- LT

E
i
k%

N .V Ry A S FUEE RN B T o B " Y piy W T v e
s T o Ty 1 T i s,
v L Ve ———

5
: - - N - . - ' A .y
, N . .
Y o, - - -~ !
v ! § - : - P AP
o . - F - S .
. { R -, . . . N . o R -
Y f ° . o i T - o ‘v - N - '\'Kl ‘- }

g FR S PR L . - R - x v . . g
3 { . o : < L) Lo .3
4 § o) . T o S e o N ' 3

e By

~

e et e oy o et e L

s

: PR P
T S S . N Y L
20050
e

S

TN

& N PR
s .o el
NP f'%w P Bey
* 4

AT

R

e

IR K f\%‘(\ﬁ, LR
I I

PR N

2

JREDARANESSS

Soarsr

o
A

o8

\.,%
R

o S

LRYIE v
v et

koo s

- - e T T A S e 1 b B e et Lttt
b . N B e S o . .
b N N L . .) . o . N o
; N : . ’ R - . .
. - - L% . o & s . N - G PR R » - s a .
H . - A . [N FE LR R . Ty T O
P = e s = . .« N = LR TR T AP SN E o NG T
Y Ll R wE e T . 5 o “ o v .. o ke ﬂ,’<\" \ i1
» [P N v -y o, b e K - o 1
S : - ' - AT e - vy e e - !
4 § i
i
R

DISCLAIMER NOTICE

“-5‘:.\@
o

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

P el s i Liogi e

L3 A o it)

LA S RN R TR,

B S N e

and s mesdd M

ﬁ“‘

EXTENSION OF PROGRAMMING LANGUAGE CONCEPTS

Philip R. Bagley

~ l

'

The research work reported herein

was sponsored by the Air Force Office
of Scientific Research, Office of
Aerospace Research, under contract
F44620-67-C-0021.

University City Science Center
3401 Market Street
Philadelphia, Pennsylvania 19104

i

ﬁk,i
"8 161968

T

e

\ {Sacar ooty Sy

IVF,

T

aciind

-4

moREy fmeey RNEl

P e I

ABSTRACT

This study concerns the extension of concepts used in current com-
puter programming languvages. The aim is to find ways of designing new
programming languages having increased flexibility without also having
increased complexity. To increase flexibility means to place on the
user as few restrictions as possible on what he can express and modify
and on the notational conventions he may choose. The kéy to accomplish-—-
ing this is by generalizing on the current coﬁcepts.

The work is based on the idea that it is possible to designa lan-
guage which is truly independent of the hardware characteristics of cur-—
rent computers. In the course of the study, cpnsiderable re~-examination
of current concepts such as variables, procedure call mechanisms, and
program sequence controls, has been required.

A new technique of expressing data values, data elements, and data
structures, has been developed. This technique provides for the expres-
sion of: (1) domains of values (familiar eiamples of which are '"reall,
"integer", and "Boolean"), (2) simple data elements ("variables") which
take on a value from some domain of values, (3) composite data elements,
which are "associations!" of other data elements, and (4) relationships
between these data elements, where each such relationship is itself a
composite data element. The technique provides for the construction of
arbitrarily—complex data elements, and for arbitrarily-chosen relation-
ships between data elements.

All expressions in a program which cause the language processor to
take some action, which includes "déclarations", are viewed as trans—
formations ("procedures"). A basic set of these transformations has been
proposed. The two main classes of transformations are: (1) transforma—
tions of dala, which create, test, modify, and destroy data elements,
and (2) transformations of sequence control, which includes control of

iteration, and of conditicnal execution. Functions (such as "add") are

.a sub—class of transformations, the sub-class which generate a single re-

sult, Functions are definable in two ways: (1) in terins of other trans—
formations, and (2) by enumeration, in the form of function tables. The
following components of computer languages are all regarded as forms of

data elements: (1) calls to transformations, (2) program sequence controls,

LK

SEysery

s

Cilrgar (%

SO oo Mt v

K

(3) domains of values which are defined by enumeration, and (4) identi-

fiers. Thus each of these components

tions defined for data.

can be manipulated by transforma-—

The most significant demand on machine design which arises from this

research is that much more freedom of
is provided by conveniional machines.
could be used to provide some of this

Recommendations for further work

bibliography on programming language,

storage organization is needed than
Large-scale associative memories

needed flexibility of storage.

are presented and an extensive

concepts, and design is appended.

I<d

T e ek gotoars w167

S G
Ruchliivid

TABLE OF CONTENTS

INTRODUCTTON
GOALS AND ASSUMPTIONS

STATEMENT OFF PROBLEM
Need to reduce programming effort and elapsed iime
Major deficiencies of current languages

AN APPROACH TO A SOLUTION
The conflict of flexibility with managecability
Splitting the programming task
Inefficiency of program executiion
Emphasis of the present work

REVIEW OF OTHER APPROACHES TO A SOLUTION

MAJOR DESIRABLE CHARACTERISTICS OF A PROGRAMMING LANGUAGE
Generality of data elements and struciures
Multidimensional data
Generality in the sense of freedom
Universality
Balance
Minimal discontinuities
Simplicity through emphasis on fundamental concepts
Hardware independence

Dynamic modification of program, data elements, and
structures

Program sequencing

Undefined functions and 'garbage"

Accessibilitly and itraceability

Definitions and declarations

Removal of distinction between processing "phases"

Provision for exceptions lo general rules

Shorthand notations

Metadata

An alterable, prunable processor
EXPRESSING AND PROCESSING DEFINITIONS

Types of definitions

Dynamic versus stalic interpretation of definitions

10
12
13
14
17
17
19
20
20
20
21
21

22

22
23
2k
24
25
25
25

26
27
27

| P

o et ey

TS

—y el

coni med e wd et 0 S

The command interpretlation of definitions
NATURE OF A PROGRAM PROCESSOR
LANGUAGE DEFINITION
Defining a language
Extending a language
Self description
The choice of primitives
OTHER ASSUMPTIONS AND COMMENTS
Storage deallocation
Scope of identifiers
OVERVIEW
Aspects of the "logical' pari of a language
A language for a hypothetlical machine
The major ideas
DATA LELEMENTS AND STRUCTURES
"Basic elements"
Alphabet
String
Defining sets
Sets
Equivalent concepts
Notational conventions for brackets
DOMAINS, MEMBERS, AND VALUL-STRINGS
Value~String
Domain of values
Defining a domain
Ircluding units of measure in a domain
Multiple value-stirings for the same concept
Special and universal concepts
SIMPLE DATA ELEMENTS
"Cells'!, 'variables", and "constants"
Simple dala elcments
Constants
Identifiers

Review

b4y
46
46
k6
47
Ly
48
49
50
51
51
53
53
53
5h
54
60 -

Gl gl Lot gtcs !!, ’hv-ou!

sl o e D

TR

Y

Qs g

e S S R

SRS G R wam oaE

Dladvy

TN
¢

xasissy gy

LS REKSA

COMPOSITE DATA ELEMENTS, ILLUSTRATED

Introduction to composites

Examples

COMPOSITE DATA ELEMENTS DEFINED

DATA

The basic concept of a "composite"
Sets vs. lists
What acticns can be taken involving a composite

Primary association

The problem of applying identifiers to points versus

segments
Metadala relationships
Models

Skeletons

A simple example of a composite, its model, and some

results
Value of a composite
Properties, property-sets, and property-lists
Input and output of composites
Relationships versus composites
Manipulation of composites
The expression and testing of reclations
Properties of relations
Defining a domain: continued
Orderings
Defining orderings
Defining lexicographical ordering
ELEMENTS APPLIED

Strings as unitary symbols vs. strings as ordered
lists

Programs viewed as composite data siructures
Text-handling

Files

Trees

Matrices qnd multi—-dimensional arrays

Tables

The multilist and multiset concepts

Data elements of highly variable structure

61
61
63
79
79
86
87
88

91

91
98

101

103
103
106
105
107
108
108

1C8-

109
109
110
111
111

112
i12
113
113
113
117
118
119

iii

—-——

Rt

e S TP T T PO TR T
i o T T I

CONCEPTS OF TRANSFORMATIONS

Definitions
Sources of tranformation definitiions

Functions vs. transformations

FUNCTIONS

Representation of functions

Predicates

Nature of the result of a function

Result domains

Storage allocation of functiion results
Choice of domain of a transformation result

Extension of funclions

CHARACTERISTICS OF TRANSFORMATIONS

General types of transformations

Recursive calls, recursive procedures, and reentrant
procedures

REFERENCING A DATA ELEMENT

Definition

Expressing a reference

A comment on lookup versus search

Naming components of a composite by '"mappable names"
A general data referencing function

Ambiguous relationships

Referencing a value-string

Pronouns

PROCEDURES AND PARAMETERS

Abstractions from programs

Calls and paramcters

Call execution

The matter of grammar

The control character interpretation problem
The matching brackets problen

What is a formal parameter?

Formal and actual parameters
Parameter-~passing mechanisms

Parameter interprectalion

120
120
120
121
122
122
124
124
125
125
125
126
126
126
127

129
129
129
130
131
133
133
136
136
137

137’

137
138
139
140
141
142
143
145
147

iv

I'sd

ITET

AR

i

The data referencing function—a necessarily implicit 152

funclion

Indirect addressing or naming

Parameter types

Subztitution of parameters

Invalid transformations

Procedure call mechanism

Remark on muliiple entry points
CONTROL SEQUENCING

The "thread of control" concept

The sequcnce con trol mechanism

Arbiirary complex sequencing

Transformations of sequence control -

BASIC TRANSFORMATIONS
BASIC TRANSFORMATIONS AS DATA
FUNCTIONS DEFINED ON DOMAINS OF VALUE-STRINGS
BASIC TRANSFORMATIONS OF SEQUENCE CONTROL
TRANSFORMATIONS OF DOMAIN
BASIC TRANSFORMATION OF PROCESSOR ACTION
REALIZATION OF A PROCESSOR

Dala storage

Transformation execution

Garbage collection

CONCLUSION
BIBLIOGRAPHY ON PROGRAMMING LANGUAGE, CONCEPTS, AND DESIGN

i Wad MY

: -

Pt TRt

CHAPTER 1. INTRODUCTION

The goal of this research is to reduce significantly the programming
effort and e. apsed time required to write and debug computer programs.
The research task can be characterized as showing how:

l. To provide the programmer with a wide variety of programming
concepts (that is, data structures and operation), at least as
wide as the set of concepts collectively available in current
programming languages. However, this must be done without creat-
ing a language so complex as to be unmanageable. The key is to
generalize on the concepts available in current languages, to find
more general notions of which the set in current languages is a
set of more specific cases.

2. To reduce the amount of detail that a programmer must concern
himself with, without preventing him from being able to specify
detail when he wishes. One such avenue of simplification is to
remove from the preqgrammer's immediate concern all matters of how
a program will be implemented on a specific machine.

The elimination of any consideratioﬁ of a compiling phase contributes
to bolh goals above. First, by so doing, the language is not resiricted
to expressions vhich can be compiled; second, the distinction between pro-
cesses carried out at compile time and those carried out at execute time
vanishes, thereby simplifying the intellectual task of learning and
dealing with the language.

Ve can view the research task as one of developing a larguage for
programming a hypothetical machine. We can endow this machine with all
the nice characteristics of real machines. We must select for this machine
a set of primitive concepts which are in some sense optimally convenient.
("Primitive" means defined in some other way .than in terms of the structure
and commands for our hypotheticai machine.) We note that it is never a
matter of being unable to represent somc concept or terms of the available
primitives: it is only a matter of how much struggle it is.

Devising such a hypothetical machine is not just an academic exercise.
We know that with a simulator, or interpretive program, we can make any
real machine behave like our hypéthetical machine. We must qualify this

by ~dding "with respect to ihe computational results." The simulated

o e PN RRATANF T N7 L.

o g

ELn e N O BEE tne

oy e,y A7

hypothetical machine might not be "efficient." That is, it might not com-
pute results for a given program as fast as the real machine could be
programmed (in assembly language) to do it. This possible loss of effi-
ciency is the price that must be paid for having the luxury of a hypo-—
thetical wachine which makes it significantly easier for the programmer

to do his job. We hasten to add that as our ability to write simulators
improves, the inefficiency contributed by the simulator will decrcase.

We hope also that knowledge of what is needed for a simulator will stimu-
late developmenis in machine design which will aid in producing simulators
which operate with more "efficiency.!

.To repeat, the crux of programming language design is to choosec a
good set of primitives, and to relieve the user of as much detail as he
wishes to be relieved of. I do not feel that'current languages come close
enough to this goszl. I hope to be able fto show ﬁow we can come closer to
such a goal.

Some languages, both existing ones and proposed ones, have rather
elegant facilities built—in for defining new concepts. But the defini-
tional mechanism is not the issue here. It is rather, how to select a
set of building blocks (primitives) out of which '"new concepts' can be
constructed without agony, circumlocutions, and slightly unsatisfactory
substitutes for the data elements and structures that are really wanted.

Although we will be developing many definitions later in this report,
it is helpful to give at this point a few informal definitions of terms
which will be used in our preliminary discussions:

1. "Language’ means a computer programming language representative
of the class whose members are the following current advanced
programming languages: ALGOL, COBOL, LISP, COMIT, IPL-V, FORTRAN,
FACT, SNOBOL, SLIP, JOVIAL, PL/I, and FORMAC.

2. "Problem-solution concept" means the programmer's mental concept
of what he wants a program to accomplish. t means the resuit
of any systems analysis or problem-solving activity which he may
have done in order to decide in principle what he is to write a
program to do. It means a general algorithm, without the complete
detail necessary to make it unambiguous and precise enough for

computer implementation.

| St §

bp—il

Programming" and '"preparing a program' means the total program-
mer activily, beginning with a "“problem solution concept! devis—
ing an algorithm, writing ii in some language, and debugging it.
It also includes these activities applied to the modification of

a program already writlien and debugged. By way of contrast,
"programming" as used herein specifically does not include the
task usually called "sysiem analysis''——the refining of a statement
of a problem or goal until it is clear what is desired, or at
least until it is clear what a program is to accomplish.
"Programmer!" means a person who accomplished programming, but it
refers specifically to one who is trained for the programming

job, and has several years experience, rather than one who is a
casual computer user.

"Data elements" means instances of data types, which are such things
as numbers, truth values, symbols conposed of concatenated charac—~
ters, strings, and names of other entities.

"Data structures" are the conceptual arrangements of data elements,
such as in tables, arrays, pushdown lists, and hierarchies. When
we need a collective name for "data elements and structures,! we

say "data objects."

LAY

T

R

CHAPTER 2. GOALS AND ASSUMPTIONS

STATEMENT OF PROBLEM

_ingly adequate languages do exist. It is my conviction, however, tha§ a

Need to reduce programming effort and elapsed time. In the area of

writing computer programs there is an undisputed and increasing need to
reduce both the programmer effort and the elapsed time required to prepare
a program. ("Elapsed time" means the interval between problem definition
and the athievement of a correctly-running program.) Furthermore, since
the cost of programming is going up with respect to the cost of machine
computations and the cost of compu:iation is constanily going down, this
need is becoming more intense. In a number of situations today, particu—
larly military command applications, there is a high premium on reducing
elapsed time. .

VWays to reduce effort and time is not only needed for preparing new
programs but also for revising old ones. It is widely, if not universally,
recognized that all but the simplest systems must continually evolve if
they are to retain their usefulness. A major problem with current computer—
based systems is that their capability to evolve—to be modified to keep
pace with changing system requirements—is poor. To modify most sizable
computer programs, no matter what language they are written in, is a time-
consuming, expensive, unpleasant process fraught with errors. From my {
own experience, I believe it is no exaggeration to say that sizable com--
puter programs, such as those used in military command and control appli-
cations, are obsolete before they are finished and that they cannot be !
modified fast enough to be satisfactory for current needs. I contend that

the application of computers to sizable systems is going to be severely

handicapped until signifirant progress is made in reducing programmer and

elapsed time.

Major deficiencies of current languages. Many attempts have been

made at making programming easier and faster. Among the present languages

there Lave been some mod-st advances. For many problems, useful and seem-

significant advance has been prevented by failure to recognize and over-

come several major deficiencies. All current and widely-known languages

possess these deficiencies in large degree. Thesc deficiencies will be

. . Y
discussed in turn. ;

o3 22 was

e e S

ool

The first major deficiency of current languages is that they are
too restricied in what can 1rcadily be expressed in them. A programming
language reflects a philosophy of ihe world—it represents the way that
the world is viewed, in terms of objects and their possible relationships,
and in terms of the possible manipulations upon these. ALGOL and FORTRAN,
for example, view the world as describable in terms of 3 sets of atomic
quccts which can be manipulated as variables:
1. inlegers less than some magnitude determined by the word length
of the machine on which the program.is to be runj;
2. rational numbers representable with a fixed number of significant
digits, determined by the word length and the arithmetic circuitry
of the machine on which the program is to be runj

3. Boolean quantities true and false;

and in terms of one relationship: arrangement of homogeneous atomic objects
in rectangular arrays. ALGOL and FORTRAN literally do not admit the exist-
ence of any other objects for manipulation. (Character strings are per—
mitted only as constants.) Whatever is expressed in computer languages
is expressed either in the primitives (basic terms) of the language or
in terms defined by these primitives. Every language designer picks what
he thinks is a desirable basic set of primitives. From then on users are
Ustuck! with the choice, unless they wish to '"go outside the language."
It appears from the present research work that the number of basic data
types and structures required for a broadly-applicable language is not
large. It is surprising therefore, that the current programming languages
do not contain a set which is convenient for wide range of problems.

A philosophical observation: Much of the planning effort in algorithm
design, and specifically in the design of data structures, is an attempt
to take advantage of regularity (in some cases to force regularity) in
order to simplify the description of data structures and procerses.
Example: if the eclements of a domain can be ordered in an array or tree,
it is easy to censtruct a name to element mapping algorithm (a "naming
rule") for ihe elements of the domain, thus avoiding the necessity of
providing individual names for all the individual elemenis in the domain.
Another example: where processes can be described in iterative or recur-
sive form, the specification of the processing to be done is thereby made

simpler than if the entire processing actions had to be written out

i heatad GO BIKCR

o ars
i

et

Y

s er Sanaty I T
o SR ST S A

Ty

i P e
s [] Ganz.3

i

W TOIEITE] PSRRIy
P2 SIS

sequeﬂ%ially. It is obvious that the more uniform, or regular, the pro-
cessing is, the simpler is the processing algorithm. Much effort ihere-
fore goes into trying ito make the processing more regular, even to the
point where it is a little unnatural. One looks for the common actions
in a series of processing steps to be ddne, puts these in an iterative
loop, perhaps with tests and alternate branches to take care of the non-
regular parts of the processing.

This search for simplicity through regularity goes on continually,
particularly in the structuring of data. Attempts are consciously or
unconsciously made lo reformulate the data into composite elements having
the same structure.

It is this strong desire for the simplicity which comes with regular-
ity, I think, which has led programming languages to adopt the "regular"
data elements—such as list, and set, and even binary tree—vwhile tending
to neglect the more complex elements such as those involving multiple
relations.

Too often a programmer must mentally convert the concepts he wants
to write into concepts which can be expressed in the language he has choscn
to write in. This conversion too frequently consumes a large amount of
his total effort. For example, assume it is natural for him to think of
his data as numbers arranged in a tree and his chosen language is FORTRAN.
In order to be able to express his ideas in FORTRAN language, he must first
convert his data into rectangular arrays and convert *‘he manipulations
he wishes to make on trees into the corresponding manipulations on rec-—
tangular arrays. As a second example, assume that he wishes to procesc
alphabetic data in ALGOL. Since ALGOL cannot speak of alphabetic charac-
ters, they must be converted to integers and processed as integers. When
these conversion problems become too aggravating, the programmer may be
impelled to choose another programming language. (Or to design yet another
programming language. It is my strong conviction that this phenomenon
is largely responsible for the current proliferation of languages.) An

especially insidious effect of such restrictions is that they stifle fresh

" approaches to programming. With some restrictions removed on what can be

expressed, a programmer should be able to devise algorithms that are funda-—

mentally more efficient (that is, take fewer steps).

T

—— sy WENE] O YEERS O PREGY CENO vaexy g

It is eppropriate here to digress briefly to emphasize a fact which
is widely known among computer people but often overlooked or forgotten:
All programming languages for gencral-purpose digital computer's are uni-
versal, in ihat any computation procedure can be written in any such lan-—
guage, input-oulput operations excepted. (Among the cases where this idea
of universality might be questioned is one where the character set avail-
able in a language was deficient; transliteration of the data would be
required.) Thus, all computer languages (past, present, and, as far as
anyone knows, future) do not differ in what they can accomplish, but they
do differ in how readily some specific procedure can be expressed in them.
Each 'language has been designed to make it relatively easy to express some
class of procedures, to decal with some limited class of problems. To ex—
press in a given language procedures for which it was not designed is a
relatively difficult task—sometimes miserably difficult—but never impos-—
sible.

A second major deficiency of essentially all current languages (there
are a few languages for which I would say '"moderate deficiency") is that
they force the programmer, at the stage when he should only bhe concerned
with working out the "logic" of his program, to be concerned also with the
details of how the program will be implemented on a specific computer.

For example, assume that the data to be processed is strings of alphabetic
characters, that ihe computer to be used is a fixed-word-length machine
without byte addressing, and that the language reflects this characteristic
of storage. In such a case, the programmer must concern himself with how
the strings are to be stored before he can define in detail the processing
to be done on these strings. Should he store one character per machine
word, which is wastieful orf storage? Should he begin each string in a new
word which will usually occur at the end of a string? Or shouid he ignore
word boundaries, in which case he must address a string by both its storage
location and character position within that location? A conscquence of the

presence of such implementation detail "woven! into a program is that it

‘makes the program more difficult to change and therefore more difficult

to check out. A further consequence is that such detail makes a program
more difficult to understand and therefore more difficult to modify by

someone other than the original programmer.

ST i

~—

" ¢

The third major deficiency of current languages is that they are
"irregular" with respect to growth or change—in the sense that a simple
change in a concept may necessitate a major change in the program. Simple
examples of cases where this phenomenon can occur: increasing the pre-
cision of a computation, adding a column of data to a table. A more
striking example is the extensive reworking necessary when a program grows
to exceed the internal memory space available for it.

A fourih major deficiency of current languages is that they have a
large number of conventions, established by the designer, which are im-
plicit and inaccessible to alteration. By M"implicit" I mean that the con~
ventions are established in an instruction manual, but are not otherwise
“visible" by inspection of the processor. By "inaccessible'" I mean that
the conventions are not represented in the processor in a way that can be
accessed and modified by the user. Consider such a trivial example as a
date. In processors which provide for a date, the format of the date is
usually prescribed and unalterable, Such rigidity is both unnecessary
and undesirable.

One reason for the "weakness!' of current languages with respect to
flexible data structures is that in most languages the structural relation-
ships are left implicit rather than explicit. This limits the user to the
relationship (or, possibly, a few relationships) fixed by the designer;
the user is unable to construct his own, nor to tesi what relationships
exist. In the present work, I have taken the position that all relation-
ships must be explicit, and that they muct be creatable, accessible (test-
able), and modifiable by the user. With the ability to create new rela-
tionships among arbitrary sets of data elements (cach of arbitrary com—
plexity) the user can create new composite data elements of arbitrary
structure and complexity. With relationships explicitly expressed, rela-—
tively simple concepts can seemingly become quite messy (that is, complex,
an unfortunate fact of life, perhaps). Since regular struclures can be
created readily by algorithm, this complexity is more apparent than real.

A fifth major deficiency prevalent in current languages is the
necessity of specifying data structures at ihe time the program is written,
with little or no opportunity to ¢thange these structures during program

executiion. We need to be able to build data structures as the need arises.

e e A o T 2

m’ m m w

ey

-

standish was one of ihe first to recognize this goal and make a contribu-
tion to it (standish, 1967). He has devised a method and a notation for
the dynamic creation of new data struclures. In the present work I have
gone beyond what Standish did.

The continuing presence of the above-menlioned deficiencies is in
many cases closely associated with a desire for efficiency. The designers
of current languages have, with a few exceptions, an almost overvhelming
desire to produce programs which operate "efficiently." I claim that
these designers have sacrificed the producti&ity of the programmer in order
to attain a questionable efficiency of object program execution. I further
claim that the achievement of good object program efficiency is often an
illusion because it is relative to the eslimated time required by a pro—
gram hand-coded in machine language to perform the same algorithm. The
algorithm itself can be quite inefficient, however, due to the deficien—
cies of the language. Without these deficiencies quite possibly the al-~
gorithm could be a much more efficient one: that is, requiring many fewer
steps. I therefore contend thal to remedy'the current deficiencies cited
above, we must revise our attitude toward efficiency. What this revision
entails will become clearer later.

AN APPROACH TO A SOLUTION

This section discusses the issues involved in trying to overcome the
deficiencies cited earlier, and explains my approach to overcoming these
deficiencies.

The conflict of flexibility with manageability. There is an obvious

conflict between trying to get increased flexibility without increased
complexity and, therefore, decreased manageability. Normally, the more
"features" one adds to a programming language, the more conventions one
has to learn and the greater the effort required to build a processor for
the language.

Is there a way to get increased flexibility without increased com-

plexity? I believe there is: by increased generality, and by the re-

. moval of unnecessary elements.

Generality is hopefully achieved by analyzing current languageé to
see what apparenily separate concepts could be considered special cases

of a more general concept. For example, perhaps we can find, or define,

o e T T e e ey g e
A S
: e

o

[>t

il

)

e i - ety

10

"program statement! in a way which covers all the types of statements.

Some increase in flexibility will be achieved by the addition of con-
cepts, which inevitably contributes to an increase of complexity. We com-
pensatce for the increase by removing some concepts from the composite pic-
ture of current programming languages. Not all concepts which are removed
are really thrown away; rather lhey are "factored out'" into another part
of the programming task. Thus we ave led to the idea of splitting the
programming task.

Splitting the programming task. My apﬁroach to overcoming the de-—

ficiencies cited earlier is to separate the programming task into two

parts:*

1. The working out of the "logical processes' of a program independently

of the characteristics of any existing computer.
2. Specifying the details of how the program is to be run on an exist-
ing (hardware) machine.
For the purposes of this discussion we will say that the "logical processes"
of a program, including the structural description of the data, are written
in "logical language," and that the added information necessary to get
such a program to run on an existing machine is expressed in "implementa—
tion language." Independence of the characteristics of existing computers
means specifically the qualitiy of being independent of the following charac-
teristics of computer hardware:
1. Linear addressing schemes for memory cells
2. Fixed word sizes
3. Non-homogeneous memory units
4, Internal number representation

5. Serial processing (that is, instructions being executed in sequence)

‘No current programming language known 1o me is truly independent of all

the above characteristics.

Another way of expressing independence: A program (in "logical lan-—
guage!) which is completely independent of a real computer is one which
would not have to be changed no matter what the hardware characteristics
of the real computer might be. (Such a program can, of course, only be
run on the real computer through the intermediary of another program; that

is, a compiler or an intevpreter).

i
I
I

S B

|
.
g

11

That il is possible 1o make such a split of the programming task into
two parts should be obvious. The logical language—the language in which
the programmer accomplishes part 1 above—--is by logical necessiily a lan-
guage for some hypothetical machine. It is a provable fact thai any
general—purpose computer can be programmed to simulate any other definable
computer, input-output excepted. In particular, it is possible to writle
a simulator for the above-meniioned hypothetical machine and the logical
language which it obeys. Every computer language processor is such a simu-—
lator. For example, an ALGOL compiler for computer X is a program which
makes computer X behave like an ALGOL machine—one which responds to com-—
mands written in ALGOL language. Hence we sce that it is possible for a
programier to write and debug a program usirg only the logical language—
that is, without concern for how the program might be implemented on some
specific hardware machine.

The second step—adapting the program wriiten in logical language to
run on some existing machine-—is in fact mechanizable. Use of a simulator
is one way of accomplishing this mechanization. However, mechanization of
the implementation does not always yield an efficient object program.
Hence the adaptation may in practice involve specifying some additional
information via implementation language; for example, how the data is to
be arranged in the available storage devices. This additional information
is in the nature of "coaching! the processor of the language in order to
produce an object program of satisfactory operating efficiency and reliabil-
ity. In other words, implemeniation language will be needed for those
things thalt we have not yet learned how to implement mechanically in a
way that gives satisfactory operating efficiency. However, as computation
becomes cheaper, as machines be:ome faster, as larger high-spced merories
become available, and as our ability to write processors improves, in many
cases we should be able to dispense complelely with implementation lan-
guage.

The effect of this splitting of the programming task into two parts,
each with its own language, opens the way to overcoming the deficiencies
cited earlier. 1In considering the design of a logical language, the de-
signer can then be free of the priessures imposed by the need for object

program efficiency because that burden has been moved to the province of

b e ._‘::w::-*' ;_:W

the simulator and the implementation language. The way is thus cleared

for designing logical languages having many more capabilities. By "Ymany

more capabilities" is meant !more convenient capabilities!" rather than

any incrcase in computiing power. Among these capabilities should be

greater easc of program modification.
Since the logical language is a language for an abstract machine,

such a split seems to preclude its application to a certain class of pro-

grams we might call "computer-specific." A computer~specific program

commands a specific machine to carry out actions peculiar to that machine.
Examples of computer-specific programs are: a real-~time computer program
with -radar inputs and teletype outputs, a monitor or supervisory program
of an operating system, and a computer reliability check program. I think
it will be the case, however, that computer-specific programs will, in con-
trast to "ordinary programs," be leaning hecavily on the implementation lan-
guage: that is, computer—specific¢ programs will generally have only their
skeletons expressed in logical langauge; implementation language will be

required for the expression of details.

Inefficiency of program execution. There may be objections that such

a proposed split will not permit a programmer to take proper account of

hardware limitations, and hence program execution inefficiency will be a
necessary consequence of splitting the programming task. That some inef-

ficiency will result is probably true. It is my conjecture and strong be-

tief, however, that no significant reduction can be made in computer pro-
gramming effort and elapsed time unless hardware limitations are removed

from the programmer's primary concern. The research reported here is, in

a sense, the exploration of the consequences of ignoring hardware limita—

tions when working in the logical language.

How much program execution inefficiency is likely to result from the

proposed technique is a difficult question because efficiency is cxpressed

as percent of some norm, or base. In this case, we don't have a satisfac-

tory norm. Often "an expertly-hand-coded machine-language program" is

used as a norm. There are at least 2 reasons why such a norm is unsatis-—

factory: (1) it embodies some unknown compromise between the antithetic
goals of minimizing exccution time and minimizing storage requirements,
and (2) it generally implies very conventional programming techniques, yet

we have no way of knowing whether radically different techniques might be

b e e
e - 2 T st 2]

PR e}

Py

e A=

e e -

| e

T T

i faaey

T Tl F A iy

considerably better. I believe a better norm would be "an experily-de-~
signed special-purpose machine." Compared to such a norm, an expertly-
hand~coded machine-language program is grossly inefficient. I would esti-
mate the efficiency expressed this way is in the ueighborhood of 10%.

This gross inefficiency is the price we must pay, at least at present,

in retlurn for being able to utilize gencral-purpose digital computers.
supposa for the moment thatl the proposed approach to developing a program-
ming language resulted in programs which were 50% efficient compared to
expert hand~coding in machine language. We could then say that these

(the former) programs were 50% of 10% (that is, 5%) efficient compared

to expertly-designed special-purpose machines. The idea that I am trying
to stress is that heavy emphasis on program execution efficiency is rather
pointless, at least where we are concerned with conventional present-day
computers. To sum up, my whole approach is based on the premise that the
possible resulting inefficiency of program execution will be a small price
to pay if the efficiency and productivity of programmers can thereby be
increased.

Some of the arguments against a broadly-applicable language have been
eloquently summed up by Mitchell, Cheatham, et al (MA Basis for Core Lan—
guage Design'):

1. The language processor must carry as overhead (in time and space)
all of the mechanisms for language facilities which are not being
used in a given program;

2. Each addition or elimination of a language feature is expensive;

3. Implementation of the processor on a small machine is likely to
be impractical.

In this present investigation I frankly do not care about these arguments.
I am trying to answer the question: "Whal would be the ideal language,

if any, from the programmer's point of view?" However, when we become
concerned with the problems of implementing any language that I might pro-~
pose, these arguments become of concern. How, in fact, we must ask, can
unnecded parts of a language and ils processor be stripped off from a
given program?

Emphasis of the present work. This splitting of the programming task

leads to the development of two languages for programming. The first of

13

b faccc M B

Srie e

P

1k

these langunages is concerned with expressing a program for some hypo—
thetical machine. The second of ihese languages is concerned with speci-
fying the delails of how the program is ito be run on some existing real
machine. This report deals almost exclusively with the logical language.
The aim is to show that, given a willingness to tolerate a low efficiency
of execution, we can make a significant step in the direction of improving
programmer efficiency.

Vhat I am conceined with is striving for a set of primitives (basic
concepts) .hich is at a comfortable level of detail, and in terms of which
all predictably useful concepts can be expressed without undue difficulty
(ideally, wiith uniform degree of difficulty). By "comfortable level of
detail" I mean something analogous to that available in current languages.

WVhat I am attempting here is a formalization of many concepts which
have heretofore been left to informal description in a programming manual,
and to the intuition of the designer of the language processor. By Wfor-
malize" here I do not in general mean !"put into mathbematical-looking nota-—
tion!" but rather "make explicit by diagramming and test." One of my chief
goals is to demonstrate that there is a gain to be had by making explicit
many of the programming language concepts which have traditionally been
left implicit.

REVIEV OF OTHER APPROACHES TO A SOLUTLUN

Of the current work in programming languages, very little is being
carried out under a philosophy similar to the one I have advanced. Most
developments can be categorized as single languages devoted to rather nar-
row classes of problems, with little or mo attempt to separate the purely
intellectual problems from the potentially mechanizable ones. Some lan-—
guages, such as LISP, do try to minimize the'programmer's concern with
implementation; unforiunately these languages tend to be aimed at rather
limited types of problems.

I have found only one hint of a development which attempts to separate
the writing and debugging phases of programming from the achievement of
an efficient implementation. This occur .n a few sentences in the paper
by E. W. Franks describing the programming system LUCID (Language Used
to Communicate Information Systems Design)(sce bibliography). No details

are given, however, in this or any other document known to me.

BT

ST

e s

i

| ‘

There are 3 major current approaches to lhe probilem of reducing

programming effort:

1. The "generalized programming system," in which all of the func-

tions nceded for some class of problems are built into Lhe pro-
E gramming system. An example is The MITRE Corporation's ADAM sys—
tem {see papers by Burrows and Connors in bibliography). While

in principle it may work, it has at least the following deficien-

cies:

(a) It is aimed at a limited class of problems.

. (b) It is big and unwieldy, and complicated for the user to
E ’ understand.
i! (c) It has been designed and built around a specific machine com-—
) plex (the IBM 7030 plus special peripheral devices); it seems

1 to me that it will have very little "carryover!' to the next

generation of machines.

2. The "growing system'" which accumulates all the programs and sub~
routines ever written for it and makes them all available for use
as components of any new program to be written. An example, al-’
though not a good illustration, is the University of Pennsylvania's
MULTILIST System (Prywes, 1963). Although a growing system could

conceivably be used for a broad class of problems, it appears to

- have the deficiencies (b) and (c) just mentioned. Furthermore,
i its primitives (basic terms) are at é level of detail which is
. undesivably low.
The "growing machine" as conceived and implemented by Profes-

sor Carr at the University of Pennsylvania is a flexible scheme

Ql—-—d

for creating linkages among a set of programs thiough the inter-
mediary of common pushdown lists (Ostrand, 1966). It provides

for the definition of new data types as linear lists of other data
types; the primitive data types are limited to the conventional

ones: integer and real (as defined by the machine hardware), and

[[P

identifier (expressed as a machine address). The language of
command strings is basically a Polish suffix language (operators
following operands). Because certain operators (such as QUOTIE)
requiré other than evaluation of its operands, and because the

system conventionally evaluates its operands before it knows what

il s ook L NI
. R ey o

Al o

TR R

AR e

rasat R

CLEO Mgt)

n T T A
Siasaa 25w

32 Lo Lo L Tl

16

operalors will be applied, these operatlors musi be prefixed to
their operands instead of suffixied.

3. The "something-for-everybody!" language, in which the features of

a variety of languages have been collected into one. The out-
standing example of this type is PL/I (IBM, PL/I, 1965; Radin,
1965). PL/I incorporates the best parts of FORTRAN, ALGOL, COBOL,
and a list-processing language. It attempts to avoid saddling the
user with a mass of detail by being divided into nested sublan-
guages, so that a user does not reed to know all about the lan-
guage in order to be able to use a part of it. It may succeed
in avoiding the widespread deficiencies of narrowness of applica-
tion and language complexity. However, I do nol believe it avoid.s
twvo of the major common deficiencies discussed earlier: the one
(deficiency #2) of forcing the programmer, at the stage where he
should only be concerned with the details of how the program will
be implemented on a specific computer, and the one (deficiency
#3) of being irregular with respect to growth and change.

Perhaps the greatest deficiency of PL/I is that it requires
the user to keep in mind the internal representation of his data.
One must know the internal representation in order to understand
the rules of converting from one data type to another. One must
know how the hardware limitations of the machine affect the data
elements used.

The work of Tim Standish at Carnegie-Mellon University is not con-
cerned with the overall problem of simplifying programming but it is an
important contribution to achieving more flexible data structures. 1In
his doctoral dissertation (A Data Definition Facility for Programming
Languages," 1967), he has a powerful scheme for defining classes of ob-
jects, where an object is some individual variable or some list of objecls.
The definitions of data structures are themselves data structures which

can be manipulated by program. His elementary types of objecis are: real,

- integer, string, Boolean, and identifier. Overall his scheme is quite

elegant and flexible. Provision does not exist for working readily with
individual one-of-a-kind objects: such an object must instead be regarded

as a member of a class having only one member. Provision is lacking for

G e

it somatnt TR] 5]

Ehsl Doy s moeew om—

L2073

Sadtaeridla i

17

defining new elementiary data types.

These examples are meniioned, not to deride the work cited, but to
poinl out thal current approaches have deficiencies which I believe can
be overcome by the approach described in this report.

MAJOR DESIRABLE CHARACTERISTICS OF A PROGRAMMING LANGUAGE

This section discusses the desirable characteristics of a programming
language, given the goal of maximizing the user's efficiency. At this
point the reader may not be convinced. He must take it on faith, or re-
serve judgment. One of the purposes of this report is to justify this
choice of characteristics.

‘Generality of data elements and structures. In the structuring of

data there are two opposing forces at work:

1. Economy of expression, and possibly also economy of storage, just

because it is a natural human iendency to seek such economies.

2. Explicitness of the structure, so that it can readily be perceived

and readily altered.
When economy is stressed, the explicitness of the structure essentially
disappears. The structure is described on paper somewhere, but not ex—
plicitly stored. The user must learn and remember the structural infor-
mation. It cannot be changed during program execution, and usually cannot
be changed at all within the given language. When explicitness is stressed,
economy must thereby be sacrificed.

Current programming languages have tended strongly to take the first
course, econony, with the consequence of inflexibility. For problems well-
structured in advance, this presents no real handicap. For problems not
so structured, however, current languages have been somcwhat cumbersome
to use, because of their lack of flexibility in data structuring. This
report arguces, however, that the well-structured problcoms arce now being
handled by languages which have fixed and limited data structure capability.
For each class of data structures we seem to need a new language. This is
my explanation for the proliferation of higher-level programming languages.
What is needed is a language with great flexibility in the data structures
it can deal with. This paper proposes to show how such generality might
be accomplished. T.a particular, for complete flexibility in data struc-—
tures, it must be possible to express an arbitrarily- chosen relationship

between two data elements, or among any set of data elements. Such a

P N ™ "]

Bl el

18

relationship creates a composite data element, and this composiie may in
turn be an element of another composite.

The exact choice of a data structure depends on the way the programmer
thinks and ¢n the way he intends to manipulate the data. Our concern should
be that he nol be unduly restricled in the way he can express his data.

In particular, we want to avoid the failing of many languages: namely, that
a particular structure can be expressed in exactly one way—that there is
a "standard way'" of doing a particular thing.

Often a concept can be expressed in more than one way. Examples are:

1. A set can be expressed by enumeration of its members, or by an

- algorithm which generates the enuneration.

2. To each list (ordered set) there corresponds an unordered set.

3. For each lisi of characters there is a corresponding string of

characters.

4, A regular structure, such as a tree with n branches from each

node, is readily expressible in the form of a table.
Each method of expression may have its own advantages. Certain kinds of
manipulations, however, can be performed only on one of several alternative
modes of expression.

A related fact is that one of the most important features of a data
processing system is the provision for reorganizing the data into a form
most convenient for the job at hand. That is, we need to be able to trans—
form data from one structure to another conceptually equivalent one. Ve
contend that there is no definition of conceptually equivalent that fits
all cases; hence, what "conceptually equivalent" means is up to the user
to define. Except for some well-defined equivalences, "equivalence is in
the [mind's] eye of the beholder."

The fact that a concept can be expressed in more than one way forces
us to choose betwecen two philosophies of processor design:

1. Require that the user be aware of a mode of expression so that

he can decide whether a given manipulation is applicable.
2. Require the processor to be able to convert data to an equivalent
form whenever needed to make it amenable to specified manipulation.
I reject alternative 2 as impractical at the present stage of development

of processors. In Lhis study I take the viewpoint that it is up to the

red

— s

*

E e

]

— e o RBEEY GRX

oy g o — e e T
’ LS o RE S TR e m B F oh T R o
O DT R e e SR DA I SRkl B SR R R R T T e AR ATy SR FEE TR * 4

UL

W4
]
S

19

user to be continually aware of the form (structure) of the data that he
is manipulating, and that it is up to him to convert to an "equivalent"
form when necessary to make it more amcnable to some specified manipula-
tion. -

I make the observation that the design of many programming languages
is based on reducing sets of equivalent forms to single representations
of each set. This has the advantage of simplifying the operations of the
language, by reducing thc variety of forms which can occur, but it des—
troys the convenience that alternative forms give us, and sometimes forces
us to mold our ideas in forms that are inconvenient if not downright cum-
bersone.

Multidimensional data. The real world isn't always describable con-

veniently by linear (one-dimensional) strings. Two—, ard even three~ and

higher—, dimensional problems need treatment by computers. The advent of
computer—controlled graphic displays calls for iwo— and higher— dimensional
languages. Multi-dimensional languages are those which not only deal with
multi—dimensional data but also have capability for mulili-dimensional
expressions of commands, such as are represented in mathematical formulas
(having sigma signs, superscripts, subscripts, etc.). -

The difficulty with such multi-dimensional languages is that we knew
practically nothing about grammars for languages which contain other than
linear expressions. What we do in practice is to find some way to map
(set up correspondences of) multi-dimensional concepts intc linear forms.
Cheatham (1066) uses this technique to establish a correspondence between
a desired two—dimensional notation and a one-dimensional representation
of that notation. Put abstractly, his one—dimen;ional representation is
a cartesian product of the possible two-dimensional elements, taken in a
specified sequence. This technique could be extended to accommodate any
two—~dimensional language, such as the language of engineering drawings,
the only real problem being the specification of the scquence in which
the two--dimensional languace elements are to be taken.

In keeping with this observation, we find that, in our discussions
of how to treat data elements which we think of in terms of graphical
structures, we have established correspondence ruies for mapping between
graphical structures and linear notation. For example, a pair of nodes

with a relationship between them is mapped into an n-~tuple containing the

20

node names and the relation name.

Generality in the sense of frecdom. A programming language should be

essentially unrestricted in what can readily be expressed in it. When

thought of only in verms of the variety of procecdures which can be expressed
in it, this "feature" scems to be a hanal triviality, since current lan-
guages secm to have this variety. However, when the emphasis is on the
variety of data types and data structures, it is no longer a triviality.
Clearly we are seeking a high degree of generality. But generality usually
entails some penalty, such as less efficienéy in some aspect, greaier
learning difficully, or greater opportunity for error.

‘Universality. It cannot be emphasized too strongly that I am not
claiming for ms language approach '"more universality" in the computability
sense than is afforded by other current languages. All general-purpose
languages can compute "some representation' of any computable entity.

The proviso "some representation" is necessary to cover the cases where
the input-output character set does not contain a needed character.

What is in fact important is the range and richness of the representa-
iions which the language offers. No language can offer ihe full range of
possible representations, for that range is unbounded. Hence, the mental
concept of a given algorithm must be mentally mapped into a corresponding
concept in the available language. It is the difficulty of this mapping
which concerns me. For example, consider that we wish to computie with
a 3-valued variable with arbitirary names "T",l"F", and "U", If the lan-
guage has no provision for defining such a variable, then it must be map-
ped into something which the language does have. If it has integers, we
could map T, F, and U into the integers O, 1, and 2, and then define cer-
tain functions on these integers which would represent the functions we
originally conceived on T, F, and U.

Another exanmple i< that of representing trees and operations on trees
in a languege such as FORTRAN which admits only the structure '"rectangular
array'. A tree can with a non-trivial effort be mapped intc n array.

The array manipulations which correspond tree (list—structure) processing
manipulations are complicated and unnatural.

Balance. A programming l. 1uage should be balanced, in that it should

be approximately uniformly easy .o express any program of the types now

s

AN i B ot o =

PERArCmL A EpE R P

ey wrnvies T Tomdere £ i SVEL VAR SR Pt
T e AT AT ¢ ~ STAEE AN WAAR Do e Yt e ¥ R 3

21

oy

£ -

extant in the current languages or of the lypes suggesited by ihe concepis

to be listed in the next section. TFor example, it should not be ihe case

Wik

that it is very easy to talk of homogeneous arrays bul require a circum—
iocution (e.g., parallel tables in ALGOL) to talk about a non-homogeneous

array. What constitutes a uniform basic set of language concepis is to

»* o

a large extent a matier of tastie and judgment.

Minimal discontinuities. An objective constantly in my mind has been

that of making a language which readily accommodales change. I wani a
language which does not have radical discontinuities. This does not mean
that every change in a program specification should result in a triwvial
change in the correspondihg program. Rather it should mean, in my opinion,
that a given class of changes (e.g., precision of computations) should noi

result in radically different amounts of effort to modify the program

— e WD DD

accordingly, depending on the values of the parameters of the change. To
be more specific, in the case of precision, it should require approximately
he same amount of user effort to alter a precision from one value to any
other value. Notice that this goal is definitely not met by most current
languages, because they are based on a fixed word length of the computer
hardwvare.

Simple changes in concept should result in simple changes to a pro-
gram. Examples of "simple changes" are: changing the collating sequence,
increasing precision of a calculation, inserting a column in a table,
change of domain size (of which increased precision is a special case),
change of domain (e.g., from real to complex), change of domain units,
introducing iz:etances of a model which deviate from the model.

El: iere I point out that these types of changes are not limited to
the pre-exccution phase but can be made during execution.

Simplicity through emphasis on fundamental conceptls. Wwhat I am de-

veloping is a basic framework within which can be determined without too
much trouble a broader range of programming concepts than is available

in current programming languages taken individually. I have not defined
-as many ready-made concepts as are in some current languages, such as some
of the complex searches that are available in SNOBCL and FORMULA ALGOL.
Hopefully what I have done is to show what basic concepts are needed in

order to be able to define as needed a greater variely of conceptis.

o,

oY

L aiiled

i
|
i

Sl thosal A

Bt Luowendd

o

22

Hardware independence. A programming language should be unencum—

bered by considerations of the hardware of the computer and of the proces—

sor of the language (the simulalor of the hypoihectical machine). Speci-
fically, as mentioned before, il should be independent of the following
characte’ istics of computer hardware:

1. Linear addressing schemes for memory cells

2. Fixed word sizes

3. Non-homcqgeneous memory units

4, Inlerna’ number representation

5. Serial processing (that is, it should be possibla to specify

asynchronous processes)

These hardware .dependent characteristics can be "hidden" from the program—
mer by the simulator. It would be desirable to include in this list the
input and output characler set and the specific input~output devices.
However, these latter cannot be satisfactorily hidden by the simulator.
The language should be independent of processor considerations in the fol-
lowing ways: (a) It should not be limited by concern for the efficiency
of the processor. (b) Ii should not require that everything be completely
defined before anything can be processed; that is, it should be possible
to write and debug fragments of programs. (c) A program should not be pre-
vented from modifying itself in an arbitrary way; this includes modifying
definitions as well as commands.

Dynamic modification of program, dala elements and struclures. There

should be as l1little restriction as possible as to what can be modified
during execution. In particular, we may want to increase the precision
of a calculation in order to keep the precision of the result within
bounds, to add elements to a domain, to alter a collating sequence.

One of the obvious consequences of choosing tc have dynamic modifica-
tion is that a program cannot be compiled—it must be interpreted. It
should be clear that ia order to be able to dynamically modify a program-—
that is, to be able to have a program modify itself—the program must be

viewable as a data structure.

Program sequencing. We nced a more generalized concept of program

sequencing than is available in some conventional languages. We need

first: parallel, asynchronous processing. Second, the ability to have

e Y oo

SETAR L e SR PR A N S

sypaat ity ren W sror s s e R P S S D |

statemenis which are executed when certain conditions become "true"
(called "chronic!" statements by some). And third, we need more explicit
control over branching, as lo whether the branch is permanent, or tecmpo-—
rary (meaning return later to the point of call), with the ability to
remember, on a pushdown, the set of nested calls, and the ability to
manipulate this pushdown.

Undefined functions and "garbage.!" Consider the class of machine

operations vhich produce a result. A result is only valid if the opera-
tion ("function") is defined for the values of the argumenis given to it.
If it is not defined for its arguments, it still préduces a result, but
this ‘result is "garbage",.that is, meaningless. Most machines are con-
structed, however, so that garbage cannot be distinguished from valid re-
sults simply by inspection. In many applications, it is critically import-—
ant that garbage values must not be permitted to masquerade as valid re-
sults. In applications such as space flight control or atomic reactor
control, the processing of garbage valhes in place of valid ones can have
disastrous consequences. It is practically impossible to achieve assurance
that garbage values will not arise in a large computer program, for the
sinple reason that it is impractical to completely chick out such a pro-
gram.

The problem of avoiding undetected garbage can be dealt with if
every function can be arranged to yield a recognizable "value' or "un—
defined" for those combinations for arguments for which it is not properly
defined. The Yoverflow" signal generated in most computers is a very
rudimentary embodiment of this concept, but it may go unrecognized if
the programmer does noi expect it and explicitly test for it. VWhat is
necessary is the existence of a "'value' which is automatically recognized
as "undefined" by every function. In conventional hardware such a value
does not exist because every bit combination or digit combination has
been assigned a numerical significance.

Two kinds of "undeiinedness! should be recognized. It may be the

case that the domain is defined bul the member of the domain is not.

Or it may be the case that the domain is not defined either.
It is not only in the case of evaluation of a function that a value
of fundefined" can arise. It may occur when an attempt is made to refer-

ence a data element if the element does not exist; that is, if the reference

23

O o IS T a2

L3 A

ha il ety

e/

24

does not refer to an existing storage cell. Il may occur when execution

turns oul to be impossible for reasons other than undefined parameters:
e.g., a specified transformation may not be performable on a given (com-

posiic) data element, or a program statemeni may be syntactically or
semantically incorrect.

Accessibility and traceability. The user must have access not only

to the contents (values) of data elements, but also to all their related
entities. Given any data clemeni {alomic or composite) the user must

be able to trace out (via the execution of program stalements) alr of the
associations, or relatlionships, of which the given data element partakes.
For each association thus determined, the user must be able to find out
all the associated data elements and their roles in the associations.
Examples: given a data elemeni, find its identifier, or identifiers, if

there is more ihan one. Given an atomic data elemeni, or, more properly,

a slot which can contain a value, find the explicit indication of what
domain that value must be taken from. Given a data clement which is a
member of a set, find the data elements which are the other members of
the set.

The traceability feature described here is a conceptual one. In par—

ticular it must not demand of the user any knowledge of how data is stored

in a real machine.

Definitions and declarations. One of the needs of a programming lan-

guage is to have explicit the consequences of definitions. The more ex-

plicit these can be, the easie to learn and to remember what defi-

nitions are in effect at any gi- time.

In some current languages, such as PL/I, there is a good deal of

"learning" necessary in order to know the effect and scope of definiticns

("declarations"). One must learn, for example, when the definitions be-

come effective: i.e., whether they beccme effective at compile time or

at execule time, and at what point of execute time. One must also learn

at what point definitions cease to be effective: this generally occurs
at execute time upon leaving a block under some specified set of circum-—
stances. Ideally, there should be a simpler set of conventions.

In addition, one needs the flexibility of being able to alter defi-

nitions dynamically. That is, there should be a minimum number of defi-

nitions which are fixed and unalterable.

Py

L

——

25

Removal of distinclion belween processing "phases.'" I submii that

making a distinction between times thal paris of a program are "interpreted"
or at which variables may be f'bound" is an unnecessary complication. These
various "iimes" are: pieprocessor (macrd—processor) time, compile time,
load time, and execute time. Distinction among these times and about what
operations take place at which time is motivaled by the desire to be "efl-~
ficient!". It is a featlure I choose to do away with. The first reasor.

is because of the umnecessary complication which is otherwise intirodwiced
into the language. The seccond reason is that since I wish to have dynamic
modification of boilh processor and program, compiling in the conventional
sense is not possible anyway, since such modification is prohibited by

the nature of the compiling process. A f'pure! compiler leaves no source
lariguage 1o be interpreted at execution time. Compiling is based on the
static analysis of source language statements before execution. Such
analysis is technically impossible to complete for a program which modi-—
fies itself in an arbitrary way. It is, of course, possible, for a pro-
gram which modifies itself in a predictable way, through indexing, for
example.

Provision for exceplions to general rules. An exceedingly important

concept is that of being able to give general rules (algorithms and
definitions), supplemented by special, and possibly contradictory, rules
to take care of certain cases. When such rules are employed, the 'bxcep-
tion rules" must be distinguishable, so that the processor will know that
they take precedence over a general ruie vhenever the exception rule is
applicable. What does all this really mean? What kinds of rules could

we be talking about? The applicability of algorithms is decided by
control sequencing mechanisms, and is wholly determinate. How about defi-
nitions? The applicability of definitions is dynamically determined, like
the execution of algorithms. The order in which conditional statements,
{algorithms or definitions) are tesied automatically astablishe; the
priority with which they will be applied.

Shorthand notations. One of lhe rescarch goals is to provide as

much flexibility of expression and breadih of concept as possible.
Generalily and economy of expression, however, are in conflict, hence
we need the capability to introduce shorthand notations for frequently-

used expressions. We need only provide the shorthand mechanism and let

TN

TR

T RO L W

‘il’!ﬂ-"“*v i aa e s

Lepronmtr- @

PRt

tne user introduce his own shorthand expressions.

Metadata. As importani as being able to combine dala elements to
make composite data elements is the abilily to associate explicitly witlh
a data elcment a second data element which represents data "about! the
first data element. This second data e'ement we might term a "metadata
elemeni". Examples of such metadata ¢ .ents are: an identifier, a do-
main !'prescriptor” which specifies from what domain the values of the
first element must be taken, an access code which limits the conditions
under which the first data element can be aécessed.

An altcrable, prunable processor. How can we provide a wide variety

of features, without: a) making the language processor too big and cum-
berson, b) making the user learn a loi of information he doesn't need,

¢) unnecessarily restricting the user with lots of conventions about the
use of the features which are provided. Simply providing a "kernel!" lan-
guage, out of which the user can build anything he likes, is not enoughj
it is too much work for him to build all his own "tools%. Providing him
wiih a large library of subroutine packages is not enough; he must wade
through catalog descriptions to find out if what he needs exists; then

he may ke frustrated to find that he would like just a slight modifica-
tion of a cataloged program. Providing a large processor with loils of
features is not enoughj; some features may be just excess baggage. It may
happen that the user wants to modify some processor convention.

A respectable language should provide fo} him a great many of these
useful definitions, such as formats of dates and times. The point is
that these definitions must be accessible to him, in case he would like
to make some additions or changes, so that he is not stuck with one set
of conventions. In other words, the user should be able to get at and
modify as much of the definitional mechanism as possible.

Envision a systazm in which we have a processor and an explicit
sel of rules which guide the processor. Among these rules will be the
interpretation rules te be applied to data and imperatives. The user
can, if he chooses, alter the rules to suit himself, at the risk of
making an errvor. He can delete the unused rules, to make less "baggage"
and possibly to speed up the processcr. A safer elimination procedure

would be to have the processor mark all the rules it used. After an

26

W M e e

i el

‘-—-—-‘ “W

1y —

i
B
¥

27

extensivg checkout run the unmarked rules could then be deleted, although
there will always be the risk of deleting a needed rule.

Toward meeting ali these necds at once, I propose a "large!" processor
which includes a program library. The processor will largely be Macces—
sible" to the user. He can prune off the parts he doesn't need. He can
alier some of the conventions to suit his needs, not only before but also
during execution.

One of the tricks is how to make the processor alterable and prunable.
Among other things the interpretation rules used by the processor must
be accessible by the user as data.

EXPRESSING AND PROCESSINd DEFINITIONS

Types of definitions. One of my goals is to make more explicit and

more simple the handling of definitions.

First, the concept of "definition" itself needs some discussion and
clarification. "Definition" in the programming context means a variety
of things ("Declaration!" below is used in the ALGOL or PL/I sense):

1. Defining a "domain", specifying a set of "values" which a speci-
fied variable must take on. (For example, "Boolean! by convention
specifies the domain (T,F).) Defining a domain is neither an
"action', in the usual sense of imperative, nor is it an allowable
substitution action to be invoked at some appropriate time. It
is rather a specification that restricts some future action.

2. Declaration of a data clement, possibly giving an init<al value.

3. Declaration or definition of a composite data element, a data

structure.

L, Declaration of a procedure.

5. A Ustanding order", sometimes called a '"triggered statement! or
a "chronic statement", to be executed whenever some specified
condition arises.

6. An equivalence between two members of a data domain or between
members of two different domains.

7. A definition of an ordering, such as collating sequence.

8. "Scope" of an identifier, usually defined by a means outside the
language.

9. Shorthand notation (procedure call, macreo) for a larger expression

implying that some form of uninterpreted string substitution is

M m’ m m

28

to take place.

Dynamic versus static interpretation of definitions. One of the

philosophical problems which must be resolved early is ihe matter of when
a definition becomes effeclive. Should it become effective at the time
that it is made (that is, at the time it is written down or created dur-
ing program execution), or should it become effective at the time it is
used (interpreled)? This issue can be illustrated in the following way:
Let us say that the definition B is made in terms of sone other defini-
tion A: for example, a definition of a new domain in terms of cne or more
domains defined earlier. The question is: should a change in the definition
A automatically invokz a change in the definition B? The user may have a
legitimate desire to have it one way or the other. Therefore, we must
have some set of rules by which he can control which is the case.

Since we are assuming a fully interpretive processor, we could if
we wished assume the dynamic situation wherein a change in A results in
a change in B. If we wished to avoid such a change, we can copy A and
rename the copy, then change the copy. Since we want and have the dynamic
change ability, this interpretation is preferable. In other words, under
the dynamic interpretation, we can construct a static situn.ion if we want
it. Under the static interpretation, we cannot as readily construct the
dynamic one.

The command interpretation of derfinitions. We need to identify a

common thread in the above list of examples of definitions. That common
thread is that all such definitions can be interpreted as commands which
affect the contents of storage. Some of these commands will affect unscen
storage within the processor: that is, they will in some way (which is

not defined for the user) affect the action of the processor. It seems
easier to understand and remember what each definition does if it can be

thought of in terms of its action within the program or processor, even

et

though this command inlerpretation of definitions scems somewhat contrary
to intuition,

This command interpretation of definitions helps to avoid the com-
plications of liaving to learn when definitions become effeztive and when
they cease to become effective. If we take the comﬁand interpretation
point of view, it follows that definitions become effective when they are

executed and that they cease to be effective when dynamically superseded

£33

.

29

by an-ilher definition. Furthermore, this command interpretation is
nicely compatible with the need for dynamic rather than static inter—
pretation of definitions, discussed above.

To summarize: definitions are to be established and interpreted
dynamically. Note that data is automatically treated this way, so this
choice follows naturally from our desire to be able toireat definitions
as dala until the instaut of interpretation.

A vital consequence of this fact is that compilers are ruled out as
possible processors for the language. A compiler necessarily treats all
definitions as static, fixed at the time of compiling, which is before
any execution has taken place.

NATURE OF A PROGRAM PROCESSOR

Basic to the idea of a programming language is the concept of a
processor. A processor is a mechanism, possibly a hypothetical one rather
than one realized in hardware, which translates into some appropriate ac-—
tion the expression written in the programming language. We call this
translation "interpreting a program'. Earlier, I presented the idea that
definitions were interpretable as comman?s, hence we can regard a program
as consisting of expressions, some of which is interpreted as commands
and the rest of which is i:terpreted as data (operands). VWhich interpre-
tation a given expression gets depends on the control mechanism of the
processor. As a consequence, it is perfectly possible for a given expres—
siun 10 be interpreted at one instant as a command and at another as an
operand. It naturally follows that a data element which is a program
statement (a "transformation'") can be created, modified, moved, etc.,

Just as can an 'ordinary" data element. The sequence in which data ele-—
ments (necessarily having a ceriain structure) get interpreted as commands
depends on the conventions for control sequencing, and on the manipula~
tions performecd on the control mechanism by otlhier commands (such as
"jumps"). As explained earlier, we want the processor noi only to be

able to handle a '"single thread of control" but also to be able to exe~—
cute multiple control "paths'" (through a program) in parallel and asyn-
chronously. In addition it must provide for the execution of 'chronic!"
(or “"triggered!") statements which are commands to be executed whenever
specified conditions prevail.

It is convenient to think of the processor as consisting of two main

parts, a f'command interpreter" and a "data interpreter". With this in

PRNENS

oy

30

mind, we can say that whether a given expression is a program statement
or a data elemeni depends on which interpreter it is sent to (by the
"control mechanism!),

It is this data interpreter which is the heart of my concept of dala
elements. It is the iask of ihe data interpreter Lo creale, examine, and
provide the means for modifying data elements. I{ can be said ihat the
data elements and structure of the language (or any language) is simply
the illusion that this interpreter presents to ihe user. The senses of
create!, M"examine!", and "modify" have to be spelled out in greater e~
tail. It is crucially important to realize thal the basic actions of the
data’'interpreter determine the whole character of the programming language.

We regard every program statement as expressible as a "transformalion
call". I have in mind a canonical form for expressing these transforma-
tion calls: it is the familiar "prefix form", of which an example is:

T(A,B,C);
Every statemeni in any programming language should have a counterpart in
this canonical form. For each statement type in each programming language
there might have to be a conversion rule for converiing it to the canon-
ical form. In some cases, some "understood" information might also have
to be supplied during this conversation.

With this viewpoint just outlined, the loading and execution of a
program consists of the following two simple steps:

1. Read in and store the following data elements and structures,

some of which will later be interpreted as program statements.

2. Begin by interpreting the data element named "P" as the first

program statement.

The idea that there is a canonical form for all transformation makes
the interpreter mechanism a conceptually simple one. The difficulty of
any such interpreter is that part which must examine (parse) a statement
and in effect reduce it Lo canonical form. If we could agree to keep
statements always in canonical form, the parsing mechanism would indeed
be simple.

LANGUAGE DEFINITION

Defining a language. Every concept in a programming language is

either expressed in terms of other concepts in the language or in terms

I'éd

i
i
i
I
i
i
'l
|

of concepts which are "primitive!", not further defined in the language.
These primitive concepls are defined rather by the behavior of the pro-
cessor, and the processor iiself is expressed, at leasi partially, by cou--
cepts which are not defined in the language which it is designed to pro-
cess. (This assertion is noi based on personal opinion but rather on

some fundamental ideas from the field of formal logic).

Extending a language. It is appropriate to point out herc that any

claim that a language is "extendable!" must be understood with the‘above
explanation in mind. Any extension, in any language, is made in terms
of ihe concepls for which definitions already exist, and in terms of
primitives. It is clear that the possible extenlions are limited to
what can be expressed by legitimate (ithat is, defined) compositions of
the already defined terms. The definition of definition requires that
by repeated subsiitulion of definitions in place of the defined terms,
ultimately all defined terms are removed from an expression, therecby re—
ducing the expression to one composed entirely of primitives. Thus it
is evident that user-created definitions can only intreduce convenient
'shorthand" notations. The imporiant consequence of all this is that a
language's primitives and syntax limit what can be introduced by user—
created definitions.

Self description. It is sometimes claimed that a language can be

self describing', or that a processor can be written in its own language.
This is a misleading claim. Some parts of a language or processor may

be describable in terms of the other partis, but this cannot be true for
the whole language or processor.

In particular, much as we would wish it to be the case, a data ele-
ment cannot be self-describing. When we look at some entity, we cannot
interpret it unless we have been given an interpretation rule associated
with it. For example, the string of characters

13
"means™" a variety of numbers depending on the number base (the interpre-—
tation rule) that is understood. Suppose that instead of having the num-
ber base understood, we write it down explicitly, so thai now we'have the
number pair

. 13 8

31

that is, "thirteen to the base 8". 1Is this now self-describing: interpretable

withoul recourse to an intlerpretation rule? No indeed. The interpretation
rule for 8 is understood; amoug other things we understand it to be writtien
in base 10!

The conclusion thal we draw is: an entity may contain some parameters
which pertain to the interpretatlion of the 1est of Lhe entity, but the
interpretation of those parameters must be specified by some understood
rule vhich has been previously-specified. In other words, no entity can
be wholly self-describing in any formal sense.

The choice of primitives. Selecling what I think is an appropriate

set of primitives for a programming language is one of the major objecctives
of this study. At this point I emphasize that in the choice of primitives
I do nol take the attitude of a typical mathematician. He is interested
in elegance— the minimum number of primitive concepts in terms of which
he can express all other concepts of interest to him. I am primarily
concerned with simplicity and convenience. This leads us to some middle
ground between two extremes:
1. A minimal set of primitives, somelimes resulting in complicated
combinations of primltives to express intuitively simple ideas.
2. A large, and therefore inconvenient if not unmanageable, set of
primitives.
I want to maximize the usefulness of the set of primitives to the user.
The choice between the extremes is a matter of judgment and taste.

OTHER ASSUMPTIONS AND COMMENTS

This section contains some miscellaneous comments which conclude
the setiing of the stage for the resecarch investigation.

Storage deallocation. Matters of storage deallocation are not con-—

sidered relevant to the logical language. The argument for taking this
point of view is that with enough storage available, storage dealloca-
tion during a given program will not be needed. Storage deallocation will
therefore be relcgated to the implementation language.

Scope of identifiers. A scope of an identifier of a data element

is that dynamic¢ period (during execution of a program) during which the
identifier can be used to reference that given data element. 1In languages
with nested block structure, such as ALGOL and PL/I, the scope of an as-
sociation of an identifier with a given data element is usually for the

period during which "control" is in the block or procedure in which the

I'td

R TRy

e

data element was declared. This association may be temporarily super—
seded if.in a block B contained in block A ithe same identifier is used
in a declaration of another data element.
Being able to define scopes of identifiers serves iwo purposes:
1. It can be used to signal automatic storage allocation and dec~
allocation.
2. It permits ihie repeated use of a given idenlifier for more than
1 data element, as long as, at any given instant, the identifier
refers only 1o 1 data element. This.is mosti useful for identi-~
fiers of "local variables" of a procedure (data elements declared
within the procedure) and formal paramecters (bound variables) of
a procedure.]
These uses of scope are conveniences, however, rather than necessities.
Since in this investigation we are noi concerned with storage deallocation,
the storage deallocation funciion of "scope!" is of no usefulness to us.
It is not difficult to avoid multiple use of ihe same identifier, and there
is no great hardship in requiring the user to keep his identifiers unique.
He is already required to do this for labels (identifiers of program state-
ments) at any given "level" of block structure, and to do this for data.
Qualifications of identifiers is a standard technique applied to data.
It is trivially simple {0 extend this tecbnique to apply to labels in
multiple levels of block structure. With ihe facility of dynamic modi-
fication and multiple parallel conirol paths, defining scopes is a diffi-

cult task. For the foregoing reasons I choose to ignore the matter of

scope.

e e e T

33

Ton WY

T T

34

CHAPTER 3. OVERVIEW

This chapler is concerned with an overall look at ihe research de-
velopmenis in this report. It summarizes whai is to come, and oullines
the major ideas, some of which are new and some of which are simply re-—
surrecled and revived.

I hope that a major contribution of the research has been the
clarification of a number of programming language concepts which have
herelofore been explained very loosely and intuitively rather than rigor-
ously. Examples of the concepis which have been explored are:

‘1. what kinds of treﬁtment can paramcters of a procedure undergo,

2. what kinds of relationships need to be provided for,

3. whal are the various ways in which a data element can be referred

to,

4, what are the implications about copying when invoking a procedure,

5. what is the natlure of the result of executing a procedure which

is a function (in the mathematical sense).

Perhaps one of the most valuable contributions of this work is to
show the complexity involved in szemingly simple language concepts. The
very simple concepts of formal logic and mathematics do not remain simple
when they are carried over into the programming contexi. In the analysis
carried out under this research project, these complexities have been
brought to light and examined. In particular, in being able to see what
flexibilities are possible one should be able to recognize more readiliy
the inflexibilities of current languages, and have more insight into the
reasons for these inflexibilities.

The kinds of actions possible in the system outlined here include
being able to create identifiers and data elements, and to destroy same,

to gatlher data elements into composite data elements, to manipulate identi-

search the silruciure and contents of data elements, to create and to des-

- troy arbitrary relationships between data el-~mients, to be able 1o regard

strings either as integral units or as composites of characters. Current
languages in general do not have these kinds of faciliiy; of course there

are occas‘onal exceptions.

Aspects of ihe Mlogical! part of a language. A logical algorithmic

language (independent of implementiation on a specific compuler) can be

A
i

viewed as having three major partis: data clemenis, dala transformations,

and sequencing rules. In some languages the statements to be executed

4

can be manipulated as data: we take this capability as the niore general
case and accordingly regard program statemenis as having the same struc-

ture as "ordinary data" until the instant that a stalemeni reaches control,

to be interpreted as a command.
A data element can be either simple or composite. A composite data

element is composed of other data elements with some specified relation-

i

! ships between them. The character of a progvamming language is completely
determined by its primitive (basic) data elemenis and ithe allowable ways
of combining those primitives into composite data elements.

] Data transformations can be divided into two classes: (1) those which
determine a value, (evaluate a function, perform a mapping) and (2) those

3 which create or modify a dala element. As I mentioned earlier, destroying

a data element is only necessary for the sake of using storage efficiently, -

and hence belongs to an “implementation language", not to the logical lan-

Fd

guage.

Sequencing rules specify the dynamic sequence in which data elemenis

1

|

A

3! are to be taken and interpreted as commands. Such rule: specify: (a) start
i -) and stop points, (b) changes of sequence, either temporary or permanent,

from the static sequence in which the statements are stored, {c) execution

.. conditional upon a predicaie, where the predicate may be evaluaied either

SPARI

when it is encountered or whenever any of its operands acquires a new
value, (d) iteration of a set of statements over a set or sequence of para-

meters, (e) initiation of parallel exccution of a specified set of state~

—

= ment scguences.

g 1 A language for a hypothetical machine. This report describes a lan-—

guage for just such a hypothetical machine as mentioned in the Introduc-

&

tion. The main characteristics of the language are:

[

e

1. Storage is viewed as an unlimited supply of "slots", or f'cells'.
Each such cell can contain a '"value', which is some string of
characters. Association-links of various lypes can express re-

lationships belween pairs of cells, or among sets (ordered or

T .
L it v e S o
L]

12

L EA R e e

R i i e e T NI o R AR [T e

S (G

e |

o vum—

36

urniordercd) of cells. Associated with each cell containing what
we think of as an ordinary variable can be another cell which
specifies the domain of ithe value in the former cell; in other
words, the domain is the name of a rule for interpreting the
value. An assccialion or relationship among cells creates a
composite data element. A given cell can participatle in multiple
relationships.
2, All statements (commands) arc in a standard form: the name of
the command, c¢r action, followed by é list of paramcters. The
parameters may ithemselves be transformations, and so on, to any
depth of nesting. Transformations which appear as parameters
are usually functions: transformatiops vhich return a "result".
This result, however, need not be a simple value; it can be a
composite data element (which may be arbitrarily complex).
3. A program is a data structure (a composite data element) which
is a network of statements, not necessarily connected. (That is,
‘there may be more than one separate network.) A program is exe—
cuted by having ''control" trace through such nelworks, and execut-
ing statements in the sequence indicated by the network connections,
except when "jump!" statements are encountered. If a program con-—
sists of more than one such network, each network is execuied
independently (simultaneously and asynchronously). Some of the
nelworks may represeni program segments to be executed only when
certain conditions arise (aliernatively expreczsed, "are true').
Provision exisis for several types of "changes of control", or
jdmps: ihey may be permanent ("go out"), cr temporary (perform!).
This hypothetical machine has not been tested, olher than on paper.
Among the reccmmendations given is the one that a simulator should be writ-
ten and used, so that the concepts presented herein will receive some
realistic testing of their usefulness.

The major ideas. The major ideas presented in this report: are dis-

cusscd below. Some of the ideas are new, at least in the sense that Lhey
have not been reported in the literature. The ones which arc not new are
hopefully a contribution to the state of the art by way of emphasizing

matters that have been given insufficient recognition.

ORI

.
i
|
I
i
|
l
'l

o e st

1. The key to oblaining a wide variety of oata elements withoul

increasing the complexity of a proaramming lanquage is to provide general-—

ized data elements. The most general siruciure is ibhe general network,

which provides for arbitirarily-specified relations belween arbitrarily-
specified elemenis. Too much generality, however, can be inconvenient.
Ways are nceded to specify more restricted structures within this general
framework. The mosti important conceplual device for expressing composite
data struclures is the n-ary relation. The mathemalical concepls of a
relation is a set of ordered n-tuples (115195, which our generalized data
element can express. The components of such n-iuples are frequently names
(that is, strings interpreted as names), bui can also be pointers (usually
numerical addresses in conventional machines): With such a generalized
element we can, for example, construct partial orderings, total orderings,
and multiple orderings. The abilily 1o express arbitrary relations between
data elements gives us the capability of using relatlions weaker than order-
ing: such ""directed association'" permiis, among olher things, the use of
circular ("ring") structures.

The composite dala elemenis available in current languages encounlered
thus far all seem to be special cases of a set of ordered sets (lisis)
whose sizes (lengths' may differ and whose componenis may differ in.type.

2. Domains of values of a 'mew" {ype of data element should be

creatable within a programming language (during program execution). What

is needed is the abilily to name a new domain and define by enumeration

or by algorithm arbitrary strings which represent the members, or valies,
of this domain. In conventional programming languages ihis is, in general,
not possible. For example, we could define a three-—valued domain wiih

the name "3V" and with members "-11, HOM, and "+1", We should be able

to go further and define synonyms for any members. The example just given
illustrates an elementary (non-composite) domain. However, the ability

to define domains musi include composite values. For purpcses of explana-
iion here, a composite value can be thought of as a vector of values;
actually it is a muck :ore complex object.

3. We should be able to define arbitrary functions on the members

of any domains. Such functions will give a proper result only for proper

(defined) arguments, and a result of "undefined" otherwisec.
Here is an illustiration of defining a domain and a function upon it:

Let there be a new domain, called "Truth", containing the representations

37

38

upn, wpEty and "U". Let ithere be a function, called "F.AND", defined on

this domain by the following table:

argl arg?2 result
T T T
T F F
T U U
F T F
F F F
F U F
U T U
U 8] U

where argl, arg2, and result are all from the domain "Truth." We picked
a pafticularly simple example. The individual arguments and the result
of a function, of course, need not be from the same domain of values.

The representatiions in a domain are not restricted to single characters;
in general they will be strings. It will sometimes be impractical to de-—
fine a function by means of a table (even ihough it is theoretically pos-
sible to do so); some functions, such as addition, will be defined by
giving an algorithm which operates on sirings representing vaiues.

L. The concept of one element serving as the "name!" of another ele-

ment is in itself a relation. Algorithms deal in manipulations of ele-

ments. But in fact we never "see" these elemenis nor exhibit them. We
refer to them only by their names or some directions for locating them.
Even so familiar a mark as "1Clv is not a number, for example, bui is
rather a name of a number. It is not the name of a number, for the same
number can have many names. Furihermore¢, this name can name many num-—
bers, until the number base associated with this name is known. Entities
which serve as names for other elements are sometimes to be treated as
data elements. The name "101" may at one moment be the decimal name of

a number, and at the next may be the name of a string whose second charac—
ter is zcrou. To further complicate the matteiry; the name "1G1Y may in

turn have a name, say, "BVALM". Programming languages have tended to

avoid these interpretational ambiguities by fixing the interpretations

of names, and thus they have tended to prevent the manipulations of

names as data and the use of indirect naming (alloving names ito have
names). If this flexibility is desired, then clearly the programmer must

have control over which way an element is to be interpreted.

T e

R I R SR =

39

5. The explicil association with each dala element of its "type"

L designation provides anoiher degrece of flexibility and anotiher technique

3 for discover, of programming errors. !'Type" in ihe case of a simple

elcment is the name of the domain from which the element's value is taken.
An cxample of such a type designation is "integer'". "Type " in the case

of a composite element designates a class to which the composite belongs.

e Ll

The inclusion of a type indicator in each element can be used as a basis
for tesiing the ilype of the elemeni and making further action contingent
upon ils type, and also upon its structure. The explicit carrying of
type information makes it possible to avoid the ~ution of a function
or procedure when its parameters are not of the required iype. For ex—
ample, a procedurc defined for three input parameters of types integer,

string, and label, respectively, should not be executed if any of the

input parameters are of the wrong type, but should instead return with
a specific error message.

An example of type might be length-—in—-inches. Even though the repre-
sentation of a spec 'ic Jength is ihe same as for an integer, a function .
defined for arguments irom he domain of length—in-inches could be ar-
ranged to refuse an argument from the domain of length-in-feet.

6. The concept of having a value called "undefined" is a valuable

one for the rapid discovery of programming errors. With proper use of

the value "undefined", any program can readily be prevented from computing
garbage”, values which lcok reasonable but which are in fact meaningless.

7. There can be two fundamentally diffcrent kinds of composite data

elements (data structures). The first kind contains its own structural

information; in the second kind at least some of the structural informa-—
tion is abstracted and put in some place common to a set of similar ele—
ments. In the second type, there can be defined a class of similar compo~
site elements. Each specific occurrence of a composite element is then

an "instance! of the class. Such a class description we have called a
model". (In the case of a simple element, we call the model a "type"

and an occurrence a '"token',) In the first kind of composite data ele-—
ment description, a composite element is created explicitly giving re-~
lationships which tie together elcments already defined. JTn ihis Jatter
case there is no model; we could call an occurrence of such a data ele—

ment a "model-less inslance!. Mosi, if not all, current programming

- =, " - YT L v e e o

<«

)

L oo v

Lo

languages provide for only one of these methods. This is a serious de-
ficiency, for each method has its advantiages.

8. The uscr musi have completle control over data =lements and siruc—

tures. Having this capability implies Several things. It implies that
all available information about a given data element musi be explicitly
stored and accessible to the user. Not only values should be accessible
and modifiable bui also a variety of information about a data element:
such as its structure, the specific relationships between its parts, re-
striclions on any of its paris as to values il may take or as to what kinds
of access it can have, when it was last modified, etc. Having this capa-
bility implies that comp&nents of composite data elemenils should not only
be accessible in the basis of an identifier but also by iis position and
by its relationship to another explicitly-known data element. It implies
that the user is not limited to the sel of relationships fixed by the
designer, but can construct his own, and test what relationships exist.
With the abilily to create new relationships among arbitrary sets of data
elenents (each of arbitrary complexity) the user can create new composite
data elements of arbitrary structure and complexity.

9. The user should have explicit and flexible control cover the pro-

cedure call mechanism. This means he should have control over how the

paramelers are interpreted, and when they are interpreted. The conventional
procedure call mechanisms do not in general provide such flexibility. ALGOL
does give the user a choice as to whetlher a parameter is 1o be "evaluated"
{("call by value") or substituted without evaluation ("call by name"); but

it does not give the user any control over when this parameter treatment
takes place: it is always done upon entrance to ithe called procedure.

The user should be able to assess dynamically whether a parameter is de~
fined, so that "garbage" cannot be passed as a parameter. The user should
be able 1o examine the parameter "iype", or "domain", and make the treat-
ment of the parameter, and possibly the domain of the resuli, conditional

upon ithe parameter type.

10. The concept of '"string" has a dual aspect. On the one hand, a

string is frequently used as an identifier or name; in this role, the
string is an indivisible entity. On the other hand, a string nay be an
ordered sct of characters; in this role, the string can be inspected, dis—~

sected, eclements replaced, ctc. The same siring can be viewed in only one

[S

41

of these ways at a given instant; it must be a data element with describ-
able characteristics. Onec of these characteristics is whether the elcecment
is simple or composite.

The same thing may be wanted in boih roles; thus provision is needed
for converting from one form to the other. This duality of roles gives
us the ability, for example, of composing a string and then using it as
an identifier. A sccond example would be the abilily to alter the spell-
ing of an identifier.:

Furthermore, a silring may be waricd as a unit, a "character", in a
Y"higher-level alphabet of sirings. This is a fundamential device for
creating an unlimited number of symbols out of a limited number of charac—
ters.

11. It is useful and helpful to view definitions and declarations

as commands. As discussed in more delail in Chapter 2, this viewpoint
makes it easier to explain and easier to remember whal effect definitions
have and the times at which they become effective.

12. The provision of multiple, equivalent viewpoints of a given con-—

cept makes a significant difference in a programming language. Il is fre-
quently the case in programming languages that the user is constrained io
look at a concept in only one way. This has the advantage that one user
can know in advance how another user has viewed and treated the concept.
It has the disadvantage thal full flexibility needs the multiple view-
points. By restricting the viewpoinits to one, in any given instiance, the
user may lose some of his ability to express his ideas in the way most
natural to him.

In the rescarch work reporied here, I have made a conceried effort
to avoid limiting ourselves arbitrarily to single viewpoints. The conse-
quence is that the user musi pay more attention to which of several possible
viewpoints is being used. He must know, for example, whelher a given set
is defined by an enumeration of its members, or by an algorithm which gene-—
rates the members.

13. Such fundamental mathematical notions of "sei!, "relation", and

"function' are not expressible simply and uniquely in the programming con—

texi. There are muliiple, equivalent forms of expression, but the equiva-

lence is not automatically invoked. It is impractical to legislate the use

| - S

N pailt | oo (A

e

e

«

b2

of only one of a set of equivalent forms, because cach form has its ad-

vantages. 1t{ is the burden of ihe user, therecfore, to know which alternate

equivalent form is being used in a given circumstance.

of

14, The ALGOL concept of "call by value" has been replaced by one

"call by reference". A parameler called by reference must either be

an
or
of
by

identifier of a data element or an expression which when "executed®
treated" will yiecld an identifier of a data element. Where identifiers
data elements such as literals and funclion resulis are nol supplied

ithe user, they musi be automatically supplied by the processor.

LTI L SR

shiciy

e s

ety

PVEIR (et Ly oo

i

S

1‘3

CHAPIER 4. DATA ELEMENTS AND STRUCTURES

FUNDAMENTALS

"Basic clements." An algorithmic language is largely characterized

by the kinds of data elements that can be described and manipulated. One
of my goals is to define a set of clements that include the elements col-—
leclively available in curreni Yhigher-level" programming languages. I
call this sel my "basic sel'" of elements. "Basic" does not imply thal the
elements are not composites of other elementé. Rather it connotes that it
is the set of elements which are "given"—"undefined in the language sys-—
tem", as the logician would say.

Those bhasic elemenis which admit of no fgrthcr subdivision, or alter-
natively stated, have no structure or are nol composite, I term "simple
data elements', or "simple elements!. Rather obviously, those elements
which are not simple must necessarily be composite. As we shall see later,
the components of composite elements may themselves be composile elements,
so that the definition of '"composite!" is necessarily recursive. Also as
we shall see later, 1 will choose some frequently-used composite elements
to be in the "basic!" category.

Alphabet. An alphabet is some set of distinguishable marks which aie
considered not to be decomposable into other marks without some special
operation. A language is based upon having a given alphabet. 1In the con-
texl of programming languages, the alphabet is some set of characters that
can be concatenated into strings. Examples of an alphabetl for programming
are tne set of characters on a typewriter keyboard, or the set on a card
punch.

We might ask the question: Can the given alphabel for language be ex-—
tended by means expressible within the language? It is indeed possible to
conceive of a wechanical processor which can perceive a character, add it
to the stock of characters in the processor's working alphabet, and be

able to outpnt the character in a form recognizable by humans. Such a

_processor would have to have some means of recording and reproduc.ng an

arbitrary mark. Mcst programming language processors (computers) available
today do not have the extension capabiiity just outlined. For this rcason,
I have chosen to limit the present phase of invesiigation to languages

and processors with fixed alphabets.

ot EEE] Rl we

Pensansradd

T

A

I.shall henceforth call ihe alphabet the "given alphabel! The
given alphabetl includes all the characters found on a standard iype-—
writer keyboard, plus some olher charactiers which will be specified later.

Siring. The notation of string is primitive (not defined in the lan-
guage). A siring is a sequence of any cﬁaracters of the alphabet, possibly
including blanks.

Having chosen the notion of siring as primitive we are faced with a
problem: how can a string be splil into its component parts? VWe have on
the one hand the notion of a string as a unit, playing the role of a
single, individual svmbol. On the other hand we ai times wani to consider
a string as an ordered sct of characlers, and have the ability to scan und
to médify this set. It is this dual role for strings which presents the
problem. We simply noie the problem at this point; its resolution will
be treated later after the concept of composites has been developed.

Note that a string as here defined can contain quote marks. VWhen a
string containing quote marks is quoted—surrounded with quote marks—
ambiguily may result. That is, it may not be possible by inspection to
discover the original stiring. Techniques exist for preventing such ambi-
guity from being created; these are discusscd elsewhere, in a section en-
titled "The control character interpretation problem".

Defining sets. One of the primary abilities needed in a programming

language is that of defining sets. One class of members of sets is value-
strings. Another class of members is data elements, both simple and com-
posite.

Thera are a variety of ways of expressing sets. All these ways should

be usable by the programmer:

1. enumeration, a listing of the names of the members. (If the mem—
bers are value-strings, their names are simply the quoied value-
strings.) Such an enumecration is represented as a composite data
element (unordered).

2, generation, an algovithm (or formalion rule) for generating ihe
names of the members. For example, "all strings of length less
than 10 which are composable with the substrings 'A', 'AB', and 'C'."

3. resiriction of a given set by a condilion (a predicate). Alterna-
tively stated, this is a decision rule, a recognition algorithm,
for deciding if a member of some given set (some "universe of dis—~

course') is a member of the desired scet. The desired set is in

effect derived by examining in turn every member of the desired
sel. VWhere the universe of discourse is small, this "flotal exam-
ination'" scheme is workable and useful; where the universe of dis—
coursc is not small, however, this scheme is impractical. There
are some interesting special cases of this method:
a. stating properties that members, assumed to be composites,
have in common;j
b. being in a class of data elements which stand in a given
relationship io a given entity. Specific examples:
1) having a given element as a model;
2) being an identifier of a given element (a set of identi-—
fiers thus defined are synonymous).
(Some fairly cumberson devices have been used to express
this concept. 1In AEDNET, for example, this seil of relation-
ships is expressed by tying the related members together in
a "ring" structure.)

k. some sct—theoretic combination (ihat is, union or intersection)

of sets already defined.

Note that sone sets exist by virtue of satisfying some predicate (e.g.,
have some specified relationship to a specified set of properties), and
are not otherwise explicitly listed as being in a list or set.

For the purposes of testing whether a member is in a gfven set or
list, the user theoretically need not be conscious of whether the answer
is delivered by a recognition algorithm or a list search. For the purpose
of modifying lhe set, however, the user must be conscious of the distinc—
tion, because the modification of each must be done differently.

From a praciical standpoint, however, even the asking of questions
about set membership would appear te require the user to know how the set
is defined. To do otherwise would burden the processor with deducing how
the set was defined; this seems to b2 a non-irivial task.

I make the provisional definition thal Yset!" is a general, abstract
concept not representable in a unique way. The construction, testing,
and modification of sets demands that the user know, and be explicit about,
how the scts are defined. The testing of set membership must then be
spelled out explicitly according to the nature of the set. E.g., is X

in an association list (X,Y,Z)? Does X stand in tihe relationship R to

Fostiac SR T

taead ERETY

B

46

clement 1? Does X have elements A,B standing in the relationship P to it-
self? Since a list is a set with a tolal ordering imposed in it in some
way, lhese arguments apply to the concept of list as well, and, in general,
to any ordering. In ithis connection, it may be useful and desirable to
have transformations which will convert one type of setl representation to
another.

Sets. Ii will on occasion be desirable to provide for sets having
repeated members. In order to be consistent with the well-established
mathematical definition for "seti" I call such an entity a "set with pos-—
sible duplications! or, verhaps, abbreviate it to "set wpd" when I am
lazy.

A sel is a single entity whose cardinality is 1. We will on occasions
encounter an aggregation which has not been éxplicitly defined as a set.

It will be more convenient for certain purposes not Lo regard this as a
set but rather as an enlity haviug the cardinality of the number of mem-
bers. I arbitrarily choose the new name "aggregate! for this entitly.

Equivalent concepts. There are fundamentally different ways of ex—

pressing the same concept. 1In our thinking, and in expressing a concept
in natural language, however, some means must be available for dealing
with equivalent concepts. Of course, it would be desirable to have the
processor recognize such equivalences so that the user did not have to
concern himself with them. This is {oo much to expect at the present time,
however; I dismiss this possibility from furiher consideration. As a con-
sequence, we must place on the user the burden of knowing which of several
equivaler.t forms he may be using, and of converiing f.om one equivalent
form to another when the need arises. Another way to phrase ithe problem
is that a setl of concepts may be equivalent at one level of detail (or
level of abstraction!) but may not be equivaleni at another level. The
import of this philosophy will become clearer as the concepis of data
elements are introduced and discussed.

Notational conveniions for brackets. I adhere to the following use

of brackets:
[eveeieeceevnnececsnacanneasd imply an ordered set, or Wlist"
{..........................3 imply an unorderecd set
(R | imply grouping, without specification

as to ordering

e T ?_";T:V;F 2

iR

117

DOMAINS, MEMBERS, AND VALUL-STRINGS

A domain is defined to be a sci of entities where "entities" is about
to be defined by example. Examples of the domains used in current lan-
guages are:

1. "real", meaning posiitive and negative rational numbers (up to

some magnitude usually dictated by the word-lengih of the machine
on vhich the processor is implemented);

2. M"integer", meaning positive and negative whole npumbers (up to some
magnitude usually dictated by the word-length of the machine on
which the processor is implemented);

3. "Boolean", meaning the set of 2 members: "{irue”, and "false'.

4. "Siring'", meaning the set of all strings composable with the alpha~
bet of characters available on some assumed processor, and with a
specified bound on length.

The members of a domain are variously describable as "entities", "concepts",
or "values'". However they may be described, the individual members are

1 ideas, and these ideas are not directly sensible by a machine. Each men-

A ber is therefore represenied by some string of characters. It is this

string of characters that can be sensed and manipulated by a computer pro—

gram. These strings of characters representing members of domains I call
"value-sirings" because they represent 'values!, because they are strings,

and because lhey need to be distinguished 1com other types of strings.

To repeat, computer programs deal with classes of entities called
3 'domains of value-strings". Value-strings and domains are discussed in
§ - more detail below. This research is based on the idea that the user should
be able to create domains of whatever value-strings he wishes, and io be
able lo define functions on these domains.

Value-string. A "value-string" is a member of the set of finite,

non-null strings* which can be forimed from the given alphabet.

faSb i kit

Lo bh iy 1

*"Finite, non-null strings" is the mathematician's way of saying
"all strings excepi those composed of no characters and those com—

posed of an infinite number of characters.

. A valuc-stiring represenis a value, where a value is a member of some set

3 of concepts called a "domain". A processor cannot sense this member (ihis

P " . i Ee . - PR
I e R el v '

value)} it is only a conceptl, such as a '"number', a "truth value", a
state" of an objecl, or a '"value of a property". We can only represent
a member of a domain of values, though possibly we can represent it in
more than one way. It is only in tlerms of these representations, which
are arbitrarily chosen, that machines can be made to deal with concepts.
The "meaning" of a valuc—-siring may be suggesied to us by its form, butl
its meaning or behavior in an algoriithmic process is wholly determined
by the functions that are defined on it.

Words sometimes used {o mean what I define as '"'value-string" are:
"value", Mliteral', "string", "representation', "constant!, and "non-
logical constant",

.A value-string may be used to represent members in more than one
specific set of concepts (domain of values). Or, what amounts to the same
thing, a value-string can simultaneously be associated with more than one
domain of values. In such cases, to avoid ambiguity, it is necessary
when exhibiting a value-siring to specify at the same time to which set
or domain it belongs.

A 'value' can then be defined as an abstract concept or invisible
entity which is represenied in some processor by a value-string. I use
abstract! and "invisible" to emphasize thal the represented member is
not present inside the processor: only its rep sentation is present.

Domain of values. 4 "domain of values" is a set of concepis. A do-

main of values has a corresponding set or domain of value-strings, which

is some subset of the finite, non--null strings composable with the given

alphabet. An example of such a sel of value-sirings is {T,F}. (Note to

the non-mathematician: the curly brackets are conventionally used to mean
a "set", a collection of elements in no particular sequence)

A domain of valucs has a name (possibly more than one name), which
itself is a value-siring from the sel of possible strings. I call such
a name a "domain designator". An example would be "Boolean'", which is
the uzual name for the domain whose associated value-strings are "I'!" and
WF, It is a convenient and harmless ambiguity to lel & single string
serve both as a name for a domain of values and as a name for the set of
associated value~stirings. Henceforth, I allow this ambiguous role of the
"domain designalor'". After this present section, however, my use of
"domain designator” will refer consistenily to sels of value-strings. A

sct of value-sirings I will consistently call a "domain."

48

Ve

- e Ao, o =

-’

B e s e A -

3

.49

Al first il mighl scem decsirable to have all possible value-sirings
in one big domain-—a "universal domain', or "universe of discourse". It
is desirable, however, to divide the sct of value-strings (ihal represent
values) inio named, possibly overlapping, subsets (domains) for the fol—
lowing reasons:

1. To permit the use of a given value-siring to represent different
concepls. Example: "2" could simultancously represent a length
in inches, a weight in pounds, an amouni of money in cents, and
the number of members in a specified sect.

2. To make possible the prevention of nonsense: the preveniion of
ihe computation of "garbage". Examples of nonsense: (a) to set
the value of a Boolean variable to "30"; (b) to set the value of
a data element intended to take the values of weight in pounds
to the character "2"; (c) to multiply inadvertenily 3 feet by 18
inches expecting to gel an answer of area in square inches.

We need the ability 1o specify and name new domains to suit special pur-
poses, for reasons of convenience and checking, and to get an output in

a specified form. It should be possible to definc new domains noi only
at the time a program is writien, butl alsoc during the execution of a pro-
gram.

Defining a domain. A sel of value-strings corresponding to some do-

main of values can be described in any of several basic ways: by enumer—
ation, by a generation algorithm, or by a universe of discourse and a
recognition algorithm. These basic techniques for describing a set can
be used in combinalion to describe other sets. Il is also possible to
create new sets out of set-~theoretic combinations of sets already defined.
Enumerated domains can be in the form of composite data elements,
while domains described by algorithm will be implicit in those algoriihms.
In order to be able to construct a new domain, however, the concept of
domain musi{ already exist, as musi the domain of strings. The concept
of domain is created by having as part of the given sysiem a domain of
domain names. This is a composite of fixed structure, telling for each
domain whether it is defined by a data element (a composite) or by an al—
gorithm, and for ihe algorithm case it may give an identifie™ of a gene—
rator of ithe menbers oi the domain, an identifier of an existei.ce recog—

nizer for members of the domain, and ihe identlifier of an equivalence

50

generalo™ and recognizer. An initial entry in the domain ox domains must

bc the name STRING. It should go without saying that the given system

must also have the functions and transformations needed to carry out this

e

domain definition process, including the algorithms for generating and

recognizing strings.

| A |

It will on occasio:,* be desirable to be able to specify an ordering

of the members of a domain. Fer example, for the “omain of characters,

T

one might wish to be able to define a total ordering of the value-strings:
this ordering is commonly referred io as "collating sequence." Another
example: to give in order ihe designations of the hours in a day: the first
hour is anomalously numbered 12 rather than 0, sc we have the ordered set
[12,1,2,3,4,5,6.7,8,9,10,11]). (The reader is rcminded that throughout this
work, I shall consistently use the curly brackets to bracket an unordered
set, the square brackasts to bracket an ordered set, and parentheses to

indicate grouping without regard to the ordering of the parenthesized mat-—
erial.)

Expressing ordering on & domain will be done in one of two ways:

1. It the domain is defined as a composite data element, the order-

[s-gh-r]

ing will be expressed as relationships between the component
simple elements.

2. If the domain is defined by algorithm, that is, by a pair of al-
gorithms, one of which generates the domain and the other of
wvhich reccgnizes an element in it, then ordering will be expressed
by a third algorithm which tells if iwo elements stand in the
ordering relation.

Note also that ordering a domain makes possible another means of

referencing a value-string: that of giving a domain name and the ordinal

position of the desired element within that domain.

Including units of measure in a domain. How do we apply our domain

and representation concept to the expression of numerical units? How,

for example, shall we prepare to deal with lecngth in feel? There are

two obvious choices:

== Zawmeca

1. Let the domain-name be "length—~in-feet" and let the representations

associated with it be numbers, say, integers;

oo

2. Let the domain-name be '"length!, and let the representations as-—

X) sociated with it be numbers (say, iniegers) followed by a unit
3 g name, say, inches.

.
U

ol B 1ot s, e

———— - -

— el e P e

bt

From the standpoint of domain definition, both approaches are equally
acceptabie. The second approach, however, imposes the additional burden
on the processor of recognizing that a number followed by a unit desig-—
nation is to be considered a single represeniation.

Similarly, one might wish to have a domain of U.S. dollars. We have
the choice of including the dollar sign and decimal point as part of the
value—string, or we can supply it by an editing transformation when needed
If the non-numeric characters are included in the "alue;strings, however,
the functions defined on these value—strings-are somevhat more complicated
to write.

Multiple value-striﬁg§7for the same concept. We may wish to have

muitiple representation for the same concept. For example, the numbers
10 and 8 in base 8 and base 10 notations, respectively, represent the same
integer. In order to be able, for output, to choose between these repre-—
sentations or to check them upon input we should be able to assign them
to different domains. However, there is no reason that we cannot have
two different but equivalent representatioﬁs in the same domain. This
may give rise to some ambiguities, but as far as I can tell, they will
be harmless ones. (There may arise a need for some convention as to which
of the equivalent representations is the "principal' one; this might be
needed for debugging or output purposes where the specific domain was not
explicitly specified.)

In order to be able to use equivalent value-strings interchangeably,
however, we need some means of expressing their equivalence. That is,
we need some explicit way of declaring that two value-strings, whether
they be in the same domain or in different domains, represent the same
concept. Whether two equivalent representations can be used interchange-
ably depends on how functions are defined on these representations; this
will be discussed in more detail later under "Definitions of Functions".

Defining pairwise equivalence for sets of representations can be

done either by explicit enumeration or by algorithm. For large sets, how-

. ever, such as for the range of integers handled by a given processor, it

is obviously unfeasible to do it by enumeration.

Special and universal ccncepts. There are a number of concepts with

broad applicability which could be concidered automatically to be members

of every domain. For the purposes of permanent preservation and ready

51

bl

™

TR TN PP ro

U3 e

-

common to all other domains. Our first member of the universal domain is

‘ 5n

UIPSRPRo, ;-

availability for the construction of new domains, we might have these "uni-—
versal! concepts stored in a domain called M"UNIVERSAIM. These universal
concepts are discussed briefly below.

The concepts of “érbitrary" and '"random" are useful for selecting

e N e w e ben -

an element from a composite such as a set or a list. We take the view

that they are functions which can be applied to some element. In parti-—

.
o %

@

cular, they can be applied to domain designators {(which name a set of

value~strings) to select one of those strings. It can also be applied
to the set of domain designators, in which case it selects a domain desig-
nator.

.The concept of Mundcfined" has the nature of being an explicitly-de—

fined member of cvery domain, including that of domain designators. It

2 o e st It B AT

seems impractical to have to include the value-string of Y“undefined" in

every domain. An alternative is to construct a special domain, which we

might call the “universal®% domain, in which we will put value-strings

then the value-string "undefined". We might also have a special charac-~

ter reserved for this role, which we would then declare to be equivalent

o i AN Y AP e a2t T

to Mundefined",
Note that there are two kinds of "undefined":
1. domain unspecified and not uniquely determinable from value-string. i
2. value-string unspecified, although domain is specified.

Note also that these two types of "undefined" can apply both to arguments

and to funntions. Diagnostic messages should distinguish between the 2

types of "undefined!" and should indicate whether it arises from evaluation

of arguments or of a function.

-
)

Other candidates for ihe "universal" domain include:

1. "missing", meaning"relevant but unknown''; perhaps “undefined" is

good enough for this purpose;

B A

“

2. Ynon-existent entity": empty (cardinality zero), no correspondent;

JOU 1Y

5. fistructure undefined!;

4, "structure improper!; _

5. "inconsistent", contradictory; overdefined;

6. "ambiguous", as might result from asking for Ythe name'" of an
element which has more than cne name;

71 tumrestricted”" or "any"—this will have applicability as a value

of a restrictor;

———— - “‘w:' - ?"‘o‘

rani R e 4

53

ol e
(=~}

"unspecificd" means "derivable from other information' as is lhe
domain designator associaled with a value-string which exists

in only one domain.

9. "null®, an element of cardinalily 1, as distinguished from "empty",
above, which has a cardinality of zero. The concept of null is
extremely useful for constructing recursive definitions.

SIMPLE DATA ELEMENTS

Cells", 'variables!, and "constants". A 'cell" we define to be a

storage slot of unspecified size which contains exactly one value--string.
(If no value- 'tring has been put into it by the user, then it must con-
tain one which is interpreted by the processor as meaning "undefined'.)

Words sometimes used to mean what we define as "cell® are "variable' and

e

Tatomic element'. A cell may have identifiers associated with it, by means
to be discussed later.
There is a distinction between a "variable X" and a "constant X".

If X is a variable, UX" is the identifier of a slot containing some value~

7

el wend WSS RS werd aew e

string wvhich is called the "value of X", The "constant X", liowever, is a

value-~string. It does not have an associated identifier and it cannot be

e

modified in the sense that a variable can be modified.

Féd

When a variable is assigned a value, that is, when a cell has a value-

string put into it, we say the variable is !""bound". It is then no longer
variable, it is constant (although temporarily so, perhaps). A variable,

or cell, is not a constant in the sense of being a value-string. Rather

r—;§\ e—i

it contains a constant, or value-string.

A das

Simple data elements. A simple data element, as distinguished from

° .t'i 3“

a composite one (to be defined later), is compused of one or more cells.

A simple data element can be thought of as one which expresses a single

—

value of a variable, a single concept. It corresponds roughly to the idea

of U"simple variable" in ALGOL.

]l"l AR
[]

: One of the cells of a simple data element holds the "principal value—
' string" of that data element. Other cells, tied to the principal value
rl cell in specified relationships, can hold such entities as identifiers,
domain designators, aund other pieces of information Mabout! the principal
"‘l value-string. This definition of "simple data element" may be confusing

because the cells tied to the prihcipal value cell can themselves be simple

data elements. 1In general these latter are incomplete simple data elements,

)

oy

DEa”ar

rofari ey e aca i

e T

’-'-.{

If they were not, a simple data clement would have a set of simple data
elements giving information about cach, and so on, ad infinitum.

A c2ll can have associated with it, in various naming relationships,
a set of strings from the domain of "identifiers'". Examples of such
naming relationships are: ordinary-name—of, principal-name-of, class-namc~
of.

A domain designator can stand in either of two rclationships to a
cell: it can be in the relationship of “domain descriptor', or ¥"domain
prescriptor!, A domain descriptor is used when the domain of the value-—
string cannot be discovered by inspection: that is, when the value-string
occupying the cell is not unique to a single domain. A domain prescriptor
is used to prevent the cell from beiny assigned (from containing) a value-
string from an unwanted domain; ultimately this helps to prevent the com-
putation of Mgarbage'". 1In other words, the value-strings which stand in
a domain prescriptor relationship to a given cell specify the domains from
which value-strings can be accepted. A domain prescriptor is not limited
to being a single domain designator, however; it can be a set of domain
designators, which are then interpreted as being alternative possibilities.

Some intuitive (informal) illustrations of these concepts are given
in Figure 4-1.

Constants. A constani is a value-string, stored as the constants
of some cell, and having an associated identifier. A conétant may be pro-
tected from "damage" (inadvertent alteration) by having some protection
indicator attached and by having the referencing mechanism mzke a check
for this indicator. This indicator is under the user's control, so that
he can turn proiection on and off as he wishes.

Identifiers. There is a very special class of value-strings which
serve as names of data elements, Henceforth we call these names "identi-
fiers". The reason that identifiers are singled oul for special mention
and treatment is that as a class they provide the fundamental technique
by which reference is made to data elements. However, individual identi-—
fiers are not the only device for being able to reference (access) a data
element. The whole issue of referencing will be discussed in detail in
Chapter 5. .

An identifier is some string of characters of the alphabet. ,To avoid

parsing problems, I arbitrarily restrict identifiers to be strings not

BN 5o

P L

P e g

P

T oS s vn = P

S i O IR \ NI

A— N -

l Domain

. . Principal
Designator Relationship Value

: =

‘I (‘ 'nieg;;—i:>
I

Domain Descriptor

(¢)
N Domain Prescriptor
< integer }< undefined }

™~ Domain Descriptor -
1’ (lyndefined) '>< undefined;:>

i

55

Comment

Value-string; domain
designator not needed
for uniqueness.

Value-string plus
associated domain
descriptor.

Domain prescribed but
value-string not defined.

Neither value-string nor
domain descripteor is
defined. Expresses the
concept "any'",

. Identifier
. \, Ve
. C ct) 2 123)

S Domain Descriptor
- < integer-_\}—*

Figure 4-1.

Contents of cell is
not a value-string but
rather is an identifier.

Examples of Simple Data Elements

s |

e

s L e
-

S

3
@
3

mecy

. 56

containing blanks. The spelling of an identifier can be changed by pro-

grammable action, though not without running a risk of adverse conscquences.

I take the point of view that the identifier of a data element is
another element that stands in an Yidentifier relationship” to the first
element. I say, for example: "The string!"Ci!" stands in the identifier
relationship to the number represented by the string "123"., The identi-
fier relationship is not fixed; that is, a given string considered to be
an identifier can become fun-related" (in the sense of dissociated) to
one data element and be put into an identifier relationship with another
data element. '

The relationships of naming by identifiers I take to be primitive,
because there is no way in general of referring to a data element in order
to explicitly state that it stands in an identifier relationship. We will
be able to attach any string (having no imbedded blanks) as an identifier
of a storage cell. How this attachment is to be represented in a proces-~
sor is undefined in the language. More precisely, it is undefined in the
usér language, though of coﬁrse it must be defined in some way so that
the processor behaves aﬁpropriately when it receives one of the following
direétions:

1. Access the cell whose identifier is the (named or exhibited)

string H

2. Exhibii the string which identifies the data element which has

the following properties

A string can be made to stand in an ideﬁgifier relationship to nore
than one cell, as pictured in Figure 4-2, This makes the identifier ar
ambiguous one. Used by itself it involves a set of elements (but it does
not name an element which is a set). It is up to the user to be aware

of any ambiguities he may create, and provide for their resolution when

'necessary. To access a cell which has an ambiguous identifier, the ambi-

guity must be resoived by some information in addition to the ambiguous
identifier. For example, a pair of ambiguous idenlifiers may have a unique
intersection: that is, there may be only one cell to which they both stand
in the identifier relationship.

Several identifiers can stand in the identifier relationship to a
single element, as pictured in Figure 4~3. We say that these identifiers
are "synonyms"'with respect to that element., One of these identifiers

can be made to stand in the relationship of "pﬁincipal—identifier" to an

e

TR

moni B SN SN 3N O e

Bl il

© 57

element. This latter provision is to make possible the obtaining of a
consistent answer to the questiion "whati is the principal identifier of

the element having the following characterstics 20

Notice that we ma, kave a complex situation, pictured in Figure 4~4, in
which YA" is ‘he principal identifier of element 1 and an ordina.r identi—
fier of element !, while #B" is the principal identifier of elewea. 2 and
an ordinary identifier of element 1.

If strings VAY and "B!" both stand in the same identifier re. ticash p
to the same data element, "A" and "B" are synonyms. That they stand in
the synonym relationship to each other is an implied)relationship, but it
is not explicit unless we make it so. The language processor is not going
to méke logical deductions for us!

The set of all possible identifiers forms the domain of identifiers.
This domain will necessarily be defined by an algorithm because it is
too larqe 1o enumerate. The set of identifiers actually used in a given
program,'however, must be explic{tly enumerated and stored in some special
place known to the processor, for this set of identifiers must be examined
each time a reference is made to a data element by giving its identifier.
How a given identifier is "tied", or "related!, to the data element it
identifies will be explained later.

Since each identifier used is actually stored, it has the status of
a data element. As a data element, it is accessible to the user; he can
inspect it, modify it, or réplace it. One might think that in order to
access a data element which is an identifier one would need to reference
it by yet another identifier; this is possible but not necessary. An ob-
vious way to reference an identifier is to exhibit the identifier strings

in quotes, since quoting a string makes it into a name for itself. There

are yet other ways to reference identifiers, whiich are based on relation-

ships to other known data elements; how this can happen will become clearer
later.

Since identifiers are data elements, they can be created, accessed,
modified, associated with and dissociated from other data elements. Such
abilities are in distinct contrast to those in current programming lan—
guages which are designed to be compiled. In such languages, identifiers
expressed in the source language are "lost": they are converted “o machine
addresses by the compiling process and are thus made inaccessible to mani-

pulation by a program.

oy e IR L Sttt B e TP

=,
| '

Fig. 4-2 Ambiguous Idertifier

58

]
/
i den‘bifi,@f..—-—-—*"‘"\v’) C D
e

B

Fig. 4-3 Multiple Identifiers o
. element 1
(A) principal jdentifier)
~3de —7
n o
\t{{iep e -
se¥ ~
:Lf,'\ve/

element 2

. agsv>> T~
) -‘ . . . - =
(B) principal 1dent1f1er\}<

e

Fig. 4-4 Complex Situation Involving Multiple Identifiers

Id

| et

i” ,‘I
1
(O

rrai il LR AR
T

"There will be occasions when a data element will need an identifier.
In such a case, if an identifier is not sapplicd by the user, it mus.

be supplied automatically by the processor. On the occasions when an

g

identifier is generated by the processor, the generation must be done

in such a way as to avoid conflict with existing identifiers. This con-

o

flict could bz avoided by the processor's using one or more characters

reserved for the purpose. This is undesirable, however, because the user

e Ry

should be able to ask: '"What is the identifier of the element designated

*

?" or "What is the identifier of the element having the

A i

characteristics n

ade

On occasion the programmer could accidentally generate or specify;

an identifier that the processor had generated automatically. If we wish

Pesss m“"

to avoid this, we must either tell the programmer how to avoid accident—

ally picking an identifier that could be generated, or we must make every

(273

a - ‘:Ta

introduction of an identifier give rise to a check of all existing identi-

TSI

fiers. The former is undesirable, and the latter, in the general case,

o

is costly to implement. A compromise, but not a foolproof system, is to
\f -

have the generated identifiers be of such composition that 1o human being

* ,\,.

would normally conceive of it as an identifier: for example, such un-
likely sequences as "XXX.1G",.

Unless' prohibited by formation rules for identifiers, a given string
may both be an identifier of a cell and be a value-string. Which inter-—
pretation it should have in a given instance must be determined from con-
text. For example, if a string is an argument of a function cell, the
definition of the function may determine whether that argument is to be
interpreted as an identifier or a value-string. It is less confusing,
however, if a given string is not used both as an identifier and as a
value-string.

The concept of "indirect name" is }eadily seen to be represented by
an element standing in an identifier relationship to a second element which
in turn stands in an identifier relationship to a third element. The
first element can then be said to be an indirect name of the third element.

"Such a chain of elements linked by an identifier relétionship could be
arbitrarily long. In such a multiple-link chain, the number of steps to
be taken from an element, regarded as an identifier, to its correspondent

could be given in any of several ways:

1. One might trace identifier relationship steps as far as they go.

60
| ,
aé é. One might expect to give ithe number of identifier relationship
steps to go.

2 gh 3. One might find an explicit "indirection indicator" attached to
: some elements.

- I have not said the last word on identifiers. Later I will deal
] with two more issues:
? 1. The association of an identifier with a composite data element.
A 2. The association of an identifier, or marker, with a point "between"

two succesive data elements.
Review. The following examéle shows in more detail how we can use
; the concepts explained thus far. We assume the existence of a processor
v ' whicﬁ has the defining capabilities that are needed, but which has as yet
no particular domains or functions defined other than the primitive domain

of a given alphabet. Assume that the following statements are steps in

a program:

1 1. Choose strings "T!" and "F" as value-strings of a new domain.
]

2. Associate the identifier "Boolean'! as a name of this new domain.

3. Define a function on this Boolean domain as follows:)
a. arguments 1 and 2 called by value (in the ALGOL sense) N

1 b. result is from the domain "Boolecan!
c. function table is:
3 argl arg2 result
3 { T T T
, : T F F i
(F T F X
] F F F :
3

L, Associate the identifier "AND" as the name of this new function.

5. Evaluate the function AND ("T!, !TH): answer "TU,

6. Evaluate the function AND ("F", WTRUE"); answer: "undefined",

because the argument "TRUE!" is not yet defined. :
l 7. Add to ihis "Boolean' domain the value-string "TRUE", :
8. Let "T!" and "TRUE!" be equivalent.
9. Evaluate the function call AND ("TRUE", UTH): answer "V,

e

i o Ao -

10. Add to the "Boolean! domain the value-string "yt'.
‘ 11. Evaluate the function call AND ("U', U"F") answer: "undefined",

because the function hasn't been defined for this combination of

i arguments.

o e

— s . .

61

12, Add Lo the function table for the function M"AND'":

argl arg2 result
T U U

F 1] F

U T U

U F F

U U U

13. Evaluate the function call AND (MU", UWF"); answer "F".

In this example we defined the concept of Boolecan variable, then defined
the Boolean function AND, and then exiended the domain and the definition
of the function to include a new member of the domain. Try that in your
favorite programming language!

‘The reader has been introduced to the idea of setting up arbitrary
domains of value-strings and defining functions upon them. These are the
most trivial, fundamental concepts, yet fev, if any, programming languages
provide for them, Current programming languages provide a few, fixed do-
mains: letters, digits, and possibly a few other characters and strings
of these; decimal integers up to some maximum arbitrarily chosen to match
the word length of some hardware machinej a set of rational numbers cor- -

responding to that set of quantities manipulatable by some "floating—

¢

point!" circuitry of the same hardware machine; a 2-valued, or "Boolean'!
domain. It should be painfully obvious that most current languages lack
the facilities for defining new domains, for representing the concept of
"undefined", for constructing identifiers freely.

How, in current languages, do we define, or simulate, a new domain?
We may be lucky enough to find that the domain we want is,a subset of an
already-defined domain. If we aren't so lucky, we will have to map men—
tally the domain we want into a domain that we have. And this seemingly
simple mapping can be very troublesome. Consider what we must do if we
want a domain of M"true,! "false,!" and "undefined". We might map these
into a restricted integer domain of O, 1, and 2, or perhaps -1, 0. and
+1. Then we would have to redefine all the conventional Boolean operators
("and', Yor', and "not", etc.) as operators on a set of numbers. This is
possible, and workable, but an unnatural and confusing situation.

COMPOSITE DATA ELEMENTS. ILLUSTRATED

Introduction to composites.- For all but the most trivial computations,

data elements are neceded which are not individual data elements but which

33 A T AL wﬁwwwwmwmmwwmmwm B W

g ” S e d N s By N T
TTETe o e R L KON A s b LA e RS
. .

-

73

' 62

g arce s~ts of elements associated in some way. Such a set of related ele- i

[P

ments we shall call a "composite data elementM. A simple example of a f
composite data element is a complex number, which is an ordered pair of
iwo numbers, the components of the composite being termed the "real
part® and the "imaginary part", respectively. A szcond example of a com-
posite is a human family. Such a composite has, usually, three components:
ﬁ termed a "father", a "mother", and '"children", where children in turn is
another composite, a set each of whose members is a '"child".

The design and storage arrangement of composites is a non—trivial
undertaking. In fact, for some complex data processiiig problems, it is

probably the activity that takes the majority of the analyst's effort.

This section intends to explain what is needed in the way of methods of
dealing with composites and to show one way of attaining the desired end.
F Because the subject of composites can be complex and difficult, I am
3 initially going to avoid definitions and abstractions, and present instead
a series of examples. Thus I will exemplify 'the requirements before for-
malizing them.

When I am describing composite data elements I must indicate which

of two kinds of description I am using: one kind describes the individuals

in the class; the other kind describes a single composite as if it were
the only inslance of a class. The first kind of description I will say
concerns a "model" and its instances, and I will refer to it as the "model"
type of description. An example of the model type of description is the
record description as used in COBOL and PL/I, which gives a record layout.
Each record of the file to which the record description belongs is an
instance of this record description or "model". The second kind of des-
cription is that of a lone instance which is not a niember of a class of
similarly-siructured composites, and I will refer to it as a "modellegs—
instance!" type of description. An example of this modelless~instance
type of description is the occurrence of a list structure in IPL-V. It
applies 1o exactly one structure, not to a class of similar structures.
Current programming languages usually provide for only one or the other
of these types of description, and rarely, if ever, for both. ‘
As the first example I choosc a calendar date with a specific mean— :
ing, say, "calendar date of lateét revision". This will be given in the

modelless—instance type of description. (Later examples will be prescnted

g s

.
Lo By . a2 e

e My i
g rnt il g e

63

which-;re consiructed around the concepl of the class of calendar dales.)

A series of cxamples based on this composite are given in order to
illusirate a variety of points. In all these examples I shall observe
the following conventions:

1. Expressions in capitals represent expressions which can be con—

sidered as actually stored.

a. Expressions without quotes are considered to be names: that
is, they could be found in some list of identifiers.

b. Expressions in quotes are "value-strings'!.

2. Expressions enclosed in square brackets are explanatory material
which is not explicitly stored.

3. Where there is no notation to the contrary, sequence is understood
to be material. Where sequence does not matter, either the nota-
tion M"set" appears, or the conventional curly brackets { and }
will be used.

Examples. The series of examples labeled 1a, 1b, etc., are concerned
with the modelless—~instance type of composite in which the parts are not
referenceable except by ordinal position. (That is, the components are
not explicitly named.)

The second series of examples, 2a, 2b, etc., introduces identifiers
of components and illustrates the fact that when th: components have
identifiers, the soquence of the components may not matter.

The third series of examples, 3a, 3b, etc., introduces models which
apply to a fixed sequence of components in the instances.

The fourth series of examples, ka, 4b, etc., introduces models which
describe iheir associated instances but in which the components do not
necessarily have a 1-to-1 correspondence with the components of the in-
stances.

The fifth series of examples, 5a, S5b, etc., illustirates complex('"mul—
tiple-level) composites, and the fact that the concepts of model and
modelless instance can be used together.

The sixth series of examples, 6a, 6b, etc., shows how relationships

and relations can be handled as composites.

The seventh series, example 7a, discusses the concept of models of
models, '

Id

P 1

cuge Frea s

TEETTE o« e I IS
R
.

- 64

Example 1a.

[xdentifier] REV-DATE
[value-String]
[First compénent: year) ni1g67y
[Second component: monthl MAPRILY
[Third component: dayl nygn

Thus we have a three—component composite. The components are un-—
named (that is, their names are not explicitly stored). The components
are accessible (referenceable) only by givigg their ordinal positions
in the composite. Thus, the month component must be referred to as ‘''com-
ponent 2 of REV~DATEM.

Example 1b.

[Identifier] " REV-DATE
[Identifier] DATE .OF . REVISION
_ ' [value-String]
[First component: year] n{g67n
[Second component: month] "APRIL"
[Third component: dayl nign

Here we have two synonymous identifiers for the same composite as
illustrated in example 1a above. The "synonymity relation" exists only
with the respect to this particular composite. It could be the case that
DATE.OF.REVISION, but not REV-DATE, is an identifier of some component

in some other composite.

Example 1c.
[Identifier] REV-DATE
[Firsi component: year] [restrictor] "INTEGER" ([Value-String] "1967"
[Second component: month] [restrictor] “MONTH" [value-String] "APRILY
[Thérd component: day] (restrictor] M"WINTEGER" [Value-String] "1i5"

Here we have added a new dimension of information: a restriction as
to the nature of the value-strings which are legal components. These
restrictors specify that the value of the first and third components must
be from the domain of integers, and that the value pf the second component

must be from the domain of months. (We assume thai these domains have al-

ready been defined.)

T

hav. <y

{14 Eaniiat

PRy
®

N PR . T B e b Y v P I T I
s K TR S TR S T GRS TR T TR T i S R R R TR E a0 Ve e * K

Example 1d.
[1dentifier] REV-DATE
[First component: year] [restirictor] WINTEGER" [Value-String] "1967"

[second component: month] [restrictor] “MONTH" or [Value-String] "APRIL"
NINTEGER"

[(Third component: day] [restrictor] WINTEGER" [Value~String] "15"

Here we have introduced another conceptj the restriction of a value-
string not to a single domain but to a set of alternative domains. In
the example I have restricted the second component to be expressed either

as a month name or as an integer (that is, month number).

_Examgle le.
[Tdentifier] REV-DATE
[value-String]
[First component: year] SR T Teydl
[Second component: month] HAPRILM
[Third component: day] nygn
[Fourth component: change marker] "RESET"

This is one way to have a marker, or indicator, associated with the
date, which marker can be programmed to indicate if the date has been
changed in some prescribed time interval.

Actually, this technique is intellectually unsatisfying. This tech-
nique implies that the marker is part of the date, which is nonsense. The
marker is 'associated" with the date in a relationship which we could call
Mtat is a change—indicator of 'b'", We would like some appropriaye way
of explicitly showing this relationship, so that we could get programmed
answers to such queries as:

1. "Does anything stand in the relationship of 'change—-indicator' to

' REV--DATE! 21

2. "What is ihe ‘value' of the element standing in the relationship

of 'change-indicator' to 'REV-DATE'?"

Example 1f. It might happen that we want our calendar date to be
available in two different sequences depending on its use. The year—
mont) <dday sequence is preferable for computational purposes, where we might
be incrementing the date by a given time interval between this date and
another one. For printout purposes, however, a different sequence may

be preferable, such as the government standard sequence: day-month-~year.

Ved

o

. 66

fﬁe important concept here is that a single sel of values should be
viewable as two separate composites. The concept of a composite thus
cannol be a single set of storage cells. It must insiead be a referenc-
ing scheme to an arbitrary set of storage cells which does not preclude
applying other referencing schemes to those same cells.

The following illustrates in a very informal way the concept of having

two views of the same composite:

[Identifier] REV-DATE [Identifier] REVISED
[Value-String] . [Value-Stringl
[First component] [year] n1967" [dayl ni5u
[second component] [month] WAPRILM Cmonth] HAPRILY
[Third component] [day] nqsn [year] n1g967h

Example 1g. A situation could arise in which the 'day!" component
of the date was not given. Assuming that the composite structure for REV-
DATE was already set up, temporarily omitting the third component, and
possibly having to restore it later, is a bit clumsy. In such a case we
need a value-string such as '"undefined" which represents the fact that no

value-string representing a day has been supplied.

[Identifier] REV~DATE
[value~String])
[First component: year] n1967"
[Second component: month] ‘ MAPRILY
[Third component: dayl . "UNDEFINED"

Example 1h. 1In the preceding examples, the components of the com-
posite have been simple data elements. The components need not be limited
to simple elements, however; they can be composite. If an arbitrarily

complex composite, A, is to be a component of a higher-level composite,

"B, the reasonable way to represent A within B is by its identifier.

To illustrate, suppose a composite representing a transaction, in-
volving a sender, receiver, and transaction-date. Sender and receciver
can be thought of as simple elements, while transaction-date can be re-
garded as a composite, identical in structure to the revision-date shown
in example la. We could represent this with two separate composites as

follows:

RPN S

e

.
[e T T

TR TR e KT TR G s e ot A wen | Hae TRt SR 2 7%

e

e wmsi

. 67

FIdentirfier] TRANS-DATE [Identifier] TRANSACTION.1

[Value-Siring] Lvalue-String)
[year] ni967! [sender] WJOE SMITii
{month] . UJUNE" [receiver] nTOM JONES!
[day] n2qn [date] TRANS—DATE

Example 2a.
[1dentifier] REV-DATE
[Part-Identifier] [value-String]

[First component] YEAR - n1967"
[Second component] MONTH TAPRIL"
[Thixd component] DAY nign

Here the components have individual identifiers so that a component
can be accessed by giving its component idgntifier as well as the main
identifier. For example, to access the value~string "APRIL", one couid
refer to'it as "month of REV-DATE".

- rxample 2b. With tbe éart—identifiers explicit as they are in ex—
ample 2a, there is no need for a fixed sequence of components. The com-
posite can be represented without any implied sequence of components thus:

[Identifier] REV-DATE

[Part-Identifier Value-String]
YEAR , n1967"
DAY nign
MONTH ' WAPRILM

This form corresponds to thai of the "property list" of IPL-V, the
"association list!" of LISP, and the "description list" of FORMULA ALGOL.

The contents of such a list need not be regarded as properties or des-

criptions. We will treat property lists later in this series of examples.

Example 2c.

(1dentifier] REV-DATE
[pPart—Identifier] (value-String]
[component] {YEAR, YR} U Teydl
[component] {MoNTH, MO} MAPRILM
{component] {DAY, DA} . nisn

Here the components have multiple individual identifiers. Now a com-—
ponent can be accessed by giving any oae of its components or part identi-

fiers in addition to the main identifiex. For example, to access the

-

TR

e ot ol

e 2

. 68

value—string "APRIL" one could refer to it equally well either as "MONTI
of REV-DATE" or as "MO of REV~DATE!".

Any of the part-identifiers may be omitted, leaving gaps in the
above layout. If the layout is consirained to be regular, the gaps
must be filled with some string such as "UNSPECIFIED".

Example 2d.

PART-IDENTIFIER: YEAR RESTRICTOR: "INTEGER" VALUE-STRING: "1967"
PART-IDENTIFIER: MONTH RESTRICTOR: "MONTH! VALUE-STRING: "APRIL"

PART-IDENTIFIER: DAY RESTRICTOR: "INTEGER" VALUE-STRING: 15"

Here have been made explicit the types of association, or "roles".
Now we are completely freed of the necessity for regularity. We could
omit any of the above pairs without introducing confusion.

Example 2di. Because the component description of example 2d is
quite regular, we might be tempted to rewrite it as follows:

[xdentifier] REV-DATE

[RESTRICTOR] [VALUE-STRING]
[First «.cmponent: year) UINTEGER! 119671
[Second component: monthl] UMONTH" HAPRILY
[Third component: day] "INTEGER" . nign

We have Faken advantage of the regularity and have in some sense
effected an economy of description. However, with this economy we lose
the freedom to omit any part. We must substitute the string "unspecified"
or "undefined" for any missing part. '

Example 2d2. But suppose we had a composite like 2d1, with some
irregularity:

[Identifier] REV-—-DATE

[(First component: year] [RESTRICTOR:] [VALUE~STRING:] "1967"
UINTEGER"Y

[Second component: month] [VALUE-STRING:] "APRIL"

[{Third component: day] [VALUE-STRING:] "1s"

We can easily force it to be regular; in the style of example 2d1i:
[Identifier] REV-DATE

[RESTRICTOR] [VALUE-STRING]
[First component: year] "INTEGER" . n1967"
[Second component: monthl] WUNSPECIFIED" HAPRILM
{Third component: dayl "UNSPECIFIED" nign

s,

v s e s

o —————L TR ST RS IR IT e <
A """"Mﬁ‘.n..‘%.-.‘, R i

*

s foaan e R d tv i
- 3

s ad s)

f N e Sttty

69

Fiz. in doing so we have been forced to specify "unspecified" which
i3 a nuisance, and in some sense nusi waste storage.
Example 2e.
[modelless instancel

[Identifier] A A MFG.

[Part-Identifier] [value—String]
NAME MA A MFG"
STREET 1400 MARKET STREET"
CLTY . "WILMINGTON"
STATE "DELAWARE"

.This example shows that a given string, here "A A MFG'", can be used
both as an identifier and as a value-string. As long as we know from
form or from context which of these two interﬁretations to give a string,
we do not have ambiguity. We can even reference the "NAME of A A MFGY,

which is, naturally enough, "A A MFGY.

Example 3a.
[Model] [Instance 1] [Instance 2]
[Identifier] DATE [Identifier] REV~DATE [Identifier] ORIG-DATE
[Model name] DATE [Model namel] DATE
[value-String]l [value-String]
First component
identifier:] YEAR n1967M 119671
Second component
identifier:] MONTH "SEPTEMBER" IMARCH"
Third component
identifier:] DAY no3n non

Here we have a "fixed" model, in the =zense that the number and se~
quence of the components are fixed. A model is thus a rule concerning
the component parts of a sot of like composites (Minstances"). At a
minimum, the model provides for identifiers of the parts. It can also
provide for any other information which applies uniformly to the components
of instances individually.

Notice that a model itself is a composite data element. This sug-—
gests that a set of similar models may themselves have a model. Later

we shall see that such is indeed possible.

- - AT e e e m———

W‘v‘? '\.‘». AL AT
S '

1 I saasiom

WEELD BRI Gl

-

70

Example 3b.
(Model] [Instance 1]
[Identifier] DATE [Identifier] REV-DATE
[Model Name] DATE

[Part-Identifier] [Restrictor] [value~String]
[First component] YEAR WINTEGER" n1967"
[second component] MONTH UMONTH! "SEPTEMBER"
{Third component] DAY "INTEGERM na3n

This model possesses domain-restrictors for each component. Other
types of information that apply individually and uniformly to all the cor-
responding components of all instances are: initial values, access—con—
trols, range limits on value~strings in an ordered domain. Information
which applies collectively must be handled in a different way (see example
6a). Information which does not have the same value for all of the nth
components must also be handled differently (see example 3c).

Example 3c. Suppose we wished to have a "changed-marker" associated
with each component of each instance. The contents of such markers can-—
not be stored in the model, since each mgrker is associated independently
with each component of an instance. That is, the contents (value-string)
is not necessarily the same for ilhe corresponding component in all in-—

stances. We need the following arrangement:

[Modell [Instance 1]
[Identifier] DATE [Identifier] REV-~DATE
[Model Name] DATE

&

[Changed-marker] [value-String]
[1st component identifier] YEAR "UNCHANGED" "1967"
[2nd component identifier] MONTH "CHANGED" USEPTEMBER"
[3rd component identifier] DAY BCHANGED" na3n

Example 3d. Certain kinds of models, called "skeletons", have ihe
interesting property that cvery instance of ihe model starts out as a
copy of the skeleton. That is, before any of its value-strings are modi-
fied, an instance is simply a copy of the skeleton. The kinds of infor-—
mation that would go in a skeleton are silructural information and values
which are initially the same for all newly—~created instances but which
thereafter are subject to change. Examples of these are: initial value—

strings, changed-markers, and slot allocation. Since part-identifiers

U -

i s e Tt e T G T

JRISETPE

-—

-

71

3rd componceni of TRACT-4. However, the members of a set are understood
to have no fixed sequence within that set, hence a later access to the

3rd component of TRACT-4 will noti necessarily access the same element as

before.
Example 3f.
[Model] [Instance 1] [Instance 2]
[Identifier] BOOK [Xdentifier] B1 [Identifier] B2
[Model nam>) BOOK [Model name] BOOK
[Part-Identifier] (value~String] [Value-Siring]
TITLE HSYNTAX" "ROOT TABLES"
AUTHOR "SMITH, J.P." NJONES, X,X."
PUBLISHER) WILEY WILEY
' [Modell] [Instancel
[Identifier] PUBLISHER [Identifier] WILEY
[Model name] PUBLISHER
[Part—Idertifier] [value~String]l
NAME "JOHN WILEY & SONS, ' INC."
CITY " "NEW YORK, N.Y."

This illustrates the occurrence of a composite WILEY as a component of
two other composites (B1 and B2). This occurrence of a component common
to two or more composites is what takes the data representation scheme
out of the pure hierarchy, or "tree," category.

Example La. It is not always appropriate to use a model having a
fixed structure. It may be desirable to have instances which contain
components chosen from a specified overall set of components. 1In such
a case the model may specify the overall set. Clearly it is necessary
for each instance to identify explicitly which components are present.

In this example, this identification has been accomplished by giving ex—

plicit part-identification.

[Model] {Instance 1]
[Identifier] DATE . [Identifier] REV-DATE
[Model namel DATE
[Part—Identifier] [Repetition factor] (Pari—Identifier]{value—String]
YEAR nqn YEAR n19674
MONTH "o or 1"
DAY "o or 1"

51

- - e it
.

ot F05

s AR ok vy

TOhw O QE T

72

and domain-restriclors are not subject to change on a per-—instance basis
they are not aporopriate to a skeleton. Both a mod 1 and a skeleton may

be used with a given sci of instances. Here is an illustration:

Model Skeleton Instance
[Identifier] DATE [Identifier] DATE~A [Tdentifier] REV-DATE
[siceleton name] DATE-A [Model name] DATE [Model name] DAIE

[value-String] [value-String]
[1st component identifier] YEAR n1967" n1967"
[2nd component identifier] MONTH UUNDEFINED" MUNDEFINED"
[3rd component identifier] DAY "UNDEFINED" NUNDEFINED"

If the part-—identifiers were not needed, the model in this example
could have been omitted.

Example 3e. How do we give a name to a set of elements? In some
cases thfs set is the sel of instances associated with a model. But there
wiil be cases in which the members of the desired set either:

i. are not all the instances of a given model;

2. belong to one of several models;

3. are modelless instances;

4, are some combination of 1,2,3 above.

¢

To sum up, we need a method of specifying arbitrarily-chosen elements to
be members of a set. One way to do this is to consider that we have a
primitive model called a "set". "Primitive" means that the concept of "set!"
is not defined in the user language. Any set we wish is then an instance
of this model, and is essentially a list of identifiers of members of the
set. An example of a set is:
[xdentifier] TRACT-4
[Model name] SET
[value-String]
HOUSE—-A
HOUSE-B
HOUSE~C
HOUSE-D
House—~A, House-B, ectc., are the identifiers of composite data elements,
each of which might be an instance of a model called HOUSE. Since at any
given time there exists some seqdence of the components of a set, the

components of their identifiers can be accessed by ordinal positicn, e.g.;

o e o a— ——

T S e o

“““ v

P 3 A PR

73

[Instance 2] [Instance 3]
[xdentifier] PUB-DATE (Identifier] ORIG-DATE
[Model name] DATE [Model name] DATE
[Part—identifier][Value-String] [Part-Identifier]{Value-Stiring]
MONTH #APRILM . MONTH VAPRILM
YEAR 119671 DAY ny5n
YEAR n1967"

s The model illustrated here says, in effect:

1. The component YEAR must occur once.

2. The components MONTH and DAY are oplional.
Note that the sequence of the componenis is immatcrial, because ecach com—
ponent explicitly contains iils associated po: t—identifier.

.Examgle bb. We may want a structure vhich is a set of similar com-
ponents but for which the number of componenis is not known until after
program execution has begun. An example might be a specific set of chil-

dren, illustrated thus:

[Identifier] CHILD-SET [Xdentifier] CHILD-SET-1 [Identifier] CHILD-SET-2
[Model name] CHILD-SET [Model name] CHILD-SET
(Part-Identifier] CHILD [Value~String] [value~String]
[Repetition factor] any "JOEM UMARY"
lIFRANKII
"BETTYII
Tne data—-definitior. language of Siandish calls this "indefinite replication".
Example 5a.
[Identifier] SALE-1
[Part—Identifier] [Value-String]
SELLER uJOE"
BUYER UMAXM
DATE DATE~1
(Model] [Instance 1]
[identifier] DATE Eégngiﬁi:Z% §ﬁ$§“1
[®irst component] YEAR 11967M
" [Second component] MONTH ‘ WAPRILY
[Third component] DAY ny5n
This example illu tes two things:
EEpENp—

h

g [i: Composites can have as componentis other composites.

2. A component which is composite need not be of the same kind as
3 ‘ iis overall or parent composite. Here the parent composite is
a modelless instance while one of its components is a modelled

instance.

It is also true that the components of a given composite need not be all

of the same kind: there can be a mixture of modelled and modelless instances.

Example 5b. There is a fine but imporiant distinction between two

uses of a component which has several members. Consider this example:

28 [Identifier] ITEM-1 [Identifier] D1
4 [Model name] ALTERNATIVE-SET
C [Part—Identifier][Value-String] [Value-String]
- TITLE: HBUGS" : HTR-103"
AUTHOR: nJ,J. JONES!" "AD 000 122"
f PUB~DATE: 11963 HSP~1066"
, DOC-NO: D1

In order to be able to locate this composite by searching, we want to be

able to say something like "that composite which has a (presumably unique)

e & Jabt

value-string of 'SP-1066' as a value of DOC-NO". Further assume we do

not know in advance whethear DOC-NO has as its value a single value-string

or a set. We could test each occurrence of DOC~NO to find out whether
its correspondent was a single value-string or was a set. This is rather
clumsy. What we want is the flexibility of having a component (DOC-NO)
for document number which can have any number of associated value-strings
without having to make an artificial distinction between the cases of 1
and more-~than-1. It should be noted that there is an alternative, and

equivalent method of expressing groups of similar components, as exempli-

ficd below:

[Identifier]) ' TTEM-1

[Part-Identifier] Value-String
TITLE: HBUGS"
AUTHOR: "J.J. JONES"
PUB-DATE: HTR-103"
DOC-NO: "AD 000 122"
DOC-NO: , 1SP-1066"
DOC~NO:

Example 5¢. Certain inform.tion applies to a set of instances col-
lectively rather than individually. Examples of such information: The

number of instances, the '"highest value’ of a value-string of a specified

T e s o

TVY

T

s (b

2 A

——— e

75

compoéént of all the instances, and arbiirary properties assigned to tihe
set of instances. Such information goes by the name of "property list"
(IPL-V), "association list" (LISP), or "description list" (FORMULA ALGOL).
We call it "summary information'. Therg are two fundamentally different
ways of attaching summary information to a set, which here we will call
the "data set", to distinguish it.

The first method is to consider the summary information as a com-—
posite, the data sat as a composite, and the first composite standing to

the second composite in the relation '"property set of'".

[1dentifier] PROPERTY-RELATIONSHIP-1
[Model namel SET
PROPERTIES-A
TRACT-1
[Identifier] TRACT-1 [Identifier] PROPERTIES-A
[Model name] SET [Model name] SET
[Part-Identifier] [Value-String]
HOUSE-A LOWER~PRICE: n$18, 200"
HOUSE-B UPPER~PRICE: ng22, 500"
HOUSE~C SCHOOL~NAME : THUGHES"
HOUSE~D

This approach says, in effect, the composite named PROPERTIES-A is a list
of properties which apply collectively to the set (of houses) named TRACT-1.
The second approach is to make a composite of the properties, as individual

components, along with the name of the data set.

[Identifier] TRACT-DATA-1 [Identifier] TRACT-1
[Model namel SET [Model name] SET
[Part~Identifier][Value—String]l
lower price: ng18, 200" HOUSE~A
Upper price: ng22, 500" HOUSE--B
School name: "HUGHES" HOUSE-C
Tract-Ident: TRACT-1 HOUSE--D

Example 5¢1. A possible variation on example 5¢ is to replace the

component pair

LOWER-PRICE: "$18,200"
UPPER-PRICE: "$22,500"
with PRICE~-RANGE: RANGE-1

where RANGE-1 names a separate composite as follows:

s e i St oo

g

TP PPN TR U R ¥ TR

[Identifier]
[Model name]

[Part—Identificr]
| LOWER-PRICE:
UPPER-PRICE:

op 7 S Hr R g 1 b A C SO T e s Wi K SRR S
.

0 e b B i R N R N E R

-

76

RANGE-1
SET

(value~String]
n$18, 200"
ngaz, so0"

Example Ga. Supposc we wanted to express a relationship among several
entities, where by "relationship" we mean an instance of a relation, and

by 'relation" wemeana set of relationships. Let us name these entities
A,B, and C without saying what they aclually consist of. (They might be
names of cities, for example). Then an instance would be:

[Identifier] X1
[Model namel] LIST

[value-String]l
A
B
Cc

This could be a relationship which is an instance of the relation "between',.

This relationship corresponds to the sentence "B is betwecen A and C'". The

reader is reminded that the mathematicalndefinition of a relation is a

[emommimpettatasdigha e A

set of n-tuples (I call it the set of instances), where each n-tuple is
a list (ordered set) of names of entities which stand in that relationship.
Note that we could give component identifiers to the parts of a relationship:

[rdentifier] X1
[Model name] SET

[Part-Identifierl]{Value--String]

LEFT-0BJ A
MIDDLE-OBJ B
RIGHT-0BJ c

We might prefer a form in which the model was explicit:

r i [Model]
([Identifier] BETWEEN

[Instance]

[Identifier] X1
[(Model name] BETWEEN

[Part—Identifier] [value-String)
g LEFT-0BJ A
i MIDDLE-~OBJ) B
RIGHT—OBJ c

If we wanted the relationship to be symmetric we could have instead:

¢’

s
<
R
‘

—

-9

S S A S

[Instancel

[Identifier] X1
[Model namel LIST

e o sy e el SR EAL R R S
SR

[Part-Identifier][Value~Stringl

END OBJ
END OBJ
MIDDLE OBJ

Example 6b.

relationship as a special case of linear ordering.

of components we have the primitive model
fact that B is between A and C by writing
[Model namel] LIST
A
B
c

Notice that here an identifier is not needed.
ate identifiers with individual relationships.

have an identifier is the set of all the individual relationships; this

A
C
B

LIST. We could express the

identifier would most sensibly be the name of the relation concerned.

Example 7a. Since a model is itself a composite data element, one
might conjecture that a model could itself have a model.

the case. It is
model of a model.

sary, however.

possible to go another "level!, and have a model of a

enowh primitives to take care of almost any conceivable situation.

A very rough indication of this concept of a model of a model is

given in the cxample below:

[Instancel
[1dentifier] P1
[Model name] PERSON
[Part-Identifier] [Value-String]
NAME NJOE WILLIAMSHY
SEX . "MALE"
BIRTHDATE nh/15/270
STREET 12 POST ROAD"
‘ [Mode1]
[Identifier] PERSON

[Model namel

MODEL~2

LB, s

T PR R Ty

For an ordered set

TE A -
3

77

A slightly different viewpoint is to regard the "between!

We in general do not associ-—

The meaningful entity to

réd

This is indeed

It is not clear that this latter capability is neces-

It appears that one can supply the second-level model with

S R ot

e e i s o T ke TR T s R B R A e PR R A e e PRSP RART

78

o

[Part-Identifier] [Domain Restrictor) [Repetition Factor]
NAME STRING) 1
BIRTHDATE SHORTDATE Oor 1
: STREET STRING Oor 1
£ SEX SEX-ABDR 0or 1
1 Note: thié model has to say, in a way not shown here, that every related

instance of this model is a set of "Part-Identifier: value-string" pairs.
[Model of modell

[Identifier] MODEL~2
[Model namel -

1 ' . cecesacanes
Note: This model has to say, in a way not shown here, that every related

instance of this aiodel is a set of"Part~Identifier: domain-~-restrictor:

TGN
-

repetition—factor" triples.

The foregoing examples of composite data elements are intended only X
to be illustrative. They lack completeness and rigor. For example, in £
i exanple 3b, I have not indicated how the di fferent components of the model

are to be recognized. In example 3¢ I have not shown how the parts of

the instance are to be recognized.
These examples try to convey the range of variation of data struc-

tures. They have not illustrated all possible combinations of features.

To have done so would have been needlessly confusing. When all possible

combinations are considered, there is a very large number of data struc-—
tures. A truly flexible language must provide for them all. Such a lan-
guage will be practical only if it can provide for this wide variety of
structures by a simple bul general technique. If it cannot, then either
it will accommodate too few structures, or it will be cumbersome through

having too many individual ("ad hoc") types of data description. A goal

in this work is to show such a general method of dealing with a wide variety

Bt Mo e e S L T X T, A

of data structures.

One of the general goals has been to provide explicitly as much of
the structural information as possible about a composite data element.
'When all of the structural information is made explicit, then it can be
changed during program execution, thereby providing for the maximum
flexibility.

EEREAVE S S

Pk

PURCS A TAMEEE | L

b g e

SR MO LTSS

T

COMPOSITE DATA ELEMENTS DEFINED

The' basic concept of a "composite". In the preceding section I have

given examples of composite data elements and by these examples have estab- -
lished some terminology. Now I abstrac? the essence of those examples
in order to develop the requiremenis for composite data elements.

A "composite data element!, or a M"composite', for short, is a data
element formed by an association or relationship of some number of other
data elements. The "core!', or "heart", of a composite is a set of "pri--
mary" component data elements which are to be considered as standing in
some 'primary" relationship to each other. This primary relationship
can be thought of as a sequence of cells, where the contents of the cells
indiéate the primary component data elements. The sequence of the cells
may matter, in which case we call it a "list"; or it may not matter, in
which case we call it a "set". (A cell does not necessarily correspond
to a storage location in a computer).

Associated with this core of primary clements can be "secondary"
data elements. I say that these secondary data elements stand in "second-—
ary" relationships to the core. A secondary element may be related to a
single member of the core, or it may be related to the whole core considered
as a unit. We can think of these sccondary data elements as conveying in-
formation "about" the core elements. This suggests the word "metadata"
as a collective term for them. Thus we see that a composite is a complex
network of relationships among data elements.

These primary and secondary associations are not required to be des-
cribable in terms of any simple storage concept for a machine. It would
of course be convenient if it were so describable, for most programmers
are trained to think in terms of storage concepts and manipulations. I
foresee, however, that this concept of primary and secondary associations
will not be representable in terms of present-day storage concepts in any
neat way.

The fundamental need that has been illustrated is that of being able

to associate a group of data elements. By "associate!" I mean indicating

what members are in the group, indicating whether ithe group is ordered

or unordered, and being able to have this group play the role of a data
element. By having a composite able to play the role of a data elcment,
I mean that it can have identifiers and it can be a component of another

composite data element.

PO RN 0 . . e PRI MREISS

paca]

AR e L L

- b

80

I am not concerned at present with how such an associalion is to be
realized in a real enviromment. What I am concerned with is how the

association appears from a conceptual standpoini. There are several pos-—

sible views we might take: 1) that the association is represented in a

list of the identifiers of the components, and 2) that the association is

represented by some mechanism not know to the user, such as a list of the
machine addresses of the components, and 3) that the association is a
sequence of the actual components. #3 is untenable because of the fact
that we may want the same set of components to appear in different com-
posites in different physical sequences—an obvious impossibility. #1

and #2 differ only in that one uses identifiers (sirings over the avail—
able alphabet) while the other uses machine addresses. The'choice between
these two is somewhat a matter of taste. In fact, they need not be mutual-
ly exclusive, as long as the processor can tell whether it is looking at

a machine address or an identifier in a composite. #2 appears to me the

better choice. I can graphically suggest it by the following sketch:

A

N

The pointers of a composite are invisible to the user. All the user has
access to are the data elements to which the pointers point. If what we
want as the composite itself is a list of identifiers (of data elements),

we can easily provide for it, according to the following sketch:
\
()
)} s,

—(__m)
~>(cc)
LS.

S

PR

T et s

iainsachsl e AR PR T ST

o e e e e
ST TR NS

The pointers of the composite may point directly io a set of data ele-
ments, which elements may or may not have individual identificrs. Ve

.- portray this latler situation, with individual identifiers, thus:

- \ identifier N
J 7|

g name of
composite

; ~ .»-m——)<:; .)€ identifier (AA)
" .>< \’ ‘%identifier C BB)
. ;(:; j){ identifier (:‘ ce :)

T Sy T

The "name of the composite" is subject to two interpretations. It

L3

can be the unique name of an individual composite, e.g., "JONES FAMILY,"

whose components are: "TOM", "MARY", YSUSIE", and "JACK". It can alter~
natively be the ambiguous name of a relationship, such as FAMILY, which
is the identifier of all composites which portray family relationships.

Then the following sketches depict two family relationships.

rel'ship

rel'ship
FAMILY
(FAMILY >—"““‘>
9 »—-—»-~>(Jim)
A ~P-—->C Phil)

-”“*““?(Gladys

E ¢ > (John

)
' L___,(Mark) .;____;.)(Tim)
)

e

+~-§<f Sam

b iing o L LA

B T

e il TR TEONR S

s o

- 82
Of course, onc can go a siep further and have both individual identifiers

é plus ambiguous relationship names.

3 (FaMILY ~i>£2iéilgﬂﬁh£2_§' (FAMILY \relationship

E (:;ONES FAMIP£:> identifier <EﬂITH FAMILY“\L“ identifier

5 US> . ¥

1) IS . -
R, >
A > I

An alternative way of indicating relationship is by being in a given set.

In this case the relation of FAMILY is the set of instances of family

relationships:
identifier
— y
(FAMILY -
N\ __identifier
Csmm FAMILY)
) , >
e
___identifier N B) >
JONES FAMILE,/ 7
> >
—_)
>

We simply note at this point that the concept of order versus lack

of order in an association is a malier of some variation. It could be

R,

[

vrey

CAR ot v i ol

83

left éb functions defined on composites 1o consider them ordered or not.
An indicator of order could be explicitly attached to each composite where
it was desired to indicate specifically whether order was material; although
in the majority of cases it might be left to convention rather than to
specifically indicate it.

There are two fundamentally different meanings to the word "set" in
the programming context:

1. an explicit set or sequence, expressed as a composite of components,

2. an implicit set, defined by a group of common characteristics.

The explicit set may be diagrammed:

The implicit set may be diagrammed as follows, where the R stands for some

C =

relationship.

A

aYe

It is the burden of the user to know at all times which kind of set he is

A .
dealing with, because the transformations he uses may not apply equally to

i cas- ot e S

TR,

84

both kinds of sels.

By way of illusiration, consider the itask of expressing the following

graph structurc as a composite data clement:

The nodes A,B,C, and D represent data elements nolt further defined. The
arrows represent some hoﬁogeneous relationship, say,"potential succession.®
The numbers on the arrows represent some sequencing imposed on the rela—
tionship.

As long as the relationship andicated by the arrow is the same for

all arrows, the relationship can be left "understood" rather than be made

explicit. Thus a simple list could be used.

’/
D

(e)
(v)

If we wished to set "AM" apart as an initial node, we might use the alter-
native formulation:

] C A I

hd
hd

Loy
Y ()
WAWAY,

-

't
3

4

~ T T R P AL S S D < A S D d S
- Bl T TP N A TR TR T F T LR T AN

¥ A AT T LT TR Ry TR LA e e S ERE DRSS MRS A

AT MRS LR RS Yo AT

RV Bl e i " a!

gl

s ey

If we did not wish to consider ithe relationship a homogeneous one,
however, or if we wished to attach one or more data elements (or metadata

. elements) to a relationship, each relationship could be expressed as a
single composite, thus:

NG
AN

o)

It is vitally important to note that here we have a set of relationships,

but it is not an explicit set of relationships. An explicit set of rela-

tionships would be one in which the members, in this case relationships,

were components of a composite. Here is an illustration of the same re-—

lationships as shown above, but here they are tied together as components
of a single composite.

A two—element relationship has often becn represented here by means

of a single arrow labeled with the relation name, thus:

C——CT

R au e s Th i

T TTE ER RE TNI, FO TR S B ¢ 2T T

86

This is a shorthand notation for a {wo—component composite which is dia-

gramned as:

identifier
(_=x __»r -

()
L----——-—-:»(a)

: or even more properly diagrammed as:

G

wvhere the construction

I

m>
signifies the primitive relationship of identifier. The above shorthand
notation will be used throughout this report.

Sets vs. lists. It is not obvious that it is really necessary to make

an explicit dislinction between a sct and a 1list (that is, between an un-—
ordered set and an ordered set). We could in general leave undefined the
property of being ordered or unordered. In specific applications we might
want to label a compositie as ordered or unordered: this can be done by
relating a properiy of "order® or ¥unorder'. When the ordering property
is left undefined, then a composiie is ordered or: unordered according to
the function that the user chooses to apply to it. That is, some func—
tions may tireat a composite as ordered, which it necessarily is because
of the physical characteristics of machines. Other functions may treat

a composite as unordered, and will not take advantage of the fact that '

wa—

TS

o o e PR I

it is ordered in a machine.

What actions can be taken involving a composite.

understanding of a composite by noiing the actions that can involve a

composite during program execution:

1.

We can obtain an identifier of a given composite considered as

a unit. I say "an identifier" because there may be more than one

identifier associaled with ihe composite.

We can obtain an identifier of the nth primary component. Here

we arc¢ talking about an identifier which applies to a primary

component only in the context of the composite. I have in earlier
examples called spch identifiers '"part-identifiers". Each primary
component can have other identifiers unrelated to the existence
of the composite.

We can obtitain the value-string of a primary component, where that

component is designated either by its ordinal position in an

ordered list or by a parti-identifier.

We can obtain the value-string of a secondary componenit, via ex—

pressing the binary relationship in which the secondary component

stands to some identified primary component.

We can add secondary components without limit, and we can select-

ively delete them.

We can create a composite description, called a "model!, which

provides the information necessary to carry out actions 2,3,4,

and 5 above for some class of composites.

Ye can create a new composite, and may give its structure in any

of several ways:

a. We can say that the new composite is “like" an existing one,
in which case the structure and contents of the existing one
will be copied. (This "like" feature has a similar counterpari
in PL/I.)

b. We can say ithat the new composite has as its model some exigt—
ing model.

c. We can say that the new composite has the form of a list or a
set. Actually "list" and "set!" can be regarded as primitive

models.

The foliowing sections describe composites in more detail.

We can get a furtiher

: s EE
— R T M LS B S i b A e
O T U o D e L S L ; RS ?
. * ' ’

-

ment is that il provide for an association of a sel of data elemenis. I

call this first association the "primary" association.
) y

l Primary association. The first requirement of a compositie data cle—
; It can associate

any number of data elcments. These associated elements can be simple
data elcments, composite data elements, or a mixture of the two. The as—
; sociated set of elements can.be either ordered or unordered. (I omit the
; partially-ordered case as being too complicated; it can be built up from
’ ordered and unordered components.) FEach composite must therefore have
associated with it in some way, as yet unsvecified, an indicator as to
whether ordering is material.
The components of such an association may simultaneously be components

3 of other associations. This suggests that, at least in such cases, the
association of elements is not one of being physically proximate. It
might be realized by putting in physical proximity some representatives

: (identifiers, pointers) of the elements to be associated.

Identifiers of composites. Having introduced the subject of composites,

T

we are now ready to extend the notion of "identifier" to cover identifiers

of composite data elements. Everything said earlier concerning identifiers .
of simple data elements also applies to identifiers of composite data ele-
ments. With the introduction of composites, however, the subject of identi-

fiers becomes more comrlicated. The general concept of identifier rela-

st niiea® At

3 tionships in a composite data element is introduced in Figure 4-5.
COMPOSITE
% ~\ principal identifier ,}
g , #
3 (™\ identifier
J

ST | R iy)

N

- individual :
pari—-identifier identifier j)
L4

Ty I

JUEN

.. FIG. 4~5 GENERAL CONCEPT OF IDENTIFIER RELATIONSHIPS IN A COMPOSITE

— e e - - e AN st i =2

ot Dl sy £

“

X O e Y
A |

c.A

¥

il A) St
¢

FoF e ;" M

4 oy

WFIEFk

89

Note that the part—identifier is in a sense a label on a position,
while an individual identifier is a label on an element. However, probably
the best way to distinguish a pari-identifier from a positiion identifier
is in the association transformation which, when a data element is moved,
does or does not move the corresponding’ identifier.

Identifiers associated with data elements are one means of referencing
those elements. When a data element, either simple or composite, becomes
a component of some composite data element, it becomes accessible in
another way which we say is '"in the context of this composite:" we can
refer to the component by a part—identifier. To show that a part—identi-
fier is related to a given composite, we qualify the part-identifier by
the identifier of the coﬁposite as a whole. Example: we might refer to
FATHER OF JONES-FAMILY where "FATHER" is a part-identifier and "JONES-
FAMILY" is an identifier of a composite. We recognize that this is an
example of the hierarchical method illustrated below.

Note that the identifiers of parts can be attached in different ways.
Consider the string

HEbLCHOSEBLIT

A substring of this string could be designated:

1. by character position, e.g., "characters 3 through 7 inclusive®,

2. by characteristics or properties, eig., "the first substring

beginning 'CH' and ending in 'E'",

Both of these designavions yield the same substring, namely "CHOSE". Let
these substrings be named "A" and "B" respectively. For an invariant string
it matters not which of these identifiers is used to designate "CHOSE".

In the case of a string which can be modified, however, it does make
a difference how the identifier is attached. In the above string, substi-
tute "SHE" for "HE"., "B names the same substring as before, "CHOSE". But
A" names the substring consisting of characters 3 through 7, which is
"HCHOS",. This distinction suggests that we need two different varieties
of the relationship "part-identifier of:" the first is "identifier of posi-
tion", the second is "identifier of content".

The fact that a component of a composite can be referenced by a part-
identifier has just been discussed. A component of a composite can also
in general be referenced in ways other than by a part-—identifier. One
such technique‘is by giving its ordinal position. This makes sense only

if the componenis are in facl ordered; that is, they are in a composite

i ‘ - s S K A
' .

4

Sl

yuers s B
SRRVt L o a b C G PR S Ll RS PR e Y P G e T AR LA NS

which is a list rather than a set. Another technique of selection is to
give some unique property; this technique will be discussed in more detail
later.

Providing for identifiers for a composite as a whole and individual
part—identifiers for its components does not exhaust ihe possible needs
for identifiers. Consider the following case: a composite representing
a set of children. There may be an idenlifier for ihe set as a wvhole,
say "child-set~1". There will be identifiers for the individuals, say
"Allen", "Barbara'", and "Charles". We also need to provide for the notion
of "child", which is a name for a single, undistinguished member of this
set. There doecs not seem to be an intuilively nice way to handle this
by another relation within the framework thus far developed. Rather than
create a scparate relationship for this concept, we can get the desired
effect via a function which will select an arbitrary member of a named
set. VWe need to be able to create a definition which says "'child' is
any arbitrarily-selected member of 'child-set-1t",

Used by itself an ambiguous idenlifier will select a set of data
elements. If it is necessary to select a single one of these elements, -

then other identifiers must be assigned such that some combination of

Ied

identifiers will indicate the data element uniquely. There are two main ;
ways in which such a conjunction of identifiers can be used:
1. Hierarchical, or ordered. The identifiers are given in hierarchi-
cal sequence; whether in sequcnce of 'going up" or ''going down"
is understood by convention. Example: in COBOL we can have a
compound identifier of the form "dataname-1 OFF dataname—2 OF
dataname-3", as in "DAY OF MONTH OF TAXABLE-YEAR". This means
that MONTH must be defined as a component of TAXABLE-YEAR, and
that DAY must be defined as a component of MONTH. DAY and MONTH
may be names of components of other elements as well; that is,
ihey may appear in other naming hierarchies, and these latter
appearances will be independent of the former.)
2. Set—-intersecting, or unordered. The identifiers are given in
any secquence. Each identifier names a class of elements. The
intersection of the named classes nced not yield a unique ele—
ment, though under normal- circumstances a single element would

most likely be expected.

3

T

e

91

‘The problem of applying identifiers to points versus segments. There

is a distinction between attaching an identifier to a point (for example,
a starting-point in a series of imperatives) and attaching an identifier
to a segment (for example, a set of imperatives constituting a procedure).
If we say "performA" we expect A to identify a segment. If we say 'Go

to A", we expect A to identify a point. A "point!" in a program or body
of data corresponds to some data element; to refer to that point, we give
an identifier of that element. A "segment" or "sequence' in a program

or body of data is a set or list, which is a _composite data element; to
refer to that point, we give an identifier of that element. A "“segment"
or "sequence! in a program cr body of data is a set or list, which is a
compdsite data element; t; refer to the segment or sequence as a whole,
we give an identifier of the composite.

Metadata relationships. To any data element, or to any of the com-—

ponent cells of a composite, can be associated, in a binary relationship,
certain data elements which represent data "about" the related element.

We refer to such data as "metadata" and call the relationship one of ''second-
ary association!". Examples of metadata relationships are:

1. identifiers, "regular" and "principal!, of whole data elements,
or of their component cells (the latter heretoiore called "part-
identifiers);

2. reset, indicating the contents of the cell is to be reset to the
value—-string indicated by the contents of the metadata element;

3. cell prescriptor, which prescribes in terms of a domain/class
prascriptor what is allowed as the contents of a component;

k. cc _onent prescriptor, which prescribes in terms of a domain/
class prescriptor what is allowed as the contents of a component
designated by the contents of ; cells

5. access code, vhich can limit the type of access and accessor to
a composite or to a component designated by the cell contents;

6. repetition factor, which when used in a model tells how many oc—
currences may exist of é given class of component;

7. uniqueness indicator, which can be used to indicate an element
which can be modified without fear of upsetting other relationships.

Some of these metadata concepts are illustrated in Figures 4-6, 47, 4-8,

and 4-9. The user need not be limited to the set of metadata relationships

AT AR T -;;W

-

TR
S+ SRR NIRE SR S 7o g e LW SRR LR NIV 5 e HIT B TIERE R £ SRSl AR RS SY R S« LS R SRR

92

which are presented here. He should be able to define other relation—
ships when he needs them.

Figure 4-6 conveys the following facts: There is a composite of which
"quantitiy" is the identifier of one of its components. The simple data

element representing the "quantity" has the individual identifier AN,

but as yet has no value~-string assigned. VWhen a value-string is assigned,
the component prescriptor "integer!" specifies that it must be from the
domain of integers.

Figure 4~7 co veys the same facts with the exception that the exist—

ence of the composite and a part—identifier is not mentioned.

e TP W R T Ten L T i dia T L s
[T | [~) il

component prescriptor
INTEGER '

component

\ part-identifier \J identifier
(QUANTITY) -*I *{__ UNDEFINED C“‘""——-’(A)

FIGURE 4-6.

11 ipto
CINTEGER ﬁ‘, cell prescriptor

e

' QINDEFINED)

3 E ' FIGURE 4—7.

) .
R T T R IR T KT
B

b § £

£ i sealal]

T

{ KY3
{ JoE-1
(INTEGER

Figure 4k-8. Examples of Metadata Associated with Cells.

93

it oy

T ST R R PR T T TR O RS LR o v

ol
METADATA RELATIONSHIP COMPOSITE
] f e (N identifier S
i ./
| (:j N\ identifier N
) J
\ ™\ order indicator >
| C D,
3
F (M changed marker N
3 j [4
Y C \ access—~code-1 >
f
/——-.—\'
[
property—set N
. [ol
\—-——-———"/
model N
(4
C N c'ell—identifier N ><)
/ 7
C } cell-x Sles
(N\ reset
J
(:ﬁ ~_compon~~t prescriptor
J
("\ repetition factor /
J
N\ component prescriptor ;J\ o)
] o
(Z*' N\ access~code-2
. J
i

Figure 4-9. Example of a Composite Data Element and Associated Metadata

Cran i -l .0 ‘ o
Rt AT I famcd

R b A

T

'ft should be noted that an element which stands in some metadata
relationship to another element is in some sense not a ''mormal" data
element. Many of its characteristics are implied by the type of relation-
ship. For example, thé element which stands in the domain-prescriptor re~
lationship to some other element need not itself have an associated domain
prescriptor; the domain-prescriptor relationship itself serves to imply
that such an element can only have value-strings frem the domain of domain—
identifiers.

A somewhat confusing issue is the fact.that some relationships apply
between a metadata element and the contents of a cell, while others apply
betw?en a metadata element and the element designated by the contents of
a cell. This will become clearer in the pictorial illustrations given
later under "structures of a composite’.

We can now make the general observation that any element which plays
a metadata role need not have metadata elements tied to it. The type of
relationship of the metadata element to the data element implies what
the domain of the metadata is. This is not to say that a metadata ele-
ment cannot in turn have a metadata element; but it need not have it. The
requirement for metadata must obviously terminate at some level, and we
have chosen the lowest level as being the most convenient place to termin—
ate it.

We now proceed to discuss these metadata relationships in more detail.
The most important of these is the identifier relationship, which has al-~
ready been discussed above.

"Reset!" concerns a relationship used for resetting or initialization
upon command. Resetting of a cell, putting a new value in a cell.

A "cell prescriptor" is used to define from what domain or domains
of values may be taken the value-string for the related element, presumed
to be a simple data element. Thus a cell prescriptor may he the name of
a domain, such as INTEGER, or it may be the name of a set of domains, such
as NUMBER, elsewhere defined to mean "INTEGER OR RATIONAL".

A VYcomponent prescriptor! is used to define from wha class or classes
may be taken the data element which Eorresponds to that component. Thus a
component prescriptor, as a metadata element, can contain the name of a
class, such as FAMILY, or it can contain the name of a set of classes,

such as S1UCKHOLDER, elsewhere defined to mean "PERSON OR COMPANY". It is

T AP L
s S M e

. Sy e e
. e }‘wa{(‘:‘-:

. 96

quite possible for a component name and its associated component prescrip-
tor to have the same identifier. An example is "month" in the illusira-

tion of the composite element for '"clockiime". The distinction between

-

cell prescriptor and component prescriptor is shown in Figure 4-10. The
i cell prescripior and the component prescriptor are alternative ways of

giving the same information about the domain of the contents of the principal

value cells.

component of
a composite

o

& conmponent
{ prescriptor A
(INTEGER 3 D >C 16 >
cell
3 prescriptor

‘ INTEGER

FIGURE 4-—-10. DISTINCTION BETWEEN COMPONENT PRESCRIPTOR AND CELL.PRESCRIPICR

An access code can be used to limit the access to the related data
element. It may limit the type of access, to READ ONLY. for example. It
may limit the accessors, by allowing access only to those users present-
ing a.specified code.

In a model, to be discussed in further detail later, is presented
information about a class of similar composites. Certain composites may
be variable: that is, a given component may be allowed to occur multiple
times. A repetition factor in a model can be used to specify the numbers
of occurrences of a given type of component in any composite. It may

give a minimum value, a maximm value, both a minimum and a maximum, or

it may give some set of allowable valuos,

A "uniqueness" indicalor could be used to indicate that some element
(data or metadata) was to stand in some specified relationship to only
one other data element. This would be used to show that the latter could
be modified without inadvertently spoiling another }elationship. Example:

If A stands in relationship R1 to J and A stands in relationship Rz to J
and if the user wishes to modify that element which stands in relationship

7
‘A
e
5
ke

RO i

]

R1 to J (namely A), he runs the risk that the relationship A R2 J is no

longer valid, even though it is still explicitly expressed in the data
structure. If the user knows, by a uniqueness indicator associated with
A, that A does not stand in any relationship with any element other than
J, then A can safely be modified.
The concept of a model I feel is an important one. We have several
possible courses of action on how a model might be realized:
1. It could be a primitive concept, not defined in the language, in
which case certain transformations for manipulating models would

need to be provided and learned;

2. It cou]d'be a composite in the form of a standard structure, with

some interpretation rules built into the processor.

3. It could be left to the user to construct his own models and pro-

vide his own accessing transformations.
We may want part—-identifiers associated with the model rather than
with the individual composites which are instances of the model. This
brings to four the number of ways that an identifier can be related to

a component of a composite(which is an instance of a model). These ways

are illustrated in the figure below.

model instance

97

r"\

> ¢>—-——a§(

_ 4
i Af A\
A o4 (d

WA AR

These four ways are:

1. To relate the part—identifier to a node point of the model

with "A" in the figure;

, as

2. To relate the part-identifier to a node point of the instance,
as with "B" above;

i

G g

S Smﬁw;.ﬁmi‘mxw%zﬂﬁ3W{WWW"M?&E§%WQ§%!§R§? A TR
3

98

3. To relate the identifier to the corresponding cell of the instance,
as with "C" above;
4L, fo relate the identifier simultaneously in all three ways just
mentioned, as with D" above.
All but one of these ways may seem intuitively objectionable because of
the fact that an identifier is not tied directly to the component it identi-
fies. How the component is in fact located given the identifier, or how
the identifier may be located given the compouent, is an implementation
matter which need not concern the user.
Models. There are two fundamentally different approaches to expres-
sing composite data elements. The first of these approaches is to have
a composite "carry its ovn' descriptive information (metadata), in the
sense of having these metadata elements directly associated with the com-—
ponents. The second of these approaches is to collect in one place, called
a "model'", some or all of the descriptive information common to a class of
composites.
We illustrate these approaches. Consider the concept of human family.
Here are two self—describing, or "modelless", instances of family (where

square brackets set off information which is understood but not explicit):

(Instance 1] [Instance 2]
[(Identifier:] F1 [Identifier:] F2
[Part—Identifier] [Value-String] [Part-Identifier] [Value-String]
, father Harry father Sam
mother Susan mother Molly
children [Betty, Margaret} children {Michael, Sterhen,

Alice}

It may be convenient, however, to abstract the common information from

these instances and place it in another data element which we call a "model':

[Model] [Instance 1] [Instance 2]
[Identifier:] FAMILY [Identifier:] Fi1 [Identifier:] F2
[Part-Identifier] {vValue-String] [value~String]
modelname FAMILY FAMILY
father Harry Sam
mother Susan Molly
children {Betty, Margaret} {Michael, Stephen
Alice}

Note that in this latter illustration, which we called the "fixed model"

case, elements (here simply part—identifiers) of the model must stand in

s

e}

99

1-to—-1 correspondence with the elements of each instance. In this il-
lustration the only common information is part~identifiers. Other kinds
of common information, however, could be included: anything in the cate-
gory of metadata, described earlier.

Briefly then, a model contains metadata abstracted from a class of
composites, plus possibly some information about the structure of the
composites, such as the numbers of repetitions of components. I originally
thought of a model as information on how to interpret an instance. This
is obviously not the case. A model is that descriptive information (meta—
data) abstracted from a class of instances; or in the case where no in-
stances have yet been created, the information in the model may be regarded
as a‘prescriptor. '

A model, it should be noted, is not a prototype, or '"skeleton', the
concept of which will be explained later.

It is appropriate to use a model in connection with a simple data
element, which can be considered to be a composite with only one component.
One kind of information provided by a model is identifiers of com-

ponents. For example, a model might be used for a class of data elements
called "complex numbers," each member of the class being a pair of numbers,
the first member being called "realpart" and the second member "imagpart!.

Notice that a part-identifier names the individual members of a class
of components. For example, ''realpart!" names, ambiguously, each first
component of all the component pairs representing complex numbers. Only
when one of these part—identifiers is qualified by the identifier ofa
particular composite is the ambiguity resolved.

The information which can occur in a model can be given in any of
several ways. A given metadata element may be given as a quoted value—
string, as an identifier ultimately interpretable as a value-string, or
as an indicator that the value is to be taken from a given component of
the corresponding composite. This latter means that the number of repe-
titions of some component, for example, might be given as another component
of the same composite.

Observe that while a model is capable of carrying information common
to a set of composite data elements, not all of such common information
need be carried in model. Which data is carried in a model and which in
the compcsites'themselves is up to the choice of the user. His choice

will depend on thie ways that he will access and modify information.

U S N 5 e 6 RN

VLT

The information in the model must be recorded in such a way that
it can be matched up with the parts of the composite to which it applies.
The simplest way to achieve this correspondence is to have a fixed com-
posite and a fixed model; then the correspondence is simply 1-to-1. How-
ever, we want more flexibility than a fixed composite gives us. We want
the possibility of having composites which can have components added o;
deleted dynamically. If we wish a model to describe a set of such vari-—
able composites, then clearly the simple 1-to-1 correspondence won't work.
The model must carry enough more information to be able to set up a
correspondence between the components of the model and the components of
any related composite. Such a model we call a "variable model". One of
tile kinds of information unique to a variable model is "repetition fac—~
tor" which tells how many of the corresponding components we may expect
to find in a composite. We may establish some conventions, too, such as
the convention that an omitted repetition factor is taken to have the
value "i", A variable model should also provide a way to state under
what conditions a given substructure is to occur. Obviously at this point
we have left a great deal unsolved or unsaid about variable models.

To every instance of a model, together with the model, there exists
a corresponding non-modelled, or modelless, or self-contained, instance.
These iwo forms are equivalent in one sense, but not equivalent in a second
sense. In terms of the information contained, and from the point of view
of accessing the instance, they are equivalent. From the point of view
of accessing the model, or of modification of any information other than
the value~strings of the instance, they are not equivalent. For example,
consider the modification of a part—identifier. If the part-identifier
is associated with the component of the instance, i1he part—identifier change
affects only that instance. If the part-identifier is associated with the
component of the model, then the change affects the corresponding components
for all of the instances of that medei.

We note also that the nodelled and modelless modes of representation
are not mutually exclusive. They can be mixed. At any level of detail
a model can be used within a modelless framework, and vice versa. Examples:
a document can be described using the model framework, while the publica-
tion agency for the document uses the modelless framework. Conversely, a
document description can use the modelless framework while the publication

agency is handled in a model. It is a search for '"right mixture" of

&

>

Fr»asw:m;rn Bt Sopt o A e e
3

t

T TR Ty G - At TR R SR SRR T

Y

101

modelled and modelless concepts which is one of the time~consuming oc—

cupation§ of the syslems analyst. He is always trying to abstract from
instances as much as possible which fits into a regular structure, for

it is easier to describe and more economical to manipulate.

It is generally the case that a given programming language provides
for either the modelled or the modelless structures but not both. I con-
sider it a critically important fact i1hat experimential applications de-
mand at least the flexibility afforded by the modelless structure; I there-
fore believe that languages which don't provide modelless structures are
unfit for any non-production type application. Full flexibility of course
demands that a language provide for both the modelled and modelless struc—
tures. .

Standish, in his dissertation on data definitions proposes only a
model concept, similar to that out.ined above, for describing composite
data elements. It seems to me that it is essential to have the modelless
instance concept. Imagine for the moment a model and a sizeable set of in-
stances of a composite data element type representing library books. Sup-
pose that we wish to record the fact that two specific books in the library
have been lost, plus the date that the loss was discovered; further sup-
pose that no provision for recording this fact exists in the composite
data element as defined. In order to record this fact, it istechnically
possible, but manifestly undesirable, to modify the model, with the con-—
sequence that every instance must be modified to conform to the new struc—
ture. One would rather "tack on" to the two instances in question some
expression of the desired fact. But in doing so one would create non—
standard instances: that .s, they would no longer wholly correspond to
the model.

Skeletons. A skeleton is an element related to a class of elements,
such that every element of the class is initially a copy of the skeleton.
An instance of the class is first created by copying the skeleton, in-—
cluding possibly some initial values in its components. After this in-

itial creation, of course, each instance can be mudified in an unrestricted

.way. A skeleton looks like an instance, with its value-strings undefined

or sct to initial values. An instance generated from a skeleton may or
may not give the name of the skeleton from which it was derived, depend—

ing on the wishes of the user.

A simple example of a composite, its model, and some resulis. The

following example may help to clarify the notion of model and compcesite. Con-—

struct a two—-element }elation, or ordered nodel, called "FATHER-SON!".

——-&.w-;“‘"/ -

ok D S i

Grubuiiind [ER (¥ = X

u’ m m m

—r

wre

15 Lk Sibty 5 rad o kit v
M. § Lo~ | ¥ P P,

s g

el iz

T IECRE N S i 4 e paiasa st BRI BT
3\ Al

-

[model]

identifier \‘
(FATHER—SON) ¢

Its part-identifiers are FATHER and SON, respectively.

I — - - AT TR
P T T s A R SR B O AW FRATRT R . ST a0

[model]
\ identifier
FATHER-SON J ¥
\ part-identifier |
C FATHER 4

wi "

(son

art-identifier
}L————--——.—-}u

ey SR A A T N

The components are prescribed to be from the domain of PERSON.

identifier

[model]

< N\
FATHER-SON }

J, domain prescriptor

*=\, part-identifier
FATHER J

"\ part-identifier

N

J

< SON

2

(PERSON

)

JOE and TOM are simple data elements from the domain of PERSON.

ponson)

Ha S LR AR DS CHCE R TR RS

- 103

JOE and TOM stand in the relationship of FATHER-SON, where JOE is FATHER

and TOM is SON. ("The relalionship" of FATHER-SON is an instance of the
"relation" FATHER-SON.)

(model] [instance]

identifier
< FATHER--SON)“'—‘_“_> model of

—— ea—

g

o _part—identifiery)
I ‘ FATHER) >

-»-—-)C JOE)\4'—"

‘--—-)C TOM -) '

~, domain_descriptor]
PERSON }
__

) _part—identifiery
(SON -/ o) do"’ain

i S i b

odkte Lo

domain descriptor

Value of a composite. It is interesting to discuss in what sense

a composite data element can be said to "have a value'". In the case of

a composite data element whose components are values as expressed by value-

strings, the set of values possessed by that compoéite element could be
said to be a value (a '"vector") from a Cartesian product space. Where a
component has as its '"'value! not a value-string but rather another com~
posite data element, the value could be regarded as one coming from a
Cartesian product space where some factors are not sets of individuals,

but sets of vectors. Even the latler viewpoint may not be particularly

sensible, for these sets of vectors need not be of uniform composition,

such as the set [(0), (1,2), (3,4,5)1.

Properties, property-sets, and property-lists. There are fundamentally

different ways of treating the expression of properties: the "unary-rela-
tion" viewpoint, and the'property-value! viewpoint. Under the unary-re—

. lation viewpoint, a property is expressed by a set of names of the elements
having a given property. For example, to express that an element has a
certain property, say, '"is red", or "is 5 inches long", we say that the
property belongs to the set of elements having the property "is red", or
"is 5 inches long". Under the property-value viewpoint, to express that

- an element is red, we associate with the property-name "color" the value

. red"; similarly, to express that an element is 5 inches long, we associate

e st

ool COET B

4 - " . &

104

with the property-name "length in inches'" the value "5". An alternate

to the last example is to associate with ilhe property-name "length'" the
value "5 inches". Both of these viewpoints have their merits, and it is
inappropriate to arbitrarily rule out the usec of either one. I admit,
hovever, ito a strong preference for the second method; most of the discus~
sion which f»llows is concerned with the property-name—and-value viewpoint.

Properties of an object (in this context, properties of a data ele—

ment) can be expressed in either of two ways: implicitly or explicitly.
Properties expressed implicitly are called implicit properties. Implicit
properties are those whose values are discoverable only by search or by
algorithm: they are not egplicitly given in some "property-list'". Examples
of implicit properties are: number of components in a composite, minimum
value of a given component (that is, a component having a given part—identi-
fier, for some set of composites), whether a given access code lies within

a specified range, whether a designated value-string equals a given value—
string. Explicit properties, on the other hand, are those that are ex—
plicitly given in some way. An explicit property may take the form of:

1. a component of a composite;

2. a metadata elemnent standing in a specified relationship to a data
element;

3. a componen. of a particular composite called a "property set!",
which is a composite standing in a property relationship to a
given data element. Explicit properties are distinguished from
implicit ones by being capable of being looked up directly, of
being found by a simple search of a given property set. He who
would use property values must know whether they are implicit or
explicit, because the method of modifying them depends on in
which category they fall.

Note that a property set, in any of its possible forms, can be

associated with:

1. a simple data element;

2. an instance of a composite data element;

3. a special case of (2) above: a composite frepresenting a set of
homogeneous data elements), implying that the properties apply
to the members of the set considered collectively;

L, a modei of a composite data element, implying that the properties

apply to the instances considered individually.

-l EPNE
REF R L

o day N T ety B Prerrieie BA SRR RIS DRSS SE SR TN { RS Py 2 St oo | R Ly R A R S U AR Y

. 105

Consider for a moment the case where a property-set is expressed in
the form of a composite tied in the property-relationship to a data ele-
ment. It is interesting to note that this property set (or list) can be
expressed either as a modelled or as a modelless composite.

Property values may be either value-strings or names of data elements.
For exanple, a set of composite data elements may correspond to a set of
books. Some or all of these data elements may have an associated property
named "color of binding" whose corresponding value-string is from the do-
main of colors. Some of the composite data elemenis may have a property
named "publisher" whose corresponding contents or ''value" is the name
(identifier) of a data element which represents a specific publisher.
Such ‘a data element representing a publisher might, for example, have as
components the publisher's name, address, type of publications, and standard
discounts.

Certain useful properties apply to the representation rather than to
the thing represented. Examples of such properties are: access-—control-—
indicator (which might take on such values as 'privileged access only",
"read only", M"initialize only")}, and changed-indicator (which might take -
oh such values as "unchanged since reset," and "changed since reset").

It is appropriate to raise the question: what is the difference be-
tween a property of some element and a component of that element? Put
more concretely: if a data element exists to‘represent a book what as-
pects or attributes of this book are components of the composite represent-
ing the book and which attributes ought to be on some property-list or in
some property—set related to this composii=? I think this is a matter of
viewpoint, or of taste. Some programming languages seem to let an object
be represented by a list of its properties and .their values. For certain
applications it probably does not matter whelher these properties appear
as components or on a separate property list. One example will serve to
indicate that there might be some point in making a careful distinction.
Consider a family unit represented as a composite, where the components
are "father", "mother," and "children". This family unit may have proper-
ties such as "address'" and '"religion". It would be misleading, however,

. to make these components of the composite "family". It makes more sense
to have them on an asspciated property-list (or in ar associated property--
set).

We note in passing that the languages and system AEDNET represent

3 Xt 0\ SN e I N
G oty R S AT AR T T R T T TR TR MR T GO R
Rt L A S K LS

-106

some Ssignal musi be provided to indicate that the modificd interpreter is

to be used. A special flag position might be reserved in every data

. T element for this purpose, or a special meladata item might be used as a
i | flag.
:] . Another related capability is the ability to define new metadata

J relationships. The user must be able to give the new relationship an identi-
fier, and define how the metadata item is to be treated when accessed (that
is, whether it is to be evaluated or to be copied).

Input and output of composites. The expression of composite data

t elements, for the purposes of input and output, is a matter quite separate

‘ from the structure of these data elements inside the machine. Considered
statically (not from the viewpoint of incremental change) the modelled and
modelless concepts are equivalent: hence ithe input and output of data struc—
) tures can be based on either point of view. It is up to tihe input—output
routines to provide whatever conversion may be necessary. It is generally
easier for purposes of input, for example, to organize the data elements

of a composite in some tabular form, paralleling in some sense a modelled

format; the actual resulting structure desired in the machine may be the

1 modelless form. It isn't yet clear whether data elements as a whole should

have some convenient notation, or whether we should be content to express
in any one expression simply pieces of a data element. What expressions
one uses is primarily a matter of choosing a notation, which matter we
postpone until later.

Relationships versus composites. We call an elemunc of a relation-set

(which is an explicit relation) a "relationship". A fundamental question
is whether such a relationship is essentially different from a composite.
Both a relationship and a composite are an association, possibly ordered,
of a set of components. One or more part—identifiers may be asscciated
with each component. The association as a whole may have one or more
identifiers. A set of similar associations may in turn belong to a set
which is itselZ a composite.

When a relation-set is considered as a composite, the identifier of

the relation is the identifier of the relation-set. The individual re-

lationships do not need to take identifiers; they are usually referred
to as being some (undesignated) member of the relation-set. When it
comes to specifying members of relationships, a binary relationship is

rather unique; it is easy to say '"the other element of the relationship

7 il et A

TR .l

iael e S S it

g

yd B

AN

R R B s e e A G b R s R B e

wmanng PONES

RS e—— [-] Ro—— —— L =22 -]

elements by their property-lisis, and represent composites by tying a sect
of elements together with a ring of pointers.

Manipulation of composites. For creating, accessirg, and modifying com-—

posite data elements I posiulate the exisience of a "standard" dala inter-
preter. We in effect enter this interpreter with a message as to what ac—
tion is desired, and the interpreter provides the necessar; action. The
data interpreter provides for ihe storage of the data, so that the physical
and logical problems of storage are hidden from the user.

Listed here are the abilities which are wanted in conaection with
processing composite data elements; it is the providing of these capabilities
that is the job of the data interpreter:

‘1. To determine if the sequence of componeiits matters;

2. To obtain the components separately, and in sequence if sequence

is material;

3. To associate identifiers with the components, and to find a com—
ponent given its identifier, or io find an identifier given a com-
ponent identified by some other means;

Lk, To access or modify the "value-string" of a component (assuming
it is a simple data element), and to find the domain of this value—
string;

5. To access or modify any metadata standing in a specified relation-
ship to a specified component, such as domain prescriptor, com-
ponent prescriptor, access code;j

6. To determine if the composite has a model or a property set, and
if so, to access and modify its parts in the same way as can be
done for a modelless instance of a compositej

7. To be able to add components to, or delete romponents from, or re-—
sequence the componeats of, a composite or its mudel;

In summary, to be able to create, access, and modify siructures and values
of composites and their models.

The matter does not end here, however. Another neceded capability is
that the user be able to modify the interpreler to provide some feature
which he needs. This in turn brings up two matters. First, there must
be some prescribed way to modify the interpreter; just how this might be
done must be postponed for later consideration. Second, there must be some

way to indicate when the modified inlerpreter is to be called into play;

I'ed

e]

= e s —

¥ —

e s

. 108

in the relation R in which the elenent E occurs" With n-ary relationships,
with n)2, we must say analogously: "ithe component in role k (or in ordinal
position k) in the reclationship (composite) of relation R that has ele—
ment E with part-identifier I".

The expression and testing of relations. There are iwo approaches

to the expression of relations:

1. The explicit method. This utilizes an explicit relation list or
set, which is a set of n-tuples of the identifiers of the ele-
ments which stand in the relation. Logicians call this the
"extensional method". I call such a set a "relation-set!.

2. The implicit melhod. This is based on an algorithm which decides
whether a given set of elementis stand in a given relation. That is,
it returns a value of "true'" or "false'" given an n-tuple of identi-—
fiers. lLogicians call this the "intensional method". 1 call such
an algorithm a "relation-algorithm'".

The explicit method is advantageous where additions are to be made to, and
deletions are to be made from, the relation-list. The predicate (the
question of whether a given set of elements stand in the given relation)

is made by a search of the set of n-tuples. This latter operation is rela—

Id

tively easy in an associative memory device. The implicit method utilizes
no relation-set and therefore does not lend itself readily to applications
which require additions to and deletions from the relation, because such
changes require reworking of the algorithm. Naturally the algorithm con-
stitutes the predicate. This implicit method is preferred for relations
on large sets, particularly where the basic elements are in some metric
(have a measure of distance or ordering). An example would be thec "greater—
than" relation on a set of integers.

Because of the inherent differences in these two techniques for deal-
ing with relations, the user must know which method (the explicit or ihe

implicit or.) is being used in any given circumstance.

Properties of relations. A relation may have properties. such as
being transitive, or not, and being commuiative, or not. These properties
can be implicit (discoverable only by examination) or explicit (expressed
in 2 property-set associated with the relation).

Defining a domain: continued. Now that we have considered the con—

cept of composite data element we are ready to return to the issue of de-
fining a domain. Recall that a domain of value-strings is to be a set,

possibly ordered, which can be added to, and manipulated, by the user.

S L P

B

1 g e o R AR R L T

i R R T AT TR T, SRR FTR R P S e I e ekt

-~

109

A domain is also used by the processor for checking whether a given domain
contains a given member and for whether a given member siands in a given
relation (possibly of ordering or of equivalence) to another given member.
The composite data element is an appropriate device to meet these needs,
in those cases where a domain is expressible by enumeration, or listing,
of its members. An explicit domain is then « set, or an ordered set, of
sirings. In order to be able to construct such a compsosite, however, the
domain of strings must already have been defined; this becomes a require-
ment on the virgin system.

Orderings. Let us review the needs for various kinds of orderings.
First we may have orderings based on a single relation, which we might
call "precedence! These include:

1. Unspecified ordering, the usual meaning of the word "set'; examples

of unordered sets include relations and functions.

2. Partially-specified order, expressible by a combination of lists

and sets; examples of partially-ordered sets include lattices
and trees, list structures and algorithms.

5. Wholly-specif =~ rder, corresponding to, ard expressible in the
form of, a list, examples include strings, iteration lists, para—
meter lists, and vectors.

. Multiply-~specified order, expressible by a set of lists; examples
include arrays of dimension greater than 1, and multi-listed re—
cords (as in the Multi-list concept).

Where a single relation is involved, it is oflen not expressed explicitly,

but rather is left "understood". When the relation involved is not homo-

geneous, however, (that is, when there is more than one relation involved),
then simple sets and lists are no longer sufficient to express the order-
ing; we must instead go to a more complex structure: namely, the network,
or association, concept.

Defining orderings. There is a problem of defining orderings, both

on domains and on data elements. Suchdefinitiions are needed as a basis
for generalized transformations which put data elements in sequence, or
‘which test that a set of data elements is in sequence. We need a general
method of specifying orderings. There are several possibilities: cne is
to let the method of specifying order be undefined in the system, and to
have primitives which allow the specification and testing of order. A

second possibility is to define orderings by data structures. This latter

; Ty vt A L b A RS R R e R R L R
QR A LT R . ¢ o it R R s e LR U e S S S A ey R R Rt e S TRE L Rt i

110

seems the more flexible. It has the advantage that we are not limited

to the kinds of order that one might build into the primitives butl can
express an unlimitied variety of orderings. One might, for example, wish

to express partiial ordering.

Elsevwhere is discussed the usefulness of orderings expressible as

R IR S B <o R -~

data structures for the purposes of control sequencing.

It is tempting to think of having ordering of elements in a domain
, (such as collating sequence) be a primitive concept whose method of repre-—
sentation is undefined in the system. The advantage of this viewpoint

' is that a processor can be arranged to create and test such orderings

more efficiently than if the orderings are expressed as data structures.
Howevéz, I have comuitted myself not to be swayed by concern for effici-
ency of implementation.
{ Furthermore, we must nol lose sight of the fact that ordering is a
f relationship. MHence it has alternate modes of expression: by relation-

ship indicators between cells (which means that the members must be ex~
; plicitly stored in a data structure), and by algorithm.

Note that there are iwo important types of ordering or precedence -

relations. The first is the familiar ordering relation, which is transi-

red

tive. !'"Greater—than" is an cxample of this type of relation. The second
type is the "immediate precedence" relation, which is not transitive.
Example of this second type: "is to the immediate right of", 'has a for-
ward connection to". The importance of this second type of relation is

in the formation of loops. In a loop, a circular element, the transitive
type of ordering relation cannot be used; it would lead to a contradiction.

Defining lexicographical ordering. It is important for some appli-—

cations to have transformations which create lexicographical ordering and
which test for it. In order to have these transformations, we must have
some way to define lexicographical ordering.

The concept of lexicographical ordeiing is one of ordering strings

of characters, where the strings have been made of equal length by padding

on the right (or left) end with blanks (or zeros). An ordering ("collat-

PRy

ing sequence'") must be defined on each character pcsition in these strings;
usually this collating secquence is the same for all positions. Examples
1 of simple lexicographical orderings are: sequences of decimal integers,

sequences of mixed radix numbers, alphabetized lists of English words.

s

PR, e T

S RSy S LR S A peRRR TR D
Frosia s R R LIRS TR T PR A RN A TR T o et ooy s v W gy RS RRTEY

————— —— yeE e e) rwany

111

This lexicographical ordering concept can be extended to super-
lexicographical ordering wherein each position contains a string rather
than a single character. The set of strings permissible in a given posi-
tion is defined. This sei must have some ordering imposed on it; this
ordering could be, but need not be, lex&cographic.

Calendar plus clock time is an interesting example of super-lexico-
graphical ordering. For example, the time instant "1967 June 9 2: 24 20"
is a composite data element of six compenents. The value of the first
component is an integer. The value of the second component is a member
chosen from the 12-member domain of months. The value of the third is
taken from a domain which is a function of the month; in this case, it
is a'30—member domain of integers from 1 to 30, The value of the fourth
component is a member of the 24-member domain of hours (military time).
The fifth and sixth components have values from the minule and second do-
mains which are both the ordered set of integers from O through 59. If
the conventional hour designation were used instead, then an extra com-
ponent would be needed, whose values came from the two-member domain [aM,
PM], and the value of the hour component would be from the ordered domain
[12,1,2.........10,11]). Note that this latter domain of hour is one which
has an ordering but this is not a lexicographical ordering.

DATA ELEMENTS APPLJED

In this section we discuss hov the concept of composite data ele—
ments can be used to provide some of the data structures which are al-
ready familiar, and also some of the data structures which are less familiar
because they are not easy 1o realize in current languages.

Strings as unitary symbols vs. strings as ordered lists. Having chosen

the notion of string as a primitive we are now faced with a problem: how
can a string be split into component parts? We have on the one hand the
notio. of a string as a unit, playing the role of a single symbol, neces-—
sarily indivisible. On the other hand we at times want to consider a
string as an ordered set of characters, and have the ability to scan and
modify this set. It is this dual role for strings which presents the prob-
lem.

It is clear that the resolution of this problem requires two ways
of interpreting strings: (1) as unitary symbols, and (2) as concatenations
of characters. There are two fundamentally different approaches for

coping with this. The first of these is to provide a separate set of

-t

S T T T T e TR L P L AT LR L LTs Tr IR et FE3 P
PR iz oy SRR A L 'Wﬁ.m E o SNNIG L T M A afE SARE o S TRVIETIE . AU SN . .

.

EA)

112

™ i

<
N T

i . 0 - .
E string iransformations which operate on value-sirings. The second way
is to provide a transformalion which converts a string into a linear
composile whose components are cells containing individual characters,

and the corresponding inverse transformation. These latter conversions

can be accomplished by means of the string transformations plus the

5 basic iransformations which manipulate data elements.

Programs viewed as composite data structures. We can view programs

as data structures. In the interpretation of programs as data, we need
not concern ourselves with dynamic structure, which can be much more com-—

plex than static structure. Each statement is expressible, in current

I T TR TR

languages at least, as a linear string. These strings can be tied together

i in a'variety of ways, limited only by the ability of the sequence con-—

troller to sequence properly through ihe statements. The automatic, or

follow-on, sequencing between statements (which is different from the
sequencing dictatgd by explicit "jumps'") and the grouping of statements
into procedures correspond to the arrangement of conventional data elemenis
into composites. A segment of a program is then an ordered set ("list") of
strings. The components can be named (can have identifiers) and the com-
posite as a whole can have ideniifiers, which correspond to names of seg-—
ments or procedures. Composites more conmplex than ordered lists may be
useful: an example would be parallel ordered lists.

Program statements would normally be stored as uninterpreted strings,
the interpretation being deferred until the moment of execution. It may
on occasions, however, be useful to represent a parsed statement, for which
a "tree" structure is fairly natural. Block structure, as in ALGOL and
PL/I, is also representable in tree form. .

Observe that a program can now be described as a sequencing through
a conposile data element whose components are strings interpretable as
statements.

Text-handling. The processing of texi presents a problem with regard

to the utilization of composite data elements. This problem is related
to the dual nature of strings discussed in Chapter 3. For the purposes
“of scanning, a body of text might conveniently be thought of as a single
string. However, the user may wish to do such things as place markers
within the string, and attach identifiers to substrings within the string.

For such manipulations, the strings nceds to be a compesite data element

i A
S

+ 113

where the characters adjacent in the text are tied together by some
precedence reclationship. Il is the user's responsibility to have the
text in composiile form in order to perform such manipulations. To con-
vert between sirings and composites will require some primiitive transfor-
mations, since a string is properly an intiegral symbol nol amenable to
being viewed as a composite. The specific text-manipulation abilities
vhich are desirable are discussed in Chapter 5 on Transformations.

A pointer or marker is useful to indicate a point of '"current interest"
in some text. Sonme ways of constructing pointers within the framework
of composites are shown in Figure 4-11. ’

Files. A file, in the conventional sense, can be viewed as a set
of elements. The set, if unordered, is a random file (corresponding to
a disc file). If ordered, the set is a sequential file (corresponding
to a tape file). In ithe abstract, however, a file is simply a set, ordered
or not as we may choose.

Trees. Figures 4-12 and 4-13 graphically portray two trees, showing
data elements at thie nodes, with nodes related by a single type of prece—~
dence relationshiy. Each such relationship is expressed by a composite,
represented in the figures by an arrow.

Matrices and multi-dimensional arrays. While mathematically a rec-—

tangular array caa be considered a vector (ordered set) of vectors, this
viewpoint is not adequate for my purposes. One of my criteria of adequacy
for a theory of data elements is that it should be possible to determine
easily the answer to the question: What elements are associated (related)
directly 1o a given one? TFor example, we can easily obtain this answer

in the case of two-dimensional arrays by defining elements to be adjacent
if their row subscripts are identical and their column subscripts differ
by one unit. Such an explicit adjacency should be one which will work
equally well for other arrays than rectangular ones: such as triangular
arrays and tetrahedral arrays.

Figures 4-14 and 4-15 graphically portray a rectangular, 2-dimension-
al array, and a symmetrical triangular array, respectively. The small
letters stand for specific relationships. In the case of the rectangular
array, the two relationships are "horizontal" and "vertical". 1In the
triangular array, the relationship letters "a', '"b", and '"c" are the threc

coordinates of the array, The regularity of arrays obviously suggests

114

Insert a data element (character) which stands for the marker.

o O D
part— :dentificr

o)

Construct a marker relationship "between"

S GITEED L GIFID o GITID o GETID o

"\ identifier S

C BETWEEN /)

[
=

Use movable identifier "after"

—2-')(A _)-2—>(B _)Jl->(f‘:‘)-—p->(D)_g_;,

identifier
{ AFTER ‘:)

Figure 4-11. Ways of Constructing a Pointer or Marker in
Composite Representing Texi: Marker Pointer Between "B" and "C"

P e B AT T T T b:.i:‘,éi.:*'?

115

L

e e ket 4

[N LN

Figure 4-12. Symmetric Binary Tree

L

'\ \

¢
€;-__-~\
—

Fiemre h-13. General Tree

L e g1 AN

116

S G S G

Figure 4—14. Rectangular Array Pictured as a Composiie Data Element

C

] D,

/ N\
D @
/

C D,

\

&
<
C

a \\\\\ //// b a b
Ve A

A

‘C = D D

Figure 4-15. Triangular Array Pictured as a Composite Data Element

-

* 117

that arrays can and should be consiructed by iterative or recursive pro-
cesses.

Tables. The conventional table is a rectangular array of dala ele-
ments. It is distinguished from the usual mathemalical array or matrix
by the fact that it can contain non-homogeneous elements. In general,
the elements are organized into classes by rows and into other classes
by colunns. If another dimension is needed, the table may be furiher organ-
ized into classes by pages. A data element is selected by specifying a
row-class and a column—-class (and perhaps a.page-class). We could say
that the members of a row have an ambiguous identifier, as do the members
of a column; these ambiguous identifiers used together refer to only 1
element in common. This view of a table then is one of sets, certai= in-
tersections of which have unique members. It may be the case that the
members of a column are not independent, as in certain portions of a de-
cision table. In such circumstances, it may be more convenient to regard
a table as a set of lists, where each list corresponds to a column.

The individual elements of a table may not have any meaningful rela—
tionships between them other than the pliysical relationship of juxtaposi~
tion when the table is displayed in two or three dimensions. This should
be intuitively obvious, since we can have a meaningful four-—dimensional
table but we cannot display it. The relationship that often exists is
more one of similarity of element names. Yet even this does not hold in
a table whose indices are non-numeric (ihat is, where the concept of ad—
jacency of index values does not exist).

By extension of the notion of table, we can have a complex table,
in which the elements are not constrained to be simple, but rather can
be composite elements. An element might, for example, be an ordered set
of elements. To access the lower-level eloments would then require a two-
step access. We observe that the language known as '"Decision Tables" is
an application of complex tables.

Another view of tables is that they are a special case of Cartesian
space. The n-tuple is regarded as ithe ordered set of coordinates. The
element at the intersection of the coordinates can be of any type; in part-—
icular they may in turn be composites in Cartesian space.

It is perhaps more helnful and more meaningful to view a table as
a set of n-tuples in which the first elenenis are from a single domain,

the second elemenis are from a single domnin, etc. Another way to say

JUR AL PRI AL

T T n P e |
o FER N I e e

ey o WSIFETEE R i
e s O RGP A PV AT BRI DN SR RS ¥ A TV Qb
ey Cae = ST Ak o Sl My, ¢ lm‘:"’,,?,,‘?n'{‘ ¥};ﬂ'--:?3-a>ﬁ Tere eoame rham Y
TREDTTEEA T - TR o S BT A

- .

118 -

palca it St

this is that the n-tuples "have a model™. A row is sclected, or a set
of rows are selected, from a lable by specifying certain "match criteria®
for specified positions ("columns' of the table). Results, or "output",

is selected by naming the desired parts (positions). In a table of n-—tuples

o P T
L—-—nﬁ M m m

in a specified order (that is, the table is "an ordered set of n-tuples'"),
a row can be selected by giving ihe table name and an ordinal argument or

subscript. However, if the table takes the form of an ordered set of ele-

Y

1 ments within an ordered set, we have a structure isomorphic to a tree. As

A

we note elsewhere under iree-naming, access to a terminal node ("leaf'')

R of a tree can be done by giving the tree name followed by an ordered set
1 of subscripts. The ordered set of subscripts performs the selections at
r) successively lower levels.

Note that a function table is a special case of a table, in which,

for a given set of input arguments, only a single n-~tuple is selected

; (which is another way of saying that the result of a function must be unique).

f Note that the defining table itself need not contain unique results, but the

lookup algorithm must yield a unique result, if only by such a simple device
as not looking further once one result has been found.

The multilist and multiset concepts. The multilist concept, first

suggesied by Prywes (1962), provides for the appearance of data elements

on more than one list simultanecously. Example: oOnsider the set of ele-—

ments A,B,C,D, and E. Some or all of these clements could appear on several

lists. Composite #1 could be a list of the elements (or, more properly, the

sequence of element names) "A", "C!, MEW 6 "B npn, Composite #2 could be
simply the one-elemeni list "D".

The sequence of elemenils in a composite may not matter, however. In
such a case, we would have sets instead of lists, and the concept might
analogously be called the "multiset!" concept. It provides for the simul-
taneous appearance of data elements in more than one set. Continuing with
the example above: Composite #1 could be unordered set of element names
ngn, oneng age. ngno npis composite #2, the set "3", VYEM, "A", composite
#3, the sect of one element "D".

My method of expressing composites provides equally well for both
the multiset and multilist concepts. Note that there is no limit on the
complexity of the data elements which may be components of the muliilist

or multiset.

Data elemenis of highly variable stiruciure. There are types of data

elements which not oniy are not fixed in configuration, but also which

. 119

have structlures which changz on nearly every access. Examples are: queues
and pushdowns. Their common characteristic is that the stiructusal frame-
work is in a sensc fixed though unbounded. That is, we know in advance

and by convention how each new element is to be added to an existing struc-
ture, and how each old element is to be removed from an existing structure.
The variable data elements employed to date have been largely of the homo-
gencous type: the componcnt elemenl types being identical and the relation-
ships being identical, as in LIFO queues (pushdowns) and FIFC queues.
However, there is no rcason why we should be limited to struclures having
identical elements and identical relationships. We could have an iterat?ve
structure, for example, in which a fixed substructure occurs repeatedly.
Where the variation in a data element is one of variable repetition, a
model is sufficient to express this. When the variation is more complex,
however, a better solution is to use transformations which produce the

appropriate alteration in the structur« when such a transformation is in-

voked.

B i N inendi s B

o pracesoieot AR v,
[bt

[: weres |

o

S————
SRR

o PO——

s i et e
B ¢ T Eﬁﬂr

v
,RRT XY RrAy azasy

120

CHAPTER 5. CONCEPTS OF TRANSFORMATIONS

GENERAL REMARKS

Definitions. A "transformation" is an action, a program step, which
causes a change in storage. This change of storage may not be the storage
which the user "sees", however; it may be inside the processor, and
changed in a way which is defined for user only behavioristically. Dec-
larations (in the ALGOL and PL/I sense) and definitions of various types

are therefore viewed and described as transformations. Later the various

" kinds of transformations will be distinguished.

A transformation is defined by a sequence of transformations, com-
monly called a "procedure'. The ultimate definitions are in terms of
transformations which are primitive (not defined within the user language,
the language interpreted by the processor).

A transformation is invoked, or activated, by a 'transformation call'.
The form of a transformation céll is the familiar function notation of a
transformation name, possibly followed by a list of parameters. Examples:
T; T(A,B,C);.

Sources of transformation definitions. The stock of transformations

which the user has at his disposal must be defined. There are several
ways in which a given transformation definition becomes available for a
programmer's use. Some fixed set of transformations is provided as primi-
tive. These are the fundamental building blocks out of which the user
must build everything he needs.

A second set of transformations is provided as a "basic set". These
are defined in terms of tﬁe primitives and are modifiable by the user.
These are the frequently-used transformations which are provided merely
as a convenience to the user. The user is free to select those he needs,
modify some, and discard the rest. ‘

The third source of transformations available to the user ié that
set which he defines for himself. How much work he has to do to define
new transformations depends on what has been.provided for him in the
primitives and in the basic set, and on the amount of freedom he has in
defining new transformations.

A given programming languagé is to a large extent characterized by

the amount of freedom the programmer has in defining new transformations,

-

,\1_% N

P POV N

121

and the convenience with which he can do it.

Functions vs. transformations. Among the parameters of transforma-

tion calls may occur explicit function, calls. The format of a function
call may be identical fo that of a transformation call, namely: a func-
tion name followed by a list of parameters (arguments) in parentheses.
Since function calls and transformatidn calls can have identical format,
this léads naturally to ask what the essential difference is between a
function and a transformation. A function is sinuiy a transformatioin
that has a single "result'. A result may be an identifier of a value-
string, or it may be an identifier of some arbitrarily-complicated data

element.,

Some languages make the distinction that functions do not permanently
modify storage; that is, they can change only local variables. An;fher
way to say this is: functions are not allowed to have "side effects'.

We do not so restrict them; a function can be written to affect an arbit-
rarily—-chosen transformatior of storage. Thus we can write functions as
the parameters (.rguments) of any function. (In prin¢iple, we can also
writé as parameters transformations which are not functions. As they will
each return a null value, it would seem pointless to write such transfor-
mations as parameters.)

Some languages, such as LISP, require that all transformations be
functions. This means that all non-function transformations must be
treated as functions producing null values. ‘This is workable but some-—.
what clumsy.

Defining an arbitrary transformation as a function requires some carec
in the definition to avnid ambiguity. Consider the list of lists:

({(a,b), (c,d), (e,£))

Suppose we want to perform the transformaiion of interchanging ¢ and d.
What do we consider the "value' of the result? How much of what we
started with is the result? 1Is the result "(d,c)"? Is the result
"((a,b), (d,c), (e,£))"? The definition of the function must tell whether,
after execution of the function, the original data structure exists? Is
the result of this function a modiffed original or a modified copy? We
can of course define it to be either choice. LISP demands that it be a

modified copy, which is to my mind not flexible enough. We should have

e

oz

the flexibility of defining it ‘either way.
FUNCTIONS

Representation of functions. VWhat is a function, in relation to a

computer algorithm? There are two fundamentally different forms which
functions can take; alternatively put, a function can be represented in

two different ways:

1. by enumeration, a set of ordered pairs; the first member of each

[

pair is a set of arguments, and the second member is the corres—

~

ponding result (which may be composite).

2. by algorithm, a computational process which maps the arguments

into a result.

Notice that the algoritﬁmic representa;ion of a function depends on the
fact that a concept is represented in the form of a value-string and that
the components of this value-string can be individually inspected. Thus
a function defined on value-strings is defined in terms of other functions
on the components of these value—strings. These defining functions may
in turn be defined in a similar fashion. The ultimate definitions, how-—
ever, must be either primitives, or functions expressed by the technique
of enumeration. For example, the addition function for decimal integers
is reducible to an algorithm based on tl.e addition table for decimal digits;
where the table is an enumeration.

Both representations of functions can lead to an identical result.
In a given circumstance, one technique will generally be strongly pre-—
ferred over the other. An ill-behaved function, for example, is likely
to be difficult to compute but relatively easy to represent by a set of
ordered pairs (a functiron table). Where standard interpolation techniques
can be used, such function tables can often be shortened. Where there
can be a large number of sets of imput argument values, however, a con-
putation (procedure) will usually be preferable to a function table.
Where either representation of a speéific function may be satisfactory
from the standpoint of readily producing the proper result, the choice
of representalion may be dictated bx the type of modification that the
function is to undergo.

Vhere a function is represented as a procedure; it is structured
and treated as a transformation, a set of imperatives. Where a func—

tion is represented as a cet of ordered pairs, it is a composite data

w0
<o)

)

elementz

Note that a function table is a special casc of a "table," which can
be defined te be a set of n-tuples. A table which is a function is dis-
tinguished by the fact that for a given set of arguments, only a single
n-tuple of the table is selected; this is another way of saying that the
result is unique. For an ordinary table there is no requirement that the
result be unique.

Because we allow this dual representatign of functions, we must be
prepared .o have function calls carried out properly regardless of which
of two mo .¢s of function representation is used, and preferably without
the user having to distiﬁguish between the two modes in the way he Qrites
the call. To accomplish the latter, that is,.to make the calls of the
two types of representation indistinguishable, both tyjes must have a com-
mand interpretation. Functions or the algorithmic type\naturally have a
command interpretation. Functions of the enumeration type ares expressed
as composite data elements. To give these a command interpretation, we
must apply some accessing function to the data element.

To illustrate the preceding discussion, consider the function expressed

by the following table:

> O o |>
o > O |6
O oW o> |0

An algovrithm f which would realize this function is:
f: result = if {1) is 'C' then (2) else
if (2) is 'C' then (1) else
if (1) is 'B* & {2) is 'B' then 'A' else
if (1) is 'A' & (2) is 'A' then 'B! elge 'C!

In table form this functiol. would be written

(1) <2) Result
A A B
A B C
A Cc A
B A Cc
B B A
B c B
c A A
c B B
C Cc C

a\"’
. '

it o~ e i

Ao ot

e Sty
i

124

To make this table representation a callable function, we need a table
search function to operate on it. In order to design a search funciion
we must have in mind a specific data structure. The data structure of
the table need not conform to some uniform standard. There is a variety
of data structures and companion searching functions which would serve.

To summarize, a user—defined function will be some procedure called
by means of a standard procedure call. There are two philosophically
different forms of function procedures; each form has its advantages and
disadvantages. (ne form is an algorithm which computes a result according
to some set of rules; the other is some table lcokup procedure which finds
the result in a table.

Predicates. One of the most common types of function used in pro-—
gramming is a predicate, a function which yields a resul® of either "tiue!
or "mon-true'. An example of the use of this function is as the Boolean
expression part of an IF-THEN statement. An important usé of this type
of function will be the determination of the existence of specified data
elements and relationships. Such functions will of neceséity be defined
by rather complex algorithms which search and inspect composite data
elements.

Nature of the result of a function. From a mathematical standpoint,

the result of a function is an unnamed, unsiored value. In contrast to
this, the result of a function from a data processing point of view is
an entity which is bolh stored (if only in some temporary location) and
named (otherwise it could never be accessed for a subsequent processing
step). In the data processing case, a resuli could be a value-string

(if it is a simple data element). If the result is a composite, however,

it cannot have a value-siring as a result; in such a case, the only mean-

.ingful result is the identifier of the resulting composite.

With this discussion as background we are ready to consider the
issue of what is an exit—value of a function. 1Inat is, what is the meaning
of a function call when it is wriiten as a parameter? If ithe function
yields a value-string, its exit-value could be that value-string. If the
function yields a composite, which b& definition has no value-string,
then the exit-value could only be the identifier of.the composite. Since
ve have already established that every value-siring which is the result
of some function has an identifier (supplied automatically by the proces—

sor, if necessary), we take the simpler point of view that the exit-value

.
]

WPTINL. Ry,

: , sraeed 3 mad

— e el

- . 125
:

of every function call is an identifier of the result.

Result domains. I earlier expressed the philosophy that it should

be possible for the user to prevent the computation of f'lgarbage'; that

is, to be able to write programs such that invaliid values of data ele-— <
nents cannot masquerade as valid ones. We should accordingly think of

a result as ‘an ordered pair, consisting of a type designator (usually a

domain designator) and an associated value-string or composite. In order

to implement this philosophy, it i§ necessary to provide explicitly with

thé result of a function calculation the "type" of the result: that is,

its domain, or class. Exactly how this lype information is to be expressed

and stored has been treated in detail in Chapter k.

Storage allocation of function results. A problem exists in connec~

tion with storage allocation of resultc of executing functions. If each
function leaves its result in a standard place, say in "RESULTY", then

some conflicts of storage can occur when asynchronous parallel operations
are allowed. Even if each function or each execution leaves its result

in a location unique to that function, the same kind of conflict can occur.
This conflict can cccur both in the case of asynchronous parallel execution
of the same function, and in multiple occurrences of the same function in

a single parameter list. The completely generul solution, and the one
which I favor, is to generate a new (previously unassigned and unused)
storage location for each result., The difficulty here, of course, is that
the available storage gets used up if there is no automatic method for
reclaiming it. Such an automatic method might be easy to specify—namely
that the result can ve used only once and then the storage cells it oocupies
are to be made available for new assignment. (This applies only to the
result, not to side effects.) Another possible resolution of the problem
is to provide a name for a function result as part of each call-—then it

is up to ithe user lo avoid storage conflicts; however, even this technique
may fail when asynchronous parallel processing occurs!

Choice of domain of a transformation result. We have considerable

flexibility in how the domain of a rgsult of a function is to be specified:
1. The simplest case is to have one fixed type, specified by the

writer of the transformation definition. E*ample: A concatenation

function could be defined on two parameters of type string, yield-

_ing a result of type string.

R B) : e e e S NBeS ~* T

RS it a4

2. The type of the result could be defined to be M"appropriate® to
the types of the input parameters. Example: a sum function could
be defined on two paramcters of the same type (that is, both
integer, or both real, or both complex, or both vectors of inte—
gers, etc.), and the resuli could be defined to be of the same
type as the input parameters (arguments).

3. The type of the result could be specified by an input parameter.
Example: We could define a procedure which computes area, given
length and width parameters in some'linear measure such as inches,
feet, yé%ds, etc. One of the parameters of this procedure could
specify the domain of the resulting area, that is, specify that
the result is to be given in square inches, square feet, square
yards, etc. :

Methods 2 and 3 above require the existence of program statements which
can determine the domains of the input parameters.

Extension of functions. We would like to have the analog of the

mathematician's ability to extend a function to deal with a different
algebraic structure. Example: 1let the function SUM (A,B) be defined,
say, for integers. We would like it to be extended to treat complex inte-—
gers, then to be extended again to treat rectangular arrays of complex
rationals. It should be appareni from the preceding discussion that such
an achievement is not difficult. The procedure which defines the function
SUM must analyze the iypes of the arguments and select a computation se~
quence appropriate to the argument types; naturally the appropriate com-
putation sequence must also be added where needed.

CHARACTERISTICS OF TRANSFORMATIONS

General types of transformations. It is convenient for the purposes

of study and discussion to organize the types of transformations into
three general categories: transformations of data, of context, and of se-
quence control. Each of these will be discussed in turn.
"Transformations of data" are those processes which change data ele-
ments, or compute functions, or both. Changing a data élement includes
creating and modifying relationships between siorage cells. Functions
have been disc?ssed earlier; the reader is reminded'that the computation

of a function may or may not permanently modify data elements.

126

Faadiios

ey

— oewd MG MW EENE

B BE e

127

"Transformations of sequence conirol" include all those transfor-
mations which wodify special storage cells uniquely associated with the
'control element" of the processor. Also included are iteration state-
ments which control repcated execution of a set of statements. Further
discussion of this type .»f transformation must await a treatment of se-
quence control later in this chapter.

Transformations which are neither of the above types are classified
as "transformations of context!, which can be further subdivided into
3 éubclasses:

1. Transformations of domain can define a new domain of members,

add members to a domain, delete members from a domain, define a
subdomain, set up equivalences between members of domains (which
can be done either by correspondences or by algorithms), define
orderings on members of domains. Members of domains need not oc—
cupy storage cells; they may instead be defined by algorithms.
Thus transformations of domain may involve the modificaticn of
algorithms; since in these developments we regard algorithms as
data until the moment of interpretation by control, these modi-
fications can be carried out as modifications of data.

2. Transformations of processor action concern modes of processor
action such as types of evaluation or caliing. Examples of modes
of processor action not present in some languages are '"macroex—
pand"! and "evaluate without becoming-undefined."

3. Transformations of specification can set conventions to be used
vwhenever specifications are deficient or non-contradictory. This
corresponds to the "default attributes" of PL/I.

Recursive calls, recursive procedures, and reentrant procedures. Notice

.that a "call' to a transformation can be interpreted in several ways:

1. Remember the return point, move the program control pointer to
the entry point of the transformation, and proceed with normal
execution, '

2. Remember the return point. Make a fresh copy of the transforma—
tion (i.e., the data structu}e vhich will be interpreted as pro-
gram). Move the program control pointer to'theentry point of

the copy and proceed with normal execution.

or
-

vy

128

The occasions when this distinction matlers are in the case of reentrani
or recursive procedures or wvhere a procedure modifies itself. On these
occasions it indeed matters whether one has the effect of copying or not.
What actually happens in ihe processor is nol of consequence here. What
does matter is the behavior of the processor as seen by the user. The
presence or absence of the copying effect strongly influences how the pro-—
cedure must be written.

Notice that a recursive call (a call to transformation T as a para-
meter of onother call to transformation T) can be considered a special
case of recursion, since the procedure in eff .t calls itself not during
execution of the procedure, but during the 'prologue'" to the procedure
during which its parameters are being processed.

The most usual way of handling recursive procedures is to have the
rule that only the "latest incarnation' of the procedure and its associ-
ated variables are accessible. This requires that all exits from thcse
procedures must be orderly so that everything can be carefully unstacked.
Thic rule implies, although it does not require, that no copies are made
of the procedure. This limitation of access only to the latest incarna-
tion makes it difficult 1o refer to data in previous fncarnations, since
they must necessarily be passed as parameters in order to be referenced.

In these cases involving copying, we necessarily have multiple
uses of identifiers, and hence have ambiguities of reference. These
must be resolved in scme systematic way. One possible solution is to
have the Mlocal! variables automatically converted te lists with incarna-
tion numbers automatically supplied as indices. In turn this raises the
problem of defining scope of variables, an issue heretofore avoided.

The point of all this discussion is to raise the issue of what a

call to a transformation real'ly means, and demand that the issue be clari~

fied. Does copying of the transformation orcur? If so, under what circum-
stances? Can the user control when copying occurs, or is it determined
by the system designer? If copying occurs in the cases of recursion, how
are ambiguities resolved?

It is obvious that in the case ;f a procedure having formal para—
meters, the prototype of this procedure should remain untouched, so that
it can be reused 1o satisfy additional calls of the procedure. Hence some

copying of the prototype should take place at each call, Exactly what

.

‘

weei i e mend BEM RS

e e

129

should be copied is the matter for consideration.

I digress briefly for a comment. There has been much interesi in
recent years in 'pure procedures", procedures which do not modify ihem-
selves. It has been argued that pure procedures have two advantages; ihat
they are easier to debug, and that .n a parallel processing environment
they can b: used simultaneously and asynchronously by multiple threads
of controi (can be used "reenirantly").

The argument about '"debugying' is perhaps true, in the sense that
some users find it less confusing if procedure bodies are not modified.
However, to avoid modification of a procedure body, one may have to build
a slightly more complicated program. 1In such a case it may not be true
that'debugging is thereby made easier.

The argument that procedures must not modify themselves in order to
be usable in a parallel processing environment stems from the storage-
conserving practice of using only one edition or copy of a procedure body
to serve multiple purposes. From a logical viewpoint, however, a procedure
is intended to be a prototype, and each invocation of this prototype may
be with different paramcters. Each invocation involves a fresh copy of
the prototype with appropriate substitutions for the parameters. If the
invocation of procedures is in fact implemented in this way, then there
is no need to restrict procedures from modifying themselves.

REFERENCING A DATA ELEMENT

Definition. A Mreference! is effectively a pointer to some data
element, either simple or composite. It may be convenient to think of
a rceference as a machine address. In a higher-level language, however,
the concept of machine address is not definedj; hence we might take an
alternative view, namely , that a pointer is invisible and is considered
to be undefined in the language. This concept of invisible pointer could
be dispensed with 1f the processor were such that it generated an identi-
fier aulomalically for every data element when an identifier was needed.
I take the view that every data element has an identifier, and that

every reference is a function which yields an identifier of the data ele~

*ment being referenced.

Expressing a reference. A reference is expressed as a "reference

expression, which will appear as a parameter of some transformation.
A reference expression can take any of a variety of forms. These forms

are enumerated briefly here and explained later in this section. The

POReeel ot i o 2

e, T

ERiriet v ey

.

o e

L SEE s

I |

£ TMEANE

P~ - T]

130

ways ihat references can be expressed are:

1. As an identifier. A variation of this is to have indirect refer-
encing, in which a value-string corresponding to an identifier
is taken; then this value~string is re-interpreted as an identi-
fier. This process can be repeated as many steps as desired.

2. As.a "name'", which requires the existence of a name-to-element
mapping function. Examples of such names are array element names
and tree element names.

3. In terms of standing in a unique relationship to some other data
element already "known!. Examples of such relationships are:
preceding'!, "succeeding", "corresponding", having a specified
ordinal pogition in some ordered composite. It is possible for
the reference to be a chain of such relations.

4, In terms of satisfying some predicate, such as "is a substructure
oft; or "is an instance of!.

5. As an identifier of a composite data element plus a part-identi-
fier.

6. In terms of an algorithm which yields a reference; for example,
an algorithm which performs a search or traces a path, A speci-
fic example is the hierarchical name in COBOL, which has an im~
plied search algorithm,

7. In terms of a call to a function which yields a value-~string.

8. By pointing, as with a light pen or cursor.

9. By exhibiting a value-string (unnamed) in quotes. :

10. In terms of an intersection of classes having ambiguous idenii-
fiers.

11. In terms of some pronoun which refers by convention to some pre—
viously-determined data element;

A comment on lockup versus search. I digress briefly to make an ob-

servation concerning when referencing by identifier is appropriate end
vhen it is not. Consider a structure which allows representation of full
text of, say, a book. We have, in the main text, the book as a whole,
chapters, sections, paragraphs, sentences, wérds and characters. If we
had a naming scheme down to the level of sentences, for example, we could
obtain any sentence by direct lookup, assuming that there is some name-to-

storage~location mapping mechanism. To go to any level of finer detail,

LAY

(s

Peaia N

e

e
.

Py—

13%

that is, to a word or character, we must resort to a search procedure.

We can make the observation that in general we can expect to access by
direct lookup any substructure that is named (that is, has an identifier),
but accessing any unnamed substructure requires a search.

Naming components of a composite by "mappable names'. We note that

among the methods of naming individual components of a composite, there
are the methods exemplified by arrays and trees. We observe that sub-
scripted identifiers are a naming scheme for elements organized in an
array or tree. Consider, for example, the identifier "Y[A,B,C]". This
designates some composite element called "Y". The ordered set "A,B,C"
tells us how, starting from some standard starting point, to proceed
to a single selection. Each subscript value in turn represents a choice.
Imagine a tree named "Y"". Beginning at its root, we choose the Ath
branch, and proceed down this branch to the next node. At this node, we
choose the Bth branch and proceed to the next node. At this no@e we
choose the Cth branch and proceed to the next node. ‘This final node has
a corresponding value-string, which is the value we have'selected. it
the tree is a regular one, by which we mean that each node at a given
level has the same number of branches, then it can as readily be visual-
ized as an array. Consider the Figure 5-1. This shows a regular tree
and the corresponding multidimensional array. If we make one minor
change, so that the tree is no longer regular, then there is no longer
a corresponding array. We can, of course, add dummy branches to the
tree so as to make it regular againj and if we do so, then there is again
a corresponding array.

Putting what we have just discussed into more abstract language:

naming schemes for components of trees and arrays simplify the naming

of component elements of a composite elcment. The lechnique is based on

taking advantage of regularity so as to be able to make a simple naming
rule. Rather than give each element of a composite its individual name,
the composite name is like a generic name, and the elements are ordered
in such a way that the sequence of subscripts tells us how to trace
through this ordered structure to obtain a single component elenment.
Particularly in the case of arrays we have been conditioned to think of
the subscripts as numeric ones, but there is no logical reason why the

values of subscripts need be restricted {io numbers.

Id

ar

sy ol

S el WY e

REGS

132

order of choice

A. A regular trce has a corresponding array.

B. A non-regular tree does not have a corresponding array.

order of choice

3 & > ond

st

C. A non-regular tree can be padded out to make it regular and
thus have a corresponding array.

Figure 5-1. Naming of Elements Via Trees and Arrays.

el

o 2,

s

o b e W e iy —

P i

R o

thaat

R

i mewii wemed el 2l Pea! RS

—t

133

An example of a naming tree is shown in Figure 5-2, where a constant
tree, whbse nodes are company names, is accessed by the generic name
"'COMPANY NAME!" plus a list of subscripts signifying state, city, and utility.
We note that the class of naming trees that have just been described is a
special case of the class of trees having arbitrary reclationships between
the nodes, which is in turn a special case of <etworks with arbitrary re—
lationships between nodes.

Little has been said about the name-to-element mapping rules. It
should be obvious that there must be a way té indicate when a name-~to-ele~
ment mapping rule is to be invoked, and which such rule is to be applied.

.A general data referencing function. The identifier function is in

turn a special case of a more general data referencing function which we
might call Rel. The arguments of Rel are the identifier of a given ele-—
ment and a relationship of the given element to the desired element. For

instance, if SAM and DAVE are identifiers of two data elements, pictured

thus identifier
C SAM },mmmm>()

father-
s

on
\/
identifier
and "father—son' is the relationship of the first element to the sccond,

then

Rel (SAM, father-son)
would be synonymous with DAVE. That is, it would be equivalent to DAVE
for the purpose of accessing the same data element. Note that whether
DAVE has a value or not is irrelevant here: DAVE might be a composite
data element and not have a proper value.

Ambiguous relationships. The system being developed here allows

arbitrary relationships between arbitrarily—chosen elements. In such
systems, there is the possibility of more than one element being in a

given relationship to a given element. I call such a situation an "am-

. biguous relationship". The user must be conscious of whether such ambi-~

guous relationships actually occur in his data. The succeeding para—
graphs explain why.
Consider first the case where a, b, and ¢ each stand in the rela-

tionship Ry to x. Diagrammatically:

T

R

oy - - o 0 Yy < SO INERE & SN A e ST SR (O L L
SLASSIRA i AN SHCR AH SRR L AR S e sl L R O R Y s A T et it e SR A L G R AR £ e LA AT SIS M AR S A
.
v

134

Company [state]
name

QAT SURL ISR RTIN] W

[City] futility]

Arizona Flagstaff gas Peoplets Gas and Electric

. ' .
electric Pecple's Gas and Electric

TR S o e Bt mh—o

telgph Arizona Bell
¥ \Lored

one
LOBACT DN
Phoenix

9as Phoenix Gas

.
o e

telectric o sunset Electric

. teleghone Arizona Bell

Alabama Hotspot gas Southern Gas

electric Hotspot Electric
SRR TACI S ILNT 2T

zgglegggne Hotspot Tel & Tel

Arkansas

Birmingham

Little Rock

gas

gas

electric
MDA A YT I %R

" Southern Gas
Birmingham Electric
Southern Bell
Faithful Gas and Electric

FIGURE 5-2,

e

electric
ST N®

Faithful Gas and Electric

tele hone Midwestern Telephone Company
3aV S

Road's End gas Midstates Gas
electric Tristate Electric
telephone Midwestern Telephone Company
Boxder 55 Border Utility Corp.
Ielectric Border Utility Corp.
 telephone g, .or Utility Corp.

Example of a tree of names

TR s e Ak e

s

.

o

Sl R isio e i o

To make the illustration more concrete, think of a, b, and ¢ as identifiers

of the object x. Suppose now that the object x has been referenced by

some means other than by any of its identifiers, and that we wish to be
able to determine one of its identifiers. We must be careful what we
ask.. If we say '"What is the identifier of Xx?" , which is more precisely
stated "What is the unique identifier of x?", the question has no proper
arswer. To give as the answer "The set a,b,c" is perhaps technically
correct but not very useful. To get a proper answer we must instead ask
What is é_l_l_ identifier of x?", which itself is an abbreviated way of saying

"What entity stands in an identifier relationship to x?" The user nmust

in general know, or have a means of finding out, if this question has a

unique answer. If it does not, he might ask ihe same question twice in

his program, and get a different answer each time; this may lead to a pro-
gram error.

Consider a second case, where a stands in the relationship R

Y, and z. Diagrammatically:

1to X,

To make the illustration more concrete, think of x, y, and z as ¢kements

each individually identified by a. Suppose now thal we wish to make a

reference to y. Clearly a does not uniquely identify Y. VWe must jive

other relationships concerning y, either instead of, or in addition to, a.

Suppose we say 'the element identified by a". This is meaningless. By

T R R R R SR T o PRI

oot ke

poiu o i Lt G e
= S T

Crvena KOGRE EeGoaR e

e 1A]

suey owws RwEmy

T Fa KV % . e e e il iammEa ab aed A P & T AR R S TS T g
X DI T FL AVEEGERS DB T £ 4 Sendh e o 48 ERL e el e o

I e - e e L

e s

136

a sliéht siretch of the imagination we could interpret it to mean "ihe
set X,y,z;" to treat x,y,z as a set when it has not been explicitly recog-
nized as such may lead us into trouble. (It will have multiple components
where only one might be expected.) We might say "The set of elementis
identified by a." This is meaningful and correct. It is important to
recegnize that it is different from the two substantives just given above.
It is also meaningful to say "An element identified by a." As in the first
case, the user must in general know, or have a means of finding out, if
this substantive refers to a unique object. If it does not, the program-
mexr may use it twice in his program, and refer to a different object each
time, thereby leading to a program error.

In summary then: if more than one element can stand in a given re-
lationship to another element, the user may have to take precautions
to avoid nonsense and ambiguity.

Referencing a value-string. There are two fundamental ways of refer—

encing a value-string:

1. exhibiting the value-string within paired quotation marks.

2. calling a function, which yields an identifier of a value-string
as a result. Where a domain has an ordering imposed on it, there
is another means of referencing a value-string: that of giving
the domain name and the ordinal position of the desired element
within that domain.

A single representation may name several members in different do-
mains. The letter "IW, for example, is the namec of a letter of the alpha-—
bet, and is frequently used as a synonym of "true'", a member of the domain
of Boolean values. In cases where a representation is ambiguous, the

ambiguity must be resolved by an accompanying domain designator. The do—

main designator tells in which domain lies the member that the representa—
.tion is intended to represent.

Pronouns. It would be desirable to have expressions which roughly
correspond in funciion to pronouns in English. Specifically, we might
find the following concepts useful:

1. The last (or next-to-last) element accessed.

2. The result of the most recently executed transformation.

3. The name (or a name, or the principal name) of the statement most

recently executed.

e

o sy oL

. ae s A me meTEae < x b vn
Cer wEeas

FoaTe s ea

ne -

- - - T et ymarmtr e e s
.

EX At raucer

THIE

vt

-

137

k. The name of the nexi return point, established at the .ast
temporary change of control.
¥What pronouns can be made available depends on the nature of the dala
accessing mechanism, and what pronouns actually are available depends on

what the designer and the user together have built into the data accessing

mechanism.

PROCEDURES AND PARAMETERS

Abstractions from programs. It may be the case that a program con-

tains some similar pieces. It may be convenient, either to save the pro-
grammer's time, to simplify the program, or to conserve machine storage,
to abstract these pieces from the program as it might have been originally
written. By "abstractf we mean to remove them from the main body of the
program and to add to the program something (an "abstraction") which re-—
presents all of these pieces. Such an abstraction is often called a
iclosed subroutine! or 'procedure'. Wherever the abstraction is not 'per-
fect"—vhere two pieces abstracted from a program do not match—the dif-
fering elements are not abstracted. 1In their place in the abstracted pro-
cedure are put placeholders, usually called 'formal parameters". These
formal parameters are replaced at execution time by "actual parameters"
which are supplied in the YcallM,

Thus we see that any itwo or more pieces of a program can be abstracted
and replaced by references {(calls) to a common procedure. The greater
the number of differences among the pieces, the greater the number of para-
meters that must be used. A major object in writing a program is to ab-
stract as much as possible without making the number of parameters exces—
sive. The tradeoff is always a matter of individual taste and judgment.

Calls and parameters. At the point in a program where a piece of

program has been removed (Yabstracted") we put in its place a call—a
reference, by identifier, to the procedure which was abstracted-—followed
by any parameters which may be needed. In some languages, some calls are
di stinguished by being preceded by the word MCALL". This expliciil way
of marking calls has some advantages which will become apparent later.
There are two main places, from the graﬁmatical point of view, that
calls can occur. A call may occur in place of a command (or "imperative',
or Usentence', or Ystatement!, or in place of a sequence of statements,
sometimes called a "compound statement!). Then we say the call is a !"pro-
cedure call’. A call may occur as a substantive (or "operand", or "para-

meler"), and it is therefore expected to have a "value'; ihen we say it

e

e I

e~ s o e e
S—
m’ m H

Fliia

v S < = ¢ R ok

fomonas)

feaaadl Amsm s

.
.

138

is a "function call',

The distinction in aclual use between calls to procedures and to func-
tion procedures is convenient for purposes of classification and explana-—
tion, but it is not a necessary one. It is allowable in some languages
to have a call to a procedure which call is used as an operand. Since
in such a case some value is expected, the resulting value is convention-
ally taken to be null. Conversely, a call to a function procedure can
sonietimes be written where a statement is expected. In such a case, the
"value" of the function procedure is discafdéd; the function procedure
is being used only for whatever "side effects" it may have (that is,

for vhatever changes in storage that it makes).

Call execution. What happens at the timg a procedure call is executed
is the following:

1. A copy is made of the calied procedure.

2. Each actual parameter, if there are any, may be 'treated" in any
of several ways. The choice of treatment method can be based on
the form of the parameter or it c&n be specified in the body of
the procedure. The kinds of treatment methods which have been
popular are discussed helow.

3. Bach treated parameter is substituted for a corresponding formal
parameter in the body of the procedure. How the correspondence
may be indicated will be discussed later.

L, The procedure is executed.

5. If the call plays the role of an operand (thatl is, if a value is
expected), the resuli of a function procedure, oi- a "null", is
substituted in place of the function call.

There is a variety of requirements that I would like to place on the
procedure call mechanism, all contributing to flexibility. Some of the
general.requirements imposed earlier are:

1. It should accommodate recursion. That is, a given procedure
must be able to call itself ("recursive body"), and an argument
of a call to a procedure may be a call to the same procedure
("recursive call").

2, A procedure must be able to modify itself.

Additional requirements are:

1. The processing of the parameters of a call should be under complete

control of the procedure. That is, the procedure may decide,

- SEr s S5 Y e N R
Moy sk sk i PR Tt Sl sein st iR G PN s L R LA R PRGNSR Cnierii g Sl AT &
TR (i G ? & =

:
3
-

-

f

ot et b R e e T) R R WS T T E R LR T T SRR TR A PRI et v e MR A T et meem T T 0

139

during execution, which parameters are to be picked up from the
call, and how they are to be processed and substituted. The ex—
pression '"how they are to be processed! refers to whetiher a
parameter is to be interpreted or simply to be left uninterpreted,
and if it is to be interpreied, how it is to be intcrpreted.

2. The parameter passing mechanism should work properly even in a
parallel asynchronous processing environment.

3. The parameters in a call should be uble to be matched with the
formal parameters either on the basis of position in the call
("positional parameter") or on a partial match of ihe actual
parameter ("keyword parameter!).

4, A procedure should be able to access the call of any specified
"incarnation" of any specified active procedure, not just a call
to itself and not Jjust the most recent call.

5. Two types of substitution techniques are needed for substitution
within the body of a procedure:

a. To be able to replace occurrences of an arbitrary substring
by an actual parameter. .

b. To be able to replace elements on the basis of giving their
identifiers, or to replace substrings of such elements.

6. It should be possible to have more than one standard procedure

call mechanism.

The matter of grammar. To my mind, grammar is an issue almost wholly
separable from other programming language consi ierations. A set of gram—
mar rules and a grammatical processor is necessary for what? For finding
out what a given statement "means!. In the programming language context
it can only mean one thing: a call to a transformation. A call to a
transformation has a standard format: a transformation name pcssibly
folloved by a list of parameters. If all the transformations are writ-
ten in this standard format, there is exactly one grammar rule. This re-
duces the issuc of grammatical analysis to a triviality.

Now it is of course true that programmers like to express transfor-
mations in other formats. For example, the normal algebraic expression
with its infix notation for functions of two arguments is a popular one.
A programming language usually has a variety of statemeni forms. For

example, in ALGOL, some of the basic ones are: assignment, go to, condi—
tional, iteration, procedhre definition, declaratiou.

At

A tai

Sl |

eaey R el e

i [receree

140

Onc of the virtues of a compiler over an interpreter is that, with
the former, grammatical analysis of a given statement has to be done only
once. However, notice that if the programming language consisted of only
one statement form, this advantage would disappear. We note also that
many current compilers are not pure compilers. Much of what they do is
in fact interpretive: such ilhings as dynamic declarations, execution of
format statements containing variable specifications, etc. Hence I con-
clude that the advantages of real compilers over interpreters is not as
great as many would like to believe.

The control character interpretation problem. A classic problem in

inteypreting strings of characters is to distinguish those characters
which are "controls" from those characters which are "objects!" (not to
be further interpreted at the moment of scanning). Examples of control
characters are: quote marks, paired brackets or parentheses of various
shapes, commas, and blanks. Problems of interpretation arise when a charac-
ter normally used as a control character is desired as an object charac—
ter. How do we say unambiguously that a certain character is not to be
given its normal control interpretation? The answer is that we must estab-
lish some workable convention. There are several workable conventions
that will serve except in rare palhological cases. (No matter how elaborate
the convention, T think one can always construct a case in which the con-
vention won't work, so we must be content with a reasonable convention
that works except in rare cases; these latter will kave to be handled
individually on an ad hoc basis.)

Convention 1. Any intentionally ummatched bracketing character or
quole mark shall be immediately surrounded by quote marks. This means
that whatever scanner is used must treat the sequence

guote-mark bracketing-character quote-mark

as a special case, to be interpreted as meaning the bracketing character
standing alone.

Convention 2. Provide a command *-:ich temporarily deprives a certain

character of its status of being a con.rol character, and possibly substi-

tutes another character; the stalus quo Lo be restored bty the execution
of a countermanding command. For example, to deal with the string abe'def
as a qiioted parameter, let " be temporarily replaced in its control role
by '. Now we can have the quoted parameter 'abceldef!' without misinterpre-~

tation. Second example: Suppose thal we wish the string abc,def to appear

AP M Ay S e e

SR ¥

Bem s

- A em

o Sy

aret -

[B

ST IR T e AR Y e L R Tk

PR

A

o e

s e P s

ol

T

Lk 124

141

in a list of parametiers, where comma is the usual separator. We could,
for the burposes of interpreting this list, declare blank to be the
separalor character. Then we could write

F (ADF abc,def ghi)
and have abc,def properly recognized as the second parameter.

Both of the conventions mentioned here require explicit provisions
in the language processor to handle them.

There is another problem, closely related to the control character
interpretation problem, called the "matching.brackets problem,' which
is discussed in the next secticn. Sclutions to the matching brackets
problem are automatically solutions to certain aspects of the control
character interpretation problem.

The matching brackets problem. The matching brackets problem is con-

cerned with control characters which are normally used only in matching
pairs: these are quotes, round brackets, (parentheses), square brackets,
and curly brackets. The problem is concerned with how to decide which
Yrackets form matching pairs. If tihere is-a convention for denoting an
individual unmatched bracket, and if all other brackets are present in
properly nested form, then there is no problem in finding which brackets
form pairs. However, if there is an error, in that a member of a pair

is erroneously missing, or through some transposition the brackets are
not in properly nested form, then the pairing cannot in general be dis—
covered by inspection alone. To provide for discovering and dealing with
such errors, some facility is néeded for uniquely discovering which brackets
form matched pairs. There is a convention which can be used and which
will serve except perhaps in rare cases. This convention is one that can
be brought into play at the user's option but it need not be '"built int"
to a language and processor system. This convention is simply a rule

for forming an unlimited numrber of different bracketing expressions. The
rule is this: let a left—bracket expression be any string (1) beginning

and ending with a blank, (2) not containing a blank, and {3) containing

.one left parenthesis. A right-bracket expression will be a similar expres-—

sion except it contains one right parenthesis. Examples of such bracket
expressions are:

abc()abc

a(bc abce)

ca o

Racsa e) ey i, mens

142

It helps readability if the expressions have ithe parenthesis at the inner

ends, but this is not a necessary restriction. It is easily scen that we

have an unlimited stock of convenient brackets

1()} |
2()2
793()793

A complicated function call written using ithis matched bracket convention
might look like this:

func 1(A,tw 2(£ 3(jym)3 mMmr)2, N
If an error occurred, which resulted in the bracket)2 being lost, a scan
of the set of parameters of funct would show immediately that an error
existed and the procedure call mechanism would not be prevented from con-—
tinuing its analysis of the expression in which this function call to funct

was embedded.

What is a formal parameter? It is appropriate for us to examine care-

fully what a formal parameter iz, and how it behaves. It is commonly agreed

that a formal parameter is a placcholder (in a prototype); something is to
be substituted for this placeholder in a copy of the prototype. WProto-

type" in this context of course means Yprocedure body", and "substituled

red

...in a copy of the prototype" means that a call of a procedure has this
effect, whether or not it is actually carried out that way.

When we consider further the actual nature of the placeholder we find

that Yplaceholdes” can be interpreted in a variety of ways:

1. As an individual parameter in a structured string: that is, as a
given paramecter in a transformatiop call. Example: Consider a
program statement in our standard prefix form: 7(X,Y,Z) Any
of the names T,X,Y, and Z can be regarded as formal parameters,
to be replaced under some set of rules specified elsewhere.

2. As an individual parameter appearing possibly more than once in

a partially-ordered set of structured strings (in this context,
a procedure body). We can forget for a moment the complication
of allowing partially-ordered sets of stringsj the procedure
bodies that we normally think of are simply linear strings. This
role of parameter is the one that applies to conventional pro-
cedure calls in ALGOL, FORTRAN, PL/I and the like.

3. As one or more appearances of a substring in an unstructured

string. This viewpoint allows a more general application

ey S, A AR ™ AT, ol e
" Lol

Fa—

RURIFT DRI

Lo SR U SN, DU

)
’
¢

|'§! H h . - T " L I S A R TEEER R LN A AT AT A A T LTI Ny g b et T

a0 o2 U L0 e L
-

! 143

! " of ithe formal parameter concept. In fact, being able to sub-
stilute one substring for another is the most general kind of

string substitution that we can envision.

4, As an identifier associated with one or more components of a

data structure, wvhich structure may later be interpreted as a

procedure,

A placeholder of the third type mentioned above is fundamentally

different from types 1 and 2. Type 3 obviously requires a scan of the
precedure definition at call time (ihat is, at the time a procedure is
invoked). Notice that type & could be used to avoid the need for this
scan, by making it possible to "name' ihe insertion points, which would
perhéps be initially represented by null substrings.

While the discussion of formal parameters has here centered about

procedure definitions, it should be rementbered that the concept of for-

mal parameter applies equally well to data structures, for in fact pro-—

cedure definitions are simply a specific form of data structure.

nard

Formal and actual parameters. There is no real need to distinguish

between formal and actual parameters as far as how identifiers for them

—

are constructed. The feature which distinguishes a formal parameter from
an actual one is the fact that the formal name is systematically replaced
at some point by an actual name. This substitution must be made with due
regard for ihe presence of local data elements ("local_variables"), other—
wise the prototype may be rendered unusable for a succeeding substitution
(because, as the logicians would say, of the confusion between bound and

free variables). Consider the prototype procedure:

proc Pl(a,b);
local x;
X Emomames 213
8fmmme by
b Gammeere X 5
end Pl;

In the above, x is bound (is a "dummy variable", and it could have any

"arbitrary name) while a and b are "free'. If we give the call
I CALL Pi(x,y);
then a copy of procedure Pl is made and in this copy x replaces aand y

! . replaces b, yieclding:

< L T e i - _ E A =

e b g

=T

oy

[-saccs. R s S - O

o=

Suamey MY

proc Pl{x,y);

local x;
X Gmmenmrma X 3
X sy §
Y Gommnn X §

end Pl

which is not what is wanted, and which will not yield the desired result.

If the prototype itself is to be manipulated by the program, then

calls of ihe procedure should make substitutions in a copy of the proto-

type, leaving the prototype intact. Otherwise names may be arbitrarily

changed by the substitution process, thus invalidating later references

to the prototype for purposes of manipulation.

Several situations can be described which exemplifly the difficulties

of making a distinction between formal and actual parameters:

1.

2.

A procedure Pl operates on a procedure P2, patching sections of

P2 together to make a new procedure P3. A call is then made to

P3. .

A procedure P4 when first called tailors itself to be more efficient
in response to the class of calls exemplified by the current call.
After tailoring itself, it closes off the tailoring process from

further use, and then proceeds to do its regular work.

The common characteristic of these problems is the dual nature of some of

the paramecters, parameters which at one time are considered to be actual

and at another time are treated as formal.

Reinfelds (in his paper "The Call-By-Symbol Concept: A symmetrization

of the Scope of Variables in Actual Parameter Expressions of Subroutine

Calls",

submitted for the 1968 FJCC) advances the interesting concept that

in a procedure call one may wish to express formal parameters. One can

in this way achieve the effect of a call by name but at the samt time pre-

vent side effects. In order to indicate that a formal parameter name is

being used in the procedure call, some special indicator must be used.

Reinfelds advocates that the declaration symbol X appear in ihe parameter

list indicating that "x" in the paraﬁcter list is a formal parameter of

the procedure being called. My approach of making no distinction between

actual and formal paramecter identifiers, however, renders Reinfelds' con-—

cept of no use in this context.

e e B cev o

Sweea meoMay Weeeme

P i

k4

[l
e i &

v

LR IR SRR 1

Y AR

mond RS GERE NEEE SEn

raed e

ot

2]

e i

145

Parameter—passing mechanisms. The task to be considered is the

means of."passing" to a procedure parameters given in a call io that
procedure.

We need to be able to access each aciual parameter, knowing which
formal parameter we wani ithe correspondent of. We should be able to ask
for an actual parameter either by its position in a call, or by its
keyword parameter name if ii has one. 7To do this we must be able to
reference the "current call of the procedure P"., It is not sufficient
simply to say "the current call" since at thé time of referencing other
calls and other procedures may have intervened. In the case of recursive
calls one must be able to access the call'n" levels back, where n will
frequently be MWin,

I had originally thought of setting up an explicit correspondence'
table between formal parameters and actual parameters. This table would
have to be filled in either automatically by the call mechanism or by
statements explicitly given in the body of the procedure. A problem arose
with trying to define the structure of thig table, for some formal para-—
meters may have the role of identifiers but other parameters may simply
be uninterpreted substrings.

Upon further consideration, it didn't seem that explicit construc-
tion of this table was necessary. Each entry in the table would in
general be referenced only once, as each actual parameter was picked up
to be treated. It seems simpler to have a primitive which accesses an
actual parameter corresponding to a given formal parameter. This will
be discussed in more detail below.

There must be a way of matching up actual parameters with formal
parameters. There are actually two standard ways of accomplishing this:

Here are some illustrations of simple procedure calls:

1. Call with Mpositional parameters, that is, the correspoﬁdence
between the actual and formal parameters is known because the
actual parameters occur in pre-specified positions (in the pavra-
meter list). An example of a call having positional parameters
is:

REMAINDER(A,B)
In the definition of REMAINDER inore occurs implicitly or ex—
plicitly the information that the first actual parameter cor—

responds to the first formal parameter, and the second actual

Ty

N =T T = = —— oA
CEFE GonE e BRI 4 574 A v e ERG S SRy SRR N T
.

146

parameter corresponds to the second formal paramcter. The formal

parametlers may have explicit identifiers. They might be identi-

it g S

fied as x and y respeclively. Then the parameter matching process

wvould say that x corresponds to A and y corresponds to B. How-

Dap e N A

ever, they need not have explicit ideniifiers. Assuming that we

a3

have a way of referencing the first actual parameter, in a way

that we have not yet discussed, the definition of REMAINDER might
use the expressions "aclual parameter #1" and "actual parameter

#2" in the statements to be executed,

3 2. Call with "keyword parameters!", that is, the correspondence between
the actual and formal parameters is specified by explicitly giving
: pairs, each of which consists of a formal parameter followed by
its corresponding actual parameter. An example of a call having
keyword paramelers is:

DISP (p2=M,pk=S,p1=KT)

Casiial facions

Notice that in such a call an actual p~iameter need not be given to cor-
respond to each possiit:le formal parameter, and the actlual parameters which

are given do not need to be given in a specified sequence.

An additional problem of matching formal and actual parameters arises,

I

however, where a transformation is defined for a set of parameters of the
same type but thc number of the parameters in the set is not fixed. An '
example might be SUM () which could easily be defined to compute the
proper result for an indefinite number of arguments. What we have here
then is a function defined on a set of arbitrary size, where the parameter

to be passed is not an identifier of ilhe set but rather an enumeration

of its members. For functions which are defined in algorithmic form, it
is of course possible to write the procedure so that it examines the para—
meter list and computes the function properly for the number of arguments
exhibited as actual parameters.

If the transformation procedure knows whether to expect a list of
parameters, or only the identifier of such a list, oxplicitly following
the transformation identifier, then there is no ingenuity required to

/ pick up the individual parameters pfoperly. If we wish to be able to
give either, that is, interchanggably, the explicit list or the identifier
of such a list, then the transformation procedure must be able to examine

the parameter actually delivered and decide how to handle it. :

-

| —

A+ e s S o J R ——"

P

uatiee

T

T

'-fdu-i

" Badiiaaren i auiiten)
ol o

—

ppdd

[ﬁ. -.a

v !F'_ I““n" i ‘

147

There is a variation on the format of a procedure call: namely, in-
stead of explicitly listing the relevant paramelers, giving a reference
to a parameter list. This list may, in turn, be either a single list of
positional parameters, to be matched 1 for 1 with the formal parameters,
or it may be a list of keyword-parameter pairs, matching actual and for—
mal parameters. Example: let f(a,b) represent a function f with formal
parameters a and b. Let z be a list of two actual parameters x and y.
The function call might then be written £(z), where the function defini-
tion will recognize that the type of z is list, and that when a parameter
of type list is presented, it must be decomposed into its constituents
and these constituents used as the parameters.

There is a question as to whether this should be caller's option or
procedure definer's option., If it is the caller's option, some special
symbol is needed to indicate the use of this option, and some extra mech-
anism in the call interpreter to test for this option. If it is the pro-
cedure definer's option, there is no need to provide any special mechanism;
the procedure writer is responsible for testing the type of the parameter
and taking appropriate action.

Parameter interpretation. There are several fundamentally different

Ved

ways to interprei a parameter which appears in a procedure call. The
first issue is whether or not the parameter is to be interpreted at all.
We must decide between the following two cases:
1. The parameter is a string which is to be substituted without in-
terpretation at this time. This is often called ''call by name!.
A more suggestive term is Strachey's term "call by subslitutionM,
and it is the term I will use henceforth.
2. The parameter is a reference to a data element. This is called
call by reference'l.
The processor must be told whether a given parameter is to be interpreted
or not. In principle this decision could be made on the basis of tilhe
form of the parameter, but this would mean a lack of flexibility, since
in the call by substitution we want to be able {o substitute an arbitrary
string. I conclude therefore that tﬁe indication of whether a given para-
meter is called by substitution or called by reference must be explicitly

given in the called procedure.

e : L

- et e T R TS ITYOR TE THAS AT E R TR PRI R R U TR I A s S 0 AT
e R I ET R T R T E NI ?

WU IESFERTE wrp.‘mﬁmmﬁxﬁfﬁﬂ“mww

-

148

A parameler 1o be interpreted is a reference to a data element.
The types of such references are two: |
1. A siring to be interpreted as naming a data element. While it
may be a complex name, we can assume that the interpretation of

this name is a standard process. I call this siring a "data re-

ferencell,

2. A string with or withoul an explicit set of parameters in para—
meter brackets, to be interpreted as a function call. I call
this a Ycommand reference'.

The intellectual distinction I have made belween data reference and
comménd reference is really only a matter of emphasis, for in the case
of a data reference we are in fact invoking a function. This function
is the standard naming function. It is, for example, the function which,

given an expression such as PR[3], accesses an element of the array "PR".

We will see later that the naming function logically must be called im~
plicitly rather than explicitly.

Notice thal a consequence of my philosophy is that there is no con-
cept corresponding to the ALGOL call-by-value. Call by value yields a
itheoretically unnamed, unstored value, aﬁd my approach says that there

can be no such entity, thal every value-siring used as a parameter is

e ©

stored and has at leasl one identifier,
“ The problem at hand is how to distinguish a data reference from a .
command reference. We must do it either by inspecting the form of the :
parameter or by referring to information external to the parameter itself.

This need to distinguish between a reference vhich accesses a data
element and a reference which invokes a function is seen in the use of

two sets of brackels in ALGOL.

PASAMFSortulothis st cpiast S

A[N] means access the Nih element of the array A. Note that this

includes a label array (a switch).

A(N) means invoke the function A with the parameter N.
The shape of the brackeis indicates which kind of access. VWhere there |
is no parameter list in brackets, however, the iwo kinds of reference
cannot be distinguished.

A fundamental problem of ambiguily crops up here, in the casc of a

parameterless function call. 7The call appears as a string. The problem

iz that we cannol tell by irmspection whether it is to be referenced (given ;

- T—— s A e e e e =

A o T cade i oo LS e

149

a "data interpretation") or to be invoked (given a "command interpretation®).

Some languages avoid this ambiguity by requiring the parameter brackets tlo
be present, thus distinguishing the function call, and always giving the
function call a command interpretation. In such languages, of course,

the function can never be interpreted as data, which is an undesirable
resiriction.

Here is an illustration of a paramecterless function call. Assume

that T1 and T2 are the identifiers of two parameierless function procedures,
each procedure yielding an integer result.

SUM(CALL(T1),CALL(T2)) computes the sum of the results of executing

) T1 and T2.

SUM(T1,T2) is undefined because SUM is not defined for the data type
of the procedures T1 and T2 (distinct from the data type of their
results, which is integer).

CONCAT(T1,T2) is defined; the result of the string obtained by con-
catenating the string named T1 with the string named T2.

Most programming languages resolve this ambiguity by establishing

some arbitrary and restrictive rules. For example: a designator of a para-
meterless function procedure is indistinguishable from an identifier of a
data element. Grenoble ALGOL requires‘such a function procedure designator
to be enclosed in parentheses in order to force its exccution. FORTRAN
avoids the problem by requiring function names always to be followed by

a parameter list, even if it is a "dummy" list. PL/I determines if the
parameter is the name of a function, and, if so, executes it. None of

these languages, and in fact none of the languages with associated compilers,
permit a function definition to be refercnced as data, that is, as a string.

A second example is where a parameter consists of an identifier fol-—

lowed by a list of parameters enclosed in parentheses. This could be in—

terpreted either as a function call, in which case a command interpreta-

tion is probably wanted, or as a compound identifier such as an array ele—
ment name, in which case a data interpretation is probably wanted. ALGOL
avoids the problem of distinguishing these two uses by requiring that in
the second case, special subscript brackets (square brackets) be used.
FORTRAN and PL/I determine whether the parameter naties a function or a com—
pound data element and give the parameter a command interpretation or data

interpretation accordingly. As before, these interpretation rules are

T T)

FREIHT S e S AT R e S S PURBIZT, i s
P .zﬂ;mymwmmwwmmmmw SRR S (4
W‘ POV AR N S T R 40 i

-

150

fixed and therefore do not permit executing a function procedure stored

- in an array of procedures, nor of treating a procedure as a data element.
It is often convenient 1o write a literal as a data reference. That

is, instead of writing a data reference we may wish to write instead an

l actual value-siring. If we wish Lhis feature, then the processor must

; be arranged to recognize when we have done so, create a storage cell for

the value-string, and create an identifier for it. The value of the para-

meter is the identifier thus created. A frequently-used conveniion is to

enclose the literal in quotation marks, and I adopt that convention.

E | To summarize, we can have the following forms of reference expressions:
: Forim - Meaning Intc-pretation ‘
k A identifier of data element data
A identifier of parameterless procedure command or data
} A(P,Q) function procedure designation with command or data*)
parameters
i A(P,Q) identifier of component data element data ;

Y within a composite, or a set of argu-
ments of a function represented as a
function table

; AN the value-string !"A" . data

Fid

* We might choose nct to define what this expression means.

Note that in general we want to be able to give any one of the five forms

PRSP P

of references. We would inot, in general, wish to resolve ambiguities by

giving the type of interpretation (data vs. command) in the parameter

. ma o eseT

treatment specification, because we want the flexibility of using these

types of parameters interchangeably. Hence the distinction between com-
mand references and data references must not be made on the basis of ;
parameter inspection alone. ;

One solution to the problem would be ito label each parameter as to

whelher it was a command reference or a data reference, such as CALL(Y)

or DATA(X), respectively. This is somewhat clumsy. What is worse, it

i.s technically inconsistent, as will become apparent in the later discus—

sion of the fact that the data referencing function cannot be an explicit

-

one. The remaining question is How to simplify this clumsy conveniion of

CALL(Y) and DATA (X). We could, for example, dispense with DATA () and

|- F - S

T g s

. o ———- s -

T3y

25 UL

MR

R

L =]

151

use sihply X for a data reference. Only if X had the form CALL (Y) would
we have it receive a command intierpretation instead.

So, for example, to compute the value of the formula (which we assume
appeared as an actual parameter)

A + random integer
where the random number is obtained by a parameterless function procedure,
we would write
CALL(PLUS(A,CALL(RANDOM)) 5
If we allow ourselves the simplification of omiiting parentheses surround-
ing a one-member parameter list, or at least after the expression CALL,
we could write this more readibly as

. CALL PLUS(A,CALL RANDOM)j

Some users may regard as inconvenient the inclusion of the word CALL
in each parameter whose execution is invoked. Such users may choose in-
stead {t~ specify in the definition of a transformation a fixed interpre-
tation of the parameter: he can specify either "access" or "execute.

The price to be paid for this convenience is the lack of flexibility in
being able to have the mode of treatment deducible from the form of the
actual parameter.

As a notational convenience we could easily define the CALL state-
ment to accommodate muliiple parameters; that is, for example,

CALL A,B,C;
could be used to mean call A then call B then call C. Each call could
have a parameter list as wellj thus we might write
CALL A(X,Y),F(2);

I have suggested here one reasonable set of conventions for dis-
tinguishing command interpretations from data interpretations. It should
be possible for the user to change readily whatever conventions might be
established initially for a given processor.

Not all the possible complications have been resolved. For instance,
it could happen ihat bolh a parameter list and a subscript list occur in
the same paramzcter expression. For example:

T(A) (B,C)
might mean "select the function with index A in an array T of function
definitions and use the function with the parameter list (B,C)". If this

construction is to be allowed, then we nced to have a way of defining the

[<4

- e
!

TR T

fonc W e

fror)

.

152

convent® 1 to be used for inlerpreting it. Further we must keep in mind
that we might want a dala interpretation expressed simply

T(A)
in order to access the function definition as data. Hence whatever con-—
ventions are established should allow for the proper interpretation of
the latter expression.

The data referencing function—a necessarily implicit functlion.

Notice that obtaining the identifier of an element whose data reference
is given is iiself the performance of a function. It is, and necessarily
must be, a function which is not expressed explicitly but is rather im-
plied. Suppose a function of one argument:

f(a)
If we wanted to show the data referencing funcltion i explicitly, we might
write

£(i(a))
But in doing so we have not been consistent, in that ihe argument of the
function i is the "bare!" data reference a. We cannoi overcome this no
matter how many times we replace the inn?r a by the more explicit i(a).
We are forced to realize that an innermost’ parameter musi be interpreted
as a dala reference expression, of vhich we are usually to take the identi-
fier. If the data reference expression is a single identifier, then its
interpretation is simply that identifier.

This leads us to a related issue, that of indirect naming.

Indirect addressing or naming. I{ may on occasion be useful to refer

to a data element by an "indirect name'", that is, by giving an identifier
of an identifier of a data elemeni. This feature is often called "indirect
addressing" when speaking of an address of an address of a machine word.
Expliciti indication of indirecl naming in SNOBOL is given by the prefix-—
ing to a name the symbol $. This symbol can be taken to be the function
Mevaluate! in the conventional sense. Example: let "1' be the contents
of a simple data element identified by the string A. Let "A" be the
contents of a simple data element idgntified by the string B. If we
write as a parameter

F(a)
this will be interpreted as

F("i")

<«

f s e e e

g s

racek

e] [,

DA 4 »
[) ——

-

-

q--ﬁ

153

that‘is, the function F applied 1o the value "1Y¥, If we write as a para-
meter
F($(B)) or F(eval(B))

this will ¢ ls0 be interpreted as

F(“i").
In this Jarter case, the parameter is effectively being evaluated iwice
in succession. The firsi evaluation is called for by virtue of the func-
tion F calling for the normal evaluation of its parameter. An evaluation
of the result of the firsl{ evaluation is called for by the "evaluation
function'" designated by either cne of the devices exhibited above. SNOBOL
uses'the symbol $ as the -name of this function, so that

$A1
in SNOBOL means the data element whose identifier is the value of another
data element whosc identifier in turn is A1l. Such expressions can be
nested to any practical depth to -chieve multiple-level indirect naming,
for example

$(8A1)) $(8(8a1)))

Paraneter types. The matter of concern is the "types" of parameters

associated with transformations——both inpui parameters and an output
parameter or parameters. !"Type! requires some definition. VWhere a para-
meter stands for a simple data element, the parameter type is the name
of the domain of that element. Where a parameter stands for a composite
data element, the concept of parameter type embraces structure class names
(such as M"list", or "company") and perhaps also the domain nameé of its
components. Thus, a parameter type specification of a composite element
might be "list of integers", or "set of & x 4 arrays of integers", or
"set of arrays'".

Every transformation is necessarily defined only for some specific
choice of parameter iypes. That is, if a paramecter in a call is not of
a type specifically provided for by the iransformation definition, exe~

cution of the transformation will "fail!. What "failure" means is dis-

cussed elsewhere under "Invalid transformations!. To illustrate ihese

concepts, consider that a funclion "sum! could be defined for a variety
of parameter types: possibly any mixture of values from the domains of

integer, real, and fraction. It might be defined also for strings: in

this latier case it would probably mean ''concatenation". But the function

Pl A ettt

T

g Mo R M

cTe

R TG RN T

a3

&

AT 8 TR e e S
Rl e

TR e T s e R R

.

154
would probably not be defined for a mixture of sirings and integers. To
repeat, a given transformation is necessarily defined for one or more
fixed combinations of parameter types. If the transformation rereives
as input any other combination of parameter types, it will not give a
correct result., In such a case ihe tiransformation must not give a result
vhich could be misleadingly interpreted as gorveclj that is, it musi
explicitly signal when such a failure occurs. Whether a transformalion
is to avoid the computation of invalid results ("garbage") or not is up
to 1lhe person who writes the transformation definition.

1t may happen that a parameter is not from a domain (or of a type)
specifically anticipated by the writer of a procedure. It may also hap-~
pen that the given parameter value has an equivalent in a domain which
is acceptable. Example: Let there be a procedure which computes area,
given dimensions in feet. VWhat should happen if a call to this procedure
has parameters given in inches? It would be desirable to have a convenient
mechanism whereby the writer of the procedure could ask to have, in such a
case, a search made automatically to find ihe corresponding values in feet
and use these converted values to proceeg with the computation. Note
that invoking such a mechanism should be at the writer's option; it would
be unnecessarily clumsy to always inve e such a scarch automatically.

The writer of a transformation definition (procedure) needs program
statements (calls to transformations, probably primitive ones) which en-
able him to determine ihe types of his input parameters, to check the
types to verify if they are acceptable, possibly to convert the values
to equivalents in an acceplable domain, and to signal whether the trans—
formailion has been successful (or, if not, what the nature of the failure
was).

Substitution of parameters. Having picked up an actual parameter

and treated it, we must next specify how and where the result is to be
substituled. It may be substituted for each appearance of a given charac—
ter (or subsiring) in the procedure body, which will require a full scan
of the procedure body. Or it may be substitulted as the "value" of a

named pari of the siructure which constitutes the procedure body. The
choice of these two subsiitution methods must be specified in the procedure
body, or in the call mechanism (that is, in the interpreter).

Invalid transformations. As mentioned earlier, it may happen that

o o AR TP T R S TR e
TRANUT F oo s E g e A IR AR A A e

s

E O e e ATL R ¥ B s oSl L S ¥ AT
T TR TR O R TR T i

o
rrpv,:.-::.:'-“:;:ﬁwngFn—ﬁmm L Mg N R LR T R R
<

O e T

!

1 ' 155

part way through the execcution of a transformation a parameter may be
found io be of the wrong type, or the argumenti specification may be in
- some other way not satisfied. Even if the arguments (parameters) are pro-
per, it might happen that the transformation cannol be correctly completed.
There arises the question of how to know the precise effect of the trans-
formation aliempted under such circumstances. Since side effecls can oc-—
cur, the effect of an invalid transformation must be known to the user
in order for him to be able to recover,
] There are two extreme choices for the effect of an invalid transfor-
mation: (1) no action, and (2) all possible actions up to the point of
invalidity. The no-action case might be preferablej in a sense it is a
- cleaner alternative. In some cases, however, it is extremely difficult
to achieve because it can mean having to remamber an arbitrary amount of
processing in order to put things back i1he way the, were before the trans-—
formation began. The all-possible~legal-actions case seems wasteful, in
that some unnecessary actions may be done, but it is much simpler to ex~
plain, comprehend, and remember.

Another choice is to let the user in general define how he wants in-

valid transformations handled by the way he defines a given transformation.

¢

¢ He can, for example, check to see that all arguments are legal before

transformational changes are executed.

Thc~e is a need for some standard error signal mechanism. Earlier
I discussed the use of a result value-string of "UNDEFINED!" as a way to
indicate failure of a function. We need a similar convenieni convention
to indicale the failure of a transformation which is not a function. Some
of the possibilities for such a convention are:

1. A success—failure flag to be set by each itransformation. If there

is only one such flag, however, confusion will arise in the cir-

cumstance of parallel execution.

2. A success—-failure first-in-first-out queue, on which is entered
a transformation name and success—failure flag (and perhaps other
- identifying information such as an identifier of a statement in-
voking the iransformation). This queue would be a standard data
.. eiement accessible by conventional referencing techniques. An
N alternative would be to have this queue maintained in the pro-
cessor in an undefined way, and {10 have it bt& able to be refer—

enced only through seme primitive function specifically designed

E |) ' T NI T TR s -

L0 Y0 46 X SeuA

———t N N s

- " Buiiand

156

for that purposec.
3. To pass success and failure return point identifiers ("labels")
as paranmeters to cach transformation.

Procedure call mechanism. We have discussed at lenglh the actions

and requirements of procedure calls. Now we must be more specific as to
how procedure calls are accomplished. Assume ihat contirol has been trans—
ferred to (a copy of) a desired procedure. The actions thal can occur
vhich are related to the calling process, as distinguished from the 'work"
the procedure is called upon io do, are:
1. Locate the call,
2., Select an actual parameter from the cali.
.3. Treat this parameter according to some prespecified method.
L, Optionally, check lhe type of the paramecter to varify that it is
acceptable to this procedure.
5. Optionally, if the type of the parameter is not acceptable, seek
an equivalent in a specified domain.
6. Substitute the resuli of ilhie parameter treatment into the procedure
body, according to some prespecified substitution rule.

7. Repeal steps 2 through 6 for all parameters required.

1

8. Upon cxit from the procedure, set an indicator to 'success" or
fajlure',

We now proceed to discuss these actions in more detail.

The need for locating a specific call secems at first unnecessary.
Why should it not always be the most recent call executed? The answer
is thatl ihe parameters need not be picked up, processed, and substituted
immediately upon entry to a procedure; in general we want to be able to
process them anytime during the execution of ithe body of a procedure, and
perhaps in some cases certain parameters will not be needed and therefere
nced not be processed at all. So we may find that in procedure A we exe-
cute first a call to procedure B, and then wish to process parameters of
the call to procedure A. Another possibility arises in a recursive pro-
cedure, where at some point we may wish to process a parameter in the cur-
rent call, and at another point we may wish to process a parameter in a
previous call.

Having located the desired éall, we next nced to be able io select

from it a desired parameter. It may be selected on Llhe basis of its j

position in the list of actual parameters, if it is a list of positional

parameiers, Or it may be selected on the basis of its name or keyword

accompanying it in the list of actual parvametiers. (Keyword parameters
can be considered a special case of a more gencral concept: that of pick-
; ing parameters on the basis of their partial contents. Thal is, we could
: select a parameter they begins KEY= , or one that ends in S, or one that
contains at least two asterisks, etc.) Naturally it can happen that the
sought—for parameter is absent, in which case provision must be made
for indicating this fact 1o the parameter—pickup mechanism (a function).
Next the parameter is interpreted. We have discussed earlier the
N] standard interpretation methods. For flexibility, however, the user need
not be confined to these standard methods. He should be able to devise
his own.
A check of the "type" of a parameter means to inspect the parameter

H and delermine if it has the characteristics assumed by the procedure body.

If ihe parameter is expected to be a simple data element, then {lhe check
would probably be 1o verify that the parameter value was from the proper
domain, 1In case a parameter is expccted‘to be a composite element, a
variely of checks are possible: to check that the composite element has %
the desired structure, to check also that the wlues of simple components

are from specified domains, or to check ithat the element is of a given

class (has a given model name).

Suppose that a parameter has been selected and that the type check
reveals that the value is not from an acceptable domain. It would on

occasion be desirable to call for a search for an equivalent value in a

ity e MR

specified domain. For example, if a parameter delivered a value in feet

. for a procedure designed to expect inches, and if suitable equivalence
; tables or algorithms existed, a search could be expected to yield the
equivalent value in inches. It is not essential that such a search be
built into a system; the essential point is that the creation of such a

search routine and its invocation as part of the procedure call mechanism

; should be possible.

f) Assuming that a parameter has been processed and found valid, the

] next step is substitulion of the treated form of the parameter into the
procedure body, replacing a formal "parameter!". This is a non-trivial

matier, however, in view of the earlier discussion about i1he alternative

$ = * .
tﬂgﬁ? - - T i " T T M MO MY A SR T | T T -

i ot

e

158

interpretations of formal paramecters. The subsititution operator must
specify the nature of the substitulion to be performed, according to the

assumed characteristics of the formal parameters. The substitution may

be for a given parameler in a procedure body, or for a given substiring,
for a given named component of a composite data element, or for some
other programmer-specified part of a procecdure body.

There should exist some simple way to indicate the successful com-
pletion of a transformation. In the case of a function, which returns
a value, the valuec "null" can often be taken‘as an indication of failure,
although noi always. In the case of a transformation which does not re-
turn.a single value, however, we nced some way to be able to determine
whether the transformation procedure comp]cteq its assigned task success-—
fully. I am not suggesting that this flag be set automatically, but rather
that primitives exist for setting and tesling such flags, and that the
setting and testing be done at the option of the user.

It should be obvious that whalever transformations are needed for
implementing this procedure call mechanism must be primitive. If they
were not, then these elemenis of the procedure call mechanism would them—
selves invoke ihe procedure call mechanism, ard a non-terminating recur—

sion would occur.

Remark on multiple entry points. Procedures can have multiple entry

points (though personally I think it is poor programming practice). Since
we treat declaralions as executable commands there is an important con-
scquence related to multiple entry points: that is, that the thread of
control from each entry point must "pass through" ihe "declarations' that
are going lo be needed in the body of the procedure. This can be done
fairly simply by packaging the sct of declaration statements as a sub-

procedure and calling it immediately after entry at any entry point.
CONTROL SEQUENCING

This secliion is concerned with how the processor is told the sequence

in which transformations are to be executed.

The ''thread of control! concept. Nearly all sequence controls in

current use arc based on a "thread of control!" concept, by which is mecant
thal the mas~rity of transformatiion calls have a successor defined by
convenlion. The advantage of this ilechnique is that contirol sequencing

can usually be expressed by physical arrangemeni of itransformation calls

e et~

ey

T

T

TSI YPTYRT

.

rather than by the successor of cach transformation call having to be
explicitly given. VWe therefore provide for this thread of control
concepl. The user is notl required to use it for user-defined transfor-
mations, however; he may instead define all his transformations with

a parameler which explicitly specifies the successor.

Some elaboration is in order concerning the physical arrangement
of transformation calls. Each transformation call is a data element
interpretable as a transformation name plus a set of actual parameters.
The standard form of a transformation call is a simple data elemeni whose
contents is a value-string. An alternate form which may be useful is a
composite, the first component of which is the transformation identifier
and the remaining componenis of wlich are the actual parameters. The
successor of any given transformalion is explicitly tied to thatl call by
a successor relationship.

A thread of control may splii, or "fork!, into two or morc threads,
which requires the creation by ihe processor of parallel asynchronous
paths of control. Several such lhreads of control can merge, or "join',
into onej control must reach the nerge point from all merging threads be-
fore control pioceeds forward from that pointi. Every thread of control
eventually terminales, either in a join, or at some transformation which
stops further processing of ihat thread.

Since the successor relationship as used here is nol a transitive
one, loops are not prohibited. Hence in the most general case, the paths
of control may form a netlwork, which I will henceforth refer to as a'con-
irol network", or a M"network of controlt:.

The sequence control mechanism. Our concept of the sequence control

mechanism is that of a processor, defined as a primitive, which receive:
its commands via primiiive transformations. Ii provides for parallel
asynchronous ihreads of contrel as well as for the initiation of execu-
tion sequences whenever specified conditions become true.

Part of the sequence control mechanism is a set of control listis,
wvhich arefordinary"” data elements with known identifiers. These data
elementis are createcd as needed, cne for each thread of rontrol, and des-
troyed when no longer needed. Each such data element is a compositie;
it is in effect a pushdown list which stores a list of jdentifiers of
retlurn locations. Since these data clements are ordinary ones, the user

has access to them and can inspect or modify them as he wishes. In order

1

9

14

p—

SALSIAS 00 SN Sheeeond

ASEKA

e T o R SRS P AR s e a1 LU RIS RS G TR A CIORRhy E SRA N RS R s pG BA SR e R SR e I e T R e e T ARSI v gt Ty
.

.

160

for the user 1o know the identifiers of these control lists, they musti
be idenlified by some standard naming scheme. In order for ibe user to
know the identifier of a control list of a particular thread of contirol,
a primitive itransformation THREAD-IDENT executed in that thread of con-
trol will yield the identifier of the associated control list.

Arbitrary complex sequencing. Successor relationships, iteration

controls, and branch instiruclions will provide for the majority of se-—
quencing needs. When more complex sequence controls are necded, how-
ever, they can be written as procedures. Thé general form of such a pro-
cedure is a loop. I' the first part of the loop is determined the identi-
fier of the transformation to be executed next. In the second pari of
this loop, this identifier is subsiituted in a call expression and the
specified transformation is thus invoked. The thread of control usually
returns to the beginning of ihis control procedure, though on occasion
it may terminate. This technique of programming sequence control rules
may find applicabilily in applying various priority control algorithms
[see Gorn, 1959]. It can also be used in controlling iterations, and in
following explicit "chains" of identifiers, where the successor relation-
ships have bcen expressed belween elemenls which contain identifiers of
trhnsformation calls rather than the calls themselves. It is interesting
to note, and it may be of considerable usefulness, that a user program
can have all the transformatlion calls which "do useful work" written as
individual and independeni data elements wilhoul successor relationships
between them, while all the sequencing of execution can be controlled by
a separate procedure.

Transformations of sequence control. Transformations which are con-

cerned with control sequencing are presented in the next chapler along

wvith the other types of transformations.

———— e et na on

Y TS

CaaNTAN) Sl

—— et WD Tead NS FEGH ot el

161

CHAPTER 6. BASTC TRANSFORMATIONS

What follows is a list of manipulatlions and functiions which illus—

trates the nature and variety of transformations which are needed in the

system being developed here. This lisl may not be complete, as it has
simply been 'thoughi up' and has not been iried out in real-life situa-
tions.

BASIC TRANSFORMATIONS AS DATA

Having developed a theory of data elemenis and values, and having

discussed the framework of {iransformations, we are now in a position to
define a sel of basic tiransformations of data. To the extent ihat do-

mains are defined by enumeration, transformations of domain will also

turn out to be transformations of data. As we have just seen in Chapter

5, transformalions of sequence conlrol are largely transformations of
data.

Transformations of dala can be divided into two broad classes which

may overlap slighlly:

1. Transformations which perform creation, destroying, selection,
and testing of identifiers, cetls, and compositles.

' 2. Functions which tlake value-sirings as arguments and have a value-

string as resulti. A special sub-class of such funciions consists

of those which operate on the strings which are transformation
calls.

The description of a transformation will follow the general format.

1. Name of ithe transformation or function, including parameier list.

2. fect of the transformation.

3. Bkxit—value resuliing when ithe transformation appears as a para-

metor of another iransformation. The exit-value is always an

jdentifier. i1 is either an identifier of a valid result (which

is a data element), or an identifier of a ceil containing the
value-siring UNDEFINED or NULL.

L, Tllustration, if usecful.

5. Comment, if applicable, including a meniion of when a transforma-

tion is readily definable in terms of other iransformations.

Create a cell.

Name: CREATE~CELL, or CREATE-CELL(1)
Effect: To generate a new cell and associate with it an identifier. If

I specifies or references an identifier, then that identifier will

LGRS ot RN R IO SRR NS) N U LN S e 23 SR AT

162

be associated with the new cell. If no such identifier is given,
then the processor will gencrate one.
Exit-value: The generaled or specified identifier of the new cell.

Illustration: The result can be diagramued:

identifior .

Comment: CREATE-CELL(I) can be defined in terms of CREATE-CELL and ASSOCI-
ATE-IDENTI™ (ER (to be defined later), thus:
CALL ASSOCIATE-IDENTIFIER(I,CALL'CREATE—CELL);

Copy a cell.
This is a case of COPY ELEMENT, which see.

Assign contents of a cell.

Name: ASSIGN-CONTENTS(I,E)

Effecti: Replaces conlents of cell or cells referenced by I by a copy of
the contents of the cell referenced by E.
Exit—~value: An identifier of ihe result cell. If I is an identifier, then
the exit-value is precisely I.
Illustration: Consider the transformation call:
CALL ASSIGN—CONTENTS(B,A)

Before execution After execution

identifier) (identifier

identifier = ; . = .
B %nmm:‘) UNDEFINED) (B ddontifien ‘)}

Commenti: This iransformation corresponds closely to the familiar "assign-

mentl stlatement I = E or I Guewmaw [,
Desirov a cell.

This is a case of DESTROY-ELEMENT, which sce.

Associale an identifier.

Namec: ASSOCIATE-IDENTIFIER(E,I), or ASSOCIATE-IDENTIFIER(E)

Effect: To associale the identifier referenced by I, with a data element
referenced by E. If the second form is uscd, where ilhe user does
nol specify the identifier, then the processor will generate one.
If the identifier to be associaled is not already in the identifier

list, the processor will put it in the listi. .

Exit—valuc: The identifier associated witlh the referenced data element.

-~ 2 T g EhEoL Y LN Ay S RS -
o e o 2 ot Do Ao A Y S AT L - e e S R T P PR e S N s st il s REELIRIRERES S S e -

163

g Illustiration: To create a cell with an identifier of WX1M:
CALL ASSOCIATE IDENTIFIER (CALL CREATE-CELL, "X1i")

Comment: While a separate transformation could be defined to create an

identifier therc secems to be no need for it, since ASSOCIATE-1DENTI-

FIER creates an idenlifier at ihc same iime a dala element is created.

Dissociate idenlifier.

Name: DISSOCIATE-IDENTIFIER(1), or DISSOCIATE-IDENTIFIER(I,:)

Effect: To destroy the identifier relaiiovnship between the identifier
referenced by I and the data element referenced by E. 1If no E is
referenced, then all identifier relationships belween the identi-
fier (referenced by I) and all data elements are destroyed. If this
‘transformation desiroys all identifier relatlionships associated with
the referenced identifier, then the identifier is automatically re—
moved from ihe identifier list.

Exit—value: Null.

Destroy identifier.

)
i
|
I
|

A separate transformation to destroy an identifier is unnecessary in view
of the actions performed by DISSOCIATE-IDENTIFIER. i
Associatc components to create compositic.

Name: CREATE-EXPLICIT-SET(E1,E2,E3,...)

Effect: To create a composite whose components are the referenced ele-—
ments E1,E2, etc._

Exit—value: The generated identificer of the composite.

Illustration: ‘

= Before After

() identi, prm—— =
A (W a %‘:‘ ” ident. ‘g a \

\ A } 4)
N\ ident.
b

f R, ident. (“‘m"“‘j
A , émnnm!: b
(midont, = { dont ::i :

Associate components to create implicit sel.

Name: CREATE-IMPLICIT-SET(Q,R,A,B,...)

Effeclt: To sel up binary relationships QRA,QRD, ectc.

-

Exit-value: Null.

F - . X - - RRCSET . _ WP at

L]

L

N Ty Chr A e AN A i % o Lyt g NIRRT S VSRR AT A G R S KUSTEEE LS WigT
w?:-‘xm T dreitony ",”.mwwm‘y’rh“ﬂ”f E S e HErR A R Jt i M A S A i R N R et T LR G2 S S L S L0y t 41 PELT LY
= RSN
) . .

[k

cd

Rk tEr i A ICEE Lo

A L T

EPRRES

.

164
Illustration:

Before After

= e Yy, 3 1i fion g
idenif? LA Sk D . :
e ; SR e W g
SaATIM 5 "]K
¢ A A
2
T Sy \
()

. ey . TR
=== \Cq’“:&lumc"tvs A)
- L s
> soamrse

Comment: This {ransformation is definable in terms of CREATE-EXPLICIT-

N

SET, where each invocation creatles one relationship(composite), thus:

CALL ASSOCIATE-IDENTIFIER("R",CALL CREATE-EXPLICIT-SET(Q,A))
CALL ASSOCIATE-IDENTIFIER("R",CALL CREATE~EXPLICIT-SET(Q,B))

Dissociate conponents of a compositc.

To dissociale all components and destroy them, use DESTROY-ELEMENT, which
see. To dissociate one or more individual coumponenis of a composite, use
REMOVE-COMPONENT, which see. To dissociate all componenis of a composite

wilhout destroying them, use REMOVE-COMPONENT in an iteration over all

conponents, thus:

I'<d

CALL ITERATE-OVER-EXPLICIT-SET)I,J,CALL REMOVE—COMPONENT(I,J))
Destroy an element.

Name: DESTROY-ELEMENT(I)

Effect: Deslroys the referenced cell or composite and all associations
and relationships attaczhad "he components themselves are not
destroyed. If ithere are ider f{iers uniquely associated with com-
penentis of the elementi, thesc identifiers are destiroyed also.

Exit—value: Identifier I of elemeni destroyed.

Add a component.

Name: ADD-COMPONENT(I,C) or ADD-COMPONENT(X,C,N)
Effect: To include the elemant referenced by C as a new component of
ihe composite referenced by I. If the parameter N is given, the

new componeni is enierecd in the composite atl ordinal position N.

Exit-value: Null.

Select a componenti by name.

Name: SELECT-COMPONENT-BY-PART-IDENTIFIER(I,P)

oy

PECR 0 e

165

Effect: In composite referenced by I selecls the component having the

part-identificer referenced by P.

Exit-valuec: An identlifiecr, generated if necessary, of ithe indicated com~
ponent. If there is no such component, the result is undefined.
Select a component by position.

Name: SELECT-COMPONENT—BY-POSITION(I,N) -

Effecl: In composite referenced by I selects the component having ordi-
nal position referenced by N.
Exit—value: An idenlifier generated if necessary, of the indicailed component.

If there is no such componeni the resull is undefined.

.Determine component -position.

Name: COMPONENT-POSITION(T,P)

Effect: In composite referenced by I, searches for the component having
the part-identifier referenced by P.

Exit—value: A generated identifier of N, the ordinal position of the speci-
fied component. If there is no such component, the resuli is undefined.

Remcve component by name.

Name: DELETE-COMPONENT-BY-PART-IDENTIF1ER(I,P)

Effect: In composite referenced by [, selects the component having the
pari-identifier rclerenced by P and deletes the componeni from mem--
bership in ihe composite. The component itself is not destroyed.

Exit-value: Null.

Remove component by position.

Name: DELETE-COMPONENT-BY-POSITION(I,N)

Effect: In composite referenced by I, selects ithe componeni having ordi-—
nal position referenced by N, and deletes this component from mem-—
bership in the composite. The component itself is not destroyed.

Exit-value: Null.

Copy an clement.

Name: COPY(E) or COPY(E,I)

Effect: Make a completle copy of the element referenced by E, except that
a new main identifier referenced by I is assignec instead of copy-
ing the original identifier.

Exit—value: The identifier assigned io the copy.

Replace an element.

Name: REPLACE-ELEMENT(E,T)

T T e et e M e e e,

166

Effecl: PFirsi, destlroy any data elements referenced by I. Seccond, make

a complete copy of the element referenced by E and associate it

wilh the identifier refercnced by I.

fied S

Commentl: Note the distinction between ASSOCTATE-IDENTIFIER, COPY, and RE-
PLACE. ASSOCIATE—IDENTIFIER simply creates an identifier relation-~

[T]

ship between a specified identifier and a specified data element.

COPY makes a copy of the specified data element and associates it

with a specified identifier. REPLACE, which is analogous to ASSIGN-
CONTENTS, is like COPY except thal any, dala elements previously associ-
aled with the specified ident fier arc destroyed. It should there—
fore be obvious that REPLACE-ELEMENT is definable in terms of DES-
.TROY—ELEMENT and COPY-LLEMENT, thus

CALL COPY-ELEMENT (E,CALL DESTROY-ELEMENT(I))

o

Cardinality of composiic (of explicit sei or sequence).

Name: CARDINALITY-OF--COMPOSITE(I)

Effect: To determine ihe number of componenis, N, in the composite

Kol S

referenced by I.
Exit—-value: The number N. If there are zero components, the result is
zero. If ihe composile does not exist, the result is UNDEFINED.
Illustiration: Boih of {the following data elemenis have a cardinalitly of

3, because identifiers and meladata do not count as components:

C":“‘:j ident. N
el Lo Yettesa T
Fan Ty

Comment: If the composite is linear {that is, one~dimensional), then this

function yields ihe lengih of ihe composite.

[+ icialb apnt 4 1 4

Cardinalily of reclationships (of implicit set).

Namec: CARDINALITY-OF-RELATION(I,R)

¢ g

AT
—

Effect: To determine the number of elements, N, which stand in the rela-—

tionship R to the element referenced by I.

Exit—value: The number of elemenisz, N. If there are none, the result is

ZCro.

- e 1~

X

T e

iy

T e U e BT g e e e B T -+ O »

167

Illustration: The cardinalily of the implicit set M below is 3.
My, ddentifier o g,
TERTIXTVEYVETY Y

’)\ﬂm-:m-m’ v
CN 7 ry

Comment: CARDINALITY-OF-RELATION could be defined in terms of cardinality

of composile which results from applying the transformation CONSTRUCT~-

EXPLICIT-FROM-IMPLICIT and then taking CARDINALITY-OF-COMPOSITE.

Construct implicit set from explicit set.

Name: CONSTRUCT—IMPLICIT-FROM-EXPLICIT(Q,R,I)

Effeci: To set up binary relalionships QRA, QRB, etc., where A,B, elc.

are componenis of a composite referenced by I. Q references the

identifier of the left member of ithe relationship. R references

the identifier of the relationship itiself.

Exit—value: Null. "

Illustration:

EXPLICIT FORM IMPLICIT FORM

ident.
P = CHIT O

.,>

G 1 Dt
\)Q‘;, ;.]
Lo

=

Comment: This iransformalion is definable in terms of iteration over the

components of the composite referenced by I, thus:

CALL ITERATION-OVER-EXPLICIT-SET(I,C,CALL CREATE-IMPLICIT-SET(Q,R,C))

Construct explicit set from impliciti set.

Name: CONSTRUCT-EXPLICIT-FROM-IMPLICIT(R)

Effect: To creaie an explicit sel from the right-hand members of a re-~

lation R.

Y R T TR TR VIS e YIS T E TR A T SR T S TR TR H

= e oy R TTIT
SR Foan T p i R TRY S

L CWWATR gt e - o TR LN o S AR TR e s

3
H

4 168

i Exit—value: The generated identifier of the composite.

Illustration:
i : IMPLICIT FFORM EXPLICIT FORM
ke T l
N ident. . X £é££;£$
! W e

,ident. Jk’,}ﬁ TN\ pident. /"“" —)
.(}) E ?w
‘ \ -t A
C } 1dont.< } J;,:»(\).Cige,g;t,::s(‘ B)
L = =

Convert value-—string to composite.

\2\

Name: CONVERT-VALUE-STRING-TO-COMPOSITE(V)
Effect: Creates a composite in which the components arec individual ¢ells
each containing a character of the value-string referenced by Y.
Fxit-value: An identifier of the created composite.
Convert composite to value-siring.

Name: CONVERT-COMPOSITE~TO-VALUE-STRING(C)

Effect: Creates a value-string corresponding to a composite, referenced

i by C, which has a linear sequence of componentis, each component of
which is a cell containing a single character.

Exit—value: An idenlifier of a cell containing the created value-siring.

If the composite is not linear, the result is UNDEFINED.

BASIC TRANSFORMATIONS OF TRANSIFORMATION CALLS

Transformation calls are ihemselves data, and they can therefore be
operated on by transformations of data. Because they are both complica-
ted data stiructures, by virtue of being complex 3irings, and because manipu~—

lations on them are frequeni, it turns out to be worthwhile to define

separate transformations for this purpose.
Conditional selection.

Name: CONDITIONAL-SELECT(c1,r1,¢2,1r2,¢3,r3,...)

e o s T L o e i i ks A R

Effect: To seciect a paramecter based on which member of a sequence of con~
ditions is salisfied. That is, if cl1 is true, select parametler
ri, or if ¢2 is irue, pick parameter r2, etc. c¢1,¢2, etc., are

references lo data elements (they can be either command references

IR

e o t——

or data references). "If ¢l is lruc!, means "if ¢l is a reference
to a dala clement having the value—siring 'true''.

Exit—value: The seclected parameler, a substring presumably interpretable
as an identifier. If none of the conditions are true, then the
exil—value is an identifier of a cell containing "UNDEFINED!.

Comment: The references ci,c2, etlc., traditionally are functions having
the possible values of Mirue" and "false". Examples of such func-
tions arc ''grealer than', "less than', "eqral to!" and their nega-—
tives applied to domains of numbers, of Boolean values, and strings.
This function corresponds in spiril to McCarthy's conditional expres-—
sion but nol in the details of ils definilion.

Select a specified parameter.

Name: SELECT(N,A,B,C,...)

Effect: Selects the nth elemenl of the sequence A,B,C......

Exit-value: A, B, or C, elc.

Comment: This is like the "casc expression' iniroduced by McKeeman in his
""An Approach to Compuler Language Design'. It could be defined in
terms of a string scanning funclijon which scans the transformation
call and picks the (n + 1)st substring, where pareniheses and com-
mas are substring demarcators.

Test existence of a daia element.

Name: EXIST(I)

Effect: Tests the exislence of a data element referenced by I.
Exit-value: An identifier of a cell containing an ideniifier of the data
element referenced by I, or, if no such data elcment exisis, the
value—~string UNDEFINED.
Tesl membership of a data element in a composite.

Name: MEMBER(T,E) or MEMBER(I,E,N)

Effect: Test the exisience of data element 1-ferenced by E in compositle
referenced by I. If the parameicr N is given, then testi the exist-—
ence of the dala element as the nth component, where n is the quant-—
ity referenced by N.

Exit-value: Idenlifier of a cell whosc contents arc:

1. If the data eclement referenced by E is a component (or the nth
componert, if N is specified) of the composile referenced Ly I,

then the cell contents is an identifier of the data element

- . ——— ey

Y

e

Pl

rotmiigtis

170

referenced by E.

2. If the data eclement referenced by E is not a component of the com-
posite referenced by I, ithen the cell contents is the value-string
UNDEFINED.

Test if iwo dala clements stand in a specific relation.

Name: RELATION(A,R,B)

Effect: To test if two data clements, referenced by A and B respectively,
stand in a binary rclationship (composite), which composite is, in
turn, a component of a larger compositg (relation) referenced by R.

Exit~value: If the test yields "Lrue®, then the exit value is an identi-
fier of a cell whose contents is an identifier of the relationship
'in which A and B are components. If the test yields "false', then
ihe exit-value is an identifier of a cell containing the value-string
UNDEFINED.

Comment: This funclion is definable in terms of a search based on the func-
tion MEMBER.

Indirecti reference.

Name: INDIRECT(I)

Effect: Assumes thal the contens of the cell referenced by I is a value-
siring to be interpreied as an identifier.

Exit—value: An identifier which is the contents of the cell referenced
by I.

FUNCTIONS DEFINED ON DOMAINS OF VALUE-STRINGS

The user can define domains as he chooses, and then define an un-
limited number of functions on these domains. As discussed earlier un—

der Representiatlion of Functions, any function can be represented either

by enumeration (plus a search algorithm) or by some algorithm based on
computation rather than scarch. The representation of a funciion may be
based on other funclions. The ultiimate definition must be in terms of
primitive funclions and/or those represented by enumeration.

The user can, by these available function definition methods, define
all the functlions he wishes. The most common types of functions are those
which yield identifiers of simple dala elements: in this category belong

all ithe conventional functions such as are illustiraled below:

Aritithmetic Logical String
add and concatenate
subtract or deconcatenate

multiiply exor extract subsiring

171

&

13 .

! Arithmetic (continued) lLogical (continued) String (continued)

: aAritamerrc pgreat =2Lrng

; divide not string substitution

3 root neither

: exponentiate equivalent

sin identical
cos

The string functions are somewhat messy to define becausc a siring must
be converted to a composite dala element and perhaps back again. It is
much more convenienlt 1o have the siring functions given as primitive.

One of the more complicated useful funciions thal can be defined is that
of lexicographic sum or difference of itwo linear ordered composites whose
components are from ordered drmains.

BASIC TRANSFFORMATIONS OF SEQUENCE CONTROL

Transformalions of sequence conirol are those transformations wvhich
affect the sequence in which other transformations get executed. The
common transformations of this type are: iteration, condilional execu-
tion, and chronic execution. Since tlhe sequence controls are themselves
datla elements, any ordinary transformation which modifies a data clement

which is part of the sequence control will necessarily affect the sequence

of exccution. Such transformations of data could thus be classified as
transformations of sequence contirol.
Identifying a control list.

Name: THREAD-IDENT

Effect: Determines the identifier of the control list associated with
ihe thread of control in which the call occurs.

Exit—value: Identifier of the associaled control list. If there is no
such control list, ithe result is UNDEFINED.
Initiate control ihread.

Name: START(T) .

Effect: To start a thread of control at the transformation call whose

dentifier is T.

[T

Terminate control thread.

Name: STOP

Effect: To stop further excculivon of the ihread in which the transiorma-
iion STOP occurs.,
Branch, or jump.

Name: JUMP(T)

Effect: To stop further execution of the thread in which the transformation

172

JUMP occurs and to start a thread of control at the itransformation
vhose identifier is 7T,

Comment: It is obviouc tihat this transformation is simply definable iu
terms of the combination of STOP and START(T).
Conditional execution. .

Name: CONDITIONAL(F,T)

Effect: If the data element referenced by F (which may include paramoters)
has a value-siring of "true", ithen execute the transformation refer-
enced by T.

Example: Consider the ALGOL statement if A=B ihen S=T. Tliis would be
represented in terms of our conditional as
' CONDITIONAL(CALL GR(A,B), "AS(S,T)")

Nole that if F was an identifier of ihe apression CALL GR(A,B) and if T

was an identifier of the expression AS(S,T), ihen the conditional could

have been written as CONDITIONAL(F,T)
Chronic execution.

Name: WHENEVER(F,T)

Effecl: This is like CONDITIAONAL except ihal the referenced transformation
is executed each lime the condition is satisfied.

Comment: The execulion of a chronic statement at the proper moment depends
on having the test made whenever any of tileelemenis involved in the
test might change. To implement this is a non—trivial problem whose
solution I do not altempt here. It should be obvious that execution
of the specified transformalion should disturb the condition, other-
wise the condition will always be satisfied and the transformaiion
will be execuled contlinually without pause.

Shaw of SDC has proposed an interesting variation on "chronic
execution'”, that of "delayed execulion. Delayed execution is simi-
lar 1o chronic, except that exccution occurs only once. Delayed
execution can be defined in terms of chronic by disabling the trans-—
formation call after one execulion. Similarly, by use of a counter,
the chronic repetition can be limited to some predetermined number
of times. '

Iteration over members of an explicil sect.

Name: ITERATION-OVER-EXPLICIT-SET(S,M,T)
Effect: Executes transformation referenced by T once for each componendi

of explicit set (composite) referenced by S, where the parameter

e a———

——— wmnty TR0 [T BT [T 2R e

M in {he transformation T references a different componenti of S on
cach execution of T. TIi is important to note thal the parametler

M in T can be at any depth of nesling, and may occur morec ithan once
al the same depih or different depilhs.

Iteration over members of an implicit set.

This transformation is readily definable in terms of constructing an ex—
plicitl sel from the implicil one and then invoking the iransformation
ITERATION-OVER-EXPLICIT-SET, which scc.

TRANSIFORMATIONS OF BCMAIN

Enumeratled dorains are in the form of ordinary dala elemenis, so that
such domains can be crealed, modified, and destroyed by ithe ordinary trans-—
formation of data. In the casc of domains described by algorithm, these
algorithms are themselves expressed as data elements. Hence they, tloo,
can be created, modified, and deslroyed by means of iransformailions of
data, but at the price of considerable more efforti.

BASIC TRANSFORMATION OF PROCESSOR ACTION

These are the transformations which guide the behavior of the proces—
sor. Except for explicit special ilransformations which may be provided,
the user is not able 1o alter or to add tov the aclions of the processor.
This is a logical consequence of the processor being defined outside the
language that it is designed Lo process.

Remote call.

Name: EXECUTE(T)

Effecl: Invokes execution of the iransformation vwhose identifier is T.

Commeni: Il is imporiant to note the distlinction between this transfor—
mation and CALL. Following the word Call is ihe actual transforma—
tion name possibly followed by parameters. Following EXECUTE is an
idenlifier which names a lransformation call. Consider the follow-
ing example. Let K be an identifier of a transformation which has
no parameiers. Further, let L be an identifier of a data element
wvhich contains the string CALL K. Then K can be invoked e¢ither by
executing CALL K, or by executing EXECUTE L. Boilh CALL and EXECUTE
imply a return to the point of callj; this can be made to happen
antomatically, as is done wilh the COBOL verb PERFORM. Note that

CALL is a special casc of EXECUTE which in effect supplies the

quotes. CALL K and EXECUTE ¥YK" arc equivalent.

- mm: ~

I
]
]

EIE I

mtm——

174

CHAPTER 7. REALIZATION OFF A PROCESSOR

This chapler is concerncd wilh some of ihe basic considerations of
implemenling & processor for ilhe system I have been developing. The
principal challenge is data stlorage, for that is the arca in which these
developmenis are most unlike current practices. In the discussion thatl
follows, I intend only to show how the problems of realizatlion may be al-
tacked. I am not concerned with eff ciency and make no claim that I have
illusirated the best way to accomplish certain objectives.

Data siorage. The datla elemen’s and structures which have been des-
cribed earlier do not fit readily inlo any conventional concept of machine
storége. My aim here is to describe a storage concept which is at least
plausible in relation to what has already been built in hardware.

The first requircment is that ilhere be a place 1o storc and search
a set of strings (of arbitrary length up to some fixed limit) which are
used as identifiers. Thatl is, they stand in an idenlifier relalionship
io other data elements. Such an identifier list could be stored in an
associalive memory. Each cell of ihis associative memory would have to
be N+P characiers long, vhere N i the maximum length of a pointer, which
is a machine address or a quantily analogous io it. Such a pointer points
{0 a memory position conilaining the initial element of an association
list or the initial character of a value-siring which is the contentis of
some simple dala element. Both of these latter concepts are about to be
explained below. 7The identifier list as described could be represented

pictorially as follows:

Identifiers Pointiers
: ; =
11 I 1
J
I2 I2
¥
I p
3 ! 3
II, pl:
T ¥ o P
5 i 5
P
] o [%

————— k. o ——— JIURPEUIURRISR

g -yt eeteer e oo SRl AR Lt s SR PELUU S S
e i ¢ e+ B TR R T T R T T i S e B R S et S El

175

lhc second requirement is to be able to have, as ihe contents of any
simple data element, a value~siring of arbitrary length. This implies
thai we neced a memory in which character positions are individually addres-
sable. Value-strings would be referred to by giving ihe address of ihe
initial character position. The end of each value-siring would be marked
by some meta~character known only to the processor. Value-string storage

could be piclorially represented as follows:

separators N
::!”/ et ’gnnr\n BT S AR ST u ; MITAR
*g value-string-1 *E valuc-string-2 * valuc-string-3 g1 *
- ST IXLTS, < AT T 5T : PO SR LN e e g e, R o8 L
iy 'l (‘I
address of address of address of
valuc-string-1 value-siring-2 value-string-3

Replacement of a given value-string by a siring longer or shortier than
the one replaced places on the processor a burden of moving strings and
collection of the spaces which become unused as a resuli of rearrangement.
This burden is a nuisance but requires no sophistication for its proper
handling.

How valuc—strings are actually slored internally is the implementior's
choice and responsibility. There must be an exact correspondence between
external (as seen by the user) and internal (as seen by the processor)
representations. The use of approximations resulting from tiruncation,
roundoff, conversicn firom one number base to another, etc., will lead lo
trouble.

The third recquiremenl is to be able .o associale iwo or more data
elements into a compositie data element where ithe componentis of this
composite can be either a simple or a compusiie data elemeni. This as—
sociation, or composiie, can be realized by a conseculive set of entiries,
which I term an "associalion list'", in an associalive memory. Each entry
in an association list contains a pointer to (that is, a machine address
of) a componeni. If the component is a simple data elemenl, the pointer
poinits lo the initial characier of a value-string in value-string storage.
If the component is itself a composite, the pointer points 1o another as—
sociation lisi, in a way which indicates that the pointi refers to ihe

associalion list as a whole.

e -

176

Bach component of a composite, then, has a corresponding entry in
an associalion list which poinis lo ithat component. Each such component
eniry can have identifiers related to it; such identifiers are part-identi-
fiers. As just mentioned, there is also a nced for a place in an associ-
ation list which can be pointed Lo in order to refer to the associalion
list as a whole. This is accomplished by having an extra entry, which
we lerm a "base entry', which is distinguishable from the eniries which
represent components.

Given a component entry, found by asking the associalive memory for
those enlries which point to a specified data element (that is, to a
specific machine address), we musi be able to readily locale the base
eniry associated with that component entry. A simple technique for tiying
a base entry and the components of a single composite together is to as-
sign serial numbers, 0,1,2,3, elc., to ihe successive entries. The base
entry (of every association lisi) is thus distinguishable by having a serial
number of 0. Each component entry has a serial number, s, which corres—
ponds to its ordinal number. VWhen a component entry is found by the as-
sociation mechanism, the machine address of the associated base enilry
can be found by subiracting ihe serial number of that eniry from the
machine address of ilhat eniry. A pictorial representation of a composite

should clarify this discussion:

SERTAL POINTER

=V

base entiry 0

pointer to
first component

. zssociation list
component pointer to s ¢

. or
entries T

second component .
~ one composite

pointer to
third component

\j i /J

As with valuc—-string storage, lhe replacement of an association listi

by onec longer or shorter places on the processor a burden of handling in-
sertions and of collecting unused entiries. As menlioned before, this
burden is a nuisance bul requires no special techniques.

Transformation exccufion. In earlier discussion I suggested that

the task of syntaclic analysis of program statements could be rendered

s . s eman——— o -

177
unnecessary by the use of a canonic form for the expression of all irans—
formations. That form is the familiar function notation

T(A,B,C)
where T stands for the name of i1he desired transformalion, «nd A,B,C slands
for the list of actual parameters, if any. LEvery part cf a program which
is intended for execution can be put in this form. 7This form requires no
syntaclic analysis, since its syniax is known by convention.

The processer's job of handling transformations in canonic form is
essentially trivial. FEach transformation is a call to a procedure. In
the cases of primitive transformations, which are writtlen in machine lan-
guage, the processor merely looks up the procedurc's machine address and
branches to it. The primitive procedurc is responsible for handling its
own parameters. '

In ithe case of transformations defined within the system (that is,
are nol primitive), the processor looks up ihe specified iransformation,
bul does not branch to it. Rather, the processor continues to find and
irace through the various levels of procedures which may be called, exe-
cuting any primitive procedures which it encounters in this way. This
technique of execution is a stlandard one, most clecarly illustrated in
J.VW, Carr's "growing machine" discussed in Ostirand, 1567. Whai is non-
standard, and what I think is new here, is the concept that a called
procedure is responsible for handling ils own parameters rather than having
it done by an external device (sometimes called "the interpreter). rhis
parameter-handling must obviously be done by primitive procedures, other-—
wise a logical infinite recursion exists. Furthermore, since the para-—
meter-handling is done by explicit tiransformations, the parameter-handling
transformation musi be able to reference the call of the transformation
al the nexti-higher level. That is, given a transformalion T1, one of the
iransformations within T1 must be able to pick up and process the para-
meters in at least the curreni call to Ti. Il would be useful if this

same parameicer-handling transformatlion could access eatlier calls o Ti

Garbage collection. It may happen that a user does nol destroy

data which he no longer needs. There are two reasons why it is desirable

to have garbage colleclion performed periodically to reclaim this uscless

LRI S Pl SNy S TSt e S i e e A S TR

E R

Lgp R o s N R NE L T SV E AR M e S TR 3 T AR R L g Ty -’).’?*

PSR e I fen ™

T Ll ”‘WF‘ TSI 2 S TR T TR T AT e TR B e o

-
.

178

data:
1. To be able Lo reuse the storage area,
2. To avoid ambiguous situations which might arise from a scarch
yielding some forgoiien and therefore unexpected datla.
Such garbage colleclion should be carried oui automatically by ihe
processor, without the knowledge of the user. Ii has alrcady been pointed

out that techniques of garbage colleciion and storage reorganization are

well-known and not difficult {o implement so the subject will not be elabor-

ated herc. '

E3d

ST

e TERE

e gvictamrt > el MR R s e IS AT R A CTRE 2e B g

S = EAPO A ey AL s e ML) e 15 W g
g > A nagn M SERT S L ST TS TN PRkl o S A

179

CHAPTER 8. CONCLUSTON

Hopefualy this work has made a useful coniribution to the analysis
of programming languages in ycneral and has suggestcd some useful ways
of extending conventional programming language concepts. There is no
need Lo repeat here as a summary what was presenied as an overview in
Chapter 3. However, Chapter 3 should now have nore meaning to ithe reader.

It hardly needs to be pointed out thai this research projecti has
been a paper study. An obvious next slep is to test out the ideas in
practice. This would involve writing a processor and testing it. Afier
that. it should be made available, witlh a suitable user's manual, to a
selecled set of users, to let them provide some realistic lesting of its
usefulness. These users should preferably be ones wilh non-standard
and sometimes ill-siructured neceds.

In the philosophy developed in this report, every statement in every
programming language can be regarded as a call to a transformation. This
seems lo be a usefu coucept in analyzing programming languages. It would
be worihwhile 1o see a tho. ugh analysis of current languages based on
this approach.

' The most significant demand on machine design which arises from the
developments of this research project is that much more freedom of storage
organizalion is needed than is provided by conventional machines. The
restriction of addressing mechanisms to that of sequentially-numbered
slorage localions has been a seriovs one. Accessing such storage has
been largely confined to either knowing the storage address or being able
to compuie it with a simple algorithm (this is the basis for using index
registers). Vhen this is not possible, then laborious linear searches,
and sometimes binary searches, musl be resorted to. Often data not in
sequence must first be sorted by a relatively time-consuming technique.
With the availabilily of a parallel-access itechnique (an associative
memory), the labor of searching and sorting is eliminated. A further
consequence of the lack of freedom of siorage organization has been the
relarding of the development of elaborate data struclures, because of the
difficully of accessing paris of the structure when it is an irregular
one {and therefore difficult to computc the location of the desired part

by means of a simple algorithm). Again the utilizalion of an associative

e

Fed

LT e CeTel RISV TEFR RF TR VI TON W 4TI e gy T SR TR ST sy T ETTED
S SEREEREL T v (o e SN ST TF RS AN WY A

180

miemory avoids this accessing difficuliy and makes aliractive the use of
g

complex and irrecgular data siructures,
1

This report suggests a way that

arge—scale associative memories could be uscd to provide some of the

needed flexibility. One hopes for solutions even "neater" than those

. L]
: ! provided by associative memories, but there are no other obvious ones

é within the framework of current technology.

rZd

MJ:‘_:..;A,_‘;:“;‘NM .

vl TR T A Ffnt, 1o B8 N s '.‘—g_ﬁ'i“‘
- — A% pcf T e R R A AR Iy S s L
A EC s LEFITETTR R TRR B T S I R S R R A T TR D e s o S BEU T R R AR S e ke E T R AR L AR B ¥

181

S

DBIBLIOGRAPHY ON PROGRAMMING LANGUAGE, CONCEPTS, AND DESIGN

This bibliography is one man's altempi {o list publications relevani

AN s

io programming language description, concepls, and design. This list
é should be helpful {o researchers concerned with this specific topic.
]

The reader may wonder why the lisi lacks any consequential mention
) q

o of compilers and compiler techniques. This lack reflecls a personal con—

. viction that compilers and compiler techniques are not pertinent to the
‘ question of how 1o design belter programming languages.

I regret to say that I have not read all the material cited here.
Some.of it is entered because it intuitively satisfied my criteria of
probable relevance, based usually on a glance at ihec document but based
sometimes only upon consideration of ihe title.

A brief annotation of each citation would be helpful. To provide
such annotations is a non-—trivial iask, however, which time did not allow.
Hopefully on the nexi revision of this bibliography those annotations

can be provided, whether by me or by somecone else.

Fed

3

T T e ey e] T G g e T

g T U TR TR

g s

]

182

Abrahams, Paul., et al. The LISP2 programming language and sysiem. Doc.
no. T™-=3163. Santa Monica, Calif.,: SDC, 1966.

Albani, E., Ceccato, S., and Marettii, L. Classifications, rules, and code
of an operational grammar for machine translation. IN: Kent, A., ed.
Information retrieval and machine translation, part 2. New VYork: Inter—

science, 1961; 693-753.

Almendinger, V.V, SPAN: A syslem for urban dala management. IN: Computer
Yearbook and Directory. Detroit: American D-ia Processing, Inc.; 175-182.

Alzali, E.C. An experimental programming language for teaching symbolic
manipulation., Moore School of Elecirical Engineering, Universitiy of Penn-
sylvania, May 1966. AD 800 050.

Amarel, Saul. An approach to theory formation. IN: von Foerster, H., ed.
Principles of self orgeunizing systems. Pergamon, 1962,

Amarel, Saul. On the autlomatic formation of a compuler program which
represents a theory. IN: Yovits, M.C., et al. Self-organizing systems~—
1962. VWashingtion, D.C.: Spartan Books, 1962.

Amarel, Saul. On the mechanization of creative processes. IEEE Spectrum
3,4 (April 1966), 112-11k4,

American Institutes for Research. (Self-instructional Course) Mod II Query
Language. Doc. no. ESD-TR-66-513. Bedford, Mass.: Decision Sciences
Laboratory, Electironic Systems Division, Air Force Systems Command, 19G6.
AD 808 212 through AD 805 240.

Amnmerman, A.B., Deisen, L.R., and Thombs, H.W. DISPLAYTRAN—a graphical
display oriented conversational FORTRAN facility for an FBM 360/40 com—
puter. Daltlgren, Va.: U.S. Naval Weapons Lab., 1967. AD 656 583.

Armenti, A.W., Schafer, B.J., and Vinett, J.M. A dala processing formal-
ism. TR 285. Massachusetis Institute of Technology, Lincoln Laboratory, 1962.

Bachman, C.W., Dodd, G.G., Durand, G.C., Helgeson, W., McKenzie, G.E.,
Metaxides, T.A., Olle, T.W., et al. COBOL extensions to handle data bases
(report to Codasyl COBOL Committece, prepared by Data Base Task Group),
January, 1968.

Bagley, P.R. A file structure for a library data processing application.
Doc. no. W-4657. Bedford, Mass.: The MITRE Corp., 1962.

Bagley, P.R. Improving thec art of programming (Project 501). Doc no.
W-4554. Bedford, Mass.: The MLTRE Corp., 1962.

Bagley, P.R. Improving problem-oriented language by stratifying it. Com-
puter Journal, Oct. 19061; 217-221. .

Bagley, P.R. An introduclion io ALGOL and its processors. Philadelphia,
Pa.: Moore School of Electirical Engineering, University of Pennsylvania,1965.

183

Bagley, P.R. Principles and problems of a universal computer—orienicd
language. Computer Journal, Jan. 1963; 305--312.

Bailey, M.L. Toward a disciplined data systems language. IN: Computcr
Yearbook and bireclory. Detroit: American Data Processing, Inc.j 107-116.

Bakker, J.W. de. Formal definition of programming languages with an ap-
plication to the definition of ALGOL 60. Amsterdam: Mathematisch Centrum,1967.

Ball, J.R., et al. On thc use of ihe SOLOMON parallel-processing computer .
Proc. FJCC, 1962; 137-146.

Ball, William BE., and Berns, Roberti I. AUTOMAST: Automatic mathematical
analysis and symbolic transiation. Comm. ACM, 9 (1966); 626-633.

Balzer, R.M. Dataless programming. Doc. no. RM-5290-ARPA. Sauta Monica,
Calif.: RAND Corp., July 1967. AD 656 449,

Bandat, K., ed. Tentatve steps towards a formal definition of semantics
of PL/I. Doc. no. TR 25.05G6., Vienna: IBM Laboratory, 1965.

i Banerji, R.B. The description list of concepis. Comm. ACM, 5 (19562); 426-432.

g Banerji, R.B. A form:l model for concepi description and manipulation.
Moscow: Proceedings of the 18th International Congress of Psychology, 196GG6.

Banerji, R.B. A languave for pattern recogniticn. Journal of the Pattern
Recognilion Society (1o be published).

Banerji, R.B. A language for the description of concepis. IN: Yearbook of
the Sciety for General Systems Research, g. 196k; 135-141.

Banerji, R.B. Towards a formal language for describing object classes. IN:
Infrrmation system sciences, proceedings of the 2nd congress (1964) Washing-
ton, D.C.: Spartan Books, 1965; 451-457.

Barbieri, R., and Morrissey, J. Computer compiler organization studies.
Doc. no. AFCRL-67-0483. New York: John Morrissey Associates, 1967.
AD 658 196.

Barnes, R.F. Language problems posed by heavily structured dala. Comm. ACM,

5 (1962); 28-34.

Barnett, M.P. Continued operatiion notation for symbol manipulation and
array processing. Comm, ACM, (x(196_’3); LG7-472,

Barneti, M.P., Gerard, J.M., and Sambles, A.W. Comments on "A coniinued
operation notation." Comm. ACM, 7(1964); 150-152,

Barron, D.W., el al. The main fealures of CPL. Computer Journal, 6(1963);
134-142.

oy

- T T o N R R TR VA R T
IS rotaec) x , T B TRATOw £) TR T T S R ST AL A0 XX g
I R TR R VR A A TR TR £E St L e s o s =

’

184

Barton, R.S. Notes for leclures on program struclures, programming lan-—
guages, and wachine organization. University of Michigan Summer Engineci—-
ing Conference on Advanced Programming, Machine and Program Organizalion,1964.

Basacher, R., and Saaly, T. Finile graphs and networks. New York: McGraw-—
Hill, 1965.

Basu, S.K. On compulation in programming languages. Technical Report #1.
Bombay: Tata Institule of Fundamental Rescarch, 1966.

Bauer, H.R., el. al. ALGOL V. Stauford Computer Science Dept., 1968.

Baum, C. ed. Procecdings of lhe second symposium on computer-centered data
base systems. Doc. no. TM-2624/100/00. System Development Corporation,
1965.

Bemneti, Richard K. A basc¢ for the definition of computer languages.
Lexington, Mass.: Signatron, Inc., Oct. 196%.

Bennetti, Richard K. BUILD: a basc for uniform language definition: a user's
manual for computer language designers and systems programmers. Lexing-—
ton, Mass.: Signatron, Inc., Junc 1908.

Berge, Claude. The theory of graphs. New York: Wiley, 1962.

Berkeley, E.C., and Bobrow, D.G., eds. The programming language LISP: itis
operation and applications. Cambridge, Mass.: Information International,
1964. AD 603 482. .

Bernstein, A.J., and Johnsion, J.B. Implementation of a parallel proces—
sing language. Report no. 67-C-080. Schenectiady, N.Y.: General Electiric,
Research and Development Center, March 19673 17 pp.

Biggins, S.A. APT—a new system. IN: Data Procescsing, vol. 8 no. 6(Nov—
Dec 1966); 309-313.

Blackwell, Fredericl- W. An on-line symbol manipulation system. Proc. ACM,

1967; 203-209.

Bleier, R.E. User's manual for GOR: A general purpose display system (GPDS)
program for structuring LUCID-produced but unorganized data bases. Doc.
no. TM-2302. Santa Monica, Calif.: SDC, 1965,

Bleier, R.E. Treating hierarchical data structlures in the SDC time-sharcd
data management system (TDMS) Proc. ACM, 1967; 41-49.

Bleier, R.E. User's manual for QUIZ: A data based query sysiem. Doc. nn.
T™M-2429/000/00. Santa Monica, Calif.: SDC, 1965.

Bobrow, Daniel G., and Raphacl, Bertram. A comparison of list-processing
computer Janguages. Comm. ACM, 7(1964); 231-240.

Bobrow, D.G. el al. Formai-directed list processing in LISP. Doc. no. AFCRL-
66-302. Cambridge, Mass.: Boli, Beranck and Newman, 1966. AD 633 242.

B oty BNt~ e -

e T vﬁ‘;:mr ?Vﬁ{!?@% 733 SNT< U P SRR el S
% 5 " 3 LTIy

185

Bobrow, D.G. and Weizenbaum, J. Lisl processing and extension of language
facilily Ly embedding. TEEE Trans. EC-13 (1906); 395-400.,

Bobrow, D.G. Storage management in LISP. Doc. no. AFCRL 66-h2G. Cambridge,
Mass.: Boll, Beranck,.and Newman, 1966. AD 636 049,

Bobrow, D.G., e¢d. Symbol manipulatlion languages and techniques. Proc. IFIP
Working Conyress on Symbol Manipulalion Languages. Pisa, 1967. Amsterdam:
North Holland Publishing Co., 19068.

. Bohm, Corrado, and Jocopini, Giuseppe. Flow diagrams, Turing machines and
languages with only iwo formatlion rules. Comm. ACM, 9(1966); 366-371.

Bolliel, L. Compiler writing techniques. G}enob]c, France: Instituie de
Mathematiques Appliques, Sept. 1966; 216 pp.

Bond; RElaine, et al. FORMAC-—an cxperimental formuala manipulation compiler.
Doc. no. TR 00.1192-1. Poughkecpsic, N.Y.: IBM DSD,1965.

Book, E. and Schorre, D.V. Higher-level machine—orienied languages as an
allernative to assembly languages. TM-3086/001/0C. SDC, August 1966.

Bosak, R. CLEAR, an experimental data base managemeni system. Doc. no.
T™-2673/000/00. Santa Monica, Calif.: SDC, 1965.

Bosak, R. A proposed file processing language. Doc. no. TM-3392/000/00.
Santa Monica, Calif.: SDC, 1967.

Brach, J.R. A problem-—oriented language for project management. M.I.T
Masters thesis, 1965.

Braffort, P., and Hirschberg, D., eds. Computer programming and formal
sysiems. Amstcrdam: Norih-—Holland, 1963.

Brian, W.J. A paris breakdown iechnique using lisl siructures. Comm. ACM,

7(1964); 362-365.

Broise, P. Trec-siructure processing by the method of "Label Sequences™
in ALGOL. IN: Proceedings, 4th Congress of Computation and Information
Processing, Versailles: 1964. Paris: AFIRO, 1965; 79-80.

Brooker, R.A.,end Rohl, J.S. Simply partitioned dala structures: the com-
piler~compiler re—examined. IN: Collins and Michie, eds. Machine intel~
ligence 1. American Elsevier Publishing Co, 1967; 229-239.

Brouse, R.A. The data sequenced computer. Doc. no. FN-4060. Santa Monica,
Calif.: SDC, 1960.

Brown, George W. A new concepi in programming. IN: Greenberger, M., ed.
Managemeni and ithe computer of the fuilure. New York: Wiley, 19062; 251.

Brown, W.S. el al. The ALPAK system for non-numerical algebra on a digital
compuier. Bell System Technical Journal, 42(1963); 2981-2119. 43(19Gh);
785-804, 1547-1562.

Bryant, J.H., and Semple, P., Jr. GIS and file management. ACM Proc.
1966; 97-107.

186

Brzozowski, J.A. and McCluskey, E.J. Jr. Signal flow graph itechniques for
sequential circuit state diagrams. TEEE Trans. E.C. 1963; 67-76.

Buckles, Glenn A. ard Carpenter, Stewart B. Computcr-centered data systems.
Doc. no, ESD-TR-(6-499. Bedford, Mass.: Electronic Systems Division, Air
For(ec Systems Command, 1966. AD G4l 267.

Burge, W.l. The evaluation, classification, and interpretation of expres-
sions. Proc. ACM 19th National Meetling, 1964, Paper Al.h; 22 pp.

Burge, W.H. Interpretation, slacks, and evaluation. IN: Wegner, P., ed.
Introduction to system programming. London: Academic Press, 1964.

Burge, W.H. A reprogramming machine. Cemm. ACM, 9(1966); 60-66.

Burge, W.H. Soriing, trees, and measures of order. Information and con--
irol, 1(1958); 181_197.

Burge, W.H. The structure oif the programming ianguage PL/I. New York:
Univac Division, Sperry Rand Corp., 1965.

Burington, Richard S. The problem of formulaling a problem. Proc. Ameri-
can Philosophical Society, 104(1960); 429-443.

Burington, Richard S. The siruclurc of science: the problem of formulatira
a problem. R-14 Report no. 24. Washington, D.C.: Navy Depi., 1964.
AD G4h 733.

Burkhardt, W.H. Metalanguage and syntax specificalion. Comm. ACM, 8(1965);
304-305.

Burkhardt, W.H. PL/I: an evaluation. Datamation, Nov. 1966; 31-34, 37, 39.

Burkhardt, W.H. Universal programming language and processors: a brief
survey and new concepls. Proc. FJCC, 1965; 1-21.

Burley, H.T. A programming language for lincar algebra. Computer Journal,

May 19673 67-73.

Burrows, J.H. Automaled data management (ADAM). IN: Procecdings of the
Symposium on Development and Management of a Computer—Centered Data Basec.
BRT-%41. Santa Monica, Calif.: SDC, 1964; 63-86.

Burrows, J.H. Program stiructure for military real-time systems. Doc. no.
SR-122. Beford Mass.: The MITRE Corp., 1964. Also IN: Proceedings of Lhe
Symposium on Computler Programming for Military Systewms, ihe Hague, 28
Seplember -~ 2 October 1964. The Hague, Netherlands: SHAPE Technical Centre,
1965, vol. 1; 195--224.

Buxton, J.N. and Laski, J.G. Conilrol and simulation language. Computer
Journal, 5(1962); 194-199.

Buxion, J.N. ¥riting simulations in CSL. Computer Journal 9(1966); 137--143.

B 3ok ARSI
R e i T e

bt £ Lt s AR

R A

TR TN ST

187

Caracciolo di Forino, A. Linguislic problems in prog.amming thcory. IN:
Information Processing 1965. vol. 1. Washinglon, D.C.: Spartan Books,
1965; 223-228,

Carey, L.J. and Kroger, A.E. Specification of SPL Space Programming Lan-—
guage. Doc. no. TM-3719/000/00. Sania Monica, Calif.: SDC, Sepi. 1967.
AD 661 981.

Carr, J.W. IlI. The fulurc of programming and programmers. Computler Bulle-
iin, Junec 196G4; 9-12.

Carr, J.W. IIT, el al. LIST processing rescarch lechniques. Doc. no.
ECOM-02377-1. U.S. Army Electronics Command; 1966. AD 645 445.

Carr, J.W. IIT. and Gray, H.J. LISY processing rescarch techniques. Doc.
no. ECOM-02377--2. U.S. Army Elecctronics Command, 1967. AD 652 724,

Chamberlain, E. et al. The role of localional conirol in an informational
system. Dept. of Housing and Urban Developmeni, Sepi. 1967. PB 177 623.

Chandler, A.R. AGIL II: a general input language for on--line informatlion
control. ESD-TR-66-308. Doc. no. MIP-12. Bedford, Mass.: The MITRE
Corp., 1966. 2 vols. AD 489 421 and 489 422.

Chapin, N. SYLATINS: a way out of the systems maze? Aulomatic Control,
April 1960; 37-43.

Char, B.F. et al. Final report-a joint AFLC/ESD/MITRE advanced data
management (ADAM) experiment. Doc. no. MIR-285. ESD-TR-66. Bedford,
Mass.: The MITRE Corp., 1967. AD 648 226.

Cheatham, T.E., Jr. Data description in the CL-II programming sys*~m.
ACM National Confercwce, Digesi of Technicel Papers, 1962; 39.

Checatham, T.E., Jr. An introduclion to the CI~II programming system.
Doc. no. CA-63-7-SD. Wakefield Mass.: Computer Associates, 19062.

Cheatham, T.E., Jr. The introduction of definitional facilities inlo higher-
level programming languages. Proc. FJCC, 1966.

Checatham, T.E. Jr. The specification and zyntactic analysis of two dimen-—
sional mathematical input. Doc. no. CA-6011-0812. Wakefield, Mass.: Massa-
chuselis Computer Associates, 1966; 36 pp.

Cheydleur, Benjamin F. Dimensioning in an associalive memory. IN: Hower-
ton, P.W. ed. Vistas in Information Handling, vol 1. Washingtion, D.C.:
Sparian, 1963; chapter 3.

Chien, T.R. and Preparata, F.P. Topological strucltures of information re-—
irieval syslems. Doc. no. R-325. Coordinated Science Laboratory, Univer-
sity of Illinois, 1966. AD 642 501.

Chladck, Il., Kudielka, V., and Neuhold. E. Syntax of PL/T. Doc. no.
TR 25.058. Vienna: IBM Laboratory, 196.

o)

T
g oy) T CH IR O 8 5 A L%
ey = gt e TVt G SN
grich{ mereipaicio e R gaer Rt S R A B P g Fhy Dortin 04 o0

.

188

Christensen, C. AMBIT: a. programming language for symbol manipulatlion.
Doc. no. AFCRI~(GA4~909. VWakeficld, Mass.: Compuier Associaies, 1964.

AD GO8 894.

Christensen, C. An example of the manipulation of direclted graphs in the
AMBIT/G programming language. Report no. CA-6711~1511. Wakeficld, Mcss.:
Massachuselts Computer Associates.

Christensen, C. Examples of symbol manipulation in the AMBIT programming
language. ACM Proc., 1965; 230-247.

Christensen, C. On the implementation of AMBIT, a language for symbol
manipulation. Comm. ACM, 9(1966); 570-573.

Christensen, C. and Mitchell, Robert. Reference manual for the NICOL 2
programming language. Doc. no. CA-6701-2611. Wakefield, Mass.: Massachu-—
setls Computer Associates, Inc., 1967.

Chu, Y. An ALGOL-like computer—design language. Comm. ACM, 8(1965); 607-615.

Church, Alonzo. The calculi of lambda conversion. Princelon, J.J.: Prince-
ton University Press, 1940.

Clementison, A.T. Extended conirol and simulation language. Computier Jour—
nal, 9(1966); 215-220.

Clippinger, R.F. FACT. Compuier Journal, 5(1962); 112-119.

Clippinger, R.F. FACT — a bus*ness compiler; description and comparison
wilh COBOL and Commercial Translator. IN: Gor iman, R., ed. Annual Review
in Automatic Programming, vol. 2. 1961.

CODASYL. COBOL 65. Washington, D.C.: GPO, 19065.

CODASYL Dcvelopment Committee, Language Siructure Group. An information
algebra, Puase I repori. Comm. ACM, 5(1962); 190-20k.

CODASYL Sysiems Group, Data Descriptltion and Transformailion logic "ask
Forces. DETAB--X, Preliminary specifications for a decision table siruc~

tured language. Sept. 1962, (Available from ACM.)

Cohen, Jacques. Definition of LISF procedures in ALGOL; example of utili-
zation. Revue francaisec de traitment de l'informationj 1965.

Cohen, Kenneth, and Wegstiein, J.H. AXLE: an axiomatic language for siring
transforiiations. Comm. ACM, 8(1965); 657-661.

Collins, N.L., and Michie, D. Machine Intelligence I. New York: American
Elsevier, 1967.

Collins, G.E. PM, a system for polynomial manipulation. Comm. ACM, 9(1966);
578-589.

Complon, J.B. and Moody, D.E. Flowgraphing execcutlive problems. IEEE Trans.
on Engineering Management, vol. EM-12 (1965); 143--149.

A ——— — — = o

% L;«;‘:,—t‘f'f{'«‘#'»’f?’s'm’fﬁ‘tﬁq

189

Computér Associales. Advanced programming udcvelopmenis: a survey. Doc.
1 no. ESD-TDR-(65-171. Bedford, Mass.: USAF, Air Force Systems Comi.and,
Electronic Syslems Division, Direclorate of Computers, 1965.

:
é Connors, T.L. ADAM--a generalized data manag menil system. Proc. FJCC, 1960;
ﬁ 193~203.
Connors, T.L. A brief view of ADAM. Documeni W-7047. Bedford, Mass.:
The MITRE Corp., 1964.
Constantinescu, Paul. The classification of a sct of elements with respect
to a set of propertics. Compuier Journal, 8(1966); 352-357.
Conway, Melvin E. A multiprocessor system design. Proc. FJCC, 1963.
Cooper, D.C. Computler programs and graph itransformations. Pittisburgh:
Carnegie Instiiuie of Technology, 1966.
Cozier, W.A. and Dennis, W.C. QUUP user's manual. Doc. no. TM-2711/000/00.

Santa Monica, Calif.: SDC, 1965.

Craig, J.A. el al. DEACON: direct English access aad control. Proc. FJCC,
19663 365-380.

Curry, H.B. and Feys, R. Combination logic, vol. 1. Amslerdam: North
Holland, 1958; 433 pp.

Davis, Martin, and Putnam, Henry. A compuling procedure for quaniification
theory. Jour. ACM, 7{(1960); 201-215.

Davis, Ruth M. Programming language processors. IN: Alt, F., ed. Advances
in Computers, vol. 7. New York: Academic Press, 1966; 117-180.

de Bakker, J.W. Formal definition of algoritihmic languages with an applica-
tion to the definition of ALGOL 60. Doc. no. MR 74. Amsterdam: Mathematical
Centre, May 1965.

Dennis, Jack, and Van Horn, Earl C. Program:iing semantics for multiipro-
grammed computations. Doc. no. MAC-TR-23. Cambridge, Mass.: M.I.T. Pro-

Jject MAC, 1965. AD 627 537.

Deuel, P. On a slorage mapping function for data structures. Comm. ACM,

9(1966); 344-347.

Dijksira, E.W. A simpie mechanism modelling some featurecs of ALGOL 60.
ALGOL Bulletin #16(1964); 14-23.

d'Imperio, Mary. Data structures and their representation in storage: Part
I. NSA Technical Journal, 9(1964); 59-81.

d'Imperio, Mary. Data structures and their representation in slorage: Part 2.
NSA Technical Journal, 9(1964); 7-5k.

Dimsdale, B., and Markowitz, H.M. A description of the STMSCRIPT language.
IBM Systems Journal, 3(1964); 57-67.

- T—————" A TR T -

et

b ekt

TR

baing

TR

190

Dittbérncr, D.L. Implementation of communicatlions—based EDP information
systems (workshop summary). IEEE Trans. on Electironic Computers, 1966;
271-272.

Douglas, M., Farber, D., Rosin, R., Shellans, S. Brief guide to PL/I for
programmers experienced in FORTRAN and other algebraic languages. SHARE
Secretary Distribution. C44l5, August 1966.

Dreyfus, Huberi L. Alchemy and artificial intelligence. Document p-3244.
Sanla Monica, Calif.: RAND Corp., 1965. AD 625 719.

Dueker, Kenneth, J. Spatial data systems: organization of spatial data.
Northwestern Universiiy, 1966. AD 652 005.

Dueker, Kenneth, J. Spatial data systems: special lopics. Norihwestern
University, 1966. AD 652 007.

Duly, J.R. DDL—a DIGITAL SYSTEM DESIGN LANGUAGE. Universiiy of Wisconsin
Ph.D. thesis. May, 1967; 213 pp.

Dzubak, B.J., and Warburton, C.R. The organization of structured files.
Comm. ACM, 8(1965); 4L6-452,

Edelstein, L.A. "Picturc Logic! for "Bacchus,! a fourth-generation computer.
Computer Journal 6(1963); 144-153.

Efron, R., and Gordon, G. A general purpose digital simulator and examples
of its applicetion, Part 1, description of the simulator. IBM Systems
Journal, 3(1964); 22-34.

Elmaghraby, S.E. An algebra for the analysis of generalized activity net-
works. Managment Science, 3(1964); 494-51k.

Engeli, M. Achievements and problems in formula manipulation. Proc. IFIP
Congress, Edinburgh, 1968.

Estrin, G. Organizatlion of computer sysiems—the fixed plus the variable
structure computer. Proc. WJCC; 33-40.

Evans, D., and Van Dam, A. Data structure programming system. Proc. IFIP
Congress, Edinburgh, 196§.

Evans, David S. Data structures for man-machine communication in network
analysis. Proc. of the First Annual Princeton Conference on Information
Sciences and Systems, 1967; 306-309.

Evans, D.S. and Katzenelson, J. Data structure and man-machine communica-—
tion for nelwork problems. Proc. IEEE, 55(19G7); 1135-1144.

Evans, 0.Y. General information manual: advanced analysis method for
inicgrated electronic data processing. Doc. no., F20-8047. White Plains,
N.Y.: IBM Corp., 1960.)

Fed

v e

Lottt e = T IS e o o e o,

191

Falkoff, A.D. Algorithms for parallel-scarch menories. Jour. ACM, 9(1962);
488-511.

Farber, D.J., Griswold, R.E., and Polonsky, J.P. SNOBOL, a string manipu-—
laiion language. Jour. ACM, 11(1964); 21-30.

Farber, D.J. et al. The SNOBOL3 programming language. Bell Syslem Techni-
cal Jour., 1966; 895-944,

Feder, Jerome. The linguisiic approach to patiern analysis: a literature
survey. Bronx, N.Y.: New York Universily, 1966. AD 37 497.

Feder, Jerome. Linguistic specificalion and, analysis of classes of patterns.
Doc. no. TR 400-147. Bronx, N.Y.: Laboratory for Electroscience Research,
New York University, 1966. AD 651 606.

Feingold, S.L. and Frye, C.H. User's guide io PLANIT, Programming Language
for Interactive Teaching, Doc. TM-3055. Santa Monica, Calif.: SDC, 1966.

Feldman, J.A. Aspects of assccialive processing. Technical Noie 1965-13.
Lexington, Mess.: MIT Lincocln Laboratory, 1965.

Feldman, J.A. A formal semantics for computer oriented languages. Pitts—
burgh, Pa.: Carnegie Insliiutie of Technology, 1964.

Fenves, S.J. Problem-oriented languages for man-machine communication in
engineering. IN: Proc., IBM Scient. Comp. Symp., Man-Machine Communica-—
iions. New York, 1965. IBM report no. 320-1941-0, 1966; 43-56.

Fisher, D.L. Data, documentation and decision tables. Comm ACM,9(1966)3;26-31..

Floyd, R.W. A descriptive language for symbol manipulation. Jour. ACM,
8(1961); 579-584.

Floyd, R.W. The syntax of programming languages: a survey. IEEE Trans.

EC-13 (1964); 346-353.

Fox, L., ed. Advances in programming and non-numerical computation. New
York:Pergamon, 1966.

Franks, E.W. A data management system for time-shared file-processing using
a cross—index file and self-defining entries. Doc. No. SP-2248. Santia
Monica, Calif.: SDC, 1966.

Franks, E.W. General purpose data management systems for administirative
and for socio-cconomic planning and analysis: SPAN and IDMS compared.
SDC report no. SP-2652, 1966.

Franks, E.W. LUCID (Language Used to Communicate Information-~-Sysicems De~
sign) IN: Proceedings of the Symposium on Development and Management of
a Computer—centered Data Base, June, 1963. Doc. no. BRT-41. Santa Monica,
Calif.: SDC, 19Gk; 87-96.

Frye, W.H. The interrelationship graph as a technique for computer model
development. Doc. no. NEL-1322. San Diego, Calif.: Naval Eleclonies Lab.,
1965. AD 482 626.

- - - R s ST

Garofano, Ralph. A graph theoretic analysis of citation index structures.
Masters thesis. Philadelphia, Pa.: Drexel Institute of Technology, 1965.

Garwick, J. et al. GPL. Technical Report TER-D-5. Control Data Corporation.

Gaskill, R.A. A versatile problem-oriented language for engincers. IEELR
Trans. EC-13(1964); 415-421.

Gilbert, P., Gunn, D.M., and Schager, C.L. Aulomatic programming techniques.

Report no. TR-66-54. Tecledyne Sysiem Corp., Rome Air Development Center, 1960.

Gill, A. Analysis of linear sequential circuits by confluence sets. Doc. no.
64—-30. Berkeley, Calif.: University of California, 1964. AD 607 476.

Gill, Stanley. The changing basis of programming. IN: Information Process—
ing 1965. Washington D.C.: Spartan Books, 19065; vol. 1, 201-206.

Gilmore, John T., Jr. Research on advanced dynamic attribute extraction
techniques. Cambridge, Mass.: Charles V. Adams Associates, 1965. Doc. no.
AFCRL-65~736. AD 625 181.

Gorn, S. On the logical design of formal mixed languages. IN: Gorn, S. et
al. Common programming language tesi, Part I, Doc. no. AD59UR1, vol.%, Taslk
D Final Report, Philadelphia, Pa.: Moore School of Electrical Engineering,
Universily of Pennsylvania,1959; 41-160. Also available as AD 236 897. CON-
TINUED IN: Gorn, S., et al. Common programming language task, Part 1, Doc.
no. ADGOUR1, vol.h, Task D, Final Report. Philadelphia, Pa.: Moore School of

Electrical Engincering,University of Pemna. 1960; 1-101. Also available as AD

248 110.

Gorn, S. The computer and information scie.ces: a new basic discipline.
SIAM Review, 5(1963); 150-155.

Gorn,S. The trcatment of ambiguity and paradox in mechanical languages.
IN: Recursive Function Theory, Proceedings of Symposia in Pure Mathcmatics,
vol. 5. Providence, R.I.: American Mathematical Society, 1962,

Gorn, S. Semiotic relationships in ambigrously stratified language systems.
Paper presented at the International Colloquium for Algebraic Linguistics
and Automata Theory. The Hebrew University of Jerusalem, 196k.

Gould, M.J. and Logemann, G.W. ALMA: Alphameric language for musi.c analysis.
Institute for Computer Research in the Humanities, New York University, 1966.

Grant, E.E. The LUCID users' manual.Doc.no.TM-2354/001/00. SDC, 1965.

Green, Robert S. Analysis of small associative memories for data storage
and reirieval systems. Doc. no.RADC-TR-65-397. Rome Air Dev, Ctr.,AD 489 661,

Greenberger, C.B. The automatic design of a data processing system. IN: Infor--

mation Processing,1965. Washington,D.C: Sparian Books,1965, vol. 1, 277282,

Greenberger, Martin. A new methodology for computer simulation. MAC-TR-
13. Cambridge, Mass.: Massachuscits Institute of Technology, 1964.

Grindley, C.B.B. Systematics—a non programring language for designing
and specifying commerical sy.:lems for computers. The Computer Journal, 9
(1966); 124-128.

red

T

bt i S

YT
.

193
Griswéid, R.E. Poage, J.F., and Polonsky, I.P. The SNOBOL4 programming
language. Doc. no. S4D9. llolmdel, N.J.: Bell Telephone Laboratoriecs, 19068.
Gumin, H.W. The influence of programming languages on the organization of
digital computers. IN: Informalion Processing 1962. Amsterdam: North-—
Holland, 1963; 566-567.
Guzman, Adolofo, and McIntosh, Harold V. CONVERT. Comm.ACM, 9(1966); 60L-615.

Haimes, E.C. The TREET lisl-processing language. Doc. no. SR-133. Bedford,
Mass.: The MITRE Corp., 1965.

Halpern, M.T. Standardize the sysiem, not ihe language. IN: Proc. of the
1st Spacebor..e Computer Software Workshop, 1966; 211-221.

Hawblin, C.L. Computer languages. The Australian Journal of Science, (1957);
135-139.

Harary, F., Norman, R., Carilwright, D. Structural models: an intiroduction
10 the theory of directed graphs. New York: Wiley, 1965.

Harris, E.B. STRIGOL: a string oriented language. CFSTI Rpli. no. MN$7-40067.
New Mexico State Universiiy, 1967.

‘Haynam, G.E. An extended ALGOL bésed language. Proc. ACM 20th Natlional

Conference, 1965; 449-454,

Heller, J., and Logemann, G.W. PL/I: programming languagec for humanities
research.IN: Computers and the Humanities, Nov. 1966.

Henderson, P.B., Jr. A theory of dala systems for cconomic decisions.
Ph.D. thesis, M.I.T., June, 1960.

Henderson, V.D. and Smith, C.L. Efficiency considerations in problem-ori-
ented processor design. IN: Proc. lst Spaceborne Computer Software Vork-
shop, 1966; 20-~22.

Herscovitch, H., and Schneider, T.H. GPSS III - an expanded general pur—
pose gimulator. IBM Systems Journal, 4(1965).

Higman, Bryan. A comparative study of programming languages. New York:
American Elsevier, 1967.

Hoare, C.A.R. Further thoughts on record handiing. ALGOL Bulletin #23
(May 1966); 5-12.

Hoare, C.A.R. The limilations on Janguages. IN: Computer Weekly, no. 98;
London; August, 1968; 6.

Hoare, C.A.R. and VWirth, N. Proposal for a successor to ALGOL 60. Comm.
ACM, 1966.

Hoare, C.A.R. Record Handling., AUGOL Bulletin 21 (1965); 39-69.

- o —————— AN ORI o T

ot i (AR

s LhiF

i3 AV et el

194

Hoffman, Samuel A. Data struclures ihat gencialize rectangular arrays.
Proc. SJCC, (1962); 325-333.

Hoffman, H.J. A proposal for input-outpui handling in ALGOL 60. ALGOL Bul-
letin #20. (1965); 31-45.

Holden, Alistair, D.C., and Johnson, David L. The use of imbedded patterns

and canonical forms in a self-improving problem solver. Proc. ACM, (1967);
211-219.

Holmes, W.N. Somec remarks on PL/I. PL/I Bulletin no. 2. Aug. 1966; 22-24.

Holi, A.W. Description of descriptions. Princetlon, N.J.: Applied Data Re~
search, c¢. 1964,

Holt, Anatol, VW. General Purpose programming systems. Doc. no. TR 1G. Univac
Applications Research Center, 1957. Comm. ACM. (1958); 7-9.

Holt, Anatol, W., et al. Information system iheory project. vol. 1. Mem-
theory: a mathematical meihod for the descripiion and analysis of discrete,
finite information systems. Doc. no. RADC-TR-65-377. Griffiss Air Force
Base, N.Y.: Rome Air Development Center, Nov. 1965. AD 626 819.

Holt, A.VW. Some theorizing on memory siructure and information retrieval.
Princeton, N.J.: Applied Data Research, Oct. 1963.

Hopcraft, J.E. and Ullman, J.D. Formal languages and their relation to
automata. Addison-Wesley. Scheduled for publication early 1969.

Hormann, A.M. Introduction to ROVER, an information processor. Doc. no.
FN-3487. Santa Monica, Calif.: SDC, 1960.

Horrigan, T.J. Development of iechniques for prediclion of system effeclive-
ness. Doc. no. RADC-TDR-63-407. Morton Grove, Ill.: Cook Electric Co., 1964,

Iliffe, J.K. The elemenis of the GENIE system, programming memorandum #:.
Houston, Texas: Rice Institute Computer Project, 1960.

Iliffe, J.K. The use of the GENIE system in numerical calculalion. IN: Good-
man, R., ed. Annual Review in Aulomatic Programming, vol. 2. Oxford; Perga-

mon Press, 1961.

Ingerman, Peter Z. A syntax-oriented translator. New York: Academic Press, 19G6.

IBM Corp. FORMAC manual. Hawlhorne, N.Y.: IBM Corp., Program Information
Deptl.

_IBM Corp. Generalized information system: application description. Doc. no.

E20-0179. White Plains, N.Y.: IBM, 1965.

IBM Corp. IBM operating sysiem/360. PL/I: language specificalions. Doc. no.
€28-6571. White Plains, N.Y.: IBM, 19065.

IBM Corp. Introduction to the compile~time facilities of PL/I. Repori no.
C20-1689. IBM Corp., 1968.

‘l 195

1A IBM Corp. System 360 generalized information system (basic), application
description. Report no. H20-0521. IBM Corp., 1968.

t Iturriaga, R. Contributions tlo mechanical mathematics. AFOSR~-67-2h00.
AD 660 127.

- Iturriaga, Renato et al. The implementation of formula ALGOL in FSL. Car—

[negie Institute of Technology, Center for ithe Study of Information Processing.
1966.

Iverson, K.E. Formalism in programming languages. Comm ACM, 7(1964}; 80-88.
Iverson, K.E. A programming language. New York: Wiley, 1962.

Johns lopkins University Applied Physics Laboratory. APT, Common Computer
Language, 1958.

Johnson, L.R. On operand structure, representation, storage and search. Doc.
no. RC-603. Yorktown Heights, N.Y.: IBM Ccrp., T.J. Watson Resecarch Center, 1961.

Johnson, T.E. Sketchpad III: a compuier program for drawing in three dimen-—
sions. Proc. SJCC, 1963.

Kameny, S.L. LISP 1.5 reference manual for Q-32. Doc. no. TM-2337/101/00.
3 Santa Monica, Calif.: SDC, 1965. AD 622 018.

Kameny, S.L. (SDC),Hawkinson L. (III). LISP II oroject: LISP II intermediate
language. Doc. no. TM-2710/220/00. Santa-Monica, Calif.: SDC/III, 1965.

(JoiN

I

Kameny, S. Three languages in solution of a problem: 'man or boy?" in ALGOL
60, LISP2, and LISP1.5. SICPLAN Notices, Oci. 1966; 7-10.

Kaplow, R., Brackett, J., Strong, S. Man-machine communication in on-line
mathematical analysis. Project MAC. Proc. FJCC 1966; 465-477.

Karp, R.M., and Miller, R.E. Parallel program schemata. IBM Research Rep.
RC 2053. Yorktown Heights, N.Y.: April, 1968.

Karr, H.W., Kleine, H., and Markowitz, H.M. SIMSCRIPT 1.5. Santa Monica,
Calif.: California Analysis Center, 1966.

%.. Katz, J.H. and McGee, W.C. An cxperiment in non-procedural pregramming.
Proc., 1963; 1-13.

Kavanagh, T.F. TABSOL: a fundamental concept fer systems—oriented languages.
Proc. EJCC., 1960; 117-136.

. Kay, Martin, and Ziehe, Theodore. The catalog: a flexible data siructure
3 for magnetic tape. Proc. FJCC, 1965; 283-291.

Kellogg, Charles H. An approach to ihe on-line interrogation of structured
. files of factls using nalural language. Doc. no. SP-2431/000/00. Sznta
3 Monica, Calif.: SDC, 1966.

sk
[SR—,

e L

o i

red

e eme——

196

. Kim, C.K., et al. A new approach to computer command structures. Doc. no.
: RADC~TDR-3-135. Daylon, Ohio: Systems Rescarch Labs., 1964. AD 607 3063.

King, W.F. Stiate-logic relations in an iterative siructure for aulononous

; sequential machine. Doc. no. AFCRL~65-~439, Bedford, Mass.: AFCRL, 1965.
AD 619 806.

pei e Ul i tebong)

Kirsch, R.A. Computer interpretation of English text and picture paiterns.
IEEE Trans. EC-13(1964); 363-376.

Kiviat, P.J. Development of new digital simulation languages. Doc. no.
P-3348. Santa Monica, Calif.: RAND Corp., 1966.

: Kiviat, P.J. Introduction 10 the SIMSCRIPT II programming language. Doc.
no. P-3314. Santa Monica, Calif.: RAND Corp., 1966.

Klerer, M., and May, J. Two-dimensional programming. Proc. AFIPS Fall Joint
Computer Conference, 1965; pi. 1; 63-73.

TP kil Vg

3 Klerer, M., and May, J. A user orienled programming language. Compuler
] Journal., 8(1965); 103-199.

. Knowltcn, Kenneth C. A programmer‘s description of L6. Comm. ACM, 9(1966);
3 616-625.

) Knowlton, Kenneth C. A programmer's description of L6, Bell Telephone Labora-
] lories' Low-Level Linked List Language. Murray Hill, N.J.: Bell Telephone
‘ Laboratories, Feb. 1966.

Knuth, D.E. and McNeley, J.L. SOL—A symbolic language for general-purpose
systen simulation. IEEE Trans. EC-13(1964); 401-408.

KU s e

Kb

Knuth, D.E. and Merner, J.N. ALGOL 60 confidentiial. Comm. ACM, 4{1961);
268-272.

(haahy

Knuth, D.E. and VWegner, P. Outlinec of a proposed undergraduate course on
information structures. SICSAM Bulletin #1. Dec. 1965; 8-11.

g Korolev et al. Sovict cybernetics technology: VIII. Report on the algorith-
! ‘ mic language ALGEC. Doc. no. RM-5136-PR. RAND Corp., 1966. AD 64l 869.

Krasnow, H.S. and Merikallio, R.A. The past, prescent and future of general
simulation languages. Managemeni Science, 11(1964).

Kulsrud, H.E. A general purpose graphic language. Comm. ACM, 11(1968); 247-254.

Lackner, Michael R. Digilal simulation and sysicm theory. Doc. no. SP~1612.
Santa Monica, Calif.: SDC, 1964, AD 610 697.

Landaela, Williaw. An introduction io data structuring process. Doc. no.
3 . Sp-2136. Santia Monica, Calif.: SDC, 1965.

A Landin, P.J. A correspundence between ALGOL 60 and Church's Lambda-nota-—
] tion. Comm. ACM, 8(1965); 89-101, 158--105.

TP eT

- . 197

Landin; P.J. A formal description of AILGOL 60. IN: Stecl, T.B., Jr. ed.
Formal language description languages for computer programming; 266-294.

-—

Landin, P.J. A lambda-calculus approach. IN: Fox, L., ed., Advances in
programming and non-numerical computation. New York, Pergamon, 1966; 97-1h1.

am—

Landin, P.J. The mechanical evaluation of expressions. Computer Journal,
Jan. 1964; 308-320.

Lang, C.A., Polansky, R.B., and Ross, D.T. Some experimenis with an algor-
ithmic graphical language. Doc. no. MIT-ESL-TM-220. Cambridge, Mass.:
M.I.T. Electronic Systems Laboralory, 1965. AD 472 147.

Larson, Robert P. Dala filtering applied io informaticn storage and re-
trieval applications. Comm. ACM, 9(19G6); 785-789, 793.

Laski, J. Sets and other types. ALGOL Bulletin 27, Feb. 1968,

wani wesi owi eed

Lass, S.E. PERT time calculations without topological ordering. Comm. ACM,
8(1965); 172-174.

< -

Laszlo, Steven I. Toward a semiotic theory of programming languages. Paramus,
N.J.: Decision Systems Inc. Nov. 1967. ’

- Leavenworth, B.M. Syntax macros and extended translation. Comm. ACM, 9(19606);
790-793.

Ledley, R.S., Jacobson, J., and Belson, M. BUGSYS: a programming system

for picture processing—nol for debugging. Comm. ACM, 9(1966); 79-84.

Leroy, H. A proposal for macro—facilities in ALGOL. ALGOL Bulletin #22,
- 1966; 15-26.

Levien, Roger, el al. Relational data file: a tool for mechanized inference
o execution and data retrieval. Doc. no. RM-4793-PR, Santa Mecnica, Calif.:
RAND Corp., 1965. AD 625 409,

IV

Levien, R.E. Studies in the theory of computational algorithms: 1. Formal—
ization, computability, representation, and analysis problems. Doc. no.
RM-3007—-PR. Sgnta Monica, Calif.: RAND Corp., 1962. AD 270 816.

P

tile
S

Levin, M. et al. LYSP II project. Doc. series no. TM-22G0. Santa Monica,
Calif.: SDC, 1965.

EREY L RN

$
,,I Libbey, M.A. General results and recommendations: Part 1 of report of Phase
1 I of D-60 Information Eicmenti Standardization Program. Doc. no. W=7080.

:I Bedford, Mass.: The MITRE Coxp., 1964.

.Libbey, M.A. and Higgens, D.C. Detailed problem discussions: Part 2 of re-
port of Phase 1 of D-GO Information Element Standardizatlion Program. Doc.
no. W-7081. Bedford, Mass.: The MITRE Corp., 1964.

e

Linder, W. Mathematlical object descriptlion language. M.I.T. Masters thesis,1965.

gy
[|
- =

198

Lindsay, Robert K., Prait, Terrence W., and Shavor, Kenneth M. An experi-
mental syntax—directed data siructure language. Doc. no. P-3112. Santa
Monica, Calif.: RAND Corp., 1965. AD 614 782.

Loev, G., ed. SLIP list processor. Philadelphia, Pa.: University of Penn-
sylvania Computer Center, 1966.

Lombardi, L.A. On the declarative control of the data flow by mcans of
recursive functions. IN: Symbolic Languages in Data Processing. New York:
Gordon and Brecach, 1962.

Lombardi, L.A. A gencral business-oricnied language based on decision
expressions., Comm. ACM, 7(1964); 104-111.

Lombardi, L.A. Mathematical stiructure of non-arithmetic data processing
procedures. Jour. ACM, (1962); 136-159.

Lombardi, L.A. Non—procedurai data system languages. SUMMARY IN: Preprints
of Summaries of Papers Presented ai the 161h National Meeting of the ACM,
Los Angeles, 1961; paper 11-1.

Lombardi, L.A. System handling of functional operators. Jour..ACM, 8(1961);
168"'185 . ’) ~

Lombardi, L.A. On table-operating algorithms. IN: Information Processing,
1962. Amsterdam: North-llolland, 1963; 509-512.

Lombardi, L.A. Theory of files. Proc. EJCC, 1960; 137-141.
Loomis, R.G. Boundary Networks. Comm. ACM, 8(1965); 44-48.

Love, H.H., Jr. and Savitt, D.A. The association-storing processor. IN:
Shapiro and Rogers, eds. Prospects for simulation and simulators of dynamic
systems. Proc. Baltimore Symp., 1966. New York: Sparian Books, and London:
Macmillan & Co., Ltd., 1967; 165-i82.

Lucas, P, On the formalization of syniax and scmantics of PL/I. Doc. no.
TR 25.060. Vienmna: IBM Laboratory, 1965.

Lucas, P. Requiremenis on a language for logical data processing. IN: In-
formalion Processing, 1962, Amsterdam: North-Holland, 1963; 556-560.

Lukaszewicz, L. EOL—a symbol manipulation language. Computer Journal,
May 1967; 53-59. ‘

McCarthy, J. A basis for a mathematical theory of computation. IN: Braffort,
P., and Hirschberg, D., eds. Computcr Programming and Formal Systems.
Amsterdam: North-Holland, 1963; 33-70.

McCarthy, J. and Painter, J. Correctness of a compiler for arithmetic ex-
pressions. Tech. Rept. no. CS38. Stanford University.: April 1966.

McCarthy, J. Definition of new data iypes in ALGOL X. ALGOL Bulletiin #18
(1964); 45-46. .

199

McCarihy, John. Problems in ithe theory of computation. IN: Information
Processing 1965. Washington, D.C.: Spartan Books, 1965; vol. 1; 219-222.

McCarthy, Jr. Situations, actions, and causal laws. Stanford Artificial
Intelligence Project Memo no. 2. Palo Alto, Calif.: Stanford Univ. July 19068.

McClure, Robert M. A programming language for simulaling digital systems.
Jour. ACM, 12(1965); 14-22.

McKeeman, W.M. An approach to computer language design. Doc. no. CS48.

Stanford, Calif.: Stanford University Computer Science Dept.,1966. AD 639 166.

Mamn, William C., and Jensen, Paul A. A data structure for directed graphs
in man~-machine processing. Washington, D.C.: Compuier Command and Control
Co., 1966. Doc. no. 77-106-1. AD 636 251.

Mann, William C. Language facilities for a man, a machine, and relational
data. Doc. no. 106-2. Philadelphia, Pa.: Comnuier Command and Control Co.,
1967. AD 651 973.

Markowitz, H.M., Hausner, B., and Karr, H.W. SIMSCRIPT, Asimulation pro-
gramming languvage. Dec. RM-3310-PR. Englewood Cliffs, N.J.: Preniice-
Hall, 1963. AD 291 806.

Maurer, Ward Douglas. Computer experiments in finiie algebra. Comm. ACM,

9(1966); 598-603.

Mealy, G.H. et al. The functional structure of 0S/360. IBM Sysiems Jour—
nal, 5(1966); 2-51.

Merner, J.N. A splitting of formatting from input—output. ALGOL Bulletin
#22, 19663 9-10.

Merrill, Roy, Jr. Some properties of ternary threshold logic. IEEE Trans.
EC-13(1964).

Miller, R.H. An example in "“significant—digit" arithmetic. Comm. ACM,

7(1964); 21-23.

Mitchell, Robert, Cheatham, T.E., Jr. and Christensen, Carlos. A basis for
core language design. Wakefield, Mass.: MCA, 1967. Doc. no. CA 6701-2711.

Mitchell, R.W., Christensen, C., Myszewski, M., Sampson, Caral. An infor—
mal PL/I roundtable, collection one. Doc. no. CA-6704-0511. Wakefield,
Mass.: Massachusetts Computer Associates, 1967; 35 pp.

Montalbano, M. Tables, flow charts and program logic. IBM Systems Jour—
nal, 1{1962); 51-63.

Mooers, C. TRAC, a procedure-describing language for the reactive type-~
writer. Comm., ACM, 9(1966); 215-219.

Mooers, C.N. TRAC, a text-handling language. Proc. ACM, Nail. Conference,
19655 229246,

&

Pro— parren meety g [.. |

. '

200

Morris; C.W. Signs, language, and behavior. New York: Braziller, 1955.
Morris, N.I. A data stiruclure programming language. M.I.T. B.A. ihesis, 1965.

Mullery, A.P. A procedurc-oriented machine language. IEEE Trans. EC-13
(19Gh); 449-i55,

Napper, R.B.E. Some proposals for SNAP, a language with formal macro
Tacilities. Computer Journal, 10(1967); 231-243.

Narasimhan, R. Programming languages and computers: a unified metathcory.
Tech. Report #9. Bombay: Tata Institute of Fundamental Research, 1906.
Naur, P. The place of programming in a world of problems, tools and pcople.
Paper prescented al the IFIP Congress, N.Y., 1965.

Naury P. cl al. Revised Report on the algorithmic language ALGOL 60. Comm.
ACM, 6(1963); 1-18.

Naylor, T.l., Balintfy, J.L., Burdick, D.S. Simulation languages. Chapter 7
IN: Computer Simulation Techniques, New York: John Wiley & Sons, Inc. 1966.

Nelsron, T.H. A file structure for ihe complex, the changing and the inde-
terminate. ACM Proc., 1965; 84-100.

Newell, A., el al. Information processing language~V manual, 2nd edition.
Englewood Cliffs, N.J.: Prentice-Hall, 196k,

Newell, A. On thé representations of problems. 1N: Computer Science Research
Review. Pitisburgh, Pa.: Carncgie Instituie of Technology, 1966; 19-33.

Nickerson, R.C. An enginecring application of logic—siructure tables. Comm.
ACM, 4(1961); 516-520.

NICOL-Nineteen Hundred Commercial Language. IN: I.C.T. Data Processing
Journal, no. 28 (1966); 26-29.

Oetlinger, A.G. Linguistic problems of man—computer interactions. 1BM report
no. 320-1941-0. IN: Proc. IBM Scient. Comp. Symp., Man-Machine Comm. New
York: 1965; 33--40.

Olle, T.W. Use of INFOL for document reirieval applications. IN: Proc.

1966 Annual Mtg. American Documentation Institute. Adrienne Press, 19606;
321-327.

Oppenheim, D.K. The META5 language and system. Doc. no. TM-2396. Santa
Monica, Calif.: SDC, 1965.

Ore, 0. Grapks and their uses. New Math Library, #10; New York: Random
House, 19063.

Ostrand, Thomas Joscph. Interim Technical Report: an expanding computer
operaling system. Doc. no. 67~16. Philadelphia, Pa.: Moore School of Elec—
irical Engincering, Universily of Pennsylvania. 1966.

Baetd

TR TS

mee o AR BN 22N RN

—_— i

201

Overheu, D.L. An abstracl machine for symbolic computation. Jour. ACM,

13(1966); 444-468.

Parente, R.J. and Krasnow, H.S. A language for modeling and simuldting
dynamic systcms. CACM, 10(1967); 559-567.

Parente, R.J. A language for dynamic system description. ASDD Tech. Rpt.
no, 17-180. Yorktown leighis, N.Y.: IBM Advance Syslems Development
bDivision, 1965.

Parker, Donn B. Solving design problems in graphical dialogue. Computer
Group News, 190663 1-12.

Parnas, David L. A language for describing the funclions of synchronous
systems. Comm. ACM, 9{1966); 72-76, 79.

Peirde, C.S. (J. Buchler, ed.) 7The Philosophical Writings of Peirce. New
York, Dover, 1955,

Perlis, Alan J., Jturriaga, Renato, and Standish, Thomas A. A definition
of formula ALGOL. Pitiisburgh, Pa.: Carnegie Insiitutle of Technology, 19066.

Perlis, A.J. and Iturriaga, R. An extension to ALGOL for manipulating for-
mulae. Comm. ACM, 7(1964); 127-130.

Perlis, Alan J., Iturriaga, Renato, and Standish, Thomas. A preliminary
skeich of formula ALGOL. Pittsburgh, Pa.: Carnegie Institute of Technology,1965.

Perlis, A.J. The synihesis of algorithmic systems. Proc. ACM, 1966; 1-6.

Perstein, Millard H. The JOVIAL (J3) grammar and lexicon. Doc. no. TM-
555/(:02/0hB, Santa Monica, Calif.: SDC, 1966. AD 623 861.

Perstein, Millard H. Numbered-linc syntaclic description of JOVIAL (J3).
Doc. no. SP-2311/000/00. Sania Monica, Calif.: SDC, 1966.

Pigniolo, J.C. The programmed system automaion: a modular concepl of Lhe
logical structure of computer prograns. NEL Rpt. 1274. San Diego, Calif.:
U.S. Navy Electronics Laboratory, 1965. AD 463 187.

Pralt, Terrence, W. Syntax—directed iranslation for experimental programming
languages. Doc. no. TNN-41. Ausiin, Texas: Universily of Texas, Computa-—
tion Center, 1965. Generalized data structures, p. 4k.

Proceedings, IBM Scientlific Computing Symposium, Digital simulation of con-—

tinuous systems. IBM report no. 320-1943-0. Held in Yorktown Heights, N.Y.:
1966, June 20-22.

Prywes, N.S. and Gray, H.J. The multi-list sysiem for real-time slorage
and retrieval. IN: Information Processing 1962. Amsierdam; North-llolland,

1963; 273-278.

Quillian, M. Ross. Semaniic memory. Doc. no. AFCRL-66-189. Bolt, Beranck
and Newman, Inc., 1966. AD 641 G71.

202

Quillian, R. Word concepls: a theory and simulation of some basic semantic
capabilities. Doc. no. SP-2199. Sania Monica, Calif.: shC, 1965.

Radin, G., and Royoway, H.P. NPL: highlighis of a new programming language.
Comm. ACM, 8(1965}; 9-17.

Rajchl, J. An attempl to consiruct a formulaiional language for busincss
problems. IN: Information Processing Machines, Proc. of Symposium held

in Prague on Sepl. 7-9, 1964. Czech. Acad. of Sciences (Prague) and lliffe
Books, Lid. London: 1965; 132-139.

Raphael, B. Applications of symbolic manipulation. SICSAM Bulletin no. 1,
Dec. 1965; 12-22.

Raphacl, B., Bobrow, D.G., Fein, L., and Young, J.W. A brief survey of
computer languages for symbolic and algebraic manipulation. Menlo Park,
Calif.: Stanford Research Institute, 1966,

Raphael, B. SIR: a computer program for sanantic information retirieval.
Doc. no. MAC-TR-2. Cambridge, Mass.: Project MAC, Massachusetis Institutc
of Technology, 1964. AD 608 499.

Raphael, Bertiram. The structure of programming languages. Comm. ACM, 9(19GG);
67-71.

Reinwald, Lewis T. An iniroduction to TAB40: a processor for table-written
FORTRAN IV programs. McLean, Va.: Research Analysis Corp., 1966. AD 647 h18.

Rescher, N. The logic of commands. New York: Dover Publications, 1966.

Reynolds, J.C. COGENT programming manual. Doc. no. ANL-7022. Argonne, Ill.:
Argonne National Laboratory, 1965.

Reynolds, J.C. Cogent 1.2 Operations Manual. Doc. no. CS37. Stanford, Calif.:
Standford University, Compuler Science Depariment, 1966.

Reynolds, J. An introduction to the COGENT programming system. Proc. 20th
National Conference, ACM., 1965; 422-436.

Riley, John A. The algebra of block diagrams. Doc. no. AFCRL-65-805.
Parke Mathematical Laboratories, Inc. 1965; AD 625 081.

Roberts, L.G. Graphical communication and control languages. IN: 2nd Con~
ference on Information System Sciences, 1964. AD 632 587.

Rohrbacker, Donald L. Advanced computer organization siudy, vol. 1. Basic
report. Akron, Ohio: Goodyear Aerospace Corp,, 1966. AD 631 870. Vol 2,
Appendixes, AD 631 871.

Rome, S.C., and Rome, B.K. Formal representation of intentionally siruc-
tured systems. IN: Kent, A., ed. Information Retrieval and Machine Trans—
lation, part 1. New York: Interscience, 1960: 467-492,

ey

M s e a e e e

[P

e i .

e e Bt . e et =

Rosenthal, L.E. Analytic algebraic manipulation. Computer Journal, 19

(1967); 265-270.

Rosin, Roberi F. Macros in PL/I. PL/1 Bulletin No. 2, Aug. 1966; 16-22.

Ross, Douglas T. The AED approach to generalized computcr-aided design.
Doc. no. ESi~R-305. Massachusctts Instituic of Technology, 1967. AD 814 812.

Ross, Douglas T. AED, Jr.: an experimental language processor. Doc. no.
ESL-TM-211. Cambridge, Mass.: M.I.T. Electronics Systems Laboratory, 1964.
AD 453 881.

Ross, Douglas T. An algorithmic theory of language. Doc. no. ESL-TM-156.
Canbridge, Mass.: M.I.T. Electronics Sysiems Laboratory, 1962. AD 296 998.

Ross, D.T. A gencralized techniquce for symbol manipulation and numerical
calcuilation. Comm. ACM, 4(1961); 147-150.

Ross, D.T. Implicalions of computer—aided design for numerically controlled
production. Doc. no. ESL-TM-212. Cambridge, Mass.: M.I.T. Electxonics
Systems Laboratory, 1964. AD 453 880.

Ross, D.T. and Rodrigues, J.E. Theoretical foundations for the computer-
aided design system. Proc. SJCC, 1963; 305-322.

Rovner, P.D., and Feldman, J.A. An associalive processing system for con-
veniional digital computers. Doc. no. 1967-19. ESD-TR-67-242. Lexington,
Mass.: M.I.T. Lincoln Laboratory, 1967. AD 655 810.

Rovner, P.D. and Feldman, J.A. The LEAP language and data siruciare. Proc.
IFYP Congress, Edinburgh, 1968.

Rutishauser, H. Contribulions 1o thc discussion of ALGOL 6x. ALGOL Bulle—
tin #19(1965); 44-50.

Ruyle, A., Brackett, John V., and Kaplow, Roy. The status of sysiems for
on-line maithemalical assistance. Proc., ACM, 1967; 151-167.

Sable, J., et al. Design and reliabilily central data management sysicm.
RADC-TR-65-189, vol. 1. Rome, N.Y.: RADC, c. 1966. AD 620 025.

Sable, J., el al. Design of reliability central data management system.
Doc. no. RADC-TR-G5-189, vol, 2. Grifiss AFB, New York: RADC, 1965. AD 1069 2069.

Sable, Jerome D. Language and information structure in information systiems.
Ph.D. disseriation, 1963. Philadelphia, Pa.: Moore School of Elecirical
Engineering, University of Pennsylvania.

Sable, J., el al. Reliabiliiy centlral automatic data processing system. Doc.
no. RADC-TR-66-474. Griffiss, AFB, New York: RADC, 196C. AD 489 6G8.

Sakoda, J.M. DYSTAL manual. Proviﬁence, R.I.: Brown Universily, Sociology
Compuler Laboratlory, 19(>.

Icd

 wr———r———. g
HEs P viepaynn srepe RCTIG e Lo YRR I 7

204

Salton, G. Manipulation of trees in iuformation reirieval. Comm. ACM,
5(1962); 103-11h.

=~ Tre &k
vl

Samelson, K. Functionals and funclional tirancformation. ALGOL Bulletin

#20 (1965); 27-28.

feses '

] g. Sammet, J.%., An annolated descriplor based bibliography on the use of com-
. puters for non-numerical mathematics. Compuling Reviews, July-Aug.,
3 1966; B-1 - B-31.

2 Sammet, Jean E. Formula manipulalion compiler. Datamation, July 19GG6;
4 32-34, 39-41.

Sammet, J.E. Survey of formula manipulation. Comm. ACM, 9(1966); 555-569.

%) Sammet, J.E. Survey on the use of computers for doing non—numerical mathe—
matiés. Doc. no. IBM TR0OO.1428. Poughkecpsie, N.Y.: IDBM Systems Division, 1966.

Sansom, F.J. and Peterson, H.E. MIMIC programming manual. Doc. no. SEG-TR-
67-31. Wright—Palterscn AFB, Ohio: Aeronautical Systems Division, Air
Force Systems Command, 1967. AD 656 301.

Satterthwail, Arnold C. Programming languages for computational linguis—
tics. IN: Alt, F., ed. Advances in Computers, -vol. 7. New Yorlk: Academic
Press, 19663 209-238.

Saviti, D.A. et al. Association-sloring processor study. Doc. no. RADC-TR-
66-174. Griffiss AFB, N.Y.: RADC, 1966. AD 488 538.

Fid

Schlaeppi, H.P. A formal language for describing machine, logic, timing,
and sequencing (LOTIS). IEEE Trans. EC~13(1964); 439-448.

Schmidti, D.T. and Kavanagh, T.F. Using decision structure tables: part 1,
principles and preparation. Datamation, 1964; 42-52.

Schmidt, D.T., and Kavanagh, T.F. Using decision structure tables: pari 2,
manufacturing applications. Datamation, 1964; 5$2-54.

Schwartz, J.I. Comparing programming languages. Computers and Aulomation,
Feb. 1965; 15-16, 26.

Schwartz, J.I. On-line programming languages. Doc. no. SP-2048. Santa
Monica, Calif.: SDC, 1965.

Scegmuller, G. Some proposals for ALGOL X. ALGOL Bulletin #21 (1965); 7-22.
Corrections, ALGOL Bulletin #22 (1966); 5.

Scegmuller, G. Toward a grasp of procedure in algorithmic languages.
Munich: Technische Hochschule, 1966. (In German).

Shaw, C.J. A bibljography for generalized information sysiem designers.
Doc. no. TM-2289. Santa Monica, Calif.: SDC, 1965.

205

Shaw, Christopher J. Compuler sofiwarc: developmenls and recent trends in
programming and operatling irends. SP-2582/000/00. $DC, 19G6.

Shaw, C.J. On decclaring arbitrarily coded alphabels. Comm. ACM, 7(19064);
N 288-290.

Shaw, C.J. Further U.S.A. vwork affecting commercial programming languages.
Presented at the Congress of the Internatlional Federation for Information
Processing, New YorJ City: May 24—-29. Doc. no. SP-2030. Santa Monica,

- Calif.: SDC, 1965.

) Shaw, Christopher, J. Melalinguistic and numeric parameiers and functions
- in language description. SIGPLAN Notices, March, 1968; 19-24.

Shaw, C.J. A specification of JOVIAL. Comm. ACM, 6(1963); 721-736.

Shaw, C.J. Theory, Practice, and trend in business programming. Doc. no.
; SP-2030/000/01. Santa Monica, Calif.: SDC, 1965.

L ep Shaw, C. The uiility of PL/I for command and conlrol programming. Doc. no.
‘ SP-3014. Santa Monica, Calif.: SDC, 1968.

- Shooman, W. Parallel computing with vertical data. Proc. EJCC, 1960; 111~115.
2 Sibley, R.A. The SLANG system. Comm. ACM, Jan., 1961,

Simmons, R.F. Answering English questions by computier: a survey. ¢

ACM, 8(1965); 53-70.

Simmons, R.F. Storage and retrieval of aspects of meaning in directicd graph
structures. Doc. no. SP-1975/001/02. Sanla Monica, Calif.: SDC, 1965.

Simon, Herbert, A. Experiments with a heuristic compiler. Jour. ACM,
10(1963); 493-506.

Singer, Theodore. Summary report of a workshop on progrsmming languages
for command and control. IEEE Trans. on Blectronic Comp., 1966; 131--132.

Slotnick, Daniel L., Borck, W. Carl, and McReynolds, Robert C. The SOLOMON
computer. Proc. FJCC, 1962; 97-107.

Smith, Donald L. Models and data struclures for digital logic simulation.
Doc. no. MAC-TR~31. Cambridge Mass.: M.I.T. Project MAC, 19G66. AD 637 192.

Smith, L.W. Information and transformations on general arrays. SUMMARY IN:
Preprints on Summaries of Papers Presented at ihe 16ih National Mzeting
of ACM, los Angeles, 1961; Paper 6B-3.

Smith, Peter J. Symbolic derivatives witlhout list processing, subroutiues,
or recursion. Comm. ACM, 8{(1965); 494-500.

Spector, C. Theory of programminé. Doc. «ao. TM-570. Santa Monica, Ca{if.:
snc, 1960.

(o AalEe

e

206

Squireé, B.E. Compiler systems and metalanguages. Repori no. 208. Univer-
sity of Illinois, Aug. 1966.

Sriravasan, C.V. Formal definition of CDL1, a compuler dascription language.
AFCRI~67-0388. Air Force Cambridge Research Labs. AD 662 899.

Standish, Tim (Thomas A.) On formula ALGOL and ihe evoluiion of program-—
ming languages. IN: Compuler Science Research Review, 1967. Piitsburgh,
Pa.: Carncgie-Mecllon University; 9-17.

Standish, Thomas A. A data definition facility for programming languages.
Docloral dissertation. Pitlsburgh, Pa.: Carnegie Institute of Technology,
Dept. of Compuler Science, May 1967; 292 pp. AD 658 0h2.

Steel, T.B., Jr. Beginnings of a tithecory of information handling. Comm.
ACM, 7(196h); 97-103.

Steel, 7T.B. Jr, ed. Formal language description languages for computer
programming. Amsterdam: North-llolland Publ. Co., 1966.

Steel, T.B., Jr. A foimalization of semantics for programming language
description. Doc. no. TM-2043/000/00. Sania Monica, Calif.: SDC, 1965.

Steel, T.B. Jr. The fourdalions of a thecory of informatiion processing.
Doc. no. FN-G341. Santa Monica, Calif.: SDC, 1962.

Steel, T.B. Jr. Procedure languages for military command and conlrol. IN:
Proceedings of the Symposium onComputer Programming for Military Systems,
The Hague, 28 Sept.— 2 Oct., 1964. The Hague, Netherlands: SUAPE Tech—
nical Centire, 1965; vol. 1.; 261-209.

Steel, T.B., Jr. Some observalions on the relationship between JUVIAL and
bPL/I. Doc. no. TM-2930/000/01. Sania Monica, Calif.: SDC, 196€.

Stockham, T.G. Jr. Some methods of graphical debugging. IBM rep. no.
320-1941-0. IN: IBM Scient. Comp. Symp.
New York: 1965; 57-71.

, Man-Machine Communication.

Stone, A.J. Phoenix compiler language and software systiem. IN: Proc. of
the 1sl Spaceborne Computer Software Worl shop. 196G; 223-233.

Strachey, C. A general purpose macrogenerator. Comp. Jour., 8(1965); 225-241.

Strachey, C., and Wilkes, M.V. Some proposals for improving the effici-
ency of ALGOL 6O. Comm. ACM, 4(1901); 488.

Strachey, C. Towards a formal scmantics. IFIP Working Conf. on Formal
Language Description Languages, Baden: 1964.

S*rauss, J.C. and Gilbert, W.L. SCADS: a programming system for the simu-
lalion of combined analog digital systems. Pitisburgh, Pa.: Carnegie
Instiiute of Technology, 1964. (3rd ed.)

Sussenguth, E.H. Structure matching in information processing. Ph.D. thesis,
Harvard U iversity, 1964.

'

et s, e35m

-

T

e Eu Aaaaria cas e tlt i)

207

Sutherland, I. Sketchpad, A man.-t wchine graphical communication ystem.
Doc. no. TR-296. Lexinglon, Mass.: M.I.T. Lincoln Laboratory, 1963.

Sutherland, I.E. Skelchpad: a man-machine caommunication system. Proc. SJCC,

1963.

Sutherland, W.R. On-line graphical specification of computer procedurecs.
Doc. no. ESD-TR-(6-211. Lincoln Laboratory, 196G. AD 639 734.

Sutherland, W.R. The CORAL language and data structure. Exerpt (App.C)
from "The On-Line Graphical Specification of Computer Procedures'" M.I.T.
Doctoral thesis, to be printed as Lincoln Lab. Technical Report 405,

Syn, W.M. and Wyman, D.G. DSL/90: Digilal simulation language usecr's guide.
Doc. no. San Jose TR 02.355. San Josc, Calif.: IBM Corp., 19G5.

Syn, W.M., and Linebarger, Robert N. DSL/90—a digital simulailion program
for continuous system modeling. Proc. SJCC, 1966; 165-187.

Systems Developnent Corp. Report on initial planning for GENISYS (General—
ized Information System). Doc. no. TM(L)-2335/000/01. ESD-TR-65-463. Santa
Monica, Calif.: SDC, 1965. AD 472 209.

System Developmenl Corp. Baum, C. ed. Second symposium on computer-centered
data base systems. Doc. no. TM-2624/100/00. Santia Monica, Calif.: SDC,
1965. AD 625 A17.

System Developaent Corp., Santa Monica. Spaceborne sofiware systems study:
vol. 3, recommendation for a common space programming language. Doc., no.
SSD-TR-67-11, vol. 3 Los Angeles: AF Systems Command, Space Sysiems Divi-
sion, Jan. 1967. AD 807 399L.

Systems Research Group. MILITRAN programming manual. Doc. no. ESD-TR-64-320.
Mincola, N.Y.: Systems Research Group, 196%. AD 601 796.

Systems Research Group. MILITRAN reference manual. Doc. no. EST-TDR-64-~390.
Mineola, N.Y.: Systems Resecarch Group, 1964. AD 601 79k,

Tabory, R. Specificalions for a tree processor. Yorktown Heights, N.Y.:
IBM Rescarch Center, c. 1965.

Tabory, R. Survey and evaluation of AED system at M.I.T. Report no. TR 00.1383.
IBM, 1966.

Teichrecew, Daniel, and Lubin, John Francis. Computer simulation——discussion
of the technique and comparison of languages. Comm. ACM, 4(1966); 723-74l.

Teitelman, W. FLTP—a format list processor. Doc. no. MAC-M-263. Cambridge,
Mass.: M.I.T. Project MAC, 19G6.

Teitelman, W. PILOT, a step toward man-computer symbiosis. Doc. no. MAC-TR-
32. Cambridge, Mass.: M.I.T. Project MAC, 1966. AD 638 446.

R

AL $ 2 R Pagin Sy gt ARk G e

Gy

[

Rt iai Wy « 3 i

RN S 2 e ey

TS

208

Thompson, Frederick B. English for ihe compuler. Proc. FJCC, 1966; 349-3506.

Tobey, R.G. Bxperience wiith FORMAC algorithm design. Comm. ACM, 9(196G6);
589~597.

Tocher, K.D. Review of simulation languages. Operational Research Quarier-
ly, 16(1965); June.

Toda, M, and Shuford, E.H., Jr. Logic of systems: introduction ito the for-
mal theory of siructure. Doc. no. ESD-TDR-64~193. Bedford, Mass.: Decision
Sciences Laboralory, Air Force Electronic Systems Division, AD 432 879.

Unger, Stephen Ill. GIT-—a hcuristic program for testing pairs of directed
line graphs for isomorphism. Comm. ACM, 7(1964); 26-34.

van der Riet, R.P. Formula manipulation in ALGOL 60. Amsicrdam: Matihe-
matisch Centrum, 1966. Doc. no. TW 101. AD 801 443.

Van Wijngaarden, A., ed. Drafi report on the algorithmic language ALGOL
68. Report no. MR93. Amsterdam: Mathcmatisch Centrum, 1968.

Van Wijngaarden, A. Generalized ALGOL. IN: Annual Review in Automatic Pro-
gramming, R. Goodman, ¢i1. vol. 3, 1963; 17-26.

Walker, D.E., and Bartlett, J.M. The structure of languages for man and
computer: problems in formalizalion. Paper presented at the First Con-
gress on ithe Information System Sciences, 1962.

Vegner, P., ed. Introduction io systems programming. New Yerk: Academic
Press, 1964.

Wegner, Pecier. The relation between the lambda calculus and programming
languages. IN: Wegner, P. Some Theoretical Concepls in Programming, a
tutorial paper.

Vlegner, P. Somec theorelical concepts in programming: a tutorial paper.
University Park, Pa.: Computler Science Dept., Pennsylvania Stiatec Univesr—
sity, Nov. 1965.

Vegner, P. What is special aboul languages for algebraic manipulation?
SICSAM Bullet®n no. 2, Feb, 1966; 7-13.

Weinberg, G.M. PL/I programming primer. New York: McGraw-Hill, 1966.

Weissman, C. LISP primer: a self—tutor for Q-32 LISP 1.5 Doc. no. TM-
2337/010/00. Ssnta Monica, Calif.: SDC, 1965.

VWeizenbaum, Joseph. Symmetric list processor (SLIP) Comm. ACM, 6(1963).

VWells , M.B. Aspects of language design for combinatorial computing. IEEE
Trans. EC~13(1964); 431-438.

Wells, M.B. MADCAP: a scientific compiler for a displayed formula texi-
book language. Comm. ACM, 4(1961); 31-36.

Cac<s a3

TS,

b (4

g

’

3
4
L
1
4

Al

ik § 24

- B s o

Pt

et

T

pedd i

ST '

M'.'?—x-

Wessler, Barry D. TracD, a graphic programming language. Maslers thesis,
Cambridge, Mass.: M.I.T. May 1967.

White, G.W.T. Digital simulailion languages for ihe solulion of process
control problems. IN: Proc., IBM Scientific Computing Symposium, Digital
Simulation of Continuous Systiems; 71-81.

Whitney, G.E. An analysis of the syniax of ihe programming language PL/I.
Hopewell, N.J.: Weslern Electric Engincering Research Center, 1966.

Wigler, K. Evaluation of MILITRAN programming language. Naval Command Sys-—
tems Support Activity, May 19066.

Wilkes, M.V. Constraini-type statements in programming languages. Comm.

ACM, 7(1964); 587-589.

Williams, Leland, H. Algebra of polynomials in several variables for a
digital computer. Jour. ACM, 9(1962); 29-40.

Williams, R.G., and Wishner, R.F. Compiler language and standardizalion
and evaluation. Doc. no, RAC-TP-138. McLean, Va.: Research Analysis Corp.,
1964. AD 458 448.

Williams, T.M., Barnes, R.F., and Kuipers, J.W. Discussion of major featlures
of a restricted logistic grammar for topic representation. Doc. no. Il-
5206~26. Lexington, Mass.: Itek Laboratories, Feb. 1962.

Wirth, N., and Weber, H. EULER: A generaiization of ALGOL and its formal
definition. Comm. ACM 9(1966); 13-25, 89~99. Originally issued in Tech.

Rpt. CS20 by Computer Science Dept.: Stantord University, 19065.

Wirth, N. On certain basic conceptis of programming languages. Doc. no. CSG65.
Stanford, Calif.: Stanford Universily Dept. of Computer Science, May 1965. 33pp.

Wirth, N. A proposal on string manipulation in ALGOL 60. ALGOL Bulleiin #17
(1964)5 13-17.

Wolman, B.L. Operalors for manipulaiing language structures. Doc. no. 94h2-
M-160. Cambridge, Mass.: M.I.T. Electronics Sysiems Lab., 1966.

Voodger, M. ALGOL X, Note on the proposed successor to ALGOL 60. ALGOL Bul—
letin #22 (1966); 28-33.

Yershov, A.P. ALPHA—a2an automatic programming system of high efficiency.
Jour. ACM, 1311966); 17~24.

Yngve, V. COMIT Programmer's reference manual. Cambridge, Mass.: M.I.T., 1961.

Young, J.¥W., Jr. and Keni, lH.K. Abstract formulation of data processing prob-
lems. Journal of Industrial Engineering, Nov/Dec 1958; 471-479.

Young, J.¥W., Jr. Non-procedural ianguages——a tutorial. Paper presented at
ACM So. Calif. Chapters 7ih Annual Tech. Symp., March 1965.

210

Zarimba, W.A. On ALGOL I/O conventions. Comm. ACM, 8(1965); 167-169.

Ziehe, T.W. An organizational form for item management. Doc. no. TRACOR
67-1111-U. Austin, Texas: TRACOR, Inc., Feb. 1968. AD 665 981.

=2 g e

72i1li, Marisa Venturini. A-K-iormulac for veclor operators. ICC Bullelin
L, 3(July-Sepl. 1965), 157-174.

Zwicky, A.M., Jr. and Isard, S. Somc aspecils of irce theory. Doc. no.
W—-6674. Bedford, Mass.: The MITRE Corp., 19%3.

G

ke a7 s G

— - - - . - - o g—

p S Slils oik |

T

. AT e

b E e

e

=]

9

LA

A PP R

Liiad

-

Y

-

Eys

-

UNCLASSIFLED

Security Clasaification

DOCUMENT CONTROL DATA-RE&D

(Sccurity classilication of title, body of abstract amd indeatny annotation must be entered when the overall toport 15 classiliod)

1. ORIGINATING ACTIVITY (Corporate author) 20, REFPORY SCCURITY CLAS‘SH‘ICATION
) University Cily Science Cenler uncliassificd
3401 Market Strect 2L, GROUP
Philadelphia, Pa. 19104

J REPORT TITLI

EXTENSION OF PROGRAMMING LANGUAGE CONCEPTS

4. DESCRIPTIVE NO1YES (Type of report and inclusive dates)
scientific; 3 final

5. AUTHOR(S) (First name, middle Initial, lnst nome) N

Philip R, Bagley

6. REPORY DATE 7a. TOTAL NC. OF PAGES 7b. NO. OF REFS
November 1668 217 . 485
ga, CONTRACT _OR GRANT NO. 90, ORIGINATOR'S REPORT NUMBERI(S)
F44620-67-C-0021
b. PROJECT NO. 9769-05
c. : 61111f501F 9ob. lcl’t;rHr%Ro:gonT NO(S) (Any other numbors that may bo nsslgnod
d. 681304 E SR 6 g 0 0 9 % I ”;

10, DISTRIBUTION STATEMENT

This document is approved for public sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES 12.‘SPON50RING MILI’!‘ARY ACTIV|T.Y . .
. - Air Force Office of Scientific Research
. ! Directorate of Information Sciences
\ s Arlington, Va. 22209
13. ARSTRACT N N

This study congerns thq}%xtension of concepls used in curreni computer pro-
granming langiages. The aim js to find ways of designing new programming lan—
guages which have increased flexibility withoui also having increased complexlty.
The key 1o accomplishing ihis is by generalizing on the current conceptss .The
work is bascd on lhe idea that it is possible to design a language which is tiruly
independent of the hardware characleristics of current computlers. the course
of the sludy, considerable re-examination of current concepts such aS-variables,
Erocedure call mechanisms, and program sequence controls, has been required.,A
new technique of expressing data values, data elements, and data struclures has
becn developed. The technique provides for the construction of arbitrarily~complex
data elements, and for arbitiarily-chosen relalionships between data elements
All expressions in aprogremwhich cause the language processor to take some ac—
tion, which includes "declarations', are viewed as iransformations ("procedures').
A basic set of these iransformations has been proposed. tThe most significant de-
mand on machine design which arises from this research is that much moire frecdom
of storage organizaiion is needed than is provided by conventional machines.
Large—scale associalive memories could be used to provide some of this needed
flexibility of storage. Recommendations for furiher work are presented and an ex—
tensive bibliography on programming language, concepis, and design is appended..\\

rORM i —
D 1 NOV csi ﬂ 70 UNCLASSIFIED

Sccurity Classification

b e L A i

f2ad

S x
AT T ¢ R R T TR T T T R R R T

AANCLASS L) 1) - -
Security Classification

Ry

KEY WORDS

LINK A

LINK D

LINR C

4

KoL WY

——

ROLE wi

ROL L

T

programming language

generalization of language concepls
data clements

data structures

iransformations

language processors

interpreters

hardvare-independence

bibliography

“»

UNCLASSIFIEL

Security Classification

ok

ATchas:]

Swiucs k@i e

IEATICIE Rt

UNCLASSTIFIED

Secunty Clase sfication

DOCUMENT CONTROL DATA-R&D

(Security ¢lav stlic atron of title, body of abicteac t an fandexar & annotats s a0 Cntoecd whon e oser i vopaet § oty afn 1)

t ORILINATING ACTIVITY (Cotpotate author)

2 REF ORT SLCUFUTY CLAISIHICATION
Universily City Science Center unclassificed

4401, Market Sircet 2h, GROUP

Philadelphia, Pa. 19104

3 RLPORT TITLE

EXTENSION OF PROGRAMMING LANGUAGE CONCEPTS

4. OESCRIPYIVE NOTES (Type of report and Inclusive dotcs)

scientific; 3 final

8. AUTHORIS) (First namo, middlo (nitial, last name

Philip R. Bagley

6. RLPORT DATE 7a. TOTAL NO. OF PAGES 7b. NO. OF REFS
November 1968 217 485
8a, CONTRACT OR GRANT NO.) %2, ORIGINATOR'S REPORY NUMBLR{S)
Fih620-67-C-0021

b, PROJECT NO. 9769_05

€, - ' 61111}501}‘ ob. ‘O,"II'.H'E,?O?‘;ZPORT NO(3S) (Any other numbors that moy b3, asslgne
a 681304 AFOSR_co -pgpoqmp

10. OISTRIDUTION STATEMENT TR -'- Iil

This document is approved for public sale; its distribution is unlimited.

11. SUPPLEMENTARY NOTES . 12. SPONSORING MILITARY ACTIVIT(Y

Air Force Office of Scientific Research

~7?§C3/9/ o 7*79@2&? Directorate of Information Sciences

Arlington, Va. 22209

13. ABSTRACT

This study concerns the extension of concepts used in current computer pro-—
gramning languryes. The aim is to find ways of designing new programming lang
fluages which have increased flexibility without also having increased complexlty.
The key to accomplishing this is by generalizing on the current concepts. The
work is based on the idea that it is possible to design a language which is “ruly
independent of the hardware characteristics of current computers. In the course
of the study, considerable re-cxamination of current concepts such as variables,
procedure call mechanisms, and program sequence controls, has been required. A
new technique of expressing data values, data elements, and data structures has
been developed. The technique provides fo the construction of arbitrarily-complex
data elements, and for arbitrarily-chosen relationships beiween data elements.

All expressions in aprogramwhich cause the language processor to take some ac—~
tion, which includes "declarations", are viewed as transformations (Yprocedures").
A basic set of these trnnsformatlons has been proposed. The nost significant de—
mand on machinc design which arises from this research is that much more freedom
of storage organization is neecded than is provided by conventional machines.
Large~scale associative memories could be uscd to provide some of this needed
flexibility of storage. Recommendations for furiher work are presented and an ex—
Llensive bibliography on programming language, concepls, and design is appended.

D

FORM ¢« "
Vonee 1 AT 3 . UNCLASSIFTED

Smum) C o ifi-ation

