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ABSTRACT

An equation of state suitable for calculating the
compression of a melting solid is described. Some elementary
ideas about melting are reviewed and some standard relations
between P and T in the melting region are described. The egua-
tion of state and melting law are ccmbined in a program for
calculating the Hugoniot through the mixed phase region. Results
are described for lead, which melts at a shock pressure of about
400 kilobars with a Kennedy equation and 700 kilobars for a
Simon equation.

The Eyring theory for equation of state of liquids is
examined for argon, and Hugoniot cuxves are calculated. Cal-
culations agree with the most dense case of van Thiel and Alder
to 13 kilobars, then depart dramatically from measured values.

The theory of plastic wave propagation in two-dimensions
is discussed and calculations of allowed directions are described.
These will ultimately be of use in discussing the reflection of
obliquely incident waves in an elastic-plastic medium.

Some of the basic physical mechanisms in solid-solid
phase transitions are reviewed and the applicability of thermo-
dynamics to such transitions is brought into quescion. An
elementary model for a non-equilibrium transition in irom is
suggested and p-v calculations are made for several values of
the parameters. 1t Is evident that no conclusions about the
time dependence of the o-€¢ transition can be drawn from second
state shock measurements, although it may be possible to infer

useful information about metastable states.
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This project, since its inception, has been concerned

A KRR AT S A iy

with problems of equations of state, constitutive relationms,

phase transitions, and wave propagation. These are large prob-

G AT s kg ngp e T e =

B

lems, not to be wrapped up and put aside in one-year packages by
the part-time efforts of one man, or of several men. Instead,

once having got started they stick in the mind and bits and

TGRS 2 R

pleces of new understanding or new accomplishments come along,

w
s AL LA AOAD Y AR Y b o, s f P &0 TANENL S 28

MRS (bt

i sometimes in unexpected directions. When it comes time to put

ey

these together in a summary report at the end of a year, their

unity 1s not always apparent; it is not always clear that they

iRt S 2 B

: are parts of a whole which isn't very easy to subdivide. So it

S i

is with the present report; so it is presented in three distinct

parts as it was worked out by three different men working on the

IRY ot

problems and their assistants.

Part A deals quite directly and clearly with the stated
objectives of the contract; it comprises a relatively straight-

forward and tedious calculation of the equilibrium shock Hugeniot

]

5

of a melting solid. In the process of doing this calculation the
author has experienced some revealing insights into the features

i of a total equation of state, and a side excursion into the theory
of equations of state of liquids mas shown that the Eyring Sig-

nificant Structure Theory may be amenable to medifications which

kl RN = <7 A& ERTSLIS X

[V - —— - - rw—e—— W e e e o i m——  — p— - e

N



R E AT i~ » S I

SN Ay STl e bl AT

LN e Ty
A N
MR ;

would lead to a total equation of state, when coupled with
suitable data.

Part B is a beginning, an introduction to the quite com-
plex subject of propagation of multiple waves in anelastic,
yielding materials. It shows even at this beginning stage that
the mechanics is more complicated than we believed when we
thrught only of plane waves following parallel plane waves. In
its present stege 1t begins to provide a foundation for undexr-
standing wave structures in more realistic solid models than have
been heretofore commonly used. It may even eventually provide
for better interpretation of experiments and lesigns for experi-
ments.

Part C is something quite different--a summarizing of
physical ideas about the causes of phase transitions and the mech-
anics of their occurrence. The metallurgist has long been aware
that equilibrium thermodynamics plays only a minor role in solid-
solid phase transitions. The thermodynamicist and the physicist
are just beginning to learn this. This summary suggests an
elementary model for martensitic phase transition. A calculation
for iron shows that the quasi-stable p-v relation in the mixed
phase can be varied almost at will by varying the assumed metal-

lurgical parameters.
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PART A
SHOCK PROPAGATION AND MELTING
G. E. Duvall

I. Melting Phase Boundaries in the P-V Plane

In Fig. 1, let OCFGBJ be the coexistence region for
solid and liquid; 21 is the solid phase and @, is liquid.
Suppose ABCD to be the Hugoniot. We wish to determine first the
phase boundaries GBJ and FCO in terms of known quantities.

The transition is first order, and at equilibrium the

Clausius-Clapeyron equation obtains:
dP/dT = 4S/aVv = BH/TavV = £(P) (1.1)
AV = VZ(P,T) - Vl(P,T) (1.2)

The rate of change of entropy with temperature on the phase

boundary JBG is
ds,/dr = (Cpl/T) - (aV/BT)pl(dP/dT)
C,p (dB/dD) (4T/TaP) - (L/C,)) (2v/2T) ) | (1.3)

where subscript "pl" denotes a quantity evaluated at constant

pressure, in phase 1, on the phase boundary GRJ.

We assume that Cpl >0 and (BV/BT)pl >0 . Then if
dP/dT < 0 1in the mixed phase region, R, it follows that

dSl/dT >0 .

ERAGURAY S 200 B e 2 N R BN AN

.
23
b
[
5
E:
3
5

T o 23, S e e ot 422 2 3,

Aai b op oo, b s, I R K o ea L

A& SN o 2t e




e oo Loy o lli B b L o

.o~ et g e St T e S, gt

(Liquid)

PN N -
!
@
e
O :
o §
c )
3 .
o :
a
A - ]
~ . @ i
N o w
o
) & ——"" L £
Q.
on
c
w =
- ——
[~}
b3

G\

¢|

(Solid)
——.—-—)V

; . i ..[E.n.xr—lb
el a0 o e b S il i S tie el g s e N e e S i icernh i S it i i A PR i TIPS, o Gk




Ay ] Wv—'« R ART o T e

SR A &

Vg e :M..@g.m »

e R

-~

.é
3
4 i i:
If dP/dY > 0, the sign of dSI/dT depends upon the magnitude i E
of dP/dT: -
dT/dp > T(av/aT)pl/cpl i
ds;/dr > 0

dT/dP < T(BV/aT)pl/Cpl
ds;/dT < 0 .
We may summarize these relations as in Table I. defining three :
distinct types of phase transitions. ?
Table 1 1
Classification of Phase Transitions ;
Bo= V-V, = V, -V, >0 ?
Type of a :
Transition d:’l/d’r dP/dT 58 3
I >0 <0 <0 :
II <0 >0 >0 E
111 >0 >0 >0 i
k-
In terms of observables at the melting point, the defining %
conditions are %
;
dP/dT < 0 Type I !
. Type II :
dp/dT > 0; AV _/BH_ < (av/ar)pl/cpl yP ?
. Type 111 ;
dpP/dT > 0; AVm/AHm > (av/a'r)pl/cpl yp -1
-
-




NIV

St

where AVm = Vliq - VSol = volume expansion on melting

OH

m

latent heat of melting.

()]
Vo s Pk s, AL ABAI D TR S A AR N

In this way melting tramsitions for which 4V > 0 are
*
divided into three exhaustive categories. The Metals Reference

Handbook shows that Type II1I prevails among the metals (Table II).

e St At b i ek B it i

Of these three categories, II and III may be considered normal,

P

i.e., S increases on melting.
The relative slopes of isotherm, adiabat, and phase '
boundary wmay be found as follows:

In the solid »hase;

(aV/aP)Sl = (BV/BP)T]_ + (BV/aT)Pl (aT/aP)Sl (1-4)

Also, the slope of the phase boundary may be written as

;
3
;
E
1
1
f’i
5
:
3
3
;‘3
:;:
z
P
3
3
]
g

i dv,/dP = (3V/3P)y, + (3V/3T)p, (dT/dP) (1.5)

For transitions of Type IIIl:

b —-—
: (3T/3P)g; = T(3V/3T)y,/Cyy < dT/dP (1.6)

; if Cpl and (BV/BT)p are both positive.
Substitution of this inequality into Eq. (1.5) and comparing with
Eq. (1.4) yields the result

D el bty

dv,/dp > (3V/3P) 4, (1.7) %
' Adiabats in the solid phase exit from the coexistence region ;
i with negntive slope and increasing pressure. 5
1 A closely related treatment has recently appe n the g

-r
literature. See Ref. 1. However, the author assign
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The three types of transition can also be characterized 1
in terms of the relative slopes of isotherms, adiabats and the S
cylinder defining the mixed phace region in P-V-T space. First
construct the P-V-T surface for the solid, extending it to
arbitrary T in a metastable state. Suppose the mixed phase
cylinder to be degenerate, i.e., a plane, in order to simplify

the description. The plane always lies parallel to the V-~-axis.

When it is also perpendicular to the T-axis, its intersection '

with the P-V-T surface of the solid, i.e. the phase boundary,
coincides with an isotherm of the solid. This is the case
dT/dP = 0.

If the plane inclines toward smaller T as P increases,
dT/dP < 0 and the transition is of Type I. If it inclines
toward larger T, it describes first Type II in which the phase
boundary splits the isotherms and adiabats and then Type III in
which both isotherms and adiabats issue from the phase boundary
with increasing P. These three cases are illustrated in

Figs. 2 and 3.
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II. Adiabats in the Mixed Phase Region

Adiabats in the mixed phase region are shown in the

P-V plane in Fig. 4. The entropy at point C is:

Sc = Sy + jz (dS,/dP)dP + xbS (2.1)
where
x = (V-Vl)/(VZ-Vl) = fraction of mass in phase 2
at point C (2.2)
88 = S(B') - S(B) (2.3)
v = v(C), VZ = V(B'), Vl = V(B)

Differentiating Eq. (2.1) yields

(ds, /dp) + (85/0v)((3V/2P) g - (dv,/dP))

+ (V-v;) d(as/ev)/dP = O (2.4)
where (BV/BP)SM = adiabatic derivative in the mixed phase

region, R. Neglecting the last term in Eq. (2.4) yields an

expression for the adiabat

(av/bP)SM (dvl/dP) - (dSl/dP)(dT/dP)

2
(3V/3P)qy + 2 (3V/3T)p,(dT/dP) - Cpl(dT/dP) /T (2.5)
The discontinuity in the slope of the adiabat is

(3V/3R)g; - (VARG = [(1/C,)% (2731 - (0, /T

(ar/ap) > > 0 ; (2.6)

v W o
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Fig. 4

ADIABAT IN MIXED PHASE REGION
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i.e., the adiabat is always discontinuous at the phase boundary

and the sign of the discontinuity is such that

| 9B/3V | > | PR/ |gy - (2.7) *

III. Construction of the Hugoniot

We suppose the material to be shocked from a point in
the solid state to a final state which may lie in the solid, in
the mixed phase region, or in the liquid state. 1It is not
known in advance whether the final state is reached through
single or multiple shocks, consequentliy it is most appropriate
to construct the Hugoniot incrementally, examining at each step

to determine whether or not a new shock is initiated.

A. Solid Phase Hugoniot

The differential equation of the Hugoniot curve for an

equation of state of the form of Eq. (4.1) in a single phase is (1*

ap/av = [(3r/av)g + (T/2v) (B - B J/[1 - (/) (v, - V)] (3.1)

where (P_, V_,) is the initial state and I is the Gruneisen
ratio. We now consider whether or not a single, stable shock
to pressure P1 will also be stable to Pl + 6P ., Since a
single shock from Po to P is assumed to be stable, the Rayleigh

line connecting (Po, Vo) with (Pl, Vl) intersects the Hugoniot

curve only at those two points;

* *
Numbers in parentheses reference to references on
pp. 39-40.
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then

- dP/dv)RH,Pl_ 2 (Pl-Po)/(Voz-Vl) (3.2)
Here Pl_ denotes the slope on the lower side of the point
Py, ¥y if the Hugoniot is discomntinuous there. 1If the point
P, t oP1 is also to be attained through a single shock,
Condition (3.2) must hold on the upper side of P., denoted

+

by Pl :

Substitution of Eq. (3.1) into (3.3} yields the condition for

stability:

La2/-u)? - TV V) /v | 1 (L - (T 2V (V,mV) ) 2 1 (3.4)

e TN o 0 T bl At s g St woen 2

where

2 _ o2

aj = Vl (BP/BV)S,P1+

Wy-u)? = V2 (=P )/(V_,~V,)

1™ 1 Y17 Ve M) ]
1f r(vbzvl)/zvl < 1 the stability condition further reduces to ;

2 2
al/(U'Ul) )Pl+ 2 1 (3.5)
B. Mixed Phase Hugoniot

In Fig. 6, the region ABCD denotes the part of the mixed

phase region through which the Hugoniot passes. F is the inter-

section of the solid phase Hugoniot with the boundary between

T T e e e e . . e o




13(a)

M
3
3
it
P
4
=
*
,«j
i
<

i ———
.

b et Ay S e

\d{.’t av d.l’F
N (g}dp v,

Solid v, v Ligquid

AT Shlch i} Rk ARt

L eyl

: —V

Fig.6

Hugoniot in the Mixed Phase Region

s (o ypm ‘~i ot g g T g b2




14
solid and mixed phase. G is a point on the mixed-phase
equilibrium Hugoniot. The enthalpy difference between G and

F can be written
J -
Hg - Hp = jF (dH/dP)GE © 22(Y-V,)/(V,-V,) (3.6)

where dH/dP 1is the variation of enthalpy along the phase
boundary and A8H(P,T) 1s the enthalpy difference between liquid

and solid at pressure P, temperature T:
AH = T(‘, -V ) dP/dT = H') - Hl . (3'7)

The Clausius-Clapevron equation has been used to obtain this

result. Substitution of Eq. (3.7) into (3.6) yields the result

- H = H

H F 7" Hp + T(V-Vl)dP/dT . (3.8)

From the Rankine-Hugoniot relation we have, for a single shock

from 0 to G:

H; - H, (P-Po)(V02+V)/2 (3.9)

Combining Eqs. (3.8) and (3.9) yields the result:

(P-PO)CV°2+V)/2 = H,+ T(V-Vl)(dP/dT) - H, (3.10)

J
Differentiate Eq. (3.10) to obtain:
dr/av = ((1dp/dT) - (P-P_)/2)/(A" + B') (3.11)

A' = (V_,"V)/2 - T(V-V,){dT/dP) (d%p/dT?) (3.12)

B' = vy - dHl/dP + T dVl/dT (3.13)
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v, - dHl/dP = T(BVl/BT)P - cpl dT/dp (3.14)

where subscript ''l" denotes quantities evaluated in the solid

phase at the phase boundary. Two further relations gre

required:
TdVl/dT = T(avl/aT)P + T(BVl/BP)T(dP/dT) (3.15)
cp1 = Cy; * T(3P/3T), (3v,/3T)y (3.16)

Substitution of Eqs. (3.14)-(3.16) into (3.13 yields:

B' = z'r(avlla'r)P - Gy dT/dpP - T(BPl/BT)V (avllaT)P (dT/4pP)
(3.17)

Combining this with Eq. (3.12) yields
A' +B' = B - A

where
2T(3V,/3T)p + T(3V,/3P) (dB/AT) + (V_,-V)/2 (3.18)

o]
i

o = (g * (R /OT), (eV/AT), + T(V-V,) (a%P/dT?) ) (dT/dP)
(3.19)

Then
dp/dv = ((P-Po)/z - TdP/dT)/(A-B) (3.20)

Equation (3.20) is equivalent to one given by V. D. Urlin and

A. A. Ivanov in Ref. 2.

C. Liquid Phase

At the boundary between mixed phase and liquid phase
a test must be made according to Eq. (3.3) to determine whether
c s

or not a single shock into the liquid phase is stable. If it

is, the integration is continued to higher values of P, using
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the generalized form of Eq. (3.1):

ap/av = ((3v/3v)g + (P-P_)(3B/3T)/2C,) /
(1 - v vy @RATY/2c,) (3.21)

IV. Equations of State

A. Solid Phase

Calculation cf the Hugoniot curve through the solid and

mixed phsses can be accomplished using only the equation of

state of the solid. Since both the Hugoniot and the phase

boundary must be calculated in the P~V plane, the equation of

state must be compl~:te and internally consistent. For simplicity

we choose a Mie-Gruneisen equation with Debye variations of

thermal energy. As we shall see, this produces some disagreement 2

with measurements, but for the present we ignore these for the

sake of theoretical consistency. The Mie-Gruneisen equation is

BV,E) = Be(V) + (I/V) (BQV,T) - Eg(V) (4.1)

where PK(V) and EK(V) are pressure and internal energy

on the 0°K isotherm, and I is the Gruneisen parameter:

L(v) = (v/¢y) (3P/3T)y (4.2)

where Cy 1s specific heat at constant volume. Following

TN I -

Rice, McQueen and Walsh (13) we write:

Be(V) = Pe(w) = by +bye® + b + By (4.3)

Lo s 3212 A A S R E AN L 2t I
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rw)y = a + ae + azuz +‘a3u3
o= (V/V) -1 = (p/p,) -1
Vo = specific volume at P = Po’ T = 5%k
The difference E - Ey = Eth is the thermal energy:
Eth = 3RT D(6/T)

where € 1is the Debye temperature, R is the gas constant

divided by the molecular weight, and D(8/T) is the Debye

function:

8/T
p(3/T) = (3/(¢/1)3),
o]

x>/ (exp(x) - 1))dx .
For small values of ©/T, D can be expanded in series:

D > 1 - .375 (8/T) + .05 (8/T)?

This is accurate to .3% for 6/7 < .3

The Debye temperature is related to the Gruneisen

parameter by the equation

d4né/dinv = -T

Using Eq. (4.4) for T, this integrates to
8 = 90 exp((ao-al+azva3) tn(p+1)
+ (al-a2+a3)u + (az-a3) u2/2

+ a3u3/3)

(4.4)

(4.5)

(4.6)

(4.8)

(4.9)

AN YT AN B ML i 25 22 N B &
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The specific heat is defined as

Cy = (8 Eth/3T), (4.10)
= 3R(4D - 3(8/T)/(exp(8/T) - 1)) (4.11)
~ (1 - .0s(e/m)?) . (4.12)

In calculating the Hugoniot, we shall need some
thermodynamic coefficients which can be calculated from the

above equations:

AT/ /dv = - (V/V3)(a +2ap + 3amm?) - T/v (4.13)
(3 Eth/3V), = 3R D' dé/av (4.14)

= o 3rr6(-.375 + .1(8/T))/V (4.15)
D' = dp/d(e/T) (4.16)
dB/dV = (<V_/V2) (b, + Zbys + 3byu?) (4.17)
(3R/3V) ; dPK/dV + Ep d(T/v)/dv + (F/V)(dEth/BV)T (4.18)
(V/eT)p = - TCy(3V/3P)_ /v (4.19)
(3B/3V)y = (3B/3V), - T2 ¢ T/v? (4.20)

B. Liquid Phase

One of the most promising theories of the liquid state
for computational purposes is Henry Eyring's 3ignificant Structure
Theory (Ref. 9). The essence of the theory is that a liquid

consists of a solid containing holes of atomic dimensions, and

——— -
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that the holes behave like the molecules of an ideal gas. 1In
order to test it at high presenres. isotherms, adiabats and
Hugoniot curves for argon have been caiculated from it and the
last compared with measured values reported in the literature
(Ref. 12). The two agree remarkably well at low pressures,

but the theory fails to properly account for the energy of cold
compress.on and the computation fails at higher pressures (> 12

Kbars for the highest initial density). These computations are

reported in Appendix B.

Various authors have used simplified versions to describe
liquids at high pressures. In the present application the

theory is used in its simplest form:

P(VE’T) = PK(VS) + (rs/vs) Eths(vs) + nhkT/vﬂ (4.21)
E, = E +E (4.22)
Eh = (3/2)nhkT (4.23)
nh = N(V'q"‘vs) /MVS (4.24)

where subscripts "s,"” "h," "4," denote solid, holes, and liquid
respectively; N 1s Avogadro's number, M is molecular weight

and k 1is Boltzmann's constant. Substituting Eq. (4.24) into

(4.21) yields
P(V,,T) = P (V) + (T /V) E (V) + RT(V,-V ) /MV,V_ (4.25)

Equation (4.25) does not contain an interaction term between

holes and molecules, though that is important in Eyring's theory.

:
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However it may be less important at high pressure than proper
treatment of the solid compression.
The above equations are supplemented by an expression

for AVm , the change of volume on melting at constant

pressure:
oV, = AH(dT/dP)/Tm = V,-Vg (4.26)

With these equations the Hugoniot can be continued into the

liquid region.

V. Melting Equations

Attempts to predict melting parameters from atomic
theories have been many and varied. The earliest one normally
noted is that of Lindemann in 1910 (Ref. 4). Assuming an
Einstein model of a solid with single vibration frequency f,
suppose that the amplitude of vibration increases with temperature,
and that when the amplitude reaches a critical fraction of the
interatomic distance, melting occurs. Equating the energy of

vibration to the thermal energy of the crystal leads to an

equation of the form

- 2 ,2/3 .
3R Tm = C £ Vi M (5.1)
where Tm = melting temperature, VN = molar volume at Tm,
M is molecular weight, and C is a constant. By writing
2
4n‘f2 = k/m , where m is atomic mass, and setting the energy

of an oscillator equal to k(r - ro)2/2 , where r - r, is the

o oo E = .

PERAMEIE [ PET
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deviation of interatomic distance from equilibrium, we obtain
e = k(r -r )2/2
o)
k = aZe/dr?.

Identify the oscillator energy, e, with the molar energy,

i s of cold compression by the relation

3 Ek = 3Ne = Ek(V)

Then Eq. (5.1) can be converted to the foilowing relation:

K o CAT A LTI T o

RT 3M02V2(d2Ek/dV2)/2 (5.2) 4

A v2 d2 Ek/dVZ (5.3)

where V = specific volume as in Section 4, Ek = specific
internal energy, o = fraction of interatomic distance at which
melting occurs, and M 1is molecular weight. Eq. (5.3) is the
form given by Urlin and Ivanov in Reference 2. They also

propose an alternative melting law in the form

b L e b

L Vm/Tm Avm = Ra (5.4)

where L = latent heat of fusion, Vm = specific volume at
which melting occurs, Tm = melting temperature, AVm is volume
change on melting, and Ra is a constant. This is a modifica-

tion of the Lindemann formula which can be seen as follows:

2 2 .
d°E, /dv (-dPk/av) _,

- b1/Vo

:li, Gl Sl
|
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where the last expression is obtained from Eq. (4.17).
Substituting this into Eg. (5.3) yields

_ 2
RT = AV bl/vo

Differentiate with respect to P to obtain

RAT/dP = 2AV(dV/dP)b,/V_
or }
dp/dT = L/TAV x
4
= RVO(dP/dV)/ZAblv s (5.5)
which is of the form Eq. (5.4) with dP/dV assumed constant.
One of the most commonly used forms for the melting :
curve is Simon's equation (Ref. 5):
1 - C
: P-P +a = a(T/T) (5.6)
-
f where P and Tm represent one point on the melting curve and
é C and a are constants determined from the relations
! aC = T_(dP/dT). (5.7)
i1
% and
F a = (dB,/dV)5 g pog (5.8)
é according to Simon. Later work by Salter, using the Mie-
E Grlineisen equation of state, identifies C as
i c = (5rs+l)/(6fs-2) (5.9)
# where Tg is the Griineisen parameter of Eq. (4.4).
:

|
k!
!
3
-t
[
.
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A melting relation recently proposed By G. C. Kennedy

(Ref 6) relates volume on the melting curve to temperature:

- o
T, = Tm (1 + Cy AV/VO) (5.10)

where TmO is melting temperature at volume Vo and &V =
(Vo-Vm). Ross and Alder (Ref. 7) have cxiticized this as being
of lower validity than Lindemann's law and of giving too low
values of Tm at high compressions. Gilvarry (Ref. 8) suggests

that it is the first term in the expansion of the formula

Tm/'rm° = (vo/vm)z(ro’l/?’) (5.11)

where Yo is the Grineisen parameter at v,

At present it appears very much as if there is as much
justification for picking one rule as another, in the absence
of experimental data. In the calculations to be reported later

we use the Simon equation and the Kennedy equation.

VI. Calculation of the Hugoniot

The computing process is illustrated in Fig. 7. Volume
and temperature are assumed to be known on the phase boundary
and on the Hugoniot at pressure P. P is increasec to P + AP
and new values of temperature are calculated from Eqs. (5.6)
and (4.5). This allows calculation of the coefficients dv/dp
from Eqs. (1.5) and (3.1). Subscripts 1 and 2 refer to values

on the solid-mixed phase boundary and the Hugoniot, respectively.

Values of V1 and V2 are then determined from the relations

F?
i
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Fig. 7
Computing Procedure for the Construction

of the Equilibrium Hugoniot
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LE vy(2 +8P) = Vv (P) + ('5)((dV1/dP)P+AP + (dvlldP)P)AP (6.1)
; V,(P + 8P) = V,(B) + .5((aV,/dR),,,p + (dV,/dP)p)oR (6.2)
E The equations are iterated until VI(P + AP) and V2(P + AP)

do not change, then the process is repeated.

After each set of values (Vl’ V2) has been calculated, :

8 test is made to determine whether or not an intersection

;. between Vl(P) and VZ(P) has occured. 1If it has, the

Hugoniot Eq. (3.1) is replaced by Eq. (3.20) for the mixed
4 phase and the process continues, testing at each step to see if
the Hugoniot has entered the liquid phase. When it does, Eq. (3.21)

is used again with the equations of Section IVB for the equation

of state.

O Lok

A flow chart for the computing program is shown in
Fig. 8; definition of symbols and a program listing are given

in Appendix A.
The output of the program is illustrated in Figs. 9-13

i) 2

and in Table 3 for lead. Fig. 9 shows the total Hugoniof to
one megabar pressure using the Simon Equation. It enters the
mixed phase region from the solid at about .645 megabars and
leaves at about .675. Inspection of the curve shows that a

1 single shock will be stable at all pressures (elastic waves are
% ignored). This is verified by the slopes given in Table 3.

? The narrow mixed phase region and the small kink it produces

in the Hugoniot curve suggest also that melting will have a

small effect on wave propagation, even if it occurs in shock.
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This remains to be verified by incorporation of the model into

a one-D wave program.

Table III

Slopes of Hugoniots and Rayleigh Lines
at Melting Phase Boundaries

|dP/dVIHugoniot | BB/ (VW)
Megabar g/cc Megabar cc/g
P, Solid Liquid
Megabars Solid Mixed FThase Liquid Boundary Boundary
645" 67.4 107.2 .. 21.9
675" ... 114.1 52.6 - 22.7
.392T 39.0 37.2 ... 16.0 ...
L4287 ... 39.4 42.4 ... 16.8
* F ;
Simon Equation (5.6) Kennedy Equation (5.10)

Figure 10 shows the Hugoniot in the region of mixed
phase in more detail, again for the Simon Equation.

Figure 11 shows temperatures on the melting curve and
on the Hugoniot for the Simon Equation. In region A, where
the Hugoniot is passing through the mixed phase, the two
curves should coincide. That they do not reflects imperfections
in the equation of state.

Flaws in the equation of state are revealed when
measured specific volume of the solid at melting, v, o is

found to disagree with that calculated from the equation

T

7ol

Vopy = Voo +y (QV/3T)p p dT (6.1)
o)

T02
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where T , is room temperature; V o, is specific volume at

room temperature and pressure PO; T,y 1is melting temperature

at Po; and V01 is specific volume at Po’ T01 . For this
reason a procedure for calculating V01 is incorporated in

the program (Appendix A). Even with this correction, a slight
difference between TLIN and T2N occurs, as shown in Fig. 11.

The difficulty probably arises from a minor inconsistency between

the equations for T and P

Parameters and material constants used in the calcula-
tions for lead are listed in Appendix A.

Figures 12, 13 and 14 display the results when the Simon
Equation is5 replaced by the Kennedy Equation. The temperature
and pressure at which the Hugoniot enter the melting region are
about half the values obtained with the Simon Equation. These
tremendous differences represent the state of our ignorance about
the melting process at high pressures, and unless detection of

melting in shock is possible, that state of affairs is very

likely to persist.
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Fig. 8.--Flow Chart for Calculation of Hugoniot
when Melting Occurs

Transfer Operation Transfer
from to

Read constants See Table Al for

| symbols and defini-

Remarks

tions.
Set initial values
of parameters
Run
Run Increment P P: = P + DELP

Compute VIN Subroutine PB(CPEFIN,
P, VIN, TIN)

Compute V2N Sub. RH2 (C@EF2N, P,
VZN, T2N)

V2N 2 VIN ?

Vln is specific vol-
ume on the solid-mixed

phase boundary. V2n
is specific volume on
the Hugoniot curve in
the solid. V3n is
specific volume on the
Hugoniot curve in the
mixed phase region.
Vén is specific volume
on the mixed phase--
liquid boundary. V5n
is specific volume on
the Hugoniot liquid
phase. T is tempera-
ture, %°K; P is pressure
in megabars.
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Fig. 8.--Continued

Transfer Operation Transfer Remarks
from to
)
Values at intersection
Compute intersection -
are denoted VI = V,,
of VIN(P) and V2N(P) PI = P, TL = T,. i

!

Compute P at inter-
section and use for
new starting value

Compute slope of Sp = SLPPEB = |AP/AV2|

Hugoniot below
{ntersection, sb below intersectior.

K is integer control
K = 1 index for calculating
3 slopes.
; MPHASE ——-————0-—4
; Increment P P = P + DELP
] Compute TIN, dP/dT SUB. TEMP(P,TIN,PT)
4
Compute V1N SUB. PB(VIN,P,C@EFIN,TIN)
Compute V3N, V4N SUB. RH3(V3N,P,C@EF3N,V4N)

.

yes

TN
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Fig. 8.--Continued

Operation

'

Compute slope of
Rayleigh line at
intersection (Sr)

and slope of Hugo-
niot above inter-
section (S

4

H)°

es

=—vn0
K = 2

no

I yes
i

Compute intersection
of V3N(P) and V4N(P)

1

Compute P at inter-
section and use for
new starting value;

P = Pi

a——

Compute slope, Sp ,
of Hugoniot below
intersection

|

Transfer
to

Remarks

Sr = SLOPER =
Sy = SLOPEH = |4P/av,|

If |S.| > |S4], the
intersection is an un-
stable point, a second
shock can form, and the
computation 1is terminated.

Values at intersection:

Vi2 = viZ’ PI2 = PiZ’
TI2 = T12
P: = PI2

S, = SIOPEB = IAP/AV3| '
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8.--Continued

Transfer
to

Set V5N, TSN, P,
V4N, T4N to values
at intersection of
Hugoniot with
1iquid-mixed phase
boundary

|

Compute values of
TIN, VIN, (dV/dP),,
V2N, (dv/dP),, T2
at intersection to
start integration
in liquid phase

Increment P

|
¥

VIN, V4N, T4N, V2N,
T2N, V5N, TSN for
new ?

Compute TIN, (dP/dT);

yes

o

T

) G £

Remarks

EPLHIC ORI TR, SRR ST SETO T

Control index for
calculating slopes

P: = P + DELP

Appropriate subroutines
(see listing).
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Fig. 8.--Continued

Operation

'

Compute S, Sy at
intersection

K = 2

~ e
VSN 2 vauiz>dxl___//’gx1T
d

P < PSTOP ?

S another

END
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APPENDIX A

PROGRAM FOR COMPUTING THE HUGONIOT OF

A MELTING SOLID

Program Name: MELT

Language: F@RTRAN IV

Constants

Report symbol Equation

Program symbol

Po 3.1, 5.6
po 4.4
3R 4.5
Vol Al
Tol " Al
ao)al’aZ)a3 ‘404
bl,bz,bB 4.3
60 4.9
Vo 4.4a
AP 7.1
a,c 5.6
V02 3.1

P@

RHOE
RHH2

R3
Vgl
TA1

AG,A1,A2,A3
B1,B2,B3
TD@
Ve
DELP
A,C
Vo2

41

Remarks

atmospheric pressure,
megabars

density at Po, T = 09K

density at P_, T = T@2
(room temp@rature)

R = gas constant,
Mb cc/g°
specific volume of solid at
melting temperature
and P = P0

melting temperature at
P=P
0

sp. vol. on Hugon. at

P=P
o




Report symbol Equation

42

Program symbol

dT Al

Parameters in MAIN

TH2
PST@P

ICONT

DELT

Remarks
temperature at PP,V@2

pressure at which com-
putation stops

integer allowing several
data sets to be used in
one run

increment in temperature
used to calculate V@1
from V@§2,T¢1,T@2

A final letter "N" on a parameter symbol indicates a value

at pressure P + 8P, an "@" indicates a value at P; e.g., VIN =

V1l at P + 4P, V1® = V1 at P,

Report symbol Equation

vy 1.5

T 1.6, 5.6
\Y 3.1

T 4.5-4.20
v 3.18,3.19 .
T 3.20

v, 1.2

Program symbol

ALG,ALIN
ASQ,ACUBE
VIN,V1$

TIN,Tid
V2N,V29

T2N,T29
V3N,V3¢
T3N, T3¢

V4N, V49

Remarks
Program computed con-

stants used in evalua-
ting TD

specific volume on solid-
mixed phase boundary

melting temperature

specific volume on
solid phase Hugoniot

temperature on solid
phase Hugoniot

specific volume on mixed
phase Hugoniot

temperature on mixed
phase Hugoniot

specific volume on iiquid-
mixed phase boundary

oLl
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Report symbol Equation
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Program svymbol

Vz 4,25
T 4,25
dVl/dP 1.5
dv/dp 3.2
v Al
T Al
1
] -dP/dv 3.1
;
3.20,3.21

5 ~-dp/dv

(Py~P )/ (V -v,) 3.3

T4N, T49
V5SN,V5@

TSN, TS0

TX

TXT
VXT
MU,TD1,X,D,DP

G61,Ql,W,ET ML, |

ETT,R1,S1
JC

SLOPEB

SLOPEH

SLOPER

Remarks
same as TIN,T10

specific volume on
liguid phase Hugoniot

temperature on liquid
phase Hugoniot

slope of phase boundary

slope of solid phase
Hugoniot

value of V at P = P_,
T = TX (T$2<TX<TP1)°
used to calculate V@1
from V@2,TP1,T@2

temperature. T@2sTXsTH1
used in the calculation
of V@1.

TXT = TX-DELT

value of VX at TXT
same as in subroutine PB

integer used to control
what part of a subroutine
is to be used in a partic-
ular calculation

controliing integer used
in main, similar to JC
in operation

dP/dV for the Hugoniot
just inside the one phase

dP/dV for the Hugoniot
just inside the next phase

slope of the Rayleigh line
from the foot of the
Hugoniot to its intersec-
tiocn with the phase toun-
dary
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e
., dv/dp
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dP/d4T
v
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Equation

3.20

3.21

1.1

1.1, 1.2

1.1

Parameters in SUBRGUTINE PB(C

Report symbol Equation

4.4a
4.9
5.6

4.7
4.16

- G S e,
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Program symbol
COEF3

C@EF5

‘-\
Vi

PI 1
TI

=
VIi2
PI2 ¢

T12
PT

DELV

LATHT

Program symboi

VINN

MU

D1

T1

cC

Remarks

slope of mixed phase
Hugoniot

slope of 1liquid phase
Huseniot

sp. vol, pressure and
-temperature at inter-

tsﬂntion of Vl(P) and
o (P)

sp. vol., pressure and
, temperature at inter-

1$ection of V3(P) and
,(F)

Clausius-Clapeyron
coefficient

sp. vol. change on
melting

latent heat of melting

FIN,P,VIN, TIN)

Remarks
temporary value of VIN

used to test convergence
of iteration

8/T

reciprocal of Clausius-
Clapeyron coefficient

Debye function
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Program symbol

Report symbol Eauation
r 4.4
C 4,12
v
d(r/v)/av 4,13
de/dV 4,17
(aP/BV)T 4.18
Cv 4,10-4.12
(aath/av)T 4,15
(aV/BP)T “ee
(BV/BT)P 4,19
dVl/dP 1.5

-t

Remarks
Gl
cvl
QL
W
ET
M1
ETT
ETV1
R1

S1
col same as CPEF1N
cole same as COEF1H

Parameters in SUBRQUTINE RH2(V,P,COEF2N,T2N) |

Report symbol Equation

Program symbol

Remarks

v

- <

dB, /av

4.49
3.1
4.4
4.9
4.3
4.7
4.12
4.5

L17

V2NN temporary value of V2N
used to test convergence
of iteration

&

same as V2N

<

G2
D2
PK@

Cv
ETH

PPK

T e e e i = e s S iy,

g -
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Report symbol Equation

d(T/v)/dv
(3E,, /3V) .,
(3p/3v),,
(or/23v)
dv/dp
8/T
D!

4.13
4.15
4.18
4.20
3.2

4.5

4,16

46

Program symbol
Q2
ETV2
M2
MS2
COEF 2N
X
DX

Remarks

Parameters in SUBR@UTINE RH3(CPEF3N,P,V3N,V4N)

Report symbol Equation

a?p/ar?

+5(P-P )~

TdP/dT
A-B

3.19
3.19

3.20
5.20

Program symbol
V3NN

T1

V1

Yi

ANUM1L
DEN1
CAEF3N
V4N
CAEF 3¢

Remartl.s

temporary value of V3N
used to test convergence
of iteration

temperature at P + AP,

transferred from SUB-
ROUTINE PB

VIN at P + AP transferred
from Sub. PB

same as in MAIN
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Parapeters in SUBROUTINE TEMP1(P)

Report symbol Equation Program symbol Remarks
' dr/dT 5.6 PT
| 20 a2
: d“pP/dT 5.6 PTT
I
% T 5.6 T T = TIN of the main
; program

Values of constants used for lead:

|
|
§ b, = 11.616 S 3R = 9.1202506 x 107°
! . - o
% P Ty = 601 K §
% = { { M = o i
| v, 0.08818340 ;T , 293% |
a, = 2.7091 ;a, = -2.5282
ay = 1.413 3 aq = 0.0
b, = 0.54168 ; b, = 0.749041 ; by = 0.605839 *
6, = 96.3
4 = 0.06257 c = 1.29436

Constants independent of material:

1.034 x 107° megabars

Po =
AP = .005 megabars
PSTPP = 1 megabar

Computation of Vo1

The equation of state used for the solid in Section IVA
is self-cansistent but not entiraly consistent with all available
measured data. In particular 1fV , is taken to be the handtook

value, T, # T, at the intersection of Vl(P) and V2(P). To




{ . 2 ’;'
» ¥ 8
. ¥
3 { ® remedy this, V_; was calculated from the equation
.. } .{"
k ‘t {: g'TOl .
- S Vop = Voo ) (8V/3T)p_p dT (41)
| ¢ T 2 o
R °
; i where T , 1s the value at the foot of the Hugoriot and T ; is

i ; the handbook value for melting at P = P, - Handbook and calcu-

lated values of vol are:

Vop = -091148 cc/g (metal reference hbk)
Vo, = -090352 cefg (Eq. (Al))

Proeram listing

The program listing follows on separate pages.

SRR b A N e

i
i
H
:

2

I Y e i S LT TN

LT AN SRR T

AN Y
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J7L1ISTJICBS JC2 (000N,£C+ 59100y PACKRCCM yMSGLEVEL=L

7/7JCRLIE DC UNIT=2211,VGLUME=SER=DLIBO2,01SP=0LD,ISAAVE=SYSL.UTIL.TY
//STEP EXEC SG¥={ [STCRD

2/5YSLST D SYSGUT=#,2CB=(LRECL=80,BLKSIZS=80,RECFM=F)

77875004 GC UNIT=SYSDA,VCLUNE=SER=3CRIOL~C*NAME=LISTER,

/7 SPACE=(CYL (5510 ),DCR=IRECFM=FBS,3LKST2E=80,LRECL=80)
//5YSRCR CD #

[EF2361 ALLTRC, FOR LISTJOBS STEP

IEF2371 Jo8LIB  ON 293

IFF2371 SYS004 cN 299

TEF2371 SYSPCR 0:1 noC
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DUVALL PAGE 1

THIS PRCGRAM INTEGRATES THE EQUILIBRIUM HUGONICT P~V CURVE
CF A SGLID IN INITIAL STATE T02,PN2(=PC),VN2 ASSUMING A SINGLE SHOCK
FRCM PO TO THE FINAL PRESSURE P. 1T SIMULTANEJQUSLY CALCULATES
THE MELYING CURVE AMR AT EACH STEP TESTS TO SEE WHETHER MELTING CCCURS,
IF IT COESy THE SLOPE OF THE HUGONIOT IN THE MIXED PHASE 1S COMPARED
wITH THE SLOPE NF THE RAYLEIGH LINE TO SEE WHETHER QR NCT A SIAGLE
SHNCK 1S STILL STABLE. IF NOT, THE COMPUTATION IS TERMINATED:
IF IT IS, THE COMPUTATION IS CONTINUED THROUGH THE MIXED PHASE REGION
AMC TESTS FOR INTERSECTICH HWITH THE BOUNDARY BETWEEN THE 4IXED PHASE
ANC THE LIQUID PHASE ARE MADE. 1F THE INTERSECTIUN OCCURS THE STABILITY TESTY
IS REPEATED AND THE COMPUTATION IS STYOPPED IF INSTASILITY IS INDICATEOD;
CTHERWISE 1T CONTIMUES 1A THE LIQUIN PHASE. IF THE CURVE RE-ENTERS

TKE MIXED PFASE, THE COMPUTATION IS STOPPEN; OTHERWISE IT CONTINUFS
UN(IL P=PSTCP.

TG RUN THE PROGRAYM, PREPARE DATA ACCORDING TO THE FORMAT IN
STATEMENT NUMBEPS 1)0 ANC LOLIMAINDS
PO=INITIAL PRESSURE=1,034E~-0¢
RHCO=NENSITY AT PG,Z"R) CFGREES KELVIN
REC2=CENSITY AT THE FJUT CF THE HUGONIOT
MOLWT=MCLECULAR WEIGFT OFf THE HATERIAL IN GRAMS
T02=TEMPERATURE AT THE “COT OF THE HUGONIOT
TCC=CEBYF TEMPERATURE 4+ VO=1/RHOO
AD¢AL,A2,A3 ARE THE COE. FICIENTS IN THE EQUATION FOR GRUMEISEN'S PARAMETER, G
WHERE G=AC+MUR(AL4HIDE[A2+4MUXA3) ) AND MU=VC/V-1,
£1,82,B83 ARE THE CCEFFICI®YTS IN THE EQUATIGN FGR PRESSURE ON THE
2ERD CEGRECG ISOTHUER'Y:
PK=MUt (Q1+MUx (R2+14UxE3))
OFLP IS THE INCREYENT IN P USED FOR THE INTEGRATION,
ICONT IS AN INTEGER WHICH ENABLES THE USER TU [NPUT AS “ANY DATA SETS
AS NESIREDR iN ONE RUN QF THE PROGRAM,
ICONT=) OR 2 FOR A CCYPLETE 0OR PARTIAL MNEW SLT OF DATA (RESP.) TO BE READ IN.
IM THE LASY DATA SET ICOAT=AN INTEGER OTHER THAN 1 OR 2 FOR THE
FRCGRAM YO TERMIMATE AFTER THE LAST EXECUTION,

V01, THE SPECIFIC VZLUME OF THF SOLIC AT TCL,PC IS CALCULATED
IN THE PROGRAM SO THAT TEMPERATURE ON THE MELTING CURVE IS COMPATIBLE
WITH THAT AN TR RUGONIOT,

COMMCN AOD,A1,A2,A2,81,32,83,ALG,ALIN,ASQ,ACURF,V0D,PAN,NELP,R3,VI1C,
+V20, VGl : 02,700, TOL,T20,JC,PTT
CCMMON 74RTYLS PoVIN.TIN,CORFIN,V2N,T2N,CCEF2N
COMMCN/CCLPRL/TOL Gl oCVL 0oty ETyMLHETTHETVL,RL,S1,2T,MU1,4X1,0D},
0P, TTHVV
CCHMON/ZCN2RF2/G2,TD2, GV ETH DK Q2,FTV2,M2,M82,M1J2,X2,402
CO*MCN/PRESNK/PKO
REAL LATET MUL;M2,M1,V2,MS2,MU, NCLHWT
WRITE (6,10}
10 FOPHAT [P10/7% ¢ ,BX, "Dt 18X, 2V T, 19%, ' T1%,13Y,'V2",138X,'T2")
103 REAL(S5,100) PO, PUCO,RHO2,FOLWT,TOL,TO2, 700
100 FCPMAT(E20,7,6F10.61)
106 READ(S,101) AU AL,A2443,%1,R2,83,0ELP,PSTCH, ICONT
101 FORVAT(7F10.6/2F1C.6&,12)
vi=1./2HCO
V2221./R¢F02
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DUVALL

N2=(5,55%4 ,19E-5)/MCLUY
ALG=AC~-ALl+A2-A3
ALIN=AL1=A2443
ASQ=(p2-43)/2.
ACURE=A3/3,

NELT=0,5

vX=v02

TX=T02

§ MU=VC/VX-1,

TC1=TL{4U)

®=T01/TX

D=le=-X#(3,37%=0,C5%X}
CP=—0,375+0.1%X

Gl=G{MU}

Gl=G{vXx, V0]
H=~(VG*(31+"U*(2.#32+3.‘335HU)))/(VX**Z)
ET=R3IFC*TX
N1=N*ET*01—R3°TDI*}(GIIVX)*#?)*DP
ETT=R24(1,-0,C52(xk¥2})

R1=1./71

S1==RUGIXETT/VX

VXT=VX

TXT=TX

VX=VX+S12DELT

TX=TX+CLLY

[F{TX,LE.TCL) 6O TO GE

VO1=VX+ (VX=VXTI 8 TOE=- T /DELY

WRITE (6,2} pny*”ﬂﬂnﬂ!,VDl,fﬁlvolAi’AZrh3031r“?tﬁ?yTBD,DFLPyYOZ
2 FNRNMaY ('0"EZO.79"PO"EZQ.7q'=RHDC"EZOo7a'

=3 '520-7"3\’01'//

4F20.7,'=T01'oE20.7o'n‘O'oEZQ.79'=Al‘oE2057o'=52'//
+E20.7.'=\3‘.F?O.I,'=Bl'pFEOu7,'ﬂBZ'.E20.7,'=BZ'/I

OEZO.I"=TCO'.E?O.7¢'=CELP"EZO.7.'=TQZ')
LRTTE(C,3) ALGIAL TN, ASQyACURE,VO,VO2

3 FOEMAT (! '.E?O.?y'=&LG"E20.7'°1ALIN"E20.7,'=

$91:00, 75 '3V0 4 E2C. 7, =2V02")
yoN=V02

Tin=7C1

rzif = 102

pP=pPC

crLL TEV21LP)
CCLF2N2-VO1/B1

Jl=1 :

vih=VvCl !

CALL TEWPIP,TIN,PT)

CALL FRIVINGPP, CIFFIN,TIN)
LU OPE2(Y2N, R0, CTEF2N, T2N)
JC=2

leTE(k,2647)”leNyp1erN|“U19T01|VlonlynpoqvaVloﬁlvETOVI,ETY:

1 ETV1,?1, 81, GUFFLY

HOLTR (&, 2649) ngz‘!'Vt::;MUZ {TN2,X2402 GPK.GZ,CV.C.’.'ETz-l'“?'ET2V2.

L u§2,CCERAM, KO
4 ViC=VIN

v20=Y2N

TIC=TIN

T20'=T2N

PAGE

ASN/E20,7, ' =ACUBE?
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pbuvact PAGE

5 P=P+CELP
CALL TEMP(P,TIN,PT)
CALL PBIVIN,P,COEFIN, TIN)
CALL RE2{V2N,P,COEFZN,T2N)

HREITE(L1244T)P, TINyPT VINGMULTDL 9 X1 4D?yDP4GL4CVY,01,ET,H1,ETT,
1 ETVI,R1,Sly COQEFIN

WRITE(5,2448) Py T2N VEN,MU24TNZ2) X232, DPKy G248V, 02,5TH,M2,ET2V2,
1 PS2,CCEF2N,PKO

TEST- FOR INTERSECTICN WITH PHASE 30QUADARY
IF (V2N LLT, VIN ) GO TO 4

OO0 OO0

FIND INTEQSECTION OF R~H AND PHASE SCUNDARY

VI={V2ARVIO=-VINZYZ0) / {V2N-V20-VIN+V10)
Pl2P+CELPR{VI-VI}N)/(VIN-VI1O)
TI=TIN#{TIN-TLIO}X(VI=-VINI/Z{VIN-V1Q]}
WRITE (6,16 PLyTPI, VI

16 FARMAT (102 ,C20,T74'2P " F20,7,'=TIV,F20.7,'=V]["}
SLCPER=CELP/(V2N~V2N)
WRITELE,102)

102 FORMAT{ICY /7Y 1, 20X, 'CONTINUE IN MIXED PHASE'///)

c
c CONTINUE [N MIXED PHASE
¢

P=P{

ViN=V]

V3IN=V]

TIN=T]

JC=1

CALL TEMPIP,TIN,PT)
CALL PRUVIN,P,COSFIN, TIN®
CALL PF3{V3N,P,COFF3IN,VaN)
WREITE(61244730; TiNyPToVINAULyTOL o X191 ,0P,GLoCVL QL 4ET,M1,ETT,
1 ETV1,R1,S1s COERIN
WRITE (6,417) P, TIN,VIN,COEGFIN,COERINy V4N
L7 FORMAT (F20,79'=2",E2Ce7;%2TIN! yR2Ce 72 '3VIN'/E20,7y'=COEFIN'yF20.7
+y 1=COEFINY,E20 7y '=Y4NT)
K=1
JC=2
11 V1C=VIN
V3I0aVIN
VaQavain
T1C=TIN
P=P+CELP
CALL TEMR(PR,TIN,AT)
CALL PRIVIN, P CUGEFIN,TIN)
CALL RH3I{VIN,P,CIEFIN,V4N}
HRITEL5,2647)0, Tihg OT g V1IN MUL,yTDL 3 X1yD14DPGL,CVE QL1 ET (M1, ETT,
1 €TVi:1,81, COTFIN
WAITE (6418) P VINGVIN)VAN, TIN
18 FORMAT {E€2047,1=0! pF?.Oo'p '=V1N'.F.ZO.?."V3"!'/E20.7.'*\MN' ,E2007"=
+TINY)
{F{K.NEs1) GO TGO 55
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PUVALL PAGL i

SLCPEEL=CELP/{VI-V3N)
SLOPER=(FYI-PO}/(VC2-VT]}

SLCPER 1S THE SLO2L CF RAYLEIGH LINE FROG4 THE FCCT OF THE HUGCMIOT

TG

1TS INTERSECTION WITH THE PHASE BJOUADARY

SLCPEH [S DP/CV FOR THE FUSONTOT JUST INSIDE THE MIAED PHASE REGIOM
SLCPER IS DP/EV FOR THS FUGGNIOT M THE SOLID
JUST CUTSIODE THF MIXED PHASE REGIOM

51
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106

AQ2

WRITE(6,51) SLOPCH,SLCPER,SLGPES

FOFMAT(YO Y yEL1Se Ty 'sSLOCPEU Yy SX4ELS T o '=SLCPERY 4SX,E15.7 9t =SULNPEAY/Y)
IF{SLCPEF.GELSLCPER) €O YO 55

RETURN

K=2

T4 LV3Y LLTe ¥a4NY GC TO L1

VIZ2 = (VaO%V3IN - VvINxY4aN)Y/IV3EN - V30 - V&N + Vv4d)
PI2 = P + DEL¥X(VI2 - V4NI/Z{VAN - V4N)

TI2 = TIN + (TIN ~ TICI%(VI2 -~ VAN)/{V4AN - V4C)
HPITE (6,19) PlZsviayTlL2

FORMAT (E20.79'=2121,E20,7,V:Vi2%4F20.7,'=712"1)
LRITFLA,1C6)

FURMAT(YCY///° ', 20X, '"CINTINUE IN LIOUID PHASEY///)
SLOPER=NELP/IVIC=-V3N)

VSA=VI2

ToK=T12

P=P[2

T4aN=T 12

TIN=T4N

V4aN=V12

TZN=TEN

Jc=1

CALL TeMe(p,TIN:PT)

PELV=LATHT(TIN,P) Z{TIARPT

Via=VaN-CLLyY

CALL FR{VIN,PCNEFIN, TIN)

VEIN=VSN-CELV

CALL RE2(V2N4P,CIEF2N,T2N)

WRITF(%,402)DELY

FORMAT(Y ', El4,6,'=NFLV")

WRITE(A)2464TIP, TLINGPT o VIMN MULTDL X1 ,D1,00,51,CVE4Q1,ET+ ML 4ETT,
1 ETvl,R1,S1, COEFILN

WRITE (6, 2643) P T2M, VN MU24TD24X2,D24NPKy52,CVN2,FTH,M2,ET2V2,
1 ¥S§2,CCEF2N,PKO

K=1

JC=2

T20~T2N

T =TIN

ViC=VIA

VZC=V2A

P=PaCILP

CALL TEMPIP,TIN,PT)

CALL FRUIVINGP,CUFFIN,TIM)
BELY=LATET(TIN,P)/{TIN#PY)

V4ANsSVIN+ZELY

TaN=T1iN
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CALL PE2TV2NWP,CCEF2N,T2N}

VSN=VZN+CELY

TansT2N

IFIK.NEL1) GO TO 10

SLGPER={PlZ-POY/{WVN2=-V]2)

SLOPEF=DELP/IVI2=-y5N)

WRITE(4,51) SLOPEF,SLCPER{SLOPES

1F{SLCPEF.GE.SLORER}) GO TD 70O

RETURN

70 K=2 .

WRITE(A,244 7P, TIA,PTVINSMUL s TOL p X1 (N1 0P Gl oCVLeQLoET M1,ETT,
1 ETVI4R1,S1, COEFIN

WRITE(S,2448) PyTEN,VEN,MU2,TD2,X2,02,DPK,G2,CV,Q2,ETH,M2,ET2V2,
1 MS2,CNEF2N,PKRO

2447 FCPMATII0! yE1S47 307 65X, B84 T2t 3TINY,5%9C15.7y '=PTY 4 5X4ELS5,7,y 'V
LINY ) SXeB18, 7 =MULY /! P ELS. Ty 'aTOL o5X,ELS, 742X SX,E15,7,%=01"
245X E15, 798 =0P " 45Xy EL18, 7 P=GLY Y S ,E15,7+'3CV]L? SXeELSeT+*=01",5%,
BEL1Se Ty t3CT Y 5Xg L8 T ta Ly 5X,ELS, Ty =ETY/3 E1S.7,'=ETVL!,5XyEL
45,79V =RLYySXIF1G37, =811, 5X,E15,7,'aClUEFLN')

2448 FORMAT{PCY y RS e Ty =Pt g XXy FLS  T- vaT 2N ySXsEL1S4 Ty ' 2V2N' y3X9ELS54T7, =N
1U2¢ 5%, EL5. Ty =TN20 /% 1, C18, 75 7=XM2V 45X 4ELSa 7, *=D21,5X4E25.,7,'=0DPK!
245X EL5. Ty =021 5% CLSeTy "=CVI/Y V,EL1S, T332, 5X 15,74 =CTHY ,5X,
BELSe Ty 1xM2Y 5K F15.7y *26T2V2Y g SNYEL1S5. 7,0 =RS2¢ /" *,E15.,7,'=CCEF2N?,
45X ELS5 T =PKT)

WRITE(&,E00)P VIN,V4N,V2N,V5M, T4N, TSN
600 FCRMAT(! ',7E15.5)
[FIVS5ALGEL.V4N) G TC 1?
RETURN
T2 CCATINUE
1F(P.LT.PSTUPIGC TO 2°€
IF(ICONT,.EQ.1) GJ TO 1C3
IFLICCNTEQL2) GD TN 104
RETURK
END
SUBROUTINE TENMPI(P)
CONPON ANZALA2,72,81,B2,R3,ALG,ALINsASQeACIBE VD PO+DELP R3,VID,
+V20,VE2,TO2,TDC,TC1,T20,JCHPTT
A ANC C ARE THE CONSTANTS IN THE SIMON CGQUATION CF MELTINGS
A=N,08&257
C=1.,20436
WRITE(EsL)A,C
1 FCPMAT{! 1 ,E1S. T, 1201 ,5X,C15,7y'aC!)
RETURN
ENTRY TENP(O,T,PT)
IFIJC.ANF.L) RO TO 2
PT=AaCA(Tex(C-1,))/(TCL1%%C)
PTT=CH({C~1,}2(P=PC+A)/{T%%2)
RETURA
2 CCNTINUE
T=YN1%{{(P=-P0+A)/A)%x(],/C))
PY=A%CH{ TS (C~1,) }/(TC1%%C)
PTT=2C#{C=1,1¢(P-OC+A)/(T%42)
RETURN
END
SUBROUTINE PA(VI+P,CC1,T1)
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CCVMCN AC,A1,AZ,43,B1,82,83,ALG¢ALIN,ASQyACUSE,Vv(,P0,CELP4R3,V1Cy
: +V20,VC2,TC2,TOC,TCLsT20,dC,PTT
) COMMCON/CGIPAL/TNL,GL,CVL 4Ol WyETyMY,ETTETVL,PL,S1,PT¥UL,X1,01,
' +CP,TT,VV
i REAL MU,yM1l,MUsG,MUL
IF(JC.CQ.1) COL=0,
€c10=CC)
cCc 8 J=1,10
IF(JC.EQ.1) (D TO 10
VINN3V1
Vi=VIC+0.,5% (COJO+CO1I4DELP
IF(ABSE{(VI-VINN)/VI).GEL4,E~-5) GO TC 10
RETURN
10 4L={vC/V1)-1,
TC1=TC{HY)Y
X=YTC1/T1
CC=1./°¢T
0’1.-X*(0.375-0.05"X)
NP=-0.375+40,1%X
: Gl=g vy
‘ CVI=R2IN{4, &L=, XX/ {EXF(X)=1,))
Ql=21(v1,ve)
W=R1+MUX(Z,%12+2,3B83%NMY)
Wz-VQEW/ (V1*$2)
ET=R3%LxT]
MlzWrET#Q1-R3IZTOIXL(GL1/VL)x%2) *DP
' FTT3s R3#{1.,-0,058{X%22))
ETV1=R3&CPA{{~-G1l2TD1}/V]1)
R1=z1./¥1
S1=~RIsG1*ETT/V]
CC1l=R1+S1*(C
TT=T1
vy=vl
rPLI=MU
X1=X
P1=0
[F{JC.EQ.1} GR TO 12
8 CCNTIAUE
WRITE(4,600) V1,YIKNN
500 FCPMAT('0','SUBR.PB, ITERATION FAILEL',2E20.7)

CALL EXIT
. 12 CCATTNUE
3 RETURA
ENE
3 SUORPLTINE RE2{V,P,CNEF2N,T2N)

CONMOCN ACy21,A2,A43,81,32,83,AL5,ALTIN ASQ,ACUAF, VIR0, 2ELP,RI,VIN,
3 +V20,V02: 7024, TR0, IC1,TZCHJC,PTT

& COPMCAN/CO2RF2/G2,TD2+CVoETHCPK N2, ETY2,42,282,VUJ2,X2,472
CCUNTN/PRESUK/PKAD

REAL MU, M42,MC24MU2

I[€(JC.FQ.]1) COEF2N=Q,

CCHRF2C=CCCF2N

nog 8 J=1,10

iF{JC.EQW1) CO TO 1C

V2NN=V
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Y=V2C4C. Sx{COEF2NCOLF20) sDELP
IFCARS{{V=-V2NN)/V).GE.4,E~5) GO TO 10
RETURK .

10 #4L=vO/vV-1,.

600

12

10

a

62=G{MY)

TC2=TC (M)

PXT=PK (MU)

ETH={(P=FKQIAV) /2
X={(ETH/(F3TLZ)+,275)=-SQARTL(ETH/(R3¥TN2)+,375) *x%2~0,2))/0.1
Y2NaTR2/%

D=l4=Ca3T5X$D, 054 X0%Z

DCEX==0,275¢0,1#X
FTV2=R32CG2eTD2%(+C, 278~ 1 %X} /V

CV=R2&(] ~0,C53({X#%2))
DPK=B1#MUX (2., #R2+VU%XZ ,#33)
DPK=~LPKAVC/(v%%2)

Q2=Q(V,Vii}

F2aCPK+ETH¥Q2+GZ2ETV2/V
MS2=M2~CVRT2HX{(CZ/V)¥32)
COEF2N=(14=G2%(VIA2=V) /[ 2.3V} )}/ {MS2+G2%{P=P) /(2.%V)}
MG2=MU

X2=X

C2=¢C

1fF{JC.EQ.1) GG TQ 12

CCATINUE

WRITE(A,600)}V,V2\N
FCPMAT(*tQ?, *SURP (RHZ, ITERATICN FAILED',2E20,.7)
CALL EXIT

CCNTINUE

RETURA

ENC

SUOROUTINE WI(V3N,P,COEFIN,VAN)

COMMON AC,ALl,A2,A2,R1,R2,R3,ALGyALIN,ASQ,ACUREG,VS,P0,DELP,R3,VI0,
+V20,V02,TO2,TND,TLL,TZ20,JCy°TT
CCPMON/CCLPBL/TCL,G14CVL 0Ly WyETY1,FTT,ETVL,R1,S81,PT,MUL,X1,01,
+DD’TT'VV

PEAL VU,LATET,¥1, MUl

16(JC.EQe1) CNEF3N=C,

CCEF3CG=CCFFIN

VaC=VaN

cC 8 J=1,10

IF(JC.EQ.1) 6O TO 10

V2KN3VIN

Y2N=V30 ¢+ ,S&{CCQEFIC + COCFIN)ADELD
1F{ARS(TVIN-V3INIL}/V2IN),SE 4. E~5) GN TN 1O
RETURN

T1=TT

Vizvy

Y1s(CVIA{ 1o t31ATIASI/V0)+TIH{VIN=-VLIROTT)/PT
DEN1=Y1=2¥T1%#S1=TL4R 1XPT~{V02-ViIN) /2,
ANUML= 5% (P=P0)-T1=%PT

CCEF3N=DENL1/ANUMN]

V4N=VYI+LATHTI(T1,P)/7(T1*PT)

[F{JC.EQ.L) 50 TI 12

CCNTINUE
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WRITE(£,400) V3N, VINN

FORMAT (*(%,*R%-3,ITER, FAILED',2E20.T)

CALL EXIT

CCNTINUE

RETURN

END

FUNCTICN G(4UY)

CCMMON AG,AL1,A2,A2,81,B2,P3,ALG,ALIN,450,ACUBE,VD,PC,DELP,R3;V10,
EV20,VE2,TC2,TN0,TCLT2C,JC,PTT

REAL MY

GC=AQ+VUR (AL +"UX(AZ+MUSA3) )

RETURN

END

FUNCTICN TO(MU)

CCVYMCN 40,A1,A2,A2,81,82,B3,ALG,ALIN,ASQ,ACUBE,VI,PO,DELP,R3,V10,
*’VZ(‘.VC?_.T(‘Z,TI)D.TF],TZG'JC.PTT

REM. VU

TC=TDCHEXPIALGtALCGIML +io J¢MUSLAL INSMUR{ASQ+MLEACURE) ))

RETURN

EAND

FUNCTIGH CLV,VX}

CCYMEN A0, AL,A2,43,81,82,R3,ALCALTIN,ASG,ACUBE,VD,P0, ELP,R3,VI1C,
+VZC,V02,702,TDD,TCL1,720,JCPTT

REAL VU

Me=(vC/v)-t,

Q==(VN/{VvEX3 ) ) X(ATEMUB( 2, ¥AZ+ 3 RA3XMU) } =G (MUY /{v%¥2)

RETURN

END

FURCTIOMN PK{ )

CONMYON AC AL, A2,A2,814B2,83,ALG ALIN,ASQ,ACURE,VD,PO,DELP,R3,VIO,
+V20Q,VP2,TC2,TOND,TCL1,T20,JC,PTY

REAL MU

PK=UA (31 +50F (3241140 2) )

RETURA

END

REAL FUNCTION LATHT (T,P)

LATHT = &,26%4,18E-5

RFTURN

EhD

SYSIN LT *

1.C034E-~C4 11.416 11.340 207.0 6500,0 293.0
+ 7661 -2:%2232 1.413 0.0 + 54163 e 749041 «605839
0.005 1.3
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VCL SER MGS=
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APPENDIX B
HUGONIOT CURVE OF LIQUID ARGON OBTAINED
BY USING THE SIGNIFICANT STRUCTURE
MODEL OF LIQUIDS

C. T. Tung

I. Introduction

The significant structure theory of liquids has been
developed by Eyring and co-workers. According to the theory,
a liquid is considered as having three significant structures;
solid-1like, gas-like, and degenerate. These three structures
contribute essentially to the theruocdvozaic properties of the
bulk system. On the basis of these considerations, the parti-

tion function, £, for a monatomic liquid such as argon can be

*
expressed as(l):
NV_/v N(V-v_) /v
£ o= (ay agfayy S (ajv-v)) ST/ (@-v)/M! (1)
where:
ap = exp(ES/RT)
a, = 1- exp(-6/T)
a; = 1+10 exp(-¢/RT)
a, = (2K */n

*
Superscripts refer to literature at end of Appendix t.
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The first set of brackets stands for the solid-like portion of

the partition function, for which the Einstein oscillator model

3 is used. The quantity (1 + n, exp(-¢/RT) 1is the geometrical
degeneracy factor; the remaining portion is the gas-like part.
¢ Using Sterling's approximation, y! =~ (y/e)Y , Eq. (1) can be

rewritten in more compact form,

/v . N(V-V_ )/Vv
f = (a1a3/a23) S (a43eV/N) ( S (2)

In Eq. (2), the number of neighboring positions, n, , is equal
to n(VnVS)/VS , and the energy needed to occupy a vacant site,

€ , is equal to aEV_/(V-V_) . Both n and a are propor-
3 8 S

tionality factors, Eg is the energy of sublimation.

At high pressures and temperatures a few corrections
are necessary. Hence, Einstein partition function in Eq. (2)

; ' should be replaced by(l):

3
a1<((1-g)/a2) + ga4Vf1/3)

where g = exp(-498/T), £ is the vibrational quantum number and

EER SV g e i Yot A o

Ve is the molar free volume in the solid. V. may be repre-

sented by:
+3
v, = (w23 - oram1/3)

where b 1is the van der Waals constant and b/4N is the net

molecular volume. With these corrections, the partition

G i i S s

function for a monatomic liquid at high pressures and
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temperatures should be written as:

3
£ o= (a,(-g)/ap) + gas( /M3 - (v/a/3))

where:
ag = 1+ byby
b, = "ﬂ(v-vs)/vs
b3 = exp(-b4)
b4 = aESVS/RT(V-VS) .

In addition to the corrections mentioned above, the pressure

effect on Vg, must also be considered. For moderately high

pressures, Eyring supgests the linear correction:

\Y = Vs(l-Bp)

In order to extend calculations to higher pressures we

replace (4) by:

\ = Vg exp(~Bp) ,

which reduces to Eq. (4) for small pressures and also has

positive curvature, which is necessary for shock stability.

Hence,

(2)

above a standard pressure.

Krowing the totalpartition function as a function of T

and V , we are able to calculate thermodynamic equations of

state from:

(4)

(5)

8 is solid compressibility and p is excess pressure

- T e T W Y e
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A = KT fn £ £5)
P = -(3A/3V); = KT(d 4n £/3V); (7
E = -T*QA/T)/AT), = kT2 o £/31), (8)
S = -(3A/3T)y; = k 4n £ + kT(3 4n £/3T) (9)

where A, 1', E, and S are the Helmholtz free energy, prossure,
internal energy, aad entropy.

II. Calculation of the Hugoniot
Curve for Liquid Argon

As mentioned, the partition function, £, is & function
of temperature and molar volume. Obviously, to calculate
pressure, internal energy, and entropy from Eq. (6) to Eq. (9)

is straightforward, but tedious. The results are:

P = RE(L#B+CH((V-V ) /v - (3v /v in(a,F)) (10}
E = RIZ(DH) (11)
S = (E/T) +RIJ + (RV_/V)((E /RT) + 4n (as/a23)> (12)
where:
L = = /V®)((E,/RT) + in(ag/ay’))

B = (b3ﬂ/gV)(l + b4)
¢ = (v A (u + m(r )
D = (v /W((-E,/RT?) + (30exp(-8/T)/T?a,)

oz
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((1-g)/ay) + (v M3 - ®/6)1/3)a,g/m!/?

3
1]

¢ = 9(-1g + 1-a, + (2-1) g (1-a,))/(Ta,)?

+ gt eo/r?) + (2w 2,0 M3 - rnl/3) /w13
H = En(a43 e/N)
3 = v n((e/m) - o(i-a,)/%ay)

(3,4)

parametric values for liquid argon are

n (proportionality factor) 10.7

a (proportionality factor) 0.0052

E, (sublimation energy) = 1888.6 cal/mole

b (van der Waals constant) = 32.2 cc/mole

£ (vibrational quantum number) = 5

V, (molar volume of solid at 1 atm) = 24.98 cc/mole
8 (Einstein characteristic temperature) = 690.0 (°K)

m (atomic weight) = 39.944 gm/mole
6.024 x 10%3(mole)”!

N (Avogadro number)

h (Planck constant) = 6.6252 x 10"27 erg-sec

8 = 2.5x 1077/atm = compressibilitx of solid
argon below 10™ atm.

k (Boltzmann constant) = 1.3897 x 10'16 erg/deg

R = 1.986 cal/mol °K

In order to find the Hugoniot curve the Rankine-Hugoniot jump

condition:

E-E, = YE o+ Po)(V0 - V) (13)

is required to be satisfied. The problem of finding the Hugopiot

P
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curve is equivalent to eliminating both T «nd E among Eqs. (10),
(11), and (13) so that P can be expressed in terms of V only.
The relation between P and V represents the Hugoniot curve. 1In
principle the Hugoniot curve can be obtained no matter how
complicated Eqs. (10) and (11) may be. But in practice we
accomplish this by numerical methods.

The calculation procedure is schematically as follows:

1. Assign a value for V (less than initial volume V ).

Q
2. Guess a value for T (higher than initial temperature To).

3. Swbstitute both T and V in Eg. {(i0) and calculate the
value of P.
4, ciovstitute the calculated P into Eq. (5); using the
new V, (?S'), P is recalculated from Eq. (10). This
process is repeated until consistency is obtained.
Use present T, V, and Vg to calculate E from Eq. (11).
6. Substitute P, V, and E in Eq. (13) which can be
written in the form,
H(P,V,E) = E - Eo - (P + PO)(Vo - V)
If H(P,V,E) =~ 0, P is the right value which corresponds
to the assigned V. If H(P,V,E) ~ 0, knowing H 1is
positive or negative, T cen be appropriately adjusted,
and then follow with step (3). This loop is repeated
until H(P,V,E) = 0 1is satisfied.
From this double iterative method the relation becween
P and V under the jump condition, Eq. (13}, can be satisfied.
This relation presents the Hugoniot curve. Furthermore, using

a similar method, with Eq. (13) replaced by Eq. (12), the

N et
[ e
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adiabatic curve can also be cbtained. Details of this double
iterative method are shown in the computer program Listing at

the end of this appendix.

I1I. iscussion of Results

Each isotherm in a P-V diagram shows both the existence

of 2 maximum pressure and a discontinuity at V = vy (See Fig. 1).

This is due to using the Einstein oscillator model for the solid
partition functicn. In the Einsten mocdel the binding emergy is
assumed to be volume-independent.

The Hugoniot and adiabatic P-V curves can exist and
have been calculated only in the region well to the right of
the maximum-pressure curve of Fig.15 where (ap/av)T < 0. Both
are shown in Fig. 16 relative to the isotherms. In Fig. U the
calcuiated curves are compared with measurements reported by

van Thiel and Alder. The agreement is remarkably close and
suggests that minor mocdifications of the Eyring theory may make

it valid at even higher pressures.
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IV G LEVEL
c

100

506
300

10

210

211

212

0, NMCD O FAIN DATE = 67264
FUGCNICT CURVE FOR LIQUID ARGON
COFMVIN/CATAM/ M
LOMMCN/ESGESZESO
COFNYCN/APLOT/AP{101,101)
COPPCN/CTVSET/Y!oTlToEXPT,DCHN:EXPST
COFMON/YSET/Y,LVCO
COMPCN/CIOSEI/A,ES»VS:SN:SS:CK;EEO'PPO:VO:TD-CKK 2 VSC
COFMEN/ BEC /L ANK, DT, C(13)

READ CHARACTERS (FCR PLGTTING CURVES)
READ(5, 1CGIBLANKDOT (C(K)yK=1,13)
FORMAT(15A1)

GIVE PARAMETRIC VALUES FOR LIQUID ARGON

Az0.0052
ES=1688.6
ESO=ES
V§=224.98
SN=10.7
$5=60.0
CKK=10.C*(8.0*3.141*8.37!*‘1.5/((6.625**3.0)*(6.02**4.0))
CK=ALGG(CKK) +1.0
VSO=vsS
M=0
READ BOTH INITIAL VOLUME AND INITIAL TEMPERATURE
REAC(5,3C0)V,T
FURMAT(2F1C.0)

IF DATA CARDS ARE USED UP,STG®
IF(V,LE.C.0} GO TO 112
M=pMel
WRITE(6,TCIM
FORNMAT(1Q'y* DATA *,11)

SET 'OLANK®' [N TwO DIMENT JONAL SPACE(100*i00)
ou 210 K=1,100
00 210 nN=2,101
AP {K, NI =BLANK
CONTiNUE
SET UP CCORDINATES 8Y 'DOT
B0 211 K=1,i0)

AP {Ks1)=DCT
CONT INUE
DG 212 N=1,101
AP (1C1sN)=DOT
CONT INUE
T0=T
vO=v

CALCULATE THE ISOTHERMS
CALL PLOTI(V,T)

CALCULATE AN ADIABATIC CURVE THROUGH INTYIAL STATE
CALL ADIABLY,T)

14/50/12
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IV G LEVEL 0, MCD O FAIN CATE = 67264 14/50/12
' < CALCULATE THE FUGONICT CURVE

CALL SHCCK{V,T)

C PLOT THE HUGLNIOT CURVE,THE ADIABATIC CURVEsAND THE ISOTHERMS
WRITE(6,302) ((AP{I,J)ed=1,1C1),41=1,101)

302 FORMAT(' ,1iX4101AL) J

VV=VC/39.G44

c WRITE THE [NITIAL STATE UNDER THE HORIZCNTAL AXIS

WRITE{6+900)T0,VV
900 FORFMAT('C!+3CX,' (INITIAL STATE T='",F7.24'(K) V='4F10.5,

1 (CC/GMY )

C GO TC REAC WEXT CATA

63 TG 5CO

112 CONTINUE
RETURN
END
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G LEVEL 0, MOD O MAIN DATE = 67264
c Sue SHOCK
C FIND HUGCNIQT CURVE

SUBROUTIRE  SHUCK(V, 7}

COMMCN/BLC/BLANK,DOT,C(13)

COMMCN/YSET/Y,Uv00
QOMMON/CIOSETiAvESvVSvSNoSSoCKpEEO.PPO:VG'TG.CKK + VSC
VVaV/39.944

WRITE(6445C)T,VV

450 FURMAT('C?,2X, '"HLGONIOT CURVE®,*(INITIAL STATE T=*,£7.2,

201

511

591
592

593
5%4

595

596

LPIK) V=9,F1C.54'(CC/GM) )0)
“RITE(64201)
FDRMAT(‘C',IOX.'V(CC/GM)’013X.'T(K)'.lSXy'P(BAR)'.lZX,
L'E(CAL/GM)* 13X *SICAL/GM=K)*,10X,%V/VO")
VIN=V
TIN=T
ASSIGN A ChARACTER FCR HUGONIOT CURVE
Y=C{11)
CALCULATE THE INITIAL VALUES(Py AND E,)
CALL WRITEL(V,T)
PPO=P(V,T)
EED=E(V,T)
ASSIGN A VALUE FOR Vv AND FIND THE CGRRESPONDED p
V=V-v(/25.0
T=T0
TL=T
START ON THE UOUBLE ITERATIVE CALCULATIONS
IF{F{YsT).GE.Q.0) GO 70 591
SFTL=~1.0
GO 1o 592
SFTL=1.0
TU=TL+3CC.0
T=TU
[FIF(VyT).GE.0.0) GO T0 593
SFTU=-1.0
GO 10 594
SFTU=1.0
IF{SFTL2SFTU.LT.0.0) GO TO 595
TL=TU
SFTL=SFTU
IF{TU.GT.1C000.0) GO TO &1l
GO0 10 592
TM=(TL+TU) /2.0
UPPER BOUNC AND LCWER BOUND HAVE BEEN FOUND

T=TN

[F(F{VyT).(E.0.0) Go L¢] 596
SFT¥==-1.C

GO Ta 696

SFTF=1.0Q

14/50/12
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V 6 LEVEL 0, MCD O SHOCK DATE = 672¢4
636 IF(SFTM.EC.SFTU) GO 10 7196
TL=T¥F
GO T0 527
796 Tu=T¥
597 [F{{TU-TL).GT.5.0) GO T0 595

611

T=(TU+TL)/2.G

THE SOLUTICN OF T 1S FOUND

USE PRESENT T AND V TG CALCULATE P
CALL WRITEL(V:T)
IF(V.LTLV0/10.0) GO 10 611
GO T0 511

CUNTINUE

V=VIN

T=T1Ih

RETURN

END

14/50/12
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450

201

511

531
592

593
594

595

596
696

0, MOD O FAIN DATE = 67264

FIND AN ADIABATIC CURVE THROUGK INITIAL STATE

{THE METHOD [S SIMILAR TC THAT FOR FINDING FUGCNIQT)
SUBROUTINE ACTABLV,T)

CUOMVMCN/BECC/BLANK,DOT,C(13)
CUMMON/CLOSET/ALESyVSeSN9SSsCK;EED+PPCoVOD,LTO,0KK 4 VSO
COFFCN/YSET/Y,UVA0

hRITE(6,450)

FORNAT(*C',2X,*ADIABATIC CURVE*)

wRITE(6,201)

FORMATUYCY y1UXy*VICC/GM) "9 13Xy *T(K) *4 15X, 'P(BAR) 'y 12X,
1'E(CAL/Gr) Y 913X, *SICAL/GM-K)® 410X,*V/VC)

VIN=vV

TIN=T

Y=Ci{12)

CALL HRITEL{V,T)

SS0=S5(V!T)

V=V~V0/2C:0

T=T0

TL=T

GET THE RIGHT Vg

NEWVS=P(V,T])

IFIS(V,T).GE.SSO)} GG TO 591
SFTL=~1.C

GO 70 592

SFTL=1.0

Tu=TL+10C.0

T=TU

NERVS=P{V,T)

IF{S(V,T).GE.SSO) GC TO 593
SFTU=-1.0

GO T0 594
SFTU=1.0
1F(SFTL*SFTU.LT.0.0)
TL=TU

SFTL=SFTU
JF{TU.GT.1C0C0.0) GO
GO 10 592
TM=(TL+TU)/2.0

I=TN

NEWVS=P{V,T)
IF(S(V,T).GE.SSO) GO TO 596
SFTV=-t.0

GO Y0 696

SFTV=1.0

IF(SFTM.EQ.SFTU) GO T0 796

TL=TM

Ga 70 597

G0 7O 595

TQ 611

14/50/12
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* G LEVEL 0y MCD O AD1AB

796
597

611

Tu=TN

IF((TU-TL).GT.5.0) GO0 TO
T=(TL+TLY /2.0

CALL WRITELL(V,T)
IF(V.LT.V0/10.0) 6C 10
G0 TO 511

CONTINUE

v=VIN

T=TIN

RETURN

END

595

611

CATE = 67264

14750712
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IV G LEVEL 0, rCD O MAIN

76 3

DATE = 872¢4 14/50/12

HUGCNIGT JUMF CONDITION
FUNCT fON F(V,T)

COM"CN/CIOSET/A'ES'VS)SN’SSICK!EEO) PPO,VO,TO,CKK ,VSC !

s e p e e VR Ay 7 e 7

FaVC-V=(2.0/(P(V,T)+PPC))*(E(V,T)~EED) : ;
RETURN * -}
END . i
{
¢
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R oy Y

R y G LEVEL 0, ¥CD O MATN DATE = 672¢4 14/56/12 l
! f ‘
' C {

| C  ENTRGPY FUNCTION |

! FUNCTION  S{V,T) ;
o COMMON/C10SE T/A1ESsVS SN 1SS (CKyEED, PPCVC,TO4CKK 4SO

; COMMON/CTVSE [/TL, TLT,EXPT1D0HN (EXPST i
S COMMCN/ELFL/ELyF1,F12 :
i{ t XL=SQO :
. 8=32.2 ‘
o 52 (3.08VS/V) #(ES/(2.05T)~3.0%ALOG(1.0-EXPST) +ALLG(DCHN) 1+ :
! L12.0%(V-VS)/VI*{CK+1,5#ALOGIT) +ALOG (V) )+ELV 4 T)/T :
T S1E1/T+(6.0#VS/V)*ALOGE F18( 1. 0~EXPST)) ;
D $=5451 ;
; RETURN
4 END §
> ¥
/ i
/ ¢
!
¢ |
: ,
]
¢ +
4
A
3 H
5 i
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/ G LEVEL 0, ¥CO O MAIN DATE = 672¢4 14/50/12
c
v INTERNAL ENERGY FUNCTION

FUNCTION E(V,T)

COMMCN/CLOSET/A)ESyVS9SN9SSCKoEED, PPO,VO,TCCKK 4VSC
COMFCN/CTVSET/TLTITHEXPT ,DOWN .EXPST
COMIMCN/ELFL/EL«F14F12

Xt=5.0

€=32.2

EEVT2(VS/VI*(~ES/{2.C¥T#T}+3, 0#SSHEXPST/(T#T#(1,0-EXPST})+
SN*ARESREXPT/(2.0%T#T#DOWN) ) ¢ 1. 56 y=VS) /(T#Y)

E22.CHT#T#EEVT

F21s(SS/(THT) )& (~XLREXPSTHEXL+EXPST+(XL-1.0)#EXPSTHX(XL+}.0))
1/1(1.C-EXPST)%%2.0}

F23F214F 124 (XL8SS/T+0.52/T

Vvesrsst

El=(6,0%VS*T*T/V)*(F2/F1=-{SS*EXPST)/ (T*T*{1,0-EXPST)))
E=E+€]

RETURN
END
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v G LEVEL 0y ¥CD O MAIN

£
c

suB TVvSEeT
A SET OF VARIABLES IN TERMS OF V AND T

SUBRGUTINE TYSET(V,T)

COMMON/CLOSET/AHYES,)VS1SN;SS4CK,EEQ,PPCyV0,TC,CKK

COMNMCN/CTVSET/TLyTITLEXPT,DCHNLEXPST
TL=A%ES*VS/(2.0*%(V-VS))
TIT=T1/T

EXPT=EXP(-TLT)
DORN=1.0+¢SA*({V-VS}*EXPT/VS

EAPST=EXPI~-SS/T)
RETURN
END

DATE = 67264 14750712
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V G LEVEL O¢ NCD O MAIN DATE = 67264 14/50/%12
C
c PRESSURE FUNCTION
FUNCTICR PlV.7)
COMMON/ESGES/ESQ

COMMCN/CIGSET/AWESsVS9SNSS+CKeEEQPPCyVOTOCKK VSO
COMNMCN/CTVSET/T1e VLT, EXPT DOKWN,EXPST
COGMMON/ZELFL/EL+Fl4Fl2

XL=5,0

f0=32.2

Mx0

N=0

POLC=0.0

vS=vysS0

IF{vl.LE.VS) GO T0 99

£S=ESQ

UBTAIN THE RIGFT VALUES FOR THOSE VARIABLES IN'CCMMON CTVSET!
CALL TVSET(V,T)

100 AA==~(VS/(V&V))*(ES/(2.08T)~3,0%AL0G(1.0~EXPST)+ALUG(CCWN))
88=(SN/V)#*(1,0+TLT)*EXPT /00NN
CC={VS/IVEVE)XICK+L JS#ALCGIT) +ALOG(V )
PPYT=AA+BB+CL+{V-VS}/(V*V)

c

Px2.,0%TpoVYT
Fll={1.0-EXPST#%XL)/(1.0-EXPST)
FxBO*VS/VSO
F12x (EXPST#*XL ) * (CKK#%04333) % (VS*#0,333-(B8/4.0)¥%0.333) #( T#*0,5)

' Fl=F11¢F12

Pla=(6.0*VS*T/(V*V) ) *ALOGLF1¢ (1. 0-EXPST))
P2p+P1
1F (ABS(P=-POLC).LT.1.0) Go TC 901

~ POLD=P

3 MaMs]

- IF(M.GT.50) G0 TO 101

g (o START ON THE ITERATIVE CALCULATIONS

Y3z VSO*EXP{ ~BETA*P)
[F{V.LE.VS) GO 70 99
98 CONTINUE
ES=ESO*(VSO/VS)*#0,333
CALL TVSEF(V,T)
G0 TO 100
99 N=N+1
V§=V/2.0
IF(N.GT.2) 60 T0 101
GO TQ 98
101 CONTINUE
901 CONTINUE
RETURN
END
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'V C LEVEL 04 ¥CD O FAIN CATE = 6172¢4 14/5C/12

C CALCULATE THE [SOTHERMS
c sSLB PLOT1
SUBROUTINE FLOTL(V,T)
COMMON/ODATAM/M
COMNCH/BLCC/BLANK,DOT,C(13)
CUMPCN/YSET/Y,UVOO
WRITE(6,45C)
450 FCRNMAT('C*y2X,* ISOTHERMS®)
VIN=V
TIN=Y
[FIVM.LEL?) G0 10 30C
DT=50.0
G0 Tu 301
300 0T=100.0
301 CONTINUE
T=T-01
CO 10 K=1,5
C ASSIGN A CHARACTER FCR PLOTTING
Y=C({X)
T=T+CT
WRITE{61451) K, T
451 FORNMAT(ICY 32X o' JSOTHERM ', 125X 'TEVPERATURE *,F10.4,7(K)?)
WRITEL6,201)
201 FORMAT('Cr, 16X VICC/GM) V4 13X, 'TUIK) ¥, 15X,*P(BAR)*,12X,
1'E(CAL/GNM) Y 13X, *S{CAL/GN-K)* 10X, *V/VD')
V=VIN+VIN/10.0
D0 10 N=1,10
v=V=-vIN/10.0
C CALCULATE P
CALL wWRITEL(V,T)
10 CONTINUE
v=VIN
T=TIN
RETURN
END
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VY G LEVEL 0y MOD O FMAIN

¢

SUBRCUTINE WRITEL{V, T}
CONNMCN/DATAH/H
COMMCN/APLGT/AP(101,101)
COMMON/YSET/YUVOOD

COPVCN/CIOSET/A'ESOVS!SN:SS.CK:EEO:PPUyVU'TOtCKK » VSO

V00=v0/35.544

TIN=T

VIN=y

CALCULATE P4EHAND S
PP=P(V, T}

EE=EIV,T)

S1=S5({vV, T}

CHANGE UNITS

V=V/39.944
PP=PP%10CC.0/(24421%0.987)
EE=EE/39.944

$1=51/39,.944

VR=v/VCO

WRITE VaT,P2E,S AND V/V,
WRITE(692C2)V,T,PP,EE,S1,VR

202 FORPAT(' *,7X,6E20.6)

LOCATE THE PCINT(P,V)
Lv00=vC0/1C0.0

N=1,5+V/UVG0

1F(M.EQ, ) GO To 300
K=(1C00C.0-PP}/100.0¢1.5

6o T0 111

306 Kz(ZCOO"PP)/OoZ*l 5

1

11 CONTINUE

GET RID OF ThUSE POINTS QUTSIDE THE REGICN(101%1Ci)

IF(K.6T.101) G0 TC 400
IF(K.LTLY) GU TO 4Q0
IF(N.GT.101) GO 10 400
IF(N.LT. 1) GO 10 400
AP{KyN)ayY

400 CONTINUE

V=VIN
T=TIN
RETURN
ENOD
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PART B
ACOUSTIC WAVES FOLLOWING STRONG
SHOCK WAVES

o -

G. R. Fowles

I. Introduction

Conventional dynamic equation of state experiments, in

Y AIWRITESINTE 2D Y - ALy e

which the wave and particle velocities of plane shock waves are
measured in a sample, yield only partial information abcut the
state of the shocked material. This information comprises the
stress component normal to the wave front, the density, and the
internal energy. In particular, the normal stresses across a
plane perpendicular to the shock front are not determined. Know-
ledge of these stress components in addition to the stress normal
to the front is tantamount to knowing the shear modulus and the
yield strength of the material under shock conditions.

In an elastic-plastic solid the shear modulus and yield
strength must be known in order to treat problems involving
interactions of shock and rarefaction waves; a simple example is
that of a decaying shock. Shock attenuation experiments on
aluminum and other materials have shown that material rigidity,
characterized by the yield stress and shear modulus, has a sig-
nificant effect on shock attenuation at pressures up to at least
200 Kbar. Moreover, the values of these parametsrs are not
simply predictable from known zero-pressure values.(1’2’3)

Attempts to determine the shear modulus and yield

strength by means of one-dimensional shock attenuation experi-
ments have been only partially successful. Spallation of the

83
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free surface on which measurements are made severely limits the
information obtainable.

In this paper I report preliminary results of a study
of small amplitude wave propagation in an elastic-perfectly
plastic solid considered to be previously stressed to the yield
point in uniaxial strain--as, for example, by a uniform plane
shock. By relaxing the restriction that the flow be strictly
one~dimensional, i.e., by allowing the (plane) acoustic waves
behind the shock to propagate at arbitrary angles with respect
to the direction of propagation of the shock one finds that four
distinct acoustic waves are possible, compared with two for the
one~dimensional case. Thelr velocities depend in general on the
shear modulus, and their amplitudes on the yileld strength. Thus,
there are a greater variety of measurements possible in the two-
dimensional case than in the one-dimensional case. This result
is promising; however, it is not yet clear how best to make use
of these waves experimentally. They can be generated by such
means as reflection at interfaces oriented obliquely to the
direction of shock propagation.

Another application of the theory is to problems such as

oblique reflection of shocks at interfaces. These problems

have not yet been investigated, but their solution is a natural

extension of the results reported.

ok IO i

g II. Fundamental Relations and
Initial Conditions

As the starting point for the problem we assume a plane

shock propagating in the x; direction in an isotropic elastic-
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perfectly plastic solid satisfying the V. Mises yield criterion.

The amplitude of the shock is arbitrary except that it must be
Certain

o
?
3
o

large enough to bring the material to the yield point.

fundamental relations to which we will make reference are listed

I AL

below.

We assume Cartesian ccordinates xi(i = 1,2,3) and let
i

Strains are

-
MO Gt NS v Y

u; be the velocity of the material at point X, .

assumed small and the strain rate is therefore given by:

afSSetde 2L BN SO R

du, du;
n.. = H(—t+—=1) .
1] axj Bxi

For elastic strains, Hooke's law yields,

o PR T8 S B S el S S s N

! . _ . ! .
1 Eeij = (1 +v) 935 7 Y %kk 6ij (1)
3 g
E where cii is the stress tensor, E and v are Young's modulus ]
5 and Poisson's ratio, and eij are elastic strains. §
E The plastic strain rate tensor is ;
; LS TR S B & ﬁ
3

and the deviatoric stress tensor is §

? t IJ
- e . 6, . 4
: °ij 917 T %%k "ij - (2) g
: The second invariant of the deviatoric stress tensor s, is 1
3 E:
; given by, 4
4 2 t ! {

2s® = cij cij . (3)

o

(T

Raaio o, L
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For a V. Mises solid, s < k where k 1is the yleld stress in

simple shear--assumed constant. Plastic deformation occurs

only when

s=k,é70. (4)

Otherwise the deformation is elastic and nij = eii . When
yielding occurs the flow rule is

eij = K cij (5)

where K is an undetermined constant. The equation of motion

(for small amplitude waves) is:

w (o) = 2 G (6)

where p is assumed constant.

The stress matrix of the original state is diagonal,

of the form:

ajq 0 0
A = 0 259 0
0 0 aq4q

with a5y = aqq from symmetry. Moreover, the yield criterion
(Eq. 4), written in terms of principal stresses is:

a
(0, - o2+ (o) = 0% + (95 - o? = 6k = 2v2 (1)

where Y is the yield stress in simple tension.
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For matrix A this implies

= J3 k = Y. (8)

IR e i 2 e

1II. Elastic (Unloading) Waves

A. Shear Waves
An unloading wave by definition does not produce g

plastic flow. That is, s < 0 . For these waves, Hooke's law
expresses the relation between stress and strain rate tensors,

and the velocities are those of elastic longitudinal or shear

waves, i.e., pc2 = A+ 20 or pc2 = p where A and p
1 2

are the Lame constants.
We assume an unloading shear wave whose wave front is

parallel to the X3 axis and is inclined to the X1 axis. 1Its

= Ju/p ; we wish to find its amplitude such

velocity is cy 5
that superposition of the stress matrix associated with the wave
and the initial stress matrix just maintains the material at the
yield point. That is, we wish to find the maximum amplitude of
an unloading elastic shear wave whose wave front is inclined at
angle o with respect to the original shock (Fig. 18).

The stress matrix associated with the shear wave alone

is
_ - _ :
bjy by 0
_ _ b b
0 0 0 by Pgy
L. - L. -
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It is subject to the restriction

b = b

kk 11 tbyp = 0 ‘

and b12 = b21

We wish te find the values of the components of B such that

the eigenvalues of the matrix [A + B] just satisfy the yield
criterion (Eq. 7). Adding A and B

?

_ _
, ayp ¥by; by, O
A = A+B = b21 299 + b22 9
i 0 0 a99 |
aj;p ¥byp Py O |
= bjg @y -by; O
0 0 822

The characteristic ,2ation of this matrix is

1
;. - ] =
.
g
2 Expanding the determinant:
‘ . ' ' 1 2 N =
i (a7 * byg = N(agy = by = M(agy - X) - byp(agy =N = 0
.
i one root is therefore ﬂ3 = a9y . The other roots are
\

R
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O

solutions of

2 .
P - - ' - =
(ag3#by1-2)(a5y-by;-2 ) - By, 0 !

or

1 - 2 _ o 2_ 2
A2 = B(aggtagy) * %J4311+322) 4(ayyaygtbyqay5-ayby1=byy b1y ")
If the yield criterion 1s to be satisfied we must have:

(A2 4 i+ (4aD? = 2y

After some reduction this relation is

9 . 2 27 2
(ay7-a99)" = 3{byjagy = a13byy = byy” = by" ) = ¥
But, from (8), ajy-agy = Y , so that,
2 2
oY
b = -y &%/ Y24p 2 (9)
11 2t = 3y 12

We can more easily describe the shear wave in terms of
its principal stresses, or eigenvalues, A. Hence, we solve the

characteristic equation

byq-A b

11 12
- 0
b1g "byy-h
|
Thus, A = # /bll2 + blz2
2. 2 _
But, from (9) b11 +b12 = -Y b11
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Therefore A = % /-y bll . (10)

The eigenvectors associated with the shear wave can

now be found from

P11 Py ST N xl‘l
Expanding,
bip ¥y +bygxy = A %y
big ¥ =~ Py = * %
Eliminating b12 :
e T ) b Ny M Vb
2
(& . P th
X
2 »o-bpy
. 22
Substituting from (10) for by; = ——
Y
2 J———
X 1 -A/Y
(;l) = EN (11)
2 1 +A/Y

Equation 11 gives the principal stresses associated with the
shear waves as a function of the tangent of the angle between

the principal axes of the original stress matrix and the
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principal axes of the shear wave. Figure B shows a plot of
this relation. The ordinate is the principal stress of the
shear wave; the abscissa is the angle between principal axes
(8), or the angle between wave fronts («). (Note that the
principal axes of a shear wave are inclined 45° with respect

to the wave front.)

B. Longitudinal Waves

We adopt the same approach as for shear waves, except

that the matrix B 1is now:

Elastic longitudinal waves are characterized by the relations

between principal stresses:

\Y

Ay = A, = —— A
2 3 7 1,1

The invariants of the B matrix are then:

- = (it

I} = by tby, tbyy = (FR) ) (12)
i B 9 v(2-v) 9 ,
T Iy = = (byybyy + byobyy + byybag)tb; " = - (1o 2 Moo Ay

= . 2 _ ([ v.\2 3
I3 = Dbyybgybgy = bagb)p™ = (%)% ™ : (14)
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i
The matrix of superposed stresses is .

a17+byy b12 0 |
! = =
0 0 a
B 22733 |

with secular equation:

t ' ! 2 _
(aytyy = M(agythyy = M) (agytbyy = X) = (apytbyy = N)byy° = 0.
The roots of this equation are:

x3 = a22+b33 (15)

and Xl 9 = %(a11 11+a22+-b22) (16)

. 2 2
£ %Jkall+bll+822+b22) + 4[by )%= (ag by 1) (agytby,) 1

These roots must satisfy the yield criteriom:

(xl 12) + (A -AB) + (A -xl)z = 2y2 (17)
1
Inserting the values for Xi from (15) and (16) into (17); we
get after simplification:
(ay1+b,1)% = (ay,+by.) (an,tb,,) + (2, ,+b, )2 (18)
11 711 11 711 22 722 22 722
(8 )tban) (8440 180 0Hb00) + (@y tbaa)Z + 3b % = y2
22 733 11 711°°22 722 22 733 12 :
This equation is to be solved simultaneously with Eqs. 12, 13, 14

to establish maximum longitudinal wave amplitudes.
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Recaliing that ayy=agy = Y we can rewrite (18) as:

2
tbq4” + ¥(2by1-byy-byy) - byybyy = byybag

2

l‘ 2
b11 b9

2
“boabyy = =3bpy
But from (13)
2, )
P11%22 ¥ P11P33™22033 T P2 TTIT M

Eliminating b12 between these equations and employing Eq. 12 to

eliminate b33 yields:
4v2 ~ 4v+l 9
A

-0 . (19)
(1-v)2

1+v e

We now note that X4 is a principal direction of both matrices

A and A' = A+B. (Eq. 15.) Hence b33 must be an eigenvalue

of the B matrix, i.e.,

- - v
bgg = Ay = T35 M
Hence, from (12) again
- [1+v -
byy = \l~v> M - Py - b33 (20)
\
1
= 1ov- P11

Equations 19 and 20 give b,y and b,, in terms of the

principal stress of the longitudinal wave, parallel tec the

direction of propagation, kl .

.
LY

PN A 1

L fls S S AN, LB A2 e 1ty 12 des D MR
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If we now solve for the eigenvectors of B , we get
(byy-Mxy +bypxy = 0

(byz-Mxg = 0

A

- -k
(ﬁ>2 S * B Sl £ R (= 2
*2 L 1P 1

and, substituting for b11 from (19),

2 2 )‘l
(xl>2 2\"- - 3\’+1 - (4\) -4v+1) T
Xy tvl - 6vt2 + (Lvi-bvtl) %

This expression gives the amplitude of a longitudinal wave whose
-1/ %1\
wave front is inclined at an angle tan 1(;l) with respect to
2
the original shock front and which just maintains the material at

the yield point. It is of the form

o
*2 2a+b-?l-

where a and b are functions of Poisson's ratio, v .
Figure 20 shows a plot of kl/Y as a function of the angle

4 X
a = cot 1 (;l) for several values of vi. Note that the wave
2

X
is compressive for angles greater than about 55° (;l = 7%~
2

For shallower angles the wave is a rarefaction wave and can be

quite large for large values of Poisson's ratio.
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IV. Plastic (Loading) Waves
Loading waves occur whenever Eq. 4 is satisfied. The
flow rule relating the strain rate tensor to the stress rate
tensor is then modified by the addition of a term given by

Eq. 5. Thus,

We take the direction of propagation of a plastic wave
behind the shock as the xi direction and assume the other axes

are oriented so that the shear stresses o and ahead of

(,'2,1

-

13:
the wave are zero. That is, the prime set of axes is rotated
about x, with respect to the unprimed set (which are principal
directions of the initially stressed material). The wave is also
assumed to have infinitesimal amplitude. We wish to find the
velocity of the wave az a function of the angular difference be-
tween the plastic wave and the initial shock.

Craggs (5) has shown that an infinitesimal discontinuity
in stress and strain propagates under these conditions with a

velocity that is one of the roots of the quadratic

- Bpusz + Cuz

4 =

0
APCp

where Cp is the plastic wave velocity, p the shear modulus, ¢ the

density, and A, B, and C are given by,

A = (1 - 2v)k?
_ i 2 o 2 2
B o= (3- &9k - (1 - 2v)(0g;" +a;,9)
2
C = 2(1- VK- (1-2v) el %201 - v)olZZ

(21)
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This can be written alternatively in terms of the two elastic

velocities Cy and C, and the bulk, or hydrodynamic sound speed,

CH , where
2 _ A+
¢, = P
2 B
C,m = 3%
¢? = £ (w=1 ibility)
h > = incompressibility

In terms of these quantities, Eq. 21 becomes,

) 2 2 ' 2
C.\& C.\2  .Cy.2 c o o -
_RYy o () 12l 3 (L. - 12 11
@) - @) L +2CH-00-F -t @
2 .2 2 2 2
PR A W R P TR Y s R
G T2 N2 2/ T 16\ 2 7
¢, 3(1-v)
where 5 =
CH" 1+ v

In order to find the velocity in a given direction we need to
!

know the stresses ahead of the wave, 919 and 911

Taking
ay and a, as the principal stresses behind the ini<ial

shock, and ® as the angle of rotation of the prime coordinate
system about the X4 axis (i.e. « 1is the angle between the

wave fronts), we have

11

%12

n
a; cos%a + a, sin‘e

(*al+a,) siny cosw
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Moreover,
al - a2 = Y .
Hence,
c = a, - Y sinza
11 1
012 = -Y sin&coso
and
6,,' = o4, - = Y(2/3 - sinza)
11 11 -~ P

Inserting these values into Eq. 22 yields two velocities for
each value of Poisson's ratio and for each angle, @ . A repre-
sentative case is plotted in Fig. 21.

Several features of these curves are noteworthy. For
zero angle of inclination the plastic waves travel with the
velocities of hydrodynamic and elastic shear waves respectively.
For other angles one plastic wave speed falls between C1 and CH,
and the other is less than C2' The faster wave speed increases
to G, at just that angle for which a longitudinal elastic un-
loading wave can have only zero amplitude (Fig. 3). These waves
are in general miked waves that produce changes both in the stress
normal to the front and in the shear stress tangential to the
front. Thus, they tend to rotate the principal axes. The

stress discontinuities as given by Craggs, are:

' 1 2“(0’ '+ vo ')
C e (o, 22
(a) oyy 8933 = 1933 (Lo29) 702 feon @
P




£33

T T ok

]
(b) o Ag = {g - lao
11 22 22 (1-2v) pcp? 11
2 .2
o c~C~
- 12 (’p-"1
(€) 8oy = == (- 2_C7) bon
11 Sp "2
A 0‘11
It is easily shown that for any plastic wave . > 0 , and ,
°11

moreover, the two plastic velocities are bounded by the elastic

velocities

Hence, from the equation for & I19 above (23c), we see that
the faster wave tends to decrease the shear stress, Tig »
while the slower wave tends to increase it.

Some appreciation for the structure of a finitec amplitude
plastic wave can be gained by numerical integration of the above
equations. Each infinitesimal wave front alters the stress
state behind it and since the wave velocity depends on the
stress state shead, finite amplitude waves will generally show
amplitude dispersionm.

Fig. 22 shows a plet of the stress normal to the (fast)
plastic wave as a function of the wave velocity for particular

values of Poisson's ratio and the angular difference between the
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plastic wave and the initial shock. The angular difference i

]
3

this case is such that the head of the plastic wave travels with
velocity Cy- In'general it is slower than C, so that there is

a region of uniform stress between elastic and plastic wave
fronts. As the wave speed aporoaches hydrcdynamic wave speed,
increasingly large increments in the stress ncrmal to the front
are required for a given increment in wave speed. Thus, the
shear stress only asymptotically tends to zero and the wave speed
asymptotically approaches hydrodynamic speed.

This model does not permit the formation of a shock front

as a true discontinuity in stress although the stress gradient

becomes larger with increasing stress. However, we recall that

the equations are based on the assumption of small amplitudes
and the equation of motion therefore has no convective term. It

would be of interest to extend the theory to include finite

amplitudes.
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FIGURE CAPTIONS
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. Fig. 18. Wave front configuration.
Fig. 19. Maximum shear wave amplitudes as function of angle
of inclination of wave fronts.

Fig. 2). Maximum dilatational wave amplitudes as function

b

of angle of inclination of wave fronts.

Plastic wave velocities as function of angle of

TOmTT

Fig. 21.
: inclination of wave fronts. Poisson's ratio,
3 v =0.25.
%. Fig. 22, Normal stress, 11 o of plastic wave as function of
5 yelocity. Poisson's ratio, v = 9.30, inclination of
f wave fronts, o = 51.6° = 0.9 radian.
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PART C
PHASE TRANSITIONS UNDER DYNAMIC COSDITIONS
M. H. Miles

I. Physical Considerations

The purpose of this paper is to survey our present
undersianding of shock induced phase transformations in solids.
It is commonly observed that a stable crystal structure at a
given temperature and pressure becomes unstable upon change of
temperature or pressure. In general we expect an increase in
pressure to favor rearrangement of the atoms into a crystal
structure that minimizes the volume while an increase in tem-
perature Favors an arrangement oi atoums that maximizes entropy.

From the most fundamental viewpoint we would desire
to be able to predict in advance the equilibrium structure “rom
the known properties of isolated atoms. This would entail the
many-bodied quantum mechanical calculations of the cohesive
energy for the various likely crystal structures as functions
of pressure and temperature. unfortunately the cohesive energy
for the different crystal structures even far removed in
temperature or pressure from a phase boundary are not too
different. The difference is often of the order of a percent
of the cohesive enexgy and this is within the accuracy of the
guantum mechanical calculation. It is doubtful if the fundamen-

tal approach is capavcle of reliably predicting in advance the

phase boundaries on a PVT diagram.
107
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Another less fundamental approach is to avoid the
quantum mechanics by using a model calculation based on an
assumed atomic interaction. Again the details of the calcula-
tion are complicated and only approximate solutions to the
model are obtainable. Even if the model seems to favor a
given crystal structure it is always somewhat uncertain if this
is due to the mathematical approximations or to the model itself.
Since effective forces between atoms extend beyond nearest
neighbor as evidenced by differences in cohesive energy between
hexagonalclose packed and face centered cubic structures, the
more tractable models are expected to be poor approximations to
the real binding forces.

A third approach is an engineering one based upon some
thermodynamical model for the phase transformation. Often this
approach is a combination of empirical and semi-cmpirical cor-
relations largely based upon experimental observations of a
particular system. A phase transition is feasible if the Gibbs
free energy for the rival structures are equal. We may indicate
this situation by showing the Gibbs free energy and enthalpy for
two polymorphs as functions of temperature at constant pressure
and by showing the Gibbs and Helmholtz free energies c¢f the two
polymorphs as functions of pressure at constant temperature.
Confidence in this approach necessitates accurate calculations of
the required thermodynamic guantities or at least a useful
representation of the necessary thermodynamic quantities

empirically from experimental observations. A partial solution
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or at least a useful classification of phase transfermation is
obtained with the aid of the Clapeyron equation. The Clausius-
Clapeyron equation gives the variation of the transition pressure
with temperature. This requires accurate calculation of the
volume change and entropy change but useful information is
obtained if merely the sign of the entropy and volume changes
can be obtained.

In attempting to understand shock-induced nhase trans-
formations one would like answers to such basic questions as
(1) why does the transformation occur, (2) what is the mechanism
for the transformation, and (3) what differences exist in static
versus shock induced transformations. We have touched upon some
of the difficulties pertinent to the first question. In dymamic
shock the shifting of atoms to a new structure must occur in
times of the order of the transient pressure duration. This time
is short, being of the order of microseconds. The situation
under dynamic shock may well be influenced more by the kinetics
than by the equilibrium thermodynamics of the transformation.

Since our present fundamental understanding of the
stability of solidsis in a rudimentary state, it seems advisable
to carefully review the present experimental knowledge concerning
pressure induced phase transformations. The "130-kbar' poly-
morphic transition in iron has attracted considerable static and
dynamic experimentation. The first cbservation of this polymorph
was reported in 1956 in the shock-wave investigation of Bancroft,

Peterson, and Minshall.l For some time the nature of the

i
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- transformation was considered to be the bec to fce (¢ to y)

transformation of iron such as occurs at 910°C and atmospheric

3 IR MR T80 b1 By

pressure. Several investigatorsz’B’4 investigated the « to Y
} phase boundary out to pressures of about 90 kbar. The tempera-
§ ture dependence of the phase line around room temperature was
N

X invesiigated by Minshall’® under dynamic conditions which seemed
inconsistent with any reasonable extension of the @ to Y phase

line. This led Fowler, Zukas, and Mi'.lshall6 to question the

S e naodh it

alpha to gamma transition suppositior. Johnson, Stein, and
Davis7 reported in 1962 shock compression results on specimens

in the temperature range of 70°K to 1158%K. For temperatures

e e e
PFONE LT i AL SO e

up to about 500°C results similar to Bancroft's were obtaiaed

5 while above 500°C a transition that was much more pressure

A dependent was indicated in fair agreement with the low pressure
@ to y statically determined phase boundary. Johnson's et al.
temperature-pressure data together with microstructual observa-
tions suggested a triple point at about 110 kbar and 500°c.

3 ' They concluded that the low pressure, high temperature phase line
5 was the alpha to gamma transition while below 500°C the trans-

. formation was from @ to an ''x' phase different from Y,being

; most likely hcp.

Balchan and Drickamur8 obtained the phase change stat-
ically,observing a sharp change of resistance at 133 kb and 20°¢.
The first high pressure X-ray investigation was performed by
; Jamieson and Lawson.9 In the high pressure phase region at room

A temperature they observed an exira X-ray line that agreed with




111
known volumes significantly better if it were assigned to an
intense hcp line rather than to a corresponding fcc line.
Later improved X-ray work by Clendenen and Drickamer10 and by

11

Takahashi and Bassett ™~ established that the high-pressure

phase at rcom temperature was indeed a hexagonal structure.

More recently Bundy12

has confirmed the pressure-temperature
phase diagram for iron placing the triple point at 110 % 3 kbar
and 490 = 10°C. Bundy calibrated his data by assuming that the
110 kbar assignment by Johnson et_al. for the triple point was
correct. The justification being that their room temperature
data correlated well with the 130 kbar ¢, ¢ shock transition

of Bancroft.

Loree gg_él.l3 has recently studied the dynamic trans-
formation for pure iron obtaining for the best value for the
onset of the dynamic transition 129 *# 1 kbar at room temperature.
Earlier transformation pressures appear to be too high for two
reasons: (1) the possibility of overdriving the transformation
with excessively Qigh input pressures, and (2) the samples were
not annealed. It is expected that annealed samples would have
the lowest elastic wave and therefore the lowest transition
pressure. This seems to be indicated by the work of Loree et al.
It is interesting that Bundyla has presented evidence that
dynamic and static pressures for initiation of transformations
are identical for pure iron but the static pressures for iron
alloys of V and Co show much larger increases compared te the
dynamic pressures as the percentage of V or Co is increased.

The difference at 20 wt % Co is huge being about 288 kb statically
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compared to 136 kb for shock.

Another transformation with considerable static and
dynamic experimentation occurs in bismuth. Duff and Minshall15
were the first to observe shock induced phase change in bismuth.
Their shock data for specimen temperatures of »270, 420, 870,
and 236°C indicated a transition about 3.5 kbars higher than
the statically determined phase diagram of Bridgman. The slope
of the shock data was -50.8 bars/°C compared to the statically
determined slope for the Bil to Bi II phase line of -50 bars/°C.
On this basis it was assumed that the high pressure phase was
Bi II even though the samples were subjected to shock pressures
far into the Bi III static equilibrium region. The 236°C shocked
crystal was driven into the liquid bismuth region of the
equilibrium phase diagram. Since melting is considered to be
a slow process compared to shock pressure durations and there
apparently was no evidence for melting, it appears that this is
a clear example of a shock-induced transition to a thermodynamically
unstable crystal lattice instead of to the stable liquid phase.
Larson16 has repeated room temperature shock investigation of
bismuth. Larson measured the sample pressure using quartz
pressure gauges whose readings were calibrated assuming linear
Hugoniots for bismuth and quartz. After adjusting the observed
dynamic transition pressure to an effective hydrostatic pressure
Larson achieved a transition pressure of 25.4 kbars for isotropic
bismuth and 25.9 kbars for large grain cast bismuth. There was
no overdriving of the transition pressure even for samples down

to 1.5 mm in thickness. Since the transit time of the shock

il
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) wave through such a thin sample is less than a microsecond, the
characteristic time for the transformation is much less than a
microsecond, being perhaps of the order of a few nanoseconds.
The static transformation pressure at room temperature has been
determined to excellent precision by Kennedy and La Mori17 to
be 25.4 * 0.1 kbar. It appears that bismuth and, perhaps also
pure iron,cannot be overdriven even for very thin specimens.
The importance of sizeable shear stress in reducing the
nucleation and growth times is suggested by comparing the shock
results with the pure hydrostatic pressure results of Davidson

and Lee.18

Delay times for initiation of the high pressure
phase of the order of several minutes were observed for both
poly and single crystal bismuth followed by slow growth of the
high pressure phase. The transition pressure and transforma-
tion rate were found to be independent of the presence of grain
boundaries. It seems that for very low shear stresses and
pressures only slightly above the transition pressure that the
transformation favors thermally activated nucleation and growth
processes. However in the shock data for bismuth the new phase
must nucleate extremely fast and the new phase must propagate

in the shocked sample with a velocity close to the sound velocity.

Other materials such as antimony relax into a new

structure much more slowly than iron or bismuth. Minshall's
3 work on antimony referred to by McQueen19 showed overdriving

of the transition pressure for samples thicker than 20 mm.

Warneszo has recently confirmed and extcaded Minshall's earlier
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work. Apparently the overdriviang is due to delay in nucleation
or an initial slow growth process. It is reported by the data
of Breed and Venable21 from the PHERMEX facility that X-ray
phetographs chow that the plastic-two wave forms at the sample
interface and accelerates rather slowly to its characteristic
velocity. This gives a vime dependent phase transition with
the plastic 2 wave being delayed about 0.6 microseconds.

It is obvious that the short duration of the transient
pressure pulse places severe limitation on any mechanism of
transformation that requires appreciable time. This suggests
that shock-induced transformation should be considered to be
classified as Martensitic among the vast literature of solid
transformations. Certainly any growth by &iffusion of atom by
atom across the interface simply requires orders of magnitude

too much time. The individual atoms must undergo a correlated

relative movement of somewhat less than one interatomic distance.

This correlated atomic shuffles or movements are similar to what
occurs for example during mechanical turning. There are many
examples of temperature induced Martensitic transformations
that are fast enough to suggest that similar atomic shuffles are
initiated by pressure pulses. It is felt that a study of the
Martensitic transformations will shed light upon the transforma-
tion process and that shock studies may well prove a useful
approach in understanding the martensitic transformations.

The most obviousz characteristic of the martensitic
transformation is the so-~called shape deformation. This reveals

itself in rather well-defined surface distortions. These surface

R

B
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relief effects usually indicate that straight iines in the
crystal are transformed into straight lines and planes are
transformed into planes. It is alsc known that the martensitic
phase even though it has a different crystal structure has a
definite lattice orientation relaticnship to the parent phase.
The particular plane of the parent structure called the habit
plane separates the two phases. For convenience we will make
two classifications of martensite transformations. The most
common is perhaps the platelike martensite which forms from
numerous nuclei in a crystal with each plate apparently growing
independently into a distinct plate. There is also a ''single-
interface type' martensite which occurs in some materials such
as Au-Cd alloys. 1In a single crystal the parent-product intex-
face extends completely across the crystal so that the interface
plane does not experience the volume constraints present for
platelike martensite formation. The boundary between the parent
phase and the region of product phase is planar for a single
crystal., Included regions of platelike martensite are usually
lenticular in shape. The shape deformatf:ion of martensitic
plates constrained by the parent matrix gives rise to strain
energy that may be very large so that further growth is stopped.
Additional growth upon cooling does not begin until the chemical
driving force can overcome this strain energy. There may be
competing nucleation and growth processes which begin at smaller
driving forces giving rise to the oft observed martensite

appearing only during rapid cooling from above the transformation
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temperature. The reaction starts at a characteristic temperature

(Ms) which depends upon previous mechanical and thermal history

and on grain size. For martensite in steels, the chemical driving

force is about 300 cal/mole but for other solids with smaller

shape change the driving force may be smaller. In general a

large driving force implies a large temperature hysteresis between
Ms for the cooling transformation and My for the reverse trans-
formation upon heating.

If the chemical driving force is not large enough for
spontaneous transformation or even of the wrong sign, martensite

may sometimes be produced by externally applied stress. The

lattice transformation may be viewed as a mode of mechanical

deformation comparable with mechanical ¢winning. The shape of

the mechanical twins are often very similar to the shape of mar-
tensitic plates.

The crystallographic theory of martensitic transformations

as developed by Wechsler, Lieberman, and Read22 and a fundamentally

equivalent theory by Bowles and Mackenzie23 is essentially phe-

nomenological, concerned only with the crystallographic features.

The problem of nucleation and kinetics remains essentially un-

solved. The central aspect of the crystallographic theory is to

describe the proper initial and final atom positions and to satisfy

experimentally observed shape deformations with an undistorted,

unrotated habit plane. Using methods of matrix algebra it is

possible to transform one crystal structure into another but an
additional matrix is generally needez to give the correct shape

deformation and the invariant habit plane. Pysically the

- P O
e A e

e

PPN g




117

additional matrix represents twinning or dislocation slip. As
far as the theory is concerned there is nc preference given to
the order of events between the lattice deformation and the
crystal deforrmation or between the choice of slip or twinning.

Under shock conditions it is not known if the phenom-
enological theory applies. Both elements of a crystal deforma-
tion and lattice deformation are expected to exist under shock
conditions since the solid has been driven into a region of
plastic relaxation prior to relaxation into the high pressure
crystal structure. The restrictions of a specific shape
deformation 2nd an undistorted, unrotated habit plane may or
may not remain for shock conditionms.

In discussing the kinetics of martensitic transformations
it is often the nucleation rather than growth that is rate

24 ona ‘ron-nickel-

determining. The work of Bunshah and Mehl
carocu alloy indicates that the linear growth of individual
plates is about one-third the velocity of sound in the alloy.

The velocity was observed to be independent of temperature in

the range -20° to -200°C indicating that the growth was not
thermally activated. This interpretation does help in under-
standing athermal martensite where the nucleation rate is a
function of temperature independent of time and the understanding
of isothermal martensite where the nucleation »ate for a partic-
ular temperature is time dependent. In shock, if there is a
delay in nucleation of the high pressure phase we should expect

a high pressure precursor to the relaxation, due to phase change,

which decays at a rate depending upon the nucleation delay time.
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20 has suggested that as some of the material behind the

Warnes

shock begins to relax into its higher-density form, rarefaction

waves are emitted. The forward rarefaction overtakes the over-

driven shock thus attenuating it, The progress of the plastic 2

wave is being delayed by the relaxing material ahead of it.

When the nucleated region relaxes to a state on the Hugoniot '
near the transition pressure,emission of further rarefaction
is no longer possible. The plastic 2 wave is presumed to now
proceed with its cheracteristic velocity.
At present we have little or no understanding why a
given phase transformation behaves as observed. What seems
totally lacking is any detailed plausible models for initiaticn

of a new phase and the subsequent kinetics of growth yielding

the plastic 2 wavefront. The role of crystal defects in

imen, o

nucleation of the new phase seems so far essentially unexplored.
There is need of further data especially on the simpler

solid state systems. For example the simplest martensitic

é transformation is from a high temperature fcc phase to a low i
i : temperature hcp phase as found in cobalt. 4an evaluation of

. plausible mechanisms for phase transformations seems in order.

Useful theoretical prcyposals should be amenable to experimental

R A e

evaluation and sufficiently realistic to be taken seriously by

T et actu

shock wave experimenters.
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II. A Simple Martenmsitic Model K
Suppose that each grain of mean diameter d has N,

nucleation sites distributed around its boundary and that N(P) {

R By T N R e e T

of these are activated at pressures less than P. Suppose
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Platelet of Phase 2 in a Grain of Phase |
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further that once a site is activated, it generates a platelet

of voltme «d which runs across the grain in time d/c, where

¢ is sound velocity in the original material, Fig. 23.

For simplicity take the densities of old and new phases

to be the same. Then when the first platelet runs across the

grain it transforms a mass fraction o'd/d3 to the new phase.

As transformation proceeds, the amount of mass transformed by

activation of each new site is reduced. Assume that when a

fraction A has been transformed, activation of a new site

increases A by an amount (1-}) d/dz. Then for very slow

increase in pressure, A can be assumed to equal its equilibrium

value, Aeq. Then

dleq dN (l-Aeq)«
ar 3?'———55——-
or
Aeq = 1 - exp(-dN/dZ) (2.1)

A graph of Aeq vs P might have the general features shown 1in

Fig. 24. At sowe pressure P, one would say the transforma-

tion started. &t P, it would be effectively completed.

If we now forego the earlier assumption that the two
phases have equal densities, the curve of Fig. 24 can be converted
to a P-V curve, as in Fig. 25. Here 0OAC and QBD are compression

curves of phases 1 and 2, respectively. OAB is the curve obtained

by plotting the average specific volume, v, against P, where

v o= (1= 2MAvy + v, (2.2)
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1+ Asymptote

3 g 0
] Fig. 24
! Schematic Diagram of

Transformation Parameter vs Pressure
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—_— Fig.25
Compression Curve Corresponding to Fig.24 & Eq.(22)
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and A 1is taken to be Aeq of Eq. (2.1) and Fig. 24 The slope
of OAB at any point can be determined by differentiating

Eq. (2.2) and combining with Eq. (2.1):

i dv o, « dN

—_ - +A 24 — (1 - A 2.
%& 4P ( eq)dP eq dP (Vz Vl) "‘2‘ (1 q) (2.3)
5

) 1f dvl/dP = dv,/dP and v, - v; = Dv = constant, this

' reduces to

; dv/dR = (dv;/dP) +Dv (1 - A, )(dN/dP)/d? (2.4)

In its integrated form, Eq. (2.2) is

2
v o= v, + (vl - v2) e'dN/d . {(2.5)

If pressure increases very rapidly the growth of plate-
lets may fall behind the pressure increase, so A may have %
5 other than its equilibrium valuz. Suppose, in Fig 25, that the %
l system is at some point A and that P 1is suddenly increased
to P+ 6P at B. Then the number of activated sites is in-
creased to N + (dN/dP)SP and X starts to increase toward

point C at the rate ‘
!
d _ oN 02 .

v = (A - Keq)C/d (2.7

o

by Eq. (2.1).

gs. (2.1), (2.2), (2.5) and (2.7) compose a phenomen-

ologically completedescription of the tramsition process for
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incerporation into the flow equations. In order to iilustrate
some of their features, note first that d/c in Eq. (2.7)
plays the role of a relaxation time. For d = 0.1 mm and
¢ = 5 mm/ksec, this becomes T = d/c = .02 psecs, a much
shorter relaxation time than was reporte.l by Novikov gg_g;.zs
and one which would play little role in shock observationms.

The equilibrium curve, Eq. (2.5), can be illustrated

as follows for iromn: Take
/
N = (N /2)|1 + tanh((P-P_)/aP ) (2.8)

by = (vo/vl) -1

- 2
P(vl) = 1.667 by + 3.4 Wy

Ay = A2 .00596 cc/g

vy = 1275 cc/g

Pm = _175 megabars

No , o'/d2 and AP to be varied

The results of these computations are shown in Fig. 26.
The parameters for each curve are given in Table 2.1. It is
apparent that the equilibrium curve can be shifted quite
arbitrarily in the transition region with even such a simple
model as this. Since thermodynamic calculations give almost
horizontal adiabat and Hugoniot curves in the mixed phase region,

it is couceivable that careful shock measurements in the mixed
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Table 2.1

Parameters for Fig. 2.1

Curve AP 2

Number Megabars _jﬂ;_ o/d
1 .J15 100 .05
2 .01 100 .05
3 .02 100 .05
4 015 200 .05
5 .015 590 .05
6 .015 100 )
7 .015 100 .2

phase region can be used to shed light on deviations from

thermodynamic equilibrium.
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