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PREFACE
‘This paper was prepared by Dr. Shunsuke Takagi, Research Physical Scientist,
«f the Cold Regions Rasearch and Engineering Labotatory, U.S. Army Tesrestrial
Scienos Center (USA '['SCY).
USA "SC is a research activity of the Army Material Command.
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ABSTRACT

; A new tensor analysis, called the Gibbs-Einstein tensor analysis, is developed based
on the concept that directions are algebraic quantities subject to the rule of forming scalar
products, tensor products, and linear comt ‘nstions. The new tensor analysis is explained
in this paper by way of reformulating continuum mechanics and the Hamilton-Cayley theorem
in matrix theory. The latter reformulation yields an explanation of the deformation dyads
jntroduced in the former reformulation. A scalar productof two deformation dyads yields
the strain tensor, which is a thermodynamic state variable for thermodynamically reversible
deformations. Muthematics Gealing -vith directions in a flat space becomes much simpler
and more understandable when the Gibbs-Einstein tensor expression is used.
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TEE GIBBS-EINSTEIN YENSOR ANALYSIS

WIXYH APPLICATION TO CONTINUUM MECHANICS
AND CANONICAL FORMS OF GENERAL SECOND-ORDER TENSORS

by
Shunsuke Takagi

Three tensor expressions are wsed currently. The moset prevalent is ths expression by
conponeats V', V), T'/, T!, etc., which will be called the Einstein expression. The sacond expres-

sion, which will be called the Gibbs expression, consists of linear combinations of base vectocs,
of dyads, of triads, etc. (introduced by Gibbs and Wilson (1901)), whose coefficients, however, are
not recognized as Einstein expressions. The third expression, which will be called the Gibbs-
Einstein expression, is a combination of both the above expressions. expressing a vector V as
Ve, = Vo', 2 second-order tensor Tas Tle, = T/ 0,0/ = T/dle; = T,6'd/, a third-order

tensor Tas T/*e 00, = .., eic., in which e, and ¢’ are covariant and contravariant base vectors,
respectively, definetll by

wha~ 8] is & Kronecker delta. Coefficients V! and W are contravarisnt and covariant components
¢ % " natein expression. Dyads e;e, o,¢/, ¢'s; and e'e’ in the Gitbs expressions are beses
for the second-order tensors whose Einstein expressions zre TY/, T‘,, T/, and T,/ respectively.
Similarly, triads e/8.8,,..., in the Gibbs expression are bases for the third-order tenaors whose
Einstein expressions are THE,..., otc.

The Gibbs-Einstein tensor expression was introduced first by Hessenberg (1917) and ex-
tended by Vills (1831). Recently this notation was used for the study of large deformation by
Yoshimura (1957) and Sedov (1962) but it has not yet been widely accepted.

Tt ; Einstein expression can by used in a curved space without introducing nornals to the
curved gpace; therefoce, it is converisat for the study of inrinsic pruperties of a manifold. A
curved spaon, howe zr, must be embedded in a flat space ir the Gitts-Einstein expression is to be
applied. This is because the differentiation of a vector belonging to 8 curved spice may yield a
vector that has us a componsnt a normal to ths curved space.

Use of the Gibbs-Einstein expression is based on the recognition that identifying directions
with sets of numbers is not & proper definition of directions. In terms of axiomatic geometry, a
direction is an undefined quantity, like a point, & straight line, or a plane. In terms of abstract
algebra, directions are algetraic quantitios subject to the operations of scalar product. tensor pro-
duct, and linear combinativns of tensor bases. (A tensor product of vectoss is a juxtaposition of
vectors in a given ocder. Vectors in a tensor product 2re non-commutative. Juxtaposing a set of
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2 THE GIBBS-EIiNSTEIN TENSOF ANALYSIS

base vectors focming & dual basis forma a sot of tsnsot bases. Coefficients of a linear combing-
tion of tensor bases,are, in general, functions of space and time.) Note that a diferent delinition
of scalsr products dedines a different geometry.

The Gibbs-Einstein notation yields simpler expressions tni easjer analysis of the quanti-
ties containing directions. Geometries, theory of functions of many vatiables, mechaaics, snd
mathematical physics in fixt spaces should be reformulated with this notation.

In the firat part of this paper, the coutinuum mechanics reformulated with the Gitbe-Ein-
stein sensor expression will be summarizsd. In the second part, the Hamilton-Caylsy theorem will
be reformulated with the Gibbe-Einstain tensor ein-issicn. Note that a matrix is the Einetein ex-
pression of & second-order tensor. The reforroulated Hamiltun-Cayley thoorem js much simpler,
directly yielding the minimal polynomial, and is more undetstar.1able. 1t also yields a new con-
cept of deformativu, defining the deformation dyad. A scais procnct of two deformation dyads
yiels the strain tensor, which is a thermodynamic state variable fo. theemodynamically reversibie
deformations.

PART 1. APFLICATION TO CONTINUUM MECHANICS

Let £1(f =1, 2, 3) be the coordinates at time ¢ = 0. A particle whose initisl coordinates
are £1, £2, £3 «ill be called particle £.. The position of pacticle £/ at time ¢ is

x = ®EL £, &5, 0. @®
Covariant base vectors (i = 1, 2, 3) are defined by -
o = L ®
afi
Contravarians base vectors ¢/(i = 1, 2, 3) are defined to satisfy eq 1. Vectors e, represent de-
formation, because veckr e,, for exanple, I8 & vector obtained by dividing the vector spanned by
paticles (£1+d€1, £2, £9) and (£1, £2, £3) by aFl. Jacobian X}, X2, X3)/AEL, €%, £9),

where X1, X2 X3 are Cartesian components of x, is aqual o the volume of the parallelepiped !
®,x 0, 0, Assume that the initial coordinates are right-handed, thea i

VE = ¢,x 0,6, @
Unit tensor 1 is defined by

1~ o = oo, = g 0 = glog,
iz which

8y =9 ©
and

PR ) '
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THE GIBES-EINSTEIN TENSOR ANALYSIS 3
Unit tensor 1 is the mait for dot multiplication
T-1 =1-T =7 &

where T is say tsasar. Equadon 8 will be proved by exacuting the dot ssitiplication in oq 8 whea
a2 sppropriate expreasion of 1 in eq § is chosea, determined by the form of T.

In 2 fiat space, ao/af‘ is a vector beloaging %0 the aame space; therefore,

&

L)

e "
where componsets l"f, are Ciristoi/el symbols. Differestisting e 1 aad wsisg the groperty of eq 8
of § yialds

LA as

afl

Covariant differestiatioa is derired by we of ¢q 9 and oq 10.

A differentisble teasor is a linsar combibetfon of Cartdsisn base tonsors (base teasars
formed of Cartesisa base wectors) using differentisble functions of £ agd ¢ as the cosfficionts.

The order of pestial diferestistion of a diffeseatisble teasce, therefore, is commntative,

arr F o 4

- an
atlat!  atleg!
In terms of covariaat base vectors, oy 11 is valid if sad oaly if
a'.. a!.' a1

*lafl - aflafl )

To show this, lJet T de of the stk crde:, aad assume thet the proposition is kwe for & teasor of
{= - 1xh order. Use of the wmit teasor yields

T 2 -1
aglael  ae* o

-

‘The fumction to be disterentiated is a temsor prodexcc of » amd o - T: thia we find

Cor S S 0% B Xt Ok
af‘af’ .ktlafl afi a{i af‘ afl af‘JfI

whick shows that eq 11 is valid if sad only if &5 12 is valid. Note that
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4 THE G1BBS-EINSTEIN TENSOS ANALYS'S

- B
sziop) oglogt O o

where Bzﬂ is a component of the Riemann-Christolfel tensor,

The nabla operator {7 is defined by

i d

= o =, (14)
9!

Nabla is invariant under coordinate transforuatiions; aerefore, it is denandent on time t only.
The gradient of a tensoc T of any order is definec .
o 37
o&!

grad T = (15)

where of is usually put at the extrewe left of the base tensces of a'r/af‘ , but may be put anywhese
in the base tensors of 3T/a¢! to form a tonsor of one order higher than T.

Divergence of a tensar T of any order is defined by

dJT

divr = o . 2
a¢t

(46)

where e! is usually dotted with tim base vectors at the left ends in the besc tensces of 81‘/&5‘ '

dut m 7 be dotted with any base vectors in the base tensors of 9T/ to form a tensor of one order
lower than T,

Cwl of atensar T of any order is defined by

cwi F < of x 9T o

ot!
where ¢! is usuatly crossed with the base vectors at the left ends in the base tensors of 8'1’/0{” '

but may be crossed with any base vectors in 3T/ to form a tensor of the same order as T.

The use of natla thus introduced allows us to extend use of almost all the integral and
differential vector formulas to a tensor of any order in the Gibbs-Einstein exnression (Takagi, 1968).

Time differentiation keeping £1, £2, £3 constant is denated by D/i3t. Thus,

Dx
= —_—, 18
Voo a8

Differentiating eq 18 with respect to £’ yields

De
_i_ v (19)
0,4 alf"
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THE GIBBS-EINSTEIN TENSOR ANALYSIS 5

The symmetric part of grad v is denoted by

(zad v)* = g‘“o‘o’ . (20)

Fealcs

Components tll satisfy

Strain tensor s is given by

t
.« = fo 6, ¥¥ @ (22)

where & is the initial valuc of ¢/ and is ot dependent on t. When the deformation is the elonga-
tion of e, 05 0, the integral

t
fo iy ool dt (23)

whose integrand is a product of three time-dependent functions, yields a logarithmic strain, In
general, however, the integral of eq 23 is depeadent on the path of integration (Yoshimurs, 1957),
as may be shown by foliowing elongations and rotations in different orders, and therefore is not s
thermodynamic state varisble. ¢ in eq 22 is a thermodynamic state variable representing a thermo-
dynamically reversibie procoss (see the end of this part).

Note that

o = wef},- J%,]:, (24)

a1 a2

where the numbers and letters unde« the tensor symbols indicate identical base vectars when they
are on different sides and base vec.ors to be dotted when they are on the same side. The quantity

n the brackets is a scalar product of deformatiou dyads, '8, and 0’3! , which define the inverse
defarimation from time ¢ totime ¢t = O, To show this, let o‘df‘ be a material point in the neighboe-
hood of & particle whose material bases are e, of at timet and &, & at time ¢ = 0. Dotting

o,d¢! from the left in ng yields 6,d¢!. Therefore, dotting frum the aft in e's; is equivalent to

& deformat:~a changing e,df‘ to o°,d§ !, 1n Part 11, the more realistic interpretation of deformation
dyads will be given.

Theee vectors e;(i=1,2,3) of £ 1 £2 £3 in amore-than-three-dimensional space span three-
dimensional subspace, letting &1, £2, £3 be a set of curvilinear coordinates of the subspace, if
and only if e,d¢! and (de,/a£/Yd&/ are total differentials. The latter condition, which yields the
compatibility equations of components .‘1 i requires that da; mustbe alinear combination of veciors
e and therefore shows that the space spanned by vectors e; is flat,
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6 THE GIBBS-EINSTEIN TENSOR ANALYSIS

Let a,....,8; be o-dimensional vectors, where n2m. An exterior product of vectors

8oy (introduced by Grassmann, 1844), denoted by B Aee Ay 18 defined, in the Gibbs-Ein-
stein expression, by

100

1-hm
&, .8 = p a .8 %)
1 m (AL (25)

f,.0d
where n I' 2 jgga permutation symbol. Forming exterior products is called wedge multiplication,
or wedging for short. Note that the righi-hand side of eq 25 may be written

........... (28)

when the coavention is applied that the determinant must be developed so that the elements of the
first,...,mth row in the determinant become the first,...,mth base vectors, respectivaly, in the ten-
sor products.

The geometric meaning o the exterior product is that
“A'"A‘. = &V (27)

where € is the tensor expression of an x-dimensional cube (usually called orientation) used as the
unit of measuring volume V of the parallelepiped spanned by a,.....8,,.

Expressed by  three-dimensional dual basis e, ¢! forming a right-handed skew coordinate
system, ¢ becomes

€= < {'l‘.;Ck
=€ el (28)
where
e 1k
Ve
and
€k = VEmyy - (29)

Note that /& is the volums of the parstlalepiped spanned by e,, o, 84.
¢ is a constant tensor fulfilling

De
i 0 (30)




THE GIBBS-EINSTEIN TENSOR ANALYSIS 7

and

de
o¢!

Similarly to €, 1is also a constant tensor fulfilling

= 0. 31

Dt
== 0 (32)

o2 _o. (33)
9!

An n-dimensjonal cross product may be defined by dotting with the a-dimensional ¢

f, i i, i
© g @ 1p2e3..e" (34)
128..0 12 3 ..n

where “1 i 18 acomponent of the n-dimensional €. Because of the antisymmetric properties
ceedy

of ¢, there are many other choices of dotting base vectors in ¢ in the left-hand side that yield the
same result as in the right-hand side, which, however, need not be shown here.

The exteriar differentiation (introduced by Cartan (1922)) of a tensor T of any order is given,
in the Gibbs-Ejnstein expression, by

aT
A= (35)
a¢!
where e! is usually wedged with the base vectors at the left ends in the base tensors of o¥/3¢%,

but may be wedged with any base vectoes in the base tensors of IT/9¢! to form a tensor of one
order highet than T.

The antisymmetzic part of the three-dimensional gradient of v is equal to

(gad v}A - %o‘,\ Ll
a¢!
1/ ov oy 1)
= —fef I _ T oY), (36)

The following remark shows that a material symmetry that existed at time t = 0 exists
throughout the deformation.

Remark
Denota Ly 8, and & the base vectots and a vector at timet= 0, respectively,

g = af§ (37

A TR AT I U S T T BT TR R R R T R T T TS A I WS T TS TR AT T T
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- 8 THE GIBBS-EINSTEIN TENSOR ANALYSIS

’ where scalars a’ are components of 3 referred to ;. At time ¢, &, and a bacome e; and a,
ﬁ respectively, but the components al are the same,

:; a = ale,. 38)
ﬁ Proof. Let initial coordinates nf different from &' detine lp and ‘t)p different from e,

and @, respectively. Then we have

ot = tanf (39)

a tim> ¢t and

8¢ = Lo (40)

1 at time t = 0. Therefore, the transformation from e; to tp is the same as the transformation from
[+
¢ to .

RSy

Letting & and 8 be one of ?p and f,, respectively, proves the theorem. The proof is thus
completed.

The remark shows that constitutive equations must be written in terms of material {
coordinates.

Next, the axiom of objectivity will be given the Gibbs-Einstein expression. Let C, = L

be a set of fixed orthcgonal vectors and & (t) = a%(t) be a set of moving unit orthogonal vectors.
Define

R

Q= aac“ = a“ca. (41)
12 12 12

=

The inverse of Q is

q! = QT = c & = a2 (42)
12 12 12 s 2

because they satisfy the reistion

Q-Q!'-¢qt.Qq-=1. (43)
1a a2 1s 22 12

A rotation that changes x = x“ca toy= x“aa is given by \

y=Q"=l'QT (44)

TN

where nothing is shown under tensor symbols on the convention that two base vectors adjacent to
the dot, one on the left and one on the right, shall be dotted when no indication for dotting is
given.

e g = e v bryo TS i b e g
B _ g e T a4 T T T YT T LLALS T =
.’ = ™
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THE GIBBS-EINSTEIN TENSOR ANALYSIS
Define

y = Q. x+0d)

TPTF TR Y .

(45)

where b(t) is afunction of t. Vector x is referred to the fixed coordinate 3 spanned by Sy
and vector y is referred to the moving coordinates rotating with a (¢) and translating with b(t).

Let x be a function of ¢! and ¢, and define

dlziy_.

a¢!
Then we find

4 ~ Q-0 =0 -Q"

QT.d‘=d‘.Q

®
L
]

‘l =.l.QT .Q..i'
o - #.Qq=-qQT.&.

Then, oparating D/Dt on y in eq 45 yields

DQ Db
w=Q.v+—. —.
qQ +Dt x+m

The nabla of uin the moving coordinates is given by
i ow T v DQ
‘ @ = .‘-Q (Qoa_fi +..D_t_..‘
a b 1 1a bz g be ¢

T
Q.o % .qr.q.20
af‘ Dt

ai 1 2 2b a1 1db

Similarly, we find

_aldl = Q.a_V__o[.QT F.D—Q-oQT
afi afi Dt

a b at 1 2 2b al 1b

(46)

y (47)

(48)

(49)

e TR

.
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10 THE GIBBS-EINSTEIN TENSOR ANALYSIS

Adding eq 50 and eq 51 yields

ad BB 4. el I LY QT (52)

ot ¢! gt af!

which shows that (grad v)® is objective. Subtracting eq 51 from eq 50 shows that [grad v]® is
not objective.

Base vectors e, ¢!

satisfies

are objective as shown in eq 47. An objective seccnd-crder tensor

T = e T, = 4,5"a, (53)
where S¥ is the components in the moving coordinates, Operating D/Dt on T in eq 53 yields

pr (pri
—D? = (—bT + 'I“’ivi,p + T’Pv‘,p) eie, (54)

which is again objective.

¢ ineq 22 is a thermodynamic state variable reprasenting a thermodynamically reveesible
process. To explain this, we first notice that dU, for example, in thermodynamics may be identi-
fied with (DU/Dt)Dt. This recognition leads us to a thermodynamic principie: A thermodynamic

function U, for example, is a function of quantities q‘. if DU is expressed as a linear combina
tion of Dq‘ when quantities q‘ are independent with each other,

From thermodynamics,
DU = DQ + DW (55)

where U is the internal energy per unit mass, and DQ and DW are heat and work inputs, respec-
tively, per unit mass per unit time, Divide DW into two parts

DW - (DW)"V + (Dw)lnev (58)

where (DW)™®¥ and (DW)!™®¥ represent reversible and irreversible work, respectively. Then we
have

DU = TDS 3(DWy®" 67

TDS = DQ + (DW)lreY 58)

where S is the entropy per unit mass,

When body couple and couple stress do not exist in the continuum under consideration, we
have

WYY - % o!/Dgy,. (59)

TR NG g R S TR TYCTIY SUL R RN ST T T R
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THE GIBBS-EINSTEIN TENSOR ANALYSIS 11

‘Therefore, U in eq 57 is a function of 8ip b and S, Because 8 is a tensor component, we may
consider gug‘g’ as an independent variable of U, where the Gibbs-Eirstein expression of eq 59

OWY® = 8. -0 e%, - 4D(s; %) (60)
1z abbg 12

is considered, in which o is expressed with cumrent base vectors. (The author was encowuged to
use the expression on the right-hand side of eq 60 by Mindlin and Tiersten (1962).) ¢ ineq 22 is
integrated to

¢ = %(3” - EU) ele/
= %(g, 8% - 1) (61)

where 3“ =9 3, and 1 is a constant tensor.

PART 1. CANONICAL FORMS OF GENERAL SECOND-ORDEL TENSORS

The Hamilton-Cayley theorem in matrix thecry is given the Jibbo-Einstein expression in the
following. As shown below, the dual basis expression is more than suitable for discussing the
canonical forms of general second-order tensors.

Firet, to give a summary of this part and tc show how the results mey be used, the results
will be applied to three-dimensional tensors. Canonical forms of not necessarily symmetric real
three-dimensional second-order tensors in the Gibbs-Einstein expression are ciassified into fow

Categories:
Category 1: Eigenvalues A (i=1, 2, 3) are all real, and determine three pairs of left and sight
eigenvectors which are never orthogonal with each other. Then eigenvectors span a dual basis

e; o! satisfying
T = Ao (62)

T o = 20 ®3)

whete =1, 2, 3, The summation convention is not spplied on the right-hand sides. Juxtaposing

o' from the left in eq 682 and o, from the right in eq 63 witn ine summation convention applied
yields the same expression

3
T - Z Aele, (64)
im0
which is the canonical form of category 1. Note that eigenvectors ate not necessarily umnit nor

orthogonai. When e, = ol eigsuvectors are unit orthogonal and T is symmetric. Eigenvalues in
category 1 may be multiple roots.

Ao
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Category 2: A 1is a double real root which determines an orthogonal pair. An crthogonal pair 18
a pair of left and right eigenvectors determired for an eigenroot and orthogonal with each other.
Choose e, and e! as the left and right eigenvectors determined for )‘1: then

e, T=Ape (65)

-3
o’-‘
]
-

. ol (66)

Let ,\2 be the remaining real eigenroot, and ey and e be the left and right eigenvectors, respec-
tively; then,

e, - T = Age, ®7n
T-e® = Aed. (68)
As proved later, e, and e° can be chosen to satisfy

e T

)

1 :\(e1 +e,) 69)

and

T.e2 = Melsed, (70)

)

Juxtaposing e!, %, e from the left in eg 69, 65, 67, respectively, and summing the results, and
juxtaposing e., e,, &5 from the right into eq 66, 70, 68, respectively, and summing the results,

yield the same expressicn,
T = Afele + o, + ele) + A e, (71)

which is the canonical form of category 2. The canonical form has one off-diagonal term A0 le,_.

As shown later, cheice of base vectors for expressing the canonical form in category 2 ic not
wmique.

Categoty 3: A is a triple real root which determines an orthogonal pair. Chose eg and ol
as the left and right eigenvectors determined for A; then

T = Aey (72)

T-e! = ael. (73)

As proved later, e,, e, e and 3 can be chosen to satisly

. J
-3
}

= A(Ql + 02) (74)

=3
]

Xey+ e (75)
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~J

°
™
1

= Alels ) (76)
and

T e = Ao+ ed). 1

Juxtaposing el, e%, e from the left in eq 74, 75, 72, respectively, and summing the re-
sults, and luxiaposing e, 0, ¢, from the right in eq 73, 76, and 77, respectively, and summing

the results, yield the same expression,
T = Mele, + ele, + e’,) (78)
which is the canonical form of category 3. The canonical form has two off-diagonal terms, Ae 1‘2

and )\0203. As shown later, choice of base vectors for expressing canonical forms in category 3
is not unique.

Categaey 4: Two eigenroots are conjugate complex. As shown later, eigenvalues and eigenvec-
tors in this case are expressed ax p(cosd 7 i sin§) and e, tie,, el 7 ie?; thus we find

(el tie,) - T = plcosd +ising)(e, ¢ iey) (79)
T.(el,ie?) = plcos6 7 isind)(els ied (80)

where e,. 90, o1, o% are real vectors, and p and @ are real numbers. Decomposing eq 79 and 80
into the real and imaginary parts yields

*-T-= p(oloosséno2 sin§) 81
e, T = ple,ccs6 - ¢,sin 6) (82)
T-e! = ple! cosg- e?sing) (83)
T o2 : ple®cos 9+ el sing). (84)

o
2

Let u be the remaining real eigenroot and e, e3 be the left and right eigenvectors, respectively;
then,

03 T = ,403 (85)

T.o3 = pos . (86>

Juxtaposing el, o2, e from the left in eq 81, 82, 85. respectively, and summing the results, and
juxtaposing e, 0, 6 from the right in eq 83, 84, and 86, respectively, and summing the results,

vield the same expression
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T = pleie, + e%e,)c0s9 + p(ele, — 0%¢)sing + ,m’os (87)

which is the real caninical form of category 4.

A general second-order tensar T can be writtenas adyad T = a’bi and may be interprated
as a deformarion Gyad. Interpreted this way, the equations in eq 62 show that elongaiiors in three
directions e, e, and e, have cccured. Equation 62 in category 2 shows that a slip has occurred

inthe e, e, Plane along the e, axis. Equations 74 and 75 in category 3 show that a double slip
has occurred in the e, e plane along the o, axis and inthe o, e, plane along the 84 axis.

Equations 81 and 82 in category 4 show that a rotation by angle § has occurred with ¢3 as the
axis of rotation.

Complex tensoes

In the following sections, general a-dimensional second-order ten3ors are given canonical
forms. For that we must {irst extend theory of real tensors to theory of complex tensors.

A set of unit orthogonal vectors ¢ = ¢ {a = 1,...,8) is fixed in the space axd used as the
stanizrd of the coordinate systems. Vector

v = vi, (88)

is calied a complex vector i components. v¥ = v, {u = 1,...,8) in the standard expression (eq 88)
are complex rumbers. Conjugate v of v is defined by

V= v“cc . (89)
Datiing () complex vectars u with v, deaoted by u < v, is defined by

%y = u-v (90)

where dotting (+) on the rigit-hand side is the dot:ing inreal Euclidean geometry appliedto complex
vectars. Vector v satisfying v -~ v =1 is said to be of unit length. Vectors w and v satis{ying
u-v=0o0r v -u=0 are said 10 be arthogonal. Adnlbgs’s.o,.c‘ for complex wctors satisflies

o-& =5/ (91

of. 5, = 8', ()

where GJ and .‘:', ae Kronecker deltas.

The standard expression of an p-dimeasional complex second-arder tensor T is defined by

T - T,ii"cl (93)

WWMWW‘ .

1 e erensspenn,, ")

3
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T - 78 (%)

in which the first and second members of the dyads are with and withoat ti'de, respectively, and
i, j=1;....a. The standard form of a complet vectar is given by using base vectars without tilde,

v - vhe, (©5)

v = vkc'. (96)

Vector v in eq 3G ad 98 can be readily dotted (-) from: the left ints T < eg 93 and G4,
respectively.

In the followicg, we will derive equations Ly which 2 non-staniard epression is trans-
formed 10 2 standard expression. Define g,; and ¢ vy

&y = %Y &7
and

g =e. ¥ (9%
respectively.
Lemma 1. Tbe uait tessor 1 is gives br

15 de = a0 = f’ii.i = 1“70’ (99)
ad satislies

v-1=1v (10C)
md

1:vav

where v is an arbitrary vectar.

reae AU o 0 o o e M e E A S LAt e S S A

Lemme 1»
o = ;,’c' (102)
of - glle {163)
i, < 5“” (104)
PRI — - - -

~ e W
. .
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o = egl (105)
Prooi. The foregoing two lemmas are proved in the following

Dotting Gle, o Eiei from the right in vector v expressed 3 vie}- or vjei proves that 1 for

the right multiplication is Eiel or Eiei. respectively. Dotting G‘ei or &' from the left in vector v
expressed as 6}.3’ or Gi'é}.proves that 1for the left multiplication is also e'e or é'l.e". The proof
that e"a‘. = eiei follows.

Juxtaposing ¢ from the right in eq 97 yields eq 102. Equations 103, 104 and 105 are de-
rived similarly. Substituting eq 1035 into 'éiel- yields

~} _ i}-

ee, = glee,;. (a)
Substitutizg eq 103 into ee' yields

i,.'é' = g”'é,ei . (b)
Comparing eq a and b proves a part of eq 99. The rest of eq 99 1s proved similarly. The proof is

thus completed,

Define the transfornation of base vecters by
e; = 3%, (106)

and

e = cap ! (107)

a®h) - ). (108)

Equations 106 and 107 are transformed in the following to their inverses.

Lemma 1¢
< = ela? (109)
and

e
¢, = ble. (110)

o R e L ERE ) £ 6 el aini b Sk ) SASEL LASLS ian bk S0iacd T AT
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Proof. Detting cﬂ mnto eq 106 yields

ail8 = :,-oB. (a)

Juxtaposing ¢! from the left of eq a yields eq 109. Equation 107 transforms to eq 110 similarly.

Theorem 1

e;

la 1
ai“ ba cl (;11)

9‘

b 1
¢ al“ ba . (112)
Proof. Substituting eg 110 or 109 into eq 1CS or 107 yields eq 111 or 112, respectively.

Corollary 1

o = agb e (113)
8 - g ). (1i4)

Proof. Taking the conjus.2tes of eq 111 or 112 proves eq 113 or 114, respectively. The
proof ig thus completed.

Equations. 111 through 114 ae the equations that must be used to transform non-standard
expressions to standard expressions.

Eigenvectors and eigenvalues

Let 7' be an n-dimensiona! tensor in the standard form. A left or right eigenvector of T
is an n-dimensional complex vector x or y such that dotting () x oc y from the left or right in T
yields a vector in the direction of x or y, respectively; that is

x-T = Ax (115)

T.y = Ay (118)

where A is an eigenvalue,

Let T ard a left eigenvecior x be expressad as

T - T/e'e, (117)

x - xe, (118) '

respectively, Substituting eq 117 and 118 ;nto eq ;15 and equating the components on both sides
of the transforme- equation yields
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AT = i, (119)
Let a right eigenvector y be expressed as
y = yye. (120)
Substituting eq 117 and 120 into eq 113 yields

T 7 = M. (121)

Equations 119 and 121 determine the same characteristic equation
iTji - )\51,” = 0. (122)

Therefore, 0. A determines at least one left and one right eigenvector. The rank of matrix
(Tii - /\51") will be c:Ued the rank of root A. Bolutions of eq 115 and 116 do not depend on the
choice of a type of T or of a dual basis.

Canonical forms
Lemma 23

Let A and yx be two different eigenvectors of T; let x and y be left and right eigenvectors
determined for A, respectively; and let u and v be left and right eigenvectors determined for g, respec-
tively. Then x and v are orthogonal.

x-¥ =0 (123)
and y and u are orthogonal,

y-a=0, (124)

Proof. Dotting (+) ¥ fromthe right in eq 115 yields

x- TV = Ax.v, (a)
Dotting (- ) from the left in the equation

TV e
yields

x-T.-v=pux-.v, ®)

Because A& p by assumption, eq a and b are compatible if and only if eq 123 is true. Equation 124
may be proved similarly,
Lemma 2b

If all the roots are single, no orthogonal pair exists.

T N A e . g LU AN s
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The next lemma proves this lemma. Note that vectors e, and e forming a dual basis are
not ort hogonal,

Lemma 2¢

Assume that a roots Apeenr Ag of the characteristic eq 122 are distinct. Then, T can be
reduced to the canonical farm

n
T = S‘ Ale‘é',. (125)
=1

The rank of A, (i = 1,...,n) is equaltoa - 1.
Proof. Each A; determines at least one left eigenvector. Let e; be the left eigenvector

determined for A (i = L,...,n)

e, T = Ao, (a)

e,-T = \ge,. (b)

Form a dual basis e, o (i=1,...,n) Juxtapositig :1.....0': trgm the left in eq a,..., eq b,
respectively, and summing the result yield eq 125. Dotting (-) ¢! from the right in eq 125 shows
that e isa right eigenvector determined for A;(i = 1,...,n)

T in eq 125 shows that each A; determines one and only one pair of left and right eigen-
vectors. The rank of the roots is therefore all equal to n - 1. The proof is thus completed.

A multiple root which deteemines fewer eigenvectors than the number of multiplicity of the
root is said to be singular.

Lemma 2d

At least one orthogonal pair belongs to a singular multipie root. If more than one orthogonal
pair belongs to a singular multiple root, the number of orthogonal pairs can be reduced to one,

Proof, Assume that eigenvectors x and y determined for a multiple root are not orthogonal.

Then, we can choose e,=x and el =y after, if necessary, changing the lengths of x and y to
make x >y = 1. Then we have

0‘ T = )«el ) ()
and
T.el = 2el. ®)

Form a dual basis e, ¢! (i = 1,...,n) by introducing a certain number ¢f base vectors that are

independent of e, eland each other; express T with the dual basis-e,, ¢

- — —— ———
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-i
T = T/jde. ()

Substituting eq ¢ into eq a and b yields

1
T,! = A

2. .70 .
T2 =..=T"=0

1 1 _
Tol =... =T, 1 = 0.

Therefate, T in eq ¢ becomes
T - Jble,+ 8 @
where

8 = T,%, @©

in which p and q represent 2,...,n. 8 is an (n- 1)-dimensionzal tensor such that one of the eigen-
values is A. Theretore, if the number of non-orthogonal pairs is equal to the number of multiplicity,
eigenvectors determined for the multiple root can form a dual basis, which shows that at least one
orthogonal pair must belong to a singular multiple root.

If more than one orthogonal pair belongs to A, choose two pairs x, y and w, v. Form two
non-orthogonal pairs by setting

[\ x, 6l = v

e u e =y.

2

Then, T can be reduced to

T ,\3101 + )6202 +R ()]

where
R = TS, ®

in which r and s represent 3,...,n. Continuing this process the number of orthogonal pairs belong-
ing to A can be reduced by an even number, but cannot be reduced to less than one. The proof is
thus completed,

Theotem 2

Assume that A is a (¢ + r)-tuple root of rank n - r - 1 of an n-dimensional tensor T. Then,
T can be reduced to

% —

g Voo
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T = Méle,+...+8"e, )+ 'é"’el + 8%, + ...+ 8',_,+8 (126

whece 8 does not have A as an eigenvalue and is (n - ¢t - r)-dimensional. Then, the left eigea-
vectors determined for A are e,, Oppqreeer @y The right eigenvectors determined for A are

o, o' 1. o', Vectars @,,...,8, satisly

o ° T = )«04, * 04y (127)
where ¢ represents t - 1 intege:s

25¢ 5t
Vectors el,...,e"" 1 satisty

T.oV - ae¥ 4 ¥t (128)
where i represents ¢ - 1 integers

1Sy ste-1.

The number of off-diagonal terms i ¢t - 1.

Proof. Because the rank of A is n - r - 1, (r+ 1) pairs of independent left and right eigenvectors
exist, of which, if t< 2, one is an orthogonal pair. Denote by e, e’ the orthogonal pair, by

e, 8, -8, the left eigenvectors, and by e', e**1,...,e"*" the right eigenvectors. Then
e, T = Aoy (a)
sy T = Aoy, (®)
O T = Aoy, ©)
T.-o = A& @
T .ot = )ot*? (e)
.ot = et (9]

Form a dual basis e;, o (i = 1,...,n) by abitrarily introducing independent vectors LIS

t4r 1

& ripnrty ol el @ ...e". Express T as

t4r+q

T - T/ée ®

- - mem s e
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I T e e

Substituiing eq g into eq a through f yields

P
T} =2

T4 1j = '\8&1

Til-ﬂ = M.H't

AT T N e BT R

D BN N A Mk e TR Tt i S

CY)
(®"
(c")
("
(L

()

The matrix of T - A1 is shown in Figure 1, in which all the elements on the straight lines
are zero, submatrix 4 is composed of 2nd,...,tth row and 1st,...,(t- 1)th column, and the main
diagonal of 4 is not on the main diagonal of the matrix of T - Al.

Define x for a given vector a by

x-T = Ax+a.
/ ? (rer) n
/ o —0—0—0— 00— - (/]
; l
A C
’ |
rterl o— _—?—T_‘I’—‘I) - o
° T ?
? 7911 ?
ter| O 0—0—0—0 0o
tere/ I
)] 8
n
o 0 0 0

Figure 1. Matrix of T - 1.

G

~— g,

e
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Equation h becomes
A1l -x)) = & ®

by substituting eq g for T, eq 118 for x, and a = a’oi .

Because of conditions in eq d’ through f*, equations in eq i are simultaneous n-r -1
equations given for j = 1,...,t-1, t+r+1,...,n. Vector a must satisfy a condition that components

t4r

a%,...,a are zero. Because of conditions in eq a' through c¢', equations ineqihave n-r-1

unknowns x2,...,x%, x'*7*1,. x% . The determinant of the simultaneous equations (eq i) is of

rank n - r~ 1, and is the only non-zero (n - r - 1)-dimensional submatrix containing A. Then x

is determined with (r + 1) arbitrary components x1, x'*1,..., xt%,

Put a= e, and define X, by
X, T = Ax2+el. @)
X, is linearly independent of e,. To show this, define

y = ylo +y%x,. (x)
We find

y-T = Ay+y%e, )
by use of eq 2 and j. Therefore, if y = 0, we necessarily have y' = y?=0. Let x, be chosen as
new e,. Then eq j becomes one of eq 127.

Put a= e, and define xg by
xa-'l' = Ax8+02. (m)

x5 is linearly independent of e, and e,, as may be shown similarly to the above. Let x; be
chosen as new e,. Then eq m becomes one of eq 127.

Continuing this process, vectors €....: 8, are defined and eq 127 is proved. All the vectors
represented by o¢_1 in eq 127 satisfy the condition which must be satisfied by vector ain eq h.

Suppose that eq g is expressed with the new base vectors thus introduced. Substituting
eq b thus determined into eq 127 shows that matrix A in Figure 1 is a unit matrix and that sub-
matrix C in Figure 1 is a zero matrix, yielding eq 126.

Dotting (-) 8/ from the right iato T in eq 126 yields eq 128.

Substituting eq g into eq 128 shows that submatrix D in Figure 1 is a zero marix. The
proof is thus completed.

—r— > —
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Integer ¢ is called the grade of A (Turnbull acd Aitken, 1932). Vectas e,,..., e, are called

left pseudo-eigenvectors determined for A. Vectors el,..., '~ are called right pseudo-eigenvectors
determined for A. T - 8 in eq 126 is called the canonical part belonging to A.

Corollary 2a

The canonical part belonging to A does not change form when dual basis e;, ¢! is trans-
formed to another dual basis defined by

1
f, = ple; (129)
t, = p2s,+ple, (130)
t,., = ptle, + Prlegt...+ P le,, (131)
t t4r
t, = z pHifes + 2 (e, (132)
&=1. {=t+1
t+r
b,y = thye, + z LY (133)
_='_+1
ttr 6
tar = ‘t1+r°l + z tsr .74 (134)
§=t+1

where pl.... 0%, tf, Iw’, lwc (w, & = t+1,...,t+1) are atbitrary if they make f,,....f,, linearly
independent.

Proof. I vectors '1"-"‘c 4+p satisfy

T =M @)
f¢-T = M¢+‘¢'_1y (2§¢.—<.t) (b)
;T = My, (t+15 LS t+D) (9]

the canonical part determined by f,,...,f,, is the same as that determined by @,....¢,, .

Let index a represent integers 1,...,t+r. Substituting

a
(1 = !1 e,

and T in eq 126 into eq a shows that vector f s foust be such as in eq 129.
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Substituting

- 24
f¢ = !¢ Oa
and Tin eq 1.26 into eq b yields the conditions,

2

% = foy!

t

[¢ = !¢-;_l

t _ _ t4r _
fgff = oo = g 47 =0

which show that vectois 12.....1, must be such as in eq 130,...,6q 132, respectively. Substituting
= {8
14- = ls- e,

and T in eq 126 into eqc shows that vectors tl”,....t,,l must be such &s in eq 133,...,eq 134.
The proof is thus completed.

Corollazy 2b
Left and right eigenvectors Getermined for a single root are not orthogonal.

Proof. Denote by 8 the sum of all the canonical parts belonging to the muitiple roots. Thes,
all the eigenvalues of T - 8 are single, and, as proved by Lemma 2b, no orthogenal pair exists for
T-8

Hamilton-Cayiey Theorem
Leomma 3

Let 6.8, be n independert vectors and § be an n-dimensional complex tensor of any
order. If the relation

6-8=0 (135)

is true for 211 e,(i = 1,...,n), then 8 is identically equal to zero.

Prooi. Form a duol basis e, ¢'. Juxtaposing e’ from the left into eq 135 and summing
over i yields the required property of & The proof is thus ccmpleted.
Let T be & complex second-arder tensor in a Ziandard foem

T=eTle . (136)

Then, m time scalar product of T
T.o.-T-T (137) .
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abtreviated to T®, is a second-ardes tensor

_erhple 4k
™. 7 L2 .1 te (139)

where m is any positive integer.
Theorem 3
Let A, (v = 1,...,p) be the roots of ihe characteristic equation of T. Assume that A, is

T T eeT—

e -

mine.

(t, + ¢ )iuple root of rank n - r, - 1, where i
[
z ‘.‘y + Iy) = 8. (m)
v=1
Then a second-ord<r tensor 3
[ ¢ )
(T) = 11 (T-:\vl)" (140) !
=1 ‘5
i
is identically equal to zero. !
Proof. Let tke collection of eigenvectors and pse ado-cigew.2actors belonging to ali ihe
eigevaltes A ...\, form adual basis e, of
Equations for A, we

¢, (T-A,1) =0 (s)

’s’(r‘)‘xn = e ®»

.‘x (T-A0 = "1“ (c)
etl”o(l'-l\ll) =0 @
‘tlorl-(‘l'—x.l) = 0. (e)

Equation b through ¢ can be changed to |

0 - (T-A D% -0 ©

t
e, -{T-ADn!-0. ) }
1 !
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Thecefoce, we find
t
o (T-antl-0 ()
1

wiere
€ = Lty oy,

Simfarly, we fing

o (T-2 pY -0 )
(4

v-1

- | 24
£ - z (T AT N z a, vr)
Kr=1 x=1

Form KT) im oq 122. The ordec of dotting in eq 132 may be exchasged. tacatse the re-
sults of dotting in differsnt orders are the same. We therefore find

o-AT) =0 G)

vhere { = 1,....8. Ther, AT) must be idertically equal to 3ec0. The proof is thus completed.
Polyromisl Axj obtained by submitwing scala: x far T is the minimsl polynomial defised

fue T.

Real cansanical forms of roal tonsers

A tencor js 3aid to be roal if thete exists a transformation that changes all the composent s
to real numbers and all the base vectors 10 real vectors at the same tinc. In the following. T is
a second-order tensor that has real cosponents and real bsse vectors.

k is obvious tast 3 res] efgenvalue o T determiaes reat cigesvectors. and that conjugate
compiex eigenvalwss of T detcrmine conjugate complex eigeavectors. Ouly the latter case need
be disctsoed.

Theossm 4

Assume that g +iff xe {t + r)}twple rocts of rank ® - r - 1 of 2 real second-order tensor T,
where

Aer)inm.

Thea, T can be reduced ©
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2(t+r) t+r }

= 2 29-1 .

Toay Frepy U, i) . |
p=1 =1

4
; :é“ W1, o+ 14710, )18 (142)

&

where tp, P[1< p S 2(t+1)] are real vectors, forming a dual basis, and & dces not have q +if
as eigenvalues and is 2(n - ¢t - r)-dimensional.

Vectors lp, P (p = 1,..., 2(t +1)) satisfy

t,-T = at, - Bl (142)
f,-T = af,+ 1, (143) i
‘2¢'i - T = a‘2¢_l - ﬁ‘2¢ + ‘2¢_3 (144)
H
|
12‘5‘1 «T = afzé-_l —ﬁfgf (146)
{25 - T = a72§+ B‘gf«l (t+1 s fg t+r) (147)
T.12r-1 = of?y=1, BL2Y 4 t2r+1 (148)
T 1% = of? - gr2y-1. 1242 (1syst-] (148)
T 3171 = of®171, G120 (150)
T (21 = of%0 - gron~} (tS pSt+n). (151)
Complex vectors s (fgq-y *ify). L{_(qu $i1%%) (g = 1,...,t+r) form a dual basis.
Ve
Proof. Let € iy be complex eigenvectors and pseudo-eigenvectors belonging to

a+if

e T = (a+ifle, (2)

S i ana AP s




3

Aome e W

" g

THE GIBBS-EINSTEIN TENSOR ANALYSIS 29

e, - T = (a+ iﬁ)el (b
e T = (aviple, +e_, (c)
¢.y T = (a+ifle,, ()
€ T = asiPe, . (e)
Write eq(l £ ¢ £t+r) with real vectors '2q-1' ‘2q as
0y = — (g _y +1t5). 5
V2

Substituting eq f inlo eq a through e yields eq 142 through 147.

Determine fP[1Sp 2 2(t+1)] to form a dual basis t, P, Juxtaposiag f1,....02C¢40) from the
Ieft into eq 142 through 147, respectively, and adding the equations thus formed yield

T = flat, -BL,) + Plat, + Bt) +

t
s z [,z¢-1(a,2¢_luﬁ:2¢ oy o) + 3Pty Bl 12¢_2)] +
o2

t+r
" Z l}25‘1(at25_1-ﬁt25)+ 12f(a125+/312§_1)] +8 ®)

where 8 does not have a + i as eigenvalues. T in eq g can be transformed to T in eq 141.

Dotting ¢1L....£2(*") from the right in T in eq g yields eq 148 through 151, respectively.
The proof is thus completed.

T in eq g may be expressed as

1
T = 840 2+l (152)
(2(t+r)
where T is a 2(t +r) by 2(t+r) matrix
T =[g g . (153)

in which A is 8 2t by 2t matrix :
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[ a -0 00 ..... 000 0]
B aOOO: - - - 000 O
10 a0 - 000 0
01 B aO-----" 000 ¢
001090 a 000 O
A = * '
00 00O - - - 1 0 ‘a -ﬁ
0 0 0 o ..... 0 1 B a

B is a 2r by 2r matrix

fa B0 - - - . - 00 0]
2 a O 000
0 0 000
B =
00 0'a B
|0 0 O 08 aj
C and D are composed of zero only. In matrix 4, all the elemeats on the line parallel to the main

diagonal and containing 1 are 1.
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