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ABSTRACT 

Some practical sufficient conditions are  given for a program with 

linear constraints   and nonlinear objective   to have well-behaved duality 

properties.     Thus  if  the objective  is convex,   lower semlcontlnuous, 

and satisfies  a Llpschitz  condition  on a  closed  convex polyhedron,   and 

is    +u:'    elsewhere,   then   there exists  a dual  problem which  actually 

achieves   the  optimal  value  of  the primal problem.     An argument  is  given 

suggesting  that  certain  of  the results are best possible from the 

viewpoint  of practical  applications.     These  results are applied  to 

show  that  a broad  class  of stochastic programs  with  recourse have 

desirable  duality properties. 



1.     INTRODUCTION 

Theorem 1 below gives sufficient  conditions  for a program with linear 

constraints and a convex objective with  range In the extended reals to 

have well-behaved duality properties.    The principal Ingredient In the 

proof  of Theorem 1 Is Theorem 2,  which considers  the properties of the 

optimum value of a  (not necessarily  convex)  program under perturbation 

of  the  linear constraints.    The terminology used In Theorem 1 Is adapted 

from  [1,2,3] where the close relationship between properties of the 

variatlonal function and the duality properties  of a program have been 

discussed at some length.    Briefly a program is solvable  if  the value 

of  the infimum is finite and achieved  for some value of  the variables, 

it is dualizable if there is no duality gap, and it is stable if there 

exist  (optimal)  nontrivial Lagrange multipliers.     The definitions of 

convexity and lower semlcontinulty  for functions  into the extended 

reals will be reviewed in  the next section. 

■v 

At  the end of S2 an argument will be given suggesting that Theorem 

1 is the best possible from the viewpoint of practical applications. 

Finally, Theorem 1 will be applied in §4 to show that  a broad  class 

of stochastic programs with recourse have desirable duality properties. 

THEOREM 1.        Consider the nonlinear program 

Inf      f(x) 

Ax - b 

x > 0 

(1) 
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where  the objective    f    Is convex In  the sense of functions  into  the 

extended  reals. 

(I) If    f    is  lower semi continuous    n  the sense of functions into 

the extended reals and the constraint set    K -  {x|Ax ■ b,  x ü 0| 

Is bounded and contains at  least one point where    f    is  finite, 

then  (1)   is  solvable and dualizable. 

(II) If     f    Is   finite and Lipschitz  on  a  closed convex polyhedron  and 

(1)   has  a  finite value,   then  (1)   is  stable. 

THEOREM 2. Consider the  function    41 (u)  - Inf{f(x)|x e  ic(u)}, 

where    <(u)  ■ {x|Ax - b - u,  x * 0}    and    f    is a function with range 

In the extended reals. 

(i)    If    f    is  convex, so is    (p. 

(11)     If    f    is  lower semicontinuous and    K(U)    is compact for some 

u,     then     $    is lower semicontinuous. 

(Hi)    If    f    is    -H»    except on some closed convex polyhedron where it 

is either finite and Lipschitz or Identically    -00,     then  the 

same holds  for    $. 

2.    PROOF OF THEOREM 2 

DEFINITIONS. Let    f    be a function with    Rn    for domain and the 

extended reals    R " R U {+00} (J j-00}     tor range.    The set 

epi f - ((z.x) I  z E  R,    x e  Rn,    z >  f(x)} 

is  called  the epigraph of    f.     The  function    f    is said to be  convex if 

its epigraph is  a convex subset of    R or equivalently if 

f(xx)  - f[(l-A)x0+Xx1]   <  (1-A)f(x0) +  Xf(x1) 
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for  all    A c   (0,1]    and    XQ.XJ  E Rn,    where  the conventions    0  • » - 0 

and     (+») + (-«)  »•- +oo    apply.     The function    f    is said  to be lower 

semicontinuous if 

■* 

lira inf f(x1)   > f(lim x ) 

for every convergent sequence    (x.)    in    R ,    or equlvalently if    epi f 

is a closed subset of    R n+l If the function f is finite on some 

subset S of R  and B Is a real number such that 

(f(x) - W)! < B ||x - x'H 

for all    x.x'    in    X,    where     |j'||    is the Euclidean norm in    Rn,  then 

f    Is said to be Llpschltz on    S    with constant    B. 

The following two lemmas  represent an application of results in 

[6]  to the special situation of Theorem 2.     (An Inconsequential difference 

is that in [6]    <(u)    is a section of   P    rather than its projection into 

Rn.) 

LEMMA 1.        Let    P - | (x,u) | Ax + Du - b,  x > 0} ,    K(U)- 

{x | Ax - b - Du,  x > 0},    Q -  {u |K(U)    Is nonempty},     and let    P - P    + C 

be the  representation of  the polyhedron    P    as the vector sum of a bounded 

polyhedron   P      and a (unique)  polyhedral cone    C    with apex at the 

origin.    Then   Q    is a polyhedron, and for each    u e Q, ic(u) • « (u) + C*, 

where    Kn(u)    is a bounded polyhedron depending on      u    and    C'    is  the 

polyhedral con»    {x| (x,0)   e C}.       In particular,    K(U)     Is bounded for 

all    u    in    Q    if it is bounded  for some    u    in    Q,     for In this case 

C - {oK 

■Mka 
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LEMNA 2.        Let    <    and    Q    be defined as In Lemma 1.    Then there 

exists a constant    B    such that  for any two points    u      and    u      In   Q 

dMu^.Kdi;,)]  ^  B  lluj-ujl, 

where    d[   ,   ]    denotes the Hausdorff distance between sets In    R . 

Observe that Lemmas 1 and 2 apply directly to Theorem 2 if    u    Is 

taken to be a vector In    R      and the matrix   D    Is the Identity. 

Accordingly  let    P    and    Q    be defined in this manner, and consider 

part  (1)   of Theorem 2.    New    P    Is convex, and by assumption    epi f    is 

a convex subset of   R x R .      Hence    (epl fxR)nRxP    is a convex 

subset of    R x R    x R      and Its projection onto the space    R * R     is 

a convex set   (?.    But    epl $    is just  the vertical alosure    of    6, 

i.e.,   the union of   6    and  any missing endpoints of "vertical"  line 

segments  in   ß.      This proves part  (1)   of Theorem 2.     Also,    Q    is 

closed and    4>(u)  ■ +«    if    u    Is not  in    Q.    Thus,  in order to prove 

part  (11)   of Theorem 2 It suffices  to show 

11m Inf (|1(ui)   >  4»(u0), 

where    u.   e  Q    and    11m u.   ■ u0  e Q.       By Lemma 1    each    K(U)     is compact, 

and hence  the  lower semi continuous  function    f    attains a minimum on 

ic(u)     at some point, say    x(u).       Also,  It follows from Lemma 2  that 

ic(u)     is  uniformly bounded  for    u    in some compact neighborhood    N    of 

u0 ,    I.e.,    ? O [R *N]    is  compact.    Hence the sequence of points    x(u.) 

has at  least  one limit point    xn  e (c(u ).      Then 
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llm Inf ♦(u^ -  11m Inf fUd^))   > f(x0)   i f(x(u0)) - t(uQ) , 

-^ 

where the first Inequality follows from the lower semlcontinuity of 

f and the second follows from the o^timality of x(u ) on «(u ). 

This proves part  (11)  of Theorem 2. 

B   ' 

We shall begin the proof of part  (ill)  of Theorem 2 by establishing 

the following special case: 

LEMMA 3.    Under the conditions of Theorem 2, if    f    is finite 

and Lipschitz throughout    R ,    then either    <p    is identically    -" 

on    Q    or    $    is finite and Lipschitz on    Q. 

Proof.        Let    u    and    u*    be any two points of    Q,    let    (x.)    be 

a sequence of points in    )c(u)    such  that    lim i(x.) - ^(u),    and let 

x'    be the point of    •«(u')     closest to    x..      Then 

«.(u')  - f(x1)   < f(xp - f(x1) 

x1 -x^ 1 B 

< BB  llu'  - u 

(2) 

where B is the Lipschitz constant for f and B is the constant of 

Lemma 2. Now ^(u') may be -<*   or finite, and lim fix.)  - 4(u)    may 

be -» or finite.  But (2) shows that <Ku) ■ -a0    Implies (Ku1) ■ -,,0, 

i.e., Q   is identically -• on   Q    or    Q    is finite on Q. And if 

4» is finite on Q, then (2) implies (Ku1) - «Ku) < BB Hu* - u||. By the 

symmetry in u and u' it follows that $    is Lipschitz with constant BlT. 

Now suppose, as assumed in Theorem 2, that the range of f is 

Mi I    ■!■!■!■ I   <■■■ 
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(3) 

contained In the extended  reals, and the set    K • |x|f(x)   < +*0} 

Is a closed convex polyhedron«    Then    $    may be defined by the 

program 

♦(u)  - Inf    f(x) 

Ax ■ b - u 

A'x > 0 

x e K 

Since    K    Is a polyhedron,   (3)  may be rewritten 

(Ku)  - Inf    f(x) + Ox* 

Ax - b - u (A) 

A'x   +    x' - b1 

x > 0, x' > 0 

The set    K0 - {u|(>(u)   < +•}    Is exactly the set of    u    for which 

the constraints of (3)  or (A)  are feasible, hence this set is a poly- 

hedron.    Moreover,  if    f    is    -«    on    K,    then    4>    is    -<»    on    K.. 

This establishes a portion of part (ill)  of Theorem 2.    The remaining 

pooslbility is that    f    is finite and Lipschitz on    K.    Now    f    may not 

be  finite and Lipschitz where    (4)   is  infeasible,  and    u    does not perturb 

all constraints of (4), but clearly the proof of Lemma 3 will apply to 

(4), with a different choice of    D    in Lemma 1, and yield the remainder 

of Theorem 2. 

Strictly speaking the requirement that {x|f(x)   < +•}    be a polyhedron 

is not  essential  to Theorem 2.    The proof of Lemma 3 clearly establishes 

the following more general result. 
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LEMMA A. Suppose    f    is  finite and Lipschitz everywhere,     K 

is a closed convex subset of    Rn  * Rm,     (Ku)  ■ Inf  {f(x)   |x e  K(U)}, 

K(U)  -  {x| (x,u)   c K},     and    Q -  {U|K(U)     is nonempty}.    Then     ^    is 

either    -00    on    Q    or finite and Lipschitz on    Q    provided there exists 

a constant    B    such that 

d^uKKCu')]   < B     ||u - u'H (5) 

for all    u.u1     in    Q. 

However,  It  is  difficult to see how  this more general  result  can 

be applied  to practical problems.    For consider a program of  the  form 

<Ku) - Inf    f(x) 

Ax ■ b  - u 

x e K 

where   K    is a convex set.    Surely any practical condition to be 

imposed on    P    ought not  to depend on  the particular form of    A.     But 

it is shown In  [6]   that if    P    is not a polyhedron there even exist 

ap...^      such  that 

•«(u,) - {x   I a1x1 + ...-»-a x    ■ 1 l     !    i   i n n -Up   X   E p} 

fails to satisfy  (5)   for any    B. 

3.     DERIVATION OF THEOREM 1 

For easy reference, we repeat  the convex program of Theorem 1; 



Inf        f(x) 

Ax - b (1) 

x ^ 0 

The basic duality properties of  this program are conveniently represented 

in an equivalent Inf problem 

Inf        n 
(6) 

(n.u)   e i? PI 0 

where £    is the vertical line {(ri,u)|n e R, u » 0} and 6    is  the 

convex set whose vertical closure is the epigraph of 0,  as described 

in the proof of part (1) of Theorem 1. The program (1) will be solvable, 

i.e., have a finite optimum value ^(0) ■ f(x ) achieved by some feasible 

x ,  if and only it   £ D C    is a closed half line. 

A natural dual to the Inf problem (6) is the Sup  problem: 

Sup   u 
(P,u*) 

M i n + u*u for all (n,u) c 6. 

The Inf problem asks for the infimal height    n    of points on   £ 

inside   G.      The Sup problem asks  for the supremal height    p    of points 

on   £    through which  can be passed nonvertical hyperplanes   (i.e.,   those not 

containing any line parallel  to  .£)   bounding    C      The 

Sup  problem can be  recast in  the  form 

Sup \i 
(U,u*) 

u <  f(x) + u*(b-Ax)     for all    x > 0 

where   the  role of    u*    as a  row m-vector of Lagrange multipliers  is 
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appa.ent. 

It is natural  to say  that  the Inf and Sup problems are dual or 

that (1)   is dualizable if    Sup p - Inf n.     i.e.,  if there is no duality 

gap.    We shall say  that the program (1)   is stable if the Sup problem is 

solvable,  i.e., has a finite optimum which is achieved for some    u*. 

Thus (1)  is stable  if there is a nonvertical hyperplane supporting   6 

at the point    ((|i(0) ,0)    on   £.      Equivalently,   (1)  is stable if there 

exist Lagrange multipliers which convert it into an equivalent uncon- • 

strained problem. 

The  above discussion of duality properties of  (1)   follows  the approach 

to mathematical programming in abstract spaces given in   [3] which is 

closely related  to   the more extensive development given by Rockafellar 

in [1,2].    Theorem 1 now follows easily from the above discussion, 

well-known properties of convex sets  and their supports,   the simple 

relationship between   G    and the epigraph of    $,    and from Theorem 2. 

REMARK.        We have seen that  (1)   is stable if    f    satisfies a 

Llpschitz condition.     But also,   the duality  theory for quadratic 

programs shows  that   (1)  is stable if    f    is  convex and quadratic,  and 

hence definitely not Lipschitz.    We do not know of any sensible condition 

on   f    which implies both properties and is valid in Theorem 1.    A simple 

example will show that  (1)  may fail to be stable If    K    is unbounded and 

f    is only locally Lipschitz on a polyhedron. 
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4.     APPLICATIONS TO  STOCHASTIC PROGRAMS WITH  RECOURSE 

ir.   chis section we will  use  jiieorem 1  to show  that   fairly broad 

classes  of stochastic programs with  recourse have well-behaved duals. 

The necessary results on  the objective  functions of such programs have 

already been proved in earlier papers   [4,5].    We shall make  liberal use 

of   the notation  and  terminology  Introduced  in   [4,5,8]. 

THEOREM 3. If  the value  of a stochastic program with  recourse 

is   finite  and  the   first-stage   feasibility set    Kj  ■  ix|Ax = b,  x i öl 

is  bounded,   then  the equivalent  convex program is  solvable.     Moreover, 

either  the equivalent convex program is  dualizable  or  the obiective  takes 

the vaxue    -"     at  points belonging to    K       for arbitrarily sm ill pertur- 

bation;   of    b,     i.e.,   there  is  an   Infinite duality  gap. 

Proof. It   is shown  in   [5]   that  the objective     z(x)     of  the 

equivalent convex program is either lower semicontinuous as a function 

into  the extended  reals or takes  the value    -"    at some point.    The 

second  part  of  the  theorem  follows  immediately   from this  and Theorem 1. 

Now  let    K      be  the set  on which    z(x)     is  less  than    +«'    and  let    M 

be  the affine hull of the  intersection of    K,     and    K2.       Since    z    is 

s s 
convex,  so is    K0,     and hence    K   O K^    has  an  interior with  respect  to 

M.       Since  the restriction    z      of    z    to    M    is  convex,   and since 

it  is   finite on    Kj H K  ,     it  follows that it is nowhere    -<*.    The 

results  of   [5]  apply equally well   to    z.,    and show  that  it  is  lowe- 

semicontinuous.     A straightforward application of Theorem 1  completes 

the  proof. 
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THEOREM 4. If the value of a stochastic program with recourse 

is  finite,  the  recourse matrix    W    is  fixed,  the second-stage  feasibility 

set    K      is a polyhedron,   and the ran lorn variables    E,    have  finite 

variance,   then the equivalent convex program is stable. 

Proof. Theorem (4.5)  of  [4]  shows  that under the second and 

fourth hypotheses either the objective of the equivalent convex program 

is -00 throughout K or it is finite and Lipschitz on K^. The rest 

follows  from Theorem 1. 

It is worth mentioning that Proposition  (3.16)  of   [4]  gives practical 

conditions which insure that    K.    is a polyhedron.    In addition Corollary 

(4.7)  of   [4]  gives some alternate conditions on the distribution  of    £ 

under which  the conclusions of Theorem (4.5),  and hence  the above  theorem, 

remain valid. 

We  conclude with a few remarks showing  that  the hypotheses of 

Theorems  3 ar^ 4  are not superfluous.     Consider the special class of 

stochastic programs  considered in detail in  [7],  for which    W •  [1,-1] 

and only  the  right-hand sides are random.     It is easy to construct 

examples in this  class such  that  the  random variables have a distribution 

possessing all moments, and the value of the infimum is finite, but the 

program is not solvable, provided    Kj    is  allowed to be unbounded.     Thus 

boundedness of    Kj    is not superfluous  for solvability in Theorem 3.    We 

remark that in sich an example    z(x)    will be finite everywhere,   and 

hence by Theorem 4 such an example will be stable, but not solvable. 

I 
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A stochastic program can be  constructed with    T    only random and 

Kj     bounded  for which   the  alternative  at  the end  of Theorem 3 occurs. 

An example  can  also be  constructed u   .h    T    only  random and    K, 

unbounded  for which     2(x)   >  -au,     and hence     z(x)     is  lower semicontinuous, 

but    Hu)     still jumps   from    -»-     to a finite value at    u " 0.       Thus 

boundedness  of    K,     is  not  superfluous  for dualizability in Theorem 3. 

We do not  know whether  a stochastic program with   recourse can exhibit 

a finite  duality gap;   this  is certainly possible   for a program of type 

(1)   in which     f(x)     is  convex and  lower semicontinuous but    K    is 

unbounded   [3,   p.   692]. 

It  can be  shown by example  that,  as   the  remarks  at  the end of  §2 

should suggest,   the  requirement  that    K0     be a polyhedron is not  super- 

fluous  in  Theorem A.     Finally a variant  of  the  example  found  in   [5]  will 

show  that   finite  variance  of    f,    is  not  superfluous  in Theorem 4. 
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