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FOREWGRD

The method of screws made its appearance as a method of me-
chanics during the 'Seventies of the last century. The screw cal-
culus proper was formulated in 1ts definitive form during the
'Nineties, based on the ideas of W. Clifford, A.P. Kotel'nikov
and E, Study, and is a generalization of vector calculus. It 1s
based both on the general theory of screws and a special "trans-
fer principle," wnich establishes correspondence bet':een the free
vectors and the screws in such a way that if they are given a
specisal complex form, 211 relationships of the vector domain are
formally preserved for the screws. As a result, one "screw" equa-
tion with no differences in form from a vector equation 1is equiva-
lent not to three but to six scalar equations, which imparts par-
ticular compactness and clarity to all of the expressions.

Despite the long time that has elapsed since the origin of
screw calculus, there 1s still only a select group of persons to
whom 1t i1s familiar owing to the lack of the necessary literature
on the problem.

The author has made an attempt to set forth the basic propo-
sitions of screw calculus on the basis of the elementary apparatus
of modern vector algebra and to indicate certain of its applica-
tions. The book sets forth material from the theory of sliding
vectors, the algebra of complex numbers of the form a + wa® with
a special multiplier w that pcssesses the propeirty w! = 0, the
algebra of screws, fundamentals of the differential geomatry of
the ruled surface, which are necassary for the kinematics of
solids, the foundations of screw analysis, and, finaliy, certain
data from the classical theory of screws in its geometrical as-
pect, with indication of a number of applications in mechaniles,

The author's purpose was to popularize (if a bit late) screw
calculus among specialists in mechanics; it is hoped that a large
group of readers working in various fields of general and applled
mechanics will bacome conversant with 1it.

In compilation of the book, the work of A.P. Kotel'nikov and
D.N. Zeylinger was referred to nolt frequently, followed by the
papers of R. Ball, N. Zanchevskiy, E. Study, R, Mises, S.0. Kis-
1itsyn and other authors. Also included are certain reaults ob-
tained by the present author, some of which will dbe pudblished at
a later date.

The book is intended for the reader familiar with vector ale
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gebra and the baslcs of the theory of functions of a vector argu-
ment.

The author acknowledges his debt to Abram Mironovich Lopshits
and Rivol't Ivanovich Pimenov, who offered valuable advice on in-
dividual problems in the course of work on the book.
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INTRODUCTION

The theory of screws made its appearance at the beginning of
the last century following the appearance of the papers of Poin- .
sot, Chasles and Mébius, in which the theory of force couples and
infinitesimally small rotations was studied and the analogy be-
tween the force and a smgll rotation and, as a corollary, the
analogy of their addition, were established for the first time.
The work of these authors established the equivalence of longi-
tudinal displacement of a body to screw displacement, and laid
the foundations for study of kinematics and statics; the notion of
the screw, which was subsequently developed further in the papers
of Plucker, was also formulated.

Pliicker studied a ruled space, 1.e., a space whose element
is a straight line. To describe the line, Pliicker introduced spe-
cial coordinates (Pliicker coordinates), which in the general case
define a screw; apart from the screw, he also considered other
figures of linear geometry (surfaces, congruences, complexes).

G AN L RS R e

As the combination of a vector and a couple whose plane 18
perpendicular to the vector, the screw is a geometrical figure
that describes both arbitrary displacement of a solid body and an
arbitrary system of forces acting on the body. In the study of
motion, the screw as displacement is in many cases the most natu-
ral generalized displacement on which operations are performed
directly; at the same time, the force screw is the corresponding
generalized force. This gives rise to the method of mechanlc. in
which all displaccments and their derivatives as well as the
forces are expressed by screws, and which yields results that can
be treated in the language of screws.

sk . i, <

Beginning in 1870, the theory of screws was studled compre-
hensively in the papers of R. Ball, who pudblished the monumental
work [1] in 18,6.

Examining arbitrary diasplacements of the dody, Ball reduces
them to a combination of certain base screws, attaining clarity
in the geometrical interpretation and good mechanical palpadility
in the results. In a story that he wrote [2] to popularize the es-
sentials of the method of screws, Ball very cleverly juxtaposes
the method of screws to the cartesian-coordinate method. The story
runs as follows: a certain technical commission was given the task
of determining the dynamic properties of a s0lid body (the housing
of a machine), which was secured to its base in a rather compli-
cated fashion. For this purpose, it was first necessary to ascer-

-3 -
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tain the number of degrees of freedom of the body. One of the mem-
bers of the commission was a Cartesian. After a long and laborious
study of the mobility of the body with the aid of his "tested" co-
ordinate trihedron, he eventually arrived at a result that was
summed up in six numbers expressed in degrees and minutes of are
and inches and providing a numerical expression for the possible
rotational and translational motions along the coordinate axes;
however, this restvlt told nothing of the essential nature of the
motion and won disapproving remarks from the president of the com-
mission. At the same time, another member of the commission, one
Helix, making use of the fact that any motion of a body 1s equiva-
lent to a screw motion, established, by comparatively simple
matching of screws with nuts of the appropriate pitch, several
possible variants of "screwing down," 1.e., spatial motions of

the body, thus giving a clear interpretation of the motion inde-
pendently of the coordinate system.

In the Russian literature, Ball's theory found its reflection
in the work of I.0. Zziuchevskiy [3], who related the theory of
screws with the theory of the ruled complex.

Several years before the appearance of Ball's classical work,

W. Clifford [4] had given a highly interesting description of
screws using special complex numbers. It must be remembered that
vector calculus was only developing during this perlod, and had
not at that time acquired the simple form in which we know it to-
day. Vector calculus was approached progressively from various di-
rections: on the one hand, with the ald of geometrical concep-~
tions, and, on the other, with the ald of specially invented "hy-
percomplex™ numbers or "quaternions," which consist of a scalar
part and a part that contains three more quantities of a different
nature. Clifford introduced the multiplier w, whose square is
equal to zero, as well as complex numbers that consist of a real

" number and the product of a real number by w. If the components
of the quaternion are considered as complex rather than real in
the sense Just indicated, the quaternions become biquaternions,
which have the same relation to the theory of screws as quanter-
nions have to ordinary vector theory. Clifford did not develop the
theory of screws in its applications to mechanies; hls subsequent
research was concerned with application of the operation that he
had introd.ced and the biquaternions to noneuclidian geometry.

Tr<: monumental work of A.P. Kotel'nikov [5] in which screw
calculus proper was constructed for the first time made its ap-
pearance in 1865, This study used the sbove complex numbers with
the multiplier w, by means of which a vector 1s transformed into
a sorew. The principal service rendered by Kotel'nikov consisted
in the fact that for the first time he formulated in its complete
form the special "transfer principle" on whose basis all opera-
tions of screw calculus can be constructed in exact correspondence
with operations of vector calculus i1f all real quantities in the
latter are replaced by ccuuplex quantities with the multiplier-.w..
I’s a result, it becomes possible to substitute not three equa-
tions, as in the case of vector calculus, but six scalar equa-
tions for one equation, and the solutions of rather complex probv-
lems become more compact.




Kotel'nikov gave an even broader geometrical interpretation
to the transfer principle that he had formulated — the principle
establishes correspondence between geometrical figures 1n spaces
with different numbers of dimensions, and, in particular, between
objects of point and line spaces, and enables us to study the ge-
ometry of one space with the aid of the geometry of another.

The major work of the prominent German geometrician E. Study

{6] on the geometrical theory of screws appeared in its first edi-
tiori in 1901 and its second in 1903. In this volume, which runs

to more than 600 pages, about 50 are devoted to exposition of a
method of describing screws and linear spaces with the aid of com-
plex numbers with the multiplier w (Study calls them dual numbers),
and a transfer principle similar to that mentioned earlier is for-
mulated. In the second edition, in a short historical note obvi-
ously occasioned by the appearance cf a number of papers on the
same problem, the author makes an attempt to establish his pri-
ority in the application of complex numbers to screws. He cltes
his work on the applicatlion of complex numbers in the linear ge-
ometry of euclidian and noneuclidian spaces, but nothing is said
concerning his formulation at some earlier time of the actual
transfer principle. The following references are made in this
brief outline: to a short paper of F. Schilling [7] dating from
1891, in which formulas of spherical trigonometry are first de-
rived for complex angles, and then to the above-mentioned work by
A.P. Kotel'nikov [5], which Study cites from a short abstract in
"Yortschritte der Mathematik," 1896, ir connection with which
nothing 1s sald of Kotel'nikov's formulation of the transfer prin-
_ciple, and also to an 1896 paper of R. Saussure [8], where complex
numbers are used, although, in his opinion, not quite correctly.
Incidentally, Saussure's paper actually does submit the idea of
applying a transfer principle to one problem of the displacements
of a solid body.

]

- In his later work [9] (published posthumously in 1950), A.P.
Kotel'nikov makes the following remark: "“The transfer principle in
all its generality was discovered and formulated independently
and, apparently, simultaneously by Study and myself. It must be
supposed that the transfer principle was already known to Study
when he wrote... his paper "Ueber neue Darstellung der Kréfte" [A
New Representation of Forces].® But he formulated this principle
quite definitely in his paper "Ueber Nicht-Euklidische und Linien-
geometrie" [Noneuclidian and Linear Geometry]."¥#% The first of
these papers dates from 1899 and, as can be seen from its text,
the transfer principle has not yet been formulated. As for the
second paper, which the author of the present volume hes not been
able to obtain, it was published in 1900 and, in all probabllity,
is the work in which E. Study first gave his formulation of the
transfer principle.

Note should be taken of the well-known work of R. Mises,
which appeared in the form of two articles in 1924 [12] and [13],
which sets forth the general part and applications of the so-
called "motor" calculus ("motor" is a combination of the words
"moment" and "vector," i.e., the screw). In this work, the author
first proceeds from geometrical descrliption of the motor using
two straight lines and then introduces six coordinates of the mo-
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tor and operations on the motors ~ scalar and motor multiplica-
tion. This 1s followed by the introduction of motor dyads and af-
fine-transformation matrices. In motor calculus, as in screw cal-
culus, analogies with vector operations are discernible. However,
the transfer principle was not reflected in the work of Mises.
Mises examined applications to the dynamics of the solid body.

€lastiecity theory, the structural mechanics of rod sydtems, fluld
dynamics, etc.

Soon after A.P. Kotel'nikov (beginning in 1897), D.N. Zey-
linger began to develop the notions of screw calculus; in 1934,
he published his definitive work [14], which gives the results of
extensive investigations 1in linear geometry obtained by screw cal-
culus and indicates interesting applications to kinematics. Some
information on application of complex numbers with the multiplier
w in linear geometry 1s given in the book by Study's student W.
Blaschke [15]; a description of complex vectors will also be found
in M. Lagalli's book [16].

Unfortunately, apart from D.N. Zeylinger, a contemporary and
adherent of A.P. Kotel'nikov, and certain other geometricians, it
can be sald that screw calculus remained almost totally unrecog-
nized over a span of forty years. This 1s explained in large part
by the extreme rarity of the published works of A.P. Kotel'nikov,
which came out at Kazan! at the end of the last century and have
for the most part been lost; the work of Study, as an obscure ge-
ometrical treatise, also falled to attract the notice of those
who might have used the ildeas embodied in it. Another highly prob-
‘able factor 1s that at the beginning of this century, many inves-
tigators were attempting to adapt various concepts and methods of
geometry for the most part to the developing mechanies of continu-
ous media, while screw calculus, which was associated with linear
geometry, was not suitable for description of the ordinary con-
tinuous medium; the need to use screw calculus for the mechanics
- of the solid developed much later.

Only in 1937 did papers begin to appear that might be re-
garded as a continuation of the theory of screw calculus. S.G.
Kislitsyn develuped "screw affinors" [17], which represent an ex-
tension of the operators of affine geometry to the screw space.
Complex numbers with the multiplier w serve as elements of the
matrices of the corresponding affine transformation.

Finally, in 1947, studies of applications of screw calculus
to the problems of technical mechanics began to appear (the the-
ory of hinge mechanisms, the theory of gear meshing). These in-
clude papers by the author of the present book [18?, [19], [20],
by S.0. Kislitsyn [21], [22], [23], [24], by F.L. Litvin (25] and
certain others.

. Among recent papers on the application of screw theory to
investigation of mechanisms, we might clte that of A. Yang and F.
Freidenstein [26].

Independently of screw calculus, the method of screws had

been applied to the theory of mechanisms somewhat earlier, in
1940, by Ya.B. Shor and the present author [27], [28].

-6 -
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Thus, the notions of screw calculus have been accorded a cer-
tain amount of recognition in the literature and have already be-
gun to find applications. Nevertheless, the number of investiga-
tors working in this area 1is quite limited, and for the most part
the screw calculus remains unknown to an enormous number of per-
sons concerned with the mechanics of the solid body and the con-
tinuous medium, and even more so to engineers working in industry.
It can nevertheless be assumed that the recent appearance of many
papers on application of the screw calculus will contribute sub-
stantlally to popularization of this calculus. The author hopes
that the present book will also play a part in this trend.

Manu-
seript
Page Footnotes
No.
5% [10] in References 1list.
% {11] in References 1list.
[ ]
®
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Chapter 1
THE SLIDING VECTOR. THE MOTOR AND THE SCREW

§1. Moment of a Vector with Respect to a Point. The Sliding Vec-
tor. The Sliding-Vector System. The Principal Vector and Prin-
cipal Moment of the System

We shall assume that the reader is famillar with the defini-
tion of the vector, as well as all operations on free vectors as
taught in conventional courses in vector algebra.

Let us recall certaln information on the moment of a vector
with respect to a polnt and on systems of sliding vectors. The mo-
ment r) of & vector r=AB, where A 1s a glven origin and B is the
end of the vector, with respect to some point 0 1s the vector

‘equal to the dot product of the radius vector p = dz by the given

vector, i.e.,
ry=pxr. (1.1)

By definition, the moment is perpendicular to the plane of trian-
gle 0OAB and points in the direction from which the circuit of the
triangle in the direction of the vector appears to be counter-
clockwise, and that the magnitude of the moment 1s equal to twice
the area of trlangie 048B.

It also follows from the definition of the moment that the
moment of a vector with respect to any point will not change 1f
the vector 1s displaced along its line in an arblitrary fashlon.

Two vectors which are equal and whose moments with respect
to any point of the space are also equal, are sald to be equiva-
lent.

Thus, displacing a vector to any position along 1ts line, we
obtain equivalent vectors.

In many problems of the mechanics of the solid body, the con-
ditions of the problem remain in force if the vectors represent-
ing various quantities are replaced by equivalent vectors. Vectors
that are defined accurate to equivalence, 1.e.,, vectors that can
be displaced along the lines of their action, are known as sliding
vectors. As an example of a sliding vector, we might cite the vec-
tor representing the angular veloclty of a solid body. Its posi-
tion in space 1s characterized by the position of the body's axis

-8 -




of revolution; at the same time, it may be placed anywhere we
,,ease on this axis.

This book will consider sliding vectors and systems of slid-

king vectors.

The moment of a vector with respect to a point 0’ 1is ei-
pressed in terms of the moment with respect to point 0 as follows:

f=p Xr=(0+p) Xr=rbtG0xr (1.2)

It follows from Formula (1.2) that for two equal vectors to
be equivalent, it 1s sufficient that their moments with respect
to a given point in the space be equal.

Let there be given an arbltrary system of sliding vectors
fury .. ra- Let us take an arbltrary point 0 of the space and re-
late two vectors to it: the principal vector of the system, which
is the geometrical sum of all vectors of the system

e -
= ’ (1.3)
r kgl Ta ‘
and the principal moment of the system with respect to 6, which

is equal to the geometrical sum of thé moments of all sliding vec=
tors of the system with respect to tae point

'?3=,§f3.=,§‘pax'.- (1.4)

where Pupu ... pa are the radius vectors of the initial points of
the vectors from 0.

The relation between the principal moment of a system of
sliding vectors with respect to a new point 0' and the principal
moment of this same system with respect to point 0 is as follows:

8 . .
'3‘ ".g‘(""")xr.“x’.x"""xzr‘u
-'%""xr. (1.5)
where p 1s the vector connecting point 0’ to point 0.

For a system of sliding vectors, the scalar product of the
principal vector by the principal moment taken with respect to an
arbitrary point 0 of the space is independent of selection of this
point. Actually, on scalar multiplication of (1.3) and (1.5) we
obtain for any two points 0 and 0’

Prymrrytrip X ) =rr
The scalar product of the principal vector by the principal
moment of the sliding-vector system is known as the invariant of
the system and denoted by the letter J.

It follows from the above that on any change in the point 0,
only that component of the principal moment that is perpendicular

-9 -
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to the principal vector can change, while the component parallel
to the principal vector remains unéhanged. P

The following cases may present themselves as we examine sys-
tems of sliding vectors:

1) r=£0, r*:40, J<-0;

2) r:=0, r*.4=0; . :
3) f=f=0, J=f°l‘.==0; (1‘6)
4)’.-‘“'0' r.'—'~0.

In the first case, the principal vector and principal moment
are arbitrary; in the second case the principal vector is zero; in
the third case the principal moment of the system with respect to
any point 1s perpendicular to the principal vector; the fourth
case characterlzes the null system of vectors,

§2. Equivalent Vector System. The Vector Pafr

We shall call two systems of sliding vectors equivalent 1if
their principal vectors are equal and the principal moments with
respect to any point of the space are also equal.

It follows from Formula (1.5) that if the principal vectors
of two systems are equal and the principal moments with respect
to any single point of the space are also equal, the nrioments with
respect to any point of the space will also be equal in these sys-

tems.

Let us examine an elementa:y system — a palr of vectors. The

-
system of two sliding vectors r,=A4AB and 7 ==CD forms a pair 1if
..the figure ABCD is a parallelogram. The distance between llnes AB

and ¢D 1s the arm of the pair, while the area of ABCD is the mo-
ment of the pair. The moment of the pair 1s represented by a vec-
tor perpendicular to the plane of ABCD and pointing in the direc-
tion from which the point describing the perimeter of ABCD appears
to be moving counterclockwise. The palr represents the second of
the cases of the system that were enumerated earlier (1.6).

A pair whose arm is zero is known as a null pair. It corres-
ponds to the fourth of the cases of (1.6).

Obviously, the principal vector of a pair 1s zero. Hence the
principal moment of the pair, on the basis of (1.5), will be the
same for all points of the space. This principal moment 1s equal
to the moment of the pair.

It follows from equality of the principal vector to zero and
equality of the moments of the pair for any point of the space
that all pairs whose moments are equal are equivalent. Equivalence
is not violated if the pair 1s transferred and changed in any way
that preserves the direction and magnitude of 1ts moment, 1l.e.,
1f it 1s transferred with its plane left parallel Lo itself, and
if th» absolute value of lts vector and the arm are changed while

preserving the same product.
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The combination of two pairs is equivalent to zero 1if their
moments have the same absolute value, ar2 parallel, and point in
opposite directions.

It follows from the fact that the same value of moment cor-
responds to equivalent pairs that we may consider the moment of
any palr instead of that pair. Assigning the moment of a palr de-
fines any palr equivalent to the given palr, and therefore re-
places assignment of the pair with an accuracy equal to that of
equivalence.

§3. Reduction of a System of Sliding Vectors to an Elementary
System

There exist elementary geometrical operations by means of
which one system of sliding vectors can be replaced by another
system equivalent to 1t, in particular by an elementary system
consisting of the least number of vectors. These operations are
as fcllows:. ' - : ' ' - o

a) transfer of the vector along its line;
t) adding or dropping two equal and cpposed vectors;

c) replacement of several vectors passing through the same
poirt by their geometrical sum, which passes through the same

_point;

d) replacement of one vector by its components, obtained by
the parallelogram law and passing, together with it, through one
point.

The above operations do not change the principal vector and
principal moment of the system; as a result of applying them,
therefore, we obtain a system equivalent to the given system.

Let us examine the transfer of a sliding vector onto a line
parallel to its own line, Let » be a sliding vector on line a. On
the parallel line a’ we construct a null pair consisting of two
vectors »’ and r”" with a common origin at point 0, with the former
equal to the assigned vector r. In other words, we add to the
glven system two equal and opposed vectors, thus performing ele-
mentary operation "b" of the above list. The ncw system, which is
equivalent to the sliding vector », will consist of vectors »r, »’
and »” and will represent the combination: »’, pair (»r, »").

Thus, the vector # on line a is equivalent to the comblnation
of the equal vector »’ on line a’, which runs parallel to line a,
and the pair (», »”), whose moment i1s equal to the moment of vec-
tor r with respect to point 0. Since the given pair or the pair
equivalent to it 1s defined by its moment, the combination of vec-
tor r'’ on line a’' and the pair (», #") is replaced by the combina-
tion of vector »’' on line a' and the moment #* of vector » with
respect to point 0 on line a”.

It follows from this that a sliding vector 1s equivalent to
an clementary system composed of a vector originating from the

- 11 -
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point with respect to which the moment is taken and the moment.
For this vector-equivalent system, it 1s always the case tnat
r.’o 13 0,

The operatlon of equivalent substitution of a sliding vector
by the above eiementary system at a point is known as reduction
of the sliding vector to this point.

Let us consider reduction of a systém of sliding vectors 1n
the general .case (the first case among those listed). Let there
be given a system of sliding vectors ryr. ... fa. Let us select a
certain point of space 0 and reduce each of the vectors of the
system to this point. We shall obtain a system of vectors 7u.r,...
cees P with a common origin at point 0 and equal to the given

sliding vectors, and a system of moments’} 7} ..., r} equal to the
moments of the given sliding vectors with respect to 0; the mo-

ments assign the corresponding pairs of the reduction.

Adding vectors and determining the sum
f=h+n¥;-+m

and adding the moments and determining the sum
Pt

we arrive at the result that the system of assigned sliding vec-
tors 1s equivalent to a vector equal to », which, 1in accordance
with operation "c" passes through point 0, and a pair with moment
»#°, since the latter determines this pair or its equivalent.

The vector r is the principal vector and the moment »° the
principal moment of the system with respect to point 0.

In the general case, the vectors r and r? form an arbitrary
angle. Generally speaking, therefore, for a system of vectors

rort < 0.

\\Ir~the point of reduction is changed, the moment will change
in accordance with Formula (1.5), but the component of the moment
in the direction of the principal vector will remain unchanged;
only the component perpendicular to the principal vector will
change. There exist points of reduction for which the system prin-

‘cipal moment is colinear with the system principal vector.

Let the principal vector be », and let the moment be rg and

not colinear with » for a certain reduction point 0. Wg pass a
straight line through point 0 perpendicular to » and ) and find

a point ¢ on this line for which the radius vector
pxr

E’OW.——'-.—_-.

Taklng C as the new point of reduction, we find the corres-
ponding moment from Formula (1.5):

.~
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from which 1t 1s seen that the moment r 1s colinear with the

princlipal vector r. In addition to point ¢, there exists an innu-
merable set of points that possess the same property. Indeed, for
any point €' lying with point ¢ on a straight line parallel to r,
we shall have

e =rg-t-Ar xr-=rg.

A straight line for any point of which the principal moment
is colinear to the principal vector 1s known as the central axis
of a system of sliding vectors.

On the basis of application of Formula (1.5), we may arrive
at the conclusion that for any point not lying on the central
axis, the principal moment will not be colinear to the principsal
vector. The central axis of the system is the only stralght 11ne
that satisfies the condition posed above.

The distribution of the principal moments in the space is
shown in Fig. 1 as a function of the position of the reduction

points.

In a particular case of the system, 1t may be found that the
principal moment 1is perpendicular to the princilipal vector for any
point of the space. ThenJ=-r.r*=0 and we have the third of the
cases listed above (1.6). On reducing the system to the central

axis on the basis of (1.7), we find that

r® = 0 for points of the central axis. The
e system will be equivalent to one sliding
£ . vector, and the central axis will be the
R~ - VO straight line on which this vector lies.

4T ~
For example, a system of sliding vec-
A tors passing through one point and a system
Pl

©
Y

of sliding vectors lying in the same plane
reduce to this case, provided that r--0.

When a system of sliding vectors 1s re-
Fig. 1 duced to one equivalent sliding vector, the
) latter 18 known as the resultant vector or
simply the resultant of the system in ques-
tion.

Let us consider another method of reducing a system of slid-
ing vectors fuf: ..., fa. We take an arbitrary plane q that 1s paral-
lel to none of the assigned vectors and consider the points of in-
tersection AuAy ..., As of this plane with the lines on which the
vectors lie. We then take an arbitrary line a that is not parallel
to plane g and is parallel to none of the given vectors. At each
of the polints Ak, we substitute the sliding vector ry by 1ts two

components according to the parallelogram law ({elementary opera-
tion "d"), one of which, 8> lies in plane q, while the other, ¢ %

is parallel to line a. Instead of the glven system of sliding vec-
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tors, we shall have two systems of sliding vectors $§.S.-... S and
{,t.....,t,. The first of these is a two-dimensional system equiva-
lent to one resultant 8 in plane g (provided that it is not equiv-
alent to a pair), while the second is a system of parallel vectors,
also equivalent to one resultant ¢ (provided that, like the first,
it 1s not equivalent to a pair). These two resultants present a
system equivalent to the given system. In the general case, they
lie on crossed lines. Thus, an arbitrary system of sliding vectors
is equivalent to a system consisting of two sliding vectors lying
on lines that, generally speaking, do not intersect, or, in other
words, to a vector cross. Any system can be reduced to a vector
cross by an innumerable number of methods.

§4. The Motor and the Screw

The geometric figure-equlvalent of a vector system, repre-
sented for any point of the space by the principal vector and
principal moment of the system with respect to this point, 1s
known as a motor (combination of the words "moment" and "vector").
For simplicity, we shall henceforth use the term motor for the
combination of a vector and a moment (r, 7°), referred to some single
point, assuming that the origins of » and r° are at this point.

If the system of sliding vectors is reduced to a point on the
central axis, the principal moment will be colinear with the prin-
cipal vector.

A motor (7, 7) whose moment r° is colinear to the vector is
known as a screw.

The 1line .on which » lies 18 called the axls of the screw. In
other words, a screw 1s a system consisting of a sliding vector »
and a moment »° colinear with it.

It follows from all of the above that in the general case, a
system of sliding vectors is equivalent to a screw. The axis of
the screw 1s a central axis of the system; the vector of the
screw 1s the principal vector; the moment of the screw 1s the
principal moment of the system with respect to an arbitrary point
on the central axis.

Since the vectors » and r° are colinear, 7°=pr, where p is a
scalar multiplier. This multiplier is called the garameter of the
screw. The quantity p will be positive if » and r° point in the
same direction and negative 1f they point in opposite directions.

Any sliding vector is, at the same time, a screw with zero
parameter, and the straight line on which it lies 1s the axis of
this screw; any moment is a screw with an inflnlte parameter whose
axls may be any straight line parallel to it. Henceforth we shall
use the term "screw" for screws with arbitrary parameters, includ-
ing the zero-parameter screw, i.e., the sliding vector.

A zero-parameter screw whose vector is unity will be called
a unit screw (same as unit sliding vector).

Serews will be denoted by upper-case boldface letters.

-1l -
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A screw R fully defines a motor (~,7) for any point in space;
this motor, in turn, uniquely defines the screw.

Replacing a screw by the equivalent motor at point 0 is
known as reduction of the screw to point 0; the point 0 to which
the motor 1s referred will be called the reduction point.

The moment ”3 is the moment of the screw with respect to
point 0. '

§5. Kinematic Screw and Force Screw

Since the theory of screws has direct applications in me-
chanlcs, it will be convenient to make reference here to the kine-
matic and force interpretations of the screw.

The most general case of displacement of a solid body in
space reduces to a screw displacement characterized by the axis,
the absolute value of the principal vector and the parameter. A
kinematic screw 1s a screw that characterizes the dlsplacement of
a body. The axis of this screw coincldes with the arxis of the
screw displacement, the modulus of the principal vector expresses
the magnitude of the body's angle of rotation, and the parameter
gives the ratio of the translational displacement (slipg parallel
to the axis to the angle of rotation.

If the screw displacement 1s infinitesimal, its referral to
a time increment results in an instantaneous or velocity screw,
in which the vector 1s the angular velocity of the body and the

-moment 1its translational velocity. In this case, the velocity of

an arbitrary polnt of the body is represented by the moment of the
screw wlth respect to this point.

The most general system of forces acting on a body can be re-
duced to a force screw by the rules of reduction of a vector sys-
tem to a screw, if the vectors represent forces. The moment of a
system of forces with respect to any point of the space is the mo-
ment of the equivalent force screw with respect to this point, or,

~'what. 1s the same thing,.the moment obtained by reduction of the

force screw to this point.
§6. Relative Moment of Two Screws

The sum of the summands: a) the projections of the vector of
a first screw onto the axis of the moment of a second screw with
respect to some point, multiplied by the moment of the second,
and b) the projections of the vector of the second screw onto the
axls of the moment of the first with respect to the same point,
multiplied by the moment of the first, 1is known as the relative

moment of two screws.

If a force screw R acts upon a body performing an elementary
displacement characterized by a kinematic screw U, then the work
performed by the force screw on the displacement screw will be
equal to the relative moment of the force and kinematic screws R

and U.
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This familiar premise can easily be proven if we reduce both-
screws to the same point and then examine the sum of the works of
tne force-screw principal vector on translational displacement of

the point and of the force-screw principal moment on angular dis-
placement of the body.
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Chapter 2

THE MULTIPLIER » AND INTRODUCTION OF COMPLEX VECTORS.
COMPLEX NUMBERS OF THE FORM a + wa®. ALGEBRA AND ANALYSIS
IN THE DOMAIN OF THESE COMPLEX NUMBERS

RIrT ey

§1. The Multiplier w. The Complex Vector

As we have already stated, the direct definition of a screw
by its axis, vector and parameter is replaced by definition of a
motor referred to a point of reduction and representing the com- ;
bination of a vector and a moment. By this substitution we gain e
an advantage in that operation directly on the screw 1s replaced P
"by operation on vectors and reduces to a problem of ordinary vec- P
tor algebra. '

Clifford introduced a highly original and important operation
by means of which a motor (r,/%) is expressed formally in the form
of the complex vector '

r+ om,

where w 1s a multiplier whose square 18 equal to zero.

If we operate with a complex vector of this kind as with a
formal sum, then w will play the part of a number possessing the
property w® = 0,

Introduction of the complex vector with this multiplier w
has interesting consequences. Firatly, the results of operations i
on the motors are found to be independent of the reduction point ;
for which the motor was obtained and, secondly, the "vector" part B
of the result of an operation on any motor is found equal to the
result of the corresponding operation on the vector of the motor.

" Since we shall employ the conception of the motor as a com-
. plex vector in the exposition to follow, it will be necessary at
this point to consider the general properties of complex numbers
of the form a + wa®, where w® = 0.

! §2. Operations on Complex Numbers of the Form a+wa’. Algebra and
Analysis ‘

We shall use upper-case letter symbois to denote complex num=-
bers of the form under consideration. Let us examine the complex
number
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A=ai o,

where w? = 0. The number a is known as the principal part and the
number o® = wmou (4) 1s the moment part of the complex number 4. If

= 0, then the number is sald to be real. The ratio o*: a-aP(A)
1s known as the parameter of the number 4 (for a # 0).

Introducing the parameter P(a), we can present the complex
number in the form

A=a(l +oL)=all +oP (). (2.1)
If P{a) = 0, then the number 1s real.

In defining operations on complex numbers, we shall use,
firatly, the invariable principle according to which the equality
A =a+ o = 0means that the equalities a = 0 and q° = 0 are satis-
fied simultaneously, and, secondly, we shall consider each complex

number formally as a sum and the operation w as a number possess-
ing the formal property w® = C.

Addition and subtraction of two of the complex numbers does

not differ from addition and subtraction of ordinary complex num-
bers: ,

ALB=(a1b)+o@t

(2.2)
For multiplication, we shall use the formula |
AB = (a + wa) (b -+ 06%) = ab + & (ab* + ba). (2.3)
For division (with b ¥ 0) we obtain
, , n ,
4. -r+ LT 2.

The operations of raising to a power and extracting a root
will ke carried out by the formulas.

A = (a4 0"’ -a‘+una’a““
ﬂ..v’a o - a4 0
_ ]

. (aR0). (2.5)

~1

_To define a function of the complex variable X *= x + ox* , 1t
will be expedient to represent this function also in the form of
a complex variable:

F(X) = F (x + oxf = [ (x, x*) 1 og (%, ¥, (2.6)

where ! (:' x°) and.:(x.x') are real functions of the two real variables
2 and 2°.

Here and below, it will be convenient to consider differen-
tiable functions. For this purpose, it will be necessary to intro-
duce a requirement similar to that introduced in the conventional
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theory of functions of the complex variable for analytic func-
tions, namely, that the derivative, i.e., the limit of the ratio
of the increment of the funetion AF(X) to the increment AX of the
complex varilable X as AX —0, is independent of the ratio As%: Ax.

Writing the expression for the derivative, we have

= ) + 0dgix, )
dx+0dy

- (% + o) rola+ (5 - L)% -
~EEY] @

To satisfy the above condition, it is necessary to set the
multipliers before dz®:dz equal to zero in Expression (2.7). This
will give the relationships'

9,
%?—0. 5"5.'.‘"%- (2.8)

It follows from the first of these that the funution f is a func-
tion only of the variable =z, 1.e.,

.29 = (2, (2.9)

while the second implies the following expression for the func-
tion g:

z'(x.x')=x-§§+r‘(x), o (2.10)

where f°(z) is a certain function of =z.

Consequently, the general expression ror a function of the
complex variable .

X=x+ax
that satisfies the condition formulated will be

F(X)= /(x)+w[x' +/'(x)] , (2.11)

For X real, i.e., for a2 = 0, the function must have the expres-

sion
F (X) = [ (x) + of* (2).

(2.12)

We shall assume that in the general case, the function of the
complex variable X == x4 ox® depends both on the complex variable X
and on complex parameters 4, B 3 ++. &nd define it with the aid
of a Taylor series in which wa takes the part of the increment
and all terms containing w in powers higher than the first are
set equal to zero. Thus,
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F(X,A,B,C,..)=F(x,abc..)+
+m(ﬂ.gg.*.aﬂ%f,'.bo_g;_l,co_g;_{_,“). (2.13)
Comparing (2.11) and (2.13), we find

f(x)” F X, 4, bl C,...). } (Zol"‘)

Pl) =+ 03 4ol y .

Thus, the principal part of the function is equal to a func-
tion of the principal parts of the quantities on which it depends.

From Formulas (2.11) and (2.13), we recognize an important
fact — namely, that the function of the complex variable x - ox°

‘18 fully defined by a function of the principal part =.

It follows from this that 1f the principal parts f and ¢ of
two functions F and ¢ are identically equal, the functions them-
selves are also equal. Indeed, the equality P =¢" follows on the
basis of (2.14) from the equality f = ¢, and we may conclude on
the basis of (2.11) that

F = 0.

An important theorem follows from the above.

Theorem 1. All identities pertaining to differentiable func-
tions are preserved in the domain of complex quantitieés of the
form a + og® .

For the function ¢% we obtain the expression

X = et = or ot %t = e (1 + wa).
On the other hand,
eX oz grien® o grphtt,
from which it follows that
o =1+ of, (2.15)
or, in general, for any number p
| o = | + 0p. (2.15')

Comparison with Formula (2.1) indicates that any complex number 4
has the form

A:=a | m°-=a(| + w—‘f—)ua(l +op) = ae%,  p =-:-°-

It follows from this formula that
P(ABCD ...) = P(A)1-P(B)+P(C)-+P(D)4...
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i.e., that the parameter of the product is equal to the sum of the
parameters of the cofactors, while the parameter ~f a fraction is
equal to the difference between the parameters of the numerator

and the denominator.

Since the parameter of the number wa 1s «, the theorems de-
rived are not applicable to complex numbers that do not have a
principal part. As a consequence, the modulus ~f the number's
principal part may be taken as the modulus of the number, and
hence complex numbers with the modulus zero are singularities.

For functions of fhe complex argument X we obtain

sinX==sinx+6x°cosx. P(sinX)= xfcigx, )
cos X = cosx—-mx"smx, P (cos X) -—-—-x"tgx.

th-tgx+-—— P(th) im"o“. .
InX = lnx+n§ P(InX)—-xl“.

sin AX = sinax 4 @ (x*a 4 a*x)cos ax,
eMB = gAeB  olX — cos X -+ isin X,
sint X 4 ¢os* X = |

(2.16)

and so forth,.

On the basis of (2.7) and Relationships (2.8), (2.9) and
(2.10), we obtain an expression for the derivative of the func-

tion F(X). We have _
dF(X) o :
G = el d+rm)=-

-g+oirk+%). (2.17)

It is seen from this formula that differentiation with respect to
the complex variable X reduces to differentiation with respect to

the real variable az.

If a certain function 9 (%), which is the principal part of
¢(Xx), 1s 1denticelly equal to 3f/dx, then this will imply that
the function ¢(z) is equal to dF/dX. Indeed, differentiating
Equality (2.14) with respect to =z, we shall have on the basis of

the equality 9= 01/0-\#

LI T Ry T
+v~u--z ---r«v'(i%).

from which, substituting in (2.17),

ax""“ + "[" 6‘( ;) *‘:':]
~vto[r R row]. e

e . A Wb g PO e i i
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Finally, if F 1s a given function of the complex variable X and
the complex parameters 4, B, ¢, ..., then a function G of the
same quantities that identically satisfies the equation

dG = F dX, (2.18)
will be called the integral of PdX and written as follows:
6=(Fax-gto[#E+oFroP+..]. (2.19)
It follows from (2.19) that
g () = ff @ dx.
Irm=¢b(X.A,B,...), with ¢=4g i.e., the principal part of the
function ¢ 1s equal to the integral of the princlpal part of the
r function P, the function 1itself is equal to the integral of F.

Indeed, substituting the function ¢ in (2.19) instead of g,

ﬁ we obtain
| G=q+0[x’%+a‘-§+b‘§~!~--]=¢.

On the basis of the above, we can formulate the following theorem.

Theorem 2. All theorems of differential and integral caloulue
are preserved in the domain of ocomplex numbers of the forma - e,

For example, for the complex quantities

W) mx & ey, dnX = h, )
CrX o cos X, 48X o _sinx, ' (2.20)

A .
§x4ax = X5+ € feos(AX)ax #2400 4

and so forth.

We note the following peculiarities in the calculus of the
complex numbers: a) the product of complex numbers can be equal
to gero not only when one of the cofactors is equal to gzero, but
also when the principal parts of the two cofactors are equal to
gero; thus wowd=0; b) division by we is impossible for any a.

§3. Algedbraic Equations

Let us dwell on certain properties and singularities of al-
gebraic equations with complex coefficlents.

~ Let the coefficients in the nth-degree equation ‘
F(X) mAX®4 BXo=) FCX*+ ...+ RX +8 =0 (2.21)




be complex numbers:

A=a+0a®B=b+dC=c+t+od,...,
R=r+orS=s+o0s (2.22)

Generally speaking, the roots of such an equation are complex num-
bers of the same form.

If we replace the coefficients in Eq. (2.21) by their complex
expressions (2.22) and X by the complex number x4 wx*, we obtain two
equations on separation of the principal and moment parts:

axt + bxr— L ext 2k L b px b 5= 0, (2.23)
lnax*t 4 (n— 1) bart 4 ... 4 r) 2 4 -
e e N T I (2.24)

Solution of Eq. (2.21) reduces to determination of the principal
part a of the root of the real equation (2.23) (it may be real or
complex in the form a'’ + fa”), and then, after substituting it in
Eq. (2.24), to determination of the moment part of the root:

I ot Lt SEEE 1o L X
” m..""‘n"")h“"-o-.a*.' a.' (2 025)

As we see, solution is possible unless we have the singular
case in which the discriminant of the real equation (2.23) van-
ishes. In this case, of course, the equation has a multiple root
that causes the derivative of the left member of Eq. (2.23) to
vanish, as well as the left member itself. But the derivative of
the left member of Eq. (2.23) appears as a multiplier before the
2 in Eq. (2.24) and in the denominator of Expression (2.25) for
a®, so that in this case determination of the corresponding moment
part of the root decomes meaningless.

| But it 1s obvious that when the discriminant of Eq. (2.25)
vanishes, a solution nevertheless exists if the numerator of Ex-
preasion (2.25) vanishes simultaneously with the denominator. This
‘is possible only in the case in which the multiple root of Eq.
(2.23) is simultaneously a root of Eq. (2.24). Let us suppose that
@ i3 a root of the kth multiplicity of Bq. (2.23) and also a root
of the (k — 1)th multIplicity of Eq. (2.24). : ‘ S

We write short forms of (2.23) and (2.20) iiﬁh‘tho assump-
tion made above: - C ' oL L
o TW=(—apg@=0  (2.26)

BF @)+ P x) = lhx—a)ig () + - o |
- te—@Ir L e A0, (2.27)

where g(z) and h(s) are polynomials that do not contain the mul-
~ tipller (s ~a). » . o R .

Differentiating the left members of Eqs. (2.26) and (2.27)
k =1 times, we obtain ‘ '

[0 () = M — ) g+ = R0 (), (2.28)
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vanishes for s = a and """"—*M(c)

form

2 (x) - frd-nix) = R Z(2) ..+ (x— 2)EWE)} a0~ \
-'-(k-— 1A (x) 4. +(x-—a)'-!ht'-l*(.;) v2.209)

Tie left members of 2qs. (2.26) and (2.27° vanish for xr « o
and any z°.

LD

The derivatives of all orders up to and including the
(k = 1)th of the left member of Eq. (2.26) vanish for z = a.

The derivatives of all orders up to and including the

(k = 2)th of the left member of Eq. (2 27) vanish for z = a and

any value of a’. However, the derivatives of the (k — 1)th order
of (2.29) vanish for

ZHC. t.le.u-h‘: »

where g(a) and k(a) are the values ot the polynomials g(z) and
hi(z) for = = a.

We present Eq. (2.27) in the form
C—a)> (g () HA M+ P E—ar @) =0 (2.30)
Tho expression in the aqum brackets, )
HO=he)+ioge (2.3

| m-w(-)—tg%’,m)-o.‘

hence for A =o', Bxpression (2.31) must be equal to tho product
of (s —a)bya corbun polynomial ¢ (n), 1.e.,

L ll(»')-'i(ﬁHWk) (3 dc‘(x).
from which
| v _, lm = - p e .
In ehu ouo. lq. (2.27) or (2 30) nn bo ropnuntod m m |

B - -w ﬂmaw -wm-h'mq- R
toe— l)l'(*)l-ﬁo - (a. 32)
aut tn concludo at once m- ‘the abon tlut the left mem-

ber of the basic complex equation (2.21) ocan be gnmud as the

product of a certain complex polyuedn by ﬂn k
“m”‘“ l “ 10." .

power of the

and that m (k - 1)§_h_ «rxmm i1l be

1




FOdX) = BX — M) G(X) +...-F(X—APGenx)  (2.34)

where A =a-+uws' 1s a complex root that causes Eq. (2.33) and all 1
of its derivatives up to and including the (k — 1)th order to ‘]
vanish, while the function G(X) takes the form Y

o G(X)=¢(x)+ah‘¢'(x)+¢‘(x)l (2.35) ]

Actually, expanding the complex expression (2.33), we obtain two
real algebraic equationa' :

(x—ea)g@x)m=0 (2.36)
(F—a k(s —a) g () + 2 (x—a) ¢’ () +.
+@x—a)g®(x)] =0 (2.37)

These equations are the same as (2.26) and (2.32). It is seen at
once from Eq. (2.33) that it 1s satisfied for z = a and for =°
equal to any number, since on substitution of X by the quantity
Aleniscte(e®+a), wvhere n 15 an arbitrary real number, the left
nenber wil! be equai to szero:

EA+wn) e @) G(A+an)=0
since any pover of w higher than the first 1s equal to sero.
It fonovs from the fact of the existence of a multiple root
of the complex equation P(X) = 0 that the discriminant of this

- equation is equal to zero.® Representing the discriminant as the
x-esultant or the equation and its derivatives, we obtain

_ REFI=OREFI =0 R P-1) o,
rehtionahips that are ozprouod accurate to the um by the de-

- terninants
’ A' ' ciococ ..n”
OM(A--»B-.... s e s }b : ) R T
0 A R C ..o -0 - (2.38)
190  sd@-na...| - -
| md 8o rom;.‘

If an oqution with conlox coorﬂountn hn a rul root
then in the nonsingular case, i.e., when the ducriuunt of its

d - real pm u nonsero, the equations ‘
| D [ T g TS PR P G Sty S
C : I'(:)-a‘a'+0'a'"i-c'v-‘+...+c‘s+fw0

mt be uutriod for s equal to tm.s mt For this. it 1s mcu-
sary and :umount mt the rnultmt of tlua oqutionl be equal
to sero, 1.0.,
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abcd ...
ered ...
0ad:d = 0. (2.39)
0Oadd .
As an example, let us consider the simplest quadratic equa-
tion
F(X) = =
(X) = AX +BX +C =0, (2.40)
which is decomposed into two real equations:
[ =ar+bz+c=0, (2.41)

L@ PE) =@+ O+ xS0 (2.82)
I1f the discriminant of Eq. (2.41) is zero, i.e., if

v_w. (2.“3)

then Eq. (2.41) has a double root =z = -b/2a, which also satisfies
the derivative equation

Sox + b = 0, (2.84)

j | and it is necessary for solvab:luty of the starting eqution
Lo ~ (2.40) that the equation

“'l‘.’x-l-c'-o o : (2 45)

~with Bq. (2.41) other than the double root indicated above, it 1is

~ sufficient for solvability that the resultant of Eqs. (2.41) and
(2.45) or the resultant of Eqs. (2.M) and (2.#5) be equal to

gero. 'ranng the lattcr. we obtain

e
g "9'.’
0

°'L?'G
B e Y
o000

Bxpand:n; the dctontmnt md npply.tn; (2 !3). we obtain
| ow-.m..u-o AT (2.46)

B MCm0, o 2
nhiah u the aulnpncity ‘eondition of the mt ct the snrtlng

- complex: 2uadnua eqution. Sxpanding (2. i?). we cbtain, (2 8A3)
_-};nd (2.% '

. tions. we uy ugm che touowim; theoren as haﬂng deen proven.

.26 -

= have the same root. But since Eq. (2.%5) cannot have common roots

o »_'l‘opchcr uth (2 ia), (2.l6) 1s ¢qu1vnont to tm comlox relation

To :mmriu ovaryt:hirg sald abcn concornmg alscbnic equa-




Theorem 3. a. In the general case, an algebraic equation with
complex coefficients of the form a4 wa® has complex roots a -+ o’
of the same form (a and a® are real numbers or complex numbers
with the imaginary unity v = 1).

b. The prineipal part a of a root is a root of a real equa-
tion representing the primeipal part of the given complex equa-
tion, whils the moment part a, if the disoriminant of the real
equation oited is nonzero, ie determined uniquely by the moment

. part of the starting complex equation.

c. If the discriminant of the prinecipal part of the starting
couplcz equation is equal to sero, then the principal part of the
equation has a multiple root (it is also the primoipal part of the
complex root of the starting equation), but in this case deter- f
mination of the moment part of the root is, gemerally speaking, 3
imposeible and the solution of the equation goaca its meaning. In 1
tnie case, if the multiple root also ocauses the moment part of

the equation to vanish, the moment part of the root is indeter-
minate.

d. If a root of the prinecipal part of the equation is of mul.:
tiplieity k and it ie at the same time a root of multiplioity
k — 1 of the moment part of the equation, then the disoriminant of
the starting complex equation ie zero. In this ocase, the complex
root has uugttplictty k. This root also causes to vanish thoee
equations vhose left membere are succsssive derivatives, inoluding
the (k — 1)th derivative, of the left member of the equationm,
wvhile the starting equation ttsely ts catisfied by the real part
of the root for arbstrury moment part of the unknavn ’

e. Por an algebraiec equation with couplcc coci?%ctonta to
hvve a real root, it is necessary and suffioient that the result-
ant of the prineipal part of the equation and the equation ob-
tained by substituting the moment parts for the princtpct pcrta
of the. cocf?%cicntc in the latter vcnich. '

We note that the properties of algebraic equationo with com=

plex coefficients that were considered above have a kinematic 1n-_
' terprotation that will be sct forth lator (loa Chapter N,

".Hinu-

e SR
) "s. | _Eootnotcs

IR _1§-'j1-: These rolnxionzhips are nnalogous to the Cauchy-Riemann

U SO regularity cgndition; for functions of the complex var-

.~ lable = + ig', satisfaction of which over the entire
Lo renge of vnriation of the runctxon doternﬁnos analytic-y
-1ty of the runction.._ _

25 . "5iHh1oh follows from oxtansaon ot tho thooro-s of the al-
Lo ,.ggbra or riul nunborc to the nlnubrn of complex nnlborn.

.
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Chapter 3
OPERATIONS ON SCREWS — COMPLEX VECTOR ALGEBRA

§1. Ganeral Remarks

After having established the notior of the screw, construc-
tion of an algebra in which the screw is the object of various op-
«rations requires defining operations directly on the screws.

We shall base all operations on screws on operations on the
motors corresponding to these screws. In defining two or more
screws, we shall select one common point of reduction in the space
and refer the motors of all screws to it. Any algebralc operation
on screws (multiplication by a number, addition and multiplica-
tion) will be defined as the operation-on the motors of these
screws, and since each motor, as we have already stated, is for-
mally expressed by a complex vector, the algebra of screws will
be reduced to an algebra of complex vectors.

It is found that application cf the basic vector operations
to the complex vectors (motors) results in quantities that pos-
sess the following propertles: firstly, they do not depend on the
points to which the sc¢»ews have been reduced and, secondly, the
principal part of the quantity obtained as a result of the opera-
tions i1s the quantity obtained by the corresponding operation on
the principal parts of the complex veetors. These properties are
a coms2quence of the property or the selected multiplier w that
is eipressed by the equality w?® = 0,

Expressing the motor by a complex vector, we perform the op-
eration on it formally as on the sum of two vectors, In multipli-
cation, we use the distributive property of the product.

In particular, for the unit screw E- (e, ¢, e-¢°=0, where the

" sign + indicates correspondence of the motor fe, ¢) to the screw J,

we shall have A
Po(etarP=e+lesd=1 (3.1)
§2. Multiplication of a Screw by a Number |
" We shall define multiplication of a screw}by a real humber

as the construction of a screw whose vector is equal to the vector
of the given socrew multiplied by this number, and whose moment

- with respect to any point of the space 1s equal to the moment of

the given screw with recpect to the same point, multiplled by the
same number,
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According to this definition, if B is a unit screw and (e, &%)
is 1ts motor for any point, with e =1,e.¢* =0, then the motor
(er, e"r) for the same point will correspond to the screw R= Er,
where r is a real number,

-Applying Formula (1.1) for the moment of the vector with re-
spect to the new point, we arrive at the conclusion that this
definition 1s independent of the point for which the moment was
taken, i.e., that the screw Fr that satisfies the conditlon of

the definition for some single point will satisfy it for any point
of the space.

Using (1.7) to find the point of the central axis, we can
easily derive that tne moment of the screw Br with respect to the
axis of screw £ 1is zero, and, consequently, the axis of the screw
Er is at the same time the axis of screw X (zero parameter).
follows from this that multiplication by a real number does not
change the axis of the unit screw.

On the basis of (3.‘1), we have
E'=1,R=Er, R* =% (3.2)

if » is a positive number, then the directions of ¥ and Zr coin-
cide; if r is a negative number, the directions of & and Er are
opposed. _

To wmultiply an arbitrary screw R whose motor is (h %), r-+0
by a real number «, we construct the -screw Ra, for which the cor-
responding motor will be (ra, r’a) by definition. Expressing the mo-~
tor in terms of the complex vector, we shall have

R—~r+wr’.Ra~*ra+mr‘?a, o (3.3) |

where the sign + indicates correspondence of the motor to the
~glven screw. As can be shown, the axis of the screw 1s preserved
in multiplication by a.

Let us glve the definition of multiplication of a unit screw

g by a complex number R'=r- l-w’

K Expressiﬂg the motor (e, e?) of the screw 2 in terms of the
complex vector , : o

B-—»o-! mc‘ e‘a—l ec’==0

‘we. derine the serew R-- ER as the screw correspcmding to the mo- f‘"

tor of screw ¥ ] multiplied by the complex number R, 1.e,, A
“ (e+om‘) (r *! W’)mer+o)(c'r 3% er") ‘, (3 ‘l)

For points on the axis or screw B, the moment c' is equal to
zero; hence the motor of the screw Raz:R rcr these points :

er+o>¢r'=-c(r+mr')

will also represent a screw, since the vector and moment are co- .

-29 -
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linear.

It follows from this that as a result of multiplying the unit
screw § by the complex number R=r+w® we obtain a screw R whose
axls 1s the axis of screw ¥ and which can be represented by the

. complex vector

R=ER=E(r +or')=Erew, p= 2. (3.5)

- If » 1s a positive number, the direction of the vector of
3 screw R coincides with the direction of B; if it is negative, the
: direction of thls vector is opposed.
If a screw is defined by a motor r--wr® for an arbitrary re-
duction point 0, the parameter of the screw will be determined by
the formula

| =
The complex number l'le"" 1n which the principal part 1s equal
to the modulus of the screw vector and the parameter is equal to
the parameter of the screw, will be known as the complex modulus

of the screw R=-£r¢“'

N Multiplieation of an arbitrary screw R = Ereve by the complex

'numerA =a+w® will-be defined as construction of a screw whose

motor-1s obfalned for an arbitrary point by multiplying the motor
Aer, e°r+¢r°) of the given screw for the same point by this complex
~-numher. Presenting the motor 8s -a complex vector, we obtain

RA - ler }- o (e + e”)l (a -+ o) = o (3.6)
: ~ . = cra + (e'ra + erla + era“) 3.

;. where: \c'b’;o‘ - ;
» | Agsin in this case, we can easily satisfy ourselves that the

‘ definition 1s. independent of the reduction point for which the
. motor was taken.

-~ Por points belonging to the axis of screw R, the moment ¢’
o is zero, ‘hence for this axis we shall have a- motor

RA ~era+t oe (r°a -+ ra°),
, in which the moment 1s colinear with the vector, 1.e., a ‘screw.

. Consequently, the axis of screw R4 1s the axis of screw R and,
sonsequently, the axis remains unchanged on multiplication of an
arbitrary screw by 2 oomplex number,

o For the screw A4, we obtain o
RA= L‘ra[l +o (-- T %)] o= Eracetr gula,
|RA|=|¢| |a]estrorsana, | (3.7)
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l.e., the absolute magnitude of the principal vector is multiplied
by the absolute magnitude of the principal part of the multiplier,
and the parameter of the multiplier i1s added to the screw parame-
ter,.

To summarize briefly:

a) on multiplication of a screw by a real number, the axis
of the screw remains unchanged, while the vector and moment are
multiplied by this number;

b) when a screw of zero parameter 1s multiplied by a complex
number, the axis of the screw remains unchanged, the vector 1is
multiplied by the principal part of the multiplier, and the param-
eter becomes equal to the multiplier parameter;

¢) when an arbitrary screw is multiplied by & complex number,
its axls remains unchanged, the vector is multiplied by the prin-
cipal part of the multiplier, and the multiplier parameter — a
complex number — 1s added to the screw parameter.

A screw in which the ~ ctor 1s zero and, consequently, the
parameter is an infinitely .rge number will be called singular.
The principal part of the modulus of a singular screw 1s equal to
zZero. _

. We shall henceforth denocte the complex moduli of screws by
the ordinary upper-case italic forms of the upper-case boldface
letters used for the screws, and the princlpal parts of the moduli
are the corresponding 1ower-case letters, namely,

lMéR%N%
where p 1s the parameter:and » is a positive number.
§3. Complex Angle Between Two Axes. The Brush

In our terminology, the complex angle 4 between two axes
whose unit screws are F, and F; will refer to the figure formed
by these axes and the straight line segment mm intersecting these
axes at right angles, where m 1s a point on the first axis and n

- 1s a point on the second axis (Pig. 2).

t, , . We assign the direotion of line mm by the
unit screw ¥;: and call it the axis of the com-
- plex angile,

’ TO‘bring]l; to coincidence with By, it 1is
\\ . necessary to impart a screw motion to axis I,,
m consisting of rotation about the axis 2,
through the angle a between the directions of
¥, and lg and translational motion over a dis-
tanoe a® _equal to the length of segment mm.

A complex,anglg is defined by a screw
c\ b EuA "; E“ (a "_' muﬂ)" (3'8)

-3 -
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and the complex number A=ﬁa:Fma°i£ taken as a measure of the com-
plex angle between axes ¥; and 2¥:.

As a convention for the signs of the numbers a and a®, the
- former willl be considered positive if the rotation appears to be
counterclockwise to an observer at whom the unit screw B, is
pointed, and the latter as positive 1f the translational motion
takes place in the positive direction of ¥,;.

Obviously,
£ (B E) = — £ (Ey E).

The set of axes crossing the same axis with unit screw E at
right angles 1s called a brush. The axis of ¥ 1s the axis of the
brush, and axes belonging to the brush are rays of the brush.

The above implies that the following relation obtains between
the angles formed by the rays of the brush and defined by unit
screws E, E;, ..., E,!

LEWE)+ L(EE)+ ... F £ (Ens B+
e L 1 L BB =0 (3.9)

We can express the trigonometric functions of the complex angle
on the basis of Formulay (2.16):

s A = cosa —wa'sing, . - :
SinA = sina + wa’cosa, . (3.10)

tgA = tga + 0= = tga + wa®(1 + 1g'a).

Note. In defining the quantity a, we have a freedom in that
the rotation of the axis &), to coincidence with the axis X2 can
be performed by either of two different paths. If the rotation
through the angle «(<#) 1is performed counterclockwise, rotation
through the supplementary angle 27 ~ o will be performed clock-
wise, and the corresponding angle of rotation will be —(n--2) =
=@ -- 2%, but the trigonometric functions of the angle (3.9) will
“be preserved. As a convention, we can take the angle smaller than
two right angles as the angle a.

§4. Scalar Multiplication of Screws

We shall use the term scalar product of twe screws for the
complex number equal to the scalar product of tneir motors, which
are referred to some reduction point.

We shall indicate scalar multiplication of screws by the
center dot. :

Given the two screws

R, = E;rie", Ry = Eqrgvr

with the complex moduli




~

Rl:z’le“p'lktz r’e'lp.’ r1>oo ’2>0v
and axes 1 and 2 of these screws forming a complex angle

A =a+ oal,

B %“W:Wu‘ Lkl

We take an arbitrary point 0 and refer the motors of the
given screws to it. Connecting point 0 with points m and n of axes
1l and 2, where mn 1s the shortest line
. segment between these axes, we obtain the

/fﬂ radius vectors of points m and n from 0
o A a;n = ’l'-gn == Py, t-n-;z_—;
.- = ps— pr = Ez0°,
€, 7 I where Z;; is the unit screw of line mm.
Pig. 3 We shall express the motors of screws

R, and R; referred to point 0 as complex
vectors. Thus, we shall have a substitu-
tion of the screws by the complex vectors

Ri~rito(pe+p x 1),
Ry = 1y 0 (pyrs + py X £y).

(3.11)

Performing scalar multiplication, we obtain in accordance
with our definition

Ry R, = ryry -t o “,01 T Pa) fl'rgv‘*‘ P,f;fg -1 r;?-;rgl‘:‘
= Pyepy - @ Hpy 3 po) £y-0y — (o — i) 117:) =
= rryc0sa + o [(py + py) ryry cOs@ — £yl sin o) =
= 1yrePievm (cos o — wat sina) — R,R, cos A. (3.12)

Hence a theorenm.

Theorem 4. The socalar product o{ two socrews is equal to the
groduat o{ their complez moduli by the cosine of the ocomplex angle
etween thenm.

The expression for the scalar product of screws in terms of
the moduli and angle agrees exactly with the expression for the

scalar product of free vectors provided that the real modull in 4.:
the latter are replaced by complex moduli and ordinary angles by o
. complex angles.

As we see from the expanded expreasion (3.12), the principal
. part of the scalar product of two screws is the ordinary scalar
product of the vectors of these screws, while the moment part is
the relative moment of the screws

143 10y + P cos e — ot sina) (3.13)

a quantity that does not depend on the point for which the motors
are taken. The multiplier in the square brackets in Expression
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(3 ?) iz «nown as the "possible coefficlent"” of the two screws
I

1

A-I

If the screws R, and R2 on which scalar mulitiplication 1s to
ve performed are given by the general expression of the motors,

we obtain

Ry Ry == (ﬁ"r‘”") (ﬂ""‘”’b= -

=pryto(rer)tr. .. (3.14)

The expression "x'le'l"-frf: 1s the relative moment of the two
screws and is equal to Expression (3.13).

The scalar product of two screws for which the principal
parts of the modull are not equal to zero vanishes if cos A = 0,
and, consequently, 1if

=-;-, ¢f=0,

l.e., 1f the axes of the screws being multipliad intersect at
right angles.

It follows from Formula (3.12) that R,'R.= R,'R,.

If A=p=0, 1,e,, 1f the screws being multiplied are sliding
vectors, the scalar product assumes the form

R;‘Rq "' I;;fg éos.l\l. B (3'15)
Expanding Expression (3.15), we obtain
Ry Ry = Iy cosa -—- n;r.r.a’ sina,
i.e., the scalar product of two sliding vectors gives the scalar
product of these vectors in the principal part and the relative
moment of these vectors in the moment part.

If we perform scalar multiplication of the screw R by itself,
we obtain

R .g. R'COS o‘gg (m’)’ = plghup (3.16)

i.e., the square of the complex modulus of the screw.

If the screw R is given by the motor s er’, then the scalar
square of the screw has the expression

RY = (p + or' = A 4 207, (3.16")

. Por the square of a unit screw ¥ defined by the motor - we’
e¢-¢* =0, we have the formula derived above:

E'ui (g4 0d) n g 4 Jugg® = 1, (3.1)

The square of the moment
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(0r) =: w* -2 0,

If one of the screws on which the scalar multiplication is
tglgebperrormed has an infinitely large parameter, the product
w e

wr}-Er.evr = orirg ™ cos A = wrir, cosa.
The principal part of the product is zero.

§5. Orthogonal Component of Screw Along Straight Line and Projec-
tion of Screw onto Axis

Let R be the given screw and let a be a straight line in the
space whose unit screw is X. We reduce the screw to a certain
point 4 1lying on this line; let (r, ) be the corresponding motor.
Let us project the vector » and the moment »° orthogonally onto

-1lne a. The component of the vector .r will be denoted by ra and

the moment component »° by r;.
The screw (r..r® with its central axis on line a
Ru=E (ra+0rd (3.17)

will be called the orthogonal component of screw R on line a. It
is obvious that neither r, nor r; depends qn the selectlon of the

reduction point 4 on iine a.

The complex number r, -+ orh. by which the unit screw E is to
be multiplied in order to obtain screw Ra will be called the or-

thogonal projection (or simply the projection) of screw R onto
the axis defined by the unit screw X. For the same directions of
the screw vector Ra and the vector ¥, the number r, 1s positive;

if they have opposite directions it is negative.

Let R be a screw and ¥ a unit screw. We form their scalar
product

R-E=Rcos A = re» (cosa — a¥ sin a) =
= recosa + or (p cosa ——a® sinc), (3.18)

where A =a - ox* 1s the complex angle between the axes R and X. The
complex expression (3.18) has the following geometrical sense: its
principal part 1s the projection, onto the axis %, of the screw
vector, while the moment part 1s the projection of the screw mo-
ment with respect to a point lying qn the axis onto the same axis.
This expression, therefore, 1s the projection of screw R onto axis
§ by the definition just glven.

Hence the projection of a screw onto the axis 1s a complex
quantity equal to the product of the screw complex modulus by the
cosine of the complex aangle formed by the axis of the screw with

the given axis.

For the case in which R is a screw of zero parameter (i.e.,
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a sllding vector), p = 0 and Formula (3.18) is simplified, assum-
ing the form

R-E = rcosa — wrad® sing, (3.19)

i.e., the principal part of the complex projection 1s equal to the
projection of the sliding vector onto the axis, while the moment
part 1s equal to the moment of the vector with respect to the axis.
Multiplication by the cosine of the complex angle automatically -
ylelds both the projection and the moment.

‘§6. Screw Multiplication of Screws

In our terminology, the screw product of two screws will be
the screw whose motor 1s equal, for an arbitrary point of the
space, to the vector product of the motors of the given screws
for the same point.

We shall use the érbés~to iﬁdicate screw ﬁultiplication.

In order to determine the screw product of two screws R; and
R;, it 1s necessary to perform vector multiplication of the motors
of Expressions (3.11). Since we are dealing with motors referred
%o point 0, the motor obtained as the result of multiplication
will also be referred to point 0. We transfer noint 0 to the point
m through which the sliding vector F,; (PFig. 3) passes, i.e., we
refer the final result to point m.

For polnt 0, we shall have

R;x Rg":: [fl'l"(l)(plf“*' -2 ><ﬁ)] X
X [f;+<007=fa+?z><f:)1==r,xr.-l-m fr, X
X (pary -+ pa X r) + (017 + py X 7)) X 74). (3.20)

For the final results to be referred to point m, we add the
moment of the vector 7 Xr, which must be imagined to pass through
0, with respect to point m. We obtain

Ry X Re=ry X rytolry X (pyry+ ps X 1) +
-l oy X 1) X ryl —0p, X (ry X r) =
=r Xyt o{(p - pd ey X Py (py— gy (71 ro)+
+rlley—p)-ril} =7y X £y 4 0 [(p, -+ P ry X ry
+ ey — ) (r1or)). (3.21)

Exactly the same result would be obtained if we had made the
transfer to point n or to any point on line mm.

_ In the expresslon obtained, the vector 7; X r; appears in the
principal part and the linear combination of the vectors r, X r,
and P+— 2, 1.e., a moment parallel to ¥,2, appears in the moment
part. It follows from thls that the line mn, the axls of unit
screw F,2, 1s the axls of the screw product g x g, As a result,
we may write

Ry X Ry== Eyyryry {sine 4- o [(p, -} p,) sinu+
4 «® cos al} == Eprireerem(sing |- 01" cos a) ==

:-.AE"R‘R“ sin A, (3-22)
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Thus the ‘theorem has been proven.

. Theorem 5. The gerew product of two screws is the screw whose
axis intersects the azes of the screwe being multiplied at right
angles and whose vector has the direction of the vector product
of the vectors of these sorews, while its complex modulus [ie
equal] to the product of the complex moduli of these screws by
the sine of the complex angle formed by their azes.

It follows from Formula (3.22) that
RlXI?g"‘—REXRl.

If the vectors of screws R; and R: are not equal to zero, then,
according to Formula (3.22), the screw product of the two screws
can vanish only if the axes of these screws coincide.

If one of the screws has an infinitely large parameter, the
screw product will be a screw of infinite parameter, since its

modulus
'Ry X Ry| == orirg“” sin A = orlr, sina (3.23)

has no principal part. Such a screw is a palr, and any line in
the space that 1is perpendicular to the axes of the screws being
multiplied may serve as 1its axis.

§7. Addition of Screws

A screw R is called the sum of the given screws R, R:. ... Ra

R"’R;"]"Rg'}'--."’Rm (3'21')

if *ts vector 1s equal to the sum of the vectors of these screws
and the moment with respect to any point in space is equal to the
sum of the moments of the added screws with respect to this same
point, 1.e.,

r=r,+r,+...+r,_.}

(3.25)

AT S O 3 SRR 8

We can satisfy ourselves that the geometrical figure deter-
mined 1s indeed a screw on the basis of the fact that the scalar
product 7r* does not depend on the point of reduction. Actually,
for any reduction point the scalar product

r-ro:- r.-fg—{-r,-r:-i- ces b rgrt 4
®

+ D (e, ik (3.26)

consists of the sum of the invariants of the screws and the sum
of the relative moments of all possible pairs of screws, and, con-
sequently, it does not depend on the reduction point.

On reduction of the screws to a new point o'«fb==p), we shall
have on the basis of Formula (1.5)
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el . r ;‘:.V{V"“f*-'?)(f ::.‘E r3+ PpX Elr’ =
s

iza)

= “‘ 9. ; -:.-\:" - |
Z,rskexry =2 (3.27)

=1

from which we may conclude that if the condition of the definition
as regards the principal moment 1s satisfied for any one point of
the space, it wlll be satisfied for any point of the space.

Let us consider the scalar product of the sum of several
screws R=R;+ R.:+...+ R, by a screw §. Substituting motors re-
ferred to a certain point for the screws, we obtain

RS=(Ry+ R+ ...+ R)+S == l(r;’l“l’fb"!‘
+ (et o4 ...+ (ra 0D (S + 085Y=
= (ry+ 0F)-(S L 08Y ..
= (ra +(')f:)'(s+(ﬂs.) = Rx'S'}‘RQ'S + ...
<+« F Ra-S. (3.28)

From this follows the distributive property of the scalar
product: the scalar product of the sum of several screws by a cer-
taln screw 1s equal to the sum of the scalar products of the ad-
ded screws by this screw. In particular, the projection of the
sum of several screws onto the axis 1s equal to the sum of the
projJections of the added screws onto this axis.

. We can satisfy ourselves in a similar manner of the existence
of the distributed property of the screw product.

Pinding the screw R, the sum cver given screw terms R, R. ...
cons Rh’ reduces to determination of the central axis of this

screw, the modulus of its vector and its parameter.

Applying the distributive property of
r the scalar product of screws, let us derive
R a formula for addition of screws by the use
of which we can construct a screw equal to
R, the sum of two given screws. Thls formula
-1s an analogue of the familiar triangle
Ry Jds 4 formula for the sum of vectors. Given:
screws R; and R, and required: determine the
(",_, 7/ sum screw R
-~

5 R=Ry+ Ry (3.29)

Performing scalar multiplication of
screw R by Ejyz, the unit screw of the axis
Pig. 4 of the angle formed by screws R: and R:,

R-Eyyr= (Ry+ R)-Epn=Ry-Fra -+ Ry-Eys = 0, (3.30)
we find that the axls of screw R intersects at right angles with
the axis of the angle formed by R; with R, (Fig. 4). We denote

the complex angles (R, R;) and (R,  R) byA=a-+ wz® and B=:p 4 of°,
respectively.
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We project all three screws onto the axis of screw R; and
then ontc the axis of screw R, performing scalar multiplication
of these screws by the unit vectors of the axes of screws Ry and
R; by Formula (3.18). On the basis of the distributive property
of the scalar product we obtain

RMB=R1+R3C°$:\, '
RCOS(A—-B)==R.cosA-FR=,R==|R=,Rla‘Rll' (3.31)
R!=IR8!|\
from which
R sin B =: R, sin A,
R sin (A — B) = R, sin B,

or, combining the two relationships obtalned, we find

R L R
.S_‘}\T = SIU(:\'—'BT':;-;F"’B.' (3'32)

Thus, we may regard the following theorem as having been
proven: _ .

- Theorem 6. If R is the sum of two screws Ry and R2, Relation-
ship (3.32), which is analogous to the relation between the sides
and angles in a triangle, but with the real quantitiee replaced

by complex quantities, applies between the complex moduli of these
screws and the complex angles formed by their azes.

On the basis of (3.29) 'rwre have

‘R (R, + R = Ri+ RI+ 2R Re=

On the basis of
R = re*, R, m reh, Ry = roeo
we obtain the relation
PP == rletm L 11630 4 2ryr %P ) (cos @ — oz sin @), (3.34)

from which, on separation of the principal and moment parts, we
find the magnitude of the principal vector and the parameter of

the sum screw R:

= 1]+ ]+ 2ryr, cosa, (3.35)
p = AL P 0 k) cota— atsin]
i+ 13+ 2nr cna o (3.36)

The complex angle B is determined from (3.32):

sinB == o 5 = sinf -} w3 cosf.

-39 -




‘NOT REPRODUCIELE

[

Separating the principal and moment parts, we get

Siﬂ B 2 '_’ ?ry‘-\:» e —-/-;_;‘.‘:;'?_—?-."";a‘:: TR, (3 . 37)
} 42 cosa ,
moreover,
o sined? = sin(Bo-3) = sinBens 3 - cos Bsind -
N Rgs_.i_n__.\__ n -I_-_r_‘gf-{:} P, Jeov N p3eic

ToZ e LT TP U S

r R r
After transformations,

B <. ry llPr-opasing b Recia) ooty

Rt 13-3- Yrirgiesa (3.38)
In exactly the same way
sin (a—“,"j) = {,_S:ii\'a' R -.'_rt*:('.:l— L
r V.r;-?»r?_,-} 27 e 0n Y ' (3.39)
0% — O = gy Tela pis e 2 Ay
AR R B P ) (3.40)

We have obtained a simple result: the equation of closure of
the vector triangle and the equation of moments are embodied in a
singl screw equation (3.29), which si-
multaneously expresses the parallelogram
law and the lever law.

As 1s easily seen, this result pro-
ceeds directly from the formula for
scelar multiplication of screws and trom
the uistributive property of scalar mul-
tiplication, interpreted as equality of
the projection of the sum of the screws
onto the axis to the sum of the projec-
tions of the terms onto the same axis.

The relationships given above can
be regarded as formulas for the "ex-
panded" triangle. This figure 1s cb-

_ : tained by parallel translation of the
sides of a plane triangie in the direction perpendicular to its
plane (Fig. 5).

Denoting the complex angles of the triangle (i.e., the angles
together with the segments onto which the sides have been trans-
ferred) by the corresponding upper-case letters and assigning com-
plex values equal to the complex modu"i of the corresponding
screws to the sldes of the triangle, we find that when the quan-
tities appearing in it are given the complex treatment, the fa-
miliar trigonometric relationship (3.32) expresses equality of
one ¢f the screws to the sum of the other two, With the use of
complex numbers, “herefore, the geometry of the simple trlangle
becomes the geomeury of the "expanded" triangle.
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We obtaln the formula for the difference of screws Ri—R: by
substituting -R2 for R2 in all of the formulas pertaining to addi-
tion nf serews.

§8. Ortnogonal Projections of a Screw onto Two Hutnal]y Perpen-
dicular Axes

Let us imagine a screw R with modulus R = 7e?, that intersects

a certaln axis s at right angles, and two axes z and y such that
zys forms a coordinate system with its ori-
gin at point 0. Obviously, the axis of the
ggrew R 1s parallel to the xy-plane (Fig.
Let the complex angle formed by the
axis or screw R with the z-axis be B = B +
+ wB®; then the angle formed by the axis

of ghe screw with the y-axis will be B —
- n/2.

Let us determine the magnitudes of the
projections X and Y of screw R onto the
Fig. 6 ‘ axes z and y.

According to Formula (3 18), we have
= RcosB = rew (cosﬁ (oﬂ‘ sin 5)
=rcosf Il -+ w(p—P°tgp)l,
R, “Rcos(B——~) R sin B = rew» (sin B,-}- o@"_cosﬂ)
C=rsinplido(@ Hp -

Regarding the orthogonal components of screw R along the z-
and y-axes as the screws tR and JRy, where ¢ and J are the unit
vectors of the z- and y-axes, and knowing the complex moduli R, -
and Ry of these screws and the parameters

p— B tgB, p + B clgB,
let us add these screws, i.e., find a screw equal to the sum
R =Rt R, |

The angle formed by the axes of" these screws is
A- ¢+¢o1" 7

and, consequently, % =2 a® =0, cosa-o sing = |, On the basis of the

addition formulas (3. 33), (3.35), (3.37) and (3.38), we find the
length of the vector »’', the parameter p and the complex angle
B« B -+ op” of the resultant screw with the z-axis., We have

R = R R+ 2R,Ryc0s 3 = RY - K -

=r'
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» 1 0 a . a o
P =y l(p—-BOtgB) rieost 4 (p -4 PelgB) risin®3 4
|- rtcosBsinB{[2p --- $° (ctgB-- g 3)) cos o~ x0siin a}] ==
= peostB 4 psin®d = p,

rsind '

sinf’ = —— =sing,

B = -:f [rsinPrcosB3® (tg 3 + cigB)1 = p°.

It follows from the resulting formulas that the unknown screw

R' 1s identical with the original screw R. Hence follows a theo-
ren.

Theorem 7. A serew whose azxie intersects the z-axis of a ree-
tangular eoordinatz system at right anglee i8 equal to the sum of
ite orthogonal compoments on the z- and y-axes.

§9. Linear Combination of Two Screws. The Brush. The Cylindroid

The 1linear combination of two screws is the generalization
of their sum.

Let R: and B2 be two arbltrary screws and let A‘and B be com-
plex numbers. Consider the linear combination

R=AR, +BR,, (3.41)
in which 4 and B are varied at will.

Let us take a unit screw EF;; whose axls Intersects the axes

~ of screws R; and R, at right angles. Expressing the scalar prod-

uct of screw R by F,2, we obtain
R'Ela""'"ARl'En + BR:'Eu"‘ h (3-“2)
from which it follows that the linear combination of screws R,

and R, for any values of 4 and B intersects the unit screw F;, at

right angles, i.e., as 4 and B vary, the axls of screw R describes
a brush having the axis &8,;.

‘Formula (3.41) 1s the complex analogue of the conventional
formula for the linear combination of two vectors:

r =ar, -+ br,, (3-“3)
which describes a plane or a flat buhdle of vectors on variation
of the real numbers a and b i1f the vectors »; and »; are con-
structed from a common origin.

On complex treatment of Formula (3.43), 1.e., on substitution

~of Formula (3.41) for it, the geometrical locus of the lines on

which the screws lie will be a brush, which is thus the complex

analogue of the plane or flat bundle of vectors.

Let us now consider that particular case of the linear com-
bination of screws (3.41) in which it is formed with the ald of
real multipliers a and b, i.e.,
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R===aR;+bR,. (3.”“)
where R; and R; are the given screws.

Screw B intersects the axis of the unit screw B,2 at right

- angles, the latter intersecting the axes of screws R; and R at

right angles. Assigning different values to the numbers a and b,
we cause the axis of the screw to describe a certain geometric
locus. As can be seen from Pormula (3.44), neither the direction
nor the position of the axis changes on proportional variation of
the numbers g and b, so that the change in one parameter - the
ratio a/b — will be essential. One direction and one point of in-
tersection of the axis of R with the axis of ¥,, will correspond
to each value of this parameter. From this it follows that for
all possible variations of the numbers a and b, the geometric lo-
cus described by the axis of screw R will be a ruled surface all
of whose generators intersect the axis of the shortest distance
between the axes of screws R; and R; at right angles. This sur-
face 1s known as a cylindroid. Let us determine certain of its
properties.

Let the complex modulli of screws R; and R, which we shall

,call the basic screws, be ¢» and e%. Let R' and R” be any two

screws defined by Formnla (3.41), t.e.,

R =aR,+ bR,
R = f..Rg + b.R..

We write the scalar product of screws R’ and R":
R -R" = a'd’es + bb* ehamn + (@'b" + a"b'Yemtortricos ©,

where 0 is the complex angle between the axes of the basic screws

Equating the scalar product to zero and dividing by aawﬂmﬂm
we have :

. PPy} + Mjeﬂ(ﬂrh) + (A, 4 }I) €0s0 = on ( 3 . "‘5 )

where A = b'/a’ o= b"a".

Separating the principal and moment parts of (3 45), we ob=
taln two equations, which yielad

- )
,"H" TT—%ﬁﬁ cos0 '

s e DHN0 - (91 — o) c0s 0
x}‘ -Fln ~b|- )co;‘“

(3.46)

Since the quantity A+ —4p 1s, as can be veriried essen-
tially positive, A and u are always roal, and therefore (3 45)
can always be satisfied. Thus among the screws appearing in the

linear combination (3.44) and lying on a cylindroid, there are al-

ways two screws R, and R; whose axes intersect at right angles,
T™wo such screws are known as the principal screws of the cylin-
dr0id, and their parameters p’ and p" as the principal parameters;
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the point of intersection is the center of the surface.

Principal parameters can be determined as follows, Since the
rumbers A and u oare £nown, we can take ardbitrary values ¢f g’ and
a", for example, unit values, and obtain from them the values of
b' = A and b" = y. We shall have

R' = R1 4 AR:: R. = R1 '*‘ lle-

By the rule of addition of screws on the basis of Formula (3.36),
we find

o P24 A lps -l ps)cos 0 00si- 7]

P T3 2icos0
pr e PRI+ peos O — sing] (3.47)

{-f-pd42ucosd

Thus, the principal parameters are known. Taking the axes of the
principal screws R’ and R"” as the axes x and y, the axis of the
surface as the z-axis, and the center as the coordinate origin,

we derive the equation of the cylindroid, 1.e., we express the po-

sition of its generator as a function of 1ts angle with the z-axis
and find an expression for the parameter of the screw whose axls
lies on this generator.

We take principal screws R'=R, and R'= R. such that the
modull of their vectors are equal to unity, i.e.,

Ry =€, Ry = eors; (3.48)

then thé modulus of the vector of screw R — the linear combination

R =aR, + bR, (3.49)
will be determined bﬁ‘the formula
R? = 1°¢%0 == %o |- %o, (3.49')
or, on separation of the principal part from ﬁhe moment part,

rf=at 20 s atpy L by, (3.50)

. from which

? [
P E‘:'::b-i. p""d'“-}-'if’" P, (3.51)

which gives an expression for the parameter p of screw R in terms
of the angle ¢ and the principal parameters p; and p2:

p = p,'cos? ¢ -F p, sind . (3.52)

The screw R intersects the sz-axis at right angles and forms a com-
plex angle®:-¢i-wp® with the z-axis. The projections of the screw
R onto the x- and y-axes will be, respectively,
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Reos @ == g ¢wr,

Rsingizzbe“"", (3.53)
riak 42 .i
From (3.53) we obtain

tga):e"u’l‘h)tg(p_ (3.5") A

Equation (3.54) is the eylindroid equa- :
tion referred to the principal screws 3
and the center. From it we obtain the 1
distance of the generators as a function 7
of the angle 9. We have

eMP1-Ps) = 3 sinte,

from which

‘po:-:h____—z-h sin2¢. (3055)

On variation of the angle @, the generator describes a cylin- §
drold surface, which can be represented palpably as follows. !

On the vertical axis, we lay off from point 0 - the center -
a segment OA = (p,— p,)/2 upward and the same segment 04' downward.
The cylindroid generator is a straight line forming a right angle
with the vertical axis, which, as ¢ varies, rotates uniformly
about the axis and at the same time slides along the axis, execut- '
ing a harmonic motion within the limits of the segment A44', with
two down-up motions completed in one
revolution of the generator. Genera-
tors passing through the center 0
cross at right angles. Part of the
surface is shown in Fig. 7.

If we map the surface of a cir-
cular cylinder whose axis coincldes ol
with the axis of the cylindroid, the .
cylindroid surface intersects the
eylinder surface along a curve whose !
involute will be a sinusoid with two
periods around the circumference of :
the cylinder (Pig. 8). i

§10. Projections of Screw onto Axes of Rectangular Coordinate {
System. Complex Coordinates of a Straight Line

Let the screw

R = ER v= Ere™

be given and let the complex angles formed by its axis with the
z-, y- and s-axes of the rectangular coordinate system be, re-
spectively,
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A=ad e, B=p+ o, T =14 07
The projections of the screw onto these axes will be

Ry=re-bord=RcosA = y
=rlcosa 4 o {pcosa — a’sinc)},
Ry=ry+ erl = RcosB =

=r[cosB + v (pcosP —B°sin B)],
R:=r,+orl-=RcosI'=

=rcosy-}w(pcosy —7°sin7)]. |

{ (3.56)

Expressions (3.56) are the complex orthogonal projections or
rectangular coordinates of the screw. The principal parts of these
expressions

Ty = rcosa, r, = rcosP, r; = rcosy (3.57)

are the rectangular coordinates of the vector 2, while the moment
parts of these expressions

r3=r (p cosu — a® sin ), ry = r (p cos B — P°sin B),

r2 =r(pcosy—7°sin7) (3.58)

are rectangular coordinates of the moment pr of the screw about
the coordinate orlgin or the moments of the screw with respect to
the coordinate axes.

Theorem 8. A screw B 28 equal to the geometric sum of its or-

thogonal componente on the azes of the rectangular coordinate sys-
tem.

This theorem is easlly proven if we reduce the screw to the
coordinate origin:
R=rtolpr+pxr),

where p is the radius vector of an arbitrary point on the screw
axis from the coordinate origin. The vector » and the moment

o (pr + p X r) are the sums of their orthogonal components on the

coordinate axes; hence the same can be sald regarding screw R,

which 1s equivalent to them. ‘

Thus, we may write

R“"S"*’JRy"'kR:"k‘(fg'l-wf:)-i— \
- S Jg o)+ ko, (3.59)

Taking the scalar square of this equality, we obtain

RuR;R R =rddry+rid
+20(r,73 4 'y’; SR (3.60)
Consequently, the square of the complex modulus of the screw de-

composes into the square of the vector length and the scalar prod-
uct of the vector by the moment.
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After introduction of the complexicoordinates of the screw, &
we see that any screw equality is equivale t to three complex '
sc lar equalities. But each complex equality decomposes into two

real ones, and hence any s¢rew equality is equivalent to six
scalar equalities.

On the basis of Equalities (3{56),_ﬂe obtain,

R? = R? (cost A + co B + ;;05, oo
from which" : . K

cos’A+cos’B+cos’fI‘=-l . . (3.61)

i.e., the sum of the squares of the complex direction cosines is

unity, as- 1n the real domain. Equality (3 61) bneaks down into
two:

om#a |cm#$ ch?f-— 1, i
} (3 62)

a‘cosasina+ﬁ'eosﬁsmp+'t°cos'rsin1'--0

If R =1, then Rx, Ry, R are complex -coordinates of the unit

screw R and are equal in magnitude to the corresponding direction
cosines _ .

Ri=Xemxtadmonh,
Ry=Y =g+ o =cosB, *
Ri=Z=ztof=onl. -

The equality

Xipipa (x+w+w+«w : |
- T tatemsl o (3.63) B |

which 1s equivalent to (3. 61). decompoaes into the two following ' l{
equalities. ‘ ;
£+¢+£mh}~ _ ;

x4 g+ 38 0 (3. 6#)

which express the equality or the squarcd vector length to unity
and the equality to gero of the scalar product of the vector by
the moment with respect to the coordinate‘nrigin.

If we have a given axis with unit sorew l, whose coordinates & |
P will be A, 1, C(A'l B') Cres ), then any &xis with the coordinsates I, .
Y, & of the unit acrow(X' -l) that sntintios thc equacion B

AX +BY 4CZ 40, - (3.65)

will intersect the given axis at right angles; thc aggregate of -
all such axes forms a brush. - , .

Consequently, Eq. (3.65) is the complex equation of a brush
(ana}ogous to the equation of a plane in the case of real quanti- .
ties )
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§11. Expression of the Scalar and Screw Products of Screws in
Terms of the Complex Rectangular Coordinates of the Screws

For two screws defined by complex rectangular coordinates
Ru- Rw. Rm Ru. Ru. Ry., We have

Ry = iRy + JRyy + kRy,,
Rl = lRu + jR" '} kRn.

We immediately find the scalar product

R1-Re = R\,Ry, -+ RyyRyy + RitR2s = .
= (N + w‘u) (7 + or3,) + (ry +0r,) (r”'-{- ord) +
Fte)r, Fog) =1, g, F g+
Fo(rngt + et 1+ Al 0y, + 10, (3.66)

The scalar product of two screws decomposes into the scalar
product of the vectors of these screws and into their relative
moment, which 1s equal to the sum of the scalar products of the
vector of each by the moment of the other, taken with respect to
a definite point, in this case the coordinate origin.

The screw product of two screws is the screw

R = §(RiyRas — RgRui) + ] (ResRiz — RuRz) +
i : R o &(RI:R:' - RuRu). (3-67)

Indeed, performing scalar multiplication of screw R by screw R
and by sorew R, we obtain

R: Ry = (RyyRss — RoyR1s) Rux -+ (RexRiz =~ RuRz) Ryy -k
) + (RucRsy = RocRiyg) Rya = 0,

R Ry w2 (RiyRys — RyyRas) Rax 4 (RoxRiz == RucRee) Rey -
& (RusRay — RosRig) Raz =+ O

and taking the square of the modulus we shall have

R? = (RyyRua - RyyR) +
+ (RuRn - RuRu)’ + (RuRu—' RuR u)’ L=
(Rl - Ry + RLY(RR: + Ry + RY) — |
= (RuRes + RyyRoy - RuRy) =
w RIRS — (RiRy cos \)® == (R Ry sinA), (3.68)

from which it follows that the axis of screw R intersects the axes
“of screws R; and B; at right angles, and that its complex modulus
48 equal to the product of the complex moduli of the factor screws
by the sine of the complex angle A between them. Taking the prin-
cipal part of (3.68), we satisfy ourselves that the vector » is
the vector "roduct p X r,. o . -

d-.COnlequontly. the screw R is the screw product of screws &,
an e . . ‘
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§12. Compound Multiplication of Screws. Morley-Petersen Theorem.
Formulas of Complex Spherical Trigonometry

Using the complex rectangular coordinates, we can easily de-
rive expressions for more complicated screw products: mixed
(scalar-screw), double screw, the scalar product of two screw
products and the screw product of two screw products.

On the basis of Formulas (3.66) and (3.67), we can write the
expression for the mixed product

R1R1R3= R| * (Rt X Ra)

of three screws defined by thelr complex coordinates:

Ry iRy 4 JRyy + KRy,
Ri = iRax -+ JRyy | Ry,
Ry :: iRy - JRy, + kR,

We have

i j &
Ru Ru R‘z
Ru R:y Ru

’* j(R;ﬂR!l Rlsz)“l k(RuRu—RhRu)-
R (R:XR:) = Ry, (RwRu“RauRn) +

}' RIU(RMRSt - Rukv) ‘ Ru(RuRu“’ Ruku)=

Ru Ru Ru
Rll Rl. Rll

R R, == = § (RayR3z -~ RyyRas) 4

(3.6%)

Since in Determinant (3.69), the sign is not changed by any ;
"end-around” transposition of rows, it is accordingly possible to %
transpose the parentheses and signs of scalar and screw multipli- K
cation in the mixed product, i.e., %

RIR.RI = R"(R‘ x Ra) = R"(R. X R‘) = R'.(R‘ b4 R‘). (3070)

Using the coordinate expressions for the scalar and screw
products, we shall be able to obtain formulas for compound screw
products.

Double screw product:

Ry X (Ry X R) = Ry (Ry R — Ry (Ry- R9. (3.72)
Scalar product of two screw products:
(R, X R)(Rs X R) = (Ry:RY) (Ry:R) —
"(RgRa) (R.'R.)- (3-72)
Screw product of two screw products:

(Ry X R X (Ry X R) == Ry(R\RyR) -- R AR R =
= Ry (R\R;R) — R, (R\R3R). (3.73)
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Tne followlng theorem, which 1z kriown as the Morley-Petersen
tneorem [29], [30], is a geometrical interpretation of a property

of three double screw products of screws, and consists in the fol-
lowing.

Let L. Es Ey be three unit screws whose axes do not belong to
the same orush. Let R R. R be arbitrary screws whose axes have
right-angle interscctions with the respective pairs of axes (£. L),
(£, E, (L, F;). Then three screws S, 5. S, whose axes have right-angle
intersections with the pairs (£, R)). (%. RY). (5 Ry, belong to the

same brush, 1.e., there exists a line that intersects the axes of
the screws §.,. 8., 8, at right angles,

For the proof, we recall that screw products may be taken
for the screws R, R, R,, l.e.,

Ri=E X EsR=E, %X Ey, Ry~ E, X E:. (3.74)
and screw products for the screws $§, §; and 8,:

sl“ El X Rlv33= El X Rl' 33=-' E) Y. R’.
Replacing R, R, and B, by their expressions (3.74), we obtain

8= By X (Ey X Ey), 8 = E, X (Ey X E),

Expanding the double screw products by Formulas (3.71) and
then adding Equalities (3.75), we find

Sit Sy + 83 = Ey(E,-E)) -~ Ey (E,-EY +
+ By (Ey-E) — E(Ev-EY + E\(Ey-E)) ~
- En (Ex‘l‘-}} =0,

from which it follows that the screws S, S: and 8y are linearly

‘dependent and hence belong to the same brush. The axis of this

brush will intersect the axas of screws 5, 5, and §; at rignt an-
gles. ‘ ; .

Let us now zonsider application of Formulaz (3.72) and (3.73)
for the scalar and scraw products of two vector producis to deri-
vation of a formula of complex spnerical trigonometry.

Let us replace all screws in Pormula (3.72) by unit acrews
E.E.,E.F and assume that . 7. Remembering that scalar products
of unit screws are equal to the cosines of the corresponding com-
plex angles, we obtain the relation

(£y X EJ-(Fy X £+ Ey- Ky~ (B K1)

or
3in Ay Sin Ay cus O = cus Ay —- cos Ay c0s Ay,
from which
o Ay = otn Ay ens Ny b s A sin Ay, col O, O (1.76)
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where O Is the angle between the axes of angles A,; and Azj.

Formula (3.76) 1s an analogue of a familiar formula of spher-
ical trigonometry. It is obtalned as a corollary of the known for-
mula for the scalar product of two vector products, but it could

have been oobtained without derivation from the ordinary spherical-

trigonometry formula by putting all angles complex, 1.e., by mov-
ing the sides of the angles apart (Fig. 9).

4

Plg. 9 Pig. 10

Now let us consider the same triplet of unit screws ¥,, I
and By and write the obvious reistionship

Sin&, T RS ;;_ Mfgfg‘f‘, .
by n Ny ?
wn ) - _EEEr

P& ‘;SET\;}M'! \;‘ M

3 HE R n B EE-F

ﬁitf?r- E2 0 SN A Rt & § e T
e VEAK Ey js EaX Fai b M A mady

Frowm these formulas we obtain a relationship that is a: ana-

 isgue of thesze that form the famlliar theorem of sines in spheri-
Sad trigonometry (Flg. 10):

sn®, a8,  un®, '
Foka ™ 2nhn " sithAa ' (3.11)

§13. Transformation of Complex Rectangular Coordinates of a Screw
Having given expressions for the complex rectangular coordi-

nates of a screw, we can easily derive formulas for conversion
from one system of rectangular coordinates to another,

£
;]
e
A

Let there be given a system of rectanzular ccordinates with
its origin at point O and with unit vectors of the axes / j. &

{unit screws). Let the coordinates of unit screw B in this system

becosA,cos B, cos I'; these will -be the complex direction cosines,
Screw B can be expressed as follows:
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EvleosA i josB + doa?

ne scalar cquare of screw F will be

E¥ = coS'A -+ cos? B 4 cos? T == | (3.79)

For two unit screws By and B, defined by the coordinates

cos A,, cos By, cosT; and cos A, cos B,, cos T,, the scalar product will have
the expression

E\-Eq = cos A  cos A, -+ cos B, cos By + cos Ty cos Ty, (3.80)

The condition of intersection of B: with Z, at right angles
will be

cos Aj cos Ay -|- cos B, cos B, -|- cos T, cos I'; == 0. (3.81)

Visualize another system of rectangular coordinates with 1ts
origin at point 0' and with the unit vectors of the axes ¢’', ',
k', with 0' not colncident with 0. Let the coordinates of the unit
screw E in the second system be cosA’, cosB’, cos I'’. In the second
system, screw § will be expressed as follows:

E=1csA + J' cos B’ |- P cos I, (3.82)

The axes of the second coordinate system form nine complex
angles with the axes of the first system; thelr complex cosines
are equal to the scalar products of each pair of unit vectors
(unit screws) taken one from each system. Let

1.1 =cos A;, J'l' == COS A;, k"' == CO3 1\:‘. 8
1] =cosBy, J-J' = cosBy, k-J == cosBs, (3.83)
1-k' = cos Iy, j'k' =.: COS l‘g, kR = cos ra, )

Where Al = al '{' (I)“?, Az = a, + m: and SO fortho
The following relations apply between these nine cosines:

cos? A; -} cos® Ay - cos? Ag = 1, )
cos® Ay + cos? B, -} cost Iy =: 1.

cos A, cos B, -|- cos A cos By + cos A; cos By = 0,
08 A, €05 Ag - cos By cos By - cos I’y cos I'y = 0,
cos* B, -+ cos? By - cos* By == 1,

os® Ay -} cos? By -|- cos* Iy = 1, _

cos A, cos Ty 4 cos Agcos 'y 4 cos Agcos Iy == 0,
cos A; cos Ay + cos 13, cos By + cos Ty cos Ty = 0,
cos* Iy -|- cos Ty + cos? Iy == 1,

cos* Ay 4-cost By 4 cos* Iy = 1,

cos B, cosI'; 4- cos Bycos I'y + cos Bycos Iy = 0,
€05 A; €08 A3 -} cos By cos By -}- cos Pgcos Ty =2 0,

(3.84)

which are equivalent to twenty-four real relationships. These
equalities state that all axis vectors are unit vectors and that
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tne systerms =7 zxes are rectanguiar.

51x real guantities are sufficient to define the position of
the second system with respect to the first; hence twelve real re-
lationships must obtain between the nine complex angles (i.e., be-
tween the elghteen real quantities). Consequently, of the 24 real
relationships of (3.84), twelve will be independent.

Applying Formula (3.78), we can write formulas for the trans-
formation of unit screws:

I =1cos \,+ jcosAy+ kcosA,, |
I=1UcosAy+ fcosBy+ k' cus Ty,
J =1icos By 4 jcosBy 4- kcosB,, (3.85).
J=1cosA + jcosB, 4 R'cos Ty,
R =1icosTy+ jeosTy -+ kcosTy,
k =1cos Ay J'cos By -+ A’ cos l‘,.‘J

To obtaln coordinate transformation formulas for any screw R,
we represent the screw in first one system and then the other:

R =R+ JR,+ kR, = ¥R, + JR, + KR, (3.86)

Performing successive scalar multiplications of this equation
by i, f,k and by ¥, j', k', we obtain the formulas

Ri== Rycos Ny 4 R c0sAq -+ Rycos Ay, )
Ry = Rycos\; + Rycos B, + R, cosT,,

Ry = R«cosB, - Rycos By + Rycos B, (3.87)
R = RycosA; + Rycos By + R;cosT,,
R: = RycosTy 4 RycosTy - R, cosT,,
R; = Rycos\; 4 R;cosB,_ + RecosT,.

The determinant of this transformation is

€os Ay cos Ay cOs Ay
cos B; cos B, cos B,
cosT; cosTy cosly

D=

Expressing its square and applying (3.84), we obtain

{® = =.r|.

100
010
001

from which it follows that D = t]1, Screw displacement of the coor-
dinate system corresponds to the + sign.

The formulas of transformation (3.87) are written as follows
in matrix form:
M
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Byl i n N am A m A, R,
LRy g et co B cosin §L R, T
| ®, ‘tnsl; o Ty cols }| R,
R, €03 Ay cos I cos Iy R;
R, u'cos/\, cos B; cos Ty |} R (3.88)
R, cos Ay cos I3 cos I's || R,
or, more concisely,
R' = AR, R = AR'. (3.89)

The complex-element matrices 4 and A4’ considered here effect
an affine orthogonal transformation, one which, unlike that ef-
fected by matrices with real elements, 1s a screw displacement
that preserves the complex modull of the screws and the complex
angles between the axes of any two screws.

§14. The Screw Dyad. The Screw Affinor
Let us consider an arbitrary triplet (base) of screws 4, B,

¢ with the condition that (4BC)*:/=0.% Any glven screw R can be rep-
resented as a linear combination

R=RA+RB+RC. (3.90)
The complex numbers Rz, R, R8 are scalar products of the
screw R by the screws A, B8°,C*, which are reciprocal to the given

triplet and defined by the formulas
A= g B=5A, =450 (3.91)

We then obtain

A= BEE poSxk oo Ax (3:92)
and
(ABC) (A'BC") == 1. (3.93)
Thus,
Re=R-A"Ry=R-B",R, = R-C". (3.94)

A screw R' referred to the base 47 BC’ and having the same coor-
dinates as R can be brou§ht into correspondence with a screw R ex-
pressed by Formula (3.90):

R' = RA' -+ RyB' + RC', (3.95)
50 that the following expression may be written for R':

R' = R-A'A"+ R-B'B’ + R-C'C’ (3.96)
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R = AAR:BER+CCR (3.97)

Pormulas (3.96) and (3.97) represent an affine transformation
that brings the three screws 4’ . B',C’ into correspondence with the
three scress A, B,C. Screw R' in the new system of base screws

A, Ié C’ has the same expression as screw R in the old system 4,
B‘ L]

The expressions

® = A'A' 4 BB +CC, (3.98)
O=A4+88+CC (3.99)

are known as conjugate screw dyads; they are sums of dyad prod-
ucts.

Transformations (3.96) and (3.97) are written symbolically
as follows:

R =R-®=T.R. {3.100)

Screw R' can be referred to the original base 4, B, € with the
ald of the coordinates. Denoting the coordinates of screw R in

this base by R'x, R'y, R", we obtain

R' = R:A -+ R,B 4 R.C. (3.101)

The quantities R'z, R'y, R'z are defined if we know the expres-
sions for screws A’ B’,C’ in terms of A.B,C. Let
A= AyA + AiB -+ A;5C,

B = AyA - A;uB -+ AyC,
C' = AnA - AyuB -} AyC,

(3.102)

where the numbers ‘ik are the coordinates of the "new" base with
respect to the "old" one; further, D! % 0, where
All All All

An Ay Ay
Ay Ay Ay

D=

then, substituting (3.102) into (3.95), we obtain

R' = R‘ (A||A+ AnB -} AuC) 4-
+ R' (A“A + A“B "' AQC) +
+ Ra (A + A8 + 2,,0), (3.103)

or

R’ = (AuR. + AuR, + AnR;) A -k (AuRs 4+ AR, + (3.104)
+ A'!RI)B + (AIOR.! 4- A:QR, + A;,Rl) C.
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in accordance with (3.1013, we shail have erxpressions for the co-
ordlinates of screw R®' in the new system in terms of its coordi-
ngtes in the old system:

RU e AHRx - -’1£:Rn + A:gR:, (3 105 )

R‘x = a‘uR: ‘4 AnRr + AiﬂRh }
R = AuRs + ARy + AR,

The resulting affine transformation of the screw can 8l1so be
written as a multiplication:

R' = RA = ZR» : (30106)

where 4 is a transformation matrix with complex elements Au = an -+
0

4 O .

‘ An Ay Ay

An Azl A!S

Ay Ay Ay

(3.107)

Screw R' is a linear screw functlon of screw R, while the op-
erator A defined by the matrix in (3.107) 1s known as a screw af-
finor.

Screw affinors have been investigated and applied by S.G.

"Kislitsyn. .

Manu-
script

Page
No.

54 Here the usual requirement ABC # 0 1s insufflcient,
since the camse in which the principal part of this mixed
product is zero is not excluded, and then division by 1t
is impossible.

Footnote

- 56 -




Chapter 4

THE TRANSFER PRINCIPLE AND ITS APPLICATION TO
THE GEOMETRY AND KINEMATICS OF THE SOLID BODY

§1. Transfer Principle in Complex Vector Algebra

On examining the formulas expressing the results of opera-
tions on screws, we are struck by their identity tc¢ the formulas
of ordinary vector algebra. This identity was found to be a con-
sequence of substitution of the vector in the vectcr-algebra for-
mulas by the motor and its formal expression in the form of a com-
plex vector with a special type of multiplier w, whose square is
equal to zero, and also of introduction of the complex modulus of
the vector and the complex angle between straight lines 1in space.

The formulas expressing the sum and the scalar and screw
products of screws in terms of "internal" quantitles - modull and
angles — were found to be quite identical to the corresponding
formulas for the sum and scalar and vector products of vectors on
condition that the modulus of the vector is replaced in the latter
by the complex screw modulus and the ordinary angle between the
iines by the complex angle. The identity of the basic formulas of
vector and screw algebras is illustrated by the table on the next

page.

The complete parallelism of the formulas that is seen in this
table results in parallelism in a multitude cf other formulas,
principally the formulas for more complex products of vectors and
screws (scalar-screw, double screw, scalar and screw products,
two screw products, and so forth), as well as in many other for-
mulas of vector and screw algebra.

This parallelism results in a highly important general propo-
sition that constitutes the transfer principle of complex vector
algebra, the algebra of screws. The principle that will be our
subject here is one of many examples of the familiar transfer
principle, which can be characterized as follows. Let there be
formulas that link analytically the elements of some space - vari-
ous geometrical figures (points, lines, etc.), and let us assume
that the corresponding relationships are also preserved if the
elements linked by them are substituted by other elements - total-
ly different geometrical figures — not excluding geometrical fig-
ures with a different number of dimensions. In this case, the same
formulas will expreas the relationships of two totally different
geometries, and these two geometries become identical to one an-
other. If some theorem is known for one geometry, it is automati-
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We tor alzelr: Screw aigetra

Vector r Screw R
Moduius of vector ir.-r Complex modulus of screw
[Rl=R
Angle between two straight Complex angle between two
lines a straight lines A
Scalar product of two vectors Scalar product of two screws
i, P Iy COS Q Ri-Rs = RiRy coi A
Vector product of two vectors Screw product of two screws
rircepnnsing (g, 1s the unit Ri X Ry= ExsfiR.sinA (Bya 18 the
vector forming right angles unit screw, whose axis in-
with the vectors r; and rz) tersects the axes of screws
R, and R, at right angles)
Sum of vectors r-:ntsn (r is a Sum of screws R ™+tR (R is a
vector whose direction and screw whose direction and
modulus are determined from axis position, as well as
the closed triangle) its complex modulus, are de-
termined from the "expanded"
triangle)

cally transferred to the other geometry, and this second geometry
can be studied by means of the first, the only adjustment being
that the results are interpreted in the second geometry with the
aid of other geometrical concepts.®

The transfer (or expansion) principle of the complex vector
algebra that is the algebra of screws, as formulated by A.P. Ko-
tel'nikov and somewhat later by E. Study, reduces to the follow-
ing.

Let us consider a certain collection of vectors 7niun.. .
whose origin is at a certain common reduction point 0. Assume
that, together with each of the vectors r., we also consider a

certain moment r; attributed to it and referred to point 0, with

the result that an additional set of moments »{, r}..... referred
to point 0, makes its appearance, so that we have sets of two vec-

tors, 1.e., motors (n.r).(rur)... Each motor (7.7, referred to point
0, naturally defines a certain screw R, - its axis, vector and

parameter. The set of motors (“uf) (r.rD..., referred to the reduc-
tion point 0, determines a set of screws R, R, ... . The ends of
all vectors and moments with origins at point 0 form a six-dimen-
sional point space, while the axes of the sarews defined by them
form & four-dimensional linear space, with a two-dimensional space
of screws corresponding to each axis and, consequently, the screw
space will be six-dimensional. Thus, with the aid of the reduction
point, we establish correspondence between the space of vector
doublets or motors (or point pairs) on the one hand and the space
of screws on the other. To each motor in the first space there

- 58 -

I




-

Do 4 . LT A LN tns IerInd Zpace,

If *r- moments r; are ejual to zero, we snall have an ordi-

nary vector (point) sapace and operations on-“the vectors will give
the relationzhips of vector algebra for the vectors r.. If, how-

ever, the moments r; are not equal to zero, then, as was shown 1n

Chapter 3, we may form complex vectors r,+ orl, for which the basic
vector-algebra formulas may be written similarly, but will at the
same time alsn» be formulas for the screws Ri corresponding to

these complex vectors. We were able to satisfy ourselves that by
virtue of a property of the fortunately introduced multiplier w,
the basic formulas for the screws exactly reproduce the formulas
for the principal parts of the screws, i.e., for the vectors.
Hence the basic formulas of vector algebra, which are written
"lower-case," serve simultaneously as basic formulas for the the-
ory of screws when they are rewritten "upper-case."

The baslic formulas are: a) the formula for the scalar square
of a vector (or screw) and b) the formula for the angle between
two vectors (or between screw axes), expressed with the aid of
the scalar product. Here we recognize that the complex modulus of
the screw corresponds to the modulus of the vector and the complex
angle between the screw axes to the angle between vectors, i.e.,

r=rntntn=rR =R +R+ R~
uR’ ’3610'

€08 (g, F9) = ~5 ulut """' +.’_‘.‘."'..... -
) ik

Vr’ +'~. r' Vt' “”:’_‘,i"' '

’_tukn + Ru‘qu'*' RhRil

e 3-.-

€os RluR oA b =

If, however, identity exiats between the bgsic formulas of
vector and screw algebras, we may conclude that identity exists
between all formulas that can be reduced t¢ a finite number of
these basic formulas. This means that at least all of the formu-
las of vector algebra, written "lower-case,” will serve as formu-
las for the algebra of screws if they are rewritten "upper-case;
here the complex modulus of the screw wiil corresponid to the modu-
lus of the vector in the new formulas, and the cowplex angle be-
tween the axes of two screws will correspond to the angle between
two vectors.

The above constitutes the transfer principle for complex vec-
tor algebra, the algebra of screws. On the basis of this princi-
ple, the correspondence table given above can be extended for
many other formulas in such a way that its right-hand colum,
which pertains to the screws ("upper-case letters”) will always
correspond to its left column, which pertains to the vector
("lower-case letters"); substitution of upper for lower case sig-
pifies substitution of complex quantities for real quanti%ies. The
vector-algebra formulas may be regarded as "unexpanded" formulas
of screw algebra: writing the former in upper case, we impart com=-
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fi%2 vaide Lo tnem and then expand them. As a result, we obtain
cempic~ foramulas for transformation of coordinates, formulas of a

m.re yp-:neral complex affine transformation, formulas of complex
spherfcal trigonometry, and others.

It 18 necessary to note here that transfer of the vector-
algebra formulas to the algebra of screws loses its significance
ir cases in which the vector moduli vanish. In these cases, the

corresponding screws are degenerate. A special analysis is re-
quired for such exceptional cases.

It can be seen on the basls of the above that the transfer
principle establishes correspondence between the vector (point)
space and the screw space.

By means of the transfer principle, a flat bundle of straight

11nes)is transformed (is expanded) Into a brush (see §9 of Chap-~
ter 3). '

It was also shown in the same Chapter 3 that the basic for-
mulas of screw algebra are invariant with respect to selection of
the reduction point, i.e., they do not depend on the motor to
which the given screw is reduced. With the treatment of the trans-
fer principle just presented, this property is eguivalent to the
property of all formulas characterizing internal relationships be-
tween screws of remaining unchanged on addition of a term p x r.,

where p is the same vector for all P to each of the moments r;

of the motors. This transformation is equivalent to parallel
translation of the screw space. It could also be shown (but we
shall not dwell on this here) that the basic formulas cf screw al-
gebra remain unchangzed on any motion of the space that preserves
the complex mcdull of the screws and the angles between their
axes, or, in other words, on any orthogonal transformation.

Below, in Chapter 5, we shall indicate the possibility of es-
tablishing correspondence between the formulas of vector anaslysis
and those of screw analysis, in which complex scalar functions and
screw functions of a screw argument figure.

The transfer principle is of great practical importance in
the theory of complex vectors. In solving problems in the kine-
matics of a solid body with a fixed point, the angular velocitles
are eypressed by vectors passing through a common point, and the
algebra of free vectors iz applied. If it 1s necessary %o scolve a
problem of motion of a free solld body, velocity screws are sub-
stitutsd for the enpulswr-velocity vectors in thc formulas for the
corresponding spherical motion, compiex angles between screw axes
replace argles between vectors, and the kinematic formulas of the
free solid body are ottained by simple recasting of the kinematic
formulas of a fixed-point body with substitution of "upper-case"
for "lower-case™ letters: these formulas are then expanded. For
many problems in the kinematics of the arbitrarily moving bdbody,
it 1s poussible to formulate the corresponding problem of spherical
motion by artificial introduction of a fixed point; solution of

. this simpler problem automatically leads to the solution of the
~ basic problem with the aid of the transfer principle.
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Problems of the motion of a system of solid bodies whose
relative motions are subject to geometrical linkage conditions
can be solved in the same way. As a result, it becomes possible
to solve with comparative ease problems concerning the motion of
three-dimensional hinge and other mechanisms.

The situation is quite similar in the statics of the solid
body, where many problems of the equilibrium of a free solid body
can be solved by solving problems of the equilibrium of a point
end subsequent application of the transfer principle., It will be
appropriate to note here that the attempt to apply the transfer
principle to dynamics no longer produces such simple relationships
as can be obtained for kinematics and statics. This is because it
is necessary in writing the screw equations of solid-body dynamics
to establish correspondence between two spaces twice (first be-
tween the space of the angular-velocity wvectors and the kinematic
screw space, and then between the force-vector space and the
force-screw space), and because the complex operator linking the
kinematic and force screws cannot be obtained from the correspond-
ing effine operator linking the angular velocity vector with the
moment by substitution of complex for real quantities.® As a re-
sult, many dynam!c and static problems must be solved on the basis
of general occrew thecry with the screws expressed by means of s'x
Pliicker coordinates.

In this chapter and those that fullow, examples of applici-
ticn of this transfer principle to certain protlems of geometry
and kinematics w111 be presented.

§2. Finite Displacemants of a Solid Body

Let us consider application of the transfer principle to the
theory of finite displacements of a solid dody.

In the kinematics, vé shall consider screw displacements. A
displacemert is expressed by & screw in which the vector is equal

to the rotation angle and the moment is equal to the translational-
displacement vector; the acrew axis coincidea with the displacoment

rxis of the bod:.

A zerc-parameter sorew (or sliding vaa:or) ccrresponds to
pure rotation of the body without translational displacement. A
socrew of infinite parameter corresponds to purely translational
displacement of the body.

Lnt us first dweli on the elonontary theory of rinite rota-
tions of a body with a fixed point,.®¥

: If s solid body turns through a finite angle adout & certain
axis, whose unit vector will bpe denoted by ¢, we can rcllxo the

. initial value of the radius vector of a point of the body, r » 04,

~where 0 is a point on the rotation axis, with its final valuo af-
ter the rotation, 7' = 0A’, where 4’ is the final positicn of the
'-‘paint (rig. 11), or the tasis of the following thcoron.

Thegrem 9. if ve introduce the finite-pctation veator
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o::e[g-z—::;eo' (u-l)

where @ i the unit vector of the azis of rotation and ¢ is the
angle of rotaticn, then the final value »' of the radius vector
i3 exnressed by the following formula in terms of the initial
value p: ¥

r'-_—.r-}--i—:—_qs‘—X(f—{-OXf)- (u.2)

Actually, 1f we conslider a section passing through point 4
perpendicular to the axis of rotation, we shall have in it a vec-

tor s= 04 that becomes the vector g4’ . g after the rotation.

We have the relationships

= (r-eye-ls, r =(ree+ts'. (4.3)
For the final position we have
s"=scosq>+ex.95incp=s:—;-—%’5 -l-exsﬂzgd=.=
A =§-}-eX§ 20 2

e TS

On the basis of (4.3), and remembering that ¢ < s:=:e Xr, we can
write :

. 20 20
§'=g¢ -i e X Iy -} i gillr-e)e--rj=

20 208 .
=§5-+ex ri—+~03 +n—o;e X (e xr).

Adding (r-e)e to the left and right members of the equality
and substituting 6 for 6, we obtain Formula (4.2), whose validity
was to be demonstrated.

In the particular case in which ¢ = 7, 1,e., when the body
makes a half-revolution, Formula (4.2) gives

r=2(rnre-r. (4.4)

Any rotation of the body can be accomplished by two half-
revolutions on the basis of the following theorem.

Theorem 10. Rotation of a body through an angle @ about a
aeertain axis is equivalent to two successive half-revolutions of
the body about axes that interseot at right angles at the same
point on the given axis and form an angle 9/2 with one another.

Let the unit vector of the axis of rotation be e, and let
the unit vectors of the half-revolution axes be e, and e:. The
radius vector » of the ﬁoint of the body lying in plane e e: 1is
given, according to (4.4), by the following expression after a
half-turn about e:
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r' -';-’9.(81"') (’-,-—r.
and after the second half-turn by

r'=2(r')e,—r =2{2(e-r)e,—rle) e, —
- 2 (e;-f) ex“!‘ r.
If the angle between » and ¢, is denoted by a, we shall have

r* = r — 2, cosa — 2e, cos (¥ -~:().

Forming the vector product of the iritial radius vector and
the final radius vector, i.e., after the two half-turns, we obtain

FXr=—2r X ecosa--2r X e;cos(-}-— )-—:

= [ - 2sinacosa -} 2sin (} -i-a) €os (5— -.x)]e =- eshng.

It follows from this that the initial and final radius vectors lie
in a plane perpendicular to the vector ¢ and form an angle ¢,
1.e., as a result of the two half-revolutions, the body nas per-
formed rotation through an angle ¢ about the axis e, Q.E.D.

Mg, 11

Two successive rotations of the body about axes that pass
through a common point are equivalent to one rotation about an
axls passing through the same point. This rotation is a resultant
equivalent to the two rotations, which may be called component
rotations.

The following theorem makes it possible, given the unit vec-
tors e; and e; of the axes and the angles 9 and 92 of the conmpo-
nent rotations, to find the unit vector e; of the axis and the an-
gle ¢y of the resultant rotation.

Suppose that we know the axes ¢, and e, which form the an-
gle a, and the corresponding rotation angles @, and 92 of the
body {Fig. 12). We construct planes Q, and Qs respectively per-
pendiculiar to the vectors ¢, and ¢2 at the point 0 of intersection
of the vectors; this will determine an axis with unit vector ¢,
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that coiricldes with the line of intersection of planes @; ané Q.,
with the vec:or polnting in the direction of the vector product
of the vectors e, and €2. In plane qi, we draw frpm point 0 a ray
0A', which on rotation about 0 through an angle of 9:1/2 coincides
with the axis #;3; in plane @2, on the other hand, we draw a ray
04" from point 0; the axis 6;2 will coincide with this ray if the
former is turned about 0 through an angle ¢;/2. We shall denote
the unit vectors along the ravs CA’ and 0OA” by e’ and e".

We pass plane @y through rays 0OA' and 0A” and pass an axis
with unit vector e¢s through point 0 perpendicular to plane Q in
the direction of the vector product of the vectors ¢’ and e”.

This vector e defines the axis of a rotation equivalent to two
rotations about @, and e¢2, while twice the angle between rays 04’

and 04" determines the magnitude @i of the angle of the unknown
rotatlion of the body.

By way of proof, we note that rotation about &; through an
angle @, 1s, according to Theorem 10, equivalent to a half-revolu-
tion about ¢’ and a half-revolution about #,2; rotation about e:
through an angle ¢, is equivalent to a half~revolution about @;:
and a half-revolution about e" and, consequently, the complete
rotation is equivalent to the above four half-rotations. But the
two half-revolutions about @;2 cancel one another, leaving the
half-revolution about ' and that about e"”, and these two are
equivalent, on the basis of the theorem, to rotation through an
angle @3 about es. It now remains to express the vector of the
resultant rotation in terms of the component-rotation vectors.

For this purpose, we write the expression

sin{e’, e*) e xXe"

és C?S(".")-a e e =e3tg% . (uOS)

We express the vectors ¢' and e”:

v Q1 X8 11__ & X T

¢ ="iina , F sing X @ Sin—-, (4.6)
_b%Xe .4 axe . @ )

¢ = “sina %53 -+ ey X ———= Sina sin - g

Performing vector and then scalar multiplication of Equalities
(4.6), we find after rearranging

e e -e;sin°3cos- }c,coeylsm"; -

—-exxl:,sm‘F <m'§ . (4.7)
(i4,8)

€.8" = cos (e, %) :-c S+ cos-v'-- sin- ~-sin * €OS %,
Substituting (4.7) and (4.8) in the numerator and denominator
of (4.5), we obtain after canceling cos{p,/2) cos (p,/2)

Mg% +catc3}-—-n x estg B
€ lgug—-... >

{—e-atg ‘%‘" 1'% 3

)
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Again introducing the finite-rotation vectors

01=¢xf8ﬂ. ot=eg‘g-%.-, 0.=e;lgﬁ— (uog)

we obtaln the final result — an expression for the vector of the
gisultant rotaticn in terms of the vectors of the component rota-
ons:

=06 (4.10)
This proves the following theorem. .

Theorem 11, If the unit veotors 6, and 6 of the axes and
the angles ¢ and @2 of successive rotations of a body are given,
then the axie of the resultant rotation equivalent to these two
rotations is obtained by the follouing eonstruction: through the
point 0 of intersection of 6, with a; we pass two planes perpen-
dicular to these two vectors; in the first plane we draw a ray
that forms an angyle -91/2 with the line of intersection of the
planes, and in the second plane we draw a ray that forme an angle
®2/2 with thies line; we pass a plane through these rays, which
are defined by the unit vectore 8' and e". The azis with unit vec-
tor @3y perpendicular to this plane at point 0 .will be the axis of
the resultant rotatzan and the angle of rotation @s will be tuwice
the angle between ¢' and @". The relatiun between the resultunt-
rotation vector and the component-rotation vectors is given by
Pormulas (4.9) and (4.10).

Formula (4.10) indicates that the resultant rotation depends
on the order in which the component rotations were performed. For
rotation through small angles, when the products of the angles
can be disregarded, we obtain a "linear™ addition formula:

0, =0, + 0,

On the basis of the transfer principle, Formulas (4.1),
(4.2), (4.9) and (4.10) given here may be interpreted as formulas
with complex quantities. The finite-rotation angles that appear
in them may be put complex, the unit vectors may be made unit
screws of axes fixed in space, and the vector moduli may be made
complex. In this case, by virtue of the transfer principle, these
formulas admit of interpretation'in the language of screws, and
the theory of finlte rotations set forth above becomes a theory
of finite screw displacements of a body. Theorems 9, 10 and 11 re-
main valid in this new interpretation, with the following correc-
tions: firstly, screw displacements ‘are imparted to the body about
axes arbitrarily positioned ih space -and, secondly, the initial
and final positions determined are not those of the radius vector
of a point, but those of a screw lying on a line belonging to the
body.

Thus, we can formulate the rollowing theorems,

Theorem 12, If we intraducc thc aonplcz vcctor of a ftnitc
sorev diaplaacmnnt .

N ' : . T
. !
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e=5e=Etgy, (4.11)

where B @s the unit serew of tha sorew-displasement axis and & =
=@ -Lwg® 18 the complex rotatian angle (displgcement gerew), then
for a serew (or vector) R lying on an arbitrary line of the body,
the finite position R' ig expresesed by the farmula

M=R+f%ﬁxm+exkx (4.12)
whieh is analogoue to Formula (4.2).

i QBdiagram of the displacement under consideration appears in
ga .

Theorem 13, Sorew displgeement pfl a body through a complex
angle =9+ wg® about an azie whose unit acrsw ig B is equivalent
to two successive half-rqvolutions ezecutad gbout lines with the
unit screws Ey and B2, which intersect the axis ¥ at right angles
and form a complex angle ¥/2 with one gnother (Fig. 14).

oA

.

3

Fig. 13 Flg. 14 ‘ Fig. 15

Z%i\*

Theorem 14. Two sucoegsive finite sarew displacements through
complex angles &) and d3 about arditrary azes in a spaoce with unit
sorgus Ky and By can be substituted by a eingle equivalent result-
ant sorew displacement. The azis, whoge unit sopsw will be denoted
by By, and the oomglos angle &3 of the resubtant gqorev displace-
ment are obtained by the following oomatruction (PFig. 15): we drav
the axie of the complex angle By and then a %t atght line a'
that intersects the azie By and forms the comp 0: angle &1/2 with
this angle axie and thenm a line a" that interesots the azis B,
and forme the pomplex angle €3/2 with this same angle azis; twice
the complex angle between a' and a” is equal to the complez angls
¢y of the resultant sorew displacement, and the amis of angle
a'-a" with the unit sorey By ta the azte of thie dieplacement.

If the complex vectors of the finite sorew displacements of
the components and the resulsant are equal, respectively, to

[}
i
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0= 0 = Eylg 3, 0, E,8, = Eytg 3,
 6,=Ef=EigD, (4.13)

then the relation between these screws is expressed by the formula

0= 6;40,—€, %6,

e

=60, * (4.14)
which is analogous to Formula (4.10). ?
Theorems 12, 13 and 14 require no proof, since they follow g

from the analogous formulas pertaining to simple rotations of a
body by virtue of the transfer principle.

Analysis of the analogy between the "vector" and "screw" for-
mulas indicates that with the transfer principle, point kinematics
become line kinematics and the kinematics of a body with a fixed
point become the kinematics of a free body.

§3. Determination of Displacement Screw from Initial and Final
Positions of a Solid Body

The problem of displacement of a solid body from one given
positlon to another by means of a single screw displacement is of
practical interest for production automation, especially when 1t
1s necessary to accomplish a certain technological operation ac-
companied by an over-all displacement of a workplece on a ma-
chine.®* Practical execution of such a displacement requires a con-
verting flxture capable of imparting to the workplece a single
screw displacement that transfers it from one position to the
other. Here the initial and final positions are considered to be
given, and the problem consists in determining the appropriate
displacement screw that effects this translation, i.e., an axis,
a rotation angle, and a translational displacement. The i1aitial
and final positions of the workpiece can be defined by the ini-
tial and final positions of any two straight lines rigidly asso-
clated with this workpiece.

First, let us solve a simpler problem, from the solution of
which we may then pass to solution of the problem formulated
above, using the transfer principle. This simpler problem 1is as
follows: find the finite-rotation vector of a solid body that has

a fixed point 0 1f it is known that the two unit vectors ¢, ~0A,

and e.==53m which pass through point 0 and are inseparably asso-
clated with the body, become, after the rotation, the vectors

e, =0/ and & = aa (here, naturally, &i"é&; = &;-¢). This problem is
equivalent to the familiar problem of determining the center of a
finite rotatior of a spherical segment A14: that becomes a segment
A14's on a sphere of unit radius. For the solution, we first de-
termine the geometric locus of all axes rotation about which can
translate vector ¢; into vector e¢';. Obviously; the geometric lo-
cus of such axes will be a plane gq; passing through 0 and perpen-
dicular to the plane 04;4';, with its line of intersection with
the latter bisecting the angle between the vectors e¢; and e¢’,.
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Then we determine the geometric locus of all axes rotation about
which can translate vector ¢: into vector a'z; this will be a
plane q: passing through 0, perpendicular to the plane 04:4’2,

"and having a line of intersection with the latter that bisects

the angle between vectors e, and ¢'z. Obviously, the line & of
intersection of the planes g and ¢ satisfles the condition that

" potation about it translates both e; into ¢’: and e2 into e:

o et ——— ot

[sic]. This will be the solution of the problem of determining the
finite-rotation axes of a body with a fixed point 0.

In concrete terms, the solution on the ahave scheme is car-
ried out as follows. Wirst we determine the plane g - its unit

vector 1s parallel to thz vector r.=e:—-e,. and then the plane ¢qa2,

whose unit vector is parallel to the vector r;=¢:--e, The unit
vector e, which is perpendicular simultaneously to vectors », and
r;, will obviously be parallel to the line of intersection of
planes q: and q2 and will define the point of rotatlon of a spher-
ical segment 4142 on a sphere of unit radius, with the result that
the latter goes over to 44 We have

Ty ey ey Py = € - ey,
X (e, —&1) % (e, — &)
E= X nl = (e —ea k(e e
1 X s I(e,— ) X (e,-— &)]
’ N .
(6, — 1) X (g — 1)

Ve, —tille,—eilsin(e, — e, ey —er) '
1€~ e | = 2sln—_’z (e;. ) = )/’Q'\K{\j::?Th
|6, &= 2sin (e, e) = VIV Y = ¢ an,
le,—elle,—el=2VT—¢-e,VT—¢, e,

(6, — @) (¢, —~ &)
Wi—eaVi—ca'

(4,15)

cos (6] — &y, &, — &) =

sin(e}—e, e,— &) =
Vi(—a en(t— o, -01)— (6, — 01):(¢,— 00)}*

—

3Vi—¢;-o.7it 0o )

Thus, the unit vector of the axis about which the body must
make a finite rotation will be
(=) X (e, —e0)

¢ == SR STEL SRR I R Sy AITE . SRATRATL G SR ITE .
VA= eli-- e - (8, - a)-(ey- el (4.16)

It remains to find the finite-rotation a.gale. For this pur-
pose, we apply Formula (4.2) for the finite rotation, substituting
in it the initial and final vectors e, and #;, together with the
vector e¢. We obtain the formula -

‘;"“"]io"cxwl“"x‘lo)"’




20 202 )
=etyrmexatruexlexea)=

20 207 20
=e¢tigmeXatrae (e-e1) — el

in which, in this case, all unit vectors are known, and the un-
known 1s the quantity 0 == tg(p/?). Performing scaleér multiplicatlion
of both sides of the above equality by e, we wntzin the scalar
equation

» 20.» 20‘
o=+ gl el —rfp = L+ g llear— 1l
from which
1—6-0
0 g A . ;
3 {te-e—2(e-arp (5.17)

The problem posed at the outset can be solved very easily
after solution of this problem.

Thus, there were given two unit screws &, and ¥, lying on
two stralght lines inseparably connected with the body, screws
which, after the body has completed a certain displacement in
space, have been translated into the unit screws B'’; and B',,
which are known. It is necessary to find the corresponding finite-
displacement screw of the body.

We apply the transfer principle, using the procedure em-
ployed in solving the previous problem.

First we determine the geometric locus of all axes screw mo-
tion with respect to which can translate unit screw ¥; into unit
screw §';. By virtue of the transfer principle, this will be a
plane analogue — & brush @i, whose axis will be the axis of a

screw Ri= Ey— E;. This axis intersects the axis of screw £: X E, at
right angles and bisects the segment between B; and F': on this
axis.

We then determine the geometric locus of all axes screw mo-
tion with respect to which can transfer unit screw F; to unit
screw §'y. Once again, this will be a brush Q:, whose axis is the

axis of a screw Ry:F,—E, This axis intersects the axis of screw
X E; at right angles and bisects the segment between By and B’y
on this axis.

The axis I screw motion with respect to which can simultane-
ously translate B; into F'; and F; into B'y, 1.e., the screw-dis-
placement axis of the body, will belong simultaneously to both of
the above brushes and, consequently, this axis must intersect the
axes of screws R, and R; at right angles.

Now it remains to find all of these axes.

By analogy with Pormulas (4.15), we have
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Ry= Ei~-E,, Ry= E,F, )

e RiXR (B~ E)X(E~Fy
j Ry X Ky IE; ~E]] l‘:;-— E; |sin-a::'I :EwE,:E;)— !
| Ei—Ei|= V2V 1—E,E,
. |E—E-VIViZEE, o (418)
sin (£ - - By, Ej-— Ey) = |
VA( - E,-E)(\ - E, E)— (E, — E0V(E, — En)fF ’
B ViSEBVIZE f

The unit screw of the screw-disglacement axls of the body 1is
obtained from a formula similar to (4.16):

ViQ~E BNt —E, - E)— (E, — EnE, — EO1

Now, taking the initial and final positions of one of the
unit screws, namely ¥, and F’;, and the unit screw ¥ that we have
found, we determine the complex angle ¢ or, what is the same
thing, the modulus of the finite-rotation screw of the body, from
a relationship analogous to (U4.17),

1~ EE
Ot QTS
O TR RSy - (h.20)

80 that the problem has been solved.

§4. Application of the Theory of Finite Screw Displacements to :
Determination of Relative Displacements of Links in a Three- ;
Dimensional Mechanism

The theory of finite rotations set forth above and its screw
analogue, the theory of finite screw displacements, enable us to
derive formulas for the relation between the turn angles and slide
paths of the links cf a three-dimensional mechanism with cylindri-
cal changes.

Let us consider a three-dimensional four-member mechanirm
with a single rotary hinge 1 and three cylindrical hinges 2, 3
and 4 (Pig. 16). The rotary hinge permits relative rotation of
the adjacent links through arbitrary angles, while the cylindrical
hinges permit rotation together with s.ip. The hinge axes occupy
arbitrary positions in space. Let us establish the term link for
8 rigid configuration consisting of two nejghboring hinge axes
and the shortest-distance line segment between them. Geometrical-
ly, therefore, a link is characterized by a complex angle whose .
principal part is the actual angle between the axes of the hinges
at its ends, while the moment part is the length of the link. We
shall denote the complex angle of the links 1-2, 2-3, 3-4 and 8-l
by

Arato® BeaBt+aft,TTesqy-for A=) ad,

respectively; link 1-2 will de regarded as the driving link and

-70-




link 4-3 as the driven 1link; we shall assume that link U4-1 is sta-
tionary. The angle between links 1-4 and 1-2 will be denoted by
=29 wg°, and the angle between links 1-4 and 4-3 by ¥ =v | oy

Fig. 17

We pose the problem of determining the position of the driven
link 3-4 as a function of the position of the driving link 1-2,
or, in other words, determining the angle ¥ as a function of the
angle ¢. The provlem 1s most simply solved as follows. We tempo-
rarily remove link 2-3 and "stretch" links 1-2 and 4-3 into line
with ¢*»e fved 1link 1-4. Thus the angles & and ¥ will have been
reduced tc zero (Fig. 17). We then give 1link 1-2 a rotation about
axis 1 through a complex angle ¢, and link 4-3 a rotation about
axis 4 through the complex angle Y. After these rotations, axes 2
and 3 will occupy positions 2' and 3°'.

We replace link -3, requiring that the configuration of axes
2' and 3' correspond to the configuration of the temporarily re-
moved link 2-3, i.e., that the complex angle between axes 2' and
3' be equal to B = f -+ of*, which necessitates that the scalar prod-
uct of the unit screws of these axes dbe equal to the cosine of
the complex angle in question.

We shall denote the unit screws of the hinge axes in the
"stretched" state of the mechanism by E, £, E.. £, ‘

After rotation about 2, through an angle ¢, the position of
?:13 ’; will be expressed as follows on the basis of Pormula
.12): _

E;-E."' T;”-UX(EQ'FOXE.). . o (..21)

where O = £, g (9/2) is the complex finite-rotation vector of link
1-20

After rotation about B, through an angle ¥, the position of
axis By, again on the basis of Formula (§.12), will be

Eom Bty B x (B4 X x By, (\.22)
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where

5y AR

Performing scalar multiplication of (4.21) and (4.22) and equating
cos B:

E'vEs= EyEad [} 3y X(Esk OXE)] Ext
+ Evigw X (Bt X x E)] +
+4- [-‘-_2—9-6; X(Ly+ 0O« Ez)]'[r_:";'f X (B3l X X E:)_‘ 3
= cos B.

If we expand this oproduct and then remember that the scalar prod-
ucts of the unit screws of the mechanism's axes have the values

E;E, = cos B, Ey-Ey = cos (A — A + T), E,-E, = cos A,
E“E‘ = €0s A, E.'E‘ =2 COs l',

we obtain ths following quadratic equation in the unknown complex
quantity X:

{feos (A — A —T) — cos Bl + [cos (A + A — I) -
—cosBl1O} X! + 4sinAsinTOX + lcos(A--A 4 T) — 4.23)
- c0sB) -+ lcos (A + A + T) — cos B 0% = 0 (4.23

or, concisely,
(M + NOY X + 2POX + (Q + RO = 0. (4.23")

This quadratic equation expresses X as a function of 6, 1.e.,
properly speaking, the dependence of the turn angle Y of the
driven link on the turn angle ¢ of the driving link.

We note that the angle ® ~¢ - wp® varies in such a way that
the quantity ¢° remains constant (rotary hinge); hence the argu-
ment is the real quantity @, while the change in the angle ¥ =
=9 -+ w® represents the change in the angle ¥ and the segment y*
proper.

; If we take the principal part of the complex equation (4.23),
it will be the same equation, but with real quantities substituted

for complex, i.e., with lower-case letters substituted for upper-
case letters:

(leos @~ - 7)-- emP] | lcos (B +-a--17)~

.- cos P10%) x* 4 4 sina sin 7Oy -}
4 leos® -aly)~copld lcos@®+ad - ’
 —cosPlO® . 0 (b.20)

or, in short form,

(m | a0 2| 205 (g | 0% .0, (8.207)
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where
(] :
o::-.(g.z.. 1:ztg-g-.

Equation (4.24) or (4.24') describes a three-dimensional four-link
mechanism whose axes are parallel to the axes of the given mecha-
nism and intersect at one point.

Let us ascertain the conditions under which the discriminant

of the complex equation (4.23) vanishes, i1.e., the conditions un-
der which the equality

Pe* - (M 4 Ne% (Q + RO") = D

is satisfied. This equality represents an equation in the quan-
tity 6:

NR@* + (MR + QN — P% 8% + MQ = 0. (4.25)

We transform the expressions for the coefficients of this
equation:

x
A4+A4T 4B A4+ A+T~-B
X sin —3 sin + ;- -
= [c0s (B + T') — cos (A + A)] [cos (B —T) —
) —cos(A -+ A)} = xp,
MQ ndsln..:_i'{._r.’.t! gné_‘._Ai'.L‘:! X
x“n5~k+r+aﬁna-4%;—n_.

= [c0s (B + I) - - cos (A —A)] [cos (B -~ I)—
—¢0s{A — A)}=~ o,

”R“‘S‘ﬂA+A;r+B dn‘-l-‘A;r—B

MR+ QN - p* =

w {cos (A 4 B) -- cos (A + 1) lcos (A - B) --

— 08 (A - 1)) + [cos (A + B) —cos (A — D] x

X lcos (A —B) - cos (A — 1))~ dsiu?Asint I' =
ws 008°A 4 cos 2B + cos I -} 08 2A —~4cosAcos B X

xn o Peos Al e (B 5 1)~ cos (A 4 A)IX
X leos(® - 1) ~coc (A A leos (B - 1) -
—cor{A + A) fens (18 4 1) --con (A -~ )+ |
ER{] 30 BV T H

then Eq. (4.25) assumes the form
2pd* + (ar 4 po) ©* |- ov ~ 0. (8.25")

The roots of this equation will bde

&Y -<. oy <% (4.26)

Let us ascertain the position of the mechanism's links to which
these two values of 6 and, consequently, two values of the angle




. YT Ty "

% correspond. We write the expression for the cosine of the angle
between the axes of hinges 2 and U4 on the basis of a formula of
complex spherical trigonometry

€08 (Ez, E¢) = cos AcosA +sinAsinAcos® =

==¢os.\cos A -{- sinAsin A ;-T_'g-: . (4.27)

Now we replace 92 by its values 6% and 6% (4.26); then we obta!n
in the one case

cos (£,, Eq) = cos AcosA -} sin Asin A 3{-:- =

. ; soh i A 260S(B |- T)—2cos Acos A
cosAcos At sinAsinA T AsaR

. ==cos (B 4TI},

and similarly in the other case
cos (£,, E,) == cos (B — I).

The result obtained indicates that for the values of © and, ac-
cordingly, ¢ that csuse the discriminant of Eq. (4.23) to vanish,
the complex angle betweeu axes 2 and 4 i equal to the sum or dif-
ference of the anzles B and I'. From this it follows that in this
position of tne mechanism, axes 2, 3 and U are parallel to the
same plane, and that links 2-3 and 3-4 have become parallel. This
is the "dead" position (Fig. 18, a and b).

On the other hand, since the discriminant of the complex al-
gebraic equation (4.23) 1s zero, the moment part is unknown, 1.e.,
the moment part X and henze the quantity ¢°® can be selected ar-
bitrarily on the basis of Theorem 3 (Chapter 2). This purely al-
gebraic property is interpreted in this case as a kinematlc fact:
when the three cylindrical hinges are positioned parallel to the
same plane, two links, together with the middle axis, can slip
indefinitely, and, consequently, y° ceases to be a fixed quantity
(Flg. 19). In this case the dead position is a position of inde-
terminate slip for certain links.
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It 1s alsc possible to pose the following problem: determine
the relationsnips among the lirk dimensions ({lengths and angles)
with which pure rotation will take place in hinge 2 on rotaticn
of the driving link 1-2. Obviously, these relationships will be
exceptional, because, generally speaking, rotation with slip must
occur in hinge U4; the requirement of pure rotation, however, is
a requirement that the slip vanish identically for any value of
the driving-link rotation angle.

Let us assume for simplicity that ¥ <% =90, 1.e., that links
1-2 and 1-4 on the one hand and links 1l-4 and 4-3 on the other
come into contact and that the angles ¢ and Y are real.

Expressing the coefficients and the unknown in Eq. (4.23) in
terms of principal and moment parts, we separate these parts:

(mm -} n0%) 2 -+ 2pby (g - 0% = 0,
(m® - n%0%) 2 4- 2%y (¢ + r°0%) == 0.

Since the quantity x must satlisfy both of the above equations,
the resultant of these equations must be identically equal to
zero, i.e.,

mbal 20 g 0
w200 P4t 0 I
0 m+4-n0* 20 q + 10°
0 m® -} n"0* 2p'0 9°4’ﬂ9’l

=0, (4.28)

This will be i1 condition for a real root of the complex algebraic
equation. Expanding the determinant, we obtain a polynomial in 6.
Since the determinant must be equal to zero for any 6, all expres-
sions appearing as coefficients of ® and the absolute term must

be equated to zero. From this we obtain a number of condltions
that will contain only internal parameters of the mechanism, i.e.,
the 1link lengths and the angles between the hinge axes. Expanding
these conditions, we obtain the necessary relationships for the

parameters of the mechanism that satisfles the requirement im-
posed.

§5. Complex Euler Angles and Euler Kinematic Equations

Complex Euler angles, which are characterized by screw dis-
placements of a body, may be used to determine the positlon of
the body in space. If we take fixed rectangular axes x, y, z (Fig.
20) and axes z', y' and s' that belong to the moving body and may
be called the moving axes, the positions of the moving axes rela-
tive to the fixed axes can be characterized either by nine complex
cosines or three independent Euler angles. The body would have to
be rotated through these angles in order to occupy a given posi-
tion if the axes z', y' and z', which are inseparably assoclated
with the body, coincided with the axes =z, y, s in the initial po~
sition.

The first such angle is the angle ¥, which corresponds to

screw displacement with respect to the s-axis; after thils dis-
placement the axes occupy the positions n, n', 3. The second will
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be the angle 6 with respect to the n-axis;
after rotation through this angle, the axes
will occupy the positions n, n", s’. The
third will be the angle ¢ with respect to
the axls z3'; after this displacement, the
axes will ocecupy the positions z*, y', z'.

By virtue of the transfer princlple,
the relation of the complex Euler angles
with the complex rectangular coordinates is
formally the same as the relation of the
real Euler angles to real rectangular coor-
dinates. We shall therefore represent the
conversion from the xys (fixed) system to
the =', y', =2' (moving) system in the form
cf the following table of "complex cosines:"

——

| x ] Y A

X @ cos ¥ —sin @ sin ¥ cableos @3in ¥ {-s!n @ cos \P‘coso's:n & sln 9'
Y’ |—sin® cos¥—co3d sin ¥ cosd|—sin®dsln'Ptcos O cus ¥ ¢os e’cos O sin e’
z sinBsin Y sin@cos ¥ €03 ©

~ If we denote the unit vectors of the fixed-system axes by
5, j. k, and the unit vectors of the moving-system axes by ¥, J, &,
the cosine of an angle between unit vectors in the former and lat-
ter systems is determined at the intersection of the correspond-
ing column and line of the table. For example, cos(/, ') is equal
tosinOsin ¥

The unit-screw coordinates of any straight line belonging to
a solid body, given in the fixed system, can be expressed in terms

of the ceoordinates in the moving system by reference to this ta-
ble.

Without elaborating on this problem, we note that in much
the same way as the generally known Rodrigues-Hamilton and Cayley-
Klein parameters, complex analogues can be constructed for which
conversion to Euler angles and other coordinates 1s performed 1in
accordance with corresponding formulas with the real quantities
replaced by complex quantities,

The projections Qr, @ Q»r of the velocity screw @ of an arbi-
trarily moving body onto axes inseparably assocliated with the
body are connected to the complex Euler angles by the following
relationships, which are derived from the familiar Euler kine-
matic equations for a body having a fixed point by suhstitution
of complex for real quantities:

Qo = WVsinDsin® + Beos D,
Q, = YeosDsin®—Osin®, (4.29)
Q" =2 ‘PCOSG + “D.

Solving the equation system (4.29) for the Euler angles, we
obtain
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(381

62
67

Ve s (e sin® 4+ 9y cos D),
0 = Q. cos® - Q, sin®,

D == Qp -— (2w sin @ 4- Q, cos D) cig ©.

(4.30)

Footnotes

One of the classical examples of the transfer principle
is the familiar principle of duality in projective ge-
ometry on a plane, on the basis of which all considera-
tions remain in force if the points in them are replaced
by lines and lines by points.

In the next chapter, we shall present considerations
pertaining to the range of applicability of the trans-
fer principle to solution of problems in mechanics.

The presence of a flixed point 1s not necessary; Formulas
(4.1)-(4.10) apply, strictly speaking, only to displace-
ments due to rotations, irrespective of translational
displacements of the body.

This formula was given in A.I. Lur'ye's book [31].

Here we set forth a solution the idea for which was sug-
gested by R. Saussure [8].

<17 =

1 e iy

i
f
4
!
i




Chapter 5

ELEMENTS OF THE DIFFERENTIAL GEOMETRY OF THE RULED SURFACE
AND CERTAIN RELATIONSHIPS OF THE KINEMATICS
OF THE STRAIGHT LINE AND THE SOLID BODY.
COMPLEX SCALAR FUNCTIONS AND SCREW FUNCTIONS OF A VECTOR ARGUMENT

§1. The Screw as a Function of a Scalar Argument

Let a screw R be referred to a fixed rectangular coordinate
system, and let "ts complex rectangular coordinates be functions
of a certain real scalar parameter ¢. Then screw R will be a fuac-

tion of ¢:
R=R(.
The screw changes when t changes. When the argument changes

from a value t to ¢t + At, the screw acquires a screw increment AR,
which is added to R:

R-LAR=R(t+ A
In our nomenclature, the derivative of screw R 1s the 1limit

of the ratio of the screw increment to the argument increment
when the latter approaches zero:

(] {) e~ .
Q'T.iu%—!—@""m%’;“%g“ . (5.1)

The rules for differentiation of screws are the same as the rules

for differentiation of vectors, since a screw can be reduced to a
motor and the motor regarded as a complex vector. Thus,

FR+R)=P 4+, (5.2)
FAD =~ A% A=comst. (5.3)

In exactly the same way, we can demonstrate validity of the for-
muilas

SRR =D R4 R = AR R R (5.4)
SRR =P xRy xR Mix R+ RXR  (5.5)

-78 -




& (RURR)=EiRuRs + RiRuRs + RiRs Ry (5.6)

The following particular cases may arise in differentiation
of a screw:

a) The axis of the screw remains in the same position, and i
only the complex modulus changes. Then t

= ZER) =BG = YD) EG 4 wpr) o {
- ) . -‘: L
wBrew (-4 @p) = Erewie” 7 = RA, (5.7)
1.e., the derivative is a screw coaxial with the gi#en screw.

b) The axis of the screw changes position in space and the
complex modulus is constant. In trLis case “

K = cont, § (R = 2R-R =0, (5.8)

from which it follows that screws R and ﬁ intersect at right an- :
gles. :

The function

.w)-SR(M (5.9)

will be called the indefinite integral of the function R(t) (f

Z=R0

The function 8(t) is determined to within a constant term,
which 1s the screw.

The screw

S“"'."“"-"’W (5.10)

is the definite integral. As in ordinary vector analysis, the gen-
erally familiar properties of integrals are also preserved in
screw calculus. Thus, the integral of a sum is equal to a sum of
integrals, and a constant multiplier can be taken out of the in-
tegrand.

§2. The Spherical Curve

Let us recall the basic relationships of the differential
geomstry of a space curve, limiting the discussion to the particu-
lar case in which the curve lies on a sphere of unit radius.

Let a be a point of a curve whose radius vector with respect
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to the center 0 of the sphere will be Jg=p then |p|= rm=1,
If t is an arbitrary parameter, then the equation
r=r)
1s the parametric equation of the curve.

The vector defining the direction of the tangent at point a
is the first derivative of r with respect to the parameter

g=¢0.

As we know, the increment of the radius vector 1s equal at the
limit to the increment of arc length; therefore,

l:l-g—. l-g’-l. (5.11)
It follows from this that
&= V(& =dVep (5.12)
and the arc length
"S‘Vl-"l'- (5.13)

where the plus sign must be taken in front of the radical. On the
basis of (5.11), we have

e, L=n (5.14)

where t is the unit veotor of the tangent at point a. Thus, intro-
ducing the parameter ¢ instead of ¢, we find that the derivative
of the radius vector with respect to this parameter is a unit vec-
tor directed along a tangent. Since |f|= r= | = const, the direction
of the vector t is perpendicular to that
of the vector ».

We shall call the plane passing
through the center 0 of the sphere,
point a, and the tangent vector the cen-
tral plane; its intersection with the
sphere forms a great circle (Pig. 21);
the normal to the curve at point a,
which is perpendicular to the central
plane, will be called the central normal
to the curve. We shall denote the lat-
ter's unit vector by k. The triplet of
semiaxes on which the unit vectors », t
a?p kdiie will be cni:ed the trihedron

- of radius vector ». t us place this
fﬁﬁ'piiﬁef) Osculat trihedron at the center 0 of the sphere.
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Moving tne point a along the curve, we shall vary r, T and k; the
vector T and its increment define the osculating plane in which
the principal normal at point a lies. We shall denote the unit
vector of the principal normal by ¥, the normal to the curve at
point a, which 1s perpendicular to the tangent and to the prin-
cipal normal, will be called the binormal; we shall denote 1its
unit vector by 8. The triplet of semiaxes on which vectors T, v

and B lie will be called the natural trihedron of the curve at
point a.

In Pig. 21, the osculating plane is intersected on a circle
whose plane 1s indicated by shading; the natural trihedron 1s
placed at point a.

As point 2 moves along the curve, the variation of the vec-
tors %.v,§ is determined by the familiar Frenet formulas:

Loz, (5.15)

These formulas describe the motion of the natural trihedion along
the curve. The kinematic interpretation of these formulas is as
follows: the trihedron performs two rotations: one about the bi-
normal, the derivative of whose angle with respect to the arc has
an absolute value equal to the curvature 1/p; of the curve, where
p1 is ‘he radius of the curve, and another about the tangent, the
derivative of whose angle with respect to the arc has an absolute
value equal to the torsion of the curve, 1/p:, where p; is the
radius of torsion. On addition, these two motions define the mo-
tion of the ends of the trihedron vectors, whose origins are
placed at point 0.

Let us denote by ds' the element of the arc described by the
end of vector t; we then have

&= &= (5.16)
on the basis of Formulas (5.15) and (5.16), we have
&=
i.e., the curvature is the derivative of arc s’ with respect to s.
It follows from (5.15) that

t-+VEF

The relative positions of the radius-vector and natural tri-
hedra are determined as follows. We denote the angle between the
radius vector » and the unit vector 8 of the binormal, or, what

A

A
s 1+ p— 8
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is the same thing, the angle between the unit
vectors kK and v of the central normal and
principal normal, by q (Fig. 22):

.’-‘('t') -4(‘;').
Ve then have

PP=cosg, r-v=—sing,

Bf=sing, B-v=cosg. } (5.17)

On the basis of Formulas (5.15) and (5.16)

& ry siag
rE=n"""

On the other hand, differentiating the equality r.-«=0 with re-
spect to s, we obtain

[ |
Er=t4rlal— Bl

from which

P=sing, (5.18)
i.e., the radius of curvature is equal to the sine of the angle
between the radius vector and the binormal. The section shown in
Fig. 21 as being cut on the unit sphere by the osculating plane
does not coincide with the section cut by the central plane; as
these planes move closer together, the angle q will tend to w/2
and the radius of curvature will tend to unity.

Differentiating the equality

rhmcosg

with respect to s, we odbtain

| 2'.4-'- 2- 'l"-'-;—'- —2.“’-
from which, remembering that vJ=0, and that 7v=—slag, we find

fw-9. . (5.19)

i1.e., the torsion 1s equal in magnitude dut opposite in sign to
the derivative of the angle q with respect to ».

We introduce a fixed system of rectangular cartesian coordi-

nates and examine the projections of the vectors ¢ % § onto the
axes of this system:

uscuwﬂkbb

It is obvious that each triplet of these numbers with iden-




tical indices satisfies the equation system (5.15); thus the above
numbers are three systems of integrals of the following differen-
tial equations:

| = dn ] - f
:—;'F_—;+£. 2-—;. (5-20) 4
where
P+mt+pal, (5.21)
If we introduce the variable § defined by the formula
14in
(EE T TEN =x (5.22)

then, by differentiating § with respect to & and applying the re-
lationships of System (5.20), we can reduce the system to a single
equation of the Riccati type:

g+Hit+i15t -0 (5.23)

It is assumed that the functions

s=8(0 ¢ = qU) = sing, py= — & (5.24) ‘

are known. Equations (5.24) are intrinsic equations of the curve,
since they do not contain the coordinates.

i e e

If § is found as a result of integration of the equation, we
shall be able to find I, m and n from (5.22) by separating the
%gt;ey into parts containing and not containing { and applying

1

, To convert from cartesian coordinates to Euler anglea, we
follow S.P. Pinikov [32] and express the vectors v v in terms cf
the latter:

s= f(cosPcos 9 —sinPsingent) 4

+ J (sin 9 cosg + cos Yaingon®) + Beingaind, |

ve —{(cos9sing + sngcmgont) — (5.25)
— J(sin 9sing —cos pespcos®) + Scosgaind, %
p=lsingsind— Jcoagsin® 4 Heosd. | }

If =, y and s are the rectangular coordinates of the vector
#, then the vector squation

=

yields the following equations in projections:
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g in cO8 P caé @ — sin $cos 9 cos O,
zimqﬂv+m0dn'mo. (5.26)
£ =singsns.

If we now apply Relationships (5.25), three groups of three
equations each can be obtained from the Prenet formulas (5.15)
for the rectangular projections of vectors % v§. However, only
three of them will be independent, so that any three of these pro-
Jections, and, in particular, the projections Ty Vs and 8 , may

be used. On substituting them in the Prenet formulas, we obtain

2-p%t

2-Lcun (5.27)
1 1 sla
F=a-aw

The system of equations (5.26) and (5.27) 1s a Cauchy system
for the unknown functions x,y,2,%,0,9. The right-hand members of
the system are assumed to be regular functions of s, so that the
system admits of a unique regular solution

=@ r=s .. .0=9() (5.28)

which satisfies this system and the initial conditions with ¢ =
= 8y

Fmtgg =gy .. .0= (5.29)

These initial conditions define the initlal point of the curve
and the initial position of the natural trihedron.

As we know, assigning the two quantities p, and p; as func-
tions of arc length determines the curve to within its position
in space, while assigning the Cauchy system fully defines the
curve, with its “tie-in" to the point and to the given direction.

§3. The Ruled Surfccc

After this brief npouuon on the differential geometry of
a2 curve on a sphere of unit readius, we can go on to the basic
concepts and relationships of the differential geometry of ruled
surfaces. _ _

A ruled surface is a mm. formed by motion of a straight
line. This line is known as the generator cf the surface.

In analyzing the motion of a point along a spherical curve,
we are also dealing with a surface, namely one descridbed by the
radius vector of the point from the center of the sphere, In this
case, however, the radius vector descridbes a conical surface;
moreover, it is suffiscient to follow only the angular displace-
ments of the natural tribedron to characterite the curve. In the
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motion of a generator ov:r a ruled surface, the unit screw of the
generator executes a three-dimensional motion of general form,
and to characterize the motion of the unit screw and some tri-
hedron associated with it, it is necessary to know both the rota-
tioral and translational displacements, i.e., generally speaking,
screw displacements. Nevertheless, an
e - analogy with the spherical curve 1s ob-
tained in description of the ruled sur-
face when these screw displacements are
expressed with the aid of complex quan-
tities on the basis of the transfer prin-
ciple.

Let straight line a be the generator
of a ruled surface, and let the unit
screw lying on a be R (Pig. 23). Let the
generator vary together with a certain
real parameter t; then R= R().

Consider the generator a' corres-
ponding to the parameter value t + dt;
let its unit screw be R’,

We shall the complex angle (a, a') an element of the complex
arc of the surface and introduce the symbol

6-‘+.l_i'-‘l". (5.30)

for 1t; here, ds is the real angle between lines a and a’', ds® is
the shortest distance between these lines and the parameter

=Femfy (5.31)

is the 1limit of the ratio of the shortest distance A8° between
generators to the angle 46 between them as the complex angle A9
between the generators tends to sero. The quantity p is cllled
the distridbution parameter of the planes tangent to the surface
at the points of its generator, or simply the partnoter of the
generator a.

We note that the principal part de of the complex-arc element
of the surface is numerically equal to the length of the elemen-
tary arc of the spherical curve that would be descrided by the end

of the unit vector of the surface generator if 1tn origin were
placed at the center of the sphere.

It 18 quickly seen that at the limit, the difference K'—R =
« AR ’i'R |. sRcror dR whose complex -odulm u equal to df. Indeed,
since =R~

‘lhtinhﬂ-dn(ﬁ)aﬂ-lk,x(l«!-lm-
=R xdR|=dR,

80 that we have

1R\ =& (5.32)
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We shall denote by b the stralght line passing through the axis
of complex angle (e, a'), and by 4 and A' the points of intersec-
tion of line L with a and a’; at the limit, line b will be tangent
to the surface at point A, which we shall call the center of the

generator a. We shall call line b the central tangent and denote
its unit screw by X.

Obviously, X may be obtained as the screw product

' RX(R + dR) RxdR
K= rram = - K=1 (5.33)

Thus, the unit screw X is perpendicular to unit screw R. Finally,

we construct a vector lying on line ¢, which is perpendlcular to
a and b:

dr
T=3- (5.34)

According to what was sald above, its modulus will be egual to
unity; hence T is a unit screw. Since R = const,

R-F=RT=0,

i.e., the screw dR/S jntersects screw R at right angles; further,
performing scalar multiplication of T by X, we obtain

T-X -g-- (Rx {—g) =0,

and, consequently, unit screw T intersects R and X at right angles

at point A. Line o, the axis of unit screw T, will be called the
central normal to the surface.

The geometric locus described by the central normal will be
known as the normalia;

The geometric 1ocus pf the centers of the generator is known
&8s the line of striction of the surface (or throat line).

The triplet of unit screws.R, T wnd X with & common origin
at point 4 forms a trihedron, which we shall call the generator
trihedron. It 1s easily seen that the unit screw R plays the same
rol> for the surface as the radius vector » .does for a spherical
curve; the unit screw T of the central normal corresponds to the
vector T of the tangent to the curve, while the unit screw X ¢

the central tangent cor*ﬂsponds to Lhe vector k of shc central
normal of the curve.

Setting
""!-kl

we find the following expression for d§:
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&s=a VIRT. {5.35)

In our terms, the complex arc of a surface will be the quantity

4
.s'i‘m (5.36)

where we arbitrarily take the plus sign in front of the radical.

Let (Fig. 24) o be the central normal to the a3urface, and
let 1s also be the generator of the latter's normalia, 1.e., also
the generator of a certain surface. Consequently, line ¢ has its
own center, which we shall denote by the letter B; the geometric

locus of these centers will be the line of striction of the nor-
malia.

We construct at point B the central normal to the e-surface
and the central tangent to this same surface. We shall call the
former the principal normal to the surface and the latter the bi-
normal of the surface; point B will be called the center of curva-
ture of the ae-surface at point 4.

We shall denote the unit screws of the principal normal and
binormal by N and B, respectively; then we shall have at point B
a triplet of unit screws T, N, B; the three half-lines on which
they lie will be called the natural trihedron of the surface. This

trihedron is perfectly analogous to the same trihedron for a
curve.

Fig. 24

We denote by
dS’ = ds'e’ (5.37)

the element of arc described by unit screw T, 1.e., the elementary

: arc of the normalia.

Since the principal normel is at the same time the central
normal to the normalia, there exists for N and T a relationship
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analogous to (5.34) between T and R, i.e.,

N=f, NT=0 (5.38)

Since B 1s the unit screw of the central tangent to the normalila,

B-T.= 0, B:N =,0.

Let us determine the relative positions of the generator and nat-
ural trihedra. Let (Fig. 25)

Q=L (R B)= L(K.N)
be the complex angle between the unit screws of the generator and
the binormal, or, what is the same thing, between the unit screws
of the central tangent and the principal normal. Since the gerera-
tor and natural trihedra have an axis in common — the central ncor-
mal — the angle Q fully characterizes the relative incli.ation of
one trihedron to the other.

We find that

R.n:mq,‘R.N=—-san.} (5.39)

K'B==Sil\ Q, K-N: cosQ.

We shall call the complex angle Q@ the measure of curvature of lie
surface. On the basis of Formula (5.38), we have

.g.-g,‘s'-u%,. (5.40)

from which, on the basis of (5.39), we obtain
R —g— = R:N %- - -'-%-ﬂn Q.

Further, differentiating the formula‘R*T-no with respect to S, we
obtain

and since %w'r. we have

- SunQ+1=0,
whence
%-«a:—‘. (5.41)

The ratio d$8'/dS is the ratio of the rate of change of the
unlt screw T of the central normal to the rate of change of unit
screw R — the generator — and characterizes the curvature of the
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zurface. We may therefore set

45 {
F-Tl' (5.“2)
where P; 1s the radius of curvature of the surface. We have
P‘-Q'HQ. (S-u3)
Now (5.4C) can be rewritten
qar {
= =N (5.44)
Differentiating the relation
B=TXN
with respect to S, we obtain
=T XN TX R =T R, (5.45)

Since the screw defined by Formula (5.45) simultaneously inter-
sects B and T at right angles, its axls coincides with the axis N,
so that we may write

[
w-.". (5.“6)

On the other hand, on differentiating one of Equalities (5.39)
with respect to S, we obtain

RT3 N B Y
or, on the basis of (5.39) and (5.46),
R-Na--—ﬂ-sln Q.
from which

'

and, consequently,

%"N%' (5.47)

The quantity 9QdS determines the rapidity of change of the angle
of the binormal to the generator in motion along the surface, and
characterizes the flexure of the surface, a quantity analogous to
the torsion or second curvature of a curve. By analogy with
(5.19), we take
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T

=3 F=-%N (5.48)
Further, differentiating the equality
N=BxT
with respect to S, we obtain
dN
-E—=Bx%+% XT=8x ]';"-+Tx_-g--
- — 5 T+pB. (5.49) .

Combining Formulas (5.44), (5.48) and (5.49), we obtain a
system of complex Frenet formulas for the ruled surface:

ar N

- o

N . B

r: Al gl (5.50)
dl._ N »

r —-%-

The Frenet formulas of the ruled surface characterize the
following motion of the natural trihedron: the latter performs a
complex rotation (rotation and slip) about the unit screw of the
binormal B, whose complex angle has a derivative with respect to
the complex arc of the surface whose absolute value 1s equal to
the curvature of the surface, and a complex rotation about the
unit screw of the central normal T, whose complex angle has a de-
rivative with respect to the complex arc of the surface whose ab-
solute value 1s equal to the flexure (second curvature) of the
surface.

Formulas analogous to the Frenet formulas can be derived for
the motion of the generator trihedron. Thus, first of all, we
have Formula (5.34); then, expressing the vector N in terms of
the vectors R and X, '

N=—RinQ+ Ko Q
we shall have on the basis of the second of the Frenet formulas
and (50“3) 4
£ N N ’ ’
TR "mg~—R+KcgQ (5.51) .
and then, differentiating the equality
K=RxT,
we find
%-%x‘l‘+ Rxﬁ--Rde‘Q--—Tch. (5.52)
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Combining (5.33), (5.51) and (5.52), we obtain the system of re-

lationships
R :
2 T, i
4T .
‘=R t+tKcgq, (5.53)
K= -—-TgQ. |
. Thlis system gives an indicatlion as to the elementary dis- |

placement of the generator trihedron. Namely, this displacement K
consists of two screw displacements - one, dS, with respect to X,

' and another, -dS cot Q@ = dS*, with respect to R. If we add these
two displacements and apply (5. 41), we obtain

KdS—RdS ctg Q = — N & = — Nds, (5.54)

from which it 1s seen that the elemen-

tary cdisplacement of the trihedron 1s a

screw aisplacement dS’' with respect to

the binormal. .

The elementary motion of the gen-
eralor and central tangent of the sur- ;
fare can be represented as follows. Let 1
R, T, X and R, T, X' be the unit screws i
of two infinitesimally close trihedra :

of the surface generator (Pig. 26). ;
§t§ic§§;nf’ Line of -~ vertices A and A' of the trihedra are !

points infinitesimally close together &
“on the line of striction. The element ;
AA' = do 1s the element of the line of

S
striction and ® = Z(R.4A) 15 the real angle between the central
tangent and the tangrat to the line of striction. To bring the
figure R, T, K aad the figure R'T'X’ into coincidence, it is neces-
sary to rotate the former atout X through a complex angle dS ac-
curate to witrin second-order infinitesimals, at which point R ,
coincides wita R’, and then rovate it about &' through a complex i
angle =ds cot Q.

The (linear) displacement with respect to element 44’ along
the line of striction is composed of (linear) displacements along
X and R that are egual to the moment parts of the screw displace-
ments ,

€S = duyw, d3° = d'er,
) so that

-—ﬁ-dﬁ-ﬁr-(’ nm)*""_
-du-.'-ﬁ.; | (5.55)
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Formula (5.55) expresses the relation between the angle formed by
the tangent to the line of striction with the central tangent,
the generator distribution parameter, and the angle between the

generator and binormal. Thlis formula is essential for study of the
axoids of a moving solid body. :

Introducing the complex rectangular coordinates of the unit
screws T, N and B, we can write, on the basis of (5.50), three
groups of equations for the nine quantities

To Tp Tww Now N, N, By, B, B,

Of these quantities, each group of three with the same index sat-
~1sfies the system of differential equations

dL M M L., » 4P M
w-w, w-—w-'-"'-. r"";‘o (5-56)

with
L'+M+Pw= - (5.57)

Introducing, by analogy with (5.22), the new variable
a=i3Y, 1ayI, (5.58)

we reduoe System (5.56) to a single complex equation of the Ric-
cati type, which 1s similar to Eq. (5.23):

%..'.(.&.1.{9“-"‘.-0. (5.59)
The functions
S=30.Q= Q. P, =P (), Py=P,(n (5.60)

must be known; Equalities (5.60) represent the intrinsic equations
of the ruled surface, which do not contain coordinates. Assigning
the above functions defines the ruled surface accurate to its po-
sition in space.

Use may be made of the complex Euler angles Y, 6 and ¢, in
terms of which the compunents cof vectors T, N and 8 are expressed,
with the aid of formulas similar to (5.25):

Tef(cos ¥ cos®—-sin'Psin ®cos 8) 4

+J06inTct®+csPiin®cs ) +Asadsind,

Ne —(cos ¥ ain @+ sin ¥ cos © cqe 8) — (5.61)

—J0sin Pein © -~cos ¥ cos O cos 9) + A cos Dsin 0,
PmidaPin®—Jcos ¥ainO 4 Aen O

The equation

%‘To




1s reduced by taking complex rectangular coordinates of the unit
screws R and T, to the system

%.-cos?cos@—sln?sln@me.
%-dn‘!eos@-}eos?sln@cosa. (5.62)
g._..aanosme.

Using the Frenet formulas (5.50) and Expressions (5.61), tak-
ing three independent ones, namely, the expressions for Tz, N

and By in terms of the complex Euler angles, we obtain

1 dan®

x- 15.".r1'

'n"'v;“"- (5.63)
40 | { sn®

F-E-RES

The system of equations (5.62) and (5.63) is a Cauchy system
for the unknown complex functions X,¥,Z ¥,0,0, and is analogous
to System (5.26) and (5.27) for the curve. The right-hand members
of the system are assumed to be regular functions of S, and the
system admits of a unique regular solution

XS\ Y=Y, ...0=0(), (5.64)
which satisfies the system and the initial conditions for S =S8,
XmX,YuY,...0=0, (5.65)

Assigning the Cauchy system fully defines the ruled surface,
establishing its initial generator and the corresponding position
of the initial natural trihedron.

We note that since the equations given above may be inter-
preted either geometrically or kinematically, they are equations
that also define the position of a s0lid body in ardbitrary motion
with consideration of data characterizing its initial position.

As we see from the above, there is full correspondence be=-
tween the geometry of a curve lying on a sphere of unit radius
and a ruled surface. This corollary proceeds from the transfer
principle, according to which on transition to the ruled surface
a point of the curve must be replaced by a straight line - the
generator of this surface ~ and the unit radius-vecior of the
curve by a screw lying on the generator, this screw being subioct
to the condition of equality of its complex modulus to unity (this
condition simultaneously expresses unit value of the modulus of
the screw vector and zero value of its parameter). Actually, many
theorems pertaining to the theory of the ruled surface need not
be proven, since they are obtained from theorems pertaining to
the spherical curve by the above substitution of objects.
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By virtue of the existing correspondence, there is, with mi-
nor discrepancies, an analogy in the terms used in connection
with the curve and the surface.

The discrepancy reduces to the following: the central normal
to the surface corresponds to the tangent to the curve, and the
central tangent to the surface to the central normal; the flexure
of the surface corresponds to the torsion of the curve. Below we
present a table of the corresponding geometric figures for a
spherical curve of unit radius and a ruled surface.

PUOES 52 0hepe ERNe

i 0 Pl

*l Toma cece] @ :

. »uual ‘1 °"""°":. nm; :

§| Kocoromoes . ...} < wopam. .| T

10! Uswrpamuss nopusm| 21 mnmm R

nl‘mm.._v: Cassuas mopuans . . . . l.t

l. ® 5 & 0 o z‘ m...‘.”.

16} Semmur gyrn mace- 1 Mm;:a';“"

o et | | ! <
xpmasn . .| m mpummasN. . . .] P,

1 Pagayc xpyvenns . .| m 2 Pumycuwnte . ... .| B

1) Curve on sphere of unit radius; 2) symbol for element; 3) ruled
surface; 4) point of curve; 5) generator of surface; 6) radius
vector of a point; 7) unit screw (vector) of a generator; 8) tan-
gent; 9) central normal; 10) central normal; 1l1) central tangent;
12) prineipal normal; 13) binormal; 14) alement of arc of curve;
15) element of complex arc of surface; 16) element of arc of tan-
gent; 17) element of complex arc of central normal; 18) radius of
curvature, 19) radius of torsion; 20) radius of rlexure.

If we take the principal parts of all formulas pertaining to
the ruled surface, they agree with the corresponding formulas of
the spherical curve; this spherical curve will be described by
the end of a unit vector whose origin is at a fixed point 0 and
which will be parallel to the unit vector of the generator of
this surface at corresponding values of ¢.

$4. Kinematics of a Straight Line and a Solid Body
Let a straight line a with a unit sarew & move in space, de-

scriiing a certain surface, which we shall cal) the trajectory of
line a. lLet the various positions of the line and, consequently,

~ of the unit screw 2 be functions of time ¢.

The screw

v-3 (5.66)

will be called the velocity of line a. The screw
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IS e = o

W=2R
& (5.67)

will be called the acceleration of line a.

Transforming (5.66), we shall have

dR 4R 43 4 .

.68
|V|-V=%. V=TV (5.68)

From this there follows a theorem.

Theorem 15. The sorew whose complex modulus ic equal to the
time derivative of the complex element S of the trajectory, while
ite arie is the central normal to the trajectory, is the velocity

:f a ling. The velooity parameter is equal to the parameter of the
ine.

We transform Expression (5.67):

' d jdR 4 &
F =il =g =Tg+v g -

-T%-’-V‘%.

On the basis of Formula (5.44), we obtain for thu derivative
of unit screw T

WellaTS+r g, (5.69)

Consequently, the theorem has been proven.

Thecrem 16, The acceleration of a line is the esum of two
sorews: the complex modulus of one of them te equal to the time
derivative of the modulus of the velooity of the line, vhile the
gentral normal serves as ite axie; the complex modulus of the
other ts equal to the square of the modulus of the veloecity di-
- vided by the radius of ecurvature of the surface, and the prinoi-
pal normal serves as its axtis.

Pormula (5.69) is an analogﬁe of the familiar formula for
resolution of the acceleration of a point into tangential and
normal componants.

Let a certain solid body have at time ¢t an instantaneous mo-
tion characterized by the screw U, whose unit screw will be &,
its modulus U, and its parameter p. Thus, the instantaneous kine-
matic screw of the body will be

U= BU = Bus,

Let us determine the velocity of an ardbitrary line belonging
to the body. Let the unit screw of this line be R.




vev We shall denote the complex angle be-
' tween E and R (Pig. 27) by ©; let the axis

of the angle © be a straight line meeting
axes § and R at points m and n, respec-
tively, and let its unit screw be T, We
pass through point n a straight line per-
pendicular to mm and to -R and denote the
unit screw of this line by 8.

Now we determine the components of
screw U along the axes R and 8. By virtue
of the perpendicularity of the correspond-
: ing unit vectors, the sum of these compo-
Pig. 27 nents will give the screw U (see Chapter
3). We have

UmU + U = RV + SU"=RU c0s© + SU sin 6.

The first of the component screws will not change the posi-
tion of the axis, i.e., the axis of the straight line under con-
slderation, while the second will impart to this line a screw dis-

placement with respect to the axis § characterized by the complex
element

S=dstadd=Usino a,

from whici. 1t follows that the complex modulus of the velocity of
a line of the body is

V-l%—l—-‘:—-l}ﬂn‘&

It follows from the above construction that if R is regarded
as the unit screv of the generator of the element of the surface
deascribed by the line, then & 1s the unit screw of the central
tangent and 7 i{s the unit sorew of the central normal. But the
axis of the velocity screw ¥ coincides, as we know, with the cen-
tral normal, i.e., with the axis of the angle between the axes of
screws UV and R, while the complex modulus of the screw product of
these screws will be Usin®. Consequently,

ValUXR=TUsnO = Tu sin 6, (5.70)
from which the following theoren proceeds.

. Theorem 17. Por an {nstantansous sersv motion of a solid

body characterised by screv U, the velooity of any straight line
of the body ie a sorev equal to the sorev product of sorew U by
the unit sorev & of this line.

Coroliary 1. The central normal to the trajectory of the
l1ine meets the axis of instantaneous screw U at right angles. The
central normals cf the trajectories of all lines of the body form
a brush at time ¢.

Coroliary 2. The paramster of the line, i.e., its distridbu-
tion parameter as the generator of the trajectory, is determined
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by the formula
[
V=3 =r+Pcyo (5.71)

This formula 1s obtained from (5.70) by equating the parame-
ters of the two members.

Let U be an instantaneous screw characterizing the motion of
a body A with respect to stationary space and let R be an instan-
taneous screw characterizing the motion of a certain body B with
respect to body A. We visualize two coordinate systems: one fixed,
and the other assoclated with the moving body A. Let us find the
relation between the derivative of screw R with respect to the
fixed system of coordinates, i.e., the absolute derivative, and
the derivative of this screw in the coordinate system attached to
moving body 4, 1.e., the relative derivative (or "apparent" de-
rivative, as it appears to an observer on body 4).

This problem is solved by direct application of the transfer
principle to the familiar theorem of the absolute and relative
derivatives of vector ». According to this theorenm,

%—%’-+lxr.

where d/dt 1s the symbol for the absolute derivative and d'/dt is
the symbol of the derivative with respect to the coordinate system
whose angular-velocity derivative is u. The vector r may represent
various physical quantities. For example, if the above moving co-
ordinate system is associated with a certain solid body a that 1is
in rotation at an angular velocity u, the vector » may represent
the angular velocity of another body b with respect to body a
(provided that the vectors u and y have a common point). In this
case, the theorem gives the relation between the absolute iacre-
ment of vector » and its increment with respect to the moving

body a.

Substituting the screws R and U for the vectors r and u in
the above formula and remembering that the ~onditicns of the probv-
lem posed correspond exactly to the condition of the above theo-
rem with screws substituted for the vectors {or with screw dis-
placements substituted for the pure rotations), we can write the
relationship that we seek:

Laliuxa | (5.72)

Here dR/d 1s the absolute derivative of screw R and sR/& 18
the relative derivative. '

In the particular case in which screw R 1s unchanged in the
coordinate system attached to soiid dbody 4, the formula assumes
the form

R _ o2
T‘ux.‘o (5.73)
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i.e., the derivative of an instantaneous screw B that retalns the

same value with respect to a moving body whase 1notantaneou: S2rew

is U is expresz?d by the secrew product U ¢ R.We 2=ain avrive at.
Theorem 17 — the kinematic int"rpreta‘ion of tho 3CTew prouduct ol
two screws. : B h

'f screw U 1s defined by complex rectangular coordinstes
U U, U, and screw R by the coordinates R. Ry, R:. then the zzpres-
sions for the cumplex coordinates of the rate of change of screw-
R (or of the straight 1line of the selid body) will be

- V,‘ = ~UER3 - U‘R'. V,== U.R“-U Rl) Vl= U:Ry—Ule' \ "_: ¢ 7“ )

These formulas represent a generalizaticn of the’familia” Euler
formulas for the projection of the velocity of a point of a body
rotating about a fixed. point.

At each point in time during motioh of the solild body there
exlsts a straight line with respect tc whicnh an instantaneous
screw motion of the body 1s taking place. This line iIs called the

instantaneous screw axis. In continuous motion of a body, the po-

sitlon of the instantarnieous screw axls varies and it describes a
ruled surface - a fixed axoid - in space. At the same time, the
line of the body that colncides at time ¢ with thils line, moving
together with the body, describes another ruled surface, a moving
axoid, in it.

During motion of the body, as we know, the moving and fixed
axoids az and a; are in contact with one another at each point in

time along a common generator aiz — the instantaneous;screw axis,

At time ¢, twe infinitesimally close generators az and a'; of the
moving axoid coincide with two infinitesimally close generatorq ,
a1 and a’; of the stationary axold. If

dS, = / @), dS, = / (@ a),

‘then, as we know,

ds;=d?,=ds=ds¢“’.

i.e., surface elements of the two axolds are equal; moreover, the
generators a; and az have a cormon center 4. It 1s known that
later, in the time interval dt that fcellows ¢, the generator a';
of the moving axoid slides along the generator a'y of the sta-
tionary axoid untll thelr centers 4'’; and 4': coincide, &nd ro-
tates about a' until the corresponding generator trihedra coin-
cide. '

Let (Fig. 28) b,, be the common central tangent of the axoids
at time ¢, let b,, b, be the central tangents to them at polnts A/’

and A'2, and let the arc

dW = duwe**

be the elementary screw displacement of the moving axold at time
t + dt with respect to the common generatcr of 4, ¢ a, If d5; and
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dS: pertaln to the moving and stationary
axoids, we shall have, consldering ele-
mentary displacements of the generator
trihedra,

dW = dS;ctg Q, +
;‘:“.ct‘ Q.= duwe=* =.
== dse™ (ctg Q, + ctg Qy),

where Q) and Q2 are the angles between
the generators and binormals of the ax-

olds.
Taking the parameters of both parts,
we obtain
w=p4Plclg Quictg Q) =
4, 4
-p— @ sin'es
ctgatclgn

Substituting the values of q{ and q3 expressed in terms of v
8,4 in the above, we obtain on the basis of the formula derived

earlier {(5.55)
gt L clgty
=P e ides (5.75)

av which point the followlng theorem can be formulated.

Theorem 18. In arbitrary motion of a body, its moving azoid
will roll along the stationary axoid in such a way as to maintain
continuoue coineidence of pairwvise-equal succesgive elements of
the complex arcs of the surfaces of the two axoids. At each point
in time, the common genmerator of the aroids will serve as the
axis of the instantaneous screw, und the parameter w will depend
on: a) the parameter p of the common generator ayz, b) the angles
q1 and q2 between the generators and binormals of the axotids, and
c) the angles 0, and 02 between the generators and the tangents
to the lines of striction of the axoids.

§5. Phase Portrait of the Motion of a System with Two Degrees of
Freedom by Means of a Ruled Surface

When the motion of a system with one degree of freedom 1is
represented on the phase plune, two quantities are used — the co-
ordinates of a point on the plane, which represent, respectively,
the generalized coordinate q of the system and its generalized
veivelty g. A four-dimensional phase space 1s necessary for the
analogous representation of a system with two degrees of freedom.

A space of straight lines may be used as the four-dimensional
phase space, since each line in the space is defined by four quan-
tities.

It is easlest to proceed as follows.® In the space (Fig.
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Flg. 29

29a), visuelize two planes 4 and B at a distance H from one an-
other. Intersecting an arbitrary line of the space, these planes
cut out of it a segment ab enclosed between A and B, which seg-
ment we shall treat as a vector passing from point a to point b.
We take plane A for the xy-plane and direct the z-axis from 4 to

B. The PLﬁcker coordinates of the vector-zi;'which 1s a sliding
vector, will be the projections and moments with respect to the
axes 3

x’v”ﬁ”._”. bt
bo o Ha, — B3 by — s, (5.76)

where £ and n are the coordinates of point a in plane 4.

The above quantities are linked by an 1ldentity that ex-
presses the perpendicularity of the vector and the moment,

xHy —yHE + H By —nx) = 0. (5.77)

Since the quantity # is known and serves as a scale, the fol-
lowing four numbers will serve as the coordinates of vector D

5y *=Hy =—H: (5.78)

We take these numbers as the phase coordinates of the system
with two degrees of freedom, i.e.,

5=, y=a, -

In this case, with motion of a system with two degrees of freedom,
each system state, which 1s characterized by the two generalized
coordinates ¢, 95 and the two generallzed velocities g4, 4 will cor-

respond to a vector 5$.which can be represented by the component
ab' in plane A (Fig. 29b). If the system moves with defined ini-
tial data, the state of the system will vary in such a way that

the vector s describes a certain ruled surface — the analogue of
the phase curve of the system with one degree of freedom. With
other initial data, other ruled surfaces are posslble; the aggre-
gate of them will represent a family of phase surfaces.
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The coordinates of vector &b can be presented in complex
form:

Xa:+mﬁ=x+wﬁ.}
Y"#‘P"‘If‘ﬂ—'“”ﬁ.

and these coordinates will serwve as the representation of the sys-
tem's complex coordinates

(5.80)

‘l-m'l'":h
':—q’+q:': } (5081)

It is curious to note that the complex coordinates of a holo-
nomic mechanical system satisfy the Lagrange equation

d [\ o' .
7(73.) ol (5.82)
where
T=T+el, @=Q+ad (5.83)

We may satisfy ourselves of this by assigning an arbitrary func-
tion of several time-dependent complex variables in the complex
form

[(t Iz, ...x.)-

-,(xlo Xgy o 0“)+‘(‘l£+’l£+--o+x. ‘;-)-
wlteg =1+ (5.84)

Further, any complex quantity of the form X+ ox may be regarded
as a function of the complex parameter ("complex time")

s +ex@)=x( +a), (5.85)

as proceeds from-the general expression for the function of a com-
plex variable,

If 9 9 are expressed in terms of the parameter ¢, then the
equations

=060 ¢=q0 (5.86)

represent the parametric equations of the phase surface; on the
other hend, 1f we eliminate the real parameter, the equation

1@ @ =1 (@ + s o5 + 04) (5.87)

will be that of the phase surface in the complex coordinates of
the motion. .

On the mapping plane A4, the phase surface will be represented
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%n the rgrm of a projection — a varying reglon of segments ab'
Fig., 30).

If at some point in time ¢t the equalities
h=h=h=q=0, (5.88)

are satisfied, the state of the system will correspond to a "sin-
gular" point; then the reglon representing the phase surface will
contract into a point - the coordinate origin. In this case, it

would be possible to construct a geometric

theory of singular points and trace the be-
— havior of a family of phase surfaces in the
neighborhood of a singular point, but we
shall not dwell on this.

By way of example, let us consider a mo-
tion whose phase surface 1s the surface
. formed by uniform rotation of a certain
) straight line that intersects the z-axis and
forms a constant rather small angle § wilth
Fig. 30 the zy-plane, and simultaneously by slip of
this 1line along the s-axls in a harmonic man-
ner such that two periods of oscillation
along the z-axis take place during one com-
plete revolution. This will be a surface of the cylindroid type.
The region representing the corresponding phase surface will be
obtained by cutting this surface with a plane A and a plane B
parallel to the former and situated at a height #, and then pro-
Jecting it onto plane 4.

We have the coordlnates of the generating line of the sur-
face:

Xextaxdes Helitdcos @ = Hclygd(cost oy sing),
Y=yt opt=Hcli:dsin © = H clgd (sing 4 wyp cos+), (5.89)

where ® = ¢ wy* is the complex angle between the liorizontal pro-
Jection of the generator and the s-axis,

For the cylindroid (see Chapter 3),
f-Kslnzg.
where XK 18 a constant. Consequently,

 Xmzt ot
w Helgd(cosp--wK. . Wpsing), (5.90)
Fig. 31 i 2
g = Hclgd (sing + ok sin 29 cosg).

For the motion represented by the surface
taken, we shall have

Du—cge Dauy,




from which
%- ~ 8, 0dgatqdg =0, 1
consequently,
¢ + @ = R* = const.
Moreover,

"Z'" - — HKclgdsin29sing.

On the other hand,

Q1 =~ M cosq, -‘-‘!‘! = — Resing,
so that

— HK clygd in 2psing = — Rp sing,

and, consequently,

¢ = = Betgasin2g, In)tgq|= 2Xeige +InC,
’-amlz[(:exp ’-’é’-‘ctg&)t]. ) '

This gives the solution

i-/- ] +C'upﬁ_1_ﬁi°"it.

c.'"’mxd 8,
b= . (5.91)
‘ v i-}f@ﬂ@‘ t

The phase surface lies in the range b<9<-§. (Pig. 31).

§6. Comglex Scalar Functions and Screw Functions of a Screw Argu- ;
. men :

It will be shown in the exposition to follow how the famil-

. iar concepts of the scalar function and vector function of a vec-
tor argument can be extended to functions of a screw argument. It

is assumed that the reader is familiar with the basic definitions

and formulas of the theory of scalar and vector fields. I

Here, as in earlier chapters, we shall begin by assigning
screws by means of motors reduced to a single common reductlon
point 0, which 1s selected once and for all.

The space of the motors (re ), with all r, and ’2 having a

- 103 =




comnon origin at point 0, is at the same time a space of point
pairs, the point beirg the ends of the vectors r, and the moments

r, [sic], as well as a space of complex vectors p 4 . Since a
fully defined screw Ri can be brought into correspondence with
each motor (ri,r}), a space of screws Ri each element of which 1s

defined by 1ts own axls, vector and parameter, stands in one-to-
one correspondence with this space. Let a certain number, a com-
plex scalar, be assigned 1n accordance with a certain law to each
screw Ri’ We shall call the function defining this assignment the

complex scalar function P(R) of screw R.

We introduce the following definition: the complex scalar
function of screw R is the same as the function of the correspond-
ing motor (r, 7% at the reduction point 0, which [motor] is equiva-
lent to this screw. Expressing the motor by the complex vector,
we shall have

F(R)-F(f'}'ﬂf", (5.92)

and, consequently, the screw function is reduced to a function of
a complex vector.

In order to establish certain properties of the function to
be determined, let us express the argument in terms of the com-
plex coordinates of the vectors in a rectangular coordinate sys-
tem with origin at point 0, and then apply the formulas for func-
tions of a complex scalar argument, which were given in Chapter 2.
In so doing, we shall introduce here the condition formulated
earlier for differentlation of a function of a complex scalar ar-
gument, namely, independence of the derivative of the direction
of differentiation or, in other wcrds, the condition of "ana-
lyticity."

The complex coordinates of the screw and, accordingly, of the
motor reduced to point 0, will be

Rj-r""w:. R,-f,-*-.’:.' R._'._’,w“ (5093)

where fa fy o 75, 7y, ? are the six real Pliicker coordinates of the
screw. Development of the function gives

PR Rp R)) = r(r,-l-w:. ry+ g 7ot wry) =
[ /4 L4 [ d
-’(r.".’.)'*'.(”“:"-f:w;-*-':;;)o
For simplicity, we shall assume at first that the function P
becomes real when the coordinates are real, so that F¢,, », r) 18
a real quantity.

Returning to vector notation, we find

FR) == F (r) 1 r*VF () = F (r) +0r.grad F (7). (5.94)
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In Formula (5.94), the symbol V denotes the tamiliar hamil-
tonian operator.
Now let another screw be assigned to each screw Ri' The func-

tion defining this assignment will be called the screw function
F(R) of screw R. As has already been stated, each screw Ri

uniquely defines a motor or complex vector at point 0, so that
the screw function defined here is simultaneously the motor func-
tion, reduced to point 0, of the motor corresponding to the screw
argument reduced to point 0.

Thus, we shall have

PR) =P (r+ e, (5.95)
and the function is again reduced to a vector function.

Using the coordinate expressions for the argument R and the
function P, we obtain

F (IR: + JRy+ RR;) m IFs(Rs, Ry, Ry) + JFy (Ray Ry RS) +
*‘..F.(R;. R'. R.) - ‘Fg(". n ") + JF,(’;. f..f,)+

-}hP;ogrhra-ko[ (,;EL+ I?“+ )4.

+J(f:'1;':+::;-:+::;f)
+(ngtenpra )] (5.96)

Let us assume, as in the preceding case, that the function
F(R) reverts into a vector with its origin at point 0 when R re-
verts to », 1.e., into a vector with origin at point 0. Hence
WFe (Fes 10 ), JFy (te 1y 1) ANQA RF(r,, 1, 1) are vectors whose origins iie

at point 0.

The expressions in square brackets can be presented in the
form

Y L [ o :
[+ Jv:+u;)-(;,;; +ig H A et JE L aR). (5.97)
Going over to the vector form, we obtain

PR)=F(r) + (P90 (5.98)

The expression (r*-\ F() 13 the derivative of the vector P(r) in
the direction of vector »* multiplied by the vector »°.

Analyzing Expressions (5.94) and (5.98) for the complex
scalar function and for the screw function, we note the following
peculiarities of these expressions: firstly, the principal part
of the finction is equal to a function of the principal part of
the sorew (i.e., its vector) and, secondly, the screw function is
fully defined by a function of 1ts principal part.
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It follows from this that if for two complex scalar functions
F{R) and ¢(R) a2 two screw functions F(R) and ®(R) we know the
identities

Fir)s® (), F(r)=0(),
they imply the identities

FR)=OR), FRI=O(R

Consequently, 1f the functions F and P are assigned by ana-
lytical expressions of the coordinates of vector », then all of
the identities that obtain in the domain of these functions re-
main in force if the real coordinates of vector »r are replaced by
complex coordinates, i.e., if the vector r 18 replaced by screw R.

Let us consider the operator V%, which 1s analogous to the
operator V and has the expression

v‘-“ é e .
n;-l-la;-l-lu;. (5.99)
Making the substitution

Rl-rl'i’w:» R'ﬂr.-"":. R.-r‘.’..': (5'100)

in (5.99), we obtain
[ 3 & ) ' ¥
o f 3 5
- +n(;;—.;.53)-
Assuming that 72 ’n’t ape not dependent on 7 %, 7 we find

that V8 = 9, {.,e., the "complex" hamiltonian operator is the same
as the real one,

Applying this operator to the complex scalar function of a
screw argument, we obtain

g F(R) = VF (R) = VF (r) + oV {r*-VF (r)l. (5.100)
Por the screw function of a screw argument we shall have

div P (R)=V-F (R) = V-F {r) + WV -I(P* V)F(r)), (5.102)
Ot (R) =V XLPR) =V XPlr)+oVX (@) (5.103)

It is seen from Expressions (5.101), (5.102) and (5.103) that
differsntiation of the screw functions reduces to application of
the operator V to a real function - the principal part of the
function under consideration.

If it is known concerning the two functions FP(R) and ¢(R)
that :

V()= ()
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t(:hen wz; may conclude the following identity on the basis of
59.‘.01

VF(R) = © (R).

Similar conclusions can be reached for the functions F(R)
and ¢ (R) or W(R) 1f it 1s known that

VPr)m®() VXF@)aW(r)
then it follows on the basis of (5.102) and (5.103) that

V-F(RImOR), VXFR)=W(R).

If the inverse problems are posed — those of determining the
scalar from its gradient and the screw from its divergence ana
curl, we arrive in a similar manner at the conclusion that the
solution of these problems for the principal part fully defines
the solution.

The above enables us to formulate the following theorem.

Theorem 24, All formulas and all theoreme of vector analysis
remain in force in the domain of screws.

The same singular cases that are encountered in the algebra
of screws exist in screw analysis: these are the cases in which
the principal part of the screw vanishes, Special investigation
is required for such cases.

Let us turn to a complex scalar screw function and assume
that it depends on several screws +#, Ry '...,R.. Omitting the al-
most obvious derivation from the coordinate expression for the
screwr,, we write the final expression for the function

F('R‘;tklo-'-ckl)-p(:)liw(l}'.v}::o--v-.;’."'
£ ., -" RN ] :
N R O X (5.104)

where the subscripts to the symbol V signify that differentiation
is conducted only with respect to the vector to which the sub-
script corresponds and that the remaining vectors are assumed
constant during this process.

: For a screw function of sqvenl socrews R, Ry.....Rs , We Ob-
tain the following expression:

’(R"k"l"QM-’("+“l.'.+“|l"""+
V +w-'(’bfwa.-.'d+.“""0’+ ( 105)
+ VI 4.+ (VAR 5.105

Expressions (5.108) and (5.105) indicate that a function of
several screws 1is fully defined by a function of the vectors of
these screws.

Expressions (5.104) and (5.105) indicate that if we consider
the variation of the functions P and F as only one of the variabdle
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screws, for exsmple, R", varies, while the remaining n — 1 screws

are set constant, then, generaily speaking, F will have a complex
value, while, generally speaking, F will be a screw even if Rn

reverts into a vector whose origin is point 0. We can easily sat-
isfy ourselves that the above properties of the functions F and »
remain in force even in this case, i.e., we can dispense with the
limiting assumption adopted at the outset according to which F
was real and P was a vector with origin at point 0 when R becomes
a vertor with origin at point 0.

Formulas for the scalar and screw products of two screws can
be derived directly *rom Expressiors (5.104) and (5.105), together
with other relationships of screw algebra, nrovided that these re-
lationships are regarded as functionals bdetween screws.

It follows from all of the above that a screw analysis that
reproduces ordina~y vector analysis exactly can be constructed by
substitution of screws for vectors. In this, the ccrrespondence
between geometricel objects that was established earllier is obvi-
ously preservecd: the complex modulus of the screw will correspond
to the modulus of the vector and the complex angle between the
axes of the screws will correspond to the angle between vectors.

After havirg ascertained the necessary conditions for ana-
lytical notation in the expressions for funciicis of 3 Screw vari-
able, we can turn to the transfer principiz, which ve discusscd
in Chapter 4, and advance general considerationy ac vhis point
concerning the conditions of applicability of th'e principle te
solution of problems in the mechanics of the soliid. .

It 1is clear from the formulation ¢f the transfer principle
that it consists in: a) use of one-to-one correspondence betweer
the spacc of motors (complex vectors) reduced to a certain point
and the space of screws and b) transition from the space of vec-
turs with common origin to a space of moters referred to this ori-
gin. One-to-one correspondence hetween the two spaces 1s a geo-
metrical fact that remains in [orce through any Affine orthogonal
transformations, 1.e., for azy mntions that preseive the length
of the vector and the angle batween two> arbitrary vecters, and,
consequently, this corresponden~e obtains for any moticns of a
solid body. As concerned trainsition from vectors to motors, on
the other hand, it is accomplished with the aid of complex quant -
ties and operations on them, and it 1s neceasary that one or an-
other equation linking %the mechenicai quaitities representod by
the vectors become tha equaticn betweei: the guantities represented
by the screws on substitution of complex Juaritities for the real
ones. But this 1s possidbie only ou satisfaction of the condition
that the corresponding functiocael expressions have the respective
forms (5.9%), (5.98), (5.104) and (5.10%), i.e., trat they satis-
fy the "analyticity" condition. _

From this we may conciude that the "analyticity” conditicn
of the corresponcing equatisns 1s, at the same time, a condition

of applicability of the treasfer principle to the mechanics of
the sclid vody. :
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Manu-
script

Page Footnote
No.
39 Here we use a slightly modified method of representing

a point in four-dimensional space that was proposed by
Ye.S. Fedorov [33].
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Chapter 6
SCREW GROUPS. APPLICATIONS TO KINEMATICS AND STATICS

§1. Linear Dependence and Linear Independence of Screws. The Screw
Group

Here we shall examine comblnations of screws with real mul-
tipliers.

If n screws are glven (n<6)

Rl' R_l""* o"Ru »
and 1t is imposslble to select n real numbers

a;.a...o-.d.u

which, without all of them belng zero simultaneously, would satis-
fy the equality

alRl+atR)+---+¢,R¢-O. (6.1)

then the screws in question are said to be linearly independent;
otherwise they are sald to be linearly dependent.

If the real rectangular (Pliicker) coordinates of screws
R, R:n «-+,Ra are
1o S0 2y “:n r‘v l:.
X2y Y2 23, ‘:o !I:- z:o

® & 0 8 o ¢ 0 9 0 9 s 8

Xny Yoo 2 X% o 22

then, multiplying llke ccordinates by @.8,...,a, respectively, w-
obtaln instead of Fquality (6.1) six homogeneonus linear equation:
between n varlables,

1f these six equations can be satisfied by even one system
»f values of the numbers a,, then Condition (f.1) will be satis-

fled, and tne screws willl be iinearly dependent; when, on the
nther hand, the equatlions are incompatible, the screws willl be in-
dependent. For n > 6, a syriem of slx equations can, generally
speak!ng, b2 satisfled, and hence seven or more screws art alway:s
dependent .

Let there be n(a2«6) llnearly independent zcrew:. We cun con-
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struct the linear screw combination

R=aR + &R+ ...+ aRe. (6.2)

Assigning all possible values to the real numbers a,aq,...,a, ,
we obtailn a nondenumerable set of screws known as an n-member
group. Screws Ry Ry, ...Ra are called the basic screws of the group
and the numbers 6165 ...,8 the coordinates of screw R of the
group. Cbviously, the basic screws R, R, ...,R. belong to the
group.

Let us prove certain theorems pertaining to groups of screws.

Theorem 19. If the screws Ry, Ry...,R. (R 6) are iitnearly in-
dependent, then for m screws (m< n)

Sa=auRi+ R+ ...+ auRe (k=1,2,..., m) (6.3)

to be independent, it ite necessary and suffiecient that at least
one of the mth-order determinants of the matriz

Gu. Gy ... O (6.“)
6 8y ... G

® ¢ 5 o8 s @ 0 % s e

be nonsero. Gar Gug - - . Ooe

Actually, if all determinants of matrix (6.4) are zero, there
exist m quantities p, #,,...,b. sSuch that

O;J;+¢,b,+.;.+¢mbg-0. Swm 4 ...,

so that, multiplyingiEquality (6.3) by bk and summing over k, we
obtain- ;

B8+ biSa+ ... + 018 0, (6.5)

~ from which 1t follows that the sorews Sk are dependent. Converse-

ly, if the screws sk are dependent, a relation of the form of

(6.5) exists between them and can be expressed in terms of the
screws R, namely,

G[R1+QR3+'-~+¢!RI"0'. : (6.6)

whera G = ab +ayb+... +awbn (£=1,2,...,1). But all of the quanti-

ties Gy must be equal to zero, since screws R, R, ...,R. are inde-
pendent by hypothesis, On the other hand, it follows from the
equalities o, = 0 that all determinants of Matrix (6.4) are zero.

Thearem 20. Any n independent screws belonging to a group
may be taken as the basio sorews of the group.

Lot Ry Ry ... Re be the basic screws of an n-member group
(r<6). Each screw can be defined by six real rectangular (Pliicker)
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coordinates, which are independent quantities. In this case, each
Screw can be regarded as a vector in a six-dimensional space. A
group of n screws representc an n-dimensional vector space. Obvi-
ously, any vector of this space can be expressed linearly in terms
of n given linearly independent vectors of a subspace, i.e., in
terms of the basic screws of the group; consequently, any screw §
of the group can be expressed linearly in terms of Ry, Ry ..., Ra-
Taking n such screws §5,8y....,8, also linearly independent, we ob-
tain another system of basic screws of the group.

Theorem 21. If the parameters of the basic screws of a group
are increased by the eame amount p, then the parameters of all -
sorews of the group will have been imereased by this same amount *
p.

For the proof, we multiply Equality (6.2) by e* = 1 + wp;
then basic screws with parameters increased by p will appear in
the right member, while the left member will have an arbitrary
screw of the group, its parameter also increased by p.

§2. Two-Member and Three-Member Groups

Let us consider two-member and three-member groups of screws.
A two-member group 1s determined by the expression

R=a,R, + a,R,. (6.7)

As we have already seen, by assigning all possible values to the
real numbers a: and a2, we shall obtaln various screws whose axes
will lie on a ruled surface, a cylindroid (see Chapter 3). As has
already been established, there are among the screws of a two-
member group two screws whose axes intersect at right angles.
These will be the prineclipal screws of the two-member group. The
principal parameters correspond to the principal screws. Taking
screws R; and R; as the principal screws in Formula (6.7), we ex-
press the scalar square of screw R:

.R.-Iﬁﬁw}-dyg.%-kquﬁﬁ. (6.8)

from which

Amar+dd prt=plrd + pair, (6.9)

N uhd e
p= W (6.10)

For any two screws of a two-member group
R = aR, + aR,
R = QR+ @ R,
the screw product will be
R’ X R” = (a0 + a,a)R, X R,, (6.11)

and hence the numbers o, a, G, o, are real, this implies that the
screw product of any two screws of the group will be the same
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screw to within the real multiplier.

If the complex angle between screws R’ and R” is O, then,

taking the complex moduli and parameters of the left and right
members of (6.11), we obtailn

R'R” sin 8 = (aj0; + aia)R,Ry,
PP+ Pclgl=p +p, (6.12)

i.e., the sum of the parameters of any two screws of a group ad-
ded to the sine parameter of the angle between them is equal to
the sum of the principal parameters.

On addition of two screws, the cylindroid plays the same
role as the plane in vector addition. The screw sum, together
with the screw terms, lies on a cylindroid, and the angle that it
forms with the axis and the parameter are glven by the formulas
presented in Chapter 3.

A three-member group of screws 1s defined by the expression

R = a;R, + a,R, + a,R,. (6.13)

-Let us first assume that the axes of the basic screws Ru Ry
Ry of a three-member group intersect at right angies. We take the
axes of these screws as the axes of a rectangular coordinate sys-
tem. We denote the corresponding parameters by Pu PwPs and the
parameter of screw K by p.

We express the scalar square of screw R according to (6.13):
e = QAP - G + G, (6.14)
from which the parameter of screw R is

o DAL P iy (6.15)
Sitgitdl

Let the projections of the radius vector p of an arbitrary
point on the axis of screw R be & n.{. Since the projections of
the vector r of screw R onto the coordinate axes are ay;, &/, Gy
the moments of screw R with respect to the axes will be, respec-
tively,

4

Payry + nay, — Layry,
payry + Loy, — Loy,
Payts + tayr, — %03

On the other hand, these moments are equal to P&/, Py and payp,.
From this we obtain the homogeneous equation system

(s — Playry + Lairy —nayry = 0,
-y + (s — Playrs + Rayry = Oy (6.16)
i =ty + (ps — plays = 0.
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Assigning the screw parameter p, we determine the geometric
locus of the axes of the group screws having this parameter; for
this 1t 1is necessary to exclude ayy, ayry ayy from the equation sys-
tem (6.16), which ylelds

Py — P8 + (py — PI* + (ps — PI2* +
. 4+, —p) (s —p)(p; —p) = 0. (6.17)

This geometric locus, 1f real, 1s a hyperboloid of one sheet. The
surface will be imaginary if p is larger than the largest or
smaller than the smallest of the numbers Pi Pn Ps- For the axes of

screws whose parameter 1s zero, the geometric locus 1s described
by the equation

P& + p* + pul* + pupypy = 0 (6.18)

and will be real if the product of the numbers PuPw Ps 1is negative.
A family of hyperboloids including, in particular, a hyperboloid
with zero parameter, which is described by Eq. (6.18), will cor-
respond to various values of p in Eq. (6.17).

We have taken as the basic screws of our three-member group
three screws whose axes intersect at right angles. But it is eas-
ily seen that the most general case of assignment of the three
basic screws of the group reduces to the same case, or, in other
words, a three-member group of screws in which the basic screws
are three screws with mutually perpendicular intersecting axes 1=
the most general case of the three-member group. Actually, as has
already been shown in thls chapter, any screw can be presented as

the sum of its components along the axes of a rectangular coordi-
nate system.

The three arbitrarily selected basic screws of the group may
be replaced by three triplets of screws whose axes lie on the axes
of the rectangular coordinate system; adding three screws on each
axis, we obtain three screws whose axes intersect at right angles
and which are equivalent to the sum of the three given baslec screws
of the three-member group. Since a sum of screws ls a linear com-
bination with real multipliers, the sum screws are members of the
same group as the summand screws; hence screws lying on the axes
of a rectangular coordinate system and equivalent to three arbi-
trary basic screws of a three-member group are screws of the same
three-member group, which proves the hypothesis advanced.

§3. The Linear Complex of Straight Lines and the Congruence.
Four-, Five- and Six-Member Screw Groups

Before turning to a description of higher-order groups, let
us define certain geometric figures of the ruled space.

As has already been indicated in Chapter 3, any straight

line 1s fully defined by the rectangular coordinates X, Y, Z which
are linked by the relationship

X+Y'420- |,

so that only two of them, for example X and Y, can be regarded as
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independent.

Assigning all possible values to the numbers x, &, g, 4* with
the condition

<<+, —l<y< + L,

we obtain =" straight lines. It follows from this that the ruled 3
space is four-dimensional. |

Let
X=X{uow), Y=Y ouw),
Z=2Z(u v, (6.19)

where u, » and w are independent real parameters that may assume
all possible values and X, Y and 2 are complex functions of these
parameters. Taking X, Y and Z as the coordinates of line g and as-
signing to u, v and w all of the values that they can assume, we
obtain a set of =' straight lines which is known as a line com-
plex. The lines belonging to the complex are known as its rays,
Relationships (6.19) as the equations of the complex, and the pa-
rameters u, v, w as the real coordinates of the rays.

If A 1s an arbitrary point of the space and afu, v, w) is a
ray of the complex that passes through point A, then the numbers
u, v, w must satisfy two conditions:

S dptegiie .

hw00)=0, I, 0, %) = 0,

R

s

from which 1t follows that only one of the parameters u, v, w can
be left arbitrary. Therefore, «! rays of the complex pass through
any glven point of the space.

The simplest line complex will be the linear complex, in
which all rays passing through a given point of the space lie in
the same plane. This plane is called the polar plane of point 4.

T g e RN T e

To construct a linear complex, we take a screw U, ?

|U] == U =,

the modulus of whose vector is unity, and project it onto a cer- i
tain line of the space having a unit screw E, |Ei = 1. ‘

If O=¢+op® 1s the complex angle between U and ¥, the pro-
Jection will be expressed by

U:Emecos® = cosy + 0 (pcosg —¢°sing). (6.20)
Let us ascertain for which 1lines this projection will be
rea’. We note that the expression for the moment part of the pro-
Jer _on

peosp —¢Psing’ (6.21)

is the projection of the moment of screw U about an arbitrary
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point A4 of this line onto the line. Thus, Expression (6.21) van-
ishes for all lines of the space that pass through point 4 and
lle in 3 plane @ perpendlcular to the moment of the screw about
point A. Following similar reasoning as regards each polnt of the

space, we obtaln a set of straight lines lying in the same plane
and satisfying the condition

pcosg —q'sing =0, (6.22)

for which the projectlon of the screw onto the given straight .
line has a real value, 1.e., the component of the screw along

this 1line is a vector. It follows from this that a collection of

lines of the space the component of a screw along which 1s a vec- y
tor is a linear complex of lines defined by the screw. The axis

of the screw 1s called the axis of the complex.

A complex is defined by five quantities — four real coordi- |
nates and a parameter.

It foilows from Eq. (6.22) that

P =q'tge,

_ i.e., that the distance between rays of a complex is inversely
;. proportional to the tangents of the angles formed by the rays

: with the axis of .the complex. The quantity p is called the param-
eter of the complex; it characterizes the "steepness" of rays at
a certain distance from the axis.

It also follows that if 9 =0, 1i,e., if a ray intersects the
axis of the complex, then ¢==1/2, 1.e., the ray forms a right angle
with the axis of the complex. In other words, rays intersecting
the complex axis form a brush.

Let ¢ be an arbitrary plane and R and S arbitrary points in
this plane. Let @i and Q2 be the polar planes of points R and §.
Planes @, and ¢: intersect the plane ¢ along certaln straight
lines b, and ba; let the intersection point of these lines be T.
It can be seen that plane ¢ 18 polar with respect to point T. In-
deed, lines RT and ST are rays of a complex, so that the projec-
tions of screw U onto them will be real. If the screw is brought
to point T, the moment will be perpendicular to both RT and ST
and, consequently, it will be perpendicular to plane Q. This means
that plane ¢ is polar with respect to point T.

TR ey o e e T

Point 7 18 called the pole of plane Q.

For a linear complex, therefore, there passes through each
point of the space a single plane that contains rays passing
through this point and, conversely, all rays of a complex that
lie in a given plane pass through one point.

Let 4, B and C be the rectangular coordinates of the complex
axis and let X, Y, 2 be the rectangular coordinates of a ray of
this complex.

With the condition (6.22), Relation (6.20) asssumes the form
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e (AX + BY + C2) = cosp, (6.23)
where

AA+B+C=1] X+V+2t=1].

This is the equation of the linear complex.
In the particular case when p = 0, Eq. (6.23) becomes
AX % BY + CZ = cos ¢,

from which it follows that the complex consists of rays intersect-
ing its axis.

This will be a degenerate complex.

If we take the z-axls as the axis of the complex, then A =

=B=0, C=1, and Eq. (6.23) of the complex will be simplified
to

ez = Cos Q. (6.24)

If two screws U; and VU, are given, each of these screws de-
fines a linear complex. Through each polnt A of the space, we can
pass polar planes Qi and Q2 of this point, which correspond to
both complexes. Obviously, the line of intersection of these
planes will simultaneously be a ray of elther complex. The collec-
tion of lines that are rays shared by the two linear complexes is
called a congruence. It follows from the above that a single

straight line belonging to a congruence passes through a given
point of the space.

Now let us pass to a brief characterization of four- and
five-member screw groups.

For a four-member group whose basic screws are R Ry R Ra
it is possible to indicate those lines of the space the projec-
tions onto which of the group screws will be real. Obviously,
these lines will be common to four complexes defined by the four
given screws. The conditions for definition of such lines are ex-
pressed in the following manner:

woxt (¢ (AX + BaY + CaZ)) = 0, }

A+B+CQ=l, X4V 4D, Awm],33,4, (6.25)

where the p, are the parameters of the screws, A., B., C, are the
complex rectangular coordinates of the screw axes and X, Y, 2 are
the complex rectangular coordinates of the sought line.

Separating the principal parts from the moment parts, we ob-
tain four equations

@+ pa)x+ B + 2,5y + (& + pie) 2 + et + Dy + (6.26)
+art=0, &=1,9234 )

Dividing the equations by a', we obtain from them expressions for
four quantities x/a, y/#, ‘o/s /& in terms of ,m;» and then require
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satisfaction of the equality

AP tr=1,

which results in a quadratic equation in the quantity y°/z°. We
may conclude from this that there e¢xist in the entire space no

more than two straight lines (real or imaginary) that satisfy the
condition formulated.

Let us now take these lines as axes of linear complexes. The
conditions equivalent to (6.25), which indicate zero value of the

moment of an arbitrary screw R of the group about these lines,
will be

pcospy —@sinqy = 0,
SN } (6.27)

pCoSgs—gisingy =0,

where p is the parameter of screw R, ¢,+ op, ¢, + ugf are the com-
plex angles formed by the lines with the axis of R.

Comparing with (6.22), we can interpret Conditions (f.27) as
the conditions for the axis of screw R to be simultaneously a ray
of two complexes whose axes colncide with the two lines indicated,
with the common parameter of these complexes equal to p. It fol-
lows from this that the axes of all screws of a four-member group
form a congruence.

For a five-member group with the basic screws RuRy .-..Rs ,
the condition of real projections of each of these screws onto an
arbitrary line of the space or, what is the same thing, Zero rela-
tive moments, will give five equations of the type (6.26):

(@ +pa)x + (2 + 90+ (A + pyea)e+ aus + b +
© +ee=0, k=l2,...5 (6.28)

Solving System (6.28), we find the values o the five ratios
of the coordinates x.y,2 2% ¢. 2 to one of them, for example, the
last, s®. With the additional condition

P U A

this will define the coordinates of the only line about which the
moment of the screws of the five-member group will be zero. Con-
versely, if the axis of this line is taken as the axis of a cer-
tain linear complex, then, proceeding in the same way as in the
case of a four-member group, namely, writing the condition for
zero relative moment of an arbitrary screw of the group and the
1ine in question in the form of (6.27), we satisfy ourselves that
the axes of all screws of a five-member group having the same pa-

rame.er are rays of the same complex.

Finally, a six-member group of screws 1s a system from which
any screw can be obtained by linear combination with real multi-
pliers.
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§4. Reciprocal Screws and Reciprocal Screw Groups

As was already indicated in Chapter 3, the moment part of
the scalar product of two screws

Mok (Ry- Ry = ryr [(p, + po) cosa —a*sina) (6.29)

is the relative moment of these screws, which i1s equal to the sum
of the scalar products of the principal vector of the former by
the principal moment of the latter and the principal vector of the
latter by the principal moment of the former, with the moments of
both screws taken with respect to the same pole.

Two screws are said to be reciprocal if their relative moment
1s equal to zero or, what is the same thing, if their scalar prod-
uct is equal to a real number.

Theorem 22. A screw reciprocal to the n independent sorswe
of an n-membér group (#<C6) is reciproccl to any screw in thies
group.

Indeed, let a screw S be reciprocal with screws R)- Ry ...
e s Ra(n<6), 1.e.,

MM (S-Ry) = moM ($-Ry) = ... = mou ($-R,) = 0.
Performing scalar mu.tiplication of screw § by an arbitrary screw

of the n-member group formed by the above n screws, we obtaln

NOM (S'R) = uoulS '(¢|R; + ‘l‘Rg + ...+ ‘-RQ)' -
= 0, MON (S Ry + 6, m0u (SR + . . . + 0a 1oM(S - Ra),

and hence the right-hand member is equal to 2Zero,

wou ($-R) = 0,
Q.E.D.

If its parameter p 1s nonger:, screw § cannot itself enter
into the n-member group under consideration, dbecause its scalar
product by itself is g&me¢ and hence cannot be a real number. If,
on the other hand, the parameter of screw § is gero, then its
axis is a common ray of the complexes corresponding to all screws
of the group. ‘

Theorem 23. The aggregate of soreve reoiprocal to the escorevs
of an n-member group (n< 6 forms a (6 —~ n)-member group.

Let us prove the theorem for the case n = 3, If a screw 8
with the coordinates Swmiiol’, Hun+tuy', Z =+ 18 reciprocal
to three screws R, Ru Ry with the coordinates X m g +exd, ¥,= gy, +
+off,.... 5y =3 +ed then we have the equations

R+ I8+ 4+ %+ =0,

T+ + 08+ 8% 4 ' + 0%, -0, (6.30)
N+ + I8+ 00+ 0%+, -0,
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and since these three screws R, R, R, are linearly lindependent,
there is at least one third-order nonzero determinant in the
matrix cf System (6.30). In this case, leaving the three terms of
each ejquation with this determinant in the left member - say, the

system in & %, {*— we solve the system for these coordinates, ex-
pressing them in terms of §* % {:

E=Ad*+ B+ G,
= At 4 Bm' + CoL, (6.31)
0= Ag® + Byn* + Cx.

Here ¥ 9% { may be taken arbitrarily, so that there exist no fewer
than three independent systems of values of these numbers, from
which three reciprocal screws can be formed; for example, screws
with coordinates proportional to the numbers

Al' AO- o- lo o. Ag.
"0 B.! ou o. ,' B‘.
c.. C'O 'i oi on C’t

are possible, and if we form a matrix of these numbers, there ex-
ists in it a nonzero third-order determinant

100
010,
001

from which it follows that there are no fewer than three linearly
independent screws reciprocal to the three given screws. It is
easily seen that there will be no more than three of them, since
we cannot take arbitrerily more than three systems of values of
the numbers % 9.L 1in (6.31); any fourth system of values is ex-
pressed linearly in terms of these three, and in the matrix

formed from the cocrdingtes of the four corresponding screwd, all
fourth-order determinants will be zero. Thus, the theorem has been
proven for n = 3. The proof for another value of n 1s fundamen-
tally no different from that gliven above. ,

The relation of the axes of the screws of the reciprocal
group to the complex of rays defined by the screws of the group
is easily established.

For n = 1, the reciprocal group will be five-membered. The
condition of reciprocity of the singie screw R cf a glven one-
membered group to an arbitrary screw § of the reciprocal group
will be '

wie (R-5) = rsl(p + ) corg ~9Psingl =0, (6.32)

where p and q are the purameters of screws R and § and & twy® s
the complex angle between the axec of the screws. Comparing (6.32)
with Pormula (6.22), which defines a ray of a linear comglex, we
#¢nd that the axes of the screws § that have the assigned parame-
ter ¢ in the group reciprocal to R are rays of a linear complex
whose axis coincides with the axis of screw R, while the parameter
is equal to the tump + q.




For n = 2, the reciprocal group will be four-membered. Each
Screw of this four-member group must satisfy two conditions:

uoM  (R2-8) = s [(p: + q)cosqs — @sing] = 0, }
oM (Ra-S) = res [(Pa + q)cosga — qfisingyl = 0, (6.33)
where R, and R, are screws of the given two-member group. The
first condition states that the axis of screw § is a ray of a com-
plex with the axis of the first screw as its axis, while its pa-
rameter 1is the quantity p, increased by g; the second condition
states that the axis of screw 8§ is a ray of a complex with the
axis of the second screw as its axis and its parameter tie quan-
tity pz2 increased by ¢. Thus, the axes of all the § are rays of
two linear complexes and, consequently, belong to a congruence.

For n = 3, the given group and the group reciprocal to it
will be three-membered. As we have seen, any three-member group
can be defined by three basic screws whose axes intersect at right
angles at a point. In this case, we shall consider the basic group
to be defined by three such screws RuR, R, let the screws §, S, S,
on the same axes be the basic screws for the reciprocal group.

Any screw of the first group and any screw of the second group
w11l have the expressions

R = &R+ 0.y + Ry (6.34)
S = hS; -+ 5S4 58,
where a, and bk are real numbers,

Performing scalar multiplication of Equality (6.34) and
equating the momen; part (o zsro, we obtain

o (& S)*-mé :ﬁh"'ﬁ)"‘Wﬁ(h*’ﬂ*‘
+ oyt e =0

51nce thiz ;ast equalicy anat be satisfied for any a and bk‘ it
is necesaary thst

o At a) =0 ) =0, r i+ @) = 0.
£yom which (for nve0 and k%G

A==t h= =~ A=—t  (6.35)

The hyperboloid on which the axes of the screws of thi; system
with parameter p lle 18 defined bty Eg. (6.17), while the correa=
ponding hyperbolouid of the reciprocal system will, accnrd*ﬁg o
(6.35), be defined by the equaticHh .

AN G+ (0 + R+ (6.36)
OGN+ =0, )

i.e., it will be the same hyperbcloid, but for screws of parame~ -
ter -p. St
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a georetrical interpretation -f the objlects thnat ~gxes it rossible
tg perform the necessary operations direct.y on these ohiects and
obtain easlly inspected results. A number of proolems can be
solved effectively by methods simlilar to the classical methods of ‘
graphical statics with the aid of the direct geometrical screw }
representation to be given below. .

Fig. 32

Let us envision an arbltrary system of sliding vectors
Ry Ry ..., Re. We pass a certaln intersecting plane @ (Fig. 32),
wiiich will henceforth serve as our plane of representation, and
mark the points 6y, 4. ...,8, of intersection of the lines on which
the indicated vectors lie.

Then at each of these points we decompose the corresponding
vector into two components: one in plane @ and another perpendic-
ular to plane Q. We shall denote the components in plane @ by
il and the components perpendicular to @ by Pufu ++ s fPa
Thus the given system of sliding vectors has been broken up into
two systems: a) a system of [co%planar sliding vectors and b) a
system of parallel sliding vectors whose
common direction is perpendicular to the
plane of the first system. The first sys-
tem is equivalent to a certain sliding vec- N
tor » in plane Q, and the second to a vec-
tor p perpendicular to @ (unless these sys-
tems are equivalent to palrs). Conseguent- .
ly, the screw R to which the glven sy-‘em
is equivalent is in turn equivalent t. a
system of two sliding vectors », p (an or-
thogonal vector cross), as expressed by

R-(r ). !
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fined for twe piane ¢ (Fig. 33). In particular cases in w- .ich the
line in plane @ i1s infinitely distant and the trace is alsé tn-
finitely distant, we shall have equivalent palirs. This repr~senta-
tion, in turn, fully defines & screw, 1.e., the magnitude of its
principal vector, its central axls and its parameter.

. Actually, the magnitude of the principal vector of the screw
will be Vi + pi. Furthermore, dropping a perpendicular from point i
p to the axis of r and constructing the right triangle pab, in i
‘ which pa is the hypotenuse and the angle apb =a= arc tan (D/r) :
(Fig. 33), we find the moment of the screw with respect to point
e — the base of the perpendicular dropped from vertex b to the
hypotenuse:

- —
pXptaxr.

The ratio of the vertical and horizontal components of the
moment 1s

e ) _pd _p
4

!
|exel el@ .g(dw«w

Y -

’ H 4

i.e., to the ratio of the vertical and horizontal components of
the principal vector, from which 1t follows that 1ine eb 1s the
projection of the central axis; ®n tHe other hand, segment e¢b,
which serves as a proportiotriality coefficient, is obviously equal

_ to the parameter p of the screw. Flnally, the invariant J of the
screw, which is equal to the scalar product of its principal vec-
tor by the principal moment, will, if point p 1s taken as the
moment point, be expressed by

it

B L NN, NN T Ay i D SelBATE i

J = (r + p)-nMoM;, r = p-MoM, £ = & pr (pa).

In view of the equivalence of the cross to the screw, we can
use the notation of the corresponding screws for the crosses and
speak of operations performed directly on the crosses.

T e

The use of crosses with unit value of the component perpen-
dicular to the image plane, which was proposed by Ya.B. Shor [34],
is of great assistance in the constructions. The given screw 1s
reduced to an expression R = pK, where X 1s a screw equivalent to
the cross

i ‘-;: , u)_- (%, x), x.a 1.

We shall call the cross X — (s, x) at x = 1 the unit cross.

The magnitude of the component of a unit cross in the image
plane is k cot &, the modulus of the principal vector is VI + B =
= 1/3in a, and the invariant is equal to the moment of vector k
with respect to the trace «.




. . iwr"éﬂv tne relative moment of two screws Ry, and R,
st rnoows -re Ky oand K;. As the moment point we take the
alnt 4 of ;n1~.~--t;on of the axes of the components k; and k;.

o relative moment will be equal to the sum of the scalar prod-
uct.: of tne princlpal vector of the first cross by the principal
moment of the second relative to point 4 and of the principal vec-
“or of the second by the principal moment of the first with re-
spect to point 4. Expressing the crosses in terms of the unit
crosses, we have

MON (Ry, Ro) = Pupy "O’M- Ky K) =
= pypy [k (Axy X %) -+ ka'(z."l_x #)] =

= PPy [(kl X /“_;:)'xs + (k. X Z;.).:.gll =-=
= Py (MOM, R, -+ sov, k). (6.37)

=30 N

The recliprocity conditlon for two unit crosses 1s expressed
by the simple relationship

MOM,, £, + MoM,, ky = 0. (6.38)

Reciprocity of two unit crosses has the following geometrical
interpretation. Let X, and X, be two unit crosses with the respec-
tive components ki, k. and the traces ki and k; (Fig. 34a). Obvi-
ously, the relative moment of these
crosses willl not change if k; is dis-
plazed parallel to k2 and k2 parallel
to K.

Moving these points until x; is
in coincidence with k; and k2 with R.,
we obtain instead of points x,%,
pointsuhx” and the unit crosses have
become sliding unit vectors. But for
recliprocity of two sliding vectors it
is necessary and sufficient that the
Fig. 34 axes of these vectors intersect, and
’ in this case the line xx, must be
parallel to the line B,B; connecting
the ends of vectors Xk, and kz drawn
from the common origir A (Fig. 34b). It is this that will be the
necessary and sufficient condition for reciprocity of unit crosses.

The linear combination of two unit crosses
K = K, + 1K,

in which §+n=1, 1is obviously also & unlt cross. The end of vec-
tor k, reduced to the common origin A with vectors k; and ki, ob-
viously lies on the line connecting the ends of vectors %, and k:,
dividing the corresponding line segment into parts that are in-
versely proportional to the ratio £:n; on the other hand, the
trace k lies on the line connecting the traces x; and x; and di-
vides the segment x,x3 in the same proportions. If, in particular,
§=1n=12 we obtain a "sum" of unit vectors, and in this case the
end of the resultant vector kX and the trace x lie at the midpoints
of the corresponding segments.
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crosses K, and K; whcose compoient k passes
through & glven point (.

Solution. We draw the axis k (Fig.
35a) through the point of intersection of
the axes k; and k: and point C; then we
find the point 3 of intersection of the
component k with the line connecting the
ends of B, and B, of the components k; and
k. reduced to the common origin 4 (Fig.
36b). Then on line x;k2 we find the point
k that satisfles the condition %k :xx=
= B,B:BB, Point x 1s the trace of the un-
known unit cross.

Problem 2. Construct the unit cross X
that is the linear combination of unit crosses X; and X2 recipro-
cal to unit cross L.

Solution. Let
K-§K1+nl(.. (6.39)

where t+n=1, and K,,K, L are defined by their components &, &,!
and traces x,x, A (Fig. 36a). First we construct the unit crosses
X' and X';, which are reciprocal to unit cross I and such tha"
their components X; and k2 are same as those of unit crosses KX,
and Kz, although the traces x'; and k’; lie on two arbitrary par-
allel lines passing through traces x; and xa. Such unit crosses
are easily constructed, as follows: it 1s necessary first to draw
lines u and v through k; and k2 parallel to X; and X, line Ao,

through point A parallel to k;, line o;T; parallel to the differ-
ence between veotors I and k (Fig. 36b), and then a line through
1, parallel to I to the intersection with u, which defines a point
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1 6 o vasis of tne geometrical reclprocity principle estab-
lished azove, unlt cross K', will be reciprccal to unit cross L.
In 2xactly the same way, 1t 1s necessary tc pass a line Ao
through point X parallel to k2, then a line 0,12 parallel to the
difference of vectors I and k; (Fig. 50b), and then, through point
12, a line parallel to I to the intersection with v, which defines
a point x'z; unit cross X’; will be reciprocal to unit cross 1.
Thus we shall have two unit crosses X', and K';, which will differ
from unit crosses X, and X, only 1n the position of the traces

##,. However, the two unit crosses X'; and X'; are reciprocal to L.
Hence the combination

8K + K = K’ (6.40)

will also be reciprocal to L. But this combination has the sam:
cocmponent k as the unknown combination (6.39), which, by the con-
ditions of the problem, must also be reciprocal to unit cross L.

We connect points x'; and k', by a straight line and find the
point x of intersection of thls line with line x,k2. Then « is the
trace of the unknown unit cross K, since #X:%#="%¥ %% and the
point belongs simultaneously to the combinations of (6.39) and
(6.40), while the component Xk corresponding to it is the same for
both combinations.

The latter is determined by dividing segment BB, into parts
proportional to xik and xkz (Fig. 36b).

Instead of the above purely graphical construction, Condltlon
(6.38), which results in an equation with one unknown, can be used
for solution of the problem.

Problem 3. Construct the unit cross Liz2s reciprocal to the
three unit crosses K, K, and X,.

Solution. First we construct unit cross I 2, which 1s recip-
rocal to unit crosses K; and K;. Obviously, this unlt cross can
be obtained by taking as the axis 7,2 the straight line passing
through k1 and k2, and as the point XA;2 the point of intersectlon
of k; and k. Here the magnitude of l;: remalns undetermined. It
can be determined from the condition of reciprocity to X, or by
the construction described above, or by forming the relative mo-~
ment of unit cross I 2 and unit cross X, and equating it tc zero,
at which point the magnitude of %12 is determined from an equation
with one unknown. The problem is solved.

A second variant nf the solution will be unit cross Lij:,

which is constructed in exactly the same way, but with the condi-

tion that the unit cross reciprocal to X; and Xy 1is constructed .
first, and then subjected to the condition of reciprocity with Xa.

Finally, the third variant will be unit cross Layy con-
structed first as reciprocal to X; and Xy and then subjected to
the condition of reciprocity with X;.

The three unit crosses Ly, Ly, and Lajy) define a three-member
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group reciprocal to the three-member group of unit crosses K, X,
and Ks. All of these crosses are shown in Plg. 37.

Problem 4, Construct the unit cross reciprocal to five given
unit crosses K, Ky ..., K,

Solution. We first construct the three-member group of unit
crosses reciprocal to unit crosses K, K, K, 1in accordance with
Problem 3. Let this be the unit crosses L., Lupnlsy. We find the
unit cross Ljass, Which 18 the linear combination of unit crosses
Lyas and L34z reciprocal to X,. This can be done as in Problem 3,
which was solved above. In exactly the same way, we find unit
cross Lysas, Wwhich is the linear combination of L;s2 and Lzs: re-
ciprocal to X4. Thus we shall have two unit crosses Lia2ss and

Lis2¢ that define a two-member group reciprocal to unit crosses
l(lv Kh IR’S' Ki‘

lLet us now form the linear combination of unit crosses lizss
and L1332 and, subjecting it to the condition of reciprocity with
unit cross Xg, still following the solution of Problem 3, find

the unique unit cross Liazsss that is reciprocal to the given unit
crosses Ky Ky ..., Ke

The geometrical constructions indicated here can be used in
the problems of three-dimensional statics and kinematics.®

§6. Screw Groups in Kinematics and Statics

The theory of screw groups is closely related to analysis of
the properties of motions of a solid body that has one or another
number of degrees of freedom (from one to six), and to the proper-

ties of force systems acting on a body, including reaction forces
if the body 18 not free.
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Ire o3t gerseral formn of displacement of a s0i1id Zody (s the
screw ‘iisplacement, wnicn (s characterized by a screw axi{s, the
moduiuz of itz vector, and the narameter. The elementary turn an-
gle dv serves as the modulus cf the vector in an infinitesimally
small displacement, the ratio of the transliational displacement
dy® tc do as the parameter; defining the screw by its axis and
compliex modulus with unit principal part and multiplying the com-
plex modulus by dp, we obtain a kinematic screw — a screw that ex-
presses an infinitesimally smali displacement of the body.

Let the body be able to move along only one screw R with com-
plex modulus R = ¢, multiplying this screw by dg, we obtain the
displacement

@0 = R dp, dD = ¢ dp.

Knowing the displacement screw, we can determine the dis-
placement of any point of the body as the moment of the screw
with respect to this point.

The displacements of all points of the body equidistant from
the screw axis are directed along tangents to screw lines con-
structed on the axis of the screw and having the same pitch. The
plane normal to the displacement is the polar plane with respect
to the point under consideration; all rays of the complex passing
through this point 1lie in 1it.

If the body can perform displacements along two screws R,
and R: defined by axes in space and by the complex moduli

'Rl-".t R.-Mn

then, on imparting to the body two small displacements d¢, and dy:
along these screws, we obtain a resultant motion that will also be
a screw motion. The resultant screw is a function of both the axis
positions of screws R; and N, and the elementary displacements dg:
and dg:. Varying the latter, we obtaln a set of new screws along :
which the body can execute displacements. They all lie on a cylin- !
droid that can be constructed from two given screws; among all of
these screws, there exist two whose axes intersect at right an- |
gles. If, apart from the screws lying on the cylindroid, there |
are no other screws with respect to which the body could be dis- !
placed, the body has two degrees of freedom.

If the body can execute displacements along n screws
R R,...,R.. then we takc any m of these screws (m< n and impart '
to the body m screw displacemenuvs along them. The resultant dis-
placement will be a screw; let us assume that no matter how we
vary the magnitudes of their principal vectors, i1.e., the magni- .
tudes of the elementary rotations, the resultant screw always d4if-
fers from the remaining n - m screws. In this case, the n screws
are independent. A body capable of displacement along n indend=-
ent screws has freedom of the nth degree.

Consequently, study of the geometrical distribution of all
screws along which a body possessing nth-degree freedom can be
displaced reduces to study of the distribution of all screws of
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an n-memper group. In particular, scryews along «nizo a oty mavicr
three degrees of freedom can execute moticn are dis*ricuted 3iong
nyperpoloids in such a way that screws with the same parareter lle
on eacn of the hyperbololds; among them there 1s a zero-parameter

hyperboloid, which corresponds to pure rotational motions of tne
body.

Let us now consider the force interpretation of the screws.
A force screw 1s characterized by the combination of a force vec- !
tor and a couple whose moment 1s parallel to the force vector.
Thus the principal vector of the screw is a force vector and its
principal moment is the moment of a couple. The moment of a screw
with respect to a certain point of space is the moment of the mo-
tor ootained by reduction of the screw to this point.

It follows from analysis of screw groups that if a body is
at equilibrium under the action of n force screws, it 1s neces-
sary that some one of these screws be in the group formed by the
remaining n — 1 screws. In particular, we shall have:

a) for two screws, equilibrium is posslble only in the case
in which the parameters of the screws are equal and their axes ‘
lie on the same stralght line;

b) for three screws, if their parameters are identical,
equilibrium 18 possible only if thelr axes lie in the same plane
(the cylindroid constructed on two of them must be a plane), and,
moreover, the axes must intersect at one point;

c) for four screws with the same parameter, and in particu- :
lar for four forces, equilibrium is possible if the screw axes
lie on the same hyperboloid (this hyperboloid is the hyperboloid
of screws with equal parameters for a three-member group formed
by three of these screws);

d) for five screws of the same p&rameter, equilibrium is pos-
sible if the axes of these screws lie on rays of one congruence;

e) for six screws of the same parameter, equilibrium is pos-
sible if the axes of these screws are rays of the same complex.

Finally, for seven or more screws, we do not obtain any nec-
essary condition, since in the general case any of the seven or H
more screws is in a group formed by six of these screws if they
are linearly independent.

The above equilibrium conditions, which are a corollary of
the proparties of screw groups, are extremely important for the
statics of the so0lid body, since they imply the most general con-
clusions for the equilibrium conditions of many structures. Por
example, they apply directly to structures (trusses, foundations)
that are sesured to a base by a certain number of members, and
provide a basis for judgments as to the invariability (immobility)
of the systsm in the presence of various couplings. By virtue of
the analogy between statics and kinematics, these same conditions
serve for determination of the mobility of three-dimensional
hinged mechanisms and, in particular, enable us to identify cases
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04 circ..umT placement of members when motion !s possihle regzard-
=23 % e presence of redundant couplings in kinematic pairs.

Tre importance of reciprocal screws can be seen in a pa:ticu-
lar example ln which we are to find the forces in six rods ar-
ranged arbvitrarily in space.

Problem. A s0lid body 1s secured to a base by six rods, and
a certain force screw P acts on the body (Pig. 38). It is required
to find the values of the forces §;, &. ..., 8; acting along the re-
taining rods. The problem reduces to resolution of the screw P
along six straight lines of the space.

Let us apply the principle of possible displacements. Con-
sider the system with the 6th rod removed. Then the body obtains
one degree of freedom, which is characterized by motion along a

certain screw TL;3345. This screw must be
~ such that the displacement of the points
N* of the body at which the five remaining
rods are attached will be normal to the
axes of these rods. This means that screw
fi1234s defines a linear coumplex whose
rays are these five rods, and that the
displacements of these points take place
in their polar planes. Consequently,
screw L1330 18 reciprocal to all of the
' five screws (in this case of zero param-
Fig. 38 eter) whose axes are directed along the
five rods. This screw can be found bx
the method indicated above (Problem 4).
To find the force acting along the 6th
rod, it is necessary to decompose force screw P into two compo-
nents: one along screw U, which is reciprocal to screw T ssas,
and the other along the axis of the 6th rod. This task can be ac-
complished purely graphically, for which it is necessary, repre-
senting the screws by unit crosses, to find the unit cross of U
(in accordance with Probliem 2), and then to make the elementary
decomposition of screw P. Then the same method is used to decom-
pose the U component along the axes of the 5th rod and along the
screw reciprocal to the four screws 1, 2, 3,”0, etc. An analytical
solution can also be provided, using reciprocal screws constructed
with the aid of the unit crosses. We form the expression for the
sum of the works done on screw Tis3és by the external-force screw
P and the force §; acting along the missing rod, and, equating 1t
to zero, we obtain a single equation with the unknown magnitude
of the force in the 6th rod. The forces in the remaining rods are
determined similarly. .

The work of the forae screw on the displacement performed
along the kinematic screw is the moment part of the scalar prod-
uct of these screws, or, what is the same thing, the relative mo-
ment of the screws,

The force screw can also be compensated by a smaller number
of screws, 1.e., the body may also bLe at equilibrium with fewer
than six rods. Then, however, it is necessary to satisfy the con-
dition that the force screw acting on the body te in the group
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formed by the rod reactions. 7, we construct tne grour o sireuws
reciprocal to the screws whcse axes are dirccted along the rods,
the effective screw, which satisfies this condition, wiil Ue¢ re-
ciprocal to this constructed reciprocal group.

Manu-

script

Page Footnote

No.

127 In his time, B. Mayor [3%] proposed a special method

for mapping space vectors and screws onto a plane, but
it was more complicated than that presented here. Due
to the difflculty of the exposition, B. Mayor's ook
did not win wide recognition. Subsequently, Mayor's
ideas were developed to some 2xtent by R. Mises and V.
Prager. In the Soviet literature, the Mayor method has
been interpreted and developed elegantly in the inter-
esting book by B.N. Gorbunov and A.A. Umanskiy (36].
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.Chapter 7
~ SCREW BINORS AND THE DYNAMICS OF THE SOLID BODY

§1. The Screw Binor

Transformation of a screw with the ald of a dyad and an af-
finor (see Chapter 3) makes it possible to express the coordi-
nates of the screw in a certaln coordinate system in terms of its
coordinates with respect to another coordinate system. In the gen-
eral case, this transformation 1s determined by nine complex or
elghteen real numbers.

If A is an affinor, then multiplication of this affinor by a
screw R reduced to a certain motor 1s expressed as follows:

R =AR = A(r + or") = Ar + 0Ar'. (7.1)

A more general transformation of screw R is obtalned by its
multiplication by the screw binor (4) introduced by S.G. Kislitsyn
[17] as a generalization of the screw affinor, namely,

R ={8R = Ar + A*r. (1.2)

This transformation becomes (7.1) in the particular case
when

-A“:.-m‘. (7-3)

The transformation using the binor i1s determined by two matrices
with nine complex elements each, i1.e., by a total of thirty-six
real numbers.

Binor transformation of the real components of a screw is ac-
complished by multiplying the latter by the elements of a square
matrix with six rows and six columns. This matrix is found to be
identical with the "motor" transformation matrix introduced by R.
Mises ([12].

When the screw is referred to a rectangular basis with the
ald of the coordinates, the affine transformation operation on the
vector r and moment »® of the screw to the new system reduces to
multiplication of the matrices

Au Ay Ay An An Al (7.4)
Au Auw Au], | A4 A4 AL]. '
Ay An An An Ay AL
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Ly theze vectors; nere

Ap = an + 0al, Al = o) + waly.

If the product 1s expanded in the real coordinates, we obtain the
transformation

re=0ufz+ oy +aws +afrt + alys + ain,
fy ™ 0its + 0ty + Onry + a8 + chrs 4 b,
. ro=auls + anly + auls+ ayrs + ayrs + atrt,

=ty toy oyt ot rags, | (7.5)

7= et 8yt ay it o dagn.
1] = ars+ ayry + aQre + ars + a2t + a2r. ]

Thus, multiplication cf a binor by a screw is equivalent to

transformation of its real Pliicker coordinates with the aid of
the matrix

(7.6)

JEQEJEJQJ%:S

: It 1s quickly recognized that in the case of an effinor, 1i.e.,

: for A = wAn = eaa, the transformation matrix (7.6) assumes the fol-
! lowing particular form:

i 6nay” 0 0
On O ups 0 0 O
G Gy a3 0 0 0

a:lq.a:.auau:zu
@ G & Gy oy oy
@ &, a a5 8y Gy

(7.7)

If Matrices (7.56) and (7.7) are represented as block matrices,
they will have the following respective forms:

Aiarl laio
cnn vedl o .u.! ..... .
?Ao ' A'§ A

Repeated application of the binor mulitiplies out the ma- :
trices: | %

. R" = (IR’ = (B) (AR = (C)R. |
|6 G [ =] 2ulle Adr =l o o L ed. (7.9 |

A binor is a linear operator that possesses the property é

(7.8) i
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(A'J (Rg + Rt) = (A)Rx 4- (A)Ris
(APR = A (A)R. (7.10)

where A 1s a scalar multiplier.

Let us turn to Transformation (7.2) and express matrices 4
and A* with complex elements in terms of real matrices:

A=g-+tea®, A*=at+ ag*

Substituting in (7.2), we obtaln

R’ = (ar + a'r’) + o (3% + a**rY). (7.2")

Expression (7.2') indicates that on transformation of screw
R with the aid of a binor, the principal part of the transformed
screw R' 1s not a result of transformation of the prinecipal part
of screw R only, but also depends on the latter's moment part.
Consequently, the result of multiplication of a binor by a screy
is a function of the screw that is not expressed by Formula
(5.98) for the screw function of a screw and, consequently, does
not satisfy the analyticity condition of which we spoke at the
end of Chapter 5.

§2. Inertia Binor of a Solid Body

A.P. Kotel'nikov [5] introduced the notion of the momentum
screw of a system of material points (kinetic screw). A momentum
screw 1s a screw equivalent to a system of sliding vectors whose
axes pass through points of the system and which are geometrically
equal to the velocities of these points multiplled by the corres-
ponding masses.

If the couplings in the system are such that we can impart a
screw Jdisplacement to the entire system in any position without
changing the relative positions oi the points, then we say that a
kinematic screw 1s possible for the system. In particular, 1if che
system is a solid bady, this will be a kinemutic screw that de-
termines the instantaneous screw motion of the body, and if it 1s
referred to time, it will be a velocity screw.

Let this screw be U with the complex modulus
|U = U = e® <= 5 0%, pom | (7.11)

where u is the magnitude of the angular velocity and u® = pu 1is
the magnitude of the translational velocity of points of the body
lying on the screw axis.

Let us take a certain point 0 on the central axis of the
kinematic screw and denote by p the radius vector of an arbitrary
point of the body reckoned from point 0.

The velocity of a point, as defined by the kinematic screw U,

is the moment of the motor obtained by reduction of thils screw to
the point, with the reduction radius p. Hence we obtain the fol-
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lowing expression for the velocity of a point:
o=a'+aXxp. (7.12)

£szigning an elementary mass dm to the point of the tedy, we ob-
tain the momentum of the point:

odm = u*dm+ a X p dm. (7.13)

The angular momentum of the point with respect to point 0 is
equal to
pX0dn=p X (a*+ a X p)dn. (7.14)
Integrating (7.13) and (7.14) over all points, we obtain the

vector and angular momentum of the solild body, which form a motor
equivalent to the body's momentum screw:

K-.k+ot‘=§odm-}-mprvdm. (7.15)

Let us write Expressions (7.13) and (7.14) in rectangular co-
ordinates. For projection of the momentum vector onto the axes =z,
y, 3, we shall have the expressions

v dm = (u} + u)f — u,m) dm,
vydm = (u§ + uk —ug) dm, (7.16)
ogdm = (u} + u,n — u,t) dm,

and for the moments of this vector with respect to the same axes,
the expressions

(on— o) dm =: (Ut —ul + 4 (0t + L) —u,En —u k) dm,
(08— 0.8) dm = (2} —utt — kN + uy (8 + {%) — u,nt)dm, (7.17)
(0 —oan)dm = [ufk —un — u. kL —u,ng + 4, (32 + 1Y) 1dm,

where §, 9, { are the projections of radius vector p on the axes z,
y’ zl

Now we integrate Expressions (7.16) and (7.17) over all
points, simultaneously adopting the notation

\ém = m, S;déms.. fndm= s, §tam= s,
{®dm =D, (ttdm =D, (tndm =D,
§ot+ tydm = 1, S+ edm =1,

e+ mdn=r }

| (7.18)

as abbreviated notations for mass, static moments, products of in-
ertia and moments of inertla witp respect to the axes.

Then we find expressions for the projections of the vector k
and moment k° of the motor corresponding to the body's momentum
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screw onto axes x, y, 3:
k= Satéy — Sytty + mud )
ky= — S, + S, + mug ,
ky = Squ, —-—Sgll' + mu:. (7. 10)
K= hus —Dyy—Dy,  — Syt + S, ]
= —Dys + Iy — Dy, + Su? —Sua,
8 = —Dws—Dw, + la“z"‘ss“:+sxu:

Formulas (7.19) indicate that the motor &+ wk® 1s obtalned

by multiplying hy the motor &+ ou* the binor (P) determined by

the matrix
0 S.-—S;_ m 0 0
-8 0 S 0 m 0
& -85 0 0 0 m
’l —D' '-'Dg 0 -—'S‘ -S. 4
""Dl ll ."-Dg Sg 0 —Sl
—Dy—D, I -8 S O
and namely
Y 1 s;-—ﬂ)Da ——S.-(oD.
m= ""S;—G)D. _WI’ SI—WDI »
) Ss—wD, —S1— oDy ol,
m -—mS. Q)S.
o, m —asl|, (7.20)
——Q)S. @S; m
which can be written in abbreviated form as follows:
K = (T)U. (7.21)

The binor (T) 1s called the inertia binor of the solld body.
Formula (7.21) therefore states the fact that the momentum screw
is obtained by multiplying the inertia binor by the kinematlc

screwv.,

§3. Equation of Motion of a Solid Body in Screw Form

Differentiating Equalities (7.19) with respect to time, we
obtain the time derivatives of the projections and moments of the
momentum screw in the left member and the time derivatives of the
corresponding products of the inertia binor by the kinematic screw
in the right member. The corresponding terms of the right members
of the equalities will express the products of the masses and
static moments by the projections of the body's center-of-gravity
accel-ration and the products of the moments of lnertla by the
angular accelerations. These will be the projections of the act-
ing-forces screw onto the coordinate axes and the moments about
these axes. Consequently, passing to the screw equality (7.21),
we shall have the relation derived by R. Mises [13],
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& =% NUI=R, (7.22)

where R is the acting-forces screw. Equation (7.22) is the screw
notation of the law of momentum and the law of angular momentum.

Let the body under consideration have a screw displacement
with respect to fixed space determined by screw U; if we wish to
express the time derivative of the screw K=(TWU with respect to
fixed space in terms «f the time derivative with respect to a co-
ordinate system attached to the moving body, we must apply For-
mula (5.72), obtaining

=K +Uuxk=L(nUI+Ux((NU1=R,
where the symbol d'/dt denotes the relative or "apparent" deriva-
tive, 1.e., the derivative presented to an observer on the moving
system. Multiplylng out the brackets after the d’ sign and noting

that in the coordinate system attached to the body the inertia
binor 1s constant, 1.e., that d&'(T)=0, we obtain

(1) +U XUV =R. (7.23)

Expansion of Eqs. (7.22) and (7.23) by coordinates results
in a system of six dynamic equations.

One remark is in order.

Assume that we wish to obtain from Eq. (7.23) the dynamic
equation for a body having a fixed point (vector equation). For
this purpose, it would be necessary to assume that the kinematic
screw U has become an angular-velocity vector passing through the
fixed point. Taking thils latter point as the coordinate origin,
we must set the translational-displacement coordinates of this
point of the body equal to zero, and add the reactions at the
fixed point to the projections of the external-force principal
vector. Then the dynamic equations decompose into two groups of -
three equations each. But those three equations that express the
relation of the principal part of screw U, 1.e., the angular-ve-
loclity veector, to the moment of the external forces will be not
the principal part of the equations, but rather their moment part.
The corresponding vector equation will be not the rrincipal, but
the moment part of screw equation (7.23). Thus, the differential
equations for the principal part of the kinematic screw are not
the principal part of the basic differential equations, but, to
the contrary, are their moment part.

This circumstance stems from the fact that if an angular ve-
locity serves as the principal part, i.e., the vector, in a kine-
matic screw, the principal vector of forces will be the princlpal
part in the force screw; on the other hand, the moment is the gen-
eralized force for the angular coordinate. Moreover, multiplica-
tion of a binor by a screw places both a vector and a moment in
the principal part. Consequently, the binor cannot be obtained
from any real operator by substituting complex quantities for real
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quantities in it, 1.e., a binor is not an operator that possesses
the property of "analyticity," and the screw formulas obtained as
a result of its application are not a direct generalization of
the vector formulas (see §1 of this chapter).

It must be conclucded on the basis of the above that it 1s im-
possible to obtaln a screw equation of the dynamics of an arbi-
trarily moving body from the dynamics vector equation of a body
with a fixed point by application of the transfer principle.

§4. gtgtics and Small Vibrations of an Elastically Suspended Solid
edy

Practical interest attaches to solution of the problem of
equilibrium and vibrations of a solid body suspended in space
with the aid of a certain number of elastic links or springs; it
consists in determination of the forces in the springs when a
given force acts upon the body. The positioning of the springs
may be arbitrary, but it is an indispensable condition that no
displacement of the body be possible without deformation of the

springs, i.e., that the entire system be incapable of moving free-
ly as a mechanism,

For more than six springs, the problem of finding the forces
is statically indeterminate. If, however, we introduce some addi-
tional condition linking the forces in the springs to their elon-
gations (or compressions), the problem may be reduced to a problem
of the statices of a solid body.

Let us take the relation expressed by simple proportionality
between the force in the spring and the change in 1ts length and
assume that the forces in all springs are zero when the body is
in 1ts unloaded position. We shall also assume that the displace-
ments of the body are small.

We define the positions of the spring axes in space by their
Plicker coordinates — the direction cosines of the unit vector 'i

of the axes and the moments of these vectors with respect to the
axes of a certaln rectangular cocrdinate system zys. Let the an-
gles formed by the spring axes with the coordinaste axes be a, Bu 10
and let the coordinates of the points of attachment of the springs
to the body be &, n, & where i i1s the number assigned to the
spring. The unit-vector moments of the spring axes about the coor-
dinate axes will have the expresslons

by = nycos 7, —LscosPy, my= Gycosa;—Ycosy,
g = §; cosfy — nycosay
and, consequently, the Pliicker coordinates of the spring axes
will be
cosay, cosBy, cosys, Ly my, nu. (7.24)

Let us impart to the body a small screw displacement charac-
terized by an arbitrary screw & defined by the coordinates

s P O 0n O O,
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where the first three quantitles are the projections of the body's
angle of rotation onto the coordinate axes and the last three are
the projections, onto the same axes, of the displacement of the
point of the body that coincides with the coordinate origin.

In order to express the force arising in the ith spring as a
result of this displacement, it 1s necessary to find the di=place~-
ment of some point inseparably connected with the body an: Zying
on the spring axis (for example, the point of attachment of the
spring to the body) and to project this displacement onto the
spring axis. We obtaln the elongation or compression of the
spring, and, multiplying this quantity by the rigidity coefficlent
e, of the spring, we find the force Si of the spring. But a

(small) displacement of a point of the body 18 expressed by the
displacement-screw moment with respect to this point, while the
projection of the moment onto a strailght line passing through the
point is the relative moment of the screw and the line. Conse-
quently, for a spring with an axis unit vector 'i’ we shall have

a force for displacement of the body along screw ¢:

St = ¢ moM (D-E)) = _
== s (O cos ay + 8, cos By + S, 0087 + ali + 9y + @an)), (7.25)

We express the projections of the forces & = ES; onto the co-
ordinate axes and their moments with respect to these axes, mul-
tiplying the magnitude of Si successively by each of the six quan-

tities of (7.24), and then, summing the projections and moments
over all springs, we find the six coordinates —P,—P, —P, —L,.
—Ly, —L, of the force screw that compensates this force screw R
:hich is capable of causing displacement of the body along screw

We note that in view of the assumed smallness of the dis-
placement, we draw no distinction between the initial, i.e., the
unloaded position of the body and its final position, i.e., that
which has been reached after the displacement. This assumption is
customary in the structural mechanics of rod systems and in the
theory of small vibrations; moreover, it corresponds to the first-
approximation solution in those cases in which we take into ac-
count the nonlinearity associated with the influence of displace-
ment components of the second and higher negative orders.

Performing the multiplications and summations indicated
above, we obtain the following system of equilibrium equations
for an elastically suspended solid body:

Cuds + Cuady + 1ad; + C19e 4 CLy T C1uPe — Py = 0, )
‘u‘c+¢:ﬁy+‘.‘u+‘aﬂ:+%‘+%"’l-oo
Q51+M'+Mc+¢ﬂn+%+%—Pl'oo
Cuds + cuady + Cads + Cutfe + Cutyt cute —Ls = 0, |
Caads + Coodly + Cuads + €11 + CLWyt G — Ly = 0,
Caads + CoaBy + Cards + Colfs + Costy+ o9 — Lo = 0,

where
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cu=Neccosta, cy=ccos’P, = Nccos*T,)
Ca = Cu = Y ccosa cosB, 1 = Cyy = L CCOSACOST,
u = cu = Jjccosal,

€1y = Cga == D1CCOSQM, €4 = Cgy == 2 € COS 2N,
Cu= cam NccosPl, cy=cp = Decospm,

€ = Ca = Jccospn, : (7.27)
a0 = Cia = D3ccosl, o= 4y = JjccOSTM,
Coe = Ceg = J)cCOS TN, .
Cu = ch- Cog = 2"’- Cee = 2""’-

Coo =Coa = D1CiM, Coq=cqy = X)cin,

Cos ™= Cog == Zm

In Formulas (7.27), the summation is extended over all
springs; the index 7 has been omitted.

Thus, solution of the static problem reduces to determina-

tion of the coordinates of an unknown displacement screw & from

t(he %ven coordinates of a force screw R by equation system
7.206).

Equations (7.26) can be expressed in binor form as follows:

ot ocu an+ocs ot oculle,

cutoce cutec ontuculle, |4
utucy mtoca onteculle,
tuto ntoem uteolls,] |P,+eol,
+lntom cutece cwtecnlls,| |7, +0t, |0 (7.28)
aton ntom mtualld,| [P, +el,
or, introducing the short notation (C) for the elasticity binor,
(C)YD = (C,C*)p+03) =Co+C'3 = R. (7.29)

It follows from the linearity of the operator (C) that 1if
two states

CO, =R, C)y=R,

are given, then the state corresponding to linear combination of
displacements ®, and ®, will be characterized by the equality

(CYA®, + p®) = AR, + MR

from which it follows that the linear combination of the force
screws acting on the body corresponds to the linear combination
of the displacement screws. A linear combination of screws with
real multipliers is a screw that lies on the same cylindroid as
the basic screws; if the multipliers of the linear combination
are complex, then the axis of the linear-combination screw de-
scribes a brush, i.e., a set of straight lines intersecting at
right angles with a certain straight line. Both the axis of the
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displacement screw and the axis of the force screw will descrilbe
brushes.

The validity of the following proposition is equally veri-
fied: 1f a body 1is acted upon stacically by a force screw R’ that
causes elastic displacement of the body along a screw @', then on
static action of a force screw R” reciprocal to screw®’, elastic
displacement of the body will occur along a screw @, reciprocal
to screw R'. For the proof, let us consider states 1 and 2, which
correspond to the action of the forces R' and R"; we wrlte the
expression for the works done by the external forces of the 1lst
state on the displacements of the 2nd state and those done by Tthe
external forces of *he 2nd state on displacements of the 1st
state. We have: '

a) for the 1st state, the force screw R', and the displace-
ment screw @', withR' = (C)®’,

b) for the 2nd state, the force screw R” and the displace-
ment screw ©”, with R” = (C)0".

Writing the expression for the work as the moment part of
the screw scalar product and expanding it, we obtaln

wou ([{C)V')-0) = P+ PR+ P+ L +
+ Lty + Lo = cudld; + udds + cudids +
+ uts + cume + s + e + cedpm +
+ cudets + Cu®is + Cutls + Cutits +
+ cudidy +cuddy + cudidy + cuiwidy +
+ cunfy By + oty + bty + cudyty +
+ bty + ety + By + ey +
+ cudids + adyds + codide + cawids +
" ol + oty + by + coudts +
- e+ Gt + Cotyts - ot

The above expression is symmetrical with respect to the indices '’
and ", from which it follows that

wo {{(C) @] - O} = womt {((C) @°)-D'),
or

wou (R'-0) = s (R"-@), ¢7.30)

which is the well-known reciprocity theorem.

If force screw R" is reciprocal to the displacement screw ¢',
then the right member of (7.30? is equal to zero and, consequent-
ly, the left member of (7.30) is also equal to gzero, from which
it follows that the displacement screw ¢" is reciprocal to force
screw R'.

The above enables us to construct a comparatively simple
scheme for determination of screw & from the given force screw RX.
To wit, we impart five displacements to the body along screws
®,®,.....0, each of which is reciprocal to screw R. These screws
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may be: 1) screws @, and ¢®., whose axes intersect the axis of
screw R at right angles and whose parameter is equal to zero (sim-
ple rotations); 2) screws ¢, and #,, whose axes are perpendicular
to the axis of screw R and whose parameter 1is infinity (transla-
tional displacements) and, finally, 3) screw §s, which lies on

the same axis with screw R and has a parameter equal in absolute
magnitude to the parameter of screw R and opposite to it in sign.
This last screw will be reciprocal to R by virtue of the vanish-

ing of Expression (3.12) for a possible coefficient of screws &s
and R. .

To each of the displacement screws listed above, there will
correspond a force screw capable, on application to the body, of '
causing displacement along this s2rew. Let the force screws cor-
responding to the five screw dlsplacements 1isted above be
Rp Rlo-"!Rl'

Now it can be seen on the basis of the above that the screw
¢ reciprocal to screws Ry, Ry ..., R, will be the sought screw of
the displacements due to the action of force screw R.

The entire solution can be carried through using graphoana-
lytical and even purely grephical operations that employ the geo-
metrical interpretation of screws as orthogonal crosses. In es-
sence, this solution supplants the analytical solution of equa-
tion system (7.26).

Let us now examine small vibrations of an elastically sus-
pended solid body due to the action of a force screw R = R,sinif,
where K¢ 1s the amplitude screw.

For this case, it 1s necessary to use the dynamic equation
of the solid body, (7.22), together with the static equation
(7.29).

Let us denote the unknown scraw by §, and the velocity screw
by §. Taking an arbitrary coordinate origin 0, we obtain motors

9 +o8 gnd 9+ el by reduction to point 0. On the basis of Eq.
(7.22), we shall have for ithe fixed coordinate system

3 UNO) = — Ry + Ry sin, (7.31)

where 'upr i3 <he screw of the internal elastic fcrces and is lin-

early expreesible in terms of the displacement screw of the eias-~ .
tically suspended body. On the basis of Bq. (7.29), this screw 1s
expressed uas follows:

Expanding the erxpression in brackets under the time-differen-~
tiation sign in the left member of Eq. (7.31) and substituting
the expression from (7.32) for it, we obtain

N2 +406+(€)0 = R uin.
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Taking tne smallness of the vibration amplitudes into ac-
count and assuming further that the body's 2llipsoid of inertia
is not too prolate, it may be assumed for the first-approximation
solution of the problem corresponding to its linear formulation
that d(T)/d 1is a quantity of the second order of smallness and
that 1t can be di-regarded. In this case, the differential equa-
tion of the body's vibrations will assume the form

(NG + (C)¢ = R = R, sin X, (7.32)

which 1s the differential equation of the "screw" operator and is
equivalent to six scalar differential equations.

Here (f) is the binor of inertia and (€) is the binor of
elasticity.

For an arbitrarily selected coordinate system zys, Eq. (7.33)
has the following form in binor-matrix notation:

ol S—eDy —Si—aby]| ¢,
—Ss — 0Dy oly S — Dy ;, +
Si—eDy —S—eD els %

n —eS o5 ‘,‘I
+H oS o -5}l 1+
—e5 o5 a 5,'

it ocy i acy cutucn ]l
cutoe. mtens outnuli
o teu oo 0 o+ wcm | o0

atecg nd e cntecal]lld
b un ot 0ay mwas
ntuca cnd vt twt ew

+ +

+

.l
RO

R,

oL,
o,la
oL,

. (7.34)

:
8,
P+
’+
’+

Given appropriate seiection of the coordinate system, we can
arrive at a simplified form of either the binor (2) or the binor
(). Let us assume that the body's three principal central axes
of inertia have been taken as the coordinate system; then the in-
ertia binor (2) that appears in the first two terms of the left
member of Eq. (7.34) will assume the simple form

01.00 m 00
0 o 0], 0 = 0]}
0 Ool. OQQ

Assume that we wished to select the coordinate system with a
view to simplifying binor () in Eq. (7.34). In the general case,
if the quantities §,,, and ¢.,. are taken as the coordinates of

the motion and we do not convert to generalized screw coordinates,
the matrices cannot be simplified to any appreciable degree, as
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can be seen from the analysis given below. This analysis makes it
pcasible to oring out the structure of the solid body's "elastic

ouuoe.s *on" and establishh the cases in which one or another sim-
piification is possible.

Let us seek translational-displacement directions of the
bocy with wnich the principal vector of the resultant spring force
is parallel to the displacement. Obviously, this will reduce to
elimination of nondiagonal elements of the matrix

Cu Cis Ciy
Cn Cys Oy |,

€ €3 €3

and we obtain three mutually perpendicular prinecipal directions
of suspension rigldity.

In the general case, th: resultant of the spring forces in
translational dlsplacement of the body will be a screw; if we
take the axes of vthe coordinate system parallel to the three prin-
cipal airections of suspension rigidity, the cocrdinates of the
axes x', y', 3’ of the three corresponding screws will be

ﬂ.=2cen__3»_ ) ;._zccosnm
o roawia’ x " Fcosta
pf _ Letos + __ ZccosPl
b= Tatp t"‘—‘“‘xcwa' (7.35)
E;=Xcaum + o Zecosyl
T ZeemSy * = Zecody

The magnitudes of the vectors and moments of the screws
equivalent to the spring resistance forces in translational dis-

placements of the body by one unit along each of the axes z, y, 2
will have the expressions

Xem Jcoos'a, Ye=0, Z =0,
Ly=Ycmsal, My;=0, N,=0,
X,w=0, Yy=Jccos'p, Z, =0, L,=0,
M, =Yccospm, Nj =0,
Xew0, Y;=0, Zw=ccosr,

" Lym0, M;=0, N=Yccosn.

We can easily satisfy ourselves that for pure rotations of
the body about axes x*, y*, =* that Intersect the pairs of axes
y'a", z's' and 'y’ at right angles, the axes of the resultant

screws of the spring forces will alsc be parallel to the axes of
rotation.

Let the axes of these screws be z", y", s", The magnitudes
of the rrincipal vectors and principal moments of these screws
are determined as follows: on rotations about the axes x*, y* and
£* through a unit angle, the force in the ith spring will be
equal to the relative moments of the unit vsctor of the spring
with the coordinates (7.24) and the unit vectors of the indicated
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axes of rotation, which have the Plucker coordinates(q,, {,). (g,, L),
(g,, n), 1.e., for the respective axes 1t will

Sie == €o(ly -} c0s 3%, — cos Tn),

Sty = ¢/ (my— cos 2l + cos 1),
Sig == ¢i(ny + cos ai, — cosp, §,).

Multiplying these quantities one by one by cosa;, cosf,, cOs vy, /,
m, n and summing over all springs, we obtain the projec-
tlons and moments of the spring resultant-force screws in the =xya
coordinate system:

X; = ZSL.COSG‘ = 2’-‘1(:05@1’:-
Y;EESI‘COSB[—O Z. zsum'rl— 0,
'1: = Z‘Sul: = Nedf + L, 2 cicos Bl —

hand (7 0051':' »

N Dol | (7.36)
M= stu Deimy + 3, T ¢ cosPumy —
. — %, Y cicos Tim;,

Nz = DSum = el + Cyzclcosﬂ_lnl—

— %, Neycos iy

and so forth, and then we find the coordlnates of the axes of
these zcrews:

. zan+c,zcmam n,tcoos'm )
L= Zecosal
. Zdn-l»(,zceosﬂn—q,Zcemm
= Zcocsal ’
. anll—t,zccosa!-{-;,z“osxl
= Lecosfm 4
Tewn—¢ Ze . N (7.37)
. —QgZccosan £ Becosyn
= Zecos fim '
. !dn-.-q,tcm:l—&,xceosﬂl
= Lccosn
. !m.x—}-n‘!:ccos:m ;,..ceospm
b= “Zecosn * )

The magnitudes of the vectors and moments of all restoring
forces of the springs in rotations of the body about z#*, y*, sa*
through unit angles will be

X;=Zci:osal, Ye=0, 2. =0,

Ly= el + 8y Decospl —, Decosyl, My=Np=0,
Xy=0, Y,=Xccospm, Zj=0, L,—O
M,=Ecm’-—t.2ccosam t Yecosyn, N,-aO
X;=0, Y,=0, Z.-Eccos‘rn. Ly =M, =0,

. Ni= Yient 4+ v, Necosan —, Necos .
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The axes of these screws are parallel to the axes z, y, 3,
and thelr positions are determined by Formulas (7.37).

Thus, unit translational displacements of the body along
tnree mutually perpendicular directions and unit rotations of the
body about three given axes parallel to them result in a system

of sir screws (X', '), (Y%, M'),

LI (2', N') and (X", L"), (Y", M"),
- __ (2", N") of the resultant forces in
V".‘C' the springs. In the general case, the
"./ i : y axes of these screws 4o not intersect.
2 iy ' The positions of the axes are shown
- ,f:___J_‘ /;: schematically in Fig. 39.
T 2 |z H
1";’?} ' Obviously, this system of six
g ! screws characterizes the structure of
| the body's elastic suspension, 1i.e.
LS il the spring system. In particular
.\ ;f. cases, the system may be symmetrical
_______ L4 4 with respect to one of the planes —
7 . In this case the axes of two of the
-y G screws intersect and the parameters

of these screws are equal to zero; for
a system having two planes of sym-
Fig. 39 metry, two screw axes intersect a

third; a quasi-symmetric system in

which the axes of the above six screws

form two colncldent mutually perpen-
dicular sets of three, with the parameters of these screws non-
zero, is a possibility. In the latter case, the suspenslon has a
"center" of elasticity, and the axes of the screws are the prin-
cipal axes of elasticity.

From examination of the diagram of Fig. 39, we may conclude
that in the general case, the equation system does not decompose
into independent equations if translational displacements and ro-
tations of the body with respect to the individual axes are taken
as the sought coordinates. This 1is possible only in a particular
case — 1n the presence of a center of elasticlity and for coincl-
dence of the principal central axes of inertia of the body with
the principal axes of elasticlty.

The problem of vibrations of an ~2lastically suspended body
consists in determination of the displacement screw ¢ from a given
force screw R. This problem presents no fundamental difficulty,
and we shall not dwell on its analytical solutlon. Interest does
attach to certain properties of the elastically suspended body
system under consideration and to geometrical interpretation of
its vibrations — the positions of the axes of the displacement
screws as functions of the axes of the force screws acting on the
system. '

In the event that the principal central axes of inertla of
the body are taken as the coordinate axes, the system of six dif-
ferential equations equivalent to the binor equation (7.33), writ-
ten in vector form after separation of the moment from the prin-
cipal part, will be

- 146 -




m‘+c,a+c,9=p=p,,smu.} (7.38)
Te+C3+ Cp=L =L sini\L,
where

m 00 Iy 00 €11 €1a Cys
M={0 m0f, T=10 I, 0], C,= € € Oy,

0 Om 0 o0 ,; Cyy C33 Csy

l €4 S5 Cre Ca €y Cof €43 Cis Cae

Camjcy o ty), Cy= Cea Csy fu‘ v Ca=]ey e el

Cs4 Css Cs Ce3 Cos Cod ’ Cet Ces Cos

For Py=L,=0 , we have natural vibrations of the body. Since
the system has six degrees of freedom, there exists a total of
six natural frequencles Aw, to each of which there corresponds a

"natural screw" o™ = @®sinAf, where @ 1s an amplitude screw with
the coordinates - ;

o o o, 8, o, o, (7.39) "

the first three coordinates are the coordinates of 1its principal
vector, and the last three are the coordinates of the principal
moment with respect to the coordinate origin. To this natural
screw corresponds a force screw equivalent to the system of all
elementary inertial forces of a body vibrating along the natural
screw. The coordinates of the force screw are expressed as fol-
lows:

— A, — Ao, —Atma™ Yy &(I"»). (7.40)
—ng_mwﬁ '
where the first three coordinates are the coordinates of the prin-
cipal vector of all forces, and the last three are the coordi-
nates of the principal moment of all forces with respect to the
coordinate orlgin.

Since the orthogonality condition N
LMo + 1,gPel 41 Mot 4 maMel” 4 =
+ maPe" + m8 = 0 (7.41)

applies between the coordinates of the two natural screws corres-

ponding to the natural frequencies A(u) and A(“), and this condi-
tion will be equivalent to the condition of reciprocity of the
inertial force screw corresponding to the uth vibration mode to
the kinematic screw correspondingzto the vti mode if both sides

of (7.41) are multiplied by -A(“ , We conclude from this that
the screw equivalent to the system of all elementary inertial
forces in vibrations of the body along one of the six natural
screws 1s reciprocal to all of the five remaining natural screws.

Wt T E,

R

Relationships similar to those between the external-force
and displacement screws for static action of external forces ap-
ply for the external-force and displacement screws of a vibrating
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body.

, Let a body be acted upon by an external force screw R' =
= RysinAf, and let the displacement screw be® =,sinM, where R, @,
are amplitude screws. It can be shown that for an external force
screw R” = R,sinA, reciprocal to ¢', the displacement screw @"
will be reclprocal to screw R’.

In fact, we may write the following relationship for the
screw coordinates on the basis of the reciprocity theorem:

(P + P8y, + P + L + Ly + Ligs) —
— A (mB,3; + md,B, + md.S; + Lpcvs + Lmywy + Lgwps) =
= (P8; + Pdy + P8 + Liwe + Lywy + Lige) —
— AP (mB0; + mdB, + mbB; + Lipat +
| + 189 + L.9:9:). (7.42)

The first terms in the parentheses in the left and right mem-
bers of Equality (7.42) are the relative moments of the external
force screw and the displacement screw of the solid body; the sec-
ond terms are the relative moments of the 1lnertial-forces screw
(time derivative of the kinematic screw) and the displacement
screw. Tr2se relative moments are expressions for the displacement
work of the forces, with the left member of the equallity express-
ing the work done by the first-state forces on displacements of
the second state, and the second expressing the work done by the
second-state forces on the displacements of the first state.

Since the work of the inertial forces in the right and left
members 1s the same for a given frequency A, the work of the ex-
ternal force screw of the first state on the displacement screw
of the second state 1s equal to the work of the external force
screw of the second state on the dlsplacement screw of the first
state, 1.e.,

MoM (R’ - @*') = mou (R - D).

But the second work 1s zero, since by hypothesis screw R” is re-
ciprocal to screw #”, from which it follows that

moM (R'-®") = 0, (7.43)
i.e., that screw #” is reciprocal to screw R’,

The property demonstrated above is perfectly identical with
the property of the system under static action of an external-
force screw, given equal frequencies of forced vibrations in the
first and second states. On the basis of this property, we can
find the amplitude screw of the body's displacements for a given
amplitude screw of the external forces, using the same scheme us
was described in our analysis of the statics of an elastically
suspended solid body (pages 141-142).

If screw R represents a linear combination

R =)\R, +pR, (7.44)
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with va: .ng real parameters X and u, then 1its axis describes a
ruleu s'.rtace that constantly intersects a certaln straight line,
the axis of the surface, as already discussed. The displacement
screw ¢ of the so0lld body will also describe a surface

0=l.0;+il¢.. (7-“5)

where ®; and @, are displacement screws corresponding to separate
actions of R; and R,. If the axis of surface (7.45) coincides with
the axis of a spring, the force in this spring on variation ac-
cording to (7.44) will be zero. The following problem can be
posed: find a combination of screws of the type [7.U44) (for exam-
ple, this might be a rotating eccentric) in which fcrces will not
arise in a given spring. Indeed, let ¢, and &, be any two dis-
placement screws of the body whose axes Intersect the axis of the
glven spring at right angles. Constructing the two force screws

Ry and R; — the resultant forces in the springs — we obtain an
axis — the shortest line between the latter screws, which will be
intersected by any linear combination of these screws which

causes a displacement along the screw — the linear combination of
¢, and ¢, — that will not give rise to forces in the given springz.
We note that the parameters of screws &; and ®; can be desigrated
arbitrarily, and that this enables us to select the most rational
comblnation of force screws.

N
/i
? ¥ , ¥
4
J
l'* A/ )
7 [ ]
445 ;
1. ’
! y/
)
& »
Pig. 40

In conclusion, let us consider an example of three-dimen-
sional system (Fig. 40). In this system, the elastic su-pension
has three principal axes; the coefficient matrix of Eqs. (7.26)
has the following structure:

tn 0 0 00O

0 ¢y 0 0 ¢ O

0 0 c 0 0 oy (7.46)
ca 0 0 ¢ 0 OF

0 ¢ 0 0 s O

0 0 ¢ 0 0 ¢

The reduced coefficients are the squares of the partial fre-
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quencies:
B =M=2500, 2 2l=3500, 2 = 2] = 4000,

LT | LY L

L7
,-,;:=x:.=1772. n—“:;‘=}.:.=l969. ,-‘,;':=x:.=2474.

The radii of inertia of the body are

Plconsan Py“a. P;=Vm a= locm.

The equation system with Matrix (7.46) breaks up into three
independent pairs of equations with two unknowns, from which the
natural frequencies are found to be

A == 42,28, A9 = 52,10, A = 55,92,
MO = 81,93, A® = 91,01, A® = 104,27.

When the system is acted upon by a harmonic couple whose axis
is inclined equally to the axes =z, y and 3, the axis of the dis-
placement screw is determined from a system of equations with a
nonzero right member. As the frequency A of the forced vibrations

Fig. 41

varies from 0 to #, the axis of the screw describes a ruled sur-
face. The coordinates of the points of intersection ol this sur-
face with the plane zy are determined from the formulas

Y ) S~
BT V= (7.47)

where p is the parameter of the screw corresponding to the gen-
erator in question and is determined by the formula

n.+ +49,

Constructing vectors proportional to ¢Jy, and ®/® at each
point in the horizontal plane uv, we obtain the horlzontal compo-
aents of vectors lying on generators of the surface (screw axes)
whose ends lie in a plane parallel to plane uv,.
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Figure 41 shows curves in the plane uv and in a plane paral=-
lel to it that represent the intersection of the ruled surface
described by the screw axis on variation of the forced-vibration
frequency from 0 to =» with the two horizontal planes. The corres-
ponding vectors of the screw axes indicate the upper and lower
planes. Thus, on the basis of tals drawing we may draw inferences
as to the nature of the surface described by the axis of the dis-
placement screw as the frequency varies.

Manu-

script

Page Transliterated Symbols
No.

142 yup = upr = uprugly = elastic
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