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ABSTRACT

An equation of state suitable for calculating the
A

compression of a melting solid is described. Some elementary

ideas about melting are reviewed and some standard relations

between P and T in the melting region are described. The equa-

tion of state and melting law are combined in a program for

I calculating the Hugoniot through the mixed phase region. Results

are described for lead, which melts at a shock pressure of about

400 kilobars with a Kennedy equation and 700 kilobars for a

Simon equation.

The Eyring theory for equation of state of liquids is

examined for argon, and Hugoniot curves are calculated. Cal-

culations agree with the most dense case of van Thiel and Alder

to 13 kilobars, then depart dramatically from measured values.

The theory of plastic wave propagation in two-dimensions

is discussed and calculations of allowed directions are described.

These will ultimately be of use in discussing the reflection of

robliquely incident waves in an elastic-plastic medium.
Some of the basic physical mechanisms in solid-solid

phase transitions are reviewed and the applicability of thermo-

dynamics to such transitions is brought into quescion. An

elementary model for a non-equilibrium transition in iron is

suggested and p-v calculations are made for several values of

the parameters. It is evident that no conclusions about the

time dependence of the a-e transition can be drawn from second

state shock measurements, although it may be possible to infer

useful information about metastable states.
I ii
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INTRODUCTION

This project, since its inception, has been concerned

with problems of equations of state, constitutive relations,

phase transitions, and wave propagation. These are large prob-

lems, not to be wrapped up and put aside in one-year packages by

Vthe part-time efforts of one man, or of several men. Instead,

once having got started they stick in the mind and bits and

pieces of new understanding or new accomplishments come along,

sometimes in unexpected directions. When it comes time to put

these together in a summary report at the end of a year, their

unity is not always apparent; it is not always clear that they

are parts of a whole which isn't very easy to subdivide. So it

is with the present report; so it is presented in three distinct

parts as it was worked out by three different men working on the

problems and their assistants.

Part A deals quite directly and clearly with the stated

objectives of the contract; it comprises a relatively straight-

forward and tedious calculation of the equilibrium shock Hugoniot

of a melting solid. In the process of doing this calculation the

author has experienced some reveaLing insights into the features

of a total equation of state, and a side excursion into the theory

of equations of state of liquids haas shown that the Eyring Sig-

nificant Structure Theory may be anenable to modifications which

1
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would lead to a total equation of state, when coupled with

suitable data.

Part B is a beginning, an introduction to the quite com-

plex subject of propagation of multiple waves in anelastic,

* yielding materials. It shows even at this beginning stage that

the mechanics is more complicated than we believed when we

th-ught only of plane waves following parallel plane waves. In

its present stage it begins to provide a foundation for under-

standing wave structures in more realistic solid models than have

been heretofore commonly used. It may even eventually provide I
for better interpretation of experiments and Jesigns for experi-

ments.

Part C is something quite different--a summarizing of

physical ideas about the causes of phase transitions and the mech-

anics of their occurrence. The metallurgist has long been aware

that equilibrium thermodynamics plays only a minor role in solid-

solid phase transitions. The thermodynamicist and the physicist

are just beginning to learn this. This summary suggests an

elementary model for martensitic phase transition. A calculation

for iron shows that the quasi-stable p-v relation in the mixed

phase can be varied almost at will by varying the assumed metal-

lurgical parameters.



PART A

SHOCK PROPAGATION AND MELTINu

G. E. Duvall

I. Melting Phase Boundaries in the P-V Plane

In Fig. 1, let OCFGBJ be the coexistence region for

solid and liquid; Ti is the solid phase and 92 is liquid.

Suppose ABCD to be the Hugoniot. We wish to determine first the

phase boundaries GBJ and FCO in terms of known quantities.

The transition is first order, and at equilibrium the

Clausius-Clapeyron equation obtains:

dP/dT =aS/AV = aH/TaV = f(P) (1.1)

AV = V2 (PT) - VI(P,T) (1.2)

The rate of charige of entropy with temperature on the phase

boundary JBG is

d31 /dT = (Cpl/T) - (6v/T)pl(dP/dT)

= Cpl(dP/dT)[(dT/TdP) - (i/Cpl)(6V/6T)pl j  (1.3)

where subscript "pl" denotes a quantity evaluated at constant

pressure, in phase 1, on the phase boundary GBJ.

We assume that Cpl > 0 and (tV/6T)pl > 0 . Then if

dP/dT < 0 in the mixed phase region, R, it follows that

d' 1/dT > 0

3
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iI If d?/dT >0 the s ogntof

f 0. sign dSl/dT depends upon the magnitude

of dP/dT.

dT/dP > T(BV/BT)piC

ddPdSl/dT > 0

IIdT/dP < T(aV/aT)pl/Cp

~dSl/dT < 0

We way summarize these relations as in Table I. defining three

distinct types of phase transitions.

Table I

Classification of Phase Transitions
A = VL-Vs = V2 -V > 0

Type of dSl/dT dP/dT LS

Transition 1

I >0 <0 <0

II <0 >0 >0

III > 0 > 0 > 0

In terms of observables at the melting point, the defining

conditions are

dP/dT < 0 Type I

dP/dT > 0; AVm/AHm < (V/aT)pl/Cpl Type II

dP/dT > 0; AV /LH > (Wv/C)/c Type III
m m pi pi
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where AVm = - VsoI = volume expansion on melting

AH latent heat of melting.

In this way melting transitions for which AV > 0 are

divided into three exhaustive categories. The Metals Reference

Handbook shows that Type III prevails among the metals (Table II).

Of these three categories, II and III may be considered normal,

i.e., S increases on melting.

The relative slopes of isotherm, adiabat, and phase

boundary may be found as follows:

In the solid phase,

(6V/P)sI = (bV/aP)TI + (aV/6T)pI (aT/aP)sI (1.4)

Also, the slope of the phase boundary may be written as

dVl/dP = ( V/SP)TI + (aV/aT)pI (dT/dP) (1.5)

For transitions of Type III:

(BT/bP)sI = T(aV/6T)pI/Cpl < dT/dP (1.6)

if C and (aV/T) are both positive.
pl p

Substitution of this inequality into Eq. (1.5) and comparing with

Eq. (1.4) yields the result

dVl1/dP > (aV/bP) sI (1.7)

Adiabats in the solid phase exit from the coexistence region

with neg-Live slope and increasing pressure.

A closely related treatment has recently apno A 4 s=

literature. See Ref. 1. However, the author assigns lead to Type II
instead or Type III as a result of numerical error.
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The three types of transition can also be characterized

in terms of the relative slopes of isotherms, adiabats and the

cylinder defining the mixed phase region in P-V-T space. First

construct the P-V-T surface for the solid, extending it to

arbitrary T in a metastable state. Suppose the mixed phase

cylinder to be degenerate, i.e., a Diane, in order to simplify

the description. The plane always lies parallel to the V-axis.

When it is also perpendicular to the T-axis, its intersection

with the P-V-T surface of the solid, i.e. the phase boundary,

coincides with an isotherm of the solid. This is the case

dT/dP = 0.

If the plane inclines toward smaller T as P increases,

dT/dP < 0 and the transition is of Type I. If it inclines

toward larger T, it describes first Type II in which the phase

boundary splits the isotherms and adiabats and then Type III in

which both isotherms and adiabats issue from the phase boundary

with increasing P. These three cases are illustrated in

Figs. 2 and 3.

i=

?I



'4 8

Isotherms

Phase Boundary

I Adiabat

'I Phase

Fig. 2

Phase Boundary for Type 31 Melting



9

Adiabat

Isotherms

Phase Boundary

P

V (a)

I/
Isotherm

Liquid 
,

S 
'Mixed

Phase Adiabat
Solid

T (b)
Fig.3

Phase Boundary for Type M Melting

(a) P-V Plane
(b) S-T Plane

.-



i10
II. Adiabats in the Mixed Phase Region

Adiabats in the mixed phase region are shown in the

P-V plane in Fig. 4. The entropy at point C is:

Sc = SA + J (dSl/dP)dP + xAS (2.1)
CA I

where

x = (V-Vl)/(V2-VI) = fraction of mass in phase 2
at point C (2.2)

AS= S(B') - S(B) (2.3)

V = V(C), V2  = V(B'), V1  = V(B)

Differentiating Eq. (2.1) yields

(dSl/dP) + (AS/AV)((aV/aP)sM - (dVl/dP))- .3

+ (V-VI) d(AS/AV)/dP = 0 (2.4)

where (aPV/P)sM = adiabatic derivative in the mixed phase

region, R. Neglecting the last term in Eq. (2.4) yields an

expression for the adiabat

(bV/6P)sM = (dVi/dP) - (dSl/dP)(dT/dP)

= (aV/P)Tl + 2 (aV/aT)pI(dT/dP) - CpI(dT/dP) 2/T (2.5)

The discontinuity in the slope of the adiabat is

- (V/P)smi = [(TICpl1, ( v1/T)P - (Cpl/T)

(dT/dP)2 > 0 ; (2.6)
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i.e., the adiabat is always discontinuous at the phase boundary

and the sign of the discontinuity is such that I

BP/BV 'Si> i aP/ V 'SMI . (2.7) 1

III. Construction of the Hugoniot

We suppose the material to be shocked from a point in

the solid state to a final state which may lie in the solid, in

the mixed phase region, or in the liquid state. It is not

known in advance whether the final state is reached through

single or multiple shocks, consequently it is most appropriate

to construct the Hugoniot incrementally, examining at each step

to determine whether or not a new shock is initiated.

A. Solid Phase Hugoniot

The differential equation of the Hugoniot curve for an

equation of state of the form of Eq. (4.1) in a silngle phase is (1)*

dP/dV = [(6P/V)s + (r/2v)(P - Po)]/[l - (F/2V)(Vo2 - V) (3.1)

where (Po' Vo2) is the initial state and r is the Gr\u'neisen

ratio. We now consider whether or not a single, stable shock

to pressure P1 will also be stable to PI + 6P . Since a

single shock from P0 to P is assumed to be stable, the Rayleigh
0A

line connecting (Po' Vo) with (PI, VI) intersects the Hugoniot

curve only at those two points;

*Numbers in parentheses reference to references on

pp. 39-40.

"1
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then

- dP/dV)RHP (pI-P) /(V0 o2-VI) (3.2)

Here P denotes the slope on the lower side of the point1
PI, V1  if the Hugoniot is discontinuous there. If the point

P, + 6P1  is also to be attained through a single shock,

Condition (3.2) must hold on the upper side of P,. denoted
I.-

by Pi

*i =  - dP/dV)RHP+ (Pi-Po)/(Vo2-Vl) (3.3)

Substitution of Eq. (3.1.) into (3.3) yields the condition for

stability:

a/lU) - I(Vo-VI)/2V1 j / Li- (r 1/2V 1 )(Vo 2 -VI) J  1 (3.4)

where

2 2
a1 -- 1  (,P/,V)S I+

(U 1 -Ul)2 = Vl 2 (PI-Po)/(vo 2-vl)

If £(vo:Fvl)/2V 1 < 1 the stability condition further reduces to

a2 /(U-U )  1 . (3.5)
P1

B. Mixed Phase Hugoniot

In Fig. 6, the region ABCD denotes the part of the mixed

phase region through which the Hugoniot passes. F is the inter-

section of the solid phase Hugoniot with the boundary between
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solid and mixed phase. G is a point on the mixed-phase

equilibrium Hugoniot. The enthalpy difference between G and

F can be written
i i J

HG  F  (dH/dP)dF -t.(- (3.6)HG - HF j - ..- VI)/(V2-V I ) (3.6)
F

where dH/dP is the variation of enthalpy along the phase

boundary and AH(P,T) is the enthalpy difference between liquid

and solid at pressure P, temperature T:

f% V 2-w Vw 1 ItU /4. H - HI1 (3.7)
= '(2 -"I ' i = H2~-

The Clausius-Clapeyron equation has been used to obtain this

result. Substitution of Eq. (3.7) into (3.6) yields the result

HG - HF = Hj - HF + T(V-VI)dP/dT . (3.8)

From the Rankine-Hugoniot relation we have, for a single shock

from 0 to G:

HG - Ho2 = (PPo)(Vo2+V)/2 (3.9)

Combining Eqs. (3.8) and (3.9) yields the result:

(P-Po)(Vo2+V)/2 = Hj + T(V-VI)(dP/dT) - Ho2  (3.10)

Differentiate Eq. (3.10) to obtain:

dF/dV = ((TdP/dT) - (P-Po)/2)/(A' + B') (3.11)

A' = (V 2-V)/2 - T(V-VI)(dT/dP)(d 2P/dT2) (3.12)

B' = VI - dHl/dP + T dVl/dT (3.13)
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V 1 -H dI /dF T(BV I/BT)p C Cp, dT/dP (3.14)

where subscript "1" denotes quantities evaluated in the solid

phase at the phase boundary. Two further relations are

required:

TdO1 /dT =T(6V /bT)p + T@BVl/ P)T(dP/dT) (3.15)

Cl V,+ T(IPI/BT)V @BV1 /6T)p (3.16)

Substitution of Eqs. (3.14)-(3.16) into(3.1- yields:

B' 2f~V I /T)p - CV dT/dP - T@BPi/bT)V (BVI6T)p (dT/dP)

(3.17)

Combining this with Eq. (3.12) yields

A' + B' B -A

where

B 2T(BV /bT)p + T(6V, /aP)T (dP/dT) + (Vo2-V) /2 (3.18)

A (C 1 + T(dP /dT)v (dV/bT)~ + T(v-V )(d P/dT ))(dT/dP)

Then 
(3.19)

dP/dV =((P-P 0)/2 - TdP/dT)/(A-B) (3.20)

Equation (3.23) is equivalent to one given by V. D. Urlin and

A. A. Ivanov in Ref. 2.

C. Liquid Phase

At the boundary between mixed phase and liquid phase

a test must be made according to Eq. (3.3) to determine whetherI

or not a single shock into the liquid phase is stable. 14f it

is, the integration is continued to higher values of P, using
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the generalized form of Eq. (3.1):

dP/dV ((6P/aV) S + (P-Po)(6P/aT)/2CV')

(i - (Vo2-V)(BP/aT)v/2CV) . (3.21)

IV. Equations of State

A. Solid Phase

Calculation of the Hugoniot curve through the solid and

mixed phases can be accomplished using only the equation of

state of the solid. Since both the Hugoniot and the phase

boundary must be calculated in the P-V plane, the equation of

state must be comple te and internally consistent. For simplicity

we choose a Mie-Gr~ineisen equation with Debye variations of

thermal energy. As we shall see, this produces some disagreement

with measurements, but for the present we ignore these for the

sake of theoretical consistency. The Mie-Gr~neisen equation is

P(V,E) = PK(V) + (r/v) (E(V,T) - EK(V)) (4.1)

where PK(V) and EK(V) are pressure and internal energy

on the 00K isotherm, and r is the Gr'uneisen parameter:

r(V) = (V/CV) (P/T)v (4.2)

where CV is specific heat at constant volume. Following

Rice, McQueen and Walsh (13) we write:

2 + 3
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r (V) =a + a 12 4 1 (4.,A)

V (0 /v) - 1 (P/P) -1

V0  specific volume at P O

The difference E - E K Eth is the thermal energy:

Eth =3RT D(e/T) (4.5)

where 6 is the Debye temperature, R is the gas constant

divided by the molecular weight, and D(e IT) is the DebyeI

D(OIT) =(3/(eIT)
3 ),' (x3 (exp(x) - I))dx (4.6)

0

For small values of O/T, D can be expanded in series:

D -. 375 (eI'r) + .05 (eIT)2  (4.7)

This is accurate to .3%~ for e/T < .3

The Debye temperature is related to the Griineisen

parameter by the equation

d~nG/d~nV = r .(4.8)

Using Eq. (4.4) for £,this integrates to

e 0 exp((a0-a 1+a 2-a3) ln(,p.+l)

+ (a -a +a )4~i + (a2-a ) 2 /2

+ a 3 3/3) (4.9)

3_ _ __
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The specific heat is defined as

CV= (a Eth/BT)V (4.10)

3R(4D - 3(-/T)/(exp(e/T) 1)) (4.11)

3R(l - .05(e!T) 2 ) (4.12)

In calculating the Hugoniot, we shall need some

thermodynamic coefficients which can be calculated from the

above equations:

d(F/V)/dV = - (Vo/V3 )(a1 +2a2 + 3a3i 2) - F/V 2  (4.13)

(6 Eth/BV)T= 3R D' db/dV (4.14)

3R'(-.375 + .(B/T))/V (4.15)

D'= dD/d(G/T) (4.16)

dPK/dV = (-Vo/V 2 )(b 1 + 2b2P + 3b 3 P2 ) (4.17)

= dPK/dV + Eth d(r/V)/dV + (r/V)(aEth/aV)T (4.18)

(WaV/T)p = - fCV(bV/BP)T/V (4.19)

S = ( T - 2 CT/V2  (4.20)

B. Liquid Phase

One of the most promising theories of the liquid state

for computational purposes is Henry Eyring's Significant Structure

Theory (Ref. 9). The essence of the theory is that a liquid

consists of a solid containing holes of atomic dimensions, and

l - 4

;*1
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that the holes behave like the molecules of an ideal gas. In

order to test it at high pre.,cc s. isotherms, adiabats and

Hugoniot curves for argon have been calculated from it and the

last compared with measured values reported in the literature

(Ref. 12). The two agree remarkably well at low pressures,

but the theory fails to properly account for the energy of cold

compresskon and the computation fails at higher pressures (> 12

Kbars for the highest initial density). These computations are

reported in Appendix B.

Various authors have used simplified versions to describe

liquids at high pressures. In the present application the

theory is used in its simplest form:

P(Vj,T) = PK(Vs) + (Fs/Vs) Eths(Vs) + nhkT/V, (4.21)

E2  = Es + Eh (4.22)

Eh = (3/2)nhkT (4.23)

nh = VN(V (4.24)

where subscripts "s," "h," "," denote solid, holes, and liquid

respectively; N is Avogadro's number, M is molecular weight

and k is Boltzmann's constant. Substituting Eq. (4.24) into

(4.21) yields

P(Vj,T) = Pk(Vs) + (Fs/V s ) Eths(Vs) + RT(VZ-Vs)/MVVs (4.25)

Equation (4.25) does not contain an interaction term between

holes and molecules, though that is important in Eyring's theory.
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However it may be less important at high pressure than proper

treatment of the solid compression.

The above equations are supplemented by an expression

for AVm , the change of volume on melting at constant

pressure:

AVm = AH(dT/dP)/Tm = VI-V s  (4.26)

With these equations the Hugoniot can be continued into the

liquid region.

V. Melting Equations

Attempts to predict melting parameters from atomic

theories have been many and varied. The earliest one normally

noted is that of Lindemann in 1910 (Ref. 4). Assuming an

Einstein model of a solid with single vibration frequency f,

suppose that the amplitude of vibration increases with temperature,

and that when the amplitude reaches a critical fraction of the

interatomic distance, melting occurs. Equating the energy of

vibration to the thermal energy of the crystal leads to an

equation of the form

3R T = C f2 V2 / 3 M (5.1)

where Tm  = melting temperature, V. = molar volume at Tm,

M is molecular weight, and C is a constant. By writing

24n f = k/m , where m is atomic mass, and setting the energy

of an oscillator equal to k(r - r0) 2/2 , where r - r0 is the
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deviation of interatomic distance from equilibrium, we obtain

e = k(r - ro )2/2

2 2k = d e/dr .

Identify the oscillator energy, e, with the molar energy,

of cold compression by the relation

ek 3Ne = k(V)

Then Eq. (5.1) can be converted to the following relation:

RT = 3M& 2 V2 (d 2E/dV2 )/2 (5.2)

= A V2 d2 Ek/dV2  (5.3)

where V specific volume as in Section 4, Ek = specific

internal energy, a = fractiov of interatomic distance at which

melting occurs, and M is molecular weight. Eq. (5.3) is the

form given by Urlin and Ivanov in Reference 2. They also

propose an alternative melting law in the form

L Vm/T m V m  = Ra (5.4)

where L = latent heat of fusion, Vm = specific volume at

which melting occurs, T. = melting temperature, AVm is volume

change on melting, and Ra is a constant. This is a modifica-

tion of the Lindemann formula which can be seen as follows:

d2E /dV2  - (-dPk/dV)p
k =P=Q

b 1 /VI
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where the last expression is obtained from Eq. (4.17).

Substituting this into Eq. (5.3) yields

RT = AV2bl/V °

Differentiate with respect to P to obtain

RdT/dP = 2AV(dV/dP)bI/Vo

or

dP/dT = L/TAVm

= RVo(dP/dV)/2AblV (5.5)

which is of the form Eq. (5.4) with dP/dV assumed constant.

One of the most commonly used forms for the melting

curve is Simon's equation (Ref. 5):

P- Pm + a = a(T/Tm)C (5.6)

where Pm and Tm represent one point on the melting curve and

C and a are constants determined from the relations

aC = T_(dP/dT)Tm (5.7)

and

a (dEk/dV)T=0,p= 0  (5.8)

according to Simon. Later work by Salter, using the Mie-

Gri*neisen equation of state, identifies C as

C = (6rs+1)/(6fs-2) (5.9)

where rs is the Grineisen parameter of Eq. (4.4).

,
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A melting relation recently proposed by G. C. Kennedy

(Ref 6) relates volume on the melting curve to temperature:

Tm = T(l + Ck AV/V o) (5.10)

0where Tm is melting temperature at volume V and AV =

(Vo-Vm). Ross and Alder (Ref. 7) have criticized this as being

of lower validity than Lindemann's law and of giving too low

values of Tm at high compressions. Gilvarry (Ref. 8) suggests

that it is the first term in the expansion of the formula

Tm/Tm = (Vo/Vm) 2(r 0-1/3) (5.11)

where F is the Grbneisen parameter at V I
At present it appears very much as if there is as much

justification for picking one rule as another, in the absence

of experimental data. In the calculations to be reported later

we use the Simon equation and the Kennedy equation.

VI. Calculation of the Hugoniot

The computing process is illustrated in Fig. 7. Volume

and temperature are assumed to be known on the phase boundary

and on the Hugoniot at pressure P. P is increased to P + AP

and new values of temperature are calculated from Eqs. (5.6)

and (4.5). This allows calculation of the coefficients dV/dP

from Eqs. (1.5) and (3.1). Subscripts 1 and 2 refer to values

on the solid-mixed phase boundary and the Hugoniot, respectively.

Values of VI and V2 are then determined from the relations
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of the Equilibrium Hugoniot
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VI(P + AP) = VI(P) + (.5)((dVl/dP)p+ap + (dVl/dP)p)AP (6.1)

V2 (P + Ap) = V2 (P) + .5((dV2/dP)P+AP + (dV2/dP)e)AP (6.2)

The equations are iterated until VI(P + aP) and V2 (P + AP)

do not change, then the process is repeated.

After each set of values (Vl, V2 ) has been calculated,

a test is made to determine whether or not an intersection

between VI(P) and V2 (P) has occured. If it has, the

Hugoniot Eq. (3.1) is replaced by Eq. (3.20) for the mixed

phase and the process continues, testing at each step to see if

the Hugoniot has entered the liquid phase. When it does, Eq. (3.21)

is used again with the equations of Section IVB for the equation

of state.

A flow chart for the computing program is shown in

Fig. 8; definition of symbols and a program listing are given

in Appendix A.

The output of the program is illustrated in Figs. 9-13

and in Table 3 for lead. Fig. 9 shows the total Hugoniot to

one megabar pressure using the Simon Equation. It enters the

mixed phase region from the solid at about .645 megabars and

leaves at about .675. Inspection of the curve shows that a

single shock will be stable at all pressures (elastic waves are

ignored). This is verified by the slopes given in Table 3.

The narrow mixed phase region and the small kink it produces

in the Hugoniot curve suggest also that melting will have a

small effect on wave propagation, even if it occurs in shock.
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This remains to be verified by incorporation of the model into

a one-D wave program.

Table III

Slopes of Hugoniots and Rayleigh Lines
at Melting Phase Boundaries

IdP/dVlHugoniot I(P-Po)!(Vo-V)

Megabar g/cc Megabar cc/g

P, Solid Liquid
Megabars Solid Mixed Phase Liquid Boundary Boundary

•.645* 67.4 107.2 ... 21.9 ...
.675* ... 114.1 52.6 ... 22.7

• 39.0 37.2 ... 16.0 ...

.428t ... 39.4 42.4 ... 16.8

*Simon Equation (5.6) tKennedy Equation (5.10)

Figure 10 shows the Hugoniot in the region of mixed

phase in more detail, again for the Simon Equation.

Figure 11 shows temperatures on the melting curve and

on the Hugoniot for the Simon Equation. In region A, where

the Hugoniot is passing through the mixed phase, the two

curves should coincide. That they do not reflects imperfections

in the equation of state.

Flaws in the equation of state are revealed when

measured specific volume of the solid at melting, Vm , is

found to disagree with that calculated from the equation

Vol = Vo2 + l(v/6T)P=PodT , (6.1)
To2

-i
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rwhere To2  is room temperature; Vo2  is specific volume at

room temperature and pressure P0; Tol is melting temperature

at Po; and Vol is specific volume at Po, To, For this

reason a procedure for calculating Vol is incorporated in

the program (Appendix A). Even with this correction, a slight

difference between TIN and T2N occurs, as shown in Fig. ii.

The difficulty probably arises from a minor inconsistency between

the equations for r and Pk

Parameters and material constants used in the calcula-

tions for lead are listed in Appendix A.

Figures 12, 13 and 14 display the results when the Simon

Equation i3 replaced by the Kennedy Equation. The temperature

and pressure at which the Hugoniot enter the melting region are

about half the values obtained with the Simon Equation. These

tremendous differences represent the state of our ignorance about

the melting process at high pressures, and unless detection of

melting in shock is possible, that state of affairs is very

likely to persist.

I

ii



28

Fig. 8.--Flow Chart for Calculation of Hugoniot
when Melting Occurs

Transfer Operation Transfer Remarks
from to

ta Read constants See Table Al for
symbols and defini-T tions.

Set initial values
of parameters

Increment P P: P + DELP

Compute VIN Subroutine PB(C0EFIN,
P, VIN, TIN)

Compute V2N Sub. RH2 (COEF2N, P,
_V2N, T2N)

S Run Vln is specific vol-
ume on the solid-mixed

yes phase boundary. V2n
is specific volume on

gPage 2 the Hugoniot curve in
the solid. V3n is
specific volume on the
Hugoniot curve in the
mixed phase region.
V4n is specific volume
on the mixed phase--
liquid boundary. V~n
is specific volume on
the Hugoniot liquid
phase. T is tempera-ture, OK; P is pressure

in megabars.
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Fig. 8.-Cntinued

Transfer Operaionu~ Transfr Remarks

from to

.......... Values at intersection

Compute intersection are denoted VI -Vil

of VIN(P) and V2N(P) PI P4, TI =Ti

Compute P at inter-
section and use for
new starting value

Compute slope of' Sb SL@PEB = IP16V21
Hugoniot below below incersectio.

K is integer control

K index for calculating
slopes.

Increment P P P+DL

Compute TIN~ dP/d SUB. TEMP(P,TIN,PT)

Compute VIN SUB. PB(VIN,P,C0EFlN,TlN)

Compute V3N, V4N SUB. RH3(V3N,P,COEF3N,V4N)
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Fig. 8 .- ContinuedI

Transfer Operation Transfer Remarksfrom to

Compute slope of

Rayleigh line at
intersection (S) r =SLOPER

and slope of Hugo- ( 0 )/(02-Vi)nitabove inter- S PE[ecion (S H LOE =JP/AV-

if IsrI > ISHI' the3
S S,? e XT intersection is an un-r stable point, a second

computation is terminated.

ofV3NP an V4N (P 1 no~, 1 ~

Clompute PnescinVle at interetin

section and use for P: P12 -new starting value;
P PLi

of Hugoniot below b SOPB I/vI]

HugoniCompue t.S SLPEB AP/6
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Fig. 8.--Continued

Transfer Operation Transfer Remarks

from to

Set V5N, TSN, P,
V4N, T4N to values
at intersection of
Hugoniot with
liquid-mixed phase
boundary

Compute values of
TlN, VIN, (dV/dP)1 ,
V2N, (dV/dP)2 , T2k
at intersect ion to
start integration
in liquid phase

Control index for
K I calculating slopes

LUID
IQUID

Increment P P:= P + DELP

_T

Compute TIN, (dP/dT)lA
VlN, V4N, T4N, V2N, Appropriate subroutines
T2N, V5N, T5N for (see listing).
new P

K ? TEST3

yes6
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Fig. 8 .- Continued

Transfer Operation Transfer Remarksfrom 
to

Sr = SLOPER
Compute S SH at r (P-P 0)N/(v 2-vi2dintersection

c a se3 t9 o b eS A T5

K 24

V5N VN EXI
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APPENDIX A
PROGRAM FOR COMPUTING THE HUGONIOT OF

A MELTING SOLID

Program Name: I.1LT

Language: FORTRAN IV

Constants

Report symbol Equation Program symbol Remarks

P 3.1, 5.6 PO atmospheric pressure,o megabars

P0o  4.4a RHOO density at P0, T = 0°K

RH02 density at P , T = T02

(room tempgrature)

3R 4.5 R3 R = gas constant,
Mb cc/go

specific volume of solid at
Vo Al Vol melting temperature

and P - P

Tl . 'Al T01 melting temperature at
P=P

0

ao,0al,a2 ,a3  4.4 AO,AI,A2,A3

b l 'b 2 , b 3  4.3 BI,B2,B3

e 4.9 TDO

V 4.4a Vo

AP 7.). DELP

a,c 5.6 A,C

Vo2  3.1 V02 sp. vol. on Hugon. at
P =P0

41
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Report symbol Equation Program symbol Remarks

T02 temperature at P0,V02

PSTP pressure at which com-
putation stops

ICONT integer allowing several
data sets to be used in
one run

dT Al DELT increment in temperature
used to calculate VOl
from V02,T01,T02

Parameters In MAIN

A final letter "N" on a parameter symbol indicates a value

at pressure P + AP, an "0" indicates a value at P; e.g., ViN =

Vl at P + AP, Vl0 = Vl at P.

Report symbol Equation Program symbol Remarks

ALG,ALIN Program computed con-
stants used in evalua-
ting TD

ASQ,ACUBE

V1  1.5 VlN,V10 specific volume on solid-
mixed phase boundary

T 1.6, 5.6 TIN,TI0 melting temperature

V 3.1 V2N,V20 specific volume on
solid phase Hugoniot

T 4.5-4.20 T2N,T20 temperature on solid
phase Hugoniot

V 3.18,3.19 V3N,V30 specific volume on mixed
phase Hugoniot

T 3.20 T3N,T30 tempe'eature on mixed
phase Hugoniot

V2  1.2 V4N,V40 specific volume on liquid-
mixed phase boundary
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Report symbol Equation Program symbol Remarks

T4N,T4, same as TIN,TI

V. 4.25 V5N,V50 specific volume onliquid phase Hugoniot

T 4.25 T5N,T50 temperature on liquid
phase Hugoniot

dVI/dP 1.5 COEFI slope of phase boundary

dV/dP 3.2 C0EF2 slope of solid phase
Hugoniot

V Al VX value of V at P P
T = TX (T02<TX5T0I)°

used to calculate V01
from V02,TO1,T02

T Al TX temperature. T02<TX TOI
used in the calculation
of Vol.

TXT TXT = TX-DELT

VXT value of VX at TXT

MU,TDI,X,D,DP
GI,Q1,W,ET,MI, J same as in subroutine PB
ETT,RI,Sl

JC integer used to control
what part of a subroutine
is to be used in a partic-
ular calculation

K controlling integer Used
in main, similar to JC
in operation

-dP/dV 3.1 SLOPEB dP/dV for the Hugoniot
just inside the one phase

-dP/dV 3.20,3.21 SLOPEH dP/dV for the Hugoniot
just inside the next phase

(P-V 3.3 SLOPER slope of the Rayleigh line
from the foot of the
Hugoniot to its intersec-
tion with the phase boun-
dary
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Report s ol Equation Program svmbol Remarks

dV/dP 3.20 C0EF3 slope of mixed phase
Hugoniot

dV/dP 3.21 C0EF5 slope of liquid phase
Hucniot

VI sp. voi, pressure andItemperature at inter-
-PI JsPtion of VI(P) and

TI 2(p)

V12 sp. vol., pressure and
temperature at inter-

P12 1section of V3 (P) and

dP/dT 1. PT Clausius-Clapeyron
coefficient

AV 1.1, 1.2 DELV sp. vol. change on
melting

AH 1.1 LATHT latent heat of melting

Parameters in SUBROUTTNE PB(CEFINP,VIN.,TIN)

Report symbol Equatier Program symbol Remarks

VINN temporary value of VlN
used to test convergence
of iteration

4.4a MU

6 4.9 TDI

T 5.6 Tl

X B/T

dT/dP CC reciprocal of Clausius- ,4

Clapeyron coefficient

D 4.7 D Debye function

D' 4.16 DP
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Report symbol Equation Program symvbol Remarks

r 4.4 GI

C 4.12 CVIV

d(r/v)!V 4.13 Ql

dPk/dV 4.17 W

Eth 4.5 ET

( P/?V)T 4.18 M1

C 4.10-4.12 ETTv

(6Eth/6V)T 4.15 ETV1

(6VIaP)T  .. R

(aV/bT)p 4.19 SI

dVl/dP 1.5 C0I same as C0EFIN

Colo same as C0EFI

Parameters in SUBROUTINE RH2(V,P,CIEF2NT2N)

Report symbol Equation Program symbol Remarks

V V2NN temporary value of V2N
used to test convergence
of iteration

4.49 MU

V 3.1 V same as V2N

r 4.4 G2

6 4.9 TD2

P 4.3 PK0

D 4.7 D

C 4.12 CVv

Eth 4.5 ETH

dPk/dV 4.17 PPK
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P 9 Report symbol Equation Program symbol Remarks

d(r/V)/dV 4.13 Q2

OEth/av)T 4.15 ETV2th T

(aP/aV)T 4.18 M2

° (P/BV) s  4.20 MS2

* dV/dP 3.2 COEF2N

O/T 4.5 X
D' 4.16 DX

Parameters in SUBROUTINE RH3(COEF3N,PV3NV4N)

Report symbol Equation Program symbol Remarks

V3NN temporary value of V3N
used to test convergence
of iteration

TI temperature at P + AP
transferred from SUB-
ROUTINE PB

V1 V.N at P + AP transferred
from Sub. PB

d 2P/dT 2  3.19 PTT

A 3.19 Y1

.5(P )-
0

TdP/dT 3.20 ANUMI

A-B 3.20 DENI

COEF3N same as in MAIN
V 4 N" " " "

COEF30 " " "

j1
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Parareters in SUBROUTINE TEMPl(P)

Repor t symbol Equation Program symbol Remarks

dP/dT 5.6 PT
d2p
d P/dT 5.6 PTT

T 5.6 T T= TIN of the main
program

Values of constants used for lead:

p 0  = 1i.616 ; 3R = 0.1202506 x 10-5

T = 601 K

Vo2  = 0.08818340 ; To 2  = 293°K

a °  = 2.7091 ; a = -2.5282

a2 1.413 ; a3  = 0.0

b I  = 0.54168 ; b2  0.749041 ; b3  = 0.605839

= 96.3

a = 0.06257 c = 1.20436

Constants independent of material:

P = 1.034 x 10 6 megabars

AP = .005 megabars

PST0P = 1 megabar

Computation of Vol

The equation of state used for the solid in Section IVA

is self-consistent but not entirely consistent with all available

measured data. In particular if Vol is taken to be the hand1book

value, T, # T2 at the intersection of VI(P) and V2(P). To
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remedy this, V01 was calculated from the equation

,-~~ 0 T(1

where is the value at the foot of the Hugoniot and T is

the handbook value for melting at P P Handbook and calcu-

lated values of Vo are:

Vol =.091148 cc/g (metal reference hbk)

Vol =.090352 cc/g (Eq. (Al))

Prowram listing

The program listing follows on separate pages.
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//LISTJCBS JC3 (OOti, CC5i0),phCRCMI"SGLEVFEL=I
//JCLIE DC UNI4T=231 1,VCLUME3SER3DLI8O2,OTSPR0LDJSNAIE=SYSI.u;TkL&TY
//STEP EXE~C DGF=LISTCRD
I/SYSLST DO) SYOTtCB(RC=0BKI~dtEFlF
//SYSOO4 CC UNI17=SYSOtA,VL1ESERSCOO.(;"M4E=L[STE-R, X

1/SPA': 3=(CL i),).I(EF=BtLSIZ8,RC=0
-~: I //SY.SROR CI)

f IEF2361 ALL'2C. FOI LISTJO1IS STEP
IEF2371 JOtHLI'S ON 293
IFF2:s7l SYS004 ON 290

I IEF2371 SYSP'CR 0:1 0OC



50

DUVALL PAGE

C THIS PRCGRAM INTEGRATES THE EQUILIBRIUM HUtGONICT P-V CURVE
t, CF A SCLID IN INITIAL STATE T02,P02tupC),V AssumiNd A SINGLE SHOCK

C THE MELTING CURVE ANIP. AT EACH STEP TESTS TO SEE ihHETHER YELTI~j(' CCCURS.
CIF IT DOES# THE SLOPE OF THE H'JGONIOT IN THE MIXED PHASE IS COMPARED

C )4ITH THE SLOPE OF THE RAYLEIGH LINE TO SEE WHETHER OR NCT A SINGLE
C- SHOCK IS STILL STABLE. IF NOT, THE C04PUTATIOl IS TER'4JNATED;
C IF IT IS, THE COMPUTATION IS CONTINUED THROUGHi THE MIXED PHASE REGION
CAND TESTS FOR INTE 'SECTICNJ WITH THE BOUNDARY BETUiEEN THE *41XED PHASE

C ANC THE LIQUID PHASE ARE '4AnE. IF THE INTERSECTICN OCCURS THE STABILITY TEST
* C ~~IS REPEATED AND THE crimplTATTON IS STOPPED IF INT3LT ISIDC 0D

C OTHERWISE IT CONTIM!UES Ith THE LIQUID OHASE. IF THE CURVE RE-ENTERS
C THE MIXED PH-ASE, THE COMPUTATION IS STOPPEn; OTHERWISE IT CONTINUES
C UNfIL PUPSTCP.
C
C TO PUN THE PROGR411, PREPARE DATA ACCORDING TO THE FORMAT IN
C STATEMENT NUMBEDS 1.30 ANC 1011)MMI);
C PO=INITIAL PRESSIJRS-3.034E-06
C RtJGO=OEKSITY AT 0OtZ!-R CFGREES KELVIN
C RF02=DENSITY AT THE F')UT OF THE HUGONIOT
C POLWTxMCLECULAR WEIGi-T OF THE MiATERIAL IN GRAMS

*C T02= TEMPERATURE AT THE :COT OF THE 11UGONIOT
C TCC=CERYF TEMPERATURE Al' Vo~1/RHOO
C AOtAlA2,A3 ARE THE COE. FICIENTS IN THE EQUATI'3N FOR GRUVEISENOS PARAMETER, G
C IPERE G=AC+MUt(Al4ii'J)*(A2,MU4)tcA3)) AND 4U=Vr/V-1.
C 81,020 3 AR - TI-r ZCEFFIC I~iTS IN TI4E EOUATION FOP PRESSUQE ON THE

C ZERO CEGREE IstirH~iw4:
C PK=MU03l'+'4U*(02+MUJ'E3))
C DFLP IS THE INCRE'AENT IN P USED FOR THE INTEGRITION.
C ICONT IS AN INrEGER %HJCH ENABLES THE USEI TU (NPlJT AS MAANY DATA SETS
C AS OESIRFO iN O1NE RUN OF THE PROGRAM.
C ICONTIl OR 2 FOR A CCMPLETE O3R PARTIAL NEW SLT or DATA (Rr:SP.) TO BE READ IN.
C IN THE LAST D)ATA SET ICONTzAN It4TFER OT1HER THAN I OR 2 FOR THE
C FRCGRAM TO TERiMINATE AFTER THE LAST EXECUTION.

C V011 THE SPECIFIC VICLUME OF THC SOLIC AT TClPC IS CAL.CULATED
C IN THE PROGR~AM Sr) THAT TE-IPEPATURE Oil THE MELTING CURVE IS COMPATIBLE
C %hITH THAT ON TPH7 MtJGCNIO7*
C

CD!'MCN AIJAlA 2,43,Bl ,,I33ALGALINASQACURE,vopnnELPR3,V1c,
+V20t,OZ !i2 rTi)TOltT2(1tJCvPTT

CCPM~ON i~'AT1 P,V1N.,T1Nl,CIY!FI'JV2N,4T2N,CCEF2N

-i0P,TTVV

COl'MCN /PR E 5K /P KG
RlEAL LAT1-T,-\'UlAIJ2,P1,2MS2,MUMCLWT
NRITE (6,10)

10 FOPHAT (011 'l' X,'P',19X,'V',19X,$T'13'('V218X,'T2'i
103 RE6D(5, 100) P9,9!10OPRH02,I'0LWTTO1,Tl2,Tfl
100 FCPMAT(E20.7,6Fl0.6)
104 READ(5,101) AH,AI,A2,A3,'31,B2,83,DELP, PSTO;P, ICONT
101 FljRmAT(7FlO.6/2Fl0.6,12)

VO: 1 */RIIcO
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DUV AL ~PAGE

aLGsAC-A1*A2-A3
ALNAl-A24hA3
ASC=(A2-A?)/2.
ACkREzA3/3%
DFlLTO0.5
vX-V0?
TXxT92

96 iU=VC/V"A-1.

xT71/TX

CP-O. 375+O.1*X

C 1=G f PU)

FT=R3*C4TX

jj=-R I ' (;1*LTT/VX

VXT=VX
SI TXT=TX

vx~vY4Sl*DELT
TX =TXfCCI. T
jF(TX.LE.T0l) GC O SE

~.~TI(6,1)ALGvALlftASCACUI3E,V(~,V0
2

3 Fc%1.PAT (I ' ,,E23.7 II-,.LGI,E2O.,7O*ALTN,r-:271,%S)/E?O.7llACUIBL

J=1

C.ALL Tr PfP,Tl.N,P7)

C 1 . ?(V2ti,pr,crER2N,TlN)

ItAS2,CFI Pvfl
4 v t'CV IN

v 2V~ =1 ?N

T 2V= T 2%
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('jUVALL PAGE 3

5 PxP*DtLP
CALL TEM'PIPIT1NPT)
CALL Pe(V1NPtCOEFMtIN)

~ CALL Rt-2(V2NiPtC)F;,NT2N)
WRITE(6,2447)P,TLN#PrVIN, IU),TDhtX1,D',DPG,CV1,Q1,ETi1,oErT,
1 ETV1,RlSlv COEFIN
WRITE16,244S3 0tT2NV2N,MU2,TO2iX2,O2tDPKG~gCVsQ2,SThtM2tET2V2,

I PS29CCEF2NtPKO

4 C TEST- FOR INTER~SECT.ION WITH PHASE 30JUNDARY
C

IF MN~' *LT* VIN~ ) GO TO ',

C
C FIND INTERSEC1bON OF R-H AND PHASE SCUNDARY

V h(V2N*VIO-VIN*V20)/(V2N-V20-VIN+VIO)
PI-P+-CELP*(V1-Vl:N )/I VIN-V1IJ)

T(uT1No T1N-Tfln)*'(Vt-yIN)/(IC V1-V1O)

SLCPEe=0ELP/(V2)-V2N)
lmQITE(6, 102)

102 FiO'iAT('C'I/lI' l,20Xt 'CONTINUE IN MIXED) PHSEI/)

C

p=P(

V3N=-VI
TINxTT
JCu1
CALL TEMPIP,TIM,PT)
CALL PV(V.NtP,C0E'F1NtT1Nl'
CALL PF (3 , j.lF - ,4q
WRTTE(6,?447(filNPTVI,'4U,TD,XlOlDP,1CV,'lETI,ETT
1 ETV1,RISI, COE-1NM
WRITE (6t17) PtTIN,9V IN,CC-F1IN .'OEr-3NtV4N

17 FCPMAT (FZO.7t','E2C?,aTN'fE2C.7,'=V1N'/E2O.7,'=CCEFiNtF2O.7
+, =CU3EF3N' ,E?0.7, '='lANl
K=l
J C"

11 VIO=V1N
30.ZV

V', OV '
TlC=TIN
P- C EL P

C.ALL TE.9P(P1'1.\',fT)
CtLL PPetVlf:vP,CaiEF1.N9T1N)
C.ALL RH3(V3NPtC3EF3-NV4N)5f
WdqITE( 5,2447 )P, Tlih, T, VIN ,'IU1, TOI, XlO,DP, ~1,Cvl, ,CT , 'q, TT,
1 ETVI0lSlo CarSIN

WOITF (6.15) 0tV1IV!NtV4NtTlN
18 FOJRMAT (E20.7,I=!P',F20.T,'=VIN',E20.7,'uV3PI)'E2O.7,'uV4NStE2O.7,':

IFIK%.NE91) GO TO 55
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DUVALL PAGEL

SLCPEI-=CELP/(VI-Vl-*I
SLf'PEP.=PI-PO)/(VC2-VT3

C(1 C SLflPER IS TI-E SLOPE f.F RAYLEIGH LINE r*PC4 711FJ FCCT OF THE HUGCNIOT
C TO IIS INTERSECTIONh WvIT4 THK PHASE e3U.NrOARY

CSLCPEH IS OP/DV FOR~ T14E 1'r3TOT JUST INSIDE THE MIAEO PJASCE REGION
C SLCPER IS OP/VV FOR TF S I-U~f.NTOT IN THE SOLID
C JUST CUTSIOE THE MIXED PIASE REGION

WRITE(6,51) SL0PCH,SLCPER9SLflPEB

IF(SLCFrlI.GS.SLCPER) GO TO 55
RETURNCVOVN VN/VN 3-V~

MA LT, 114.LTG TO 11

T12 rTIN + (TIN - TIC)*(V12 -V4N)/tV4N - V4C)

106 FL)RAT('Cf///l ',70X,'C14TINUE IN LIMP)' Ptl4SLY'///j

P=PN~12

T'4N=T[2
TIN--T4N
V4N=V12
T2N=TSN
JC=l
C4LL EA(TL:)
PrLV=LATH1 T IN,f) /( TlK*PT
V i.V4-CLV
CALL Pe(VINjPtCf'EFIN, TIN)
V 2 N =VN-(:FLiV
CALL RI-?(VNP,C.IFF2N,T2N)

A02 FOP~lArt( l,E14.6,'=rDFLV')

I ETVI,RltSl, COtEFIN
WIRITE~tb,4244a) P,T2MN,V2 N,iiU2tTD2,X?,,f2DPK,G2,CV9a2,FTH,%itET2V2,
1 VS2tCCF.F2N#PKfl

JC=2
25 T 2n-,T 2N

V2C=V?.N
P=P4CI IP
CALL TFkYPtrN,PT)

V4N=VlN1N'ZELV
T/#N=T IN
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DUVALL PAGE 5

CALL P.1.iVMPqCCEF2hT20NI
V5Nx~:V 2N +C ELY

t Tt,%oT2N
XF(i(.NE.1) C-0 TO 70
SLCPEP*IPIZ-P0?/'VV2-V12J
SLOPEI-DELP/(12-V5N)
WRITE(6#511 SLOPEI~,SLCPEQ*SL0PF5
IFISLCPEI-,Gr-.SLOP'ER) GO TO 70
RETURN

70 K=2
WITE ( 6, 24)P TIN, 'T, V1N,4UI, 101,Xl,)1,O*PGlCVhtQl ,ET ,M1ETT,

I ETVItRliSlt COEFIN
WRITE(5, 2448) p ,T2NV2N,!4U2,T02,X2,92,DPKG2,CV,'Q2,ETHH2,ET2V?,
I PS2,COEF2N,#PKO

2447 FCPMaTIIOIE5.7,PI',XS~F,EiS1xTIIXE-15.7,'PT',5(,El5.7t,'V
I1N't5XE15.7,'=MlI'l/' ',E15.?, 'xTOI'.5XE15.7,'=Xl's5XEl5.70'=OI

3E15.7'l,'ET',5XI~15.7, '='I,5XE1i',7r'xETT'/9 ',E15.7,0:ETVI',5XEI
* 45.7, '=Rl' ,5XFl5.7, '='1', 5X,El5 1 7fp'-iOEFlN)

2448 FOR.MAT('c',F15.7, *=P',5)XEl5.7- 3T2N',5.XtE15.7,h2V2Ni' ,XE15.7,'=4

3E15.7,''M,2',5XFA15.7, *=(-T2V2I,5XEI5.7,'=zMS2h/' ',EI5.7?,=CCEF2N',

hRJTE(6960O)PV1NV4NV?N,9V5NT4N,T5N
600 FCPFAIT(l '97E1506)

IF(V5N.GF.,V4N) G1 TO 77
RETURN

72 CCKTINUE
IF(P.LT.PSTOP)GC TO 2'
IF(ICQNT*EQ.1) GO Ta 103
IF(ICCNT.F3Q.2) GO) TO 104
RETURN
END
SUBPOUTINE TEPP1CP)
CCP1'CN Afl,AI, A2,A3,r31,,2,93,ALGALTN,ASQAC'JB; ';Vl,PO,DEP-f3.VI2,
+V2(',VOZtT(12,TDO,rtl,T20,JC,PTT

* C A~ ANC C ARE THE CONSTANITS IN THE SI%0N EQUATILN CF 4ELrING;
A~fl.06257
C=1.20436
1WATTE(6tl)A#C

I FCPMAT(O ,E15.7vtAI5XtCE15,7f*C,
RETURN
ENTRY TEMYP(t'T,PT)
IF(JC.NF.1) ';a TO 2
PTmA*C*(T**(C-I.))/(TCl**C)
P)TT=C*(C-1. )*(P-DC+jA)/(T**2)
RETURN

2 CCNTINUE

PT=A*C*17**(C-1.))/(TCI**C)
PTT=C*(C-1. I*(P-OC+A)/(T**2)
RiETUR N
END
S0*ROUTINE Pfl(V1,P,CC'1,T1)



55

DUVALL PAGE 6

CCNIIC ArC'A1l A?, 3,I31R2,83,ALGiALINAS( ',ACUBE,~fCPflDE1PR3,VlC,
*V20,VC2,TG2 ,TDC,TCIT2.1,JC,PTT
CCt4MCN/CalP31/TnlGltCV1t01,hETMlETTETVlP1,slPrvUl.X1,ol,
+CPTT,VV

IF(JC.CQ.1) Cfll=0.

IF(JCEQ.G) TO 10 1

V1=V1C40.5*(COIO-+COI)*DELP

RETUPN
10 'A=(C V1 -I.

T C I T C C *-IU)
X=TCI/TI
CC=1.*/PT
011 .-X*( 0.375-0 .05*X)
CP=-0.37540.1*'X

Ql1Q(Vl,VC)

W=-Vv*t / (V 1 **2
ET=P3*C*Tl
~'IwNET*QI-R3-TCI*I( GI/V1.)**2)*I)P

ETV1=R'CP*((-G1*TO1)/Vl)
Rl~1 ./?'1
Sl=-Rl*Gl*ETT/Vl
CC1 = l +Sl*CC
TT=Tl

Xl=X

1F(JC.E'Q.1) GO TO 12
8 CC1CTINUC-

WRITEI6,600) V1,'/INN
600 FCP'44T(104,'SUi3R.PB,ITERATII0IJ FAILECOIMM0.)

CAtL EXIT
12 CCtNTIKIJE

ENC
SU2RrLT Iq~E RI-2(V,P,CIEr2NT2N)
cCCPMCN AC,A 1, A2,,i3,Pl1,32,9,ALG,ALI',4S,ACU,)F,V1-,Pfl, E[:LP,13,V1P,

+v2o,vr2,TCO,T'OirC,T2C,JC,PTT

CC4KcN/PRFS0K/PK0

ic(JC.FQ.13 COEF'N=0.
CC~F-2 C =CC C FN
DO 8 J~ltl0
iF(JC.EO,ll GO Ti) 10
V2NqN=Y
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DUVALL PAGE 7

V- V2C4C.5*(COEF214Cn1F2O3*DELP
IF(ASS((V-V2NNI)/V).GE.4g,E.5) GO TO 10
RETUPN,

.410 tML=VO/V-1.
G2xGltMU)
TC~wTCN(U)
PXC=PK (MIU)
ETI'z( ( P-FK0.)*V)/G-2

YZN=TC2/X
O:1,-O.375*Xf0.05*X**2
0C0X=-U. 375+0. 1*X
fTV2=R3*G2T02*(+C.37!-.l*X) /V
CV=RB"(I .-O.C5'*(X**2))
DPX=81P.'U*( 2.*(P2,vU*3.*I33)
DPX=-CPK*VC/IV**2)
Q2-Q(V,VC)
M2-CPK+ET-*Q2+G24FTV2/V
.4S2%-112-CV*r2tf( ( G2/V )**2)

MU2-MU
X2=X
C2- C
IF(JC.EQ.1) GO TO 12

8 CCNTIKUE
W~jTE (6,60O)V,V2'N

600 F(PMAr('0','SUJ P.RH2,ITE-RATtrnN FAILEDO,2E20*7)
CALL EXIT

12 CC~iT INUE
RETURN
ENC
SLI3ROUTINE 4HI3(V3KPtC0EF!N,V4N)
COUMMON AC-,A1,A2,A3,Flt1,P 3,ALGALIN,4SQACIJE4EV,,POOELPog3,VlQ,

+ V 2C'VC? TU2, T'?, TCI, T2P, JC, OTT

+DPtTT ,VV
PI!AL %ULATI..TUlvUl
IF(.JC.E,),1) CflEF3h'=C.
CCEF30-CCFFI-N
V3C=V3N
Cc 8 J-1,10
IF(JC.EQ.1) GOr TO 10

I V2RN=3VN
V3N=V30 + .5*(COEF:3C + Cr1EF3N)*DELP
jr(AES(tV314-V3'ql.)/V3N).'JE.i.E-5) Gfl TO to
RETURN

10 T 1- TT

.4 DEt,=Y1-2.*Tl*S1-Tl*R1I'PT-(V02-V3N)/2.
AlU~t1-.5*(P-PO)-T1*PT
CCEF3h=FEr4/AIUfll
V'iI'=V4LATHT( Ti,P)/(T14'PT)
IF(JC.EO.1) GO TOJ 12

Al CC1:TINUE
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DUVAL.L PAGE 8

00wRTTE(f.,S00)V3KV3NN

60FORMAT 110OWfR-3:TTER. FATLEC',IMCOM
CALL EXIT

12 CCNTINUE
RETURNj

FLJNCTICN G ( 'i)
CCMMN AA1A2,?,8,B2,P3,ALG,ALTN,ASQ,ACU)BE,V0,PC,DELP,R3Vfl,

RETURN
END
FUNCTICN TD(VU)
CCYMCN M),~AI, A?1'81 ,B2,83,ALGALINASQACJ8sE,vJ,pn,DELP,R3,VIO,
+V2r,VC2,Tr2,TI)OJ,TCI,T2Oi,JC,PTT
REPL V'U
TC=TOC*'EXP( ALC1ALCG(I-L+j. t, IJ1(AL[N441 U*(ASI+I4,L*4CURE) )
RE-TUPN
END
FUNCTION fC(V,VX)
CCYM~CN I'C,AI, A2, 3,81,B2,P3,AL:;4LT,AS(,ACUhFpViP0,t-'ELPR3,VlC
+V2C,V02, Tfl2,Tori.TCI ,120,JCPTT
PEAL YU
t,'U=(VC/V)-l.

ii ~ RFTUMN
FUN~CTION PK(.4~U)
CflYy.r.\ AO,AI, 2,A3,B1 ,B2,l83ALGALIN,ASQACUIIE,V0tP0,OELP,R3,VlO,
+V20,VP2,Tfl2,TOIJ,TC1,T2fl,JCPTT
REAIL V'U

P F-t 'JIR IN
EKV
REAL FLJNCTfrN LATiIT (T,P)
LATHT =6.26*4.ldE-5
SF TURK
E t, 0

//Gc.sysJN4 cc
1.C34E-i,' 11.1116 11.340 207.0 600.0 ?93.0 96.3

,.7r',] --:C~222 1.413 0.0 *54163 .7497041 .605839
0.005 L~3
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IEF2P5f SYSIXUITY KEPT
[EF2851 VCL SER NGSu rLJBC2.
IEF2851 SVSOUT SSU
IEF2851 VCL SER NOS-SOU
TEF285!1 LISTER DELETED

IEF~e5I VCL SER NOS= SCQ0Ci.



SAPPENDIX B

UGONIOT CURVE OF LIQUID ARGON OBTAINED

BY USING THE SIGNIFICANT STRUCTURE

MODEL OF LIQUIDS

C. T. Tung

I. Introduction

The significant structure theory of liquids has been

developed by Eyring and co-workers. According to the theory,

a liquid is considered as having three significant structures;

solid-like, gas-like, and degenerate. These three structures

contribute essentially to the therwodyna.ic properties of the

bulk system. On the basis of these considerations, the parti-

tion function, f, for a monatomic liquid such as argon can be

expressed as( 1).

f (al a 3 /a3)N Vs/V )a3(V.VsN(V-Vs)/V  V )/V)!

where:

aI = exp(E /RT)

a2 = I - exp(-e/T)

a3 = 1 + h exp(-e/RT)

a4 = (2r!;rKT) /h

Superscripts refer to literature at end of Appendix 1'.

59
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The first set of brackets stands for the solid-like portion of

the partition function, for which the Einstein oscillator model

is used. The quantity (I + nh exp(-e/RT) is the geometrical

degeneracy factor; the remaining portion is the gas-like part.

Using Sterling's approximation, y!sz (y/e)y , Eq. (1) can be

rewritten in more compact form,

3 NVs/V 3 N(V-Vs)/V
f = (ala3/a2 ) N(a4 eV/N) (2)

In Eq. (2), the number of neighboring positions, nh is equal

to n(V-Vs)/V s , and the energy needed to occupy a vacant site,

C , s equal to aEV /(V-Vs) . Both n and a are propor-

tionality factors, Es  is the energy of sublimation.

At high pressures and temperatures a few corrections

are necessary. Hence, Einstein partition function in Eq. (2)

should be replaced by(l):

a(((l-g)/a 2) ' ga 4 vf/3) 3

where g = exp(-18/T), I is the vibrational quantum number and

Vf is the molar free volume in the solid. Vf may be repre-

sented by:

V, = ((Vs/N) 2/ 3 - (b/4N)/3)
3

where b is the van der Waals constant and b/4N is the net

molecular volume. With these corrections, the partition

function for a monatomic liquid at high pressures and
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temperatures should be written as:

f = (al((l-g)/a 2) + ga5((V1/N)i/3 (b/4N)/3) 3  (3)

where:

a 5 = i+ b2 3

b 2  = 1,(V-VS)/V s

b = exp(-b 4)

b 4  aEsVs/RT(V-VS)

In addition to the corrections mentioned above, the pressure

effect on Vs must also be considered. For moderately high

pressures, Eyring suggests the linear correction:

I

V5  = V,; (i-0p) (4)

In order to extend calculations to higher pressures we

replace (4) by:

Vs  = Vs exp(-0p), (5)

which reduces to Eq. (4) for small pressures and also has

positive curvature, which is necessary for shock stability.

Hence, 5 is solid compressibility and p is excess pressure
(2)

above a standard pressure.

Krowing the totalpartition function as a function of T

and V , we are able to calculate thermodynamic equations of

state from:
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A - -kT In f r6)

P - -(aA/V)T kT(6 An f/BV)T (7)

E = -T2 ((A/T)/aT)v = kT( n f/BT)V  (8)

S = -(BA/BT)v = k In f + kT(B An f/nT)V (9)

where A, P, E, and S are the Helmholtz free energy, pressure,

internal energy, and entropy.

II. Calculation of the Hugoniot

Curve for Liquid Argon

As mentioned, the partition function, f, is a function

of temperature and molar volume. Obviously, to calculate

pressure, internal energy, and entropy from Eq. (6) to Eq. (9)

is straightforward, but tedious. The results are:

P = RT(L+B+C+((V-Vs)/V 2) - (3Vs/V2)An(a 2F)) (10)

E = RT2(D+J) (11)

S (E/T) + RTJ + (RVs/V)((ES/RT) + An (a5/a23)) (12)

where:

L = -(Vs/v2)((Es/RT) + An(a 5/a2
3 )

B = (b3q/gV)(1 + b4)

C = (Vs/V2)(H + n(T31Zv))

D = (Vs/V)((-Es/RT2) + (38exp(-8/T)/T 2a2)

+ (b3qaEs/a5T2 + 3(V-Vs)/2TV

. . .0
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F =((1-g)/a) + (V. 3
- (b/4)l/3)a~gN/

G = (-Ig + 1-a2 + -1) g(1a /T

gTl2((.eIT) + (1/2T)) ab4' 3  /3

H- nNa ON)

It 2

J= (3V /v) ((G/F) 8(2 a
S \ela 2)/T a2)

and the parametric values for liquid argon are(,)

n (proportionality factor) = 10.7

a (proportionality factor) = 0.0052

E (sublimation energy) =1888.6 cal/mole
5

b (van der Waals constant) 32.2 cc/mole

I2 (vibrational quantum number) =5

V5 (molar volume of solid at 1 atm) =24.98 cc/mole

e (instein characteristic temperature) = 60.0 (OK)

m (atomic weight) =39.944 gm/mole
10234 x-2

N(Avogadro number) 6.04 0 (mole)-

h (Planck constant) =6.6252 x 10-27 erg-sec

= 2.5 x 10 /atm =compressibility of solid
argon below 104~ atm.

k(Boltzmann constant) = 1.380 x 10-1 erg/deg

R =1.986 cal/mol OK

In order to find the Hugoniot curve the Rankine-Hugoniot jump

condition:

E E0  'L(P + P) V) (13)
2k 0 0V

is required to be satisfied. The problem of finding the Hugoviot
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curve is equivalent to eliminating both T and E among Eqs. (10),

(II), and (13) so that P can be expressed in terms of V only.

The relation between P and V represents the Hugoniot curve. In

principle the Hugoniot curve can be obtained no matter how

complicated Eqs. (10) and (11) may be. But in practice we

accomplish this by numerical methods.

The calculation procedure is schematically as followr,:
1. Assign a value for V (less than initial volume Vo}.

02. Guess a value for T (higher then initial temperature To).

3. Substitute both T and V in Eq. (10) and calculate the

value of P.

4. ;.-bstitute the calculated P into Eq. (5); using the

new V (V '), P is recalculated from Eq. (10). Thisvs (s
process is repeated until consistency is obtained.

5.5. Use present T, V, and Vs to calculate E from Eq. (11).

6. Substitute P, V, and E in Eq. (13) which can be

written in the form,

H(P,V,E) =E - Eo - (P + Po)(Vo -V)

If H(P,V,E) 0, P is the right value which corresponds

to the assigned V. If H(P,V,E) z 0, knowing H is

positive or negative, T can be appropriately adjusted,

and then follow with step (3). This loop is repeated

until H(P,V,E) - 0 is satisfied.

From this double iterative method the relation becween

P and V under the jump condition, Eq. (13), can be satisfied.

This relation presents the Hugoniot curve. Furthermore, using

a similar method, with Eq. (13) replaced by Eq. (12), the
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adiabatic curve can also be obtained. Details of this double

iterative method are shown in the computer program listing at

the end of this appendix.

III. Discussion of Results
Each isotherm in a P-V diagram shows both the existence

of a maximum pressure and a discontinuity at V = Vs (See Fig. 1).

s

This is due to using the Einstein oscillator model for the solid

partition function. In the Einsten model the binding energy is

assumed to be volume-independent.

The Hugoniot and adiabatic P-V curves can exist and

have been calculated only in the region well to the right of

the maximum-pressure curve of Fig.15 where (ap/BV)T < 0. Both

are shown in Fig. 16 relative to the isotherms. In Fig. 17 the

calcuiated curves are compared with measurements reported by

van Thiel and Alder. The agreement is remarkably close and

suggests that minor modifications of the Eyring theory may make

it valid at even higher pressures.
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IV G LEVEL 0, MOD 0 P~AIN DATE =67264 14,/50/12

C NJGChICT CURVE FOR LIQUID ARGON
CoPVIC N/BAT AM1IM,
COI*FCNlESGE5/ESO
COPt'CNAPLOT"APil101, 101)
COP7'CN/CTVSEIT TTEXPT,DCWNEXPST
CU'MON/YSET/V,UVCO
CO?PCNCOSFT/A,ES,VS,SN,SS,CK,EE,PPOVOTOCK 

,VSC
COFt/lC/BfC/..'.IOTtC(1

3)C READ CHARACTERS (FOR PLOTTING CURVES)
READC5, 1CGCLANKDOr~ (C(K3,KZI,13)

100 FORlXAT(15Al)
C. GIVE PARAMETRIC VALUES FOR LIQUID ARGON

A=0.0052
ES=1888.6
ESO-~ES
VS=2',.98
SN= 10 *7
SS= 60.0

C.KK10.*(80*3.41*J.3)**15/(6.65**30)*6-0**40)I
CK=ALCG(CKK)+I.0

C READ BOTH INITIAL VOLUME AND INITIAL TEMPERATURE
30FURM.A T(2F10. 0)

CSET IGLANK' IN TWO DItMENTIONAL SPACE(100*10)

DO 21 K=1,10

0O 21 N=2,101
AP:KiCIN)=OOTN

212 CONTINUE

C CALCULPt THECISTE'S 0T

21 CONTCUAE A DAAI UV HOG NTA T
CALL1 ADIB(VT

IPIIN=O
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IV G LEVEL 0, MOO 0 FAIN DATE =67264 14/50/12

CALCULAfE THE 1-UGONIOT CURVE
CALL SHCCK(VtT)

C PLOT THE HUGLNIOJT CURVETHE ADIABATIC CURVE,AND THE ISOTI-ERMS
v.RITE(6,302) IIAP(IJ) ,Jz1,10C)I) ,11,1)

302 FOR?'ATCl' ,lCXIllAl)
VV=VC/39.944

C WRITE T1HE 1:41TIAL STATE UNDER THE HORIZGNTAL AXIS
WRITE(6,900) TOVV

900 FORFAT('C'23CXt'(INITIAL STATE T=7'vF7.2,'(K) V='tFlO.5,
l'(CC/GM) 3')

C GO TC REAC 1NEXT DATA
60 TO 5C0

112 CONTINUE
RETURN
END
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G LEVEL 0, moo 0 PAIN DATE =67264 14/50/12

C SUB. SM-CK
C FIND HUGCNIOT CURVE

SU[6ROUTINE SHUCK(V,r$
CO?'PCN/BCC/BLANK,DOT,C( 13)
COFFCN/YSET/Y,UVO0
COMMODN/C lOSE T/A,ES, VSS,SSCKtEEO, PPOVOTO,CKK ,VSO
VV-V/39.944
WiRITE(6,45C)T,vV

450 FcJRPAT('CI,2X#'HLGONIOT CURVEt,*(INITIAL STATE T=IF7.2,
I'MK V=',FIC.5,'(CC/GM) M)

201 FORMAT(eCu,16X#eV(CC/GM)9,13X9T(K),,1sX,'P(BAR,,12Xt
I'E(CAL/G?4i',13X,eS(CAL/GM-Kp,1lOXteV/Voe)
VIN=V
I IN=T

C ASSIGN A ChAiRACTER FOR HUGONIOT CURVE
YxC( 1)

C CALCULATE ThE INITIAL VALUES(P. AND Ea)
CALL WRITEI(V,T)
PPO=P(V,T)
EED=E(VtT)

C ASSIGN A VALUE FOR V AND FIND THE CORRESPONDED P
511 V=V-VO/25.O

S= TO
rL-T

C START ON THE UOUBLE ITERATIVE CALCULATIONS
IF(F(YtT).GE.O.O) GO TO 591
SFTL=-1.O
GO TO 592

591 SFrL=1.0
592 TU=TL+3OC.0

TsTU
IF(F(VT).GE.0Oo) GO TO 593
SFTU=-1. 0
GO TO 59;4

593 SFTU=1.0
594 IF(SFTL*SFTU.LT.O.O) GO TO 595

TL=Ttj
SFTL=SFTU
IF(TU.GT.1000.) GO TO 611
GO To 592

595 Im=(TL+TUI/2.0
C UPPER eGUNC AND LOWER BOUNID HAVE BEEN FOUND

T= TF
IF(F(V9T).CE.O.0) GO TO 596
SFTI'=-1.C
GO To 696

596 SFTF=1.O
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V G LEVEL 0, ?'CO 0 SHOCK DATE =67264 14/50/12

696 IF(SFTM..EC.SFTU) GO TO 796
TL=Tl'
GO TO 59~7

796 TU=T
597 IFU(TU-TL).GT.5.0) GO To 595

T=(TU+TL )12.0
C THE SflLUT ICN OF T IS FOUND

C USE PRESENT T AND V TO CALCULATE P
CALL wRITE1CVtT) T 1
IF( V.LT.VO/IG0O) GO 1 1
GO To 511

611 CONTINULE
V=VIN
T=TIK
RETURN
END
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IG LEVEL 0, MOD 0 PAIN DATE 67264 14/50/12

C
C FIND0 AN ADIABATIC CURVE THROUG. INITIAL STATE
C (THE METHOD IS SIMILAR TO THAT FOR FINDING IUGCNIOT)

SUBROUTINE ADIAB(V*T)
C0PFCN/BCC/ibLANKiDOT, CI13)
COMMON/C1OSET/A,ES,VS9 SNtSSCKEEOPPCVOTOCKK YVSO
COPPCN/YSET/Y ,UVOO
IRITE(6t45O)

450 FORYAT(IC',2XADIABATIC CURVE@)
WIT E( 6,201)

201 FQR1CAT('C' ,lcXt'V(CC/GM)',13X,'T(K) ',15X,'P(BAR)',12X,

V IN=V
T IN=T
Y=C(12)
CALL WRITEI(V,T)
SSO=S(VtT)

* 511 VzV'.VO/2~0
T= TO
TL=T

C GET THE RIGHT Ve
NEWVS=P(Vtli
IF(S(VtT).GE.SSO) GO TO 591
SFTL=- 1.C
GO TO 592

591 SFTL=1.O
592 TU=TL4100.O

T=TU
F NEiVS=P(VPT)

IF(S(VT).GE.SSO) GO TO 593
SFTtJ=-1.C)
GO TO 594

53SFTU=1.O
594 IF(SFTL*SFTU.LT.0.0) GO TO 595

TL=TU
SFTLrnSFTU

IFfTU.GT.lCOCO0 O) GO TO 611
GO TO 592

595 Tm=(TL+T.U)/2.O
T=TM
tEWVS=P( VT)
IF(S(V#T).GE.SSO) GO TO 596
SFTP=-I.0
GO TO 696

596 SFTI'=1.0
696 IF(SFTP.EQ.SFTU) GO TO 796

TL=TM
GO TO 597
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G LEVEL 0, PCD *0 ADIAB DATE 67264 14/50/12

796 TU=TM
597 IF((TU-TL).GT.5.0) GO TO 595

T=(TL+TLI/2.0
CALL WRITEI(V,T)IF(V.LT.VO/1O°O| GO To 611

GO TO 511

611 CONTINUE
V=VIN
T=TIN
RETLRN
END
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IV G LEVEL 0, P~OO 0 MAIN DATE U67264 14t/50/12
L c

c HUGCNIOT JUMP CONDITION
FUNCTION F(VtTJ
COMI/CN/CIOSET/AESVSSNSStCXEEO, PPO,VO,TCKCK ,VSCF=VC-V-(2.0/CP(V,T)+PPO) )*fEfVT)-EEO)
RETURN
END



v G LEVEL 0, J'CO 0 mAIN DATE z67264 1/01

C
FUNCTION S(VT)
CWPMGN/CI0SET/AESVSPSNSS,CKEE0,PO,Vo,ToCKK #VSO

COMMCN/CTVSE 1/TLITITEXPTOOWN,EXPST

XL=5.0
B=32.2
SI(2.O*VS/V)*(ES/(2.0*T)-30*ALOG( 1.O-E.XPST)+ALCG(DC N) 

)+

II2.O*(v-vS)/V3*(CK+1.5*ALOG(T)+ALOG(V))+EfVtr)/T

Sl=E1/T+(6.O*VS/V)*ALCGiFlt( 1.0--EXPST))

RETURN
END
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/G LEVEL 0, PCO 0 MAIN DATE 67264 14/50/12

C INTERNAL ENERGY FUNCTION
FUNCTION EIVvT)
COMIPtN/CIOSEr/A,ES,vStSN,SSvCK0 EEO, PPOVO,TOtCKK ,VSC
COPCI/CTVSEiT/TI ,TITEXPT,OOWN ;EXPST
CQtPCt/E IF I/E ,FlF 12
XLz5.0
B=32.2
EEVTa(VS/V)*(-ES/(2.C**T)+3.0*SS*EXPST/cT~T*(1.O.-EXPST'n,
lISN*A*ES*EXPT/(2.0*T*T*DOWN) ).1.5*'%V-VS)/(T*V)
E=2.O*T*T*EEVT
F21=(SS/CT*T)[*(-XL*EXPST**XL.EXC)ST+(XL-1.0)*EXPST**(XL+1.O))
I/( C .C-EXPST)**2.O)
F2zF21+FI2*(XL*SS/T.5)/T
El1C6.0*VS*T*T/V)*F2/Fl-(SS*EXPSr)/(T*T*fl.0-EXPST)fl

RETURN
END
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V G LEVEL 0, PCD 0 F'AIN DAfE 61264 14/50/12

c SUB TVSET
C A SET OF VAR IABLES IN TERMS OF V AND T

SUBROUTIN~E TVSET(V,T)
COIMGi/C LOSE 1/A ,ES, VS,SN ,SS ,CK,EEO,PPCVO,TC,CKK ,VSG
COPCN/CTVSET/r1 ,TIT, EXPrOOWN,EXPST
T1=A*ES*VS/(2.0* (V-VS))
TTITI./T
EXPT=EXP(-T IT)
DOI.t1 .O+S\* (V-VSI*EXPT/VS
EXPSTZEXP( -SS/T)
RETURN
END
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V G LEVEL 0, N4CO 0 MAIN DATE *67264 14i/50/12

C
C PRESSURE FUNCTIO)N

FUNCTICN P(V!T)
COMMCN/ESGESiESO,
COHMON/CIGSET/AESVSSNSSCKEEO, PPCVOTOCXK .VSO
COFlMCN/CTVSEI/Tl1, IT, EXPTOOWNEXPST
CGMIPON/ElFl/E1 ,FI ,Fl2
XLm5.O

4 I8Om32 .2
BETA%2.5/2421 .0
Mwo
N-0
POLC=0.0
VS-Avs Q
IFtV.LE.VS) GO TO 99
EbSESO

C 083TAIN THE RIGI-T VALUES FOR THOSE VARIABLES IN'CCP?40N CTVSET'
CALL TVSET(VT)

100 AAZ-(VS/(V*V) )*(ES/12.0*T)-3.0*ALOG(1.O-EXPST)4ALOG(CCWN))
88=(SN/V)*( 1.OTlr)*EXPT/OOWN
CCz(VS/(VOV))*iCK+1.5*ALCG(T)+ALOG(Vfl
PPVTWAAB8+C.+(V-VS)/( V*V)
P=2 .O*T*PPVT
Fll=(1.O-EXPSr**XL)/(1.0-EXPST)
lEzbO*VS/VSO
F12s(EXPST**XL)*(CKK**0.333)*(VS**0.333-.(B/4.0)**O.333)*(T**0.5)

a FI=FI 14F12
Pls-(6.0*VS*T/(V*V) )*ALOG(Fl*( 1.0-EXPST))
PmP+P1
IF(ABS(P-POLC).LT.,0) GO TO 901
POLDsP

IF(M.GT.50) GO rO 101
C START ON THE ITERATIVE CALCULATIONS

VSzVSOl*EXP( -bETA*P)
IF(V.LE.VS) GO TO 99

90 CONTINUE
ES=ESO*(VSO/VS)**O0 333
CALL TVSET(VtT)
GO TO t00

99 PNuNl
VS=V/2.0
IF(N.GT.2) GO TO 101
GO TO 98

101 CONTINUE
901 CONTINUE

RE TURN
END



81

V C LEVEL 0, FCD 0 FAIN CATE =67264 14/5C/12

C
C CALCULATE THE~ ISOIHERFS
C SLB PLOT 1

SUBROlUTIN~E PLOT1(VT)
COMMON/OATAM/4
COI'ICJ/BCC/BLANKDOT,C( 13)
C'JMVGC/YSLT/Y ,UVOO
WRI TE(6,45C)

450 FCRM~A(C,2X,'ISOTHERMSO)
VLN=v
T IN=T
IF(V.LF..23 GO To 30C
DT=50.0
GO TU 301

300 UjT=100.0
301 CONTINUE

(00 10 K=115
C ASSIGN A Cf-A.ZACILR FCR PLOTTING

Y=C(K)

WRIFE(b,451) KT
451 ORF~'C',l2X,IISOTH*RV *,12,5XTEPPERATURE *,FlO.4#'(K)')

201 FORPAT('C'I,,V(CC/GM)',13X1
1 T(K) *,15X,'P(BAR)',12X,

1,E(CALIGV)a,13XPsS(CAL/GM--K)e,1oxtsvIVOe)
V=V It: V IN /10. 0
00 10 N=111O
V=V-VI NI10.0

C CALCtLArE P
CALL V'RITEI(VtT)

10 CONTINUE
V=V IN
TrIN

RErUPN
END
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V G LEVEL 0, MOD 0 FAIN DATE 267264 14/50/12

C
SUORCUTINE hNRITE1(V,T)
CoMPCN/ DAT AM /
CO)MMON/APLGT/AP (101,101)
COFFCN/YSETlY ,UVOO
COHPCN/C1OSET/AEStVStSNtSSoCKEOPPOVOTOCKK ,VSO
VOO=VO/39. 944
TIN-&T
VINzV

C CALCULATE P,E,AND S
PP=P(V, T)
EEzE(VT)
SIzS(V,T)

C CHANGE UNITS
V=V/39. 944
PP*PP*1OCG.O/( 24.21*0.987)
EIE=EE/39. 944
Sl=S1/39.944
VR=V/VCO

C V.RITE VvtPES AND V/V.
IWRITE(bi2G2)VtTPPP,EEtSltVR

202 FORtPAT(' ',7Xv6E20.6)
C LOCATE THE PCINJT(P,V)

UvOO=vc0/100.o
N=1 .5+V/UVCO
IF(P.EG.l) GO TO 300
Kz( 10000.0-PP) /100.041.5
GO TO III.

30G Kz(20.0-PP)/O.2.1.5
111 CONTINUE

C GET RID OF TIOSE POINTS OUTSIDE THE RF.GICNfiOL*lCl)
IF(K.GT.101) GO TO 400
IF(K.LT.1) GO TO 400
IF(IN.GT.101) GO 10 400
IF(N.Lr.1) GO TO 400
API(K, N JaY

400 CONTINUE
V=VIN
T=T IN
RET UR ti
END



PART B

ACOUSTIC WAVES FOLLOWING STRONG

SHOCK WAVES

G. R. Fowles

I. Introduction

Conventional dynamic equation of state experiments, in

which the wave and particle velocities of plane shock waves are

measured in a sample, yield only partial information abeut the

state of the shocked material. This information comprises the

stress component normal to the wave front, the density, and the

internal energy. In particular, the normal stresses across a

plane perpendicular to the shock front are not determined. Know-

ledge of these stress components in addition to the stress normal

to the front is tantamount to knowing the shear modulus and the

yield strength of the material under shock conditions.

In an elastic-plastic solid the shear modulus and yield

strength must be known in order to treat problems involving

interactions of shock and rarefaction waves; a simple example is

that of a decaying shock. Shock attenuation experiments on

aluminum and other materials have shown that material rigidity,

characterized by the yield stress and shear modulus, has a sig-

nificant effect on shock attenuation at pressures up to at least

200 Kbar. Moreover, the values of these paramete rs are not

simply predictable from known zero-pressure values.
(1 ,2 ,3)

Attempts to determine the shear modulus and yield

strength by means of one-dimensional shock attenuation experi-

ments have been only partially successful. Spallation of the
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free surface on which measurements are made severely limits the

information obtainable.

In this paper I report preliminary results of a study

of small amplitude wave propagation in an elastic-perfectly

plastic solid considered to be previously stressed to the yield

point in uniaxial strain..as, for example, by a uniform plane

shock. By relaxing the restriction that the flow be strictly

one-dimensional, i.e., by allowing the (plane) acoustic waves

behind the shock to propagate at arbitrary angles with respect

to the direction of propagation of the shock one finds that four

distinct acoustic waves are possible, compared with two for the

one-dimensional case. Their velocities depend in general on the

shear modulus, and their amplitudes on the yield strength. Thus,

there are a greater variety of measurements possible in the two-

dimensional case than in the one-dimensional case. This result

is promising; however, it is not yet clear how best to make use

of these waves experimentally. They can be generated by such

means aa reflection at interfaces oriented obliquely to the

direction of shock propagation.

Another application of the theory is to problems such as

oblique reflection of shocks at interfaces. These problems

have not yet been investigated, but their solution is a natural

extension of the results reported.

II. Fundamental Relations and

Initial Conditions

As the starting point for the problem we assume a plane

shock propagating in the x, direction in an isotropic elastic-
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perfectly plastic solid satisfying the V. Mises yield criterion.

The amplitude of the shock is arbitrary except that it must be

large enough to bring the material to the yield point. Certain

fundamental relations to which we will make reference are listed

below.

We assume Cartesian coordinates x.(i = 1,2,3) and let J
1

u i be the velocity of the material at point xi. Strains are

assumed small and the strain rate is therefore given by:

u. ?u.

3 +

For elastic strains, Hooke's law yields,

E = (1 iV) a' - V a 6
13 13 kk i I

where a is the stress tensor, E and v are Young's modulus

and Poisson's ratio, and eij are elastic strains.

The plastic strain rate tensor is

e.. = n1.. - e..
lj j ij

and the deviatoric stress tensor is

ai. aij - kk 6ij. (2)

The second invariant of the deviatoric stress tensor s, is .

given by,

2s 2 = j aij (3)
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For a V. Mises solid, s k where k is the yield stress in

simple shear--assumed constant. Plastic deformation occurs

only when

s = k, s 0. (4)

Otherwise the deformation is elastic and nij = eij . When

yielding occurs the flow rule is
=

ij = K ai (5)

where K is an undetermined constant. The equation of motion

(for small amplitude waves) is:

.(o) = pi , (6)

where p is assumed constant.

The stress matrix of the original state is diagonal,

of the form:

all 0 0

A 0 a22  0

0 0 a33j.

with a22 = a33 from symmetry. Moreover, the yield criterion

(Eq. 4), written in terms of principal stresses is:

(a 1  a2) 2 (a2 a3)+ (U3 -a 1 ) 6k 2  = 2Y2  (7)

where Y is the yield stress in simple tension.
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For matrix A this implies

al - a2 = v-k = Y. (8)

III. Elastic (Unloading) Waves

A. Shear Waves

An unloading wave by definition does not produce

plastic flow. That is, s < 0 . For these waves, Hooke's law

expresses the relation between stress and strain rate tensors,

and the velocities are those of elastic longitudinal or shear

waves, i.e., Pc = X + 2P or pc2 = P where X and P1 2
are the Lame constants.

We assume an unloading shear wave whose wave front is

parallel to the X3 axis and is inclined to the XI axis. Its

velocity is c2 = /P/P ; we wish to find its amplitude such

that superposition of the stress matrix associated with the wave

and the initial stress matrix just maintains the material at the

yield point. That is, we wish to find the maximum amplitude of

an unloading elastic shear wave whose wave front is inclined at

angle a with respect to the original shock (Fig. 18).

The stress matrix associated with the shear wave alone

is

b11  b12  0
B b b21 b 22 0 bl1 b 12

0 0 0 b21 b22
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It is subject to the restriction

bkk = bl + b 2 2  0

and b b

We wish to find the values of the components of B such that

the eigenvalues of the matrix [A + B] just satisfy the yield

criterion (Eq. 7). Adding A and B ,

Fa1 1 + bll b12  0

A A + B = b2 a22 + b22 0

L0 0 222 j

all + b1 l b12  0

b12 a22 - bll 0

0 0 a22

The characteristic -uation of this matrix is

all + bll - %I b12 0

b12 a2 2 - bll - X' 0 =

0 0 a22 X1

Expanding the determinant:
2

(a,, - bl I - X)(a 22 - bll- )(a22 - ?) - b 1 2 (a 2 2 - ) = 0

one root is therefore '3 = a22 . The other roots are
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solutions of

,) 2=
(al1 +b1 -X)(a 22-bll-X') - b12 2 0

or

X1 ,2 = (all+a 22) ± all+a 22) 24(a22bla22allbl - b1 2
2 ).

If the yield criterion is to be satisfied we must have:

( 1- 2)2 + (X,2 -, 3 )2 + (X -XI )j 2Y2

After some reduction this relation is
I -(all-a 22)2 - 3Lb 11a22 - allbl1 - bll2  b122j y2

But, from (8), all-a 22 = Y , so that,

bll(Y) + b 1
2 + = 0

or

bll = - Y Y2-4b1 2
2  (9)

We can more easily describe the shear wave in terms of

its principal stresses, or eigenvalues, X. Hence, we so lve the

characteristic equation

bill x b12

b1bill. x 0

Thus, X = b 1 +b1ob 12

B,. t, from (9) bl12+b122 Y bl
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Therefore X = £ -y (10)

The eigenvectors associated with the shear wave can

now be found from

bL 1 b12  ix
-b12 "bl x2 x2

Expanding,

b1 l xI + b12x2  X,

b12 xI - b11X2 = x2

Eliminating b12

X xI - bllx1  X x2 + bllx2

x2  x1

2 X + b

2 2

Substituting from (10) for bll -

2Y

2x -X/y_)= ± (l!)
x2  l +X/y

Equation 11 gives the principal stresses associated with the

shear waves as a function of the tangent of the angle between

the principal axes of the original stress matrix and the
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principal axes of the shear wave. Figure 19 shows a plot of

this relation. The ordinate is the principal stress of the

shear wave; the abscissa is the angle between principal axes

(9), or the angle between wave fronts (a). (Note that the

principal axes of a shear wave are inclined 450 with respect

to the wave front.)

B. Longitudinal Waves

We adopt the same approach as for shear waves, except

that the matrix B is now:

bll1 b12 0

B b b22  0

0 0 b33

Elastic longitudinal waves are characterized by the relations

between principal stresses:

V

X2 = 3 =- 11-V

The invariants of the B matrix are then:

= bll + b22 + b3 3  = (\l . Xi (12)

2 v(2-v)h 2 (3
12 (bllb22 + b2 2 b 3 3 + bl 3 3 )+bi,2  -12. 2 (13)

Sb b3 3 b1 2
2  = \2 X 3 (14)13 11 bb22b3 3 3 12 (-V) 1i
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The matrix of superposed stresses is

all1+bll1 b 12 0

A' A+B b12 a22+b22 0

0 0 a 22 +b33

with secular equation:
, 2

(all+bll - 0S(a 2 2+b2 2 - X)(a 2 2+b33 - - (a2 2+b3 3 - Xt)b 2  0.

The roots of this equation are:

a22+b33 (15)

and X1,2 = (all+bll+a22+b22) (16)

11a+bll+a 22 +b22)2 + 4[b122-(all+bll)(a22+b22)3.

These roots must satisfy the yield criterion:

l(XX) 2 + (X2-X3)
2 + 1)2 2y2  . (17)

Inserting the values for X. from (15) and (16) into (17); we

get after simplification:

(all+bll) 2 (a11+b11)(a22+b22) + (a22+b22)2  (18)

2 2 = 2
-(a 22+b33)(al+bll+a22+b22) + (a2 2+b 3 3) + 3b! 2

This equation is to be solved simultaneously with Eqs. 12, 13, 14

to establish maximum longitudinal wave amplitudes.
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Recalling that al-a 22 = Y we can rewrite (18) as:

S+b 2 +b 2 + Y(2bll-b 2 2 -b 3 3 ) - blb 2 2 - b 1lb 3 3

2
-b 2 2 b 3 3  = -3b1 2

But from (13)

2 (-) 2
b b 122 +bb 3 3 +b2 2 b 3 3  = b 1 2  + )2

(I-V)

I Eliminating b12  between these equations and employing Eq. 12 to

eliminate b33  yields:

bl l v l- Y +2 Il = 0 (19)
11 V L2 i1 1

(i()

We now note that x 3  is a principal direction of both matrices

A and A' = A+B. (Eq. 15.) Hence b33 must be an eigenvalue

of the B matrix, i.e.,

b33  = 3 1 V XI

Hence, from (12) again

(l+v>

bki-- Xl - b1l - b 3 3  (20)

- bl

Equations 19 and 20 give bll and b22  in terms of the

principal stress of the longitudinal wave, parallel to the

direction of propagation, X

i I



94

If we now solve for the eigenvectors of B , we get

(bll."X)X1 + bl2x2  = 0

2 + (b22-')x2  = 0

(b 3 3 -X)x 3  0

(Xl,2 X b22- -I - + b= 22 1l 1-v 11k

x2 - bll I - bil

and, substituting for b1l from (19),

2 2v2 - 3v+l - (4v 2 4+) 1

x 2 = 4v 2 _ 6v+2 + (4v 2 4v+l) xl
y

This expression gives the amplitude of a longitudinal wave whose

wave front is inclined at an angle tan T-2 with respect to
x2

the original shock front and which just maintains the material at

the yield point. It is of the form

22 a-b--1x y1

2a + b -Y-

where a and b are functions of Poisson's ratio, v

Figure 20 shows a plot of X1/Y as a function of the anglexI

cot-I (L-) for several values of v Note that the wavex2  x

is compressive for angles greater than about 55 (i- = ) .

For shallower angles the wave is a rarefaction wave and can be

quite large for large values of Poisson's ratio.
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IV. Plastic (Loading) Waves

Loading waves occur whenever Eq. 4 is satisfied. The

flow rule relating the strain rate tensor to the stress rate

tensor is then modified by the addition of a term given by

Eq. 5. Thus,

n l • •ij (-E) lijE kk ij ij

We take the direction of propagation of a plastic wave
behind the shock as the x! direction and assume the other axes

are oriented so that the shear stresses a13' and a23  ahead of

the wave are zero. That is, the prime set of axes is rotated

about x with respect to the unprimed set (which are principal

directions of the initially stressed material). The wave is also

assumed to have infinitesimal amplitude. We wish to find the

velocity of the wave as a function of the angular difference be-

tween the plastic wave and the initial shock.

Craggs (5) has shown that an infinitesimal discontinuity

in stress and strain propagates under these conditions with a

velocity that is one of the roots of the quadratic

APCp 4 -_BPCp2 + C.2  (21)

where Cp is the plastic wave velocity, 4 the shear modulus, p the

density, and A, B, and C are given by,

A = (1- 2v)k 2

= (3 - 4v)k 2 - (I- 2v)(all 2 a12 )

C = 2(1- v)k2 _ (1 - 2v) ati 2 - 2(1 - v)o122
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This can be written alternatively in terms of the two elastic

velocities CI and C2 and the bulk, or hydrodynamic sound speed,

CH , where

CI2 _X + 2C 2

2 =C2

Ch K (K incompressibility)

In terms of these quantities, Eq. 21 becomes,

2 2 2

2 16 CH2  k2

C1 2  3(a-v)

where -(--=
CH2 1+ V

In order to find the velocity in a given direction we need to

know the stresses ahead of the wave, a12 and all . Taking

and a2  as the principal stresses behind the ini -ial

shock, and y as the angle of rotation of the prime coordinate

system about the x. axis (i.e. e is the angle between the

wave fronts), we have

a1 l = a, cos 2d + a2 sin2 a

012 = (-ai+a 2) since cos .
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Moreover,

a - a2 = Y.

Hence,

all a -ysin 2

012 = -Y sinacost

and

all = Y(2/3 -sin 2a)

Inserting these values into Eq. 22 yields two velocities for

each value of Poisson's ratio and for each angle, a . A repre-

sentative case is plotted in Fig. 21.

Several features of these curves are noteworthy. For

zero angle of inclination the plastic waves travel with the

velocities of hydrodynamic and elastic shear waves respectively.

For other angles one plastic wave speed falls between C1 and CH,

and the other is less than C2. The faster wave speed increases

to C1 at just that angle for which a longitudinal elastic un-

loading wave can have only zero amplitude (Fig. 3). These waves

are in general mixed waves that produce changes both in the stress

normal to the front and in the shear stress tangential to the

front. Thus, they tend to rotate the principal axes. The

stress discontinuities as given by Craggs, are:

2p.av + Va'v)

(a) a1 Aa a =a3 V 22} a 1 (23)(a) all a33 33 " (1-2v) PC 21

IL __P
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(b) a a (a 2p (a22 + V a33 )
S 22 = 2 2 - (1-2v) PCp 

(c) A 1 a a12 ,C 2 C
a ~ )) 11 2(c) A 12 all A -1

It is easily shown that for any plastic wave 1 1 , and
I1

moreover, the two plastic velocities are bounded by the elastic

velocities

C2 < Cpl < C1  ; CP2 < C2

Hence, from the equation for A a12 above (23c), we see that

the faster wave tends to decrease the shear stress, a12

while the slower wave tends to increase it.

Some appreciation for the structure of a finitc amplitude

plastic wave can be gained by numerical integration of the above

equations. Each infinitesimal wave front alters the stress

state behind it and since the wave velocity depends on the

stress state ahead, finite amplitude waves will generally show

amplitude dispersion.

Fig. 22 shows a plot of the stress normal to the (fast)

plastic wave as a function of the wave velocity for particular

values of Poisson's ratio and the angular difference between the
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plastic wave and the initial shock. The angular difference in

this case is such that the head of the plastic wave travels with

velocity C1. In general it is slower than C1 so that there is

a region of uniform stress between elastic and plastic wave

fronts. As the wave speed approaches hydrodynamic wave speed,

increasingly large increments in the stress normal to the front

are required for a given increment in wave speed. Thus, the

shear stress only asymptotically tends to zero and the wave speed

asymptotically approaches hydrodynamic speed.

This model does not permit the formation of a shock front

as a true discontinuity in stress although the stress gradient

becomes larger with increasing stress. However, we recall that

the equations are based on the assumption of small amplitudes

and the equation of motion therefore has no convective term. It

would be of interest to extend the theory to include finite

amplitudes.
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FIGURE CAPTIONS

Fig. 18. Wave front configuration.

Fig. 19. Maximum shear wave amplitudes as functioin of angle

of inclination of wave fronts.

Fig. 23. Maximum dilatational wave amplitudes as function

of angle of inclination of wave fronts.

Fig. 21. Plastic wavc velocities as function oF angle of

inclination of wave fronts. Poisson's ratio,

v = 3.25.

Fig. 22. Normal stress, ail , of plastic wave as function of

velocity. Poisson's ratio, v = 0.30, inclination of

0
wove fronts, o = 51.6 0.9 radian.
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PART C

PHASE TRANSITIONS UNDER DYNAMIC CONDITIONS

M. H. Miles

I. Physical Considerations

The purpose of this paper is to survey our present

understandLng of shock induced phase transformations in solids.

It i,3 commonly observed that a stable crystal structure at a

given temperature and pressure becomes unstable upon change of

temperature or pressure. In general we expect an increase in

pressure to favor rearrangement of the atoms into a crystal

structure that minimizes the volume while an increase in tem-

perature favors an arrangement of atoms that maximizes entropy.

From the most fundamental viewpoint we would desire

to be able to predict in advance the equilibrium structure crom

the known properties of isolated atoms. This would entail the

many-bodied quantum mechanical calculations of the cohesive

energy for the various l.ikely crystal structures as functions

of pressure and temperature. unfortunately the cohesive energy

for the different crystal structures even far removed in

temperature or pressure from a phase boundary are not too

different. The difference is often o. the order of a percent

of the cohesive energy and this is within the accuracy of the

quantum mechanical calculation. It is doubtful if the fundamen-

tal approach is capable of reliably predicting in advance the

phase boundaries on a PVT diagram.

107
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Another less fundamental approach is to avoid the

quantum mechanics by using a model calculation based on an

assumed atomic interaction. Again the details of the calcula-

tion are complicated and only approximate solutions to the

model are obtainable. Even if the model seems to favor a

given crystal structure it is always somewhat uncertain if this

is due to the mathematical approximations or to the model itself.

Since effective forces between atoms extend beyond nearest

neighbor as evidenced by differences in cohesive energy between

hexagonalclose packed and face centered cubic structures, the

more tractable models are expected to be poor approximations to

the real binding forces.

A third approach is an engineering one based upon some

thermodynamical model for the phase transformation. Often this

approach is a combination of empirical and semi-eanpirical cor-

relations largely based upon experimental observations of a

particular system. A phase transition is feasible if the Gibbs

free energy for the rival structures are equal. We may indicate

this situation by showing the Gibbs free energy and enthalpy for

two Polymorphs as functions of temperature at constant pressure

and by showing the Gibbs and Helmholtz free energies of the two

polymorphs as functions of pressure at constant temperature.

Confidence in this approach necessitates accurate calculations of

the required thermodynamic quantities or at least a useful

representation of the necessary thermodynamic quantities

empirically from experimental observations. A partial solution
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or at least a useful classification of phase transfer,nation is

obtained with the aid of the Clapeyron equation. The Clausius-

Clapeyron equation gives the variation of the transition pressure

with temperature. This requires accurate calculation of the

volume change and entropy change but useful information is

obtained if merely the sign of the entropy and volume changes

can be obtained.

In attempting to understand shock-induced phase trans-

formations one would like answers to such basic questions as

(1) why does the transformation occur, (2) what is the mechanism

for the transformation, and (3) what differences exist in static

versus shock induced transformations. We have touched upon some

of the difficulties pertinent to the first question. In dynamic

shock the shifting of atoms to a new structure must occur in

times of the order of the transient pressure duration. This time

is short being of the order of microseconds. The situation

under dynamic shock may well be influenced more by the kinetics

than by the equilibrium thermodynamics of the transformation.

Since4 our present fundamental understanding of the

stability of solids is in a rudimentary state, it seems advisable

to carefully review the present experimental knowledge concerning

pressure induced phase transformations. The "130-kbar" poly-

morphic transition in iron has attrazted considerable static and

dynamic experimentation. The first observation of this polymorph

was reported in 1956 in the shock-wave investigation of Bancroft,

Peterson, and Minshall. I For some tiie the nature of the
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transformation was considered to be the bcc to fcc (a to y)

transformation of iron such as occurs at 9100C and atmospheric

pressure. Several investigators 2'3'4 investigated the a to Y

phase boundary out to pressures of about 90 kbar. The tempera-

ture dependence of the phase line around room temperature was

investigated by Minshall5 under dynamic conditions which seemed

inconsistent with any reasonable extension of the a to Y phase

line. This led Fowler, Zukas, and Mi'ashall 6 to question the

alpha to gamma transition suppositior. Johnson, Stein, and

Davis7 reported in 1962 shock compression results on specimens

in the temperature range of 70°K to 1158 0K. For temperatures

up to about 500°C results similar to Bancroft's were obtained

while above 5000 C a transition that was much more pressure

dependent was indicated in fair agreement with the low pressure

a to Y statically determined phase boundary. Johnson's et al.

temperature-pressure data together with microstructual observa-

tions suggested a triple point at about 110 kbar and 5000 C.

They concluded that the low pressure, high temperature phase line

was the alpha to gamma transition while below 5000C the trans-

formation was from a to an "x" phase different from Y,being

most likely hcp.

Balchan and Drickamir 8 obtained the phase change stat-

ically,observing a sharp change of resistance at 133 kb and 200C.

The first high pressure X-ray investigation was performed by

Jamieson and Lawson.9  In the high pressure phase region at room

temperature they observed an extra X-ray line that agreed with



known volumes significantly betrer if itwee assigned to an

intense hcp line rather than to a corresponding fcc line.

Later improved X-ray work by Clendenen and Drickamer10 and by

Takahashi and Bassett established that the high-pressure

phase at roam temperature was indeed a hexagonal structure.

More recently Bundy1 2 has confirmed the pressure-temperature

phase diagram for iron placing the triple point at 110 ± 3 kbar

and 490 ± 100 C. Bundy calibrated his data by assuming that the

110 kbar assignment by Johnson et al. for the triple point was

correct. The justification being that their room temperature

data correlated well with the 130 kbar u, 6 shock transition

of Bancroft.

Loree et al. 13 has recently studied the dynamic trans-

formation for pure iron obtaining for the best value for the

onset of the dynamic transition 129 ± 1 kbar at room temperature.

Earlier transformation pressures appear to be too high for two

reasons: (1) the possibility of overdriving the transformation

with excessively high input pressures, and (2) the samples were

not annealed. It is expected that annealed samples would have

the lowest elastic wave and therefore the lowest transition

pressure. This seems to be indicated by the work of Loree et al.

It is interesting that Bundy has presented evidence that

dynamic and static pressures for initiation of transformations

are identical for pure iron but the static pressuzes for iron

alloys of V and Co show muach larger increases compared to the

dynamic pressures as the percentage of V or Co is increased.

The difference at 20 wt % Co is hugebeing about 288 kb statically
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compared to 136 kb for shock.

Another transformation with considerable static arid

dynamic experimentation occurs in bismuth. Duff and Minshall 5

were the first to observe shock induced phase change in bismuth.

Their shock data for specimen temperatures of -.270, 420, 870,

and 2360C indicated a transition about 3.5 kbars higher than

the statically determined phase diagram of Bridgman. The slope

of the shock data was -50.8 bars/°C compared to the statically

determined slope for the Bil to Bi II phase line of -50 bars/°C.

On this basis it was assumed that the high pressure phase was

Bi II even though the samples were subjected to shock pressures

far into the Bi III static equilibrium region. The 236°C shocked

crystal was driven into the liquid bismuth region of the

equilibrium phase diagram. Since melting is considered to be

a slow process compared to shock pressure durations and there

apparently was no evidence for melting, it appears that this is

a clear example of a shock-induced transition to a thermodynamically

unstable crystal lattice instead of to the stable liquid phase.

Larson 16 has repeated room temperature shock investigation of

bismuth. Larson measured the sample pressure using quartz

pressure gauges whose readings were calibrated assuming linear

Hugoniots for bismuth and quartz. After adjusting the observed

dynamic transition pressure to an effective hydrostatic pressure

Larson achieved a transition pressure of 25.4 kbars for isotropic

bismuth and 25.9 kbars for large grain cast bismuth. There was

no overdriving of the transition pressure e-en for samples down

to 1.5 mm in thickness. Since the transit time of the shock
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wave through such a thin sample is less than a microsecond, the

characteristic time for the transformation is much less than a

microsecond,being perhaps of the order of a few nanoseconds.

The static transformation pressure at room temperature has been

determined to excellent precision by Kennedy and La Mori 17 to

be 25.4 t 0.1 kbar. It appears that bismuth and, perhaps also

pure iron,cannot be overdriven even for very thin specimens.

The importance of sizeable shear stress in reducing the

nucleation and growth times is suggested by comparing the shock

results with the pure hydrostatic pressure results of Davidson

and Lee. 18 Delay times for initiation of the high pressure

phase of the order of several minutes were observed for both

poly and single crystal bismuth followed by slow growth of the

high pressure phase. The transition pressure and transforma-

tion rate were found to be independent of the presence of grain

boundaries. It seems that for very low shear stresses and

pressures only slightly above the transition pressure that the

transformation favors thermally activated nucleation and growth

processes. However in the shock data for bismuth the new phase

must nucleate extremely fast and the new phase must propagate

in the shocked sample with a velocity close to the sound velocity.

Other materials such as antimony relax into a new

structure much more slowly than iron or bismuth. Minshall's

work on antimon, referred to by McQueen19 showed overdriving

of the transition pressure for samples thicker than 20 mm.

Warnes 20 has recently confirmed and extrnded Minshall's earlier

F
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, work. Apparently the overdriving is due to delay in nucleation

or an initial slow growth process. It is reported by the data

of Breed and Venable21 from the PHERMEX facility that X-ray

photographs show that the plastic-two wave forms at the sample

interface and accelerates rather slowly to its characteristic

velocity. This gives a i.ime dependent phase transition with

the plastic 2 wave being delayed about 0.6 microseconds.

It is obvious that the short duration of the transient

pressure pulse places severe limitation on any mechanism of

transformation that requires appreciable time. This suggests

that shock-induced transformation should be considered to be

classified as Martensitic among the vast literature of solid

transformations. Certainly any growth by diffusion of atom by

atom across the interface simply requires orders of magnitude

too much time. The individual atoms must undergo a correlated

relative movement of somewhat less than one interatomic distance.

This correlated atomic shuffles or movements are similar to what

occurs for example during mechanical turning. There are many

examples of temperature induced Martensitic transformations

that are fast enough to suggest that similar atomic shuffles are

initiated by pressure pulses. It is felt that a study of the

Martensitic transformations will shed light upon the transforma-

tion process and that shock studies may well prove a useful

approach in understanding the martensitic transformations.

The most obvious characteristic of the martensitic

transformation is the so-called shape deformation. This reveals

itself in rather well-defined surface distortions. These surface

.... .. .
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relief effects usually indicate that straight lines in the

crystal are transformed into straight lines and planes are

transforoiei into planes. It is also known that the martensitic

phase even though it has a different crystal structure has a

definite lattice orientation relationship to the parent phase.

The particular plane of the parent structure called the habit

plane separates the two phases. For convenience we will make

two classifications of martensite transformations. The most

common is perhaps the platelike martensite which forms from

numerous nuclei in a crystal with each plate apparently growing

independently into a distinct plate. There is also a "single-

interface type" martensite which occurs in some materials such

as Au-Cd alloys. In a single crystal the parent-product inter-

face extends completely across the crystal so that the interface

plane does not experience the volume constraints present for

platelike martensite formation. The boundary between the parent

phase and the region of product phase is planar for a single

crystal. Included regions of platelike martensite are usually

lenticular in shape. The shape deformation of martensitic

plates constrained by the parent matrix gives rise to strain

energy that may be very large so that further growth is stopped.

Additional growth upon cooling does not begin until the chemical

driving force can overcome this strain energy. There may be

competing nucleation and growth processes which begin at smaller

driving forces giving rise to the oft observed martensite

appearing only during rapid cooling from above the transformation



temperature. The reaction starts at a characteristic temperature

(Ms ) which depends upon previous mechanical and thermal history

I and on grain size. For martensite in steels, the chemical driving

force is about 300 cal/mole but for other solids with smaller

shape change the driving force may be smaller. In general a

* i large driving force implies a large temperature hysteresis between

Ms for the cooling transformation and Md for the reverse trans-

formation upon heating.

If the chemical driving force is not large enough for

spontaneous transformation or even of the wrong sign, martensite

may sometimes be produced by externally applied stress. The

lattice transformation may be viewed as a mode of mechanical

deformation comparable with mechanical twinning. The shape of

the mechanical twins are often very similar to the shape of mar-

tensitic plates.

The crystallographic theory of martensitic transformations

as developed by Wechsler, Lieberman, and Read22 and a fundamentally

Macknzi 23
equivalent theory by Bowles and Mackenzie is essentially phe-

nomenological, concerned only with the crystallographic features.

The problem of nucleation and kinetics remains essentially un-

solved. The central aspect of the crystallographic theory is to

describe the proper initial and final atom positions and to satisfy

experimentally observed shape deformations with an undistorted,

unrotated habit plane. Using methods of matrix algebra it is

possible to transform one crystal structure into another but an

additional matrix is generally needed to give the correct shape

deformation and the invariant habit plane. P tysically the

I<



117

additional matrix represents twinning or dislocation slip. As

far as the theory is concerned there is no preference given to

the order of events between the lattice deformation and the

crystal deforwation or between the choice of slip or twinning.

Under shock conditions it is not known if the phenom-

enological theory applies. Both elements of a crystal deforma-

tion and lattice deformation are expected to exist under shock

conditions since the solid has been driven into a region of
plastic relaxation prior to relaxation into the high pressure

crystal structure. The restrictions of a specific shape

deformation and an undistorted, unrotated habit plane may or

may not remain for shock conditions.

In discussing the kinetics of martensitic transformations

it is often the nucleation rather than growth that is rate

determining. The work of Bunshah and Meh1 2 4 on mn ron-nickel-

carbc., alloy indicates that the linear growth of individual

plates is about one-third the velocity of sound in the alloy.

The velocity was observed to be independent of temperature in

the range -20° to -200°C indicating that the growth was not

thermally activated. This interpretation does help in under-

standing athermal martensite where the nucleation rate is a

function of temperature independent of time and the understanding

of isothermal martensite where the nucleation x:ate for a partic-

ular temperature is time dependent. In shock, if there is a

delay iv nucleation of the high pressure phase we should expect

a high pressure precursor to the relaxation, due to phase change,

which decays at a rate depending upon the nucleation delay time.
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Warnes20 has suggested that as some of the material behind the

shock begins to relax into its higher-density form, rarefaction

waves are emitted. The forward rarefaction overtakes the over-

t ! driven shock thus attenuating it, The progress of the plastic 2

wave is being delayed by the relaxing material ahead of it.

When the nucleated region relaxes to a state on the Hugoniot

near the transition pressure,emission of further rarefaction

is no longer possible. The plastic 2 wave is presumed to now

-proceed with its characteristic velocity.

At present we have little or no understanding why a

given phase transformation behaves as observed. What seems

totally lacking is any detailed plausible models for initiation

of a new phase and the subsequent kinetics of growth yielding

the plastic 2 wavefront. The role of crystal defects in

nucleation of the new phase seems so far essentially unexplored.

There is need of further data especially on the simpler

solid state systems. For example the simplest martensitiL

transformation is from a high temperature fcc phase to a low

temperature hcp phase as found in cobalt. An evaluation of

plausible mechanisms for phase transformations seems in order.

Useful theoretical preposals should be amenable to experimental
evaluation and sufficiently realistic to be taken seriously by

shock wave experimenters.

II. A Simple Martensitic Model

Suppose that each grain of mean diameter d has No

nucleation sites distributed around its boundary and that N(P)

of these are activated at pressures less than P. Suppose
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Fig. 23

Platelet of Phase 2 in a Grain of Phase I
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I further that once a site is activated, it generates a platelet

of vol,:.me ad which runs across the grain in time d/c, where

c is sound velocity in the original material, Fig. 23.

V "For simplicity take the densities of old and new phases

to be the same. Then when the first platelet runs across the

3grain it transforms a mass fraction ad/d to the new phase.

As transformation proceeds, the amount of mass transformed by

activation of each new site is reduced. Assume that when a

fraction X has been transformed, activation of a new site

increases X by an amount (l-X) a/d2. Then for very slow

increase in pressure, X can be assumed to equal its equilibrium

value, Xeq. Then

dkeq dN (l-Xeq)a

d-P- = dP d2

or

Xeq = 1 - exp(-aN/d ) (2.1)

A graph of Xeq vs P might have the general features shown in

Fig. 24. At nowe pressure PI one would say the transforma-

tion startd. xAt P2 it would be effectively completed.

If we now forego the earlier assumption that the two

phases have equal densities, the curve of Fig. 24 can be converted

to a P-V curve, as in Fig. 25. Here OAC and QBD are compression

curves of phases 1 and 2, respectively. OAB is the curve obtained

by plotting the average specific volume, v, against P, where

v = (1 - X)vI + Xv2  (2.2)

. .. . . . . . . . . . .... .... . ..
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~j and X is taken to be Xeq of Eq. (2. 1) and Fig. 24. The slope

of OAB at any point can be determined by differentiating

Eq. (2.2) and combining with Eq. (2.1):

dv dvI  dv + dN
- (1X ) +X ~i+(~.v) -(1 X )(2.3)-P eq)- + eg dp (v2-vl) eq)

If dvl/dP = dv2/dP and v2 - v] = Dv = constant, this

reduces to

dv/dP = (dvl/dP) + Dv a(l- Xeq)(dN/dP)/d 2  (2.4)

In its integrated form, Eq. (2.2) is

v = v 2 + (v - v2 ) e "aN/d (2.5)

If pressure increases very rapidly the growth of plate-

lets may fall behind the pressure increase, so X may have

other than its equilibrium value. Suppose, in Fi 25, that the

system is at some point A and that P is suddenly increased

to P + 6P at B. Then the number of activated sites is in-

creased to N + (dN/dP)6P and X starts to increase toward

point C at the rate

dt dN O = 6X c/d

dE d7 1 d3 eq(26

( - Xeq)C/d (2.7)

by Eq. (2.1).

Eqs. (2.1), (2.2), (2.5) and (2.7) compose a phenomen-

ologically completedescription of the transition process for
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incorporation into the flow equations. In order to illustrate

some of their features, note first that d/c in Eq. (2.7)

plays the role of a relaxation time. For d 0.1 mm and

c = 5 mm/Psec, this becomes T* = d/c = .02 PIsecs, a much

shorter relaxation time than was reportel by Novikov et al.
25

and one which would play little role in shock observations.

The equilibrium curve, Eq. (2.5), can be illustrated

as follows for iron: Take

N (No/2)Ll + tanh((P-P)/IAe) (2.8)

I (vo/v) - 1

P(v) 1.667 P1 + 3.4 2

Av = vl-v 2 = .00596 cc/g

v° - .1275 cc/g

Pm  .175 megabars

No , c/d2 and AP to be varied

The results of these computations are shown in Fig. 26.

The parameters for each curve are given in Table 2.1. It is
apparent that the equilibrium curve can be shifted quite

arbitrarily in the transition region with even such a simple

model as this. Since thermodynamic calculations give almost

horizontal adiabat and Hugoniot curves in the mixed phase region,

it is couctivable that careful shock measurements in the mixed
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Table 2.1

Parameters for Fig. 2.1

Curve AP N a/d2

Number Meoabars 0

1 .315 100 .05
2 .01 100 .05
3 .02 100 .05
4 .015 200 .05
5 .015 500 .05
6 .015 100 .1
7 .015 100 .2

phase region can be used to shed light on deviations from

thermodynamic equilibrium.
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