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AFPLIED PROBLEMS 

METHOD FOR CALCULATION OF SUPERSONIC  PLOW  PAST 
BLUNT BODIES WITH A DETACHED SHOCK  WAVE 

■ 

S. M. Slllnskly, G. F. Telenln 
and Q. P. Tlnyakov 

In 1961 at Moscow State University G. F. Telenln proposed 

a method for calculating supersonic flow past blunt bodies with a 

detached shock wave [23, 2^]. During 1962 and 1963 systematic 

Investigations were conducted on an Ideal gas flowing past ellipsoids 

with a different ratio of semlaxes and bodies with an analytic 

contour, close In form to a face with a small degree of rounding 

of angles [27, 32], bodies with a concave contour In the region 

of critical point, bodies with discontinuity of contour curvature 

in a subsonic unit and contour fracture in the sonic point (type 

of face), and flat bodies [32, 333; flow past bodies with a 

various form with M number striving for infinity and the aaiabatic 

index striving for unity [27]; flow past a sphere by equilibrium 

carbon dioxide [26] and past bodies of different form by equilibrium 

air [25, 310; flow past a sphere by nonequilibrium air [28], 

taking into account kinetics of excitation of fluctuations In oxygen 

and nitrogen, the flow of dissociation and exchange reactions 

(including 0? + N? » 2N0) and ionlzation with the help of atomic 

collisions (N + 0 » NO* + e, N + N - N* + e, 0 + 0 - 0* + e), satis- 

factorily describing the process up to M 'v» 30 [29, 30], and spatial 

flowing around with a detached shock wave [2, 35]- At the same time 

work or. investigation of the method was conducted. 

•■■: 

ä 

In the first, second, and third sections of this article u.e 
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problem of supersonic flow past bodies with a detached shock wave 

Is formulated, and on the basis of an analysis of properties of 

solutions of model linear equations of elliptic and mixed types 

the basic ideas of the method are expounded. In the fourth section 

a numerical method for solving nonlinear problems is described. 

In the fifth section examples are given which Illustrate the applica- 

tion of the method for solving different problems of flowinp; around 

with a detached shock wave 

§ 1. Formulation of Problem 

We will examine the flow past an axlsymmetrlcal body by a 

stream of an Ideal gas with the parameters V^, p^, p^. 

Using the stream function i/s the system of equations for 

gas dynamics In a spherical system of coordinates r, 6, 4) can 

be presented In the following form: 

•:.■ i) 

•.V   f   ..)' 

• s 
r 

I 

■ ■ '-> 

/ )    \  r f     -j) r   ! 

I 

Or 0 {l) 

(1.1) 

Here .,) ''. projection of velocity vector W on unit 

vectors J  and ^e, relative to V   : p, p - pressure and density 

relative to p V   and p respectively; r Is relative to the characte: 00 max     o0     p  2 
istlc dimenjion L, and ^ to p V  L . * » max 

The basic difficulty is  In the transonic nature of the 

problem,   olnoe   the  solution has   to be  looked for simultaneouciy 

in  the  subsonic  and   in a certain  part  of supersonic  regions.   As 
iz  known,   In   the   transonic  roK'or.  the  '.'v'cc.rr.   r-tiuwii^r.   1.;   ..ouna 
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and Is the most studied model of gas dynamics equations in the 

hodograph plane.  It has been used to help in studying the formulation 

of ma .y transonic problems.  It is natural to lean on these results 

also in examining the problem of flow past with a detached shock 

wave.  According to the results obtained in the present work (Fig. 

la), a geometric picture is given for flow past a sphere by an 

ideal gas (Y = I.1*) at M ■ 6. The figure shows the shock wave 

ABC, sonic line DBQ, maximum characteristics DCK, limiting «je 

region of influence of the supersonic fraction of flow behind 

the shock wave on subsonic. Also shown are a series of characteristics 

BK, MN, etc., of the first family, emanating from the sonic llfte, 

and the limiting line QP, starting at the point of intersection or. 

sonic line with the axis and representing the envelope of character- 

istics of the first family.  Solution for the region located before 

the shock wave is obtained numerically by continuation from data 

behind the shock wave with the help of the same program.  With 

a decrease of M number and an increase of body flatness the form 

and arrangement of mutual disposition of the compression shock, 

sonic line, and maximum characteristics are changed. For clarification 

of the main positions we will limit ourselves to an examination 

of the simplest case which is depicted in Pig. la. In Figure lb 

a representation of flow in the hodograph plane v , v (corresponding x      y 
points are designated by the same letters with primes)  is given 
for this case. 

Pig.   la. Pig.   lb. 

FTD-/;ri1-^-i3-e8 
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Solution of system (1.1)   should be subordinated to correlatiom 
for compression shock/. 

A 

& 
W )J sin 0 - ■ ot cos 0, ü -' i;y cos 0 -j- tjx tin J. 

/ 

y. ~ 
/ 
/ 

2 
: i 

.    Y-l 

y ---. ~ - 
Y        2 

sin» a 

1 :— co»1 a 

~~*-' A siu10. 

(1.2) 

Here v and v are projections of velocity vector W on rectangular x    y 
r (6) and a the equation of shock c axes x and y (Pig. la), and r 

wave and angle of inclination of it to the axis of symmetry x, 

to conditions of symmetry on segment of axis AE and the boundary 

conditon on body contour 

u«o- (1.3) 

where r » r-O) - equation for body generator. 

Prom the relationships (1.2) it is clear that if the form 

of shock wave is given, then ü(i') is a known function. 

In regions A'B'K'D^'A' in the hodograph plane a boundary 

value problem of the Prankl-Tricomi [3] type appears: boundary 

conditions are assigned on the elliptic segment of the boundary 

of region B'A'E'D' and on the noncharacteristic curve E'C, located 

inside the characteristic triangle B'K'D' which is adjacent to 

the parabolic line D'B'.  Line A'B'C, which is a form of cornprenclon 

shock, intersects each of the characteristics only onoe inclde 

triangle B'K'D'. Line E'D', a form of body contour. Is unknown 

beforehand and should be determined durlnp; the solving proce.;3. 

In an analogy with the Trlcomi equation and flat potential orctlems 

of gas dynamics one r.ay assume that in the hccograph plane z':.t 
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correlations for section A'C o* compression shock, conditions 

of synunetry en the segment of axis  A'E', and the boundary conditions 
on part of body contour E'D* uMquely determine the iolution in 

region A'B'K'D'E'A'. However, % physically possible flow does 

not satisfy every solution In t.  hodograph plane, since mapping 
from a hodograph plane Into a physical plane can be singie-valu&ü, 

which leads to peculiarities In tne physical plane.  In the subsonic 

part of the hodograph plane mapping into a physical plane does 

not have any peculiarities besldts the Isolated branch points. 

In the supersonic region limiting lines can appear, along which 

the fastening of two sheets of tl'^ physical plane occurs. Along 

limiting lines the Jacobian 

S 
i. 

■ -■ 

i 

Sfaoj 

■r 

i 

beconjes zero, or which In our case is equivalent, derivatives of 

velocity components become Infinit«. . 

In order that the solution in the hodograph plane for region 

A'B'K'D'E'A' In the physical plane In the "egion ABKDEA is satisfied 

by the real flow, It Is necessary to place an additional condition 

for the desired solution: nonrevevs^i of the Jacobian D to zero, 

or what is the same, boundedness of derivatives of vectorial velocity 

components In the triangular region MD. In accordance with this 

the condition of uniqueness in reference to the problem of supersonic 

flow past a bluht body with a detacned shock wave can be formulated 

in the following «ay: In the clasr of functions with a  continuous 
limited derivative of relationship tor  section AC of the compression 
shock, the conditions of symmetry for segment of axis AE and the 

boundary condition for a section of .«ody cc -o r uniquely determine 

the solution of a system of differential equation» of gaa dynamjes 

in the region ABODE of the physical pljne (see Fig. 1). 

^ 

It is necessary to rote that slrce fulfillment of t,h* character- 
istic equation along the- characteristic curve is a corolJ*»ry of 
differential equations,  then asslgnmer'; of t it. tqustlon along 
limiting characteristic DK or some  other characteristic  can produce 
nothing for separation of the class  of solutions witli a  limited 

■MVünav ■    i 
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derivative (such a condition is D t 0 in  the supersonic region), 

and consequently also for formulation of conditions of uniqueness. 

The appearance of a limiting line is conditioned by the boundary 

conditions of the problem.  The characteristic equation contains 

derivatives only along the curve and is fulfilled for any characteristic 

Independent of whether or not it has a common point with the limiting 

line and, consequently, whether or not the derivatives which are 

normal to characteristic remain limited (for example, formation 

of a limiting line during supersonic flow around a concave angle). 

Making further use of well-known theorems for hyperbolic equations, 

our result is that in the class of functions with a limited derivative 

the solution is determined uniquely in a wider region ACGRFDE, 

if the conditions for compression shock and for the body are assigned 

accordingly up to points G and P (Pig. 2). 

J.¥ 
y 

MpaflfiuSLE 

If the body contour up to point r is an analytic curve, then, 

as It follows in the region which is limited from above by the 

characteristic emanating from point F the field of gas-dynamic 

parameters behind the shock wave not only satisfies conditions 

of uniqueness but also is analytic. The angular point and 

discontinuity of curvature (or leading derivatives) on the contour 

in the subsonic sector of flow lead to appearance of Isolated singular 

points on the surface of the body. 

Let us trace in region ACGRFDE an analytic curve OS? which 

does touch upon a characteristics in one point.  Then, if the unknown 

■Mi 



solution is analytical In a sufficiently large region, then In 
i 

the region FSGTP which is bounded above by the arbitrary  curve 
GTP,  there exists an unique solution of the Cauchy problem with 
initial data for line GSP and,  consequently,   in the  class  of analytic 
functions the above-mentioned conditions of the boundary value 
problem determine the unique solution in region ACGTFDE. 

§   2.     Selection of a Differential System For Solution 
of the Formulated Boundary Problem 

For this purpose it  is possible  to use the method of establish- 
ment or some  iteration method for solving a system of difference 
equations approximating a system of stationary equations   (1.) 
simultaneously in all the subsonic and transonic regions   (i.e., 
the solving of nonstationary equations).    However both these methods 
require a great  volume of computer storage and the carrying out 
of a large volume of calculations,  since they essentially  reduce 
the problem to a three-dimensional one.    This  limits  the  selection 
of high speed machines for the resolution of problems  of supersonic 
flow past bodies with detached shock wave.    Therefore  it  is natural 
to attempt  E^,  6,  7] to construct a numerical algorithm,  using 
the resolution of the Cauchy problem in some form or other.    The 
difficulty is  that  in a general  case  the Cauchy problem is  tactlecs 
for an elliptic  region,  i.e.,  solutions exist with Cauchy data 
for a length  of boundary of the region differing as  little as desired, 
but which differ as strongly as desired Inside the region. 

However,   in a number of works   (see, for example,   [8,   9]  it 
is shown that  the problem becomes  correct in a limited region If 
one were to narrow down the class  of solutions  examined.     In the 
class of bounded  functions the problem is correct  in the  sense 
of the root-mean-square norm,  and if the function is moreover analytic, 
then in the usual sense. 

Considering the analytic nature of the desired solution,  it Is 
natural to expect that by selecting an approximating system which 
takes  this analyticity into consideration to a sufficient  degree, 
it is possible  to obtain a convergent  and sufficiently  stable method 
for the numerical  resolution of the problem. 

7 
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We will consider the  selection of an approximating system in 
an example of the Laplace equation: 

(2.1) 

Let it be necessary to find the solution of a Cauchy problem in the 

region   I<«<1. "  , ':   with initial data (Fig. 3) 

.f(r. 0)---<r(v), (pAX.V)      I(A). (2.2) 

Let us assume that in a certain wider region ABCD the desired 

solution ^(x, y) is a harmonic function with a limited rradlent 

|grad <J)| 1 M,and the initial data (2.2) on segment KL is less than 

(l/2)rr. 

s 
r' ■i 

.*■ 1. 

Pig. 3. 

Then for the function of the complex variable r(z) = $(*,  y) 

+ i^(x, y) (iKO.O) ■ 0) we have the estimate .> >,      V ■.   ./ i 

in the region APCD (E < H) and ,/(.^l^"f(I In)   li  for the initial 

line KL.  Using the Corleman lemma [8, 9] we obtain tne eotlrato 

for resolution of the Cauchy problem in the region  1  *  i 

where 

i i/.i 
!i('.y)l<l/(')l<.r '^ (2.?) 

(-vr 2        W 

// 
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Formula   (2.3)   shows  that   the   greater a  and  ii  -  b  are,   (the 

further peculiarities  are  located)   then the more  rapidly  decreases 

the  solution of  (J)(x,  y)   in the  entire examined   (crosshatched)  region 

with  a decrease  of m.     The  value  E  / 0  is  not  essential. 

Now  let  us   consider on the  same   nodel  the question  of the 

selection  of an algorithm for the  numerical resolution  of the Cauchy 

problem  in  an  elliptic region. 

If  one  were  to contl  ue  the  entire solution 4>(x,   y)   = 

=  (Mx,   n,  y)   +  i<>2(x,  n,  y)   In the  complex region  ;  =  x + iy, 

then  at  a  fixed  x  (x - parameter)   determination  of <)),   and  6^  is 

reduced  to  resolution of the  Cauchy  problem in  the  plane  n,  y   for 

a hyperbolic   equation  (in the  examined case wave   [10,   11])  with 

initial data 

,Pi(v. 'i)   ".(»'. <i). «f.,^. n) ^ tiK n). *Ax. <])   <'.{< n). 

'M*. n) ^^(r.ii). 

Here ',:)  ',(*,'i):'' ''.'0 and T(C) =--TI(JC, tj) |-JTJ(>-, IJV are analytic 

continuations of initial data into the complex regions «; = x + in. 

Thus, in the three-dimensional region x, n, y it is possible 

to construct a stable algorithm for the numerical resolution of 

the Cauchy problem and to find the solution of the Initial problem 

(J)(x, n) ■ ()>1(x, 0, y). 

"uch an approach has two deficiencies from the point op view 

of practical use in the numerical resolution of a Cauchy problem 

in an elliptic region.  First, the process of continuation of 

initial data into a complex region Is reduced to resolution of 

the Cauchy problem for the Laplace equation.  For example, for 

determination of o (x, n) it is necessary to solve the problem 

with initial data 

OiCv.O) =o(c). ./..(r.O) -0. 

• 



Just  as in a general  case, the problem is  reduced to only a  simple 
Cauchy problem in an elliptic region,   and  in the examined  cace 
of a model equation this problem is equivalent to the initial one. 
Secondly,  there is  a strong increase  in the volume of calculations, 
since actually again a problem is being solved in the three- 
dimensional region x,  n, y.    However,  both  these difficulties  can 
be  surmounted by  the  selection of a suitable difference system 
in  the region of "physical" variables  x,  y,  giving sufficient 
consideration to the analytic nature of the desired solution. 

The general  solution of the Cauchy problem  (2.2)   for a 
Laplace equation  (2.1)   can be presented in the form 

vtm?, iiiii \ '.(>. .    : ; O -"'(0}. 
•. > t 

where a(z), T(z)  - analytic continuations  in the complex rerion 
z =  x + iy of functions a(x) and T(x). 

Let us assume that  for the Initial  segment    \<.lx<l  the r.odes 
2n +  1 are selected.     Based on the values  of  functions  In  -ne no-'e. 
for the initial data we  construct Lagranglan Interpolation 
polynomials  in the  complex region: 

where  a^  and b.   are  linear functions  of a(x..)   and ifx.;   var-e::    .:' 
functions  in the nodes.     If functions a(x)   and T(X)  are  inte;-or   , 
then during arbitrary   location of nodes  the  sequence of  Inter- 
polation polynomials   (2.5)   converges evenly   in any  finite  rt-glo * 
of the  complex  variable. 

If functions o(0 and id.) have peculiar!tic ; In the- -•'.■; I'.x 
plane and Interpolation points coincide wJth zoroe;; ^f' tn'- :..■.-.■ .;.:: 
polynomial,   tru'..'   the   interpolation  r^roce.;^   'x.>v   ?or.v-'.r--v.     •.•.•.■.■ 

IG 
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in  any   closed region lying Inside the  ellipse   .'     ,'; ',• l''^'  -l i-^ p*. 
If all  nodes coincide with the principle of coordinates,  then 
polynonlals  (2.5)  convert  into segments  of power series,  and the 
region  of uniform convergence  is any closed  region which  Is 
internal with respect  to  circle R =   |c|   =  R*•     Ellipse p  =  p*  and 
circle  R = H* pass  through the nearest  singular point   (Fig.   ^).1 

ua   ,. X-ljf 

i , •- 

Singular point 

Fig mmz NOT 
REF^CJCIBLE 

Let  us note  that  the  use of nodes which  are  disposed on the 
segment  expands  the  convergence region of the  Interpolation 
process   in direction  of the  initial  line without   changing Its 
'Umenslon  in the  direction n,  when the peculiarity  is  disposed 
at   x  =  0  and a fixed  n.     Inside the region  of uniform convergence 
the   interpolation process   gives  an effective  stable   (^n the   examined 
clans   of  functions)   algorithrr  of continuation  c"   initial c&ta  in 
the   complex region. 

Placing  (2.5)   in   (2.^),  we obtain an approximate solution 
of  the  Cauchy problem 

■« 

(2.6) 

satisfying the initial   conditions   (see  2.5)v'(v,ü;  - u^M and .., (^'J)   =r*(>-). 

In   region fi  the  sequence  $* converger,  evenlv   to an ez'ict 
'evolution of the  Cauchy  problem c(x,  y)   for  thv   Laplace e-ur.' .or.. 

*.'ow let us construct an algorithm for t.-.-v 

of the "auchy problem which, car. he reneralizi c; 

rlcal solution 

J >J a.. i 



complex equations, Including nonlinear ones. For this we approximate 

the desired solution by the Lagranglan polynomial for x: 

9(* *)«*;(*. y>-'2>J!l(y)*'. 

■:3-«-£- •}> -1H!.W*'--       (2.7) 

where ♦Sn(y) - linear function ^(^^«pl^y) of values of approximate 

solution for 2n + 1 rays of x ■ x., Placing (2.7) in (2.1) and 

requiring that the expression obtained Is identically satisfied 

for all rays, we obtain the approximating system of ordinary 

differential equations 

dKArillU nül      •^ lYiu-ihid/)^''  o{> o..!..- .!.,. i)      (2 8) 

REPHOOilCiBLE   ' 
and initial conditions 

•rl(0)-a(x4).   1^(0)«T(X4). (2 9) 

It is obvious that any solution of Initial equation (2.1), which 
at a fixed y ia a polynomial of the power 2n based on x, for rays 
x ■ x.   satisfies the approximating system (2.8).    Since the 
solution **(x, y)    of the Laplace equation (2.6) constitutes a 
polynomial for x and y (for x to the 2n power), then 

'X 
/-4 

T;.(i/)-<p;('».y)-Re|2M-'S/^r'»i('» ,r*My)      (2.10) 

constitutes a solution of the Cauchy problem for approximating 
system (2.8) with initial data (2.9).    This can be easily checked 
also by direct substitution. 

12 



Thus, the solution of approximating system (2. 8) with initial 

data (2.9) at n + ~ converges to an exact solution of the Cauchy 
problem for the initial partial differential equation. Dimensions 
of convergence range are determined by the distribution of 
singular point~ for initial data which are continued into the 
complex region. 

In conventional dirrerence systems the number or points by 
which derivatives are approximated is fixed. Thus, with an 
increase ·in the number of steps the accuracy of the approximating 
system increases, not due to an increase of established information 
about the analytic properties of the unknown functions, but due to 
an improvement of the quality (accuracy) of this information, 
inasmuch as it is gathered from all the smaller environs of the 
examined point. In contrast to this the difference system (2.8), 
a generalization of which is used in this work, may be called an 
"arrangement with increasing information," or an "analytic" 
system, since with an increase in the number of points on a layer 
there is an increase of analytic information about the function 
which is established in the system. This most fully considers 
the analytic nature of the solution. Let us note that it is not 
obligatory to perform an approximation of derivatives with respect 
to all points located on the layer. It is important that the 
number of these points increases according to a definite law 
together with a decrease of the step in the direction of the 
initial data. 

In general the approximating system (2.8) can be integrated 
only numerically. During numerical integration the error of 
approximate solution ~~ •• - •• is composed of three parts: 
h! 'P and . ~: <r ' - errors of approximat~on .in direction x and y 

respectively, 6b~ - ro¥nding error. Let us consider the properties 
of growth of these errors. For reduction of computations we will 
consider simplified initial data 

•, · ( ~ . ()) - " 1(x), 'tJ,(x, ()) :.. : 0 

and will dispose N • 2n + 1 nodes on initial line y • 0 in zeros 

of the Chebyshev polynomial T2n+ l (x). The remaini ng memb er of the 

13 



Lagrangian interpolation polynomial i n the complex re~i on ~ = x + i n 
for function o(t) can be represented in the form of ~he comp l ex 
i ntegral 

G~~~- .J· NOT !? . C ) ' · : - ~= -\~ :r~·: ~.<~> .. · ·rm. · ,. ~= •. 
. •• ,. • • ·. ~ ?. ·u J r ' ) ( ~ . 1, ( ( 2 • 1 1 ) R£Pilni11!PIDl£ ... ,. '"'" . 

1~1 - Chebyshey polynomial, p • P2 < p* -elli pse , completely 
disposed (Fig. 4) in region of analyticity of interpol ated funct io~ 

Q(t). Variable tis changed in the region p~pa<P2· Parameters 
p2 and p1 can be taken as close as desired to p*. Conduc t i ng an 
estimate of the integral with the use of the relations h j.p 

I 
l i .. t ( p· .. (.:)I·) ... . . . ,), 
I'l - l' ... 

a ccording to (2.6) and (2~4) we find that for as l i tt le a va l ue of 

£ > 0 as desired the~e is such an n*, that wi th n > n* 

I .x I IR ()I / ... H, <· ;. r.r ~' ' 
O.;lj) ~ 11 Z < .. .:... · • • · ·-• ·-·. 

2:11\ (;1 - c~·"+l ( 2 . . i. 2 ) 

Here L2 designates the length of curve p • p2 , M2 is t he max ~mu1 1 of 

modulus of f unction o(t) on c~rve p • p2 , and A i s the m: ni murn 
distance between curves p • P2 and P • p1 • 

I . 
I f i t is assumed that g < i- (pa---p1), then accord j.ne t o ( 2 . 1 ?. ) 

~~~ • -0 at N = 2n + 1 + •. Thus, in the class of ana l yt :.. c fun c t ::. on ;~ 

t he error connecte.cf'with approximatlon i n direct i on x de crea~ e;:; 

exponentia l ly with an increase in the number of node s . mh is _E 

connected with the r apid decrease of error of approx imat j.,m of 
in1t1al data: 

Her e D2 i s the minimum distance of s e gment ~ < .~ ·< I t v 

curve p = p2 and P · ~:: > I. 

Now l et us consider the increase of arbitrary er r or Ln 

in i tial data. For this we will take the di s tri but i on 'unct i on of 
e r r ors n mesh node s . 



flfl^)«/8'*1*'83^"0* 
0 wh«n r =i Xj. I /= n. 

Initial data  .f(^, 0)-5o(jrj). ^(.«j. 0)-0  is satisfied by the 

following solution of the approximating system: 

Prom here it is easy to obtain the asymptotic expression of behavior 

of error at large n and y > 0: 

3/1 + 1   I  .  /   2 2n|-l X 

which corresponds to Chebyshev nodes. 

Thus, with an increase of the number of nodes N ■ 2n + 1 

the arbitrary error In initial data grows exponentially with fixed 

x, y» Just as when using the usual "nonanalytic" difference systems 

[HO. 

If during the integration of the approximating system of 

ordinary differential equations (2.8) stable difference systems 

are used, then increase of errors 5* ; and ^ .' is determined by 

the system of approximation in the direction x. According to 

(2.1^) they increase by exponential law with an increase in 

the number of nodes N ■ 2n + 1. Error of approximation ;.  is 

found using a computer and at fixed N can be made sufficiently 

small so that its influence on the solution, taking growth into 

consideration, does not exceed e. 

Conversely, the rounding off error in each point cannot be 

decreased, since it is determined by the maximum numbers of digit 

positions utilized during calculation, i.e., the properties cf the 

computer.  During approximation of initial data the number of nodes 

N ■ 2n + 1 is determined with the required accuracy of apprcxlmatlcn 
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of the solution in this direction and depends on the nature 

of the problem.  Prom this follows the important conclusion that 

in the elliptic region the Catchy problem can be solved numerically 

only in that case, when the rounding off error is sufficiently 

small, so that taking into account growth at the selected N 

they do not exceed errors of approximation.2 These considerations 

determine the selection of parameters of the difference grid and 

the practicable accuracy during solution of a specific problem. 

§ 3- Construction of an Algorithm for the Numerical 
Solution of a Boundary Value Problem in a Mixed 

Region, when in One Part of the Region""'" 
the Equation Has an Elliptic Nature, 
and the Other £ Hyperbolic Nature 

As a model we will consider the equation 

2-Ui    >,£-0. (3.1) 

Basic questions of the existence and uniqueness have been studied 

for equations of such a type and more general ones In the papers 

[15, 16, 17].  Tf we disregard the vortlclty of flow and in the first 

equation (1.1) introduce the velocity potential, then (3.1) can 

serve as a model of a problem dealing with supersonic flow past a 

blunt body with a detached shock wave in a physical plane. In 

variables 5, 9, where 

the region of flow between surface of body and shock wave in Pig. 

1 will be converted into a band (Pig. 5a). 

Let us consider the band 0 < x < j (Pig. 5b).  Lines x ■ 0 and 
x ■ §• correspond to shock and body surface.  Regions ~\<y<l  and 

ji/i>l correspond to subsonic and supersonic units of flow. 

Coefficients of equation (3.1) Just as the coefficients of the first 

.Mju.-«Mon n.l^ :\vr wen  functions of 6».  Equation of characteristics 

.'■»•i* v ■;. i ^ luui t ;u" a.ime form 

!/  'cli(*—c) (3.2) 
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Flg. 5a.      Fig. 5b. 

Here c ■ const. With x < c we have the characteristic of the family, 

with x > c - of the secondary. All characteristics touch the parabolic 

line y ■ 1, therefore the triangular region BCD (Fig. 5a) degenerates 

into a line (Pig. 5b).  In accordance with the formulation of the 

gas-dynamic problem we will consider as having "physical meaning" 

solutions with continuous and limited second derivatives. Making 

use of the separation of variables <ti ■ F(x)f(y), we obtain two 
families of solutions 

• 

I   V 
M.,) I /■•■ 0. (3.3) 

corresponding to plus and minus  signs  X..    From (3.1)   it  is  clear 
that a necessary  condition of boundedness of second derivatives is 
the requirement 7.'•,;.'<•'"J    with y  »  1.     Considering the  condition of 
symmetry  for axis  7,(,j/\,"    at y ■ 0, we obtain  for solutions of 
f. (y),  having "physical meaning,"  in the region 0 £ y ^ 1  ehe boundary 
value problem 

/.c(J) A(0)«o, (3.^0 

determining the fundamental values ±X. . For solution of this boundary 

value problem we use the Cauchy problem with initial data for axis 

y ■ 0: 

/l:(0) p.. M0H0. (3.5) 
selecting by iteration e. such that it satisfies the first condition 

(3.^). 
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Hj—  IKOT REPRODUCE TAJ 

We will start from a case when In (3.3) the minus sign In front 
2 

of A, Is removed.  From the second equation we have 
ri 

/(.•)- -,-;.,,-■ '-^ ^VV        (3-5) 

and consequently If^i 1 UjJ on segment 0 <_ y _< 1 for solutions 

satisfying Initial data (3.5).  Hence the immediate result Is that 

the boundary value problem (3.^) has only a zero solution f,,(yj s o 

at 0 <_ y _< 1.  Prom the general theory of differential equations 

of the type (3.6) it follows further that this solution, rolr.r 

continued in region y > 1, Is also identically equal to zero. 

2 
Let us now remover the plus sign in (3.3) before X. .  n this 

case the fundamental values of boundary value orohlem (3.4) are 
2 

easily determined X = k(k + 1); as a result we obtain a rar.:'..;/ of 

particular solutions of equation (3.1) with a limited second derivative 

•;.(■■..) ;(I •^'«a/HVhM^chVv).        ;3.7) 

where P.My) - derivative of Lagranlan polynomial. 

Let us consider the question of the uniqueness o" thr:  :o'..^- 'cr, 

of boundary value probleni for equation (5.1). doterr.lned b\    .■...'._:••.,■ 
condition.-: 

■, ..0. v) : .f, (;/). ■,- (/• Vy - ''i M. V, (<• ;J) : J- 

This proc'..er. constitutes a model of supersonic flow pa.--.', a t-^^r.z 

body v,'itr a detached shock wave.  Let us assure that fur.ctlcr.c 

6 (y) and 6n(y) are assigned only up to a parabolic line, :.■ ., 

on the segment >:■   .     \.     We will assume that here tnere exli.": tvo 

solutions of equation (3.1) with a continuous limited secorc ^?rivatlve 

4 (x, y) and fy^ix,  y), satisfying boundary conditions (jJ:.).    r,ion 

their difference A0 is solution (3.1) with a limited .:econrj 

derivative, satisfying uniform conditions 

.,■• J i 



!'■■ rNOT REPRODUflTP^ ^ 
We will look for 60 by solving the Cauchy problc-rr. fror, the axis 

of symmetry y = 0 

Here function e(x) is determined from condition cr^/dv* 0 at y = 1, 

necessary for boundedness of the second derivative at y = 1. 

Considering '/-l   *    C-*.')7. from the first equation (3.3) we obtain 

Expanding function e(x) in accordance with boundary conditions 

(3.9) into a Fourier series based on sines 

e(.v)- )^shi (?/««), 
to 

we present  the  desired  solution  in  the  form 

^r     yifAy)^(2knx). 
k i 

Functions fk(y) should satisfy the second equation (3-3) 

and boundary conditions (3.^).  According to the preceding it follows 

immediately from here that all fi/y) = 0 and in the elliptic region 

0 <_ y <_ 1 (J), = <|>p.  If boundary conditions (functions a, and a ) 

are continued up to points G and F (Fig. 5), then we obtain 4  = Op) 

In the whole region AGTFE.  An analogous result can be obtained by 

assignment on lines x = 0 and x = p  of boundary conditions of a more 

general form. 

Thus, in the class of functions with continuous and limited 

second derivatives the assignment of boundary conditions (Fig. 5a, 5b) 

on segments AB, ED and conditions of symmetry on segment AE uniquely 

determine the solution of equation (3.1) in elliptic region AfaDE. 

If boundary conditions are continued in the nyperbollc region 

up to points G and F, then a unique solution is determined in the 

entire region AGTFE, and consequently also in its section AGFE. 

Thus, the formulation of a boundary value problem for model 
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.~ ~ • .. <I • · : · •• \ .. • : 'r '-
. . ......, ... · · ·~ . . .. ~ 

. ,j I • v-· ... ' .. ~ • .. . · 

equation (3.1) possesses all the basic features of the gas-dynamic 
problem being examined (§ 1). 

Let us consider the application of the Cauchy problem for 
construction of a boundary value problem (3.8). Two primarily 
different systems are possible. 

1. If in addition to conditions (3.8) on the axis of symmetry 
y • 0 the distribution of unknown function ~(x. 0) • b(x). is 

assigned, then in band O<x"<-!·· y~O a mixed boundary value prob l e!Tl with 
initial data at y • 0 is obtained. Selecting with the help of 
iterative process the function b(x) • b0 (x) in such a manner that 
the condition of boundedness of the second derivative is fulfilled, 
we obtain the desired solution of boundary value problew (3.8). 
This method is close to method of work [6]. 

We will examine a deviation from an exact solution 

·~·;- . (x. !k..:ITr. (x, y). caused by a distinction in initial data of 
b(.~) "':.,·' (xJ . . , in the process of iteration. Function 6$(x, y 

sP..tisfies equation (3.1) and the uniform boundary conditic>ns 
(3.9), so that in accordance with the preceding it has a imlted 

. - . 
second derivative only at ~$ : 0, i.e., when the exact solut i on 

is found. In other words, since conditions (3.8) uniquely de ~er~: . 9 

the solution, then any solution arbitrarily differ~ng _it~.e !'rc ~ 

the desired one based on initial data has an infinite second e~~;~t i ve 

at y • 1. In this method the iterative process of approximat~on 
to a solution with a continuous and limited second derivat i ·e 
is constructed in the class of functions with an infinite :er i ~at ive . 

Such incorrectness in the vicinity y • 1 during the numerical 
s olution nf a boundary value probl~m strongly ag~ravates ~~~ e d ~~ " i c · 1-

t i e co1 ne c t ed with the usual incorrectness of t he Cauch y p ~ot )tm 
n an e ll iptic region. It can be s urmounted in a c las :: of : :-.~rn ei ntly 

s mooth functions . As can be seen from the second equation (~ . 3 ) ~ 

difficulties increase progress! vely with an increase i n the rla:-mon i c 
number k, i.e., wi t h an increase or accuracy of the apprcxima.tinv 
system. Result s or this analys is are well confi r med r ~ri~P ~ h~ 

numerica~ s ol ution of a nonlinear problem &bout ~u~tr ~ o~i~ ~~c.,~~~~ 

aro nd wit~ a ~etache Q ~ho ck wave [6 4 • 
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2.  The second system amounts to the problem being- examined 

with initial data on line x = 0 

and even function nf//)--^!? (//) will be selected by Iteration in 

such a way that the second boundary condition (3.8) is satisfied 

GRAP::n NO' 'A-l-PiMil-y'-). 

! >:(i)o   •/) ■ • z1" ) (i   >•) REP:;0^ü!Bl 
etc., then during approximation of function T (y) by even polynomials 

the approximate solutions In the process of iterations will be 

linear combinations of particular solutions (3.7).  During each 

Iteration the condition of symmetry (third condition (3.3)) and 

condition of boundeaness of second derivatives are satisfied 

automatically, since they are satisfied by the particular solutions 

(3.7).  The possiblltity of constructing an Iterative process 

in a class of functions with a continuous limited second derivative 

in this method is conditioned by the fact that approximate solutions 

are not subordinated to any condition at x = 1/2 (of three conaltlons 

(3.8) only two are subordinated), and consequently, according 

to conditions of uniqueness, can belong to this class of functions. 

From -als analysis It is clear that during resolution of a problem 

on su^ orsonic flow past a body with a detached shock wave one 

should use system 2, since it corresponds to the nature of the 

problem. 

Let us now use the proposed difference system for solving 

a Cauchy problem and a boundary value problem based on system 

? for a model equation of mixed type (3.1).  For this in accordance 

with our system we will trace the straight lines y « const = y 

based on m In the upper and lower half-planes.  We will call these 

straight lines rays.  All told, including the axis, we obtain 

2m + 1 rays. Assuming the unknown solution even and approximating 

it with Lagranglan polynomials based on y, we obtain for the "unction 

. K:/)-T* (■>•■. y) -• >/??.i(0y:/ 

/ 9 
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and for derivatives with respect ~.o y 
- . . • Ill 

_ ~ ::::: ~~ - ,., 2j -r~ (x) g-:1-:-a, 
cJJJ ,, ~ ,_, 

•• • Ill 

-~-~'-::::; Ci 9,. .. }1 'lj (2J- 1) cp1.,. (x) 1/tl-t ( 3 • 11) 
iJr' . ,,. ,.;, 

Here ~r~ .. (x) - linear function •rj, .. (x) : ·r~ <·~· . v;) values of the 
unknown function for m + 1 rays in the upper half-plane. Placing 
(3.11) in (3.1) and requiring that the resulting expression is 
identically satisfied on all · rays, we obtain an approximating 
system or ordinary differential equations . - -- ... 

• • • 
·"~.!!.- + (1-11') L 2J(2J--·l)cp7,.(x) 1/':1-• ==- 0 
~ . . ,_. (3.12) 

(,t ·a 0, I 1 • • • 1 111) 

for determination of values or approximate solution .. , (X' y) 

on the rays. 

One or the evident properties of an approximating system 
is that if there exists a solution of the initial equation (3. ~) 

• (x, y) which at a fixed x is a polynomi•l of the power 2m with m 
respect toy, ~hen on the rays 1t satisfies the system (3.l2), 
i.e., functions 

. 0 1 ' \ ·'~ ...;..: • • •••• f,! , 

. . 
are the solution of a system (3.12) with any disposition of ray ~ . 

This follows from the fact that for this solution •r:., .. , .. &.nd 
correlations (3.11) are exact. Let us consider a Cauchy problem : 
1n l'egion AGPEA (J ·~ .r ·< ·~ L• . ,) ~-: y~ch(k· - ~.;) to find the solution of . 
equation (3.1), satisfying the initial data (see Fig. 5b): 

(3. 13) 

Obviously, 

where a 0 , a 1 , .•• , a 2m· are constants. The solution of the Cauc~ y 

problem for equation (3.1) with initial data (3.13) will be (se~ 3.7) 
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'" "(x, !I) . : u, + )~ {tl~i p;i--1 (y) (I - !l) ch { V2i rii--·•f xl), 
l ••l 

and the solution for the approxi~ating system (3.12) will. be 

-r:., (x)· ··• ~ (x. !IJ 

with any situation or rays. 

(k ::~ 0, 1,_ • :. , m) 

(3.14) 

(3.15) 

Here the solution of approxima',ing system ( 3.12) gives on the 
rays an exact solution or the initial equation (3.1). And if the 
Lagrangian interpolation polynomial (3.10) is used, then from the 
solution or the approximating system (3.15) we obtain an exact 
solution \3.14) in the entire region. 

In the case examined the region or influence of differential 
equation (3.1) is ARFEA, while the region or influence or approxi­
mating system (3.12) formally is AGFEA, since only the values or 
unknown function in this region are bound in the difference approxi­
mation. 

It is known that in the hyperbolic region in general the region 
or influence of the approximating system must coincide or envelop 
the region or influence or ~he initial system or differential 
equations. Otherewise there is no convergence of approximate solutions 
to exact, and the difference system itself turns out to be unstable 
during calculations. The meaning or this affirmation is tnat if 
the region or influence or the system or differential . equations 
exceeds the bounds of the region or influence or the approximating 
system, then by changing initial data on part or the initial line 
(in our case on section GR), we do not affect the solution of the 
approximating system and at the same time we change the solution 
or the system or differential equations in the region or influence. 

Although it is accurate in general, this affirmation becomes 
incorrect if it were to remain in the class or analytic solutions. 
This is already clear from the elementary consideration that in 
an analytic case it is impossible to change initial data on any 
section without having changed them in the appropriate manner on 
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the entire initial curve, since in this case assignment of initial 
data on any section specifies them in the entire region of analyticity. 
This position can be given a more thorough foundation. Thus, in the 
paper by Dahlquist [18] ·for the wave equation during the usual 
three-point system of approximation of a derivative in direction of the 
initial straight line it is proven that in a class of_analytic 
functions the solution of an approximating system converges to an 
exact one also when the region of influence of a differential equation 
exceeds the bounds of region of influence of the approximating system 
(i.e., at T/h > 1, where his a step along the initial data, and T 

in a perpendicular direction). 

When in a class of analytic functions they are looking for a 
solution with the help of an "-analytic" difference system, then, 
and in the hyperbolic region, the regions of influence of differential 
equations and the difference system are determined not by the position 
of extreme characteristic and points which are bound in the system, 
but by the region of analyticity of the solution and the convergence 
region of the difference system. Let us · illustrate this in an 
example of model equation (3.1). 

We will construct the solution of the Cauchy problem ~rlth the 
same initial data (3.13) in region of influence of equatio~n ( 3.1) 
ARFEA, bounded above by characteristic RF, the equation of which is 
y • ch(x- t 0). In order to use the proposed system we wi ll pass 
from variables x, y to variables x, n, where ., . 

" =-a ·-c-..·(.,-.:... e.f· (3.16) 

Here :region ARFEA will turn into rectangular O<x<eJ. o : ~ , 1 . " ;1, and 
differential equation (3.1) will take the form 

!!~'! .. - 21'1 ...-:c,b <• - ~·l . -'-~-- + -- ~ :..:..'!'L •• _iJ_':~ - · 
J.r• ch (.r - 'e) ~~chi ch2,(z - - ~G) ~,., 

_ 1 -~b'(z-M. -~'1. ~- O. 
'l cb' (.r - £t) "'Jj ( ; • 1 7 ) 

Just as previously, by carrying out, in the upper half-plane m + 1 
rays n • const • nj (0 ~ nj ~ 1) and using approximation of the 
unknown solution with even Lagrangian polynomials (3.10), we 
obtain approximate expre ssions for derivatives with re:;pE:ct to r 1 
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in the form (3.11).  Placing them in equation (3.17) and requiring 

that the resulting expression is fulfilled identically on the 

rays, we obtain an approximating system for ordinary differential 

equations 

1 ^t,}]'Wi -IUU*)^*- 

■(  4) i-i (3.18) 

for determination of values of approximate solution ■, ;,f„-. (x, 

y) on the rays.  Since along the extreme ray n = 1, which is 
a characteristic of differential equation dlOx-tildx.   then the 
characteristic equation for It is written in the form 

It is easy to see that the equation of system (3.18) for extreme 

ray k = m, n = 1 constitutes a difference recording of cnaracteristlc 

equation (3.19).  It is also obvious that fulfillment of (3.19; 
on line r = 1 directly follows from the differential equation 
(3.17).  Placing y^iich(x—to), in (3.7) we obtain a system of particular 

solutions of equation (3.17). The exact solution of cur problem 

will obviously be (see S-l1*) 
m 

f ('.!/) - «o + J] K P'V -I In <* (* - 5o)J x 
M 

x [I  - »i»ch(x - l0)]ch|/2/(2/^T)*.vl}. (3.20) 

Since with a  fixed  x  this  solution will be  a polynomial  with 
respect   to n  to the  ?m power,  then the  solution of the  approximating 
system at any situation of rays can be presented In the  form 

TUO TK-U) 
{k   0'x w)-        (3-21) 

If one were to approximate the solution with the help of 
Lagrangian Interpolation polynomials, tv-°n from the solution of 
approximating system (3.21) we obtain the c. net solution of the 
problem. 



The solutions of approximating systems in the form (3.12) and 
{3.18) obviously agree, since they give values of one and the same 
exact solution on different -lines (y • const and n • const). 

If one were to assign a perturbation on initial line x • 0 or 
any layer x· -; -c"onst, then the growth of errors during transition 
from layer to layer and increase in number of rays (growth m) will 
be the same for both solutions. In essence this fact is obvious 
in the class of analytic solutions -(and consequently of initial data 
also). Remaining in the region of analytic solutions, the example 
cited, it is impossible to change the initial data {3.13) on section 
GR without changing them in a corresponding manner on section AG, 
so that the difference system (3.12)_ completely (exactly} considers 
the change of initial data on the entire section AR. 

In the example considered due to the presence of polynomial 
solutions of equation (3.1} for initial dat~ (3.13) it is easy to 
write out the exact solutions of approximating systems (3.12) and 
{3.18). However, the result obtained (independence of growth of 
errors on the selection of systems {3.12} or (3.18}) is not connected 
with the polynomial character of solutions. For equation ( 3.1) it 
is easily generalized for solutions presented in the form of converging 
series of polynomial solutions. By a somewhat more complex path an 
analogous result is obtained also for model equations which do not 
have polynomial solutions. This fact is also confirmed by carrying 
out numerical calculations of flow past blunt bodies by tt.e ffiethod 
examined. 

It is important to note that due to the analytic characte~ ~f 
the difference system the approximating system (3.12) in ellip~ic 
and hyperbolic regions has the same properties. At a fixed value 
x • H with an increase of accuracy or approximation with respect 
toy (increase of number of rays), errors in initial data P-row 
according to the law expmH. During numerical determination of 
the approximate solution of a Cauchy problem errors of approximation 
and rounding off appear. In the examined case of analytic solution 
and difference system the errors. of approximation on initial line 
x = 0 have an analytic character ant decrease wi th a g~owt~ c~ ~ 
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according to exponential law, so that at specific linitations or. 

location of singular points of the unknown solution the errors 

evoked by them at x > 0 do not grow with an increase of N = 2n + 1 

(see 2.12). Errors in rounding off have a nonanalytic character, 

therefore with an increase in number or rays they grow according 

to exponential law (see 2.13).  Since in the class of arbitrary 

functions the Cauchy problem for elliptic equations is incorrect, 

then the exponential growth of rounding errors (and other arbitrary 

errors) with an increase in the number of steps on the Initial 

line cannot be eliminated by a change in the difference system or 

the form of the region Ox' influence of the system in the h.yperbqlic 

section of region (see note on page 41).  The number of steps on 

the initial line (number of rays) is determined with the necessary 

accuracy of approximation of solution in this direction and depends 

on the nature of the problem.  In connection with this, during the 

solving of mixed, Just as of elliptic, problems (see § 2) for the 

construction of a numerical algorithm it is possible to use the 

Cauchy problem only in that case when the rounding error is 

sufficiently small, so that taking into account growth during tne 

selected number of steps on the initial line they do not exceed 

the errors of approximation. 

Considering everything said about properties of a difference 

system during a discussion of formulation of the problem. One should 

note that use of a characteristic, limiting the region of influence 

of the system of differential equations for gas dynamics as a 

boundary line when writing the approximating system of ordinary 

differential equations (here satisfaction of the characteristic 

condition is a result of differential equations, see, for example, 

(3.19), (3.17)), does nothing either for the formulation of 

conditions of uniqueness or from the point of view of improvement 

of convergence and stability of the difference system utilized 

here.  On the other hand, the transformation of coordinates with 

the use of the characteristic leads to a noticeable complication 

of the approximating system (see (3.12) and (3.18)), to a dependence 

of grid on M number and other conditions of flowing around.  Tnis 

hampers analysis and the use of calculation data. 
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'low let us rive an example of the solution of a boundary value 

probiert (3.8) with boundary conditions 

-Py(.t.0)^0 

for model equation (3.1).  Considering m = 2 (3 rays in upper half- 

plane y = 0, y, and yp), we easily obtain the solution 0* of the 

approximating syster (3.12), satisfying the boundary conditions 

'fN^-aayJ.^^)«^^) {k  .0.1.2)        (3.23) 

in the form **  = <l>(x, yj, where «^«^..^ , .^ 

^(•'i'O^1- S-'O ■(i,jl- 5'^) (3.2M c, 

(\-th-l I •'. -^l. 

•<'?) 

1 

/   r-.j \ Ai   :al   'At 

during any situation of rays.  In the examined case the solution 

of approximating system (3.12) gives a precise solution of initial 

equation (3.1) on rays <j)*(x), and with the use of Lagrangian 

interpolation polynomials - In the entire region <t)(x, y), since the 

number- of ray.} corresponds to the power of polynomials in initial 

data {3.??).     If initial data are set by polynomials of the 2r. 

power, and number of rays N in the upper and lower half-plane 

(Including axis y = 0) is less tnan 2m + 1, then the solution 
(I)*(JV> y) = obtained with the help of the approximating system, •.-.•i^l 

be approximate.  This makes it possible to study the proper-tie,: 

of error &<!>  = ^ - 0*. 

We will limit ourselves to the simplest case, nonetheless 

making it possible to reveal the basic properties of dr..  Let sz 

take m = 2 and examine again the boundary value problem (2.22), 
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with an exact solution t})(x, y) which Is (3.2^). Durlnr detectlr..- 

of the approximate solution 0*(x, y) v;e obtain the number or" rays 

N = 3 < 2m + 1,  Then, uslnp (3.24) It is easy to obtain 

6<p - AM 1- .vA.V-l- P'iiAV/  - 1) lAC^'''f' KV-V -^''J -j- 

X-P'Ay) iy* -1) Mi t™* + A**- VlH 
15 

AAf-a4(I -A»), 

A.V--2164(1-/iJ)-AAfl. 

ÄC'=—f/iTh(-/f)°'(4-'■•)- 
2; 

AC,-0,(1--A1)-. AC,. 

(3.25) 

where y = h - position of extreme ray.  Here the error in the 

approximation of boundary conditions is given by expressions 

t'i(0,y)    'iii/iy1   -A-). ö'pM-. yV&iirV       • (3.26) 

Thus, at a fixed number of rays N = 3 the parameter 

q = maxCa^,, b.) is a measure of accuracy of the approxlmatlnr 

system.  Expression (3-25) makes it possible to trace the nature of 

dependence of 64) on coordinates, the position of the extrer.e ray, 

and accuracy of the approximating system.  Differentiating the 

expression for 64) based on h, will obtain 

J 
• ?Vt !-U". '. > •'.<   ' ': ' \ '   : l)X 

ft«   ■:, ...( 1 ) -\ 
■ i>it 

;' (V 'S 
7 

'■1 y. 7 ,,.12» .2h   \   - -ij/ ; .v .      C3.27) 

From (3.27) it is clear that the weaker the dependence of 64», and 

consequently also of the approximate solution 4)*(x, y) on the 

position of the extreme ray h, then the smaller is q * maxCaj , b^), 

I.e., the higher the accuracy of the approximating system.  At 

q '■+ 0 the solution of the approximating system aspires to be 

exact, and dependence on h vanishes.  Prom (3.2rj) ami (3.26) it 

is clear that 6(|> and d(J)*/dh decrease according to linear lav; 

together with q, so that 

T: 
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Thus, ld~•/dhl (dependence of ~· on situat i on of rays) ca~ 

serve as a measure of accuracy of the solution of the approximating 

system. 

§ 4. Method of Solving a Nonlinear Problem 

~or the solution of the nonlinear boundary value problem 
formulated in S 1 we will use the difference system 1:rh ich vras 
studied in detail on model equation in § 2 and 3. From vari able s 
r, a it is convenient to switch to variables ~. e, introduc i ng the 
new variable 

( !1 .1) 

where·r • rT(8) and r • rc(8) are the equations for body contour 
and compression shock. In these variables the re gion of flow 
between shock wave and body will be converted into the band 
o < t < l (see Pig. 5a). - -

Let us construct for m rays in .the upper and lower half­
planes, all told, including the axis of symmetry, 2rn + 1 rays 
(see Fig. 2). 

c...:;, ..... 
E 
c: 
C ­c.a 

For obtaining explicit expressions we approxi r.;a t€- -;ne 'l.:!'l.knOi·m 

functions with Lagrangian polynomials and then diffe~e~t~a~ e t~e~ . 

Considering the symmetry or flow with respect to the e.x i s , ·:: & 

obtain for the functions 
,,. 
' • ~ ' r ,: " . -: I • :. ' ~ . , ., . .• -
J • 

and for derivatives with respect to 8 .. .. 
, • . ::: ) : 2jr~(~)iJ"'1 · •, ;/ :-=.:: )~(?.j ·l· l>t1C>O·:I, r;; 

1 I I ·~ 

.. 
) · •)' 'J ' l • • /. }II • ., . • 

I · I 

Values 

and rc on m 

0 0 0 . . 
uj, v.1, and r .1 are linear funct1onz of values 
+ 1 rays in the upper half-plane. 

(4. j ) 

u , v, 

Placin~ the expressions for derivatives with re~pe ct t o e in 
(1.1) and requirin~ :h~t the re sulting expressions a r e ~dert i c & l ly 
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•' I • ~l 
t , ~ ~ ' 

satisfied on each ray, we obtain the approximating system of 

ordinary differe~tial equations with respect to uk, vk, pk, ~k' 

~approximate values of these functions on the rays. Solvin~ 

this systeM relative t o derivatives with respect to (, we finally 

obtain: 

where 

. - "· (2rta + "• dJ: o.) . b.u; + (u; -- "•) 

+ (2:~~ - v.) u.,oa }; 

..!!_"- _, ~ e, [ _ _ I __ ( 11• _ ~~t + tr; - ~'!..'-) _ 
dl ,,. 1· ''• • '• 4l 

- ~- + t• (Tr• -l·· ~f. a)]; 
'ra-t-~ I 

..!. · 
Pa ,_-; [ o'::.~] y (k "'~ 0,1, ••• I m). 

'-·-·! Y_·! 
'' t · lPt'. t')(,tJ · '·~• \ \ Jl_,_ \' ,, ( t\-) ·' •' 

.. ' ,, c1 . --: -- shau• ----
y ·- 1 •'C'd 

.z.lt.(f'·.' ' ,f • :., . ·~ ' 

'" •) 

'
.,. ... ··~ (• .. ·; • c . ... . 

( 4 • 4) 

( 4 . 5 ) 

subscript "k" denotes values of parameters on k ray, pri me :: d-=::>t;;nate 
derivatives with respect toe, enumerable by the formula3 ( ll . j) . 

On zero ray (at k • 0) all the terms of the second and fourth 
equations (4.4) identically turn into zero. Por increasing the 
accuracy of the system it is expedient here to introduce equation 
for "·· ·.: , :,/.with e • 0. Differentiating the second equation for 
e and considering that with e • 0 
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!"~ .. ·~ ..... , .... 

'NOT .. REPRODtTCIBT 4 E 
• • j · '~ ·.: 0, 

\'>'e obtain 

( 4. 6 ) 

To system (4.4)-(4.6) it is necessary to add a correlation 
connecting the departure ·of shock wave from the body E vtith an~ l e 

or inclination of the shock wave to axis of s ymmetry a: 
ha t 

.. d 1- ~ • -- (r" I· ..,t4) .:It: ("• + 0;,) - '~•· ( 4. 7 ) 

Besides differential equations, in accordance with cor.d1tons 
of uniqueness the solution should be subordinated to boundary 
conditon (1.3) on the surface of the body at ~ • 0 and to correlat ion 
for compression shock (1.2) at t • 1.0 (rc • rT + E) in mesh node s , 
i.e., in intersection points of the ray with surface of the body 
and the shock wave. The algorithm for the numerical solution of 
the problem amounts to the following. Assignment (m + 1) of 
parameters r~ (J • 0, 1, ••• , m) according to (4.2) determine s 
approximately the equation of the shock wave, and with the ~ e lp of 
correlations (1.2) all the gas-dynamic parameters beh ind t t.e 
compression shock. Then by solving the Cauchy prob l em fvr the 
system (4.4)-(4.7); we determine the values of parameters i n 
nodes on the surface of the body, which generally speakinY, do ~ot 
satisfy boundary condition (1.3). Selecting by iterations t he 
values r~ 1n such a way that in all the nodes on the surface o~ :he 
body the boundary condition (1.3) is fulfilled wi th the as~i~ned 

~ ccuracy, we obtain the unknown s olution of the approxi mat1n~ 
~ y stem i n m approximation. 

Thu A the method of calculation amount 3 to t h ~ f ol l 0w i ~ . ~ ~ 

con~ tr~uc t n ~equence of solutions satisfyin r; al l the rJounrJar y 
condtt i on n in re~i on AGFE: correlation~ for c ompre ~ ~jon ~ hock 

AG, conditions or s ymmetry on a s e gment of a x L: AF. , and t he 
boundary condition on contour of body AF. 

An additional condition of boundedness of de r1 vat1 7~ ~ 
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':-.·-~- <.:c. :-J -:E::r·sicm i nto zero of J aco·· i ar. ·- · -~ r. Y~ -) is ful:' il:.ec "'utomat i -
a (o,, t'll) 

cally,since each term in the sequence of approximate solutions .atis­
fies it. If at the beginning there is assigned or if in the proce ss of 
iterations there develops a form of shock in which in the supersonic 
segment of region AGFE a limiting line emerges, then it will auto­
matically be related by the program since the process of calculations 
is disrupted. The desired solution and the one obtained in the 
process of iterations belong to the class of ana+ytic functions 
where the Cauchy problem is correct. 

§ 5. Examples 

Without dwelling here in detail on results of investigating 
the attributes of the method, growth of errors, and convergence 
and stability during the solving of a non:inear problem on s uper­
sonic flow a~ound with a detached shock wave, we will give examples 
illustrating the solution of differtmt problems of flo\'t around with 
a detached shock wave. 

Figure ,6-9 illustrate the influence of M number and body 
form on the''geometric picture (relative position body surfaces, 
shock wave, ·: and sonic line) of flow around by an ideal gas with 
y = 1.4. Figure 6 shows the influence of a change in M number over a 
wide range during flow past on ellipsoid with a ration of ~ emi -

axis 6 • 2.0. Figure 1 gives a geometric picture of flow at M • 3 
past a family of bodies with front section contours assigned by 

" n n the equation x + y • 1. At n > 2 radius of curvature of cont our 
in a critical point R0 is equal to infinity, and .with a change of 
n from 2 to 10 the ratio of the minimum angle in the vicinity, the 

R 
radius of curvature, to body ~iameter ~is changed from 0.5 
to 0.01. Figure 8, in a example of flow at M • 3 past Cassinian 
ovals with the contour equation (x2 + y2)2 + 2c 2(x2 - y2 ) • 

4 4 2 2 • a - c (a + c • 1), shows the influence of concavity or contour 
in region of critical point. Figure 9 shows flow at M • 3 past a, 
the contour of which ha~ a discontinuity or curvature at point c 
and is formed by conjugate circumferences of radii R0/D • 1 in region 
of critical point R1/D • 0.2 in the vicinity of the midsection, and 
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pas', body E, constltutinr a . j-ac-ree segment " 

Firure 10 fives the distribution of pressure c; 

bodies of various forri at flow past v.'ith ?■' = 3 

lar 

a-- - D. 

it tne curve. 

do rot r.erre, r^olar anrle 6 is accerted as an argur.ent along zhe 

surface of the tcdy (see Fig. 6, 7, 3).  For body .1  P = en (where 

1 
ingle v.'ith  pole   in   center of  circumference  of radius   rj 

"or  body  a up  ro  a point  with  0 =  6^   and   further  9 --  6^   +   ''' 

(see  ^ig.   0).     Points   plot   the experimental  data of Yu.   Ya.   ■'■ ,: ! v 

ii W 
Pig.   6 

AV/   '■■ ' ii 

i—< o 
p 

s 

. - * 
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Investigation of supersonic   flow past  a  sphere  Ly  nonequlll- 

! rlun  air was  performed  taking  into account   kineticc   cf excitation 

G:"   fluctuations  In N    and  0   ,   reactions  of dissociation and exchange. 

Including  0    + N    =  2N0),   and  lonizatlon with  the  help  of atorr.ic 

collisions   N  +  0  =  N0+  +e,   N+N-N^+e,   0+O=O^+e, 

satisfactorily describing  the  process up  to M ^  30.     Influence  of 

physical-chemical transformations  occurring behind  the  shock waves 
on  the  departure of shock wave  is  shown in Fig.   11. 

r' 

0 

Fig.   10. 

LquiliDrium 

P-W\'- 

'•'•./ -ViV 

SO 

4 

Q 
O 
CM 
w 
cd 

s 

Fig.   11. 

On Figs. 12 and 13 are shown the geometric picture and distribution 

of pressure on the surface during transverse flow pant a cylinder 

(two-dimensional problem) with different M numbers. 
; 

i 
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In work [31"' a method Is generalized f .- '.r     c ne of .-spatial 

f*low past blunted Lodie.': with detached ;;r.o ?/ -.vave.  ^!.~are 1^ 

-■.■■.cws the influence of anrle of attack on thc recret.lc plc^.ure ^•0 

flow past an ellipsoid with 6 ■ 3.07 at / = 3.  For tne -arv- ca.--.- 

yig. 15 ^hows distribution of pressure on the surface of a t.oo.v In 

a plane of symmetry.  The points are plots of the experimental data 

of Yu. Ya. Karpeyskly. 

// 

;   tti. c/v  lit oa iß  t,t   a      L_ 

£2 5a 
.J5  jg ■Ml      I^S 

^ 

Pip.   13. Flg.   U. 

The  calculatlonc  presented  in Pigs.   6-10 and   I?  and   13   W.TO 

conducted  on  a ()-polnt   system  (selection  of 5  parameters),   ar.';   in 

Fir.   ]1  on a  5-point  system  (selection  of   ■  paramoter-r:).     iJurln^ 
calculations   of  spatial  flow past  during  Iteration.:   ',:'  t-.'j   f'r/r-   -/ 

compression  shock  the  selection  13  parameter/  war;   - f .-''->r--' -.      .•.It.' 
out  ■iwolllnr  nore   on   '.he-  results   of   Invest', -v,:   .-.  o"   r:':,"   -.-■       •■.• 
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Pig.   15. 

note   that total  error  durlnp; calculation  of  the  majority  of variants 

does   not  exceed  \% .     For example,   in the  case   of  flow past  a  sphere 

by  an  ideal  ras  at  M =   3  the total  error already  durinp calculation 
based   on a 5-point   system  does not  exceed  0.3;"   in the entire   field 

between wave  and body.     During calculation  of   flow past  a  body  with 
a   '"racturs  or the  Generatrix  in  the  sonic  point   (B  in  Fir.   9)   in 

the   vicinity  of singular point  an asymptotic  solution wan   u,:ed. 

'.'his  was  obtained by  Guderley   [19]   for  flat   potential   flows. 

''hen   the  generalization   in a number of works   [21,   20]   for vortex 
axlsymmetrical   flows  was   used. 

The  authors  thank  G.   I.   Petrov and  L.   A.   Chudcv for useful 

discussions  and  consideration of results. 
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Footnotes 

'Here two  cases  of disposition  of nodes  are examined.     For 
an example,  of theorems of convergence In a general  case,   see 
[12,   131. 

2At  present  L.   S.   Prank and L.   A.   Chudov  ire developing methods 
based on  the  smoothing of the  solution  for eaoh     ayt r,   thus  making 
it  possible  to   lessen  the growth  of  rounding errors   ",??.']. 
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