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ELASTIC-FPLASTIC BOUNDARIES IN PLANE AND CYLINDRICAL
WAVE PROPAGATION OF COMBINED STRESSES
By

T.C.T. Ting®

ABSTRACT

A general study is given of plane and cylindrical wave propagation
of combined stresses in an elastic-plastic medium. The coefficients of .
the governing differential equations, when written in matrix notation,
are symmetric matrices and can be divided into sub-matrices each of which
has a special form. The relations between the stresses on both sides of
an elastic-plastic boundary a?e derived. Also presented are the restric-

tions on the speed of an elastic-plastic boundary.

* Associate Professor of Applied Mechanics, Dept. of Materials
Engineering, University of I) inois at Chicago Circle, Chicago,
Illincis 60680.




1. Introduction.

The equations of motion for a continuum body are

aoi bvi
B;j'l =05t (4,3=1,2,3) (1)

where cij is the stress, vy the velocity and p 1is the mass density
of the hody, and summation is implied by repeated indices. The relation

between the strain eij and the velocity \A is

Qe
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whiiz the stress-strain relation for an elastic, isotropic work-hardening
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material is {see [1])
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o4  E ot Esij 3t + (k) BcriJ 30'kz ot (3)

E is Young's modulus, Vv is Poisson's ratio. Xk 1s the yield stress

and the yield condition can be written as
- 1 4
f(oij) = K (%)

G(kx) in Eq. (3) is a given function of k which characterizes the

work-hardening property. Equations (1) ~ (4) give a complete descrip-

tion of wave propagation in three-dimensional elastic-~plastic media.
In this paper, we will restrict our attention to special cases

in which the governing equations depend on only one space variable.
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Plane wave propagation and cylindrical wave propagation are such special

cases. The most general plane wave propagation is the one in which v

l}
ALY and v3 are functions of Xy and t only. Using x instead of Xy

for simplicity, 05 Ty r5 for Crll’ 021, 0‘31 respectively, Eq. (1)

gives

,x TP Vi,¢ (5)
T2,x =9 ve,t (6)
Tsx = P Vs g (7)

where the subscripts x and t denote partial differentiation with

respect to these variables. If we use von Mises yield condition:

f=%si,j Sl,j -k2
where
TRLTES LWL
Eq. (3) gives, making use of Eq. (2) and the fact that €pp = €33 0
leads to 022 = 055 in the present case,
Vix " 5 %y T F T, * 5100 (8)

(9)
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Vax = T2,t 27,6 (10)
1
v, ==71 + 27_GQ. (11)

3sx po3,t 3

vhere 510 S and 9, stand for 8177 Spp and °é2 respectively. M

is the shear modulus and

= + + +
Q 59, 2820é,t 2T212,t 2T5T5,t (12)

Equations (5 ~ 11) give a complete description of a general
plane wave propagation in an elastic-plastic medium.

When v, =0, end hence 7, =0, Egs. (5), {7), (8), (9), and (11)
reduce to the case of pressure-shear wave propagation considered in
[2,3,4]. If ve, v5 are the only non-zero velocity components, then
T and 13 are the only non-zero stresses and Egs. (6), (1), (10)
and (11) reduce to the case of two-shear waves studied in [3,5,6]. The

equations derived in [7] for combined longitudinal and torsinal waves

in a thin-walled tube can also be recuced from Egs. (5), (6), (8) and

(10) by letting a,

It V. Voo vz are the velocity components of a particle in

0.

cylindrical coordinates (r,6,2), the most general cylindrical wave
propagation is the one in which Vo v6 and \A are functions of r
and t only. Then, the only non-zero strains are €. ee, 76’ 7z
where Yg? 7, stand for €9’ €y respectively. Consequently 0.

Ogs Oy Tgr T, are the non-zero stresses where Ty T o ., T =0_.

e’ 9’ 2z rz

Now, instead of writing the governing equations ror cylindrical wave

propagation in the form shown in Egs. (5 ~ 11), we will use matrix
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notation and write the governing equations, Eqs. (1~3) in a matrix
differential equation which can be applied to both plane and cylin-

drical wave propagation.

3 2. The Matrix Differential Equation.

For wave propagation which involves only one space variable x

or r, the equations of motion (1) can be written in matrix notation

as

R T8 =P Y% (13)

where g and y are column vectors whose elements are stress and

velocity components respectively. 21 is also a column vector whoue

elements are functions of stress g and s;ace varieble x only. (In

cylindrical waves, X becomes r). If g has m elements and ¥y
has n elements, then M is an n X m matrix whose elements are

constants. The continuity condition Eq. (2) can be written as

= + L
S P A ()
where € is a column vector with strains as its elements while b,

is a column vector whose elements are functions of velocity y and
space variable x only. N is an m X n mtrix whose elements are
constants. Finally, the stress-strain relation, Eq. (3) can be

written as

S "8 % (15)

vhere S is an m X m square matrix. In the plastic region, S

can be written more precisely as

FN— - TR~
U ) .
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= 8% + o(x)(wr)(ge)" (26)

~

€ . . .
S 1is also an m X m square matrix whose elements are functions of

elastic constants only. Thus

e

& "8 g (27)

gives the elastic stress-strain reiation. Vf is the gradient of

£(g) with respect to the components of g. Hence, by (&)

Ty =
(vf)” g, = 2xk, (18)

FENART R

New, by eliminating g, between Egs. (14) and (15), we can write

Egs. (13)~(15) in one matrix equation:

Bl g

+ =
AX,*By =Dk (29)
where

r

el Q 4
3 é: P E:

0 8 g
3 ~ ~ {N

(20)

1 Q -M El
k ,§= 3 h:

e ]

and I is a unit square matrix. It can be checked easily that the
governing equationy for general plane wave propagation derived in

Egs. (5~11) as well as the equations for other plane wave propagation
reduced from Egs. (5~ 11) can be writtea in the form of Eq. (19).

Moreover, A and g are both symmetric in all cases. In particular,
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T
E = M and the elements of y and M are either one or zero.

The same is true for all cylindrical waves. For the most general

cylindrical wave propagation, it can be shown that, using von Mises

yield condition:

b
vl‘ (0'1"0'2)/1‘

10900
L= Vel By= are/r » M=|0 00 10
v, Tz/r 0 0 0 0 11
o& 0o ]
A vI/r
g= 1%, p=1| 0 , N= o (21)
Te -"V’e/l‘
{TZ L 0
(1/E -v/E -v/E 0 0 ‘sr ‘
-v/E IYE -v/E 0 0O 84
§e= -WE -v/E YE 0 0|, g=]|s,
0 0 0 Yp o 27,
| o 0 0 0 /] 2|

Cristescu [8] has studied an axilly symmetric wave propagation

in which Vo and Vg are the only non-vanishing velocities. The
governing equations can be obtained from Eq. (21) by letting

v, = T, = 0. The particular cases of two-shear cylindrical waves
and pressure-shear cylindrical waves have also been gderived earlier
in [5] but the resulting coefficient matrices were not symmetric.
The formulation presented here yields symmetric coefficient matrices

for all cylindrical waves.




The analyses in the rest of this paper will be based on the
matrix differential equation (19). Although for all plane waves
and cylindrical waves the matrices A and E are symmetric, the
analyses presented in the following do not require the symmetry
property of A and B. The yield condition f of Eg. (4} is not

restricted to von Mises yield condition.

5. An Identity.

In this section, we will derive an identity which is useful in

the analyses of the present problem. k
Let P bea r Xr matrix and g and h are column vectors

with r components. Then, if a is a scalar,
Ig + a1 'l = 2l + a n"p* (22)

wihere ”P" denote the determinant of P. g* is the adjoint of E)

i.e., the element P¥, in P¥ is the cofactor of the element P

i) ~ i
in P. Hence P¥ has the property:

() = |zl 1 (23)

To prove Eq. (22), we write P in terms of its columns as

[

P=1(pys ppoeers Byl (24)

where El’ 22,... are column vectors. If gl,gz,...,gr denote the

components of g, the left hand side of Eq. (22) can be written as

llP+ahg||—||pl*aa Dy, *agh seees By +2 g bl (25)




Now, by the theory of determinants, it is known that

lpy* 2 b5 pos pgseeep =Bl + alls, 0y psseesn s (26)

”EJ 9"1}') 35) fPlL’ ”"«Pr” =0 (27)

By repeatedly applying Eqs. (26) and (27) to the right hand side of
Eq. (25), we obtain:

. T
2 +an g7l = lpys pps--ospll+e gylihs pys pgse- sl
(28)

+ a 82"}31) E) 25:°")gru t e t+ g gr"gl; 22:"°)EH

With this, it is not difficult to see that Eq. (28) can be written in

the form of Eq. (22). This completes the proof.

For the particular case in which P is & unit matrix, Eq. (22)

reduces to

”£+a h §T" =1+a ET'% (29)

3. The Characteristic Equation.

The characteristics ¢ of Eq. (19) are the roots f the equation

(see [91):
lflea-8ll =0 . (30)
Since
- 1
[pcg Y pel 91\3; 5o M
CA-B = = b ’
i L
l N 8 N QJ i\9, oc &




where
D=pcg-NY, (31)
we have
lea- Bl = (pc)* ™™gl . (32)

Thus, instead of expanding the deterninant Ilcg-gll vwhich is of order
mtn, we can expand the determinant ”Q” which is of order m.

If we define
D =pc 8 -NM, (33)
then by Fas. (16) and (31), we have
P = p° + pclo(x)(ge) ()T - (54)
Using the identity derived in the previous section, we obtain
IRPI = MR8l + pe®a(x)(ge) T (28) (o) - (35)
Equation (35) can be used to study the relative positions of the roots

of "Qp” =0 and ”Qe" = 0. (see [4]).

L. The Elastic-Plastic Boundary.

If ¢ is the speed of an elastic-plastic boundary, then

[})

1.2

=y_{xc+gt (36)

is the total derivative of y along the boundary. Elimination of X

between Egs. (19) and (36) yields
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(cg-g)gt = CR‘E‘(% . (37)

Since w is continuous across an elastic-plastic boundary, Eq. (37)

gites

p P _ € y.©
(cA®- B)2 = (e -B)S (38)

where the superscripts e and p denote the values in elastic and

plastic regions respectively. With Eq. (20), Eq. (38) is equivalent

to:
D P _ e e
pey, +M I =ecy t MG (59)
p p e e e
N tegfy =Ny teste (40)

Tt is more convenient to write Eqs. (39) and (40) in the following forms,

using Eqs. (16) and (18):

pe(ys ~xb) + Mg -gp) = 0 (b1)
N(xe-xb) + og%(gr-p) = 2e6(k)k KP(VE) (42a)
or
N(rs-ub) + egP(gf-gp) = 2e0(k)k K(¥F) (42b)
Equations (41) and (l42a) yield
g-gb) = 207G (k )k kK (Z£) (432)

while Eqs. (%1) and (42b) yield

DP( g:-glg) = 20e26(k)k k:(Zf) (43b)




Equation (k3a) or (43b) gives a relation between gi and gi on

both sides of an elastic-plastic boundary. For the case of combined

longitudinal and torsional stresses in a tube,

c2
FoLo0
g 1
Io S’_c___ N
~ B ;

and Eq. (43a) reduces to the result obtained in [10].
Equation (l43a) can be sclved for (gi-gf) by pre-multiplying both

*
sides of equation by (Qe) T ana ~aking use of Eq. (23). Hence

2
- - éem)%ﬁﬁ x k2(p%)"(ge) - (84)

Pre-multiplying once more both sides of Eq. (U44) by GZf)T and making

use of Eq. [18), we obtain

2
Kok = %[G'é—ﬁl K (o) (%) () (5)
D

Since the right hand side of the equation is a scalar,
T *
() (%) (g2) = (70)7(2%) (xe),

and by virtue of Eq. (35) we have finally

li2®l

[y

(46)

o |
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A simplest particular case of Eq. (46) is the cage of longitudinal wave
propagation in a thin rod studied in [13]. In the case of combined

longitudinal and torsional stresses in a thin-walled tube,

o = (- 1 - 1)
~ - 2 c2
co 2
p 02 C2
Pl = (S - & - 1)
[] (o]
f s

where ci = Efp , cg = u/p , and ¢ps ¢ are the roots of 0Pl = o,

Eq. (46) reduces to the result obtained in [10].

If kﬁ = 0, then by Eq. (43a) either gi = gﬁ or "Qe" = 0.

Similerly, if K =0, then by Ea. (43b) either g = & or [Ig°l = o.

a -+ d e= p= e: o e=p .
Consequently, if kt kt 0, o oP. Moreover, vl xt by Eq

e _ P _ e _ D :
(41). Thus when kt = kt = 0, ¥ = Hie To obtain relations between

e . .
it and gﬁt on both sides of an elastic-plastic boundary when

ki = kz = 0, we differentiate both sides of Eqs. (43) and noticing

e e
that ¢ =op,kt=kp=0,

% = % £
D°(el, - 2,) = 2peGli)k K, (VF) (¥7a)
P, e _ 2 e
0P, - gb,) = 2pe 0(k)k g, (gf) - (47b)

Similarly, if we differentiate both sides of Eq. (45), we obtain,

after using Eq. (35),

e P
X "l
-‘%‘E = . (48)
A
13

e s e = e ———AN RS N S
- .




Equations (47) and (48) are identical to Egqs. (43) and (46) respectively
with the exception that the order of derivatives is changed.

From the above derivations we can generalize the results and state
as in the following:

e Pk%/3t® = 3%P/3tR = 0 for n=1,2,...,0-1 out O k%/dt”

and K/3t% ave not both zero, we have

" ® %P
i = = K} n=l,2,...,a-l (Ll'9)
3t 3™
= aage aa'gp n 6akp
D! N 2pc G(k)k - (wf) (502)
ot ot ot
or
P I o P8
pf(—5 - ~—5) = 2ecGlx)k =5 (gf) (500)
ot ot ot
and
Y
/e _ Ip"l , (51)
Mo It
For a loading wave,
aakegat“ { > 0 if « is an odd integer (52a)
P/ o L < 0 if o 1is an even integer
while for an unloading wave,
aakez at” <0 if o is an odd integer (52b)
3P ot >0 if o is an even integer

L




With this, kq. (51) furnishes a restriction on the speed of an elastic-
plastic boundary as in the particular cases considered in [10,11,13].

It whould be noticed that Eq. (51) applies if O K/t (a=1,2,...,a-1)
are zero on both sides of an elastic-plastic boundary as well as along
the boundary. If O k/3t" (n=1,2,...,0-1) are zero on both sides of
the boundary only at the point concerned but not at other points on the
boundary, the right hand side of Eg. (51) should be modified. An example

of this modification for the particular problem of wave propagation in

a rod was given in [12].
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