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WAVE FRONT ANALYSIS IN COMPOSITE MATERIALS

by

T.C.T. Ting and E.H. Lee

ABSTRACT

The propagation of an initially sharp plane pressure pulse through

a linear elastic composite medium is analysed. Wave front and ray theory

analogous to geometrical optics is shown to determine the change in

shape of the leading wave front and also the stresses immediately be-

hind it. For certain circumstances the stress amplitudes on this front,

or the corresponding tensile stresses on its reflection at the free

back surface of a slab, may be critical in design. Examples are presen-

ted of an initially sharp plane pressure pulse transmitted through an

elastic circular cylinder and an elastic spherical inclusion. The

method can be applied to more general composite configurations, and

can be extended to determine the stress gradient behind the front.

For the latter, general formulae are derived by which the reflection

and transmission coefficients can be determined for the stress gradient
and the higher order der-lat v s at an rbitrary int bfacc.

* Associate Professor of Applied Mechanics, Dept. of Materials Engine-
ering, Univ. of Illinois at Chicago Circle, Chicago, Illinois 60680.

* Professor, Dept. of Applied Mechanics Stanford University, Stanfcrd,
Calif. 94305.
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1. Introduction.

The damage which an initially plane compressive stress pulse can

create when passing through a slab of composite material will depend

on the .enu-tAt'n (W the pulse due to absorption and scattering, and

this influence on the tensile stresses associated with reflection at

the back free surface of the slab which can cause fracture and spalling.

Few analytical investigations of such situations appear to have been

carried out, and we therefore present a study which provides information

on certain aspects of the phenomenon. In particular, we consider the

variation in shape and stress magnitude of the wave-front as it traverses,

for instance, a regular array of parallel cylindrical rods embedded

parallel to the wave front, as depicted in Fig. la. The analysis is

based on linear elastic response, and the reinforcing rods are considered

to have different elastic constants and different density from those of

the matrix. Attenuation of the stress wave then arises from refraction

and reflection and the associated generation of shear waves. The shape

of the front ceases to be plane, and this, as well as the attenuation,

influences the tensile stress magnitudes caused by reflection at the

back free surface. The analysis presented here applies to general

three-dimensional wave propagation with inclusions of arbitrary shapes,

although the examples given involve only two space variables for

illustrative purposes.

We consider an initial wave as shown in Fig. lb with a discon-

tinuous rise in stress normal to the wave front of magnitude ao

from the unstressed state ahead of the wave. Behind the front
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the stress is considered to decrease gradually. Whether subsequently

the stresses at the wave front are critical from the damage standpoint

depends on the detailed structure of the composite medium, the properties

of its components, and the width of the slab. It can happen that redis-

tribution of the energy in the wave leads to concentration of stress

well behind the wave front, and the present approach would then not

elucidate the dominant mode of fAll'ue. The present solution indicates

when the wave front will be suffic ntly attenuated for this circumstance.

The basis for the present ap, oach is the ray tracing and associated

wave front analysis of geometric optics [1-51. It can be shown that

even in the case of elastic waves with two basic wave speeds in each

material, the stress amplitude at the initial wave front is given

exactly by the laws of geometrical optics associated with the propaga-

tion of irrotational waves. This follows from application of the theory

of characteristics and is in accord with the more common interpretation

of geometrical optics as an approximation to the solution for oscillatory

waves at high frequencies. This approach determines the stress tensor

at the wave front, and can be extended also to determine stress gradients

there.

It is well known that the disl.lacement vector u for dynamic

analysis of an isotropic linear elastic body can be expressed in terms

of the scalar potential 0 and the vector potential j in the form

u =V0 +vx (1)
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where 0 and j satisfy the following equations

2 u - (+2V)/p (2)

2 1 2 2

' (4)

X and p are Lame's constants and P is the density of the material.

Since a > P, the scalar potential 0 is governed by a wave equation

with a greater wave velocity, and hence for a wave moving into an

undisturbed medium, the region adjacent to the leading wave front

corresponds to zero , until the slower distortion wave arrives.

This follows from the "region of influence" theory of the solutions of

hyperbolic equations [6]. Therefore u = VD behind the wave front.

Let (9li 2k3 ) be a system of orthogonal coordinates with

normal to the wave fronts. Thus = constant is the front of the

disturbance. If we consider 0 to be zero in the undisturbed region

ahead of the front, 0 is also zero ibmieaately behind the front.

Since displacements must be continuous in an elastic body,

u = VO = 0 immediately behind the wave front. This, together with

the fact that 0 = 0 at the wave front gives

- 0 except for i=j=l



Accordingly, the only non-vanishing strain component immediately behind

the wave front is el1. For this simple one-dimensional strain, the

stresses can be written down immediately using Hook's law:

a 11 = (X+2 )ell ' 0'22 = X3 = ll

(5)

=0-- 0- 0 o.
0-12 23 = 13 0

Introducing the average hydrostatic tension

2 (

since Cii = 611 in the present case, Eq. (5) is reduced io,

__ 3p  ,= =3%X+2gi - x 3
115X+2 022 = 3 3 , g

(7)

1 = 23 = '13

Thus it suffices to study the propagation of p, or v2 by Eq. (6),

which satisfies the acoustic wave equation (2), in order to determine

the variation of stress generated by the passage of the wave front.

The problem therefore is reduced to acoustic wave analysis with a

single wave velocity as for a gas, and the conditions immediately be-

hind the wave front can be determined by geometrical acoustics for the

single scalar wave equation.
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2. Geometrical Acoustics.

Ray tracing and wave-front analysis for the scalar wave equation

has been termed "geometrical acoustics" by Friedlander [2] in a detailed

presentation of the topic. He developes the theory of characteristics

and shows that wave fronts as they vary in time form a three-dimensicnal

characteristic manifold in four dimenpional space-time. If t = r(x)

is the equation for the wave front at time t, it is known that T(x)

satisfies the eikonal equation

(Vr) (w) (8)

The rays normal to these fronts are bi-characteristics, and a system

of ordinary differential equations governs conditions along each ray.

The propagation of discontinuities is considered through the analysis

of "weak solutions" of the wave equation using the theory of distribu-

tions or generalized functions [3]. It is shown that the saltus or

jump across a discontinuity satisfies:

2(VT) - V[p] + [pJVr = 0 (9)

which Luneburg (1] called the transport equation. (p) stands for the

saltus which is identical to p behind the wave front in the present

case, since p is zero ahead of the wave front. The transport

equation (9) can be reduced to an ordinary differential equation along

the ray and yields, when integrated, the intensity law of geometrical

optics, that the energy density integrated across a tube of rays
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remains constant. For propagation through a homogeneous medium, the

energy can be represented by the square of the hydrostatic tension p,

so that p varies inversely as the square root of the area of cross

section of the ray tube. For a homogeneouis medium the rays are straight,

so that the area of an infinitesimal ray tube is given directly in terms

of the Gaussian" curvature of the wave front. If R and S are the

principal radii of curvature at the wave front, we have

p 2RS = constant (l0a)

along the ray. If one of the radii, say S, is infinite as in the

case of two-dimensional wave motions, we have, instead of (lOa)

p 2R = constant (lOb)

Changes in intensity at the b.oundary be+ween the matrix and inclusions

are determined by the equivalent of Fresnel' s formulae for elastic

media (7].

The above rules are identical with those used in classical geome-

trical optics and considered as an approximation to the propagation

of high frequency waves. It was, we believe, first pointed out by

Luneburg in the lecture notes which comprised the fore-runner of [1],

that they express the propagation of a discontinuity exactly within

the limits of linear theory. In he following two sections, we illus-

trate the method of geometrical acoustics by considering a plane sharp

wave front of the type shown in Fig. lb propagating through an elastic

circular cylindrical inclusion. The case when the inclusion is a sphere
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is discussed in Section 5. In Section 6, we derive the equations which

enable one to determine the stress gradient and the higher order deriva-

tives of stresses behind the wave front.

5. Geometry of the Wave Fronts.

Fig. 2 shows the wave front configurations generated when the plane

incident wave interacts with an embedded reinforcing circular cylindrical

inclusion. The ratio c I  of the dilatation wave speed iv the rein-

forcement (medium 2) to that in the matrix (medium 1) is taken to be

4/3. As the wave front strikes the inclusion both refracted and reflected

0 and I waves are produced. As shown in Fig. 2a an incident wave thus

produces four different wave fronts. The motion in the regions between

the dilatation wave front (0) and the distortion wave front (i)

is irrotational because I is zero. However, this does not irply

+hat shear stre. ses are zero. In view of symmetry, only upper-halves

of the wave fronts are shown in the figure.

The wave fronts become more complicated when the incident wave

front passes the point Q where total reflection of the dilatation

wave occurs and the incident wave produces no refracted dilatation wave

(Fig. 2b). For simplicity distortion wave fronts are omitted from this

figure. Also omitted are the wave fronts due to multiple refractions

and reflections except the precursor dilatation wave abcd in Figs.

2b and 2c. All rays which reach the wave front cd in Fig. 2b have

, ndergone a sing.e refrction, while the rays which reach the wave front

ebc have been subjected to two refractions through the inclusion.
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In the following our main interest will be the determination of

the wave front abcd and the discontinuity in pressure at this wave

front. Therefore, we need consider only those incident rays which

meet the inclusion at points below Q. The reflected wave front ef

can be determined in the same manner.

Although the wave fronts can be located by integrating Eq. (8), it

is simpler by a direct calculation using Fermat's principle. To illus-

trate the procedure in computing rays and wave fronts, let us consider

a ray AB in Fig. 3 which strikes the inclusion at angular position

0. If a is the radius of the inclusion the coordinates of B are

given 'by:

xB = a(l-cose) (11a)

YB = asin19  (11b)

Let t = 0 be the time at which the initial plane wave reaches x = 0

and contacts the inclusion. Then the time t required for point C

on the refracted ray BD to be reached by the wave front is

t XB + 2BCa

or

I a2 (~)(2

where IBC is the length of the straight ray BC. The inclination of

the refracted ray to the incident ray direction, 6, is given by Snell's

law:

9
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sin(e + 5) a 23
sine (

The coordinates of the point C are thus:

xc = xB + xBCCos 6 (14a)

= a(1-cose) + a 2 cos 6 [t - al (1-cose)]

YC = YB + "BCsinS (14b)

= a sine + Ce2 sin8 (t - 1 (l-cose)]
2 ~ a 1

For a given t, (14ab) is the equation for the wave front cd in

Fig. 2b with e as parameter. By direct calculation it can be shown

that the slope of the front is perpendicular to the ray BC, as it

must be according to Huygens' construction for wave fronts.

A similar calculation determines the wave front after refraction

out of the inclusion. For the coordinates of point E in Fig. 5, we

have

XE = XB + 'BD cos8 + 2DE cos 25 (15a.)

yE = YB + 2BD sinb + 2DE sin 28 (15b)

where

z BD = 2a cos(e+8) (16)

and 2DE is determined by
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=R +,BD +9 DEa +
a 2 1l

or

DE B a BD (17)

Clearly, one can continue this procedure to determine the wave

fronts if there is more than one inclusion.

The wave .ronts as expressed by Eqs. (14a,b) and (15ab) are shown

in Fig. 3 for various times. The dotted line Qb is the locus of

intersection of the initial incident plane wave front and the refracted

wave front. The determination of the pressure p on the wave front

will be described in the next section.

4. Stress Magnitudes at the Wave Front.

The change in magnitude of stresses due to refraction at point

B or D in Fig. 3 should be independent of the curvatures of the

incoming wave front and the interface. While this statement seems

intuitively correct, there appear to be no proofs available. We wi]ll

prove this in Section 6, and therefore we accept this fact as valid in

this Section.

For a given plane dilatation wave 0 of magnitude A1  incident

on a plane interface, the refracted dilatation wave ¢' of magnitude

A' has been determined in [71. However, we are interested in p, and

hence V 2 by Eq. (6). If
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O' A'

at the interface, then according to [7],

2(18)

720 AI,2

Making use of Eq. (6) and the result obtained in [7] for the value At/A l,

we write the pressure ratio p'/p at the interface in the following

form:

p a aP

P Ia'e2  4~ P2a2
S ' 2coseM (19)

2~ 2 KM+LN

(s-. 2e +'sne 2

K cos e (2 + 1s, 2 )sin2e)

n e) +at l-( - sine)2 2

1-+ -(1 E -sine) 2

_ sine (i- 2 aV asin  sie

M + Tjs1 2 e)ri +) a -,i 2 -e) sne,,~~ inl_(e)ie)

L n e2)isine asi

(1 - - Tsine)sine - sinecose (- sine)2

PI

where

12



2i ((E) 2 
2

The quantities with a prime refer to the refracted medium while the

quantities without a prime refer to the incident medium. The trans-

mission coefficient as expressed by Eq. (19) has been tabulated in

8] for 1 1/ with variable e, 2- and L'[8 ao a-- a--

Let (pB)2 and (PB )l be pressure at point B of Fig. 5

on the side of medium 2 and medium 1 respectively. Since

(PB)l = Po, the incident constant pressure, (PB)2 can then be

determined by using Eq. (19). The geometrical acoustics law Eq. (lob)

then gives

= /( - B)2 (20)

where (PB)2  is the radius of curvature of the wave front at the

point B in medium 2, and R is the radius of curvature at C.

Because the rays are straight lines normal to the wave front in each

medium

RC= (RB)2 + 'BC (21)

and hence we can determine the pressure at any point In the inclusion.

Although (R,), could be obtained by differentiation from the wave

front expression (14), it is more convenient to analyse the refraction

geometry adjacent to the point B.

Let us consider a more general situation as shown in Fig. 4 in

which an incident ray OB strikes the interface boundary at B and

13
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produces a refracted ray BC. Let Ri and Rr denote respectively the

radii of curvature of the incident and refracted wave fronts at point

B. Moreover let R denote the radius of curvature of the interface

boundary at point B. By considering an adjacent incident ray OD,

it can be shown that the following relation holds:

cot i + = cotr0 r + (22)cot i Rb r R r  Rb

In Eq. (22), Rb assumes a negative value if the center of curvature

of the interface is on the left of the boundary instead of on the right

as shown in Fig. 4. Likewi se, Ri and Rr can assume negative values.

Applying Eq. (22) to point B in Fig. 53 we obtain, since

Ri = Co, and using Snell's law, Eq. (13),

(B) = a cos 2(e+) (23)
a cose-cos(e+8)

With Eqs. (21) and (23), Eq. (20) determines the pressure p at the

wave front inside the inclusion. Figure 5 shows an example of the

pressure p as a function of position when the wave front arrives.

The results are shown in the form of contour lines of constant pressure.

The material constants used are a'a I = 4/5, PI//a I = P /2 = )//5 and

p2/p1 = 1. The pressure at point 0 inside the inclusion is 1.142 po

and increases to 2.522 p0 as Q is approached from 0 along the

circumference of the inclusion. On the other hand, the pressure at

H inside the inclusion is 0.885 po and decreases to zero as we

approach Q along the circumference. Thus Q is a point of singularity.

14



Figure 5 also shows the results of similar calculations for pressure at

the wave front after refraction out of the inclusion. The pressure at

H outside of the inclusion is 0.758 p0  and decreases to zero as we

approach Q along the outside of the circumference. The line Qe is

the contour line for zero pressure. However, if we regard Qe as the

reflected ray at Q and calculate the reflected pressure along Qe, we

will find that the reflected pressure along Qe is not zero. Hence

there is a discontinuity in pressure across Qe. In feact, the radius

of curvature of the wave front feb of Fig. 2b which consists of the

reflected front fe and the refracted front eb is discontinuous at e.

Figure 5, when used in conjunction with Fig. 5, enables one to

determine the pressure at the wave front for a given time t. The wave

fronts obtained in Fig. 5 are also shown in Fig. 5. Notice that the

pressure in the region above the dotted line Qb is the pressure on

the refracted wave front. The actual pressure should include the

incident plane wave pressure po. The stresses at the wave front in

this region should be modified accordingly.

The pressure along the x-axis has a simple form and is recorded

here. Substituting e = 8 = 0 in Eq. (25), we have

a

Ro+ a (24)

G1

where the o+ refers to the abscissa value of the point designated.

Evaluation of (19) gives

15



1 -( I) 22

0 + P0 2pP IL L (25)

1

and application of (20) yields

p(x) = (p0+) a 0 < x < 2a (26)

a + x( - )

Refraction out of the inclusion gives

R2a- = 2R2a+ (27)

and hence

p(x) = 0 , x > 2a

( pa 1  p2  2  1) +- (2? - 2
P2a2  Ppi a (28)

until the next reinforcing cylinder is reached. It is interesting to

note that for a2 > a, the usual case for composites, the wave fronts

diverge and the stress amplitude attenuates. However, for a 2 <a , a

converging wave front occurs after the first refraction, and the energy

becomes concentrated at the caustic giving infinite stress values accord-

ing to the linear theory. Stress concentration can occur also at the

distortion wave front when P2 <a 1 .

5. Wave Propagation through a Spherical Inclusion.

For an initial plane wave as shown in Fig. lb propagating through

a spherical inclusion of radius a, the geometry of the wave fronts

16



intersecting a plane through the axis of symmetry is the same as for the

cylindrical inclusion shown in Fig. 5. Thus the results obtained in

Section 3 apply equally well to a spherical inclusion if we replace y

by r, the radial distance from the axis of symmetry x. The proce-

dures outlined in Section 4 for determining the stress magnitude at

the wave front are still applicable except that the intensity law

Eq. (lOa) should be used instead of Eq. (lOb). Thus, Eq. (20) should

be replaced by

P RcSc (29)

where

S = (S)2 + BC(30)

a sine (31;
SB)2 -sin 5

In Fig. 6, we show the pressure at the wave front for a spherical inclu-

sion using the same material parameters as in Fig. 5 for comparison.

Again, point Q is a point of singularity and the pressure suffers a

jump across Qe. As is to be expected, more rapid attenuation of the

wave front occurs for a spherical inclusion than for a cylindrical

inclusion because of spreading in all directions parallel to the wave

front, and the formulae for attenuation along the x-axis Eq. (26,28)

are simply modified by removal of the square root since to second

order the wave front is spherical by symmetry on this axis.

17



6. Stress Gradient and Higher Order Derivatives Behind the

Wave Front.

To determine the spatial derivatives of stress right behind the

wave front, we have to establish the higher order transport equations

which determine the propagation of discontinuities in stress derivatives

along the ray and an extension of the equivalent of Fresnel's formulae

for the reflection and transmission coefficients of the stress deriva-

tives at an interface. It should be noted that spacial derivatives and

time derivatives of any quantity, say u, behind the wave front are

related once we know 0 at the wave front. For, if t = i(x) is the

wave front at time t, we have

V(x(S(x))] = 7(40(xt)t() y- (xt))t=() (32)

Similarly, the k-th order spatial derivative of 0 at the wave front,

the limits being taken as the front is approached from behind which

applies throughout this sectiun, can be determined once we know zhe

first k order time derivatives of 0 at the wave front. It suffices

therefore to discuss the propagation of discontinuities in time deriva-

tives.

Let t = '(S) and t = T(x) be the dilatation and distortion

wave fronts respectively at time t. Then r(x) and T(x) satisfy

the eikonal equations

(7) (V) = (33a)

(vT) T) ) = '33b)

18



Define

t - TW(34a)

= t - T( (54b)

Physically, and are the times elapsed after the arrival of the

dilation and distortion wave fronts. At the dilatation wave front

0 and at the distortion wave front 0 = . Now we expand 0 and

into the following series (2]:

,4t) = k [ () tk+2(0 (55a)
k=O

*(~,(t) = k() fk+2() (5b)

where f0 (w) is an arbitrary function uf cu for w > 0 and vanishes

for w < 0 and

f k+1(0) = fk(a)')&D' (36a)

or

d (C) = fk() (56b)
&; fk+l k

Thus fk(() also vanishes for w < 0 for all k > 0. Notice also

that fk(0) = 0 for all k > l. In Eqs. (35) the terms involving f0

and f are excluded because of the continuity requirement for dis-

placements across a wave front.
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The expansion expressed by Eqs. (35) has a physical meaning if we

choose f (w) H(w), the Heaviside step function. For then fk(w) =

co/k and qpk( becomes the k-th time derivative of 0(4,t) at tne

rave front t = T(x). Similarly, k(x) becomeb the k-th time deriva-

tive of J(x,t) at the wave front t = Tx).

By substituting Eq. (35a) into Eq. (2) and making use of Eqs.

(55a) and (36b), we obtain the higher order transport equation for pk

in a recurrence form:

2 2kO ,,. 3a2(VT) • (V k) + (Pk 72 T-- V 2 k-i ' (k01,,") 3a

provided we define p_- = 0. When k = 0, Eq. (37a) reduces to the

zero order transport equation (9). Similarly, we obtain the higher

order transport equations for ik which can be written in a dyadic

notation as

2- 2(v) (qk) + Vk 2 = *k,l, (k=O.,1, 2, ... ) (37b)

proided we define --* 0

To obtain the reflection and transmission coefficients at an

interface :e have to find the displacements and stresses at the inter-

face and apply the continuity condition. Substituting Eqs. (35) into

Eq. (1) we obtain

k=O(Wkl-qk7 (kl) + (V x k 2 -k7TXtk)fk+l(T)j (38)[' k=O "-

Since = [ at the interface, we have

20



b = o-- [ (k VT + V '- x lk)' Uk-1 fk+1(t) (39)
k-O

where

k_1 = V7 k- 1 + X k-1

which contains only the lower order terms and a superscript b stands

for the interface boundary. If we substitute Eq. (38) into the following

stress-displacement relation

-(Vu + uV) + xi V" u (40)

and let = [, we ob'ain stresses at the boundary

b

k=O " = k -k "k

+ Ski fk( M (41)

provided we define -2 0, - - 0. Sk contains only the lower

order terms k-l' @k-2' *k-l' and k 2 ' Let n and n be a unit

vector normal to the dilatatcn wave front and the distortion wave front

respectively. Then, by Eqs. (33),

1
V7 = n (42a)

= n (42b)

Figure 7 shows a typical configuration in which reflected and transmitted
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rays are generated by an incident .0) ray AB or () ray CB.

Although both (0) ray and (1) ray are drawn in the same figure,

it is assumed that only one ray, AB or CB, strikes the boundary.

The unusual case in which both rays strike the boundary at the same

time can be obtained by considering each -ay separately and super-

posing the results. The superscripts (i), (r) and (t) stand for

b
incident, reflected and transmitted rays respectively. n is The unit

normal vector to the interface boundary at point B. Notice that all

b
the n and n vectors and n lie on the same plane which is perpen-

dicular to the boundary surface at point B. Let b be a unit vector

normal to this plane at point B and t be a unit vector on this plane

and tangent to 'he boundary at B so that

b

b = t Xn (43)

t and b can be expressed in terms of n(i) and n(b) by

= (n(i) - cose nb)/sine (4 4a)

= (n(i) x b )/sin (44b)

The angles e, e, e' and 8' are related by Snell's law:

a P- - cL = _E"_(45)
sine sine - sine' sia e'

where a prime denotes the refracted medium. Now the condition that

b is continuous at point B gives, using Eqs. (39) and (42)

22



+x Z~i )+ (1:Prnr + (r) x r)
ak n k ak-

ki -k -k-1

O (t) _ u(i) - u (r)

9k-1 = l -1 k-l ~-k-1

The condition that the surface traction a b. n be continuous at

point B gives, using Eqs. (41) - (44) and Fig. 7.,

I (2pcos e n +sn )n ' +p(i n + r xo 11

(-) W sings-'n"t)+os )5k-n-')TX
se(r) b (r) (r) (r)_ - (r)+ -(2pcs n +%n +P(..% sn n-c n

(f we subs t E.' nb) ito .(4t)snd eue l(t+ o E.x *(t6), w

havek

(247)

where

(4+8)

=T(t) - W - T (r)
Tk-i k-1 -k-1 -k-i

Tk-i k- b

If' we substitute Eq. (35b) into Eq. (4+) and make use of' Eq. (56b), we

bave
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n(r) (r) (r) (49a)~ Lk = V • k-

(t ,(t) (49b)
n - t ) •k-

Equations (46) (49) give a recurrence formulae for determining Ar)
(t) (r) .(t)
t () and *'k (kzOl,2,...) at the interface. Thus one can

calculate, in principle, the reflection and transmission coefficients

for any order of time derivatives of stress behind the wave front.

Equations (46) and (47) can bQ reduced to scalar equations. If

b
we perform the scalar product on both sides of Eq. (46) by t and nb

respectively, we have
(T(i).q (r) )_ ctr ) (q tcot t) _ _U. ' (0

@k qk ) cote(Q i) k ) Qk sine '-k-l

cot,9 ( (i)_(r) i)Q(r)) cot e' q(t) - (t) _ U b (51)cote k k ) = ot k sinO

Similarly, if we perform the scalar product on both sides of Eq. (47)
b

by n and t respectively, we obtain:

tl{-(cot 25_1)( Wki+1P(r) )+2 cot e (4i-r))

2- A) -, (t)} 82

I'-(cot2e' -l)q (kt)+ 2cot - _ p2 T* b
k k 2- -k-1 (52)sin e

I, (i) r), 2 p (i) r)

82

f t2cot e' (kt)+ (cot 2 ' -l)Qt)} + 2 Tk t (53)

sin e
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Finally, we perform the scalar product on both sides of Eqs. (46) and

(47) by b to obtain:

pWi +(r) p (t) + U b(54)
-k = " k~ -

p(i) - p(r) p'cos ' (t) 1 U* b (55)

p cose pcose

where

P= X (56)

Equations (49) (55) are alternate equations for c k(r) (t) (r)

(t)and k t Notice that and P are the components of k in

k Noieta k an k -,k

the b and n X b directions respectively while Eqs. (49) give the

component of *k in the n direction. Thus we have three components

of in three mutually orthogonal directions.

It is known that one can delete any one of the three components

of *k without loss of generality by ignoring the condition (4). In

that case, Eqs. (49) which are derived from Eq. (4) are not needed and

Eqs. (50) - (55) alone are sufficient for determining the unknowns.

For two-dimensional wave motion and axially symmetric wave motion,

only one component of *k) namely Qk as defined by (48), is needed.

Equations (54) and (55) are automatically satisfifd anc: Eqs. (50) - (53)

alone are sufficient for determining the unknowns.

It should be mentioned that Eqs. (50) - (53) are identical to

Eqs. (3-11) - (5-14) of (71 for plane waves incident on plane boundary,

except for the lower order terms which are zero when k = 0 and an
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obvious difference in the use of notations. Thus the assertion that

the reflection and transmission coefficients for the stress amplitudes

at an interface are independent of the curvatures of the incident wave

front and the interface surface has been proved. The reflection and

transmission coefficients for the stress gradient and the higher order

derivatives in general depend on the curvatures of the incident wave

front and the interface surface through the lower order terms in Eqs.

(49) -(55).

7. Discussion.

The analysis presented here applies to inclusions of general

geometry and can be used to determine the stress behind a wave front

which is reflected from an interface, a rigid surface, or a free surface.

For The latter, the stress due to the incident wave should be superposed

to obtain the actual stress behind the reflected wave front.

The analysis can also be applied to determine the discontinuity in

shear stress across a distortion wave front. However, the geometry of

the distortion wave front is in general more complicated than the dila-

tation wave front. Figure 8 shows some of the distortion wave fronts

for the same material parameters as in Figs. 3, 5, and 6. For compari-

son, the dilatation wave fronts and the corresponding rays obtained in

Fig. 3 are shown as dotted lines. P is the point at which the incident

ray is tangential to the circumference of the inclusion. After passing

point Q, there are two distortion wave fronts, one is formed by one

refrac.tion at the interface while the other is formed by reflection of
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the refracted dilatation wave front inside the inclusion. The curve

qs is the caustic of the reflected distortion rays and therefore shear

stress becomes infinite along qs. The shear stress is also infinite

at the wave front where the associated rays have touched the caustic

qs. (see [2,3]). This situation does :ot seem to have been mentioned

previously in the literature on composite materials. In fact if one

considers the second dilatation wave front which is obtained from the

reflection of the refracted wave front inside the inclusion, one again

obtains a caustic similar to the curve qs in Fig. 8. Thus we also

have an infinite stress in the inclusion due to dilatation waves. For

a real material this implies either a failure in the inclusion or

the material near the curve qs becomes plastic and hence subsequent

wave propagation analysis should be modified. In experiments, an

infinite stress concentration along the curve qs is unlikely to

happen because it is not possible to generate a truely sharp wave front

as shown in Fig. l(b). If there is a finite time for the stress to

rise to its peak magnitude, an infinite stress will not occur along qs.

However, this does not rule out the possibility of an infinite stress

concentration occurring along other caustics which are formed by multiple

reflections inside the inclusion. For instance, an incident pulse with

initially continuous stress at the wave front can become, after the

first reflection inside the inclusion, a shock wave front with a finite

discontinuity in stress at the wave front. This shock wave front can

then become a front with an infinite stress after the second reflection

inside the inclusion.

27
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It should be noted that whether the stress inside the inclusion

becomes infinite or not, the solution presented in this paper concerning

the leading wave front is still valid. This is obvious because of the

hyperbolic nature of the wave equation considered here. The discussion

presented above simply points out the fact that a complete stress

analysis inside an inclusion due to the passage of a pulse is a com-

plicated pr ',lem. When an infinite stress occurs, a realistic solution

can be obtained only if one considers non-linear elastic deformation

or plastic deformation.
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