mIn0usin 0.

Using the Frenet formulas (5.50) and Expressions (5.61), tak-
ing three independent ones, namely, the expressions for T . Na
and B in terms of the complex Euler angles, we obtain

Wu'" WjoS0. (5.63)

do I t do*

The system of equations (5.62) and (5.63) is a Cauchy system
for the unknown complex functions XY.z. .O,9, and is analogous
to System (5.26) and (5.27) for the curve. The right-hand members
of the system are assumed to be regular functions of S, and the
system admits of a unique regular solution

x- x r-y).....*e-•). (5.64)

which satisfies the system and the initial conditions for S-mSo

X-WY-YO...,0-4. (5.65)

Assigning the Cauchy system fully defines the ruled surface,
establishing its initial generator and the corresponding position
of the initial natural trihedron.

We note that since the equations given above may be Inter-
preted either geometrically or kinematically, they are equations
that also define the position of a solid body in arbitrary motion
with consideration of data characterizing its initial position.

As we see from the above, there is full correspondence be-*
tween the geometry of a curv• lying on a sphere of unit radius
and a ruled surface. This corollary proceeds from the transfer
principle, according to which on transition to the ruled surface
a point of the curve must be replaced by a straight line - the
generator of this surface - and the unit radius -vctor of the
curve by a screw lying on the generator, this screw being subjoct
to the condition of equality of its complex modulus to unity (this
condition simultaneously expresses unit value of the modulus of
the screw vector and zero value of its parameter). Actually, many
theorems pertaining to the theory of the ruled surface need not
be proven, since they are obtained from theorems pertaining to
the spherical curve by the above substitution of objects.
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By virtue of the existing correspondence, there is, with mi-
nor discrepancies, an analogy in the terms used in connection
with the curve and the surface.

The discrepancy reduces to the following: the central normal

to the surface corresponds to the tangent to the curve, and the
central tangent to the surface to the central normal; the flexure
of the surface corresponds to the torsion of the curve. Below we
present a table of the corresponding geometric figures for a
spherical curve of unit radius and a ruled surface.

Kpm uaes OW niýý

a T wa . .. . 4 .. m...u -n-i- -

12 V'uu~s ImPmu..m ...

i *.mpmoqui .... a

Is POtds.. '

1) Curve on sphere of unit radius; 2) symbol for element; 3) ruled
surface; 4) point of curve; 5) generator of surface; 6) radius
vector of a point; 7) unit screw (vector) of a generator; 8) tan-
gent; 9) central normal; 10) central normal; 11) central tangent;
12) principal normal; 13) binormal; l4) element of arc of curve;
15) element of complex arc of surface; 16) element of arc of tan-
gent; 17) element of complex arc of central normal; 18) radiuas of
curvature; 19) radiu.i of torsion; 20) radius of flexure.

If we take the principal parts of all formulas pertaining to
the ruled surface, they agree with the corresponding formulas of
the spherical curve; this spherical curve will be described by
the end of a unit vector whose origin Is at a fixed point 0 and
which will be parallel to the unit vector of the generator of
this surface at corresponding values of t.

14. Kinemtics of a Straight Line and a Solid Body

Let a straight line a with a unit sarew R move In space, de-
soriting a certain surface, which we shall call the trajectory of
line a. Let the various positions of the line and, consequently,
of the unit screw 5 be functions of time t.

The screw

(5.66)

will be called the velocity of line a. The screw
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W - W (5.67)

will be called the acceleration of line a.

Transforming (5.66), we shall have
v f AI dXS .dS:

- TV. (5.68)

From this there follows a theorem.

Theorem 15. The screw whose complex modulus is equal to the
time derivative of the complex element S of the trajectory, white
its axis is the central normal to the trajectory, is the velocity
of a line. The velocity parameter is equal to the parameter of the
Line.

We transform Expression (5.67):

On the basis of Formula (5.44), we obtain for the derivative
of unit screw T

(5.69)

Consequently, the theorem has been proven.

Thecrem 16. The aoaseeration of a tine is the sum of two
screws: the eom lex modulus of one of them is equal to the tine
derivative of V'Te modulus of the veooeity of the line, while the
eontral normal serers as its axis; the eomptex modulus of the

other is equal to the square of the modulus of the velocity di-
vided by the radius of curvature of the surfaoe, and the princi-
paL normal serves as its axis.

Formula (5.69) is an analogue of the familiar formula for
resolution of the acceleration of a point Into tangential and
normal components.

Let a certain solid body have at time t an instantaneous mo-
tion characterized by the screw U, whose unit screw will be 1.
its modulus (J, and Its parameter p. Thus, the instantaneous kine-
matic screw of the body will be

U-U M- SOP.

Let us determine the velocity of an arbitrary line belonging
to the body. Let the unit screw of this line be R.
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We shall denote the complex angle be-
tween X and R (Fig. 27) by 0; let the axis
of the angle e be a straight line meeting
axes I and R at points m and n, respec-

* tively, and let its unit screw be T. We
pass through point n a straight line per-
pendicular to mn and to R and denote the
unit screw of this line by S.

Now we determine the components of
screw V along the axes R and 5. By virtue
of the perpendicularity of the correspond-
ing unit vectors, the sum of these compo-

FMg. 27 nents will give the screw U (see Chapter
3). We have

S-V, + I" - REP + SU, -RU f e + SU sIn 0.

The first of the component screws will not change the posi-
tion of the axis, i.e., the axis of the straight line under con-
sideration, while the second will impart to this line a screw dis-
placement with respect to the axis 8 characterized by the complex
element

dsu- +edh- Usi 8aO,

from whict. it follows that the complex modulus of the velocity of
a line of the body is

V-J*J 4S-----using

It follows from the above construction that if R Is regarded
as the unit screw of the generator of the element of the surface
described by the line, then 8 Is the unit screw of' the central
tangent and T is the unit screw of the central normal. But the
axis of the velocity screw ? coincides, as we know, with the cen-
tral normal, i.e., with the axis of the angle between the axes of
screws U and R. while the complex modulus of the screw product of
these screws will be UsMe, Consequently,

V- --XitnTUSmOk8 - Um We u . (5.70)

from which the following theoren proceeds.

Theorem 17. pop an ins•tantanOeu svr4wu motion of a sotid
body ,chraoteriaed b seroev U, the veiooity of any straight Line
of the body to a *eeu equaL to the *Pev produet of serew V by
the unit sarew R of thie tin*.

Corollary 1. The central normal to the trajectory of the
line meets the axis of Instantaneous screw 9 at right angles. The
central normals of the trajectories of all lines of the body form
a brush at time t.

Corollary 2. The paruamter of the line, i.e., its distribu-
tion parameter as the generator of the trajectory, is determined
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by the formula

em WMP+VctgO. (5.71)

This formula is obtained from (5.70) by equating the parame-
ters of the two members.

Let U be an instantaneous screw characterizing the motion of
a body A with respect to stationary space and let R be an instan-
taneous screw characterizing the motion of a certain body B with
respect to body A. We visualize two coordinate systems: one fixed,
and the other associated with the moving body A. Let us find the
relation between the derivative of screw R with respect to the
fixed system of coordinates, i.e., the absolute derivative, and
the derivative of this screw in the coordinate system attached to
moving body A, i.e., the relative derivative (or "apparent" de-
rivative, as it appears to an observer on body A).

This problem is solved by direct application of the transfer
principle to the familiar theorem of the absolute and relative
derivatives of vector P. According to this theorem,

where d/dt is the symbol for the absolute derivative and d'/dt is
the symbol of the derivative with respect to the coordinate system
whose angular-velocity derivative is u. The vector r may represent
various physical quantities. For example, if the above moving co-
ordinate system is associated with a certain solid body a that is
in rotation at an angular velocity u, the vector r may represent
the angular velocity of another body b with respect to body a
(provided that the vectors u and r have a common point'. In this
case, the theorem gives the relation between the absolute Incre-
ment of vector r and its increment with respect to the moving
body a.

Substituting the screws R and U for the vectors r and u in
the above formula and remembering that the conditions of the prob-
lem posed correspond exactly to the condition of the above theo-
rem with screws subbtltuted for the vectors (or with screw dis-
placements substituted for the pure rotations), we can write the
relationship that we seek:

* fR (5.-72)

Here dON is the absolute derivative of screw Rt and dJRIE ts
the relative derivative.

In the particular case in which screw At Is unchanged in the
coordinate system attached to solid body A, th*- formula assumes
the form

* -UfxI. (5.73)
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i.e., the, dur.vat,',e of an instntanteou. screw P thaL riAt.ns the
same value with respect to a moving body whose Instantaneoit;, s';rew
1: U is expreso'.d by. the screw product U x R. We -ain arriVe at.

T1( opTrý If the Xinematic interipretation of the screw proiulct oF-
two Screws.

Ff screw U is defined by complex rectanloilar• c~oordin:tes
I/,, Uv, U,, and screw R by the coordinates RR, R 2, R,. thb.n the !xpres-

sions for the complex coordinates of the rate of change of screw-
R (or of the straight line of the solid body) will be

V•4 - URa- URI,. V, = U.R- - U R.. V. = UR,- UR.. (k . 74)

These formulas represent a generalization of the familiar Euler
formulas for the projection of the velocity of a point of a body
rotating about a fixed point.

At each point in time during motion of the solid body there
exists a straight line with respect to which an instantaneous
screw motion of the body is taking place. This line is called the
instantaneous screw axis. In continuous motion of a body, the po-
sition of the instantaneous screw axis varies and it: describes a
ruled surface - a fixed axoid - in space. At the same time, the
line of the body that coincides at time t with this line, moving
together with the body, describes another ruled surface, a moving
axoid, in it.

I:

During motion of the body, as we know, the moving and fixed
axoids az and a, are in contact with one another at each point in
time along a common generator a1z -- the instantaneous screw axis.
At time t, two infinitesimally close generators a2 and a'2 of the
moving axoid coincide with two infinitesimally close generators
a, and a'i of the stationary axoid. If

dS1 =Z(a,.ad). ds,= Z(a&,a,

then, as we know,

dS1 dS3 4S = ds.

i.e., surface elements of the two axoids are equal; moreover, the
generators a, and a2 have a common center A. It is known that
later, in the time interval dt that follows t, the generator a'2
of the moving axoid slides along the generator a'l of the sta-
tionary axoid until their centers A'2 and A'l coincide, and ro-
tates aboa.t a' until the eorresponding generator trihedra coin-
cide.

Let (Fig. 28) b 1 2 be the common central tangent of the axoids
at time t, let bi, b. be the central tangents to them at points A'1

and A'2, and let the arc

be the elementary screw displacement of the moving axoid at time
t + dt with respect to the common generatcr of a, aý If dS2 and
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dS, pertain to the moving and stationary
, 0. •axoids, we shall have, considering ele-

0 " mentary displacements of the generator
trihedra,

dIF -dS, ctg Q,
--,dS ctg Q, = d=-e

At dwo Wct Q, ± ctg QJ),
A where Q, and Q2 are the angles between

the generators and binormals of the ax-
oids.

Taking the parameters of both parts,
we obtain

Fig. 28 P -P + P (Cti Q1 ± ctg Q,) ,

ap-- qactgq,

Substituting the values of q1 and qi expressed in terms of q1 ,.

j,,& in the above, we obtain on the basis of the formula derived

earlier (5.55)

OR M * t (5-75)

at whicn point the following theorem can be fornulated.

Theorem 18. In arbitrary motion of a body, its moving axoid
will roll along tho stationary axoid in such a way as to maintain
continuous coincidence of pairaise-equal successive elements of
the complex arcs of the surfaces of the two axoids. At each point
in time, the common generator of the axoids will serve as the
axis of the instantaneous screw, and the parameter w will depend
on: a) the parameter p of the common generator ai2, b) the angles
qj and q2 between the generators and binormals of the axoids, and
c) the angles el and e2 between the qenerators and the tangents
to the lines of striation of the axoids.

§5. Phase Portrait of the Motion of a System with Two Degrees of
Freedom by Means of a Ruled Surface

When the motion of a system with one degree of freedom is
represented on the phase plane, two quantities are used - the co-
ordinates of a point on the plane, which represent, respectively,
the generalized coordinate q of the system and its generalized
vc1icity i. A four-dimensional phase space is necessary for the
analogous representation of a system with two degrees of freedom.

A space of straight lines may be used as the four-dimensional
phase space, since each line in the space is defined by four quan-
tities.

It is easiest to proceed as follows.* In the space (Fig.
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A

Fig. 29

29a), visuelize two planes A and B at a distance H from one an-
other. Intersecting an arbitrary line of the space, these planes
cut out of it a segment ab enclosed between A and B, which seg-
rent we shall treat as a vector passing from point a to point b.
We take plane A for the xy-plane and direct the z-axis from A to

B. The P•iicker coordinates of the vector ab, which is a sliding
vector, 1ill be the projections and moments with respect to the
axes

(5.76)

where E and n are the coordinates of point a in plane A.

The above quantities are linked by an identity that ex-
presses the perpendicularity of the vector and the moment,

Xffn -- YHE + H (IV -- ?14 - 0. (5.77)

Since the quantity H is known and serves as a scale, the fol-

lowing four numbers will serve as the coordinates of vector 3:

JOf = YO-HI. (5.78)

We take these numbers as the phase coordinates of the system
with two degrees of freedom, i.e.,

X q=q1* (5-79)

In this case, with motion of a system with two degrees of freedom,
each system state, which is characterized by the two generalized
coordinates q1. q, and the two generalized velocities q, #,, will cor-

respond to a vector a;,which can be represented by the component
ab' in plane A (Fig. 29b). If the system moves with defined ini-

tial data, the state of the system will vary in such a way that

the vector • describes a certain ruled surface - the analogue of
the phase curve of the system with one degree of freedom. With
other initial data, other ruled surfaces are possible; the aggre-
gate of them will represent a family of phase surfaces.
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The coordinates of vector • can be presented in complex

form:
X-z+&e=x+effi, 1
YX-g+ =-- H•, (5.80)

and these coordinates will serve as the representation of the sys-
tem's complex coordinates

* g- gi.. (5.81)

* "It is curious to note that the complex coordinates of a holo-
nomic mechanical system satisfy the Lagrange equation

•"d I fro aT'- ,
(WW ) .' - Q, (5.82)

where

r-T+ Of. - Q+00. (5.83)

We may satisfy ourselves of this by assigning an arbitrary func-
tion of several time-dependent complex variables in the complex
form

mIxz......+ z +ua+... +x.,EL)_

+ + (5.84)

Further, any complex quantity of the form z+ mi may be regarded
as a function of the complex parameter ("complex time")

x(4 + Wi(g) - X (# +.). (5.85)

as proceeds from the general expression for the function of a com-
plex variable.

If q;. q; are expressed in terms of the parameter t, then the

equations

€-',(o,, -,( ) e(5.86)

represent the parametric equations of the phase surface; on the
other hind, if we eliminate the real parameter, the equation

I qDq• (q, +t *q,. qi" + oij (5.87)

will be that of the phase surface in the complex coordinates of
the motion.

On the mapping plane A, the phase surface will be represented
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in the form of' a projection a varying region of segments ab'
(F,1i . 30).

If at some point in time t the equalities

q,- i,- q2,-t ,- 0. (5.88)

are satisfied, the state of the system will correspond to a "sin-
gular" point; then the region representing the phase surface will
contract into a point - the coordinate origin. In this case, it

would be possible to construct a geometric
theory of singular points and trace the be-
havior of a family of phase surfaces in the
neighborhood of a singular point, but we

., - shall not dwell on this.

By way of example, let us consider a mo-
S. tion whose phase surface is the surface

formed by uniform rotation of a certain
straight line that intersects the 8-axis and
forms a constant rather small angle 6 with

Fig. 30 the xy-plane, and simultaneously by slip of
this line along the x-axis in a harmonic man-
ner such that two periods of oscillation
along the z-axis take place during one com-

plete revolution. This will be a surface of the cylindroid type.
The region representing the corresponding phase surface will be
obtained by cutting this surface with a plane A and a plane B
parallel to the former and situated at a height H, and then pro-
jecting it onto plane A.

We have the coordinates of the generating line of the sur-
face:

Xs-x+oxe% Ifcti#AcosrD- icigt(cos'p oxns). j
Y-v+u?.- Ict,~6sinO= Hctg6(sinfn+uopsos'.f): (5.89)

where 4D--+uis the complex angle between the horizontal pro-
Jection of the generator and the i-axis.

U -- For the cylindroid (see Chapter 3),

V °" K sin 2fI

where X is a constant. Consequently,

i-Hctg(cosy--sI( . ',psint), (5.90)

Fig. 31 U b' jM
-F 3 MC1(sinV + *Ksin 2? cos#).

For the motion represented by the surface
taken, we shall have
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frrom which

a -- -- . qdq,+qadq,,O,

consequently,

o, + mr mw~t.

Moreover,

t _- HKctg6sin24psin"p.

On the other hand,

q, -/R¢osI, k• -,- inp

so that

-HK ci I, .in 2ip sins -- ~ -sin 4F.

and, consequently,

HKet98sin2f, Iltj.211K
- -i Ift gy.W -ctg I + InC,

IF - afti [C ezp INK8

This gives the solution

q, =Rcas y-

CRUPe!..SjEAi (5.91)

The phase surface lies in the range O<9<• (Fig. 31).

56. Complex Scalar Functions and Screw Functions of a Screw Argu-
Mont

It will be shown in the exposition to follow how the famil-

iar concepts of the scalar function and vector function of a vec-

tor argument can be extended to functions of a screw argument. It

is assumed that the reader is familiar with the basic definitions

and formulas of the theory of scalar and vector fields.

Here, as in earlier chapters, we shall begin by assigningI

screws by means of motors reduced to a single common reduction

point 0 which is selected once and for all.

The space of the motors (rP. M, with all ri and r! having a
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comm~on origin at point 0, is at the same time a space of point
pairs, the point being the ends of the vectors ri and the moments

vi [sic], as well as a space of complex vectors r 1 ,r•. Since a

fully defined screw R. can be brought into correspondence with

each motor(rr~j, a space of screws Ri each element of which is

defined by its own axis, vector and parameter, stands in one-to-
one correspondence with this space. Let a certain number, a com-
plex scalar, be assigned in accordance with a certain law to each
screw R.V We shall call the function defining this assignment the

complex scalar function F(R) of screw R.

We introduce the following definition: the complex scalar
function of screw R is the same as the function of the correspond-
ing motor (r. r at the reduction point 0, which [motor] is equiva-
lent to this screw. Expressing the motor by the complex vector,
we shall have

F(R) - PF(r +am, (5.92)

and, consequently, the screw function is reduced to a function of
a complex vector.

In order to establish certain properties of the function to
be determined, let us express the argument in terms of the com-
plex coordinates of the vectors in a rectangular coordinate sys-
tem with origin at point 0, and then apply the formulas for func-
tions of a complex scalar argument, which were given in Chapter 2.
In so doing, we shall introduce here the condition formulated
earlier for differentiation of a function of a complex scalar ar-
gument, namely, independence of the derivative of the direction
of differentiation or, in other wcrds, the condition of "ana-
lyticity."

The complex coordinates of the screw and, accordingly, of the
motor reduced to point 0, will be

*are+W. R.- r+W. Ra-r,+w., (5.93)

where 4a. r. 0, t, . 4& are the six real PlUcker coordinates of the
screw. Development of the function gives

(I -9 S) (r + ,,.Ir + e. e+ 10-,,,.,t..,.) + a ÷6+re
For simplicity, we shall assume at first that the function P

becomes real when the coordinates are real, so that ?(r,, rf ,,4 is
a real quantity.

Returning to vector notation, we find

F(R) F(r) -- urO.VF(r) - F(r)+vrO.gradF(r). (5.914)
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In Formula (5.94), the symbol V denotes the ramiliar hamil-
tonian operator.

Now let another screw be assigned to each screw R.V The func-

tion defining this assignment will be called the screw function
P(R) of screw R. As has already been stated, each screw R.
uniquely defines a motor or complex vector at point 0, so that
the screw function defined here is simultaneously the motor func-
tion, reduced to point 0, of the motor corresponding to the screw
argument reduced to point 0.

Thus, we shall have

(R•) - P + am. (5.95)

and the function is again reduced to a vector function.

Using the coordinate expressions for the argument R and the
function 1, we obtain

P (PRs + J,. + Ma) - IF, (M,. R,, Rs) + JF, (R,. Rp Ra) +
+.bF. (,. R,. RR) - tF, (s,. ri. ) + F, (,?, r,, rj +

+ *e~jh o.Q 'a af (t.fs+Iyfp R 4+ ,,., +.[ + 10+

+bspa+F:ar+J We) (5.96)

Let us assume, as In the preceding case, that the function
F(R) reverts into a vector with its origin at point 0 when R re-
verts to P, i.e., into a vector with origin at point 0. Hence
IFa (r,. P#. &a). JF, (P, r,. r,) and hF,(r,. Q#, ia) are vectors whose origins lie

at point 0.

The expressions in square brackets can be presented In the
form

[oo. + J0.4 .(,+ a.+' ,) + or.+,,. (5.97)

Going over to the vector form, we obtain

(A) - P W,) + (to- OF) K (5.98)

The expression (ri*F(r) is the derivative of the vector F(r) In
the direction of vector PO multiplied by the vector r.

Analyzing Expressions (5.94) and (5.98) for the complex
scalar function and for the screw function, we note the following
peculiarities of these expressions: firstly, the principal part
of the fraction is equal to a function of the principal part of
the screw (i.e., its vector) and, secondly, the screw function Is
fully defined by a function of Its principal part.
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It follows from this that if for two complex scalar functions
F(R) and O(R) a.-d two screw functions F(R) and O(R) we know the
identities

F(, W (,). (,) _= 0 W,

they imply the identities

F (R) 0 (R). P (R) ra 0 (R:

Consequently, if the functions F and F are assigned by ana-
lytical expressions oP the coordinates of vector r, then all of
the identities that obtain in the domain of these functions re-
main in force if the real coordinates of vector r are replaced by
complex coordinates, i.e., if the vector r is replaced by screw R.

Let us consider the operator VO, which is analogous to the
operator V and has the expression

rmI + J+ (5.99)

Making the substitution

R .- ,,+W . R,e,,+ w,. R.-',+Was (5.100)

in (5.99), we obtain

++

Assuming that 4,. O O are not dependent on P,, F,. ',. we find
that V. = V, i.e., the "complex" hamiltonian operator is the same
as the real one.

Applying this operator to the complex scalar function of a
screw argument, we obtain

Srad F (R) - VF (R) - VF (r) + wV !t" .VF (r)I. (5.10))

For the screw tunction of a screw argument we shall have

dMv (R) - V.F (R) - VPf (r) + .I(.VFr)J, (5.102)

Wt F(R) - V x F(R-)V X Pfr) + Vx I( e.V)F (r)I. (5.103)

It is seen from Expressions (5.101), (5.102) and (5.103) that
differentiation of the screw functions reduces to application of
the operator V to a real function - the principal part of the
function under consideration.

If It is known concerning the two functions P(R) and Or)
that

VP (r) 0 ()
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then we may conclude the following identity on the basis of
(5.101):

VF (R) a 0 (R).

Similar conclusions can be reached for the functions F(R)
and o(R) or W (R) if it is known that

V.?(e).O(r). V x F () M W (,),
then it follows on the basis of (5.102) and (5.103) that

* V.P(R)m- (R). V X JP(,R) n W (R).

If the inverse problems are posed - those of determining the
scalar from its gradient and the screw from its divergence ana
curl, we arrive in a similar manner at the conclusion that the
solution of these problems for the principal part fully defines
the solution.

The above enables us to formulate the following theorem.

Theorem 24. All formulas and all theorems of veator anaZyeie
remain in force in the domain of #*rewa.

The same singular cases that are encountered in the algebra
of screws exist in screw analysis: these are the cases in which
the principal part of the screw vanishes. Special investigation
is required for such cases.

Let us turn to a complex scalar screw function and assume
that It depends on several screws m't. Rs .. . R.. Omitting the al-
most obvious derivation from the coordinate expression for the
screw,,, we write the final expression for the function

F (RU, R2. . . ., Rj) F (r, + *Or. re + w•,. . . .,r, +
,. (f•- t ,... ,• + a (lo.Vv + ,01 -v*, .:...

(5.10o)

where the subscripts to the symbol V signify that differentiation
Is conducted only with respect to the vector to which the sub-
script corresponds and that the remaining vectors are assumed
constant during this process.

For a screw function of aqveral screws R1. Ra... e, we ob-
tain the following expression:

1P(k,. its.. R- ir(r, + W04.,, + ,...,,+
+ ar Va ( r..0, r*) +. 0(r, -Vjp++ +'Vr/ +..r.) + (to,-Vp. (5.105)

Expressions (5.104) and (5.105) indicate that a fumction of
several screws is fully defined by a function of the vectors of
these screws.

Expressions (5.104) and (5.105) Indicate that If we consider
the variation of the functions P and P as only one of the variable
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screws, for exnaple, R varies, while the remaining n - 1 screws

are set constant, then, generaily speaking, F will have a complex
value, while, generally speaking, I will be a screw even if Rn

reverts into a vector whose origin is point 0. We can easily sat-
isfy ourselves that the above properties of the functions F and F
remain in force even in this case, i.e., we can dispense with the
limiting assumption adopted at the outset according to which F
was real and F was a vector with origin at point 0 when R becomes
a veptor with origin at point 0.

Formulas for the scalar and screw products of two screws can
be derived directly from Expressions (5.104) and (5.105), together
with other relationhips of screw algebra, provided that these re-
lationships are regarded as functionals between screws.

It follows from all of the above that a screw analysis that
reproduces ordina-y vector analysis exactly can be constructed by
substitution of zcrews for vectors. In this, the co•-respondence
between geometrical objects that was established earlier is obvi-
ously preserved: the complex modulus of the screw will correspond
to the modulus of the vector and the complex angle between the
axes of the screws will correspond to the angle between vectors.

After havinS ascertained the necessary conditionb for ana-
lytical notation in the expressions for fun.tt-ons of a sc'rew vari-
able, we can turn to the transfer prlnclj 1*ha, 4idctss fd
in Chapter 4, and advance general considerationu at this point
concerning the conditions of applicability of th 4 - principle to
solution of problems In the mechanics of the solid.

It is clear from the formulation ef the transfer principle
that It consists in: a) use of one-to-one correspondence betweer.
the space of motors (comrlex vectors) reduced to a certain point
and the space of screws and b) transition from the space of vec-
turs with comion origin to a space of motors rererred to this ori-
gin. One-to-one correspondence between the two spaoes is A peo-
metrical fact that remains In tores througo nny iffine orthogonal
transformations, I.0., for any motions that preserve the length
of the vector and the angle b4tween two arbitrary vectors, and,
consequently, this correspondence obtains for any motions of a
solid body. As concerned transitlon from vectors to motors, on
the other hand, it Is accomplished with the aid of complex quant.
ties and operations on them, and tt Is necessary that one or an-
other equation linking the mechaniuai qwiattties represented by
the vectors become the equation betw-*t the, quantities r".presented
by the screws on substitutlon of complex wan.tities for the real
ones. But this Is possible only on satisfaction of the ¢olndition
that the corresponding functional expressions have the respeetive
form (5.94)0 (5.98), (5.104) and (5.105), 1.e., ttat they satis-
fy the "analyticityt condition,

Prom this we ma conclude that the "analyticity* condition
of the corresponding equatI ons is, at the save timo, a condition
of applicability of the transfer principle to the mechanics of
the solid body.
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Manu-
script Footnote
Page
No.

99 Here we use a slightly modified method of representing
a point in four-dimensional space that was proposed by
Ye.S. Fedorov (333.
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Chapter 6

SCREW GROUPS. APPLICATIONS TO KINEMATICS AND STATICS

§1. Linear Dependence and Linear Independence of Screws. The Screw
Group

Here we shall examine combinations of screws with real mul-
tipliers.

If n screws are given (n(6)

and it is impossible to select n real numbers

al,, as. . . , 9,

which, without all of them, being zero simultaneously, would satis-
fy the equality

aR, + Rs +.• + ,a,-, (6.1)

then the screws in question are said to be linearly independent;
otherwise they are said to be linearly dependent.

If the real rectangular (Plilcker) coordinates of screws
Ri, R 2 ... ;Ro are

X1. Fl. z1, x4j 019. a".
Xt. yt. St. 4e Mo. got
*... ....... ... .

X4. Y.,. za*n. 4. 24.

thjen, multiplying like coordinates by apal..... a,,. respectively, w,-
obtain instead of' Elquality (6.1) six homogeneous linear equation;-
between n variables.

If these six equations can he satisfied by even one system
of valueb of the nurmbern ak, then Condition (6.1) will be satis-

fled, and toe screw-; will be Ainearly dependent; when, on the
other hand, the equaitiono are incompatible, the screws will be in-
dependent. For n > 6, a syrueem of six equations can, generally
speakng, t1,i uatisfled, and hence seven or more screws art aiway";
deperident.

Let there be .: ft6) linearly independent -crew:.. We elr.,hrni-
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struct the linear screw combination

R - a1 R, + a,R, +. .. + 8 R,. (6.2)

Assigning all possible values to the real numbers aa,,. .. ,a,
we obtain a nondenumerable set of screws known as an n-member
group. Screws R,,R,, ... RR are called the basic screws of the group
and the numbers aGs,.....aa the coordinates of screw R of the
group. Obviously, the basic screws R,,R,..t.,R belong to the
group.

Let us prove certain theorems pertaining to groups of screws.

Theorem 19. If the screws R,.Rj,...,R. (n<() are Linearly in-
dependent, then for m sorewe (m4n)

(6.3)Sa-a•Ra+aR,+... +a,,R (k-I 2. ,..., m,) (3

to be independent, it is necessary and sufficient that at least
one of the mth-order determinants of the matrix

Ian (6.4.. 6 .)
an an ... %

GA af .a... few

be nonzero.

Actually, if all determinants of matrix (6.4) are zero, there
exist m quantities b,. b,...,bm such that

•+ •b,+.. + -0, - . - .&b.....1,.

so that, multiplying Equality (6.3) by bk and summing over k, we
obtain-

b • + br, + . .. + b.S, - O. (6.5)

from which it follows that the screws 8 are dependent. Converse-
ly, it the screws Sk are dependent, a relation of the form of
(6.5) exists between them and can be expressed in terms of the
screws R, namely,

CIRS+CR, + ..+ CRA, - 0. (6.6)

SwherevC,-8Cb,+avas,+..+avbm (s- 1 , 2,.,.,a).But all of the quanti-
ties ae must be equal to zero, since screws Ru,.R,,.... R. are inde-
pendent by hypothesis. On the other hand, it follows from the
equalities ae * 0 that all determinants of Matrix (6.4) are zero.

Theorem 20. Any n independent eoreuO belonging to a group
may be taken as the basic s*rews of the group.

Lot R,,R 3,...,R. be the basic screws of an n-member group
(n<6). Each screw can be defined by six real rectangular (PlUcker)
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coordinates, which are independent quantities. In this case, each
screw can be regarded as a vector in a six-dimensional space. A
group of n screws represents an n-dimensional vector space. Obvi-
ously, any vector of this space can be expressed linearly in terms
of n given linearly independent vectors of a subspace, i.e., in
terms of the basic screws of the group; consequently, any screw S
of the group can be expressed linearly in terms of R,, ... ,R.
Taking n such screws Si, S, ..... 9, also linearly independent, we ob-
tain another system of basic screws of the group.

Theorem 21. If the parameters of the basic screws of a group
are increased by the same amount p, then the parameters of all
screws of the group will have been increased by this same amount
p.

For the proof, we multiply Equality (6.2) by , 1 + wp;
then basic screws with parameters increased by p will appear in
the right member, while the left member will have an arbitrary
screw of the group, its parameter also increased by p.

§2. Two-Member and Three-Member Groups

Let us consider two-member and three-member groups of screws.
A two-member group is determined by the expression

R- a1 LRe + aiR. (6.7)

As we have already seen, by assigning all possible values to the
real numbers al and a2, we shall obtain various screws whose axes
will lie on a ruled surface, a cyllndroid (see Chapter 3). As has
already been established, there are among the screws of a two-
member group two screws whose axes intersect at right angles.
These will be the principal screws of the two-member group. The
principal parameters correspond to the principal screws. Taking
screws R, and R 2 as the principal screws in Formula (6.7), we ex-
press the scalar square of screw R:

"" (6.8)

from which

41 + O+a. pre- PAMprd ,A+ (6.9)

P" (6.10)

For any two screws of a two-member group

t "aR 1 -+ R.

the screw product will be

it, X .r"- (da; + a R) X R,2 (6.11)

and hence the numbers "i, A, a, a are real, this implies that the
screw product of any two screws of the group will be the same
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screw to within the real multiplier.

If the complex angle between screws R' and R" is 0, then,
taking the complex moduli and parameters of the left and right
members of (6.11), we obtain

R'R" sin 0 - (0:4 + 44R&Rl,
p, + P"+ 80 ctg 0 -pa + p,. (6.12)

i.e., the sum of the parameters of any two screws of a group ad-
ded to the sine parameter of the angle between them is equal to
the sum of the principal parameters.

On addition of two screws, the cylindroid plays the same
role as the plane in vector addition. The screw sum, together
with the screw terms, lies on a cylindroid, and the angle that it
forms with the axis and the parameter are given by the formulas
presented in Chapter 3.

A three-member group of screws is defined by the expression

R - aiR, + ai, + a3R,. (6.13)

Let us first assume that the axes of the basic screws R,, R,,
R3 of a three-member group intersect at right angles. We take the
axes of these screws as the axes of a rectangular coordinate sys-
tern. We denote the corresponding parameters by Pis PaP,, and the
parameter of screw R by p.

We express the scalar square of screw R according to (6.13):

d14 A + arp+arb, (6.14)

from which the parameter of screw R is

p. ^ +qr2•PW2+4v r. (6.15)

Let the projections of the radius vector p of an arbitrary
point on the axis of screw R be LC. Since the projections of
the vector r of screw R onto the coordinate axes are a1r 1 a,ar,,a,r.
the moments of screw R with respect to the axes will be, respec-
tively,

pgs,' + War - C',',
PU,'g + CEoi - al.

On the other hand, these moments are equal to P1alr,,psat and psr,.
From this we obtain the homogeneous equation system

(p, - p)ar + Cikr° - o' 0
C-r,, + (P, - p),,s, t €ah :- Or. (6.16)
w,-t ,r,+ 08 - p)•a,,-.
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Assigning the screw parameter p, we determine the geometric
locus of the axes of the group screws having this parameter; for
this it is necessary to exclude aGrl, a,r,, ajr, from the equation sys-
tem (6.16), which yields

(PI P)' + (P, - P'h +(p3 -PX +
+ (P -p) (p, - p) (p3 -p) = O. (6.17)

This geometric locus, if real, is a hyperboloid of one sheet. The
surface will be imaginary if p is larger than the largest or
smaller than the smallest of the numbers Pi, Pt. P3- For the axes of
screws whose parameter is zero, the geometric locus is described
by the equation

pill + Pli + Pav + PLVI, - 0 (.8PaI'P,'i+PC+PaPPa0 (6.18)

and will be real if the product of the numbers Pa.Ps.Ps is negative.
A family of hyperboloids including, in particular, a hyperboloid
with zero parameter, which is described by Eq. (6.18), will cor-
respond to various values of p in Eq. (6.17).

We have taken as the basic screws of our three-member group
three screws whose axes intersect at right angles. But it is eas-
ily seen that the most general case of assignment of the three
basic screws of the group reduces to the same case, or, in other
words, a three-member group of screws in which the basic screws
are three screws with mutually perpendicular intersecting axes is
the most general case of the three-member group. Actually, as has
already been shown in this chapter, any screw can be presented as
the sum of its components along the axes of a rectangular coordi-
nate system.

The three arbitrarily selected basic screws of the group may
be replaced by three triplets of screws whose axes lie on the axes
of the rectangular coordinate system; adding three screws on each
axis, we obtain three screws whose axes intersect at right angles
and which are equivalent to the sum of the three given basic screws
of the three-member group. Since a sum of screws is a linear com-
bination with real multipliers, the sum screws are members of the
same group as the summand screws; hence screws lying on the axes
of a rectangular coordinate system and equivalent to three arbi-
trary basic screws of a three-member group are screws of the same
three-member group, which proves the hypothesis advanced.

53. The Linear Complex of Straight Lines and the Congruence.
Four-, Five- and Six-Member Screw Groups

Before turning to a description of higher-order groups, let
us define certain geometric figures of the ruled space.

As has already been indicated in Chapter 3, any straight
line is fully defined by the rectangular coordinates X, Y, Z which
are linked by the relationship

X2 + Yu - I,

so that only two of them, for example X and Y, can be regarded as

- 114 -



independent.

Assigning all possible values to the numbers x, 0, v, y with
the condition

-1<Z<+1* -I << +,

we obtain w straight lines. It follows from this that the ruled
space is four-dimensional.

Let

X-X(u,.w), -Y - Y (U,.),
Z Z (a. V,.). (6.19)

where u, v and w are independent real parameters that may assume
all possible values and X, I and Z are complex functions of these
parameters. Taking X, I and Z as the coordinates of line a and as-
signing to u, v and w all of the values that they can assume, we
obtain a set of -3 straight lines which is known as a line com-
plex. The lines belonging to the complex are known as its rays,
Relationships (6.19) as the equations of the complex, and the pa-
rameters u, v, w as the real coordinates of the rays.

If A is an arbitrary point of the space and a(u, v, w) is a
ray of the complex that passes through point A, then the numbers
u, v, w must satisfy two conditions:

I,(,v. a) - 0. h,(u.v.;v) -o.
from which it follows that only one of the parameters u, v, w can
be left arbitrary. Therefore, co rays of the complex pass through
any given point of the space.

The simplest line complex will be the linear complex, in
which all rays passing through a given point of the space lie in
the same plane. This plane is called the polar plane of point A.

To construct a linear complex, we take a screw U.

IU.I- U-s

the modulus of whose vector is unity, and project it onto a cer-
tain line of the space having a unit screw E, 4i- 1.

If 0.-9 +O' is the complex angle between U and I, the pro-

K ,jection will be expressed by

U-Z M" ® - =OI + 0 ( 009 -9 sing). (6.20)

Let us ascertain for which lines this projection will be
real. We note that the expression for the moment part of the pro-
jer .on

i sy-ysJ"y (6.21)

is the projection of the moment of screw U about an arbitrary
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point A of this line onto the line. Thus, Expression (6.21) van-
ishes for all lines of the space that pass through point A and
lie in a plane Q perpendicular to the moment of the screw about
point A. Following similar reasoning as regards each point of the
space, we obtain a set of straight lines lying in the same plane
and satisfying the condition

p -us-90sinq-- 0, (6.22)

for which the projection of the screw onto the given straight
line has a real value, i.e., the component of the screw along
this line is a vector. It follows from this that a collection of
lines of the space the component of a screw along which is a vec-
tor is a linear complex of lines defined by the screw. The axis
of the screw is called the axis of the complex.

A complex is defined by five quantities - four real coordi-

nates and a parameter.

It follows from Eq. (6.22) that

p - 9p tg .

i.e., that the distance between rays of a complex is inversely
proportional to the tangents of the angles formed by the rays
with the axis of the complex. The quantity p is called the param-
eter of the complex; it characterizes the "steepness" of rays at
a certain distance from the axis.

It also follows that if V- 0. i.e.r if a ray intersects the
axis of the complex, then V=-/2, i.e., the ray forms a right angle
with the axis of the complex. In other words, rays intersecting
the complex axis form a brush.

Let Q be an arbitrary plane and R and S arbitrary points in
this plane. Let QI and Q, be the polar planes of points R and S.
Planes Q, and 7Q intersect the plane Q along certain straight
lines b, and bl; let the intersection point of these lines be T.
It can be seen that plane Q is polar with respect to point T. In-
deed, lines RT and ST are rays of a complex, so that the projec-
tions of screw U onto them will be real. If the screw is brought
to point T, the moment will be perpendicular to both RT and ST
and, consequently, it will be perpendicular to plane Q. This means
that plane Q is polar with respect to point T.

Point T is called the pole of plane Q.

For a linear complex, therefore, there passes through each
point of the space a single plane that contains rays passing
through this point and, conversely, all rays of a complex that
lie in a given plane pass through one point.

Let A, B and C be the rectangular coordinates of the complex
axis and let X, Y, Z be the rectangular coordinates of a ray of
this complex.

With the condition (6.22), Relation (6.20) asssumes the form
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wr (AX + BY + CZ)•= cos , (6.23)
whe re

A'+B'+t2-|, Xs+Ys+Z'= I.

This is the equation of the linear complex.

In the particular case when p = 0, Eq. (6.23) becomes

AX -+ BY + CZ = cosm,

from which it follows that the complex consists of rays intersect-
ing its axis.

This will be a degenerate complex.

If we take the s-axis as the axis of the complex, then A ,
=B -0, C - 1, and Eq. (6.23) of the complex will be simplified

to

a'Z -Cos 4P. (6.24)

If two screws U, and U2 are given, each of these screws de-
fines a linear complex. Through each point A of the space, we can
pass polar planes Q, and Q2 of this point, which correspond to
both complexes. Obviously, the line of intersection of these
planes will simultaneously be a ray of either complex. The collec-
tion of lines that are rays shared by the two linear complexes is
called a congruence. It follows from the above that a single
straight line belonging to a congruence passes through a given
point of the space.

Now let us pass to a brief characterization of four- and
five-member screw groups.

For a four-member group whose basic screws are Ri, Rs, Rs, R4,
it is possible to indicate those lines of the space the projec-
tions onto which of the group screws will be real. Obviously,
these lines will be common to four complexes defined by the four
given screws. The conditions for definition of such lines are ex-
pressed in the following manner:

um [a'f (AX + aY + C&Z)I -0. (6.25)
AI+8I+C1-I, '+Y+r=--I. A--I,4.J3.

where the Pk are the parameters of the screws, Aa, B,, Cb are the

complex rectangular coordinates of the screw axes and X0, Y Z are
the complex rectangular coordinates of the sought line.

Separating the principal parts from the moment parts, we ob-
tain four equations

(4+ 04+1+ PAW.)1+0 + PA4+06+ bIe
+10 2, 3. 4. (6.26)

Dividing the equations by 0, we obtain from them expressions for
four quantities xj&, j/0,'d, i'1f in terms of #pat, and then require
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satisfaction of the equality

which results in a quadratic equation in the quantity y°/z°. We
may conclude from this that there exist in the entire space no
more than two straight lines (real or imaginary) that satisfy the
condition formulated.

Let us now take these lines as axes of linear complexes. The
conditions equivalent to (6.25), which indicate zero value of the
moment of an arbitrary screw R of the group about these lines,
will be

PCOS%-qr~s~nyi = 0.
pcoy,--ysiny O.. 1(6.27)

where p is the parameter of screw R. 9L+•P, y+w are the com-
plex angles formed by the lines with the axis of R.

Comparing with (6.22), we can interpret Conditions (6.27) as
the conditions for the axis of screw R to be simultaneously a ray
of two complexes whose axes coincide with the two lines indicated,
with the common parameter of these complexes equal to p. It fol-
lows from this that the axes of all screws of a four-member group
form a congruence.

For a five-member group with the basic screws R11R,.... .Rs ,

the condition of real projections of each of these screws onto an
arbitrary line of the space or, what is the same thing, zero rela-
tive moments, will give five equations of the type (6.26).

(4 + PahX + (bh+ PakV+ (4 + pbc.) s+ a+be+04
+0m-0. k- m. 2.... 5. (6.28)

Solving System (6.28), we find the values of the five ratios
of the coordinates x.,Y.z.9.t. a to one of them, for example, the
last, 6. With the additional condition

this will define the coordinates of the only line about whiah the
moment of the screws of the five-member group will be zero. Con-
versely, if the axis of this line is taken as the axis of a cer-
tain linear complex, then, proceeding in the same way as in the
case of a four-member group, namely, writing the condition for
zero relative moment of an arbitrary screw of the group and the
line in question in the form of (6.27), we satisfy out-selves that
the axes of all screws of a five-member group having the same pa-
rameter are rays of the same complex.

Finally, a six-member group of screws is a system from which
any screw can be obtained by linear combination with real multi-
pliers.
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§4. Reciprocal Screws and Reciprocal Screw Groups

As was already indicated in Chapter 3, the moment part of
the scalar product of two screws

UM (RA.RI) - ,rs, I(p, + p, CO)S - 0sn a) (6.29)

is the relative moment of these screws, which is equal to the sum
of the scalar products of the principal vector of the former by
the principal moment of the latter and the principal vector of the
latter by the principal moment of the former, with the moments of
both screws taken with respect to the same pole.

Two screws are said to be reciprocal if their relative moment
is equal to zero or, what is the same thing, if their scalar prod-
uct is equal to a real number.

Theorem 22. A sorew reoiprooal to the n independent sorows
of an n-member group (0<6) ia reciprocal to any screw in this
group.

Indeed, let a screw S be reciprocal with screws R,. R,..•...'Ra(4<6). i.e.,
MM MW.Wn - MU (S-i,) - . o $•)0.

Performing scalar mu"-tiplication of screw S by an arbitrary screw
of the n-member group formed by the above n screws, we obtain

WN (S. -,R) MmIS"(4R 1 +,R, + ...+ +.. R)-
-MN (S.R)+v sou(S..+. s W.X(.R).

4
and hence the right-hand member is equal to zero,

me(S.3R) - 0

Q.E.D.

If its parameter p is nonzer-, screw 8 cannot itself enter
into the i-member group under consideration, because its scalar
product by itself is 0-%, and hence cannot be a real number. If,
on the other hand, the parameter of screw 8 is zero, then its
axis is a common ray of the complexes corresponding to all screws
of the group.

Theorem 23. The aggregate of vres roiprooat to tho scrw*
of an x-member group (4<6) form. a (6 - n)-maber group.

Let us prove the theorem for the case n * 3. If a screw 8
with the coordinates 3t--+a. H-.4+#W. -,C+o is reciprocal

to three screws R1 R1.Rs with the coordinates X1 =mz+., YV'j&+
+ sit....94;-so+e* then we have the equations

I+,Tel + •+ r,,, +, + 0 .
•+,we+l+N + J+ (6.30)
t,+ +r~e, + + 1 ++



and since these three screws , R,,R, are linearly independent,
there is at least one third-order nonzero determinant in the
matrix of System (6.30). In this case, leaving the three terms of
each eiuation with this determinant in the left member - say, the
system in 4. n. V.- we solve the system for these coordinates, ex-
pressing them in terms of L'.qt, C:

I - All + Blip + Ci, .
q - A + 8910 + CA. (6.31)

Here 10 ,q. C may be taken arbitrarily, so that there exist no fewer
than three independent systems of values of these numbers, from
which three reciprocal screws can be formed; for example, screws
with coordinates proportional to the numbers

Ag. A,. 0, 1, 0. A&

36 8S, 0, 0, I, as,
c4. C4. . 0, 0. Co.

are possible, and if we form a matrix of these numbers, there ex-
ists in it a nonzero third-order determinant1i 00

0 °1

from which it follows that there are no fewer than three linearly
independent screws reciprocal to the three given screws. It is

easily seen that there will be no more than three of them, since
we cannot take arbitrarily more than three systems of values of
the numbers 10,ifC in (6.31); any fourth system of values Is ex-
pressed linearly in terms of these three, and in the matrix
formed from the coordinates of the four corresponding screwv, al&
fourth-order determinants will be zero. Thus, the theorem has been
proven for a a 3. The proof for another value of a is fundamen-
tally no different from that given above.

The relation of the axes of the screws of the reciprocal
group to the complex of rays defined by the screws of the group
Is easily established.

For n P 1, the reciprocal group will be five-membered. The
condition of reciprocity of the single screw R of a given one-
membered group to an arbitrary screw 8 of the reciprocal group
will be

.5-nm I( + l(94)Cs.--9PSM-O. (6.32)

where p and q are the p,rameters of screws P and 8 and 9 +-W' I.•
the complex angle between the axec of the screw... Compartng (6.32)
with Pormula (6.22), which defines a ray of a linear complex, we
find that the axes of the screws 8 that have the assigned parame-
ter q In the group reciprocal to R are rays of a linear complex
whose axis coincides with the axis of screw R. while the parameter
is equal to the tum p + q.
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For n = 2, the reciprocal group will be four-membered. Each
screw of this four-member group must satisfy two conditions:

mom (Ra-S)-ris((p + q)cosy 1-y0siny 1 = 0,
UMo (R,'S)=r•s(tP.+q)cmqi--ossr- ala',!. (6.33)

where R, and R2 are screws of the given two-member group. The
first condition states that the axis of screw 8 Is a ray of a com-
plex with the axis of the first screw as its axis, while its pa-
rameter is the quantity p, increased by q; the second condition
states that the axis of screw 8 is a ray of a complex with the
axis of the second screw as Its axis and its parameter t ie quan-
tity pa increased by q. Thus, the axes of all the 8 are rays of
two linear complexes and, consequently, belong to a congruence.

For n a 3, the given group and the group reciprocal to it
will be three-membered. As we have seen, any three-member group
can be defined by three basic screws whose axes intersect at right
angles at a point. In this case, we shall consider the basic group
to be defined by three such screws R., R,.R#; let the screws S. St,. 3a
on the same axes be the basic screws for the reciprocal group.
Any screw of the first group and any screw of the second group
will have the expressions

R (6.34)

where 4. and bk are real numbers.

Performing scalar multipllcation of Equality (6.34) and
equating the moment part to zero, we obtain

WN aM(R-AJ - Q• a+ O h r(%+ Q +
+ •+ -0.

Bince t hi 'ast equality muat be satisfied for any *k and b&. it

15 necessary that

trA (k+q~. A(+ 0.)O Ar+ -0

from which (for r*+0 and As +,1

-6-. A- - m -6(6.3)

The hyperbolold on which the axes of the screws of thi.- system
with parameter p it* Is defti". by Eq. (6.17), while the corres-
ponding hyperbolold or Vr)nTeclprocal system will,, accordn- to
(6-35), be defined by the equation

(6 .36)
+ 4h, + A 0, +0) th+- A,

i.e., it *iII be the sam hyperbelold, but for screws of parame-
ter -p.
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C r:,t-'.t Ce ; 'i : a Ir *e • S: • • - *• :

r ge It --ai rterTrreptatr. ?_-n ýf the otIects tn at -&iaes t :ossi•ble
to perform the necessary operations direct.y on these objects and
obtain easily inspected results. A number of proolems can be
solved effectively by methods similar to the classical methods of
graphical statics with the aid of the direct geometrical screw
representation to be given below.

Fig. 32

Let us envision an arbitrary system of sliding vectors

R1. ,...R,*. We pass a certain intersecting plane Q (Fig. 32),
which will henceforth serve as our plane of representation, andmark the points a1•, ,....,a• of intersection of the lines on which

the indicated vectors lie.

Then at each of these points we decompose the correspondingvector into two components: one in plane Q and another perpendic-

ular to plane Q. We shall denote the components in plane Q by
,,,*...,ra, and the components perpendicular to Q by Pi. P,. , P4.Thus the given system of sliding vectors has been broken up into

two systems: a) a system of [co]planar sliding vectors and b) a
system of parallel sliding vectors whosei•• common direction is perpendicular to the

plane of the first system. The first sys-
tem is equivalent to a certain sliding vec-Stor a' in plane Q, and the second to a vec-

tor p perpendicular to Q (unless these sys-
tems are equivalent to pairs). Consequent-* ly, the screw R to which the given sy-tem

is equivalent is in turn equivalent t) a
system of two sliding vectors is, p (an or-S~thogonal vector cross), as expressed by

a -- (,',p).
Pig. 33
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w. et, -..ave a rerreseeta-.aor, of tne screp ° , ut.e" Ie-
fined tor th~e plane Q (Fig. 33). In particular cases In w:.ich the

line in plane Q is infinitely distant and the trace Is also in-
finitely distant, we shall have equivalent pairs. This reprnsenta-
tion, in turn, fully defines a screw, i.e., the magnitude of its
principal vector, its central axis and its parameter.

Actually, the magnitude of the principal vector of the screw
will be yi'TF. Furthermore, dropping a perpendicular from point
p to the axis of r and constructing the right triangle pab, in
which pa is the hypotenuse and the angle sp =a= arc tan (P/r)
(Fig. 33), we find the moment of the screw with respect to point
c - the base of the perpendicular dropped from vertex b to the
hypotenuse:

Pxp+;axr.

The ratio of the vertical and horizontal components of the
moment is

fX 'rI (c) (p/r) (cb) =p cb . p
';--I P() j(i/e)(cb) cb 7

i.e., to the ratio of the vertical and horizontal components of
the principal vector, from which it follows that line cb is the
projection of the central axis; I*n the other hand; segment ab,
which serves as a proportiojiality coefficient, is obviously equal
to the parameter' p of the screw. Finally, the invariant J of the
screw, which is equal to the scalar product of its principal vec-
tor by the principal moment, will, if point p is taken as the
moment point, be expressed by

J-(r + P).mom r = p -mom, r jpr (pa).

In view of the equivalence of the cross to the screw, we can
use the notation of the corresponding screws for the crosses and
speak of operations performed directly on the crosses. 4

The use of crosses with unit value of the component perpen-
dicular to the image plane, which was proposed by Ya.B. Shor [341,
is of great assistance in the constructions. The given screw is
reduced to an expression RApK,1 where X is a screw equivalent to
the cross

We shall call the cross K-*(h, ) at K 1 1 the unit cross.

The magnitude of the component of a unit cross in the image
plane is k cot a, the modulus of the principal vector is VFR +-

1/sin a, and the invariant is equal to the moment of vector k
with respect to the trace K.
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-- --•.>. t, rreiative moment of two screws R, and R 2

. .- e K, -nd 12. As, the moment point we take the
4 '2, .- :c-tlon of the axes of the components k, and k 2 .

T,, z-, iative iorent will be equal to the sum of the scalar prod-
uct. of ttic principal vector of the first cross by the principal
moment or the second relative to point A and of the principal vec-
'.or of the second by the principal moment of the first with re-
spect to point A. Expressing the crosses in terms of the unit
crosses, we have

mom (RI, RJ = pips wo.. (KI, KJ a-

pips tk,.(AX X j) + k,.(Ax, X wx)
= pps I(k1 X Ax).J.x, + (k, x Ax,).Xl

= plp, (mom.,k , + mo0.,kj. (6.37)

The reciprocity condition for two unit crosses is expressed
by the simple relationship

.oM....A + mom,_, k,= 0. (6.38)

Reciprocity of two unit crosses has the following geometrical
interpretation. Let X, and X2 be two unit crosses with the respec-
tive components k,, k2 and the traces Ki and K2 (Fig. 34a). Obvi-

ously, the relative moment of these
A crosses will not change if Ki is dis-

placed parallel to k2 and K2 parallel
to k1 .

Moving these points until Ki is
1%* in coincidence with k, and K with k2,

b we obtain instead of points xjx,
points x,;, and the unit crosses have
become sliding unit vectors. But for

a reciprocity of two sliding vectors itis necessary and sufficient that the

Fig. 34 axes of these vectors intersect, and
in this case the line •x, must be
parallel to the line BBa connecting
the ends of vectors k, and k2 drawn

from the common origir. A (Fig. 34b). It is this that will be the
necessary and sufficient condition for reciprocity of unit crosses.

The linear combination of two unit crosses

X - + Vs.

in which 1 4- ' I, is obviously also a unit cross. The end of vec-
tor k,, reduced to the common origin A with vectors ki and k2, ob-
viously lies on the line connecting the ends of vectors ki and kk,
dividing the corresponding line segment into parts that are in-
versely proportional to the ratio &:n; on the other hand, the
trace K lies on the line connecting the traces K, and K2 and di-
vides the segment KI,2 in the same proportions. If, in particular,

- 1 = 1/2. we obtain a "sum" of unit vectors, and in this case the
end of the resultant vector k and the trace K lie at the midpoints
of the corresponding segments.
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crosses 1L and X, whose compoient k passes
through a given point C.

A, Solution. We draw the axis k (Fig.
i '35a) through the point of intersection of

* Ithe axes k, and k, and point C; then we
find the point B of intersection of thecomponent k with the line connecting the
ends of B, and B2 of the components k, and

'. Ick2 reduced to the common origin A (Fig.
i 36b). Then on line KIK2 we find the point
a K that satisfies the condition xix:xx,-

- B&B:BB,. Point K is the trace of the un-
Fig. 35 known unit cross.

Problem 2. Construct the unit cross X
that is the linear combination of unit crosses X, and X2 recipro-
cal to unit cross Z.

Solution. Let
K- IC + VsK, (6.39)

where I+n-I, and K1 ,,K,,L are defined by their components hl, k4
and traces x1,x,,. (Fig. 36a). First we construct the unit crosses
Z' and X'2, which are reciprocal to unit cross Z and such tha'.
their components k, and k, are same as those of unit crosses Zi
and X1, although the traces K'1 and KO lie on two arbitrary par-
allel lines passing through traces K, and Ka. Such unit crosses
are easily constructed, as follows: it is necessary first to draw
lines u and v through K, and K2 parallel to ki and ka, line Xa

4%~

ke b

4 p
a

Fig. 36

through point A parallel to ki, line ajrj parallel to the differ-
ence between vectors t and k (Fig. 36b), and then a line through
T, parallel to t to the intersection with u, which defines a point
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;b tasis Jf tne geometrical reciprocity principle estab-
lisýhed -•'•sove, urbit cross V'I will be reciprocal to unit cross L.
In exactLy the saire way, it is necessary to pass a line X,2
through point A parallel to k2, then a line 02T2 parallel to the
difference of vectors t and k2 (Fig. )Q'b), and then, through point
T2, a line parallel to I to the intersection with v, which defines
a point K'2; unit cross Z'2 will be reciprocal to unit cross 1.
Thus we shall have two unit crosses V'i and X'2, which will differ
from unit crosses X, and X2 only in the position of the traces

xx,.However, the two unit crosses V'i and X' 2 are reciprocal to L.
Hence the combination

E, +. =(6.40)

will also be reciprocal to L. But this combination has the sar. 2
component k as the unknown combination (6.39), which, by the con-
ditions of the problem, must also be reciprocal to unit cross L.

We connect points K', and K'2 by a straight line and find the
point K of intersection of this line with line KIK 2 . Then K is the
trace of the unknown unit cross K, since 7:Lx :XX,=- "',V :xY2 and the
point belongs simultaneously to the combinations of (6.39) and
(6.40), while the component k corresponding to it is the same for
both combinations.

The latter is determined by dividing segment BIB 2 into parts
proportional to KIK and •KK (Fig. 36b).

Instead of the above purely graphical construction, Condition
(6.38), which results in an equation with one unknown, can be used
for solution of the problem.

Problem 3. Construct the unit cross Lil 3 reciprocal to the
three unit crosses K1,K, and Xs.

Solution. First we construct unit cross Li,, which is recip-
rocal to unit crosses X, and X2. Obviously, this unit cross can
be obtained by taking as the axis IIz the straight line passing
through Ki and Kz, and as the point A12 the point of intersection
of k, and k2 . Here the magnitude of 112 remains undetermined. It
can be determined from the condition of reciprocity to Xs or by
the construction described above, or by forming the relative mo-
ment of unit cross L12 and unit cross X3 and equating it to zero,
at which point the magnitude of 112 is determined from an equation
with one unknown. The problem is solved.

A second variant nf the solution will bp unit cross 1132,
which is constructed in exactly the same way, but with the condi-
tion that the unit cross reciprocal to X, and Xl is constructed
first, and then subjected to the condition of reciprocity with X2.

Finally, the third variant will be unit cross L281 con-
structed first as reciprocal to ZK and X3 and then subjected to
the condition of reciprocity with X,.

The three unit crosses La,.,Lm, and Laa, define a three-member

-126-



group reciprocal to the three-membler group of wlit crosses KL•,
and X9. All of these crosses are shown in Fig. 37.

Problem 4. Construct the unit cross reciprocal to five given
unit crosses K,, a,....,K..

Solution. We first construct the three-member group of unit
crosses reciprocal to unit crosses K,.K,. K, in accordance with
Problem 3. Let this be the unit crosses Lu.Lt,.L,,. We find the
unit cross L1134, which is the linear combination of unit crosses
Lils and Lis, reciprocal to X4. This can be done as in Problem 3,
which was solved above. In exactly the same way, we find unit
cross L1324, which is the linear combination of L192 and £2si re-
ciprocal to X4. Thus we shall have two unit crosses Li2s4 and
L1 s3 2 that define a two-member group reciprocal to unit crosses

KI, K,, ,K. Ks4.

.I/

• A,\1/'
411

Fig. 37

Let us now form the linear combination of unit crosses D,,,,
and L1 s&4 and, subjecting it to the condition of reciprocity with
unit cross Is, still following the solution of Problem 3, find
the unique unit cross Zt,,. that is reciprocal to the given unit
crosses Kb, ,.... K.

The geometrical constructions indicated here can be used in
the problems of three-dimensional statics and kinematics.#

S6. Screw Groups in Kinematics and Statics

The theory of screw groups is closely related to analysis of
the properties of motions of a solid body that has one or another
number of degrees of freedom (from one to six), and to the proper-
ties of force systems acting on a body, including reaction forces
if the body is not free.
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"3'_ r.ýenerai r• r J 'splace-ent of a solid zody s the
~ A ispi ement , wnicn 19 caracter1-zed by a screw axis, the

moduils of its vector, and t~ie narameter. The elementary turn an-
gle dA oerves as the modulus of the vector in an infinitesimally
small displacement, the ratio of the translational displacement
dq•' to dcP as the parameter; defining the screw by its axil and
complex modulus with unit principal part and multiplying the com-
plex modulus by p, we obtain a kinematic screw - a screw that eA-
presses an infinitesimally small displacement of the body.

Let the body be able to move along only one screw R with com-
plex modulus R-='-; multiplying this screw by dq, we obtain the
dinplacement

d- Rd, - r- dp.

Knowing the displacement screw, we can determine the dis-
placement of any point of the body as the moment of the screw
with respect to this point.

The displacements of all points of the body equidistant from
the screw axis are directed along tangents to screw lines con-
structed on the axis of the screw and having the same pitch. The
plane normal to the displacement is the polar plane with respect
to the point under consideration; all rays of the complex passing
through this point lie in it.

If the body can perform displacements along two screws R,
and Ra defined by axes in space and by the complex moduli

m ow #W%, R, - d.e.

then, on imparting to the body two small displacements dq, and d•,
along these screws, we obtain a resultant motion that will also be
a screw motion. The resultant screw is a function of both the axis
poaitions of screws R, and R, and the elementary displacements d1
and dqP2. Varying the latter, we obtain a set of new screws along
which the body can execute displacements. They all lie on a cylin-
droid that can be constructed from two given screws; among all of
these screws, there exist two whose axes intersect at right an-
gles. If, apart from the screws lying on the cylindroid, there
are no other screws with respect to which the body could be dis-
placed, the body has two degrees of freedom.

If the body can execute displacements along n screws
Ri. R. . ... Rr,, then we take aný' m of these screws (M <n) and impart
to the body m screw di:p.lcumenius along them. The resultant dis-
placement wlll be a screw; let us assume that no matter how we
vary the magnitudes of their principal vectors, i.e., the magni-
tudes of the elementary rotations, the resultant screw always dif-
fers from the remaining n - m screws. In this case, the n screws
are independent. A body capable of displacement along n indend-
ent screws has freedom of the nth degree.

Consequently, study of the geometrical distribution of all
screws along which a body possessing nth-degree freedom can be
displaced reduces to study of the distribution of all screws of

-128-t _________



an -re deger grofr. In partcaeear, scutewt7 a!e on e7'e a 7: -av 1-Z

three degrees of freedom can execute rsoti., are dsa r e Ad '

nypertoloibs in such a way that screws with the same para-e.er le
on each of the hyperboloids; among them there is a zero-paratmeter
hyperboloid, which corresponds to pure rotational motions of the
body.

Let us now consider the force interpretation of the screws.
A force screw is characterized by the combination of a force vec-
tor and a couple whose moment is parallel to the force vector.
Thus the principal vector of the screw is a force vector and its
principal moment is the moment of a couple. The moment of a screw
with respect to a certain point of space is the moment of the mo-
tor obtained by reduction of the screw to this point.

It follows from analysis of screw groups that if a body is
at equilibrium under the action of n force screws, it is neces-
sary that some one of these screws be in the group formed by the
remaining n - 1 screws. In particular, we shall have:

a) for two screws, equilibrium is possible only in the case
in which the parameters of the screws are equal and their axes
lie on the same straight line;

b) for three screws, if their parameters are identical,
equilibrium is possible only if their axes lie in the same plane
(the cylindroid constructed on two of them must be a plane), and,
moreover, the axes must intersect at one point;

c) for four screws with the same parameter, and in particu-
lar for four forces, equilibrium is possible if the screw axes
lie on the same hyperboloid (this hyperbolold is the hyperboloid
of screws with equal parameters for a three-member group formed
by three of these screws);

d) for five screws of the same parameter, equilibrium is pos-
sible if the axes of these screws lie on rays of one congruence;

e) for six screws of the same parameter, equilibrium is pos-
sible if the axes of these screws are rays of the same complex.

Finally, for seven or more screws, we do not obtain any nec-
essary condition, since in the 'eneral case any of the seven or
more screws is in a group formed by six of these screws if they
are linearly independent.

The above equilibrium conditiorn, which are a corollary of
the properties of screw groups, are extremely important for the
statics of the solid body, since they imply the most general con-
clusions for the equilibrium conditions of many structures. For
example, they apply directly to structu~res (trusses, foundations)
that are secured to a base by a certain number of members, and
provide a basis for Judgments as to the invariability (immobility)
of the systim in the presence of various couplings. By virtue of
the analogy between statics and kinematics, these same conditions
serve for determination of the mobility of three-dimensional
hinged mechanisms and, in particular, enable us to identify cases
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- ;.ae•ewint of me,,er- when motion iS possitlhe reaard-
--f 1-e ýresence of redundant couplings in kinematic pairs.

:re importance of reciprocal screws can be seen in a paticu-
lar example In which we are to find the forces in six rods ar-
ranged arbitrarily In space.

Problem. A solid body is secured to a base by six rods, and
a certain force screw P acts on the body (Pig. 38). It is required
to find the values of the forces $p. rt, ... So acting along the re-
taining rods. The problem reduces to resolution of the screw P
along six straight lines of the space.

Let us apply the principle of possible displacements. Con-
sider the system with the 6th rod removed. Then the body obtains
one degree of freedom, whicf-tis characterized by motion along a

certain screw Ia::,s. This screw must be
such that the displacement of the points
of the body at which the five remaining
rods are attached will be normal to the
axec of these rods. This means that screw
taza..s defines a linear complex whose
rays are these five rods, and that the
displacements of these points take place
in their polar planes. Consequently,
screw fiakus is reciprocal to all of the
five screws (in this case of zero param-

Fig. 38 eter) whose axes are directed along the
five rods. This screw can be found by
the method indicated above (Problem 4).
To find the force acting along the 6th

rod, it is necessary to decompose force screw P into two compo-
nents: one along screw U. which is reciprocal to screw Viasks,
and the other along the axis of the 6th rod. This task can be ac-
complished purely graphically, for whtoh it is necessary, repre-
senting the screws by unit crosses, to find the unit cross of U
(in accordance with Problem 2), and then to make the elementary
decomposition of screw P. Then the same method is used to decom-
pose the U component along the axes of the 5th rod and along the
screw reciprocal to the four screws 1, 2, 3,'T, etc. An analytical
solution can also be provided, using reciprocal screws constructed
with the aid of the unit crosses. We form the expression for the
sum of the works done on screw riatst by the external-force screw
P and the force 5, acting along the missing rod, and, equating it
to zero, we obtain a single equation with the unknown magnitude
of the force In the 6th rod. The forces in the remaining rods are
determined simllarly..

The work of the force screw on the displacement performed
along the kinematic screw Is the moment part of the scalar prod-
uct of these screws, or, what is the sam thing, the relative mo-
ment of the screws.

The force screw can also be compensated by a smaller number
of screws, i.e., the body may also be at equilibrium with fewer
than six rods. Then, however, it Is necessary to satisfy the con-
dition that the force screw acting on the body be In the group
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formed ny the rod reactions. 7; we construct t.,& grc c7 so es
reciprocal to the screws whose axes are dir•:cted along the rods,
the effective screw, which satisfies this condition, wiUl 'e re-
ciprocal to this constructed reciprocal group.

Manu-
script Footnote
Page
No.

127 In his time, B. Mayor 135] proposed a special method
for mapping space vectors and screws onto a plane, but
it was more complicated than that presented here. Due
to the difficulty of the exposition, B. Mayor's book
did not win wide recognition. Sub3equently, Mayor's
Ideas were developed to some extent by R. Mises and V.
Prager. In the Soviet literature, the Mayor method has
been interpreted and developed elegantly in the inter-
esting book by B.N. Gorbunov and A.A. Umanskiy £36).
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.Chapter 7

SCREW BINORS AND THE DYNAMICS OF THE SOLID BODY

§1. The Screw Binor

Transformation of a screw with the aid of a dyad and an af-
finor (see Chapter 3) makes it possible to express the coordi-
nates of the screw in a certain coordinate system in terms of its
coordinates with respect to another coordinate system. In the gen-
eral case, this transformation is determined by nine complex or
eighteen real numbers.

If A is an affinor, then multiplication of this affinor by a
screw R reduced to a certain motor is expressed as follows:

R"- AR = A (r +er) = Ar + wAr*. (7.1)

A more general transformation of screw R is obtained by its
multiplication by the screw binor (A) introduced by S.G. Kislitsyn
[17] as a generalization of the screw affinor, namely,

R' = (4)R = Ar + Ar*. (7.2)

This transformation becomes (7.1) in the particular case
when

-A$ = *A. (7.3)

The transformation using the binor is determined by two matrices
with nine complex elements each, i.e., by a total of thirty-six
real numbers.

Binor transformation of the real components of a screw is ac-
complished by multiplying the latter by the elements of a square
matrix with six rows and six columns. This matrix is found to be
identical with the "motor" transformation matrix introduced by R.
Mises [12].

When the screw is referred to a rectangular basis with the
aid of the coordinates, the affine transformation operation on the
vector r and moment rO of the screw to the new system reduces to
multiplication of the matrices

SA A , (7.4)

An An An A13 A*
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.y theZe vectors; here

Am o4&h+w+ w~ai+j.

If the product is expanded in the real coordinates, we obtain the
transformation

, - aur. + aura, + anr, + , + a. + ,

ej= - a, .+ + auw, + amp, + as+ q+w,+.
"r, - ar. + ,, -+ , -+ q + at, + °•. (7.5),;', - al,,. + ,,*,' + OW,,, + a,",,.+ an,;*, + al3.c•.
ro - a ,&r. + a.,,,, + ,,&,. + a,* ,+ agr.* +,an,•.s

18 or + al+ V.+ 42re + 024 ±41

Thus, multiplication of a binor by a screw is equivalent to
transformation of its real PlUcker coordinates with the aid of
the matrix

an ejia an a,* e.a

an a " an,.&. e. q I
,,n ,, a, a,' ,* a.* (7.6)
On Ond a," ,,a"

It is quickly recognized that in the case of an affinor, i.e.,
for Alt =-uA,,- woa, the transformation matrix (7.6) assumes the fol-
lowing particular form:

auc ,ra;$ e 0 0
an aninO 0 0
a ahnau, 0 0 0

On 9 1u an as an (7.7)

If Matrices (7.6) auid (7.7) are represented as block matrices,
they will have the following respective forms:

IA !I1 A 01(7.8)II
; As.: A "

Repeated application of the binor multiplies out the ma-
trices:

KO - (B)R' - (B) (A)R - (C)R.

cc COg B B A4j5A+8.A4..A*+a Sl"A4" (7.9)

A binor is a linear operator that possesses the property
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(A) (R + R,)= (A)R1 + (A)R,(
(A)IR =I. (A)R, (7.10)

where A is a scalar multiplier.

Let us turn to Transformation (7.2) and express matrices A
and A+ with complex elements in terms of real matrices:

A - a + sag, A+ = a+ + ma's.

Substituting in (7.2), we obtain

R' = (ar + a #^+. (a•r+ar (7.2')

Expression (7.2') indicates that on transformation of screw
R with the aid of a binor, the principal part of the transformed
screw R' is not a result of transformation of the principal part
of screw R only, but also depends on the latter's moment part.
Consequently, the result of multiplication of a binor by a screw
is a function of the screw that is not expressed by Formula
(5.98) for the screw function of a screw and, consequently, does
not satisfy the analyticity condition of which we spoke at the
end of Chapter 5.

§2. Inertia Binor of a Solid Body

A.P. Kotel'nikov [5) introduced the notion of the momentum
screw of a system of material points (kinetic screw). A momentum
screw is a screw equivalent to a system of sliding vectors whose
axes pass through points of the system and which are geometrically
equal to the velocities of these points multiplied by the corres-
ponding masses.

If the couplings in the system are such that we can impirt a
screw displacement to the entire system in any position without
changing the relative positions oi' the points, then we say that a
kinematic screw is possible for the system. In particular, if Ghe
system is a solid body, this will be a kinematic screw that de-
termines the instantaneous screw motion of the body, and if it is
referred to time, it will be a velocity screw.

Let this screw be U with the complex modulus

" U (7.11)

where u is the magnitude of the angular velocity and u° - pu is
the magnitu4e of the translational velocity of points of the body
lying on the screw axis.

Let us take a certain point 0 on the central axis of the
kinematic screw and denote by p the radius vector of an arbitrary
point of the body reckoned from point 0.

The velocity of a point, as defined by the kinematic screw U,
is the moment of the motor obtained by reduction of this screw to
the point, with the reduction radius p. Hence we obtain the fol-
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lowing expression for the velocity of a point:

9-ua+ a X p. (7.12)

AszIgning an elementary mass dm to the point of the body, we ob-
tain the momentum of the point:

9ed- ua*m+a X dm. (7.13)

The angular momentum of the point with respect to point 0 is
equal to

P 1x&.d=p X (a+a X p)dm. (7.14)

Integrating (7.13) and (7.14) over all points, we obtain the
vector and angular momentum of the solid body, which form a motor
equivalent to the body's momentum screw:

"K-'h+ or vdm + a .S'n. (7.15)

Let us write Expressions (7.13) and (7.14) in rectangular co-
ordinates. For projection of the momentum vector onto the axes x,
y, x, we shall have the expressions

a= (08+ 4A- uA) drn (7.16)
V14m - (a* + uqi - ",I) dat,

and for the moments of this vector with respect to the same axes,
the expressions

[uiju~ ui'+~')uAT1-uAC1dn,1
(v-- vA) d, = --•-~-JAW+u,(i' + •')-uuTIIdm,. (7.-17)

where t W, C are the projections of radius vector p on the axes z,
Y* a.

Now we integrate Expressions (7.16) and (7.17) over all
points, simultaneously adopting the notation

5dm-rn, 5tdrn=Sl, ' 4 m S2. dm -Si,

tC dm -D ,3 5CtdM D.m . 5W dm =- D .0 (7.18)

S,+'),•,,,. (.'+C2')dm= I,

at +~' ) &n - Is

as abbreviated notations for mass, static moments, products of in-
ertia and moments of inertia with respect to the axes.

Then we find expressions for the projections of the vector h
and moment k0 of the motor corresponding to the body's momentum
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screw onto axes x, y, z:

A, = su,- St, + MuG
k, = - S.us + S., + mUJO

A, -S , - us +MUG, (7.19)
k = Ihu. - D3 u,-- Dou - San + SIa*O.
k - - Ds•. + /•,-- Diu. + Ssu,* -s.•..A=- D -uz + DIu,+-.-, -Sluu

Formulas (7.19) indicate that the motor k-+00 is obtained
by multiplying by the motor a+-waO the binor (T) determined by
the matrix

0 S -S2 m 0 0
-S. 0 S 0 m 0

A -- S 0 0 0 i
I4 -- Ds -D, 0 -Sg -S,

-Do Is -DI Sa 0 -S.
-D, -DI 4 -, S3, 0

and namely

011 S&- uD, - S,-(#Do(7)zzIFSaicoDs Ws SI-0S,--DO, -S 1 ,-oD S-i ,

m, -a- , lo ssI s$ "-M - (7.20)

which can be written in abbreviated form as follows:

X (T)U. (7.21)

The binor (2) is called the inertia binor of the solid body.
Formula (7.21) therefore states the fact that the momentum screw
is obtained by multiplying the inertia blnor by the kinematic
screw.

§3. Equation of Motion of a Solid Body in Screw Form

Differentiating Equalities (7.19) with respect to time, we
obtain the time derivatives of the projections and moments of the
momentum screw in the left member and the time derivatives of the
corresponding products of the inertia binor by the kinematic screw
in the right member. The corresponoing terms of the right members
of the equalities will express the products of the masses and
static moments by the projections of the body's center-of-gravity
accel'ration and the products of the moments of inertia by the
angular accelerations. These will be the projections of the act-
ing-forces screw onto the coordinate axes and the moments about
these axes. Consequently, passing to the screw equality (7.21),
we shall have the relation derived by R. Mises [13),
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-(T) U - , (7.22)

where R is the acting-forces screw. Equation (7.22) is the screw
notation of the law of momentum and the law of angular momentum.

Let the body under consideration have a screw displacement
with respect to fixed space determined by screw U; if we wish to
express the time derivative of the screw K-(T)U with respect to
fixed space in terms of the time derivative with respect to a co-
ordinate system attached to the moving body, we must apply For-
mula (5.72), obtaining

d5= dK + U x -K [(T)UI-+Ux U(T )U -= R,

where the symbol d'/dt denotes the relative or "apparent" deriva-
tive, i.e., the derivative presented to an observer on the moving
system. Multiplying out the brackets after the d' sign and noting
that in the coordinate system attached to the body the inertia
binor is constant, i.e., that d'(T)= 0. we obtain

(T) f.- + U x [(T) U -= R. (7.23)

Expansion of Eqs. (7.22) and (7.23) by coordinates results
in a system of six dynamic equations.

One remark is in order.

Assume that we wish to obtain from Eq. (7.23) the dynamic
equation for a body having a fixed point (vector equation). For
this purpose, it would be necessary to assume that the kinematic
screw U has become an angular-velocity vector passing through the
fixed point. Taking this latter point as the coordinate origin,
we must set the translational-displacement coordinates of this
point of the body equal to zero, and add the reactions at the
fixed point to the projections of the external-force principal
vector. Then the dynamic equations decompose into two groups of
three equations each. But those three equations that express the
relation of the principal part of screw U, i.e., the angular-ve-
locity vector, to the moment of the external forces will be not
the principal part of the equations, but rather their moment part.
The corresponding vector equation will be not the principal, but
the moment part of screw equation (7.23). Thus, the differential
equations for the principal part of the kinematic screw are not
the principal part of the basic differential equations, but, to
the contrary, are their moment part.

This circumstance stems from the fact that if an angular ve-
locity serves as the principal part, i.e., the vector, in a kine-
matii screw, the principal vector of forces will be the principal
part in the force screw; on the other hand, the moment is the gen-
eralized force for the angular coordinate. Moreover, multiplica-
tion of a binor by a screw places both a vector and a moment in
the principal part. Consequently, the binor cannot be obtained
from any real operator by substituting complex quantities for real
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quantities in it, i.e., a binor is not an operator that possesses
the property of "analyticity," and the screw formulas obtained as
a result of its application are not a direct generalization of
the vector formulas (see §1 of this chapter).

It must be concluded on the basis of the above that it is im-
possible to obtain a screw equation of the dynamics of an arbi-
trarily moving body from the dynamics vector equation of a body
with a fixed point by application of the transfer principle.

§4. Statics and Small Vibrations of an Elastically Suspended Solid

Practical interest attaches to solution of the problem of
equilibrium and vibrations of a solid body suspended in space
with the aid of a certain number of elastic links or springs; it
consists in determination of the forces in the springs when a
given force acts upon the body. The positioning of the springs
may be arbitrary, but it is an indispensable condition that no
displacement of the body be possible without deformation of the
springs, i.e., that the entire system be incapable of moving free-
ly as a mechanism.

For more than six springs, the problem of finding the forces
is statically indeterminate. If, however, we introduce some addi-
tional condition linking the forces in the springs to their elon-
gations (or compressions), the problem may be reduced to a problem
of the statics of a solid body.

Let us take the relation expressed by simple proportionality
between the force in the spring and the change in its length and
assume that the forces in all springs are zero when the body is
in its unloaded position. We shall also assume that the displace-
ments of the body are small.

We define the positions of the spring axes in space by their
Plucker coordinates - the direction cosines of the unit vector I.

of the axes and the moments of these vectors with respect to the
axes of a certain rectangular coordinate system xyx. Let the an-
gles formed by the spring axes with the coordinate axes be a,, P, T,
and let the coordinates of the points of attachment of the springs
to the body be L. , C., where i is the number assigned to the
spring. The unit-vector moments of the spring axes about the coor-
dinate axes will have the expressions

h-YcoST,--CIosf,, mI-Cgsz,-L- cos",,
as -ICos, -, N-Cos

and, consequently, the Plucker coordinates of the spring axes
will be

Let us impart to the body a small screw displacement charac-
terized by an arbitrary screw * defined by the coordinaten
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where the first three quantities are the projections of the body's
angle of rotation onto the coordinate axes and the last three are
the projections, onto the same axes, of the displacement of the
point of the body that coincides with the coordinate origin.

In order to express the force arising in the ith sprinp as a
result of this displacement, it is necessary to fin3"the dl-place-
ment of some point inseparably connected with the body arn, i.l.ng
on the spring axis (for example, the point of attachment of the
spring to the body) and to project this displacement onto the
spring axis. We obtain the elongation or compression of the
spring, and, multiplying this quantity by the rigidity coefficient
ci of the spring, we find the force Si of the spring. But a

(small) displacement of a point of the body is expressed by the
displacement-screw moment with respect to this point, while the
projection of the moment onto a straight line passing through the
point is the relative moment of the screw and the line. Conse-
quently, for a spring with an axis unit vector Nis we shall have

a force for displacement of the body along screw *:

SoC OM (1..Ea) o M
C1 (8 a Sa + 8 M, +,+ 8a M3Ts + yz + V^ + 904). (7.25)

We express the projections of the forces S=-EIS, onto the co-
ordinate axes and their moments with respect to these axes, mul-
tiplying the magnitude of S. successively by each of the six quan-

tities of (7.24), and then, summing the projections and moments
over all springs, we find the six coordinates -Pa.-P-. -P., -L,.
-Ls,, -L, of the force screw that compensates this force screw R
which is capable of causing displacement of the body along screw

We note that in view of the assumed smallness of the dis-
placement, we draw no distinction between'the initial, i.e., the
unloaded position of the body and its final position, i.e., that
which has been reached after the displacement. This assumption is
customary in the structural mechanics of rod systems and in the
theory of small vibrations; moreover, it corresponds to the first-
approximation solution in those cases in which we take into ac-
count the nonlinearity associated with the influence of displace-
ment components of the second and higher negative orders.

Performing the multiplications and summations indicated
above, we obtain the following system of equilibrium equations
for an elaatically suspended solid body:

C16 + CA + CAa + C.+a + qcas a,% -P& - 0.
Ua + CA, + CA + + co%+ -clt- P - 0.

C6,+ ,+C 6 + co.o + %+ %-P. - 0. (7.26)
CA + C + CA + Cyal + C&+ .0 -- L - Of
CuA + %4 + CA + C&4 + Ca%+ C"% -- - 0.
AUAF+ 44 + coo + 408 + CG+ 4&% --La -0.

where
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c.=, ccos•'a, c.=1cco0p,, C=jcCOs'rT,

el CU= C Co •s4 p PCO. C" C" = Cos at ICT,

CI. -me M Mccowam, c" - = 1,cco In,

C,4- c,-ECcosP. e.--c" =cCos Pm,

el-CN= - :C WS um pPR. (7.27)

C. = CU-,iCOTI, Co.=c..=ZccosTm,.

Cu-m Cos M1 f.os T.

C" =•, ,C64 , -. 2€ -IM C, CI,

In Formulas (7.27), the summation is extended over all
springs; the index i has been omitted.

Thus, solution of the static problem reduces to determina-
tion of the coordinates of an unknown displacement screw 0 from
the given coordinates of a force screw R by equation system
(7.26).

Equations (7.26) can be expressed in binor form as follows:I"Or CU+U-M aa+O1 .*e~caI'

£e+,.U .+CI. cw+-ec.II 9..+•

+ ,,,+w,, c,+e,. ,,,+ej. .il l~l,+.L,ij.o (7.28)
Ift+-,t C.+,,t .+-,ilasI 1s.+ OL1

or, introducing the short notation (C) for the elasticity binor,

(CMe ( (C, C(1 + e0) - C + C -- R. (7.29)

It follows from the linearity of the operator (C) that if
two states

(001,- ,R1, (Ces, M,

are given, then the state corresponding to linear combination of
displacements Ol and Os will be characterized by the equality

from which it follows that the linear combination of the force
screws acting on the body corresponds to the linear combination
of the displacement screws. A linear combination of screws with
real multipliers is a screw that lies on the saw cylindroid as
the basic screws; if the multipliers of the linear combination
are complex, then the axis of the linear-combination screw de-
scribes a brush, i.e., a set of straight lines Intersecting at
right angles with a certain straight line. Both the axis of the
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• v•a¸ r *t' ,v . .r r.~ -- . -....... .

displacement screw and the axis of the force screw will describe
brushes.

The validity of the following proposition is equally veri-
fied: if a body is acted upon stacically by a force screw R' that
causes elastic displacement of the body along a screw M0, then on
static action of a force screw R" reciprocal to screw41 . elastic
displacement of the body will occur along a screw 0", reciprocal
to screw R'. For the proof, let us consider states 1 and 2, which
correspond to the action of the forces R' ind R"; we write the
expression for the works done by the external forces of the 1st
state on the displacements of the 2nd state and those done by-le
external forces of '-he 2nd state on"Nisplacements of the 1st
state. We have:

a) for the ist state, the force screw R', and the displace-
ment screw 0', with-R' -'(C)O',

b) for the 2nd state, the force screw R" and the displace-
ment screw 0", wiE-hR" -. (C00".

Writing the expression for the work as the moment part of
the screw scalar product and expanding it, we obtain

ww(((C) V1- ) - AX + PA.+ PA +L4S++ "+ "- C6 + C&O+ U6S+
+ 4444C + CM.68 + 40.0 + 4AW,. + •;.+

+ ft6 + CJA. + Cj;4 + CýWxs ++ "are + Clow + Ca" + Ca +

+ + +c&,%% + Va% ,6+ +

+h~ +ua + b+Cu + Coo%%

The above expression Is symmetrical with respect to the indices
and "*from which it follows that

"M oMffC)1 - ) - MM- (((C)1 4Wh

or
mau(~j-w(R~').(7.30)

which is the well-known reciprocity theorem.

If force screw 5" is reelpro~ca2 to the displacement screw 01,
then the right member at (7.30) Is equal to zeor and, consequent-

*lys the left member of (7.30) Is also equal to zero, from which
It follows that the displacement screw 00 is reciproc~al to force
screw R5.'

The above enables us to construct a comparatively simple
scheme for determination of screw # from the given force screw Rt. i
To wit, we Impart five displacements to the body along screws
*a*.O. 0s. each of which is reciprocal to screw 5. These screws
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may be: 1) screws *1 and #2, whose axes intersect the axis of
screw R at right angles and whose parameter is equal to zero (sim-
ple rotations); 2) screws #j and #4, whose axes are perpendicular
to the axis of screw R and whose parameter is infinity (transla-
tional displacements) and, finally, 3) screw #s, which lies on
the same axis with screw R and has a parameter equal in absolute
magnitude to the parameter of screw R and opposite to it in sign.
This last screw will be reciprocal to R by virtue of the vanish-
ing of Expression (3.12) for a possible coefficient of screws ts
and R.

To each of the displacement screws listed above, there will
correspond a force screw capable, on application to the body, of
causing displacement along this screw. Let the force screws cor-
responding to the five screw displacements listed above be
R,. R.. . * . R,.

Now it can be seen on the basis of the above that the screw
0 reciprocal to screws R1, R,.... R. will be the sought screw of
the displacements due to the action of force screw R.

The entire solution can be carried through using graphoana-
lytical and even purely graphical operations that employ the geo-
metrical interpretation of screws as orthogonal crosses. In es-
sence, this solution supplants the analytical solution of equa-
tion system (7.26).

Let us now examine small vibrations of an elastically sus-
pended solid body due to the ection of a force screw t--Rosin)J,
where No is the amplitude screw.

For this case, it is necessary to use the dynamic equation
of the solid body, (7.22), together with the static equation
(7.29).

Let us denote the unknown screw by f, and the velocity screw

by 4. Taking an arbitrary coordinate origin 0., we obtain motors

( + 0 &nd y+-at by reduction to point 0. On the basis of Eq.
(7.22), we shall have for i.he fixed coordinate system

1(• -41m R.r + mRe n I. (7.31)

where 8upr Is the screw ot the internal elastic forces and is lin-

early exprersible In terms of the displacement screw of the elas-
tically suspended body. On the basis of Sq. (7.29), this screw Is
expressed ts follows.

(7.32)

Expanding the expresslon in brackets under the time-differen-
tiation sign In the left member of Sq. (7.31) and substituting
the expression from (7.32) for It, we obtain

()+ 1+ (C) 0 R. dnhI.
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Taking the smallness of the vibration amplitudes into ac-
count and a3suming further that the body's ellipsoid of inertia
is not too prolate, it may be assumed for the first-approximation
solution of the problem corresponding to its linear formulation
that d(T)/dt is a quantity of the second order of smallness and
that it can be dl-regarded. In this case, the differential equa-
tion of the body's vibrations will assume the form

07 + (040 -- R-- Resin U, (7.331)

which is the differential equation of the "screw" operator and is
equivalent to six scalar differential equations.

Here (M) is the binor of inertia and (C) is the binor of
elasticity.

For an arbitrarily selected coordinate system xyx, Eq. (7.33)
has the following form in binor-matrix notation:

4-4 SI-sOI -OraD
- s-..-S+ a e-t +

m-s,. -is,-, U,-sw, 't +

ftWuc+e 4  s+i6 ete

-I,,+,,i-LV (7.34)
+•s sWre I.+ ,Ias~~~~me" itsr~e~~ 1.

Given approprIate selection of the coordinate system, we car
arrive at a simplified form of either the binor (?) or the binor
4C). Let us assume that the body's three principal central axes
of inertia have been taken as the coordinate system; then the in-
ertia binor (M) that appears in the first two term of the left
member of Eq. (7.34) will assume the simple form64 0 ':0 1. 1 a 0

0 oft00 .0 0

00 i 0 0.a

Assume that we wished to select the coordinate system with a
view to simplifying binor (C) in Eq. (7.34). In the general case,
If the quantities Sas and 9... are taken as the coordinates of
the motion and we do not convert to generalized screw coordinates,
the matrices cannot be simplified to any appreciable degree, as
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can be seen from the analysis given below. This analysis makes it
pc•3ible to vring out the structure of the solid body's "elastic
suSpen-sion" and establish the cases in which one or another sim-
pif.12iation is possible.

Let us seek translational-displacement directions of the
body with which the principal vector of the resultant spring force
is parallel to the displacement. Obviously, this will reduce to
elimination of nondiagonal elements of the matrix

4u ,: CA;Ill C" C"a
ca c CU

and we obtain three mutually perpendicular principal directions
of suspension rigidity.

In the general case, the' resultant of the spring forces in

translational displacement of the body will be a screw; if we
take the axes of Dhe coordinate system parallel to the three prin-
cipal uirections of suspension rigidity, the coordinates of the
axes z'., y ', 31 of the three corresponding screws will be

Zc anM . ze Mai

"% Zc, C •

The magnitudes of the vectors and moments of the screws
equivalent to the spring resistance forces in translational dis-
placements of the body by one unit along each of the axes x, y, z
will have the expressions

X-Mmecrsa, 4Y,=,Zr,
L,4-Tjccmc. Mw.O, N,=O.

,;-o0 Y- ,,cco, 4-.-o, 4,=o.
M;-2ccosm, NO,-O

x;-o. v=o, 44-IMOs'T,

"L-o. ,,.-o, N-_ccmTn.

We can easily satisfy ourselves that for pure rotations of
the body about axes x4, y*, x* that intersect the pairs of axes
y pa ", XP'' and '~y' at right angles, the axes of the resultant
screws of the spring forces will also be parallel to the axes of
rotation.

Let the axes of these screw• be x", y ", x". The magnitudes
of the principal vectors and principal moments of these screws
are determined as follows: on rotations about the axes x*, y* and
z* through a unit angle, the force in the ith spring will be
equal to the relative moments of the unit vector of tht spring
with the coordinates ( 7 . 2 4 ) and the unit vecturs of the indicated
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axes of rotation, which have the PlUcker coordinates(qn, C)(.a".

R;, 0. i.e., for the respective axes it will be

Si. = c1 (I + ±s ICO - cOs Tin),
Sg- CI (MI, - COS Itg + COS TA,).

Si- c, (at + COs a,- C OS

Multiplying these quantities one by one by COsa, cosA,,cOSy,, I,
Mi, nR and summing over all springs, we obtain the projec-

tions and moments of the spring resultant-force screws in the xyB
coordinate system:

Yx;= Es,Woa = E, COS 0il..,Y,- S1&.COS P, =o 0, = •S,CO ,= 0,

7, - ~Sik = l + Cy Ec, co~s Pill

i JI (7.36)
M'. - Esh, = I ,ti, + C1,E,,COS.PI, ,-

* - jcas, OS Ti.

N: = at,= Ecdn,, + IJlcosPI, -

- if IC COS Tin,

and so forth, and then we find the coordinates of the axes of
these zcrews:

I et + 4 Ze cosp - 'i I ccni i
•== ZCWOS•

Zccr•,l

Z ml- ZCE cos a + t zeccc t1

I ,Z C = , S ( 7 . 3 7 )

q; = Za.+s - CR.,-if+oC COS

ew I +V:COS aim ZVCSO

The magnitudes of the vectors and moments of all restoring
forces of the springs in rotations of the body about x*, y*, x*
through unit angles will be

Xu=.CCaIt, U. 0. z,=o,

LO- Eel'+ CZC~.cOSfI--ir42ccosy, M- N4- 0,
x;-o, Y'=,-zccospm, z;=o, L;-O,

M; . ZOO'- C;JCCOSm -tIccos'gn, N-0
x;-o, Y;-o. Z,-ZcOSrn L-M-o.

-• i-•,e +,ýIo5 -,-bE• I,.



The axes of these screws are parallel to the axes x, y, z,
and their positions are determined by Formulas (7.37).

Thus, unit translational displacements of the body along
three mutually perpendicular directions and unit rotations of the
b ody about three given axes parallel to them result in a systemof si1 screws (X', L?), (I', 1'),

(Z ', N') and (X", L"), (Y", M"),

!..__ (Z", N") of the resultant forces in
e, lel" 4 the springs. In the general case, the
;* 1  axes of these screws do not intersect.

A, e The positions of the axes are shown

schematically in Fig. 39.11 IObviously, this system of six

I screws characterizes the structure of
the body's elastic suspension, i.e.,

I the spring system. In particular
cases, the system may be symmetrical
with respect to one of the planes -

- - ,in this case the axes of two of the
"�- - screws intersect and the parameters

"of these screws are equal to zero; for
a system having two planes of sym-

Fig. 39 metry, two screw axes intersect a
third; a quasi-symmetric system in
which the axes of the above six screws
form two coincident mutually perpen-

dicular sets of three, with the parameters of these screws non-
zero, is a possibility. In the latter case, the suspension has a
"center" of elasticity, and the axes of the screws are the prin-
cipal axes of elasticity.

From examination of the diagram of Fig. 39, we may conclude
that in the general case, the equation system does not decompose
into independent equations if translational displacements and ro-
tations of the body with respect to the individual axes are taken
as the sought coordinates. This is possible only in a particular
case - in the presence of a center of elasticity and for coinci-
dence of the principal central axes of inertia of the body with
the principal axes of elasticity.

The problem of vibrations of an elastically suspended body
consists in determination of the displacement screw # from a given
force screw R. This problem presents no fundamental difficulty,
and we shall not dwell on its analytical solution. Interest does
attach to certain properties of the elastically suspended body
system under consideration and to geometrical interpretation of
its vibrations - the positions of the axes of the displacement
screws as functions of the axes of the force screws acting on the
system.

In the event that the principal central axes of inertia of
the body are taken as the coordinate axes, the system of six dif-
ferential equations equivalent to the binor equation (7.33), writ-
ten in vector form after separation of the moment from the prin-
cipal part, will be
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Mf+ Co + Cf= P P.sin) (7.38)
Ti+Cs8+C 7,e=L=Lsn, I W1

where

N-M= o° , T=10 l~ot01. C,-loU C.o2 CU,00M0 0 isa C31 c I 3M~0 0il ! IC"~"

C, o . c,-o i. I, , C, l=edC cisc"2 "
o1 Ci ci I cac1csa

CI CU 2 Cgs C4 & 4 Cs5 C" cgs
C. 4 C C C.0C6C Cot "1,c,.

For PG=LO=0 , we have natural vibrations of the body. Since

the system has six degrees of freedom, there exists a total of
six nauural frequencies M(O•, to each of which there corresponds a
"natural screw" d(") = I(()sin)J, where 4(.ý) is an amplitude screw with
the coordinates

T,(,, P) (•, 6.4%), 6s',1, 6(,P), (7.39)

Dhe first three coordinates are the coordinates of its principal
vector, and the last three are the coordinates of the principal
moment with respect to the coordinate origin. To this natural
screw corresponds a force screw equivalent to the system of all
elementary inertial forces of a body vibrating along the natural
screw. The coordinates of the force screw are expressed as fol-
lows:

* a- 'm6;", - )bJn,, - - , (7.40 )
- ).'I•,.~,4 - A'lIyj,.

where the first three coordinates are the coordinates of the prin-
cipal vector of all forces, and the last three are the coordi-
nates of the principal moment of all forces with respect to the
coordinate origin.

Since the orthogonality condition

+ R69"PA'1+ ) + 1,4019V + ma8)V6l) +

+" +u Ma ... ,1., - 0 (7.41)

applies between the coordinates of the two natural screws corres-

ponding to the natural frequencies A and A ), and this condi-
tion will be equivalent to the condition of reciprocity of the
inertial force screw corresponding to the Uth vibration mode to
the kinematic screw correspondin to the vtmode if both sides

of (7.41) are multiplied by -X , we conclude from this that
the screw equivalent to the system of all elementary inertial
forces in vibrations of the body along one of the six natural
screws is reciprocal to all of the five remaining natural screws.

Relationships similar to those between the external-force
and displacement screws for static action of external forces ap-
ply for the external-force and displacement screws of a vibrating
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body.

Let a body be acted upon by an external force screw R' -
A sin It, and let the displacement screw be W= (D; sin)J, where Ro, x

are amplitude screws. It can be shown that for an external force
screw R"=Rosin t, reciprocal to *', the displacement screw *"
will be reciprocal to screw R'.

In fact, we may write the following relationship for the
screw coordinates on the basis of the reciprocity theorem:

(Pe6 + P'86 + P.X; + L. + LW, + L.) --

- ~' (m0 + m6,; + ma5X + I~~ + 0 + 18ia j)
= (P8. + P*8; + P.8* + Lh:, + L44 + L.) -

- I' (,.6". + ,"; + m8,' + I,4.4P +

The first terms in the parentheses in the left and right mem-
bers of Equality (7.42) are the relative moments of the external
force screw and the displacement screw of the solid body; the sec-
ond terms are the relative moments of the inertial-forces screw
(time derivative of the kinematic screw) and the displacement
screw. T_-ese relative moments are expressions for the displacement
work of the forces, with the left member of the equality express-
ing the work done by the first-state forces on displacements of
the second state, and the second expressing the work done by the
second-state forces on the displacements of the first state.

Since the work of the inertial forces in the right and left
members is the same for a given frequency A, the work of the ex-
ternal force screw of the first state on the displacement screw
of the second state is equal to the work of the external force
screw of the second state on the displacement screw of the first
state, i.e.,

MO (R'.Oj• - 'e' (R.4).

But the second work is zero, since by hypothesis screw R" is re-
ciprocal to screw 0", from which it follows that

M (W6(R'. -= O (7.43)

i.e., that screw ON is reciprocal to screw R'.

The property demonstrated above is perfectly identical with
the property of the system under static action of an external-
force screw, given equal frequencies of forced vibrations in the
first and second states. On the basis of this property, we can
find the amplitude screw of the body's displacements for a given
amplitude screw of the external forces, using the same scheme as
was described in our analysis of the statics of an elastically
suspended solid body (pages 141-142).

If screw R represents a linear combination

R -IRS +FRI (7.44)
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with va: ng real parameters X and 1, then its axis describes a
ruleu s,.rf'ace that constantly intersects a certain straight line,
the axis of the surface, as already discussed. The displacement
screw 0 of the solid body will also describe a surface

.0 = VV, + i+sO. (7.45)

where 0, and 02 are displacement screws corresponding to separate
actions of R, and R2 . If the axis of surface (7.45) coincides with
the axis of a spring, the force in this spring on variation ac-
cording to (7.44) will be zero. The following problem can be
posed: find a combination of screws of the type '7.44) (for exam-
ple, this might be a rotating eccentric) in which fcrces will not
arise in a given spring. Indeed, let 01 and 02 be any two dis-
placement screws of the body whose axes interse:ct the axis of the
given spring at right angles. Constructing the two force 3crews
Ri and R2 - the resultant forces in the springs - we obtain an
axis - the shortest line between the latter screws, which will be
intersected by any linear combination of these screws which
causes a displacement along the screw - the linear combination of
0i and 42 - that will not give rise to forces in the given spring.
We note that the parameters of screws 0I and 02 can be designated
arbitrarily, and that this enables us to select the most rational
combination of force screws.

Fig. 40

In conclusion, let us consider an example of three-dimen-
3ional system (Fig. 40). In this system, the elastic su.rpension
has three principal axes; the coefficient matrix of' Eqs. (7.26)
has the following structure:

CU 0 0 4s 0 0
0 to 0 0 ef 0
0 0 CM 0 0 C" (7.46)

co 0 O C;" 0'0
00 eft 0 0 t
0c 0to0 .0 l

The reduced coefficients are the squares of the partial fre-f
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quencies:
S== 2500, •-4•=35M, e. -u -4000,

4 -45M, = 5Moo, g = 6I=8000,
apesa

" •,, = - 17n2, • =- x = 1969, 1-3, = 2474.

The radii of inertia of the body are

ps = 0,5a, p, - a,. p , a= 10cm.

The equation system with Matrix (7.46) breaks up into three
independent pairs of equations with two unknowns, from which the
natural frequencies are found to be

1') = 42,28. ," : 52,10, 0)(I = 55,92,
X4) =- 81,93, •.0)r 91,01, ,(G) 104,27.

When the system is acted upon by a harmonic couple whose axis
is inclined equally to the axes z, y and x, the axis of the dis-
placement screw is determined from a system of equations with a
nonzero right member. As the frequency X of the forced vibrations

Fig. 41

varies from 0 to ., the axis of the screw describes a ruled sur-
face. The coordinates of the points of intersection oll this sur-
face with the plane zy are determined from the formulas

a.• 9.. (7.47)

where p is the parameter of the screw corresponding to the gen-
erator In question and is determined by the formula

SNS +. S& + k^•
(7.48)

Constructing vectors proportional to VJ9# and " at each
point in the horizontal plane uv, we obtain the horizontal compo-
aents of vectors lying on generatord of the surface (screw axes)
whose ends lie In a plane parallel to plane uv.
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Figure 41 shows curves in the plane uv and in a plane paral-
lel to it that represent the intersection of the ruled surface
described by the screw axis on variation of the forced-vibration
frequency from 0 to - with the two horizontal planes. The corres-
ponding vectors of the screw axes indicate the upper and lower
planes. Thus, on the basis of tnis drawing we may draw inferences
as to the nature of the surface described by the axis of the dis-
placement screw as the frequency varies.

Manu-
script Transliterated Symbols
Page
No.

142 ynp upr * uprugiy = elastic

1

ifi
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