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APPLIED PROBLEMS ."

METHOD FOR CALCULATION OF SUPERSONIC FLOW PAST
BLUNT BODIES WITH A DETACHED SHOCK WAVE

S. M. Si1linskly, G. F. Telenin
and G. P, Tinyakov

In 1961 at Moscow State University G. F. Telenin proposed
a method for calculating supersonic flow past blunt bodies with a
detached shock wave [23, 24]. During 1962 and 1963 systematic
investigations were conducted on an ideal gas flowing past ellipsoilds
with a different ratio of semiaxes and bodies with an analytic
contour, close in form to a face with a small degree of rounding
of angles [27, 32], bodies with a concave contour in the region
of critical point, bodies with discontinuity of contour curvature
in a subsonic unit and contour fracture in the sonic point (type
of face), and flat bodies [32, 33]; flow past bodies with &
various form with M number striving for infinity and the aaiabatic
index striving for unity [27]; flow past a sphere by equilibrium
carbon dioxlide [26] and past bodies of different form by equilibrium
air [25, 34]; flow past a sphere by nonequilibrium air [28],
taking into account kinetics of excitation of fluctuations in oxygen
and nitrogen, the flow of dissociation and exchange reactions -
(including 02 + N2 = 2?0) and 1onizati$n with the help+of atomic
collisions (N + 0 =NO + e, N+ N = N2 +e,0+0s= 02 + e), satis-
factorily describing the process up to M ~ 30 [29, 30], and spatial
flowing around with a detached shock wave [2, 35]. At the same time
work cr. investigation of the method was conducted.

In the first, second, and third sectiornis ¢f this article the
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problem of supersonic flow past bodies with a detached shock wave

is formulated, and on the basis of an analysis of properties of
solutions of model linear equations of elliptic and mixed types

the basic 1deas of the method are expounded. In the fourth section

a numerical method for solving nonlinear problems is described.

In the fifth section examples are given which illustrate the applica-
tion of the method for solving different problems of flowing around
with a detached shock wave

§ 1. Formulation of Problem

We will examlne the flow past an axisymmetrical body by a
stream of an ideal gas with the parameters V_, p_, p,-

Using the stream function Y, the system of equations for
gas dynamics 1in a spherical system of coordinates r, 6, ¢ can
be presented in the following form:
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Here; ) .'-p“ qu.- projection of velocity vector ¥ on unit
3
vectors 3" and 36’ relative to Vmax; P, p — pressure and density
relative to omviax and p_ respectively; r is relative to the character-
' 2 2
istic dimension I, and ¢ to pmvmaxL .

The hasle difficulty is in the transonic rnature of the
problem, since the solution has to be looked for sirultaneouc.y
In the sulsonlc and in a certaln part of zunersonic repglons. As
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and is the most studied model of gas dynamics equations in the
hodograph plane. It has been used to help in studying the formulation
of ma.y transonic problems. It is natural to lean on these results
also in examining the problem of flow past with a detaﬂhed shock

wave, According to the results obtained in the present work (Fig.
la), a geometric picture is given for flow past a sphere by an

ideal gas (y = 1.4) at M = 6, The figure shows the shock wave

ABC, sonic line DBQ, maximum characteristics DCK, limiting ﬁhe

region of influence of the supersonlic fraction of flow behind

the shock wave on subsonic. Also shown are a series of charad%eristics
BK, MN, etc., of the first family, emanating from the sonic line,,

and the limiting line QP, starting at the point of intersection off,
sonic line with thé axis and representing the envelope of character<
istics of the first family. Solution for the region located before
the shock wave is obtained numerically by continuation from data
behind the shock wave with the help of the same program. With

a decrease of M number and an increase of body flatness the form

and arrangement of mutual disposition of the compression shock,

sonic line, and maximum characteristics are changed. For clarification

of the maln positions we will limit ourselves to an examination

of the simplest case which 1s depicted in Fig. la. In Figure 1b

a representation of flow in the hodograph plane Vo vy (corresponding
points are designated by the same letters with primes) is given

for this case.
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Solution of system (1.1) should be subordinated to correlations

for compression shocwﬁ
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Here vy and vy are projectlions of velocity vector W on rectangular
axes X and y (Fig. la), and r = rc(e) and o the equation of shock
wave and angle of inclination of 1t to the axis of symmetry x,
to conditions of symmetry on segment of axis AE and the boundary
conditon on body contour

Iy .
R”U‘F;"o ' (1.3)

where r = rT(e) — equation for body generator.

From the relationships (1.2) it is clear that if the form
of shock wave 1s given, then J(}) 1s a known function.

In regions A'B'K'D'E'A' in the hodograph plane a bourdary
value problem of the Frankl-Tricomi [3] type appears: houndary
conditions are assigned on the elliptic segment of the boundary
of region B'A'E'D' and on the noncharacteristic curve E'C', located
inside the characteristic trianple B'K'D'' which 1is adjacent to
the parabolic 1line D'B'. Line A'B'C', which 1c a form of comprescion
shock, intersects each of the characteristics only once incide
triangle B'K'D'. Line E'D', a form of body contour. is unknovr
beforehand and should be determined during the solving proce::c.

In an analogy with the Trlcomi equation and flat poter.tial rrecilems
of gas dynamics one may assume that in the hccograph —izne tre

s
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correlations for section A'C' o” compression shock, conditions

of symmetry cn the segment of axis A'E', and the boundary conditions
on part of body contour E'D' uiiquely determine the s3clution in
region A'B'K'D'E'A'. However, a physically pnss:tie flow does

not satisfy every solution in & nodograpi plane, since mapning

from a'hodograph plane into a p.:vS8ical plane can be single~valusd,
which leads to peculiarities in tne physical plane. In the subson'c

2. fa i sk

part of the hodograph plane mapp’ng into a physical plane does g
not have any peculiarities besides the 1solated branch points. '
In the supersonic region limitin;: lines can appear, along which
the fastening of two sheets of ti‘® physical piane occurs. Along
limiting lines the Jacobian
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becomes zero, or which in our cas¢ 1s equivalent, derivatives of
velocity components become infinit. .

e

!‘ ' In order that the solution iri the hadesraph plane for region

) A'B'K'D'E'A' in the physical plane in the region ARKDEA 1is satisfied
by the real flow, it 1s necessary f.o place an addltional ccndition

! for the desired solution: nonreve:sZ. of the Jacctlan D to zero,

J or what is the same, boundedness of derivatives of vectorial velocity

: components in the triangular region NKD. In ac:urdance with this

i the condition of uniqueness in refcrance to the groblem of supersonic

? flow past a blur.t body with a detached shock wave can be formulated

| in the following wvay: in the clases of functions with a continuous

limited derivative of relationship foc sectian AC of the compression

shock, the conditions of symmetry for segment ¢’ axis AE and the

' boundary condition for a section of ..0dy ccuioir urijuely determine

. the solution of a system of differential equations oi gas dynamics

in the region ABCDE of the physical pline (see Fig. 1).
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K It 1s necessary to rote that sir.ce fulfillment of th= character-
istic equation along the characteris’.ic curve is & coroliusry of
differential equations, chen assignmen' of t' .il¢ equetion slong
limiting characterist¢ic DK or some other characteristic can produce

f nothing for separation of the class or sglutions with a limited




derivative (such a condition is D # O in the supersonic reglon),

and consequently also for formulation of conditions of uniqueness.

The appearance of a limiting line is conditioned by the boundary
conditions of the problem. The characteristic equation contains
derivatives only along the curve and is fulfilled for anycharacteristic
independent of whether or not it has a common point with the limiting
line and, consequently, whether or not the derivatives which are

normal to characteristic remain limited (for example, formation

of a 1limiting line during supersonic flow around a concave angle).

Making further use of well-known theorems for hyperbollc equaticns,
our result is that in the class of functions with a limited derivative
the solution is determined uniquely in a wider region ACGRFDE,
if the conditions for compression shock and for the body are assigned
accordingly up to points G and F (Fig. 2).

‘\Q

Fig. 2.

If the body contour up t point T' 1s an analytic curve, trern,
as It follows in the region which 1s limited from avove by the
characteristic emanating from point T' the fleld of gacs-dynamlc
parameters behind the shock wave not only satisfles conditions
of uniqueness but also lis analytiec. The angular point and
discontinuity of curvature (or leading derivatives) on the contour
in the subsonic sector of flow lead to appearance of isolated cingular
points on the surface of the body.

Let us trace in region ACGRFDE an analytlc curve GS? whicna
does touch upon a characteristics in one point. Then, 1f the unknown




solution is analytical 1n a sufficiently large region, then in

the region FSGTF which is bounded above by the arbitrary curve

GTF, there exists an unique solution of the Cauchy problem with
initial data for line GSF and, consequently, in the class of analytic
functions the above-mentioned conditions of the boundary value
problem determine the unique solution in region ACGTFDE.

§ 2. Selection of a Differential System For Solution
of the Formulated Boundary Problem

For this purpose it 1s possible to use the method of establish-
ment or some iteration method for solving a system of difference
equations approximating a system of stationary equations (1.)
simultaneously in all the subsonic and transonic regions (1.e.,
the solving of nonstationary equations). However both these methods
require a great volume of computer storage and the carrying out
of a large volume of calculations, since they essentially reduce
the problem to a three-dimensional one. This limits the selectlon
of high speed machines for the resolution of problems of supersonic
flow past bodies with detached shock wave. Therefore it 1is natural
to attempt [4, 6, 7] to construct a numerical algorithm, using
the resolution of the Cauchy problem 1in some form or other. The
difficulty 1s that in a general case the Cauchy problem is tactlecs
for an elliptic region, i.e., solutions exist with Cauchy data
for a length of boundary of the region differing as 1little as desired,
but which differ as strongly as desired inside the region.

However, in a number of works (see, for example, [8, 9] it
is shown that the problem becomes correct in a limited region if
one were to narrow down the class of solutions examined. 1In the
class of bounded functions the problem is correct in the sense
of the root-mean-square norm, and i1f the function is moreover analytic,
then in the usual sense.

Considering the analytic nature of the desired solution, it is
natural to expect that by selecting an approximating system which
takes this analyticity into consideration to a sufficient defgree,
it is possible to obtain a convergent and sufficlently stable method

for the numerical resolution of the problem.

7




We will consider the selecticn of an approximating system in
an example of the Laplace equation:

.‘). v p'-:_
a0 (2.1)

Let it be necessary to find the solution of a Cauchy problem in the
region 1<x<l, ", *  with initial data (Fig. 3)

G (x, 0)-=a (\'), Py (X, v) l'-(.\'). (2.2) ' ]

Let us assume that in a certain wider region ABCD the desired
solution ¢(x, y) 1s a harmonic function with a limited rradient U
|grad ¢| < M,and the initial data (2.2) on segment KL is les: “ran
(1/2)m.

Fig. 3.

Then for the function of the complex variable f(z) = ¢(x, v, +
+ 1y(x, y) (v(0.0) = 0) we have the estimate .. /. R i
in the region ABCD (E < H) and ./(v)l:im(ltv) 3 for the initial
line KI,.. Using the Corleman lemma (8, 9] we obtaln tre estirave
for resolutlon of the Cauchy problem in the region Ioa

Pe(ro @) < A,




Formula (2.3) shows that the greater a and i - b are, (the
further peculiarities are located) then the more rapidly decreases
the solution of ¢(x, y) 1n the entire examined (crosshatched) regsion
with a decrease of m. The value E #¥ 0 1s not essential.

Now let us consider on the same n10del the question of the
selection of an algorithm for the numcrical resolution of the Cauchy
problem in an elliptic region.

If one were to conti ue the entire solution ¢(x, y) =
= ¢1(x, n, y) + 1¢2(x, n, y) in the complex region g = x + 1y,
then at a fixed x (x — parameter) determination of ¢l and 6, is
reduced to resolution of the Cauchy problem in the plane n, y for
a hyperbolic equation (in the examined case wave [10, 11]) with
initial data

G(ron) o (nm) gy (e ) = (e ) galx n) v (e n),
Tap (e m) = (e )

Here ') v (v, y) . {vn) and t“)::nkx.q)fiu(ntﬂ- are analytic:
continuations of 1nitial data into the complex regions ¢ = x + in.

Thus, 1n the three-dimensional region x, n, y 1t 1is possible
to construct a stable algorithm for the numerical resolution of
the Cauchy problem and to find the solution of the initial problem
$(x, n) = ¢1(x, 0, vy).

Such an approach has two deficlencles from the point o° view
of practical use in the numerical resolution of a Cauchy problem
In an elliptic region. Filrst, the process of continuation «f
irnitial data into a complex region 1s reduced to resolution ¢’
the Cauchy problem for the Larlace equation. For example, for
determination of ol(x, n) it 1s necessary to solve the problem
with iInitial data

g, (v, Q) =u-(<), (e 0) =0,




Just as in a general case, the problem 1s reduced to only & simpie
Cauchy problem in an elliptic region, and in the examlned case :
of a model equation this problem 1s equivalent to the initial one. : !
Secondly, there 1s a strong increase in the volume of calculations,

since actually agaln a problem 1s belng solved in the three- é
dimensional region x, n, y.

However, both these difficuities can i

be surmounted by the selection of a suitabledifference system

in the region of "physical" variables x, y, giving sufficiernt

consideration to the analytic nature of the desired soclution.

The general solution of the Cauchy problem (2.2) for =

Laplace equation (2.1) can be presented in the form
* ’H‘, i n‘ 9 1 d o . .
‘7'}4; ?\‘ RN ‘E y ‘ g (v, L () -0, . \ |
T \‘“" . AT 0
N .1,. . ? "(\‘) :l\ "(.') d:‘;.
:’:..:.a :'.\Udu-:ﬂf - g

where o(z), T(z) — analytic continuations in the complex reciorn

z = x + 1y of functions o(x) and T(x).

Let us assume that for the initlal segment
2n + 1 are selected.

130l tre rodes

Based on the values of functions irn -ae rceo
for tre irltial data we construct Lagranglan interpolatiorn

polynomials In the complex region:

UL A AR (s ESL A R R
/e i

and b
functions in the nodes.

where aJ q are linear functions of o(xj) and T(X:} vataer L7
If functions o(x) and 1(x) are
then during arbltrary locatlion of nodes the cequence of rnter-

polation polynomials (2.5) converges evenly in any finite »epic.

of the complex variable.

Inteser

If functions o(r) and 1(f;, have peculiaritic: in vic 1ex
plane and interpolation polnts colnelde witn zerocn 7 Lnee e s
polynontai, Wne: the Intermclatlicsn mpooess ' ~.u, 2Goutmzrcod - oo
.0
k. - — —




in any closed region lying inside the ellipse . .5 !}/ --1)-=p"
If all nodes coincide with the princlipie of coordinates, then
polynomials (2.5) convert into segments of power series, and the
region of uniform convergence 1s any closed region which 1s

’ internal with respect to circle R = |g| = R*¥. FEllipse p = p* and
circle R = k¥ pass through the nearest s:-yular point (Fig. 4).!

C ¢ II / ‘_':_['(y

~

~ GRAPSIC NOT
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Singular point

4

Let us note that the use of nodes which are disposed on the
cegrnient expands the convergence region of the interpolation
nrocess in direction of the initial line without changine its
dimension in the direction n, when the peculiarity 15 disposed
at x = 0 and a fixed n. 1Inslde the region of uniform convergence
t*he interpolation process glves an effective stable ('n the exarinr=a
class of functions) algorithr of continuation ¢ initial ceta In
the complex region.

Placing (2.5) in (2.4), we obtain an approximate sclutlcn
of the Cauchy problem

“ ‘e

W(h ) ut v y) zzc{'\:”-’..fuz\‘, f’"l.drl}, (2.6)
se l :v

i F Y]
satisfying the initial conditions (see 2.5) ¢i(v,6) ¢ (v) and [, (" 0) = ().

In roglon G the sequence ¢: converyes evenly to an erxict

resciution of the Cauchy problem ¢(x, y) for the Laplace = e -O6.

Now let us construct an algorithm for tre :urerical solution

of the Cauchy proclem which can te rernerailze L Uir a cace =T oo




complex equaticns, including nonlinear ores. For this we approximate
the desired solution by the Lagrangian polynomial for x:

]
(% ) =g, (% y) == 2«;}. )+,
'%g' ‘3}' ')‘IU = D) . (2.7)

where ¢gn(y) ~ linear function: ¢, (y) =, (%;¥) of values of approximate
solution for 2n + 1 rays of x = xJ. Placing (2.7) in (2.1) and
requiring that the expression obtained 1s identically satisfied

for all rays, we obtain the'dpproximatiug system of ordinary
differential equations

JRAPH'B NGT Y 1(1—~r)t|°(/) (R0 (B )
REPHOGUOIBLE — =

and initial conditions

(2.8)

— -

Gl =0(r), a5, (0) = ¥(x,).

(2.9)

It 1s obvious that any solution of initial equation (2.1), which
at a fixed y is a polynomial of the power 2n based on x, for rays
x = x, satisfies the approximating system (2.8). Since the
solution ¢g(x, y) of the Laplace equation (2.6) constitutes a
polynomial for x and y (for x to the 2n power), then

—-.

- et
- -

‘T.,(V)" ‘P.(‘u )2 Re{z ‘J"—i‘: l—;’-‘-z/“}(z. 12, -+ 1y) (2.10)

constitutes a solution of the Cauchy problem for approximating
system (2.8) with initial data (2.9). This can be easily checked
also by direct substitution.

12




Thus, the solution of approximating system (2.8) with initial

data (2.9) at n + =» converges to an exact solution of the Cauchy
problem for the initial partial differential equation. Dimensions
of convergence range are determined by the distribution of
singular points for initial data which are continued into the
complex region. ‘

In conventional difference systems the number of points by
which derivatives are approximated is fixed. Thus, with an
increase in the number of steps the accuracy of the approximating
system increases, not due to an increase of established information
about the analytic properties of the unknown functions, but due to
an improvement of the quality (accuracy) of this information,
inasmuch as it is gathered from all the smaller environs of the
examined point. In contrast to this the difference system (2.8),
a generalization of which is used in this work, may be called &an
"arrangement with increasing information," or an "analytic"
system, since with an increase in the number of points on a layer
there 1s an increase of analytic information about the function
which is established in the system. This most fully considers
the analytic nature of the solution. Let us note that it is not
obligatory to perform an approximation of derivatives with respect
to all points located on the layer. It is important that the
number of these points increases according to a definite law
together with a decrease of the step in the direction of the
initial data.

In general the approximating system (2.8) can be integrated
only numerically. During numerical integration the error of
approximate solution §¢ = ¢ - ¢* is composed of three parts:
6§q:and.§:¢'-errors of approximation in direction x and y
respectively, 6b¢ — rounding error. Let us consider the properties
of growth of these errors. For reduction of computations we will
consider simplified initial data

(e, Q) —=u ("')o Yy (<, 0) =20

and will dispose N = 2n + 1 nodes on initial 1line y = O in zeros
of the Chebyshev polynomial T2n+‘(X)' The remaining member of the

13




Lagrangian interpolation polynomial in the complex region ¢ = x + in
for function o(Z) can be represented in the form of the complex
integral

u -
‘;{,F ., "(,]' v, b Tou@ @ 2 o
LRLIPRLLY RO ) wmn @ a ¥ (2.11)

(s

REPRODUCIBLE N
where = Chebyshev polynomial, p = p, < p* — ellipse, completely

2n+1l
disposed (Fig. 4) in region of analyticity of interpolated function

o(z). Variable g is changed in the region p<<;i<¢» Parameters
Py and P, can be taken as close as desired to p*. Conducting an
estimate of the integral with the use of the relationship

1

la (17,5 -p,
according to (2.6) and (2.4) we find that for as little & value of
€ > 0 as desired there is such an n*, that with n > n#*

el < 1R (z LMy (o -gphii

lsi<iRE@I< 232 (pa—gprit’ (2.12)
Here L2 designates the length of curve p = Pos M2 is the nmaximun of
modulus of function o(Z) on curve p = Pos and A is the n. nimun
distance between curves p = 0y and p = Py-

If it is assumed that e< ;-(pz---p,),then according to (2.12)
5. ¢ -0 at N =2n + 1 » », Thus, in the class of analytic functions
the error connected with approximation in direction x decreases
exponentially with an increase in the number of nodes. This lc
connected with the raplid decrease of error of approximation of
initial data:

_ LMy 1 ’

A X S e em .= . . / -

NS 200, G o™ £x13)
Here D2 is the minimum distance of segment !<x<i to

curve p = p, and p; &>

Now let us consider the increase of arpitrary errors in
initial data. For this we will take the distribution function of
errors in mesh nodes.
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! 0 whenx ==x;, [:£n.

Initial data  (y; 0)=8a(x)), q,(xs 0)==0 1s satisfied by the
following solution of the approximating system:

- -— e - . cm——— =,

a—ndf--n) . . = xa ) —10sr) .. (2= 130) R
(fa— 50 (- 11) .. (Xn — Xnog) (Xn = Zaps) - (X — X))

O -:- e Re

From here it i1s easy to obtain the asymptotic expression of behavior
of error at large n and y > 0:

=1y Font () e (-1
Sp e L7 o (T (D) e (-1
Y e Re[ z } 2 oni

[l
X g s+ 10+ ysin (2 1) 0,
24 V=1 = e, Nt

which corresponds to Chebyshev nodes.

Thus, with an increase of the number of nodes N = 2n + 1
the arbitrary error in initial data grows exponentially with fixed

X, ¥, Just as when using the usual "nonanalytic" difference systems
[14].

If during the integration of the approximating system of
ordinary differential equations (2.8) stable difference systems
are used, then increase of errors §!. and *+ 1is determined by
the system of approximation in the direction x. According to
(2.14) they increase by exponential law with an increase in
the number of nodes N = 2n + 1. Error of approximation ./, 1s
found using a computer and at fixed N can be made sufficiently
small so that its influence on the solution, taking growth into
consideration, does not exceed €.

Conversely, the rounding off error in each point cannot be
decreased, since it 1s determined by the maximum numbers of digit
positions utilized during calculation, 1.e., the properties cf the
computer. During approximation of initial data the number of nodes
N =2n + 1 is determined with the required accuracy o apprcximaticn




of the solution in this direction and depends on the nature

of the problem. From this follows the important conclusion that

in the elliptic region the Cauchy problem can be solved numerically
only 1n that case, when the rounding off error is sufficiently
small, so that taking into account growth at the selected N

they do not exceed errors of approximation.? These considerations
determine the selection of parameters of the difference grid and
the practicable accuracy during solution of a specific problem.

§ 3. Construction of an Algorithm for the Numerical
Solution of a Boundary Value Problem in a Mixed
— Region fwﬁen in One Fart of the Region

the Equation Has an Elliptic Nature,
and the Other ¢ Hyperbollc Nature

As a model we will consider the equation

!7"_’. (l y) S;%_=0. (3.1)

Basic questions of the existence and uniqueness have been studied

for equations of such a type and more general ones in the papers

(15, 16, 17]. Tf we disregard the vorticity of flow and in the first
equation (1.1) introduce the velocity potential, then (3.1) can

serve as a model of a problem dealing with supersonic flow pust a
blunt body with a detached shock wave in a physical plane. In

variables £, 6, where
r—rp(0)

e —— e

re(0)- rpy) *

the region of flow between surface of body and shock wave in Fig.
1 will be converted into a band (Fig. 5a).

Let us consider the band 0 < x < % (Fig. 5b). Lines x = 0 and
X = % correspond to shock and body surface. Regions -—-1<y<l and
|yl >1 correspond to subsonic anq supersonic units of flow.
Coefficients of equation (3.1) just as the coet'ficients of the first
cquat ton (1.1) are oven funeticons of 6. Equation of characteristics

Corr 3. Y hias e same form

y ch(x--c) (3.2)
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Fig. 5a. Fig. 5b.

Here ¢ = const. With x < ¢ we have the characteristic of the family,
with x > ¢ — of the secondary. All characteristics touch the parabolic}
line y = 1, therefore the triangular region BCD (Fig. 5a) degenerates
into a line (Fig. 5b). 1In accordance with the formulation of the
gas-dynamic problem we will :onsider as having "physical meaning"
solutions with continuous and limited second derivatives. Making

use of the separation of variables ¢ = F(x)f(y), we obtain two
families of solutions

= - e memy s = .

L) e (R 0

{..A,\:j\h,(v)A 0, (3.3)

N
rele) | _—

corresponding to plus and minus signs Ai. From (3.1) it is clear

that a necessary condition of boundedness of second derivatives is

, the requirement i'uﬂﬂ'n with y = 1. Considering the condition of
symmetry for axis ";Jy - at y = 0, we obtain for solutiors of
fk(y), having "physical meaning," in the region 0 < y < 1 the boundary

value problem

12 % [(0) =0, (3.4) h

1

determining the fundamental values tki. For solution of this boundary
value problem we use the Cauchy problem with initial data for axis 3

y = 0: |
[0) el [(0) =0, (859 f
selecting by 1teration € such that 1t satisfies the first condition 3 .
(3.1). | il
%‘
l
%;
17 W
r R
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We will start from a case when in (3.3) the nminus sign in front

of Ai is removed. From the second equation we nhave

. 71 ,e ") . e -
/".(A.‘):: g L .|/:-_\I 1l —..y; (3'0) t

and consequently Ifkl & |€klon segment 0 < y < 1 for solutions
satisfying initial data (3.5). Hence the immediate result is that
the boundary value problem (3.4) has only a zero solution ?k(y) Y
at 0 <y < 1. From the general theory of differential equationc
of the type (3.6) it follows further that this solution, reins
continued in regiony > 1, is also identlically equal to zero.

Let us now remover the plus sizn in (3.3) before A2 RS
case the fundamental values of boundary value problem (3 4) are

easlly determined Ai

particular solutions of equation (3.1) with & limited secornd derivative

= k(k + 1); as a result we obtain a Tar’.y o {

‘, Coes) (U g e () [y - 3y chay ), SEL ) 1

where PQ(y) — derivative of Lagranian polynomizl.

t

A

] Let us consider the question of the uniquercos ¢t colw Yo,

of boundary value problen for equation (3.1). deserrired Ly "o wus

conditions
R T R I 75 M < i-, y) caan ), e, () sl S, I

This proclew constitutes a model of supersenliec flow gaat @ ol ins

tody witr z detached shock wave. Let u:z ascure wrnat Tunet’ ons

Gl(y) and Gz(y) are asslgned only up to a paratoilic 1lre, *.:.,

on the cegment - . . We will assume that here trnere ey~ Ty,
solutions of equation (3.1) with a continuous liritecd .ecorc narivatlive
ol(x, y) and ¢P(x, ¥), satisfying boundary corditions (5.5, ien

‘ thelr difference é¢ is sclution (3.1) with o 'irlted ..cconn
! derivative, caticfying uniforr. conditlons

;1 N
;o v '
< / J 3
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H
We will look tor 8¢ by solving the Cauchy probiem from the &xis

of symmetry y = 0

N | B
si(e0) e -0

lere function e(x) 1is determined from condition gi¢at--0 at y =1,
necessary for boundedness of the second derivatlve at y = 1.
Considering 2} < (.wgy? from the first equation (3.3) we obtain

G V) Cpens (2hax) - Dy s (2hax).

Expanding function e(x) in accordance with boundary conditilons
(3.9) into a Fouriler series based on sines

e(x) - ): £, sl (2kax),
k2l

we present the desired solution 1n the form
& ) Fo(y) st (2kax).
ko

Functions fk(y) should satisfy the second equation (3.3)
and boundary conditions (3.4). According to the preceding it follows
immediately from here that all fkfy) 2 0 and in the elliptic rerion
0 <y <1 ¢l = ¢2. If toundary conditions (functions 01 and 02)
are continued up to points G and F (Fig. 5), then we obtain ol = ¢2)
in the whole region AGTFE. An analogous result can be cbtained Ly
assignment on lines x = 0 and x = % of boundary conditions of a more
general form.

Thus, ir the class of functions with continuous and limited
second derivatives the assignment of boundary conditions (Fig. 5a, 5t)
on segments AB, ED and conditions of symmetry on sesment ALY uniquely
determine the solution of equation (3.1) in elliptic region ABDL.

If boundary conditions are continued in the nyperbolic regsion
up to points G and }, tien a unique solution i: determined in the

entire region AGTFE, and consequently also 1in its section AGFE

Thus, tne formulatlon of a boundary value proolem for mocdel
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equation (3.1) possesses all the basic features of the gas-dynamic
problem being examined (§ 1).

Let us consider the application of the Cauchy problem for
construction of a boundary value problem (3.8). Two primarily
different systems are possible.

1. If in addition to conditions (3.8) on the axis of symmetry
y = 0 the distribution of unknown function ¢(x, 0) = b(x), is
assigned, then in band O<x<-:;-~, y>>0 a mixed boundary value problem with
initial data at y = 0 1s obtained. Selecting with the help of
iterative process the function b(x) = bo(x) in such a manner that
the condition of boundedness of the second derivative is fulfilled,
we obtain the desired solution of boundary value problem (3.8).
This methed is close to method of work [6].

We will examine a deviation from an exact solution
o vl Y=g, (x, y), caused by a distinction in initial data of
b(x) -=o°(x) . ., in the process of iteration. Function é¢(x, y)
satisfies equation (3.1) and the uniform boundary conditions
(3.9), so that in accordance with the preceding it has a limited
second derivative only at &8¢ = 0, 1.e., when the exact solution

the solution, then any solution arbitrarily differing litztle rcr

the desired one based on initial data has an infinite second derivative
at y = 1. In this method the iterative process of approximation

to a solution with a continuous and limited second derivatlve

is constructed in the class of functions with an infinite derivatlive,
Sueh incorrectness in the vicinity y = 1 during the numerical

solution of a boundary value problem strongly aggravates the dl"llcul-
ties connected with the usual incorrectness of the Czuchy probiemn

‘n an elliptic region. It can be surmounted in a clasc of sufficiently
smooth functions. As can be seen from the second equatlion (%.3).
difficulties increase progressively with an increase in the narmonic
number k, 1.e., with an increase of accuracy cof the approximating
system. Results of this analysis are well confirmed duriry “he
numerical solution of a nonlinear problem about cuperzoniz Tlowing
around with a detached chock wave [6]
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second system amounts to the provlem belng examinea
with initial data on line x = 0

F0.y) =oy) v, My) =)

and even functlon rdy)=1?(y) will be selected by iteration in
such a way that the second boundary condition (3.8) is satisfied

on line x = 1/2. Since Lo 1 1L, O
y= 1= Pi(y) (1 —4), GRA“’“..;‘ Nﬂ
oy L BN 10y, OV

- ‘(1)(‘ - 5 2 \"l o REF " 'l\ . 3[
X v ’ 7 Sii'h;-‘ii‘

ete., then during approximation of function Tl(y) by even polynomials
the approximate solutlons 1n the process of 1teratlons will te

linear combinations of particular solutions (3.7). During each
iteration the condition of svmmetry (third condition (3.8)) and
condition of ©boundeaness of second derivatives are satisfled
automatically, since they are satisfied by the particular solutlons
(3.7). The possiblitity of constructing an iterative process

in a class of functions with a continuous 1limited second derivative
in this method 1s conditioned by the .fact that approximate solutilons
are not subordinated to any condition at x = 1/2 (of three conaitions
(2.8) only two are subordinated), and consequently, according

to cond:tions of uniqueness, can belong to thils class of functions.
From *als analysis 1t 1s clear that during resolution of a problem
on suj 2rsonic flow past a body with a detached shock wave one

should use system 2, since 1t corresponds to the nature of the
problem.

Let us now use the proposed difference system for sciving
a Cauchy problem and a boundary value problem based on system
2 for a model equation of mixed type (3.1). For this 1in accordance
with our system we will trace the straight lines y = const = y'j
based on m in the upper and lower half-planes. We wiil call trese
stralght lines rays. All told, including the axis, we cbtraln
2m + 1 rays. Assuming the unknown solution even and approxiratine
it with Lagranglian polynomials based on y, we ovtaln for the furction

A}
)=o) Y el )y
{0

N
La)
.
'J
)
~_




and for derivatives with respect to y
_3_9;~.".~... \"z ) g,
ey T j o

.'E’.v..zf_"z. )‘ 2] (2] — 1) 7 (x) y¥-* ($.11)

Here (fa(x) - linear f'unction Pa(x) = Pa (v y) values of the
unknown function for m + 1 rays in the upper half-plane. Placing
(3.11) in (3.1) and requiring that the resulting expression is
identically satisfied on all rays, we obtain an approximating
system of ordinary differential equations

L s ),21(21-- 1) Fjn (x) - == 0 (3.12)

(k=:0,1, ..., m)
for determination of values of approximate solution - v (x, y)
on the rays.

One of the evident properties of an approximating system
is that if there exists a solution of the initial equation (3.1)
om(x, y) which at a fixed x is a polynomial of the power 2m with
respect to y, then on the rays it satisfies the system (3.12),

i.e., functions
i ‘('\-) ; o.x‘;"'.’x) 1\." =0,1, -'-ol'-')

are the solution of a system (3.125'w1th any disposition of rays.
This follows from the fact that for this solution ), . and
correlations (3.11) are exact. Let us consider a Cauchy problem:
in region AGFEA 0 <x<i, 0 <y<<ch(ii--%) to find the solution of

equation (3.1), satisfying the initial data (see Fig. 5b):
P00, 9) M ly) <ag -1y il s,y 0.0,y 0. (3.13)
Obviously,
lD,," sty “"';P;‘U)(l 'k B - s, P;m ald =y,

where Aps Qg5 ooy u2m'are constants. The solution of the Czucny
problem for equation (3.1) with initial data (3.13) will be (see 3.7)

n
n



mn ' >
$e) ok D in Pl -V T . (3.14)
and the solution for the appfoximating system (3.12) will be

ol o) (k=01,....m) (3.15)

with any situation of rays.

Here the solution of approxima’.ing system (3.12) gives on the
rays an exact solution of the initial equation (3.1). And if the
Lagrangian interpolation polynomial (3.10) is used, then from the
solution of the approximating system (3.15) we obtain an exact
solution (3.14) in the entire region.

In the case examined the region of influence of differential
equation (3.1) 1s ARFEA, while the region of influence of approxi-
mating system (3.12) formally 1is AGFEA, since only the values of
unknown function in this region are'bound in the difference approxi-
mation.

It is known that in the hyperbolic region in general the region
of influence of the approximating system must coincide or envelop
the region of influence of the initial system of differential
equations. Otherewise there is no convergence of approximate solutions
to exact, and the difference system itself turns out to be unstable
during calculations. The meaning of this affirmation is that if
the region of influence of the system of differential equations
exceeds the bounds of the region of influence of the approximating
system, then by changing initial data on part of the initial line
(in our case on section GR), we do not affect the solution of the
approximating system and at the same time we change the solution
of the system of differential equations in the region of influence.

Although it 1s accurate in general, this affirmation becomes
incorrect if it were to remain in the class of analytic solutions.
This 1s already clear from the elementary consideration that in
an analytic case it 1s impossible to change initial data on any
section without having changed them in the appropriate manner on
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the entire initlal curve, since in this case assignment of initial
data on any section specifies them in the entire region of analyticity.
This position can be given a more thorough foundation. Thus, in the
paper by Dahlquist [18] for the wave equation during the usual
three-point system of approximation of a derivative in direction of the
initial straight line it is proven that in a class of analytic
functions the solution of an approximating system converges to an
exact one also when the region of influence of a differential equation
exceeds the bounds of region of influence of the approximating system
(1.e., at ©/h > 1, where h is a step along the initial data, and =t

in a perpendicular direction).

When in a class of analytic functions they are looking for a
solution with the help of an "analytic" difference system, then,
and in the hyperbolic region, the regions of influence of differential
equations and the difference system are determined not by the position
of extreme characteristic and points which are bound in the system,
but by the region of analyticity of the solution and the convergence
region of the difference system., Let us l1llustrate this 1in an
example of model equation (3.1).

We will construct the solution of the Cauchy problem with the
same initial data (3.13) in region of influence of equationn (3.1)
ARFEA, bounded above by characteristic RF, the equation of which is
y = ch(x - Eo). In order to use the proposed system we will pass
from variables x, y to variables x, n, where

v

)‘:2 --('h(“-‘-tj‘. (3’16)

Here region ARFEA will turn into rectangular 0<r<§, 0 7,1, and
differential equation (3.1) will take the form

B o BU—00 B @ L9
Jdat chir—3%) Oxdy ch*(r --%) o
gl O A
i (x —Ey) o, 0. (2:17)

Just as previously, by carrying out, in the upper half-plane m + 1
rays n = const = nJ (0 < "J < 1) and using approximation of the
unknown solution with even Lagrangian polynomials (3.10), we
obtain approximate expressions for derivatives witn recpect to n
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in the form (3.11). Placing them in equation (>..7) and requiring
that the resulting expression is fulfilled iIdernticaliy on the
rays, we obtain an approximating system for ordinary differential

equatlons
Wiy Nr—2) [\
' '.'1_ o _§'_{:‘.0 , ¢ 9; .. . o A |
T ey 4,'[ . o J'!'
I-1
1--n? m\, o
Gre ey QD =
J
l '.( .) m
s (e -2 Yoy, Yo
T e a2 A0 0 @ 0t
o (3.18)
for determination of values of approximate solutilon T &3

y) on the rays. Since along the extreme ray n = 1, which is
a characteristic of differential equatlon J/Jdx-:d/dx, then the
characteristic equation for it is written in the form

aty 5 shir .ge)‘. K 2 -shi(r %) Oy 0.

]

AT T i - k) dr oy chi(r-<%)  on (3.19)

It is easy to see that the equation of system (3.18) for extreme

ray k = my n = 1 constitutes a difference recording of cnaracteristic
equation [3.19). It is also obvious that fulfillment of (3.19)

on line r = 1 directly follows from the differential equation

(3.17). Placing y-—=ych(x—3%), in (3.7) we obtain a system of particular
solutions of equation (3.17). The exact solution of cur problem

will obviously be (see 3.14)

(. y) = ag+ Z {":;.P‘:’I s [nch(x-- &) x
1=

Z 11~ wteh (e E) ch (V2 (27— 1) x). § ezl
Since with a fixed x this solution will be a poliynomial with
respect to n to the 2m power, then the solution of the approximating
system at any situatlion of rays can be presented in the form

con(€) (e m) (v :0,1,...,m). (3.21)

If one were to approximate the solution with the help of
Lagrangian interpolation polynomlals, tren from the solution of
approximating system (3.21) we obtain the €. ct solution of the
problem,

[a®]
n




The soiutions of approximating systems in the form (3.12) and
(3.18) obviously agree, since they give values of one and the same
exact solution on different lines (y = const and n = const).

If one were to assign a perturbation on initial line x = 0 or
any layer x = const, then the growth of errors during transition
from layer to layer and increase in number of rays (growth m) will
be the same for both solutions. 1In essence this fact is obvious
in the class of analytic solutions (and consequently of initial data
also). Remaining in the region of analytic solutions, the example
cited, it is impossible to change the initial data (3.13) on section
GR without changing them in a corresponding manner on section AG,
so that the difference system (3.12) completely (exactly) considers
the change of initial data on the entire section AR.

In the example considered due to the presence of polynomial
solutions of equation (3.1) for initial data (3.13) it is easy to
write out the exact solutions of approximating systems (3.12) and
(3.18). However, the result obtained (independence of growth of
errors on the selection of systems (3.12) or (3.18)) is not connected
with the polynomial character of solutions. For equation (3.1) it
is easily generalized for solutions presented in the form of convercing
series of polynomial solutions. By a somewhat more complex path an
analogous result is obtained also for model equations which do not

have polynomial solutions. This fact i1s also confirmed by carrying
out numerical calculations of flow past blunt bodies by the rmethod
examined.

It is important to note that due to the analytic character of
the difference system the approximating system (3.12) in elliptic
and hyperbolic regions has the same properties. At a fixed value
x = H with an increase of accuracy of approximation with respect
to y (increace of number of rays), errors in initial data grow
according to the law expmH. During numerical determination of
the approximate solutlion of a Cauchy problem errors of approximation
and rounding off appear. In the examined case of anaiytic solution
and difference system the errors of approximation on initial line
x = 0 have an analytic character anc decrease with z growts o2 r

~
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according t, exponential law, so that at specific limitaticns on
locatlion of singular points of the unknown solution the errors
evcked by them at x > 0 do not grow with an lncrease of N = 2m + 1
(cee 2.12). Errors in rounding off have a nonanalytic character,
therefore with an increase in number or rays they grow according

to exponential law (see 2.13). Since in the class of artitrary
functions the Cauchy problem for elliptic equations 1is incorrect,
then the exponential growth of rounding errors (and other arbitrary
errors) with an increase in the number of steps on the initial

line canncot be eliminated by a change iIn the difference system cr
the form of the region o. 1nfluence of the system in the hyperbqlic
section of region (see note on page 41). The number of step:s c¢n
the initial line (number of rays) is determined with the recessary
accuracy of approximation of solutlon in this direction and derends
on the nature of the problem. In connection with this, durings the
solving of mixed, just as of elliptic, problems (see § 2) for tne
construction of a numerical algorithm it 1s possible t¢ use the
Cauchy problem only in that case when the rounding error is
sufficlently small, so that taking Into account growth durlng the
selected number of steps on the initial line they do not exceed

the errors of approximation.

Considering everything said about properties of a difference
system during a discussion of formulation of the problem. One should
note that use of a characteristic, limiting the region of influence
of the system of differential equations for gas dynamics as a
boundary line when writing the aporoximating system of ordinary
differential equations (here satisfaction of the characteristi
condition is a result of differential equations, see, for example,
(3.19), (3.17)), does nothing either for the formulat:ion of
conditions of uniqueness or from the polnt of vliew of improvement
of convergence and stabllity of the difference system utllized
here. On the other hand, the transformation of coordinates with
the use of the characteristic leads to a noticeable complication
of the approximating system (see (3.12) and (3.18)), to a dependence
of grid on M number and other conditions of flowing arocund. Tnis o

hampers analysis and the use of calculation data. ~|.
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rroblem (3.8) with coundary conditions
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H09) ety ey), p(--{.,/.m.__.,u,_.,:...u(,]),

(¥, 0)=0
for model equation (3.1). Considering m = 2 (3 rays in upper hLalf-
plane v = 0, yq and y2), we easlily obtain the solution ¢; of the
approximating system (3.12), satisfylng the boundary conditions

‘l'; = (0) == 0, (1), ‘P;(“;‘)"‘Uz(!lz) (* =0,1,2) (3,272
in the form ¢; = ¢(x, yk), where

|
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during anv situation of rays. 1In the examlned case the solution

of approximating system (3.12) gives a precise solutlon of initial

equation (3.1) on rays ¢i(x), and with the use of Lagrangian

interpolation polynomials — in the entire region ¢(x, y), sincc the

nurber of ray:s corresponds to the power of polynomials In initial

data (3.22). 1If initial data are set by polynomials of tre 2z

power, and number of rays N in the upper and lower naif-planc

(Including axis y = 0) 1s less than 2m + 1, then the colutiorn

¢*(x, v), obtalned with the help of the approxlimating cyster, wi.l

be approximate. Thls makes 1t possible to study the properties

of error &4 = ¢ - o¥,

We will limit ourselves to the simplest case, nonetheiess
maklng it possible to reveal the basic properties of é&e. Lat iC
take m = 2 and examine again the boundary value nroblem {(Z.22),

ey
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with an cxact solution ¢(x, v) which 1is (3.24). Durins detectin:

of the approximate solution ¢*(x, v) we obtain the nurter oi ravs
N=23<2m+ 1. Then, using (3.24) it is easy to obtaln
Oip = AM - X AN - Pi(9) (4 - 1) [AC T |- ACy e VT3]
O b2 PO - 1) (e e A= Vi,
: (= e AM == ag(1 ),
Z === .5 AN = 26, (1 — ) — AM),
pope 1 6
m h AC‘ = — —‘——l = [(xp (. .){_2_.) a, (_ 5 o h‘l) —
- /2 2 5
g-— = 20\
a= y
e h_b‘(_'s_ﬁ ‘,\]' (35D
& e
(== AC, == a, (% — m) —~AG,

where v = h — position of extreme ray. Here the error in the
approximation of boundary conditions 1s given by expressions

SE(00y) < agyt(yt -0, 6‘9('~;-. !/) = bty (3.26)

Thus, at a fixed number of rays N = 3 the parameter
q = max(au, bu) is a measure of accuracy of the approximating
svstem. Expression (3.25) makes 1t possible to trace the nature of
dependence of 5¢ on coordinates, the position of the extrere ray,
and accuracy of the approximating system. Differentiating the
expression for 8¢ based on h, will obtain
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From (3.27) it 1s clear that the weaker the dependence of ¢¢, and
consequently also of the approximate solution ¢*(x, y) on the
position of the extreme ray h, then the smaller is g = max(au, bu),
i.e., the higher the accuracy of the approximating system. At

q > 0 the solution of the approximating system aspires to be

exact, and dependence on h vanishes. ¥rom (3.25) ana (3.2€) it

is clear that 8¢ and d¢*/dh decrease according to linear law
together with q, so that

~J
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Thus, |d¢*/dh| (dependence of ¢* on situation of rays) can
serve as a measure of accuracy of the solution of the approximating
system.

§ 4, Method of Solving a Nonlinear Problem

For the solution of the nonlinear boundary value problem
formulated in § 1 we will use the difference system which was
studied in detail on model equation in § 2 and 3. From variavlecs
r, 6 it is convenient to switch to variables £, 6, Introducing the

new variable
r—rp(0)

S Al (4.1)
where'r = rT(e) and r = rc(e) are the equations for body contour
and compression shock. In these variables the region of flow
between shock wave and body will be converted into the band o

.

Let us construct for m rays in the upper and lower half- Ssaw~
plznes, 2ll told, including the axis of symmetry, 2m + 1 rays
(see Fig. 2).

For obtalining explicit expressions we approzimate the unknown
functions with Lagranglian polynomials and then differentiazte thnem.
Considering the symmetry of flow with respect to the zxi:=, we
obtain for the functions

ny

5 g7
u_-:‘,: "‘:(‘.'C", 2z 2, u‘)(;)o-’frl. faat )““-I &

i 9 i1 0 i 9
and for derivatives with respect to 6
""' o2 .\ nf » » % vy - ’.‘
Wy, 240307, o = '):(21 DR, ), Y, 2jijid (4.3)
s ! 40, : -l
0 0 0

Values uJ, v’, and r’ are linear functionz of valuec (& A Y
and rc onm+ 1 rays in tne upper half-plane.

Placing the expressions for derivatives with respect to 6 in
(1.1) and requiring thet the resulting expressions are Identically
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1
satisfied on each ray, we obtain the approximating system of
ordinary differential equations with respect to uk, vk, pk, wk’
o7 approximate values of these functions on the rays. Solving
this system relative to derivatives with respect to £, we finally
obtain: :

d, L (’ - i .', - 2 0 . »
u;. . ,t‘_. 5 {C.l-’lgd',('ﬂ'!"35,2)’"'b&('n'*'geg)'(’lk {- Seg)) -

be(rra -l 323)
-4

- (l,‘ (2!!. 4= Uy cty 0,,) ' b,‘v; -4 (ll; - 0.) ";.' :._—‘;t‘.

-+ (2’; —= ) “a"n}?
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g tatn
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(4.4)

¢, = —sin0y —¥—.. ™ d',.'(..”'l‘ prie R O
L bt e R (4.5)

iyt ey P ea ), 4
vhtrs LB,

subscript "k" denotes values of parameters on k ray, prime: deslpgnate
derivatives with respect to 6, enumerable by the formulas (4.3%).

On zero ray (at k = 0) all the terms of the second and fourth
equations (4.4) identically turn into zero. For increasing the
accuracy of the system it 1s expedient here to introduce equation
for ., ' ::>with 6 = 0., Differentiating the second equation for
6 and considering that with 6 = 0
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To system (4.4)-(4,6) it 1s necessary to add a correlation
connecting the departure of shock wave from the body € with anrle
of inclination of the shock wave to axls of symmetry o:

de,
:i;‘ =2 == (rea 1 5€) oty (o - 0,) - f}.. (4.7)

Besides differential equations, in accordance with corditons

of uniqueness the solution should be subordinated to boundary
conditon (1.3) on the surface of the body at £ = 0 and to correlationc
for compression shock (1.2) at £ = 1.0 (rC il €) in mesh nodes,
1.e., in intersection points of the ray with surface of the body
and the shock wave. The algorithm for the numerical solution of
the problem amounts to the following. Assignment (m + 1) of
parameters r? (j =0, 1, ..., m)according to (4.2) determines
approximately the equation of the shock wave, and with the hnelp cof
correlations (1.2) all the gas-dynamic parameters behind the
compression shock. Then by solving the Cauchy problem fcr the
system (4.4)-(4.7), we determine the values of parameters in

nodes on the surface of the body, which generally speaking do not
satisfy boundary condition (1.3). Selecting by iterations the
values rg in such 2 way that in all the nodes on the surface o the
body the roundary condition (1.3) 1s fulfilled with the ascigned
accuracy, we obtain the unknown solution of the approximating
system in m approximation.

Thus the method of calculation amounts to the following.
construct a1 sequence of solutlons satisfying all the Loundary

a

conditions in rerion AGFE: correlations for compreccion chock
AG, conditlons of symmetry on a segment of axi:s AR, and thne
boundary condition on contour of hody AF.

An additional condition of boundedness of derivaztive:
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cally,since each term in the sequence of approximate solutions satis-

roneonversicn into zero of Jacobian - is fulfillec automati-

fies it. If at the beginning there 1is assigned or if in the process of
iterations there develops a form of shock in which in the supersonic
segment of region AGFE a 1limiting line emerges, then it willl auto-
matically be related by the program since the process of calculations
is disrupted. The desired solution and the one obtalned in the
process of iterations belong to the class of analytic functions

where the Cauchy problem is correct.

§ 5. Examples

Without dwelling here in detall on results of investigating
the attributes of the method, growth of errors, and convergence
and stability during the solving of a noniinear problem on super-
sonic flow around with a detached shock wave, we wlll give examples
1illustrating the solution of different problems of flow around with
a detached shock wave.

Figure .6-9 illustrate the influence of M number and body

form on the geometric picture (relative position body surfaces,

shock wave,Tand sonic line) of flow around by an ideal gas with

Yy = 1.4, Flgure 6 shows the influence of a change in M number over 2
wide range during flow past on ellipsoid with a ration of semi-

axis § = 2&0. Figure 7 gives a geometric picture of flow at M = 3
past a family of bodies with front section contours assigned by

the equa?{?n xn + yn = 1, At n > 2 radius of curvature of contour

in a critical point RO 1s equal to infinity, and with a change of

n from 2 to 10 the ratio of the minimum angle in the vieinity, the

radius of curvature, to body diameter -%15 is changed from 0.5
to 0.07. Figure 8, in a example of flow at M = 3 past Cassinian
ovals with the contour equation (x2 + y2)2 + 2c2(x2 - y2) =

= au - cu(a2 + c2 = 1), shows the influence of concavity of contour
in region of critical point. Figure 9 shows flow at M = 3 past a,
the contour of which hac a discontinuity of curvature at point C

and is formed by conjugate circumferences of radii RO/D = 1 in region

of critical point Rl/D = 0.2 in the vicinity of the midsection, and
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do net rerre, nolizr anile € 1s accerted as an argurent alon
(see Pig. 6, 7, 3). For bodv 2 & = &  (where
1 \

01 - angle with pcle in center of circumference of racius *~ ),

“or body a up to a point with 6 = 01, and further 8 = §_ + °
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(see Tig. 9). Points plot the experimental data of Yu. Va, “urrevcoiv,
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Investiration of superscnic {iow past & spnere Ly rnoneculli-

trium z2ir was performed taking Irtc account kinetic:s < excitation

o

¢ Tluctuations in N2 and 02, reactions of dissociation and exchange,

including O2 + N2 = 2N0), and ionization with the help of atomic
collisions N + 0 =NoV + e, N + N = Ny +e, 0+ 0 =0 +e,
catisfactorlily describing the process up to M v 30. Influence of

rhysical-cnemical transformations occurring behind the shock wavecs
on the departure of shock wave 1s shown in Fig. 11.
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} Fig. 11.

On Figs.1l2 and 13 are shown the geometric plcture and distribution ) 1
of pressure on the surface during transverse f{low pact a cylinder
(two-dimensional problem) with different M numbers.
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The calculations presented in Figc. 6-10and 12 and 1% wore
conducted on a Y-polnt system (selection of ¢ parameters), anc in
Fir. 11 on a 5-point system (selection < 3 pararctcers). inrirn -
calculations of spatlal fleow past curing Iteration. o 4o “opn

comprecsion shock the celection 13 parameter: wan corToroon, S
out Cwelizlins dere on She reiults ef Inaweclion. i oF soa mnae
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note that total error during calculation of the rajority of variants
does not cxceed 1%. For example, in the case of flow past a srhere

Yv an 1ldeal ras at M = 3 the total error already during calculation
based on a 5-polnt system does not exceed 0.27 in the entire field
ttetween wave and body. During calculation of flow past a btoiv with
a racture of the reneratrix in the sonic point (& in Pir. 9) 'n
the vicinity of singular point an asymptotic solutlion was u.:ed.
“Mils was obtalned by Guderley [19] for flat potential “iow:.

"hen the reneralization 1n a number of works [21, 20 for v-.rtex

axlsymmetrical flows was used.

The authors thank G. I. Petrov and .. A. Chudcv for usefu.

discussions and consideration of results.
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based on the smoothing of the solutlion for each ayver, thus making
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