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By
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ABSTRACT

A general study is given of plane and cylindrical wave propagation

of combined stresses in an elastic-plastic medium. The coefficients of.

the governing differential equations, when written in matrix notation,

are symmetric matrices and can be divided into sub-matrices each of which

has a special form. The relations between the stresses on both sides of

an elastic-plastic boundary are derived. Also presented are the restric-

tions on the speed of an elastic-plastic boundary.
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1. Introduction.

The equations of motion for a continuum body are

=0 o -,(ij-,25 1

where o-, is the stress, vi  the velocity and p is the mass density

of the body, and summation is implied by repeated indices. The relation

between the strain e j and the velocity vi  is

a . 1 avi + a

a t +6x 1(2)

while the stress-strain relation for an elastic, isotropic work-hardening

material is (see (11)

-- j. l+V iikk + ) f 6f ()
dt= E "3- E ij 7F;O_7- R

E is Young's modulus, V is Poisson's ratio. k is the yield stress

and the yield condition can be written as

f(Ojj) = k2  (4)

G(k) in Eq. (3) is a given function of k which characterizes the

work-hardening property. Equations (I) - (4) give a complete descrip-

tion of wave propagation in three-dimensional elastic-plastic media.

In this paper, we will restrict our attention to special cases

in which the governing equations depend on only one space variable.
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Plane wave propagation and cylindrical wave propagation are such special

cases. The most general plane wave propagation is the one in which Vl)

v2 , and v3  are functions of x and t only. Using x instead of x

for simplicity, 0l' t2' V5  for 07ll' 2' T respectively, Eq. (1)

gives

lx :P Vl t  (5)

T2,x P v2 ,t (6)

T = P v3' t  (7)

where the subscripts x and t denote partial differentiation with

respect to these variables. If we use von Mises yield condition:

1 = 2
f=- s k 2

2 1, sij

where

I

siiij 5 -" ij 'kk'

Eq. (3) gives, making use of Eq. (2) and the fact that 22 = 33 0

leads to -2 =- in the present case,

v 1 2v + sGQ (8)
lx lt E 1G(8

0= 2 2(1-v) 2t + 2s2 GQ (9)E- 'lt +  E s2t
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1T + 2TQ (10)
v2,x = 2,t

. = T + 23GQ(

3,x [ 3,t

where s1, s2 and a2 stand for sll, s22, and a22  respectively. P

is the shear modulus and

Q -- S ll,t + 2s2(2,t + 2T2T2,t + 2 ,t (12)

Equations (5 - 11) give a complete description of a general

plane wave propagation in an elastic-plastle medium.

When v2 =0 , and hence 2 , Eqs. (5), (7), (8), (9), and (11)

reduce to the case of pressure-shear wave propagation considered in

[2,5,4]. If v2 , v3  are the only non-zero velocity components, then

T 2 and T3  are the only non-zero stresses and Eqs. (6), (7), (10)

and (11) reduce to the case of two-shear waves studied in [3,5,6]. The

equations derived in [7] for combined longitudinal and torsinal waves

in a thin-walled tube can also be reduced from Eqs. (5), (6), (8) and

(10) by letting a2 0.

If Vr, ve, vz are the velocity components of a particle in

cylindrical coordinates (r,e,z), the most general cylindrical wave

propagation is the one in which vr, ve and vz are functions of r

and t only. Then, the only non-zero strains are er' Ce Ye' 7 z

where e' yz stand for ErO er respectively. Consequently a r

0*0 az Te, 'z are the non-zero stresses where TFe = re' z = 0rz "

Now, instead of writing the governing equations for cylindrical wave

propagation in the form shown in Eqs. (5 ll)j we will use matrix



notation and write the governing equations, Eqs. (1- 3) in a matrix

differential equation which can be applied to both plane and cylin-

drical wave propagation.

2. The Matrix Differential Equation.

For wave propagation which involves only one space variable x

or r, the equations of motion (1) can be written in matrix notation

as

'- +blb P t (13)

where a and v are column vectors whose elements are stress and

velocity components respectively. b1  is also a column vector whose

elements are functions of stress a and s-ace variable x only. (In

cylindrical waves, x becomes r). If a has m elements and v

has n elements, then M is an n X m matrix whose elements are

constants. The continuity condition Eq. (2) can be written as

=Nv +b (14)

where e is a column vector with strains as its elements while b

-2

is a column vector whose elements are functions of velocity v and

space variable x only. N is an m X n matrix whose elements are

constants. Finally, the stress-strain relation, Eq. (3) can be

written as

Ct = (15)

where S is an m X m square matrix. In the plastic region, S

can be written more precisely as
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s =se + G(k)(2f)(vf)T (16)

S e is also an m X m square matrix whose elements are functions of

elastic constants only. Thus

t e t (-7)

gives the elastic stress-strain relation. Vf is the gradient of

f(g) with respect to the components of a. Hence, by (4)

(vf)T Zt = 2kkt (18)

Now, by eliminating t between Eqs. (14) and (15), we can write

Eqs. ( 13)-(15) in one matrix equation:

+B w =b (19)

where

0 S

(20)

o0 -M bl
"i

and is a unit square matrix. T- can be chcdkcd ,a.ly that the

governing equationus for general plane wave propagation derived in

Eqs. (5 -11) as well as the equations for other plane wave propagation

reduced from Eqs. (5- ll) can be written in the form of Eq. (19).

Moreover, A and B are both symmetric in all cases. In particular,
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N = MT  and the elements of N and M are either one or zero.

The same is true for all cylindrical waves. For the most general

cylindrical wave propagation, it can be shown that, using von Mises

yield condition:

yr 1l2)/r f 0 0 0

v z  Tz/ r 0 0 0 0 1

(TO vr

T 0

)/E -V/E -v/E 0 0 s

-V/E VE -v/E o 0 Se

s e = -V/E -V/E J/E o , = s
0 0 0 '1, 0 2 e

0 0 0 0 J/P 2 z

Cristescu [8] has studied an axilly symmetric wave propagation

in which vr and ve are the only non-vanishing velocities. The

governing equations can be obtained from Eq. (21) by letting

V z = 0. The particular cases of two-shear cylindrical waves

and pressure-shear cylindrical waves have also been derived earlier

in (5] but the resulting coefficient matrices were not symmetric.

The formulation presented here yields symmetric coefficient matrices

for all cylindrical waves.
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The analyses in the rest of this paper will be based on the

matrix differential equation (19). Although for all plane waves

and cylindrical waves the matrices A and B are symmetric, the

analyses presented in the following do not require the symmetry

property of A and B. The yield condition f of Eq. (4) is not

restricted to von Mises yield condition.

5. An Identity.

In this section, we will derive an identity which is useful in

the analyses of the present problem.

Let P be a r X r matrix and g and h are column vectors

with r components. Then, if a is a scalar,

IIP + a h 11 = 1P + a h T* (22)

where llPll denote the determinant of P. P* is the adjoint of P,

i.e., the element P* in P* is the cofactor of the element P

in P. Hence P* has the property:

(P*)' = I111 (23)

To prove Eq. (22), we write P in terms of its columns as

(24)
P= [ Z2 -Er

where pI, P2 ... are column vectors. If gl,g 2 ,...,g r denote the

components of g, the left hand side of Eq. (22) can be written as

1iP + a h 9gT 1 = lip + a , p +ag 2 h,..., pr+aghlj (25)
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Now, by the theory of determinants, it is known that

p,+ a h P2 , p5 ,''"11=li i + allh, 2, 5  1,...,1rl , (26)

i, ali, hi 2 i, .. r" 0 (27)

By repeatedly applying Eqs. (26) and (27) to the right hand side of

Eq. (25), we obtain:

12 + ah J 1 = Q 1, + ,.., rjj+a g1jlh, p, E,..qj

(28)
+ a g , h' E""Er II + "'" + a gr lpl, ' ., hil

With this, it is not difficult to see that Eq. (28) can be written in

the form of Eq. (22). This completes the proof.

For the particular case in which P is a unit matrix, Eq. (22)

reduces to

I1+a - + a hTg (29)

3. The Characteristic Equation.

The characteristics c of Eq. (19) are the roots if the equation

(see [9]):

icA-B 11 = . (30)

Since

( C M -C 1

cA-BK
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where

= PC 2 S(3)

we have

IIcA-BII = (Pc)n-rnII • (32)

Thus, instead of expanding the deterninant llcA-tl which is of order

m+n, we can expand the determinant Ifll which is of order m.

If we define

De 2, 2e (= c2Se ~ :
D PC -NM ,(33)

then by Fqs. (16) and (31), we have

Dp = D + Pc2G(k)(2f)(7f)T (34)

Using the identity derived in the previous section, we obtain

IIPll = l1Dell + Pc2 G(k)(7f)T(Ze)*(Zf) . (35)

Equation (35) can be used to study the relative positions of the roots

of llpll = 0 and llell = 0. (see [42).

4. The Elastic-Plastic Boundary.

If c is the speed of an elastic-plastic boundary, then

dw

t =w c+ w (36)
at -x -'t

is the total derivative of w along the boundary. Elimination of w

between Eqs. (19) and (36) yields
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dw
(cA -B)wzt b cb-)

Since w is continuous across an elastic-plastic boundary) Eq. (57)

gii es

(cA p) = (e eB) (38)

where the superscripts e and p denote the values in elastic and

plastic regions respectively. With Eq. (20), Eq. (38) is equivalent

to:

Ppv+ M pP pcve + (59)

Nv + c S~p= N Z~ao (40)

It is more convenient to write Eqs. (39) and (4o) in the following forms,

using Eqs. (16) and (18):

ec _ p) + M(Ue _ c) = 0(I)

N(vevp) +ceoea
+ ~(~)=2cG(k)k kp(vf) (42a)

or

N(vevP) + cSP(ae-aP) =2cG(k)k k e(Vf) (42b)

Equations (41) and (42a) yield

D e( -p 2pc 2G(k)k kj(~)(43a)

while Eqs. (41) and (42b) yield

Dp( e_,p) =2pc 2o(k)k k e(,f) (45b)
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Equation (43a) or (43b) gives a relation between 4 and on

both sides of an elastic-plastic boundary. For the case of combined

longitudinal and torsional stresses in a tube,

2 c
[C2 1l 0 1

0 PC 1

and Eq. (43a) reduces to the result obtained in [10].

Equation (43a) can be solved for (&-ot') by pre-multiplying both
.e.*T

sides of equation by (De) and -aking use of Eq. (23). Hence

e_p 2p2G k) k kp(D e)*T(f) (44)
14t '!t JI 1 t

Pre-multiplying once more both sides of Eq. (44) by (Zf)T and making

use of Eq. (18), we obtain

kekP PC2 G~k) kp (vf)T(e)*T()(")
t'e1 t " -D1 0

Since the right hand side of the equation is a scalar,

T e)T(72) = (Vf)T(De)*(Vf)

and by virtue of Eq. (35) we have finally

kt 1111 (46)
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A simplest particular case of Eq. (46) is the case of longitudinal wave

propagation in a thin rod studied in [13]. In the case of combined

longitudinal and torsional stresses in a thin-walled tube)

2 2
IlDell = (-c 1)(c 2 1)

co c2

2 2II!DPll = (9- 1)(9-- 1)
2 Cc cf c s

where c2 =  P  c = = /P , and cfj C are the roots of =DPll 0,

Eq. (46) reduces to the result obtained in (10].

If kp = 0, then by Eq. ( 43a) either Z= or IlDej O
t

Similarly, if ke = O, then by Eq. (43b) either e = ap or JjDPll = 0.

Consequently, if kt= kt= 0, = t. Moret j = by Eq.

(41). Thus when k eo kt= 0, we = w• To obtain relations between

e and op on both sides of an elastic-plastic boundary when
t Att

ke = 0 0, we differentiate both sides of Eqs. (43) and noticingt t

that t =t =0

De(Oe ..op) = 2pc2G(k)k kpt(f) (47a)
4-t 4t .t

Dp( t  t = 2pc2G(k)k ktt( f) . (47b)
"At -tt

Similarly, if we differentiate both sides of Eq. (45), we obtain,

after using Eq. (35),

e

kp  , I
tt
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Equations (47) and (48) are identical to Eqs. (43) and (46) respectively

with the exception that the order of derivatives is changed.

From the above derivations we can generalize the results and state

as in the following:

If 3nke/htn = 3nkp/ tn = 0 for n=l,2, ... ,a-1 but Sake/Sta

and 8kP/St are not both zero, we have

6nwe 6 np
- - , n=l,2,...,a-1 (49)

6tn ;tn

2a ppa
De( "oCkA

_e -% =G° 2p" k P kf (50a)

or

Zpe a p -ae
-7a) = 2pc2G(k)k t (7f) (50b)

and

_ - , 
(51)akP/ t Iae

For a loading wave,

6ake/6ta > 0 if Ci is an odd integer (52a)

ZP/ 0 e L< o if a is an even integer

while for an unloading wave,

8Pke/ ta < 0 if Q is an odd integer (52b)

akP/6t > 0 if a is an even integer

14



With this, Eq. (51) furnishes a restriction on the speed of an elastic-

plastic boundary as in the particular cases considered in (10,11131.

It whould be noticed that Eq. (51) applies if ek/6tn (n=l,2, ... ,a-1)

are zero on both sides of an elastic-plastic boundary as well as along

the boundary. If 8nk/Stn (n=l.,2,...,a-l) are zero on both sides of

the boundary only at the point concerned but not at other points on the

boundary the right hand side of Eq. (51) should be modified. An example

of this modification for the particular problem of wave propagation in

a rod was given in [12].
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