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FOREWORD

This report was writtem by Dr. F.M. Reza, 117 Borden Avenue, Syra-
cuse, New York, for Rome Air Development Center, Griffiss Air Force Base,
New York, and the Air Force Office of Aerospace Research, under Contract
F30602-68-C-0062, Project 8505. Haywood E. Webb, Jr., EMIIS, was the
RADC Project Engineer.

Project 8505, Research in Systems Theory, is addressed to both
fundamental research in System Theory relevant to Air Force problems,
and to "coupling”" of abstract results to Engineering Areas where it can
more profitably be used in the form of expository technical reports.

This report represents the combining of two expository reports into
a single report. The first chapter treats Elementary Hilbert Space.
The second chapter treats Linear Operators in Space. Both are treated
from an engineering point of view. They are motivated by the power of
some of the concepts, the realization that the digital computer is here,
and the hope that many of the concepts which are abstract in the general
engineering community can be applied to many more real Signal Process-
ing problems.

The report(s) here is the last of a sequence of reports in the develop-
ment of engineering concepts from mathematical concepts of Linear Spaces.
The reader may also be interested in RADC-TR-65-399, "Engineering Applica-
tions of Function Space Concepts to Signals and Systems,"” AD 638 633; RADC-
TR-66-595, "Some Applications of Linear Differentisl Vector Equations,”

AD 648 24T7; RADC-TR-6T7-3T76, "Functions of a Matrix," AD 662 T39; and RADC-
TR-67-648, "Elements of Approximation Theory," AD 666 938.

This technical report has been reviewed by the Foreign Disclosure
Policy Office (EMLI) and the Office of Information (EMLS) and is releas-
able to the Clearinghouse for Federal Scientific and Technical Information.

This Technical Report has been reviewed and is approved.
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ABSTRACT

The vast and rapid advancement in telecommunications, computers, controls
and aerospace science has necessitated major changes in our basic understand-
ing of the theory of electrical signals and processing systems. There is
strong evidence that today's engineer needs to extend and to modernize his
analytical techniques. The latest fundamental analytical approach for tae
study of signals and systems seems to have its roots in the mathematics of
Functional Analysis.

This report contains a bird's-eye view of the elements of Hilbert spaces
and their associated linear operators. The first chapter of the report gives
an exposition of the most ecsential propertlies of Hilbert spaces. The second.
chapter presents the elements of linear operators acting on such spaces.

The report is addressed to engineers and scientists interested in the
theory of signals and systems. The applications of the theory will be under-

taken in a separate report.
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Chapter I

ELEMENTARY HILBERT SPACE THEORY

1-1. Introduction \

In the report TR-65-399 we hsve discussed the finite-dimensional linear
space and metric space in some generality. The reader recalls that the con-
cept of distance between pairs of points of the space, such as the familiar
Euclidean distance, played an important role in our studies. In this chapter,
we wish to investigate a more general type of space, that is, metric spaces of
infinite dimensions.

A vector space of finite dimensions is said to be an n~space if it con-
tains a maximum of n linearly independent elements. A vector space of infinite
dimensions in its simple form is a generalization of the n-space when the’ number
of linearly independent elements becomes arbitrarily large. An understanding
of the concept of a space with infinite dimensions in itself requires some pre-
liminary preparations. The introduction of "infinity" is accompanied by certain
problems of convergence and continuity. Therefore, our first job is to make some
inquiry sbout the continuity of the metric associated with pairs of elements in
this space. Moreover, when the dimension of the space is an uncouncable number
(nond: numerably infinite), the structure of the space becomes considerably more
complex. There lies a professional area of mathematics beyond our aim. A come
prehensive mathematical study of abstract Hilbert spaces requires certain
specialized preparations beyond the scope of this undertaking. In view of the
fact that Hilbert space, Banach space, and function space often appear in engineering
literature, a rudimentary knowledge of the subject seems to be indispensible to

the engineer. To comply with this need, we will give an elementary account of

el-




the generalization of the concept of a finite-dimensional Euclidean space
to the cuse where the dimension of the space may become countably infinite.
We wiil limit ourselves to what may be hopefully termed, in the words of

mathematician P. R. Ha]mos*, "a glimpse into Hilbert space".

1-2. Continuity in Metric Spaces

A set X of elements of any kind is called a metric space if to any
ordered pair of elements x, Yy € X there corresponds a real number d(x,y) with
the properties:

(1) da(xx) 20

(2) ax,y)=0 if and only if x = y

() alx,x) = a(y,x)

(4) a(x,y) < a(x,z) + d(z,y) (triangle inequality)

(1-1)

The presence of a metric on the elements of X allows us to talk naturally about
convergence, and continuity in the sense of the metric.

This section deals with the general concept of continuity in a metric
space. For the sake of brevity, we merely restrict ourselves to the most per-
tinent definitions and basic theorems. For our limited purposes the definitions
relevant 1L metric spaces may be considered as generalizationsof the alike familiar

concepts of Euclidean spaces.

- -~
, ’554
{
[\ Pl
Fig. 1-1 An open sphere Fig. 1-2 A closed sphere
a(a,x) <r a(a,x) <r

*Halmos studies in Lectures on Modern Mathematics, T.L. Saaty, Editor, Vol. 1,
John Wiley and Son, New York, pages 1-22, 1963,
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{The vords "element", "point" and "vector" are used synonomously; vectors are
underlined with a wavy line.)
Open Sphere - An open sphere in a metric space X, with center at point g

and radius r, is defined by

s(a,r) = {x e x| a(a,x) <r} (1-2)
Closed Sphere - A closed sphere with center at point a and radius r is

defined by
S(a,r) = Jxexlalez) s} (1-3)

The closed sphere includes the points on its surface, i.e., points x € X such

that
d(g,x) = r (1-4)

The pictorial representations are used to facilitate an understanding of the
concepts involved by analogy of the Euclidean space. They should not be employed,
however, as substitutes for the formal definitions. A limitation of pictorial,
representation is, for instance, that pictures may assume a variety of forms,
depending on the definition of the distance function. For example, in the space
of continuous functions C{0,1] with Chebychev norm (see Sec. 4-2), Fig. 1-3 may
be envisaged for the open sphere d(x-s. < r. (Compare with Fig. 1-1.)
a(thr

—=> x(t)
a(t)
alt J=r

Fig. 1-3 Open sphere in C[0,1]
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Neighborhood
Let a be a point of the metric space X; a set of points in X is said to be a
neighborhood of a, denoted by N(a), if there exist a & > 0 such that N(a) contains

the sphere S(a,5), i.e.:

N(a) >{x € x| a(e,x) <5} (1-5)

The collection of all neighborhoods of a point is referred to as the complete

or fundamental system-of neighborhoods of that point. The characterization of

the continuity of a function at a point is based on this concept. Fram this
definition it follows that the open sphere S(a,r) is a neighborhood for each of
its points. Geometrically, the latter statement implies that for any point b in

S(a,r) a number r' can be found such that S(b,r') is contained in the sphere S(a,r).

@ :

a

Fig. 1~4 An open sphere is a neighborhood
for each of its points.

Boundedness
A non empty set in a metric space X is called bounded if it is contained in
some open sphere in X.

Limit of a sequence

Let {51,52, ]be a sequence of points in a metric space X. A point g in X
is said to be the limit of this sequence, if for any specified € > O there exists

an integer N, generally depending on €, such that whenever n > N, then d(a, 8, )< e

.




or equivalently a8, lies in the open sphere S(a,ec). This statement, sometimes,

is abbreviated by writing

lim d(a,a ) = O (1-6)

n — o

Alternatively, it is said that the sequence converges to a

lim a =248 (1-7)

n — o

Function=-continuous mapping

Let X and X' be metric spaces with distance functions d and 4', and let f be a
mapping of X into X'. A function of a vector argument f(x) defined over subset
D of a metric space X is said to be a continuous mapping function at a point

X4 € D, if for any specified € > O there exist a & > O such that whenever

d(é:ﬁo) <38

then in the metric space of the images X',

ar(f(x), f(x,)) <e
Alternatively, the function is said to be continuous at a point g, if whenever
a is the limit for a sequence of points in X, then f(a) is the limit for the
corresponding sequence of image points in the image space X'. A mapping is said
to be a continuous mapping in D if it is continuous at each point of D. 1In parti-
cular, if f(x) is a numerical function, i.e., D is mapped into R' or C', then we
have the more familiar definition of a numerical function continuous at a point
X € X; i.e.,

a(x,x,) < 8 ==> |£(x) - fx)| <«

5=




Fundamental sequence

A sequence of points {31,52, ...} of a metric space X is called a fundamental,
or a Cauchy sequence, if for each € > O there is a positive integer Ne such
that d(gn,g_m)< + whenever n and m > Ne' It is not difficult to see that every
convergent sequence is a fundamental sequence. In fact, if the sequence tzn}

converges to £, then for any specified € > 0, one can find Ne such that

AL HL) < ef2 n>N_ (1-8)

Now consider a point _;t_‘_m for m > Ne
a(f,£) < e/2 (1-9)

But due to the triangle inequality

a(f,£,) S alg,£)) + A€ ,£) < e (1-10)

£

Thus a converging sequence is a Cauchy sequence.

Complete Space

A metric space X is said to be a complete space if every fundamental sequence

in X converges to some element in that space.

Separable Space

A thorough discussion of the separability property of a metric space requires

some mathematical preparations beyond the scope of the present undertaking. Since
the terms separability and separable metric spaces appear frequently in the
statemcats of theorems on Hilbert space, an introductory nction of this concept

is included. In the space of real numbers R, let us consider the set of rational
numbers; this set has a very important property. Every real number x ¢ R can be

expressed in the form of a limit of a sequence of rational numbers. Take, for
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instance, the number n; the following sequence of rational numbers converges
to =:

3, 3.1, 3.14, 3,141, 3.1415, 3.14159, ...
The set of rational numbers is denumerable, i.e., the rational numbers cen be

put into a one-to-one correspondence with the set of positive integer. Further-

more, the set of rational numbers is dense in the upace of real numbers. 1In other

words, between any two distinct real numbers there is a rational number.
A metric space, consisting of an infinite sel. of elements is said to be

*
a separable space if there is a denumerable subset of elements dense in X:

2511 Loy cocr Xy oo .s (1-11)

That is, for any specified X € X and € > O there exists an element X, in the
o

above sequence such that
dlx,x, ) <« (1-12)
()
In the finite-~dimensional real Euclidean space Rn, the set of all points with
rational coordinates is a countable set dense in R'. Therefore, R™ is a

separable space. Same is true for a finite-~dimens:onal complex space.

Compact Set

A set E of a metric space X is said to be compact if every infinite sequence of

elements in E contains a subsequence which converges to some x € X. The require-

*A more formal definition of the term dense results from the following. Let X
be a metric space, and E is a subset of X, then:

(1) x € X is a limit point of E if every open sphere about x contains a point
¥ # x such that y € E.

(2) E is dense in X if every point of X is either & limit point of E, or a
point of E (or both).

Rudin, W., Principles of Mathematical Analysis, McGraw-Hill Book Co., New York,
1964, p. 28.

-T=
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ment that a space be compact is very rigid and more restrictive than the
requirement of separability and completeness. The set of points I = {9,1,2,3,...}
of Rl is not a compact set, because the sequence {0,1,2,3,...} € I does not contain
any convergent subsequence. Therefore, the Euclidean space gt (and likewise R")
is not a compact metric space. One can show that every subset of points on the
real line Rl, or of the Euclidean space Rn is a compact set if and only if it is
closed and bounded. (For instance, the set a < x < b is a compact set.)

Example 1

Show that the set of all continuous real-valued functions defined on the

real interval [a,b] with distance function

a(g,g) = max Ple(t) - et} , aseso
forms a separable metric space.

Solution: It is readily seen that the suggested distance function
satisfies the requirements of axi>ms 1 to 4. To see whether a metric space is
a separable space, consider all polynomials with rational coefficients. There
are countably many such polynomials. By virtue of the Weierstrass approximation
theorem, any element of the space can be uniformly approximated by a polynomial

with rational coefficients. Therefore, this is a separable metric space.

l=3. Normed Linear and Banach Spaces

In Chapter 4 of TR-65-399 we have defined metric spaces of finite dimen-
sions. In this chapter the same basic concepts are presented in a more general
fashion, and without regard to finiteness or infiniteness of dimensions. Consider
a linear vector space V with finite or infinite dimensions. A norm in a linear
vector space is defined as a real number assoclated with every element x of the

space (denoted by ”5") having the following properties.

-8~



1. lk” >0 for every x € V

2. |xll = o if and only if x = O
3. “KEH = Ikl . ”&” for any x € V and any scalar A
b eyl < el + ligll for any pair of elements in V.

The relation between normed linear spaces and metric spaces is a simple one.
Let “5” be the norm of an element x of a linear vector space V; define the

following distance function over the elements of that space.

a(x,y) = lx-xll = lly-xl (1-13)

The fact that this is a permissible distance function is an immediate consequence
of the aforementioned properties. 1In fact, (1), (2), and (3) can be easily

verified. To show the validity of (4), note that

alx,y) = llx-yll = li(x-2) + (z-x)ll (1-14)

A

llx-zll + llz-yll = a(x,z) + d(z,x)

Thus the normed linear spaces are metric spaces.
In view of the material of Section 1-2, we are now in a position to study
metric spaces where a concept of convergence of vectors has been introduced. We

say that x is the limit of a sequence X, i.e.,

x= lim x (or x—~x) if | -xll -0 (1-15)

n —® n —®
This type of convergence is convergence in the norm. If every fundamental sequence
of a linear normed space has a limit in that space, then the space is said to be

a complete linear normed space. A linear normed space which is complete with

respect to its norm is also referred to as a Banach space (named after the Polish
mathematician S. Banach). Our plans do not require a detailed mathematical study

==



of normed spaces and Banach spaces. Nonetheless, we note in passing that many
familiar properties of ordinary Euclidean spaces are valid for this broader
class of Banach spaces. The key to the generalization lies in the fact that
Banach spaces, like ordinary real Euclidean lines, are linear, normed and com-
plete. Some of the familiar concepts which may be directly extended from the
ordinary R™ to Banach spaces are: the concepts of linear dependence of elements,
linear manifold, subspace, plane and sphere, and convergence in norm. The
concept of orthogonality, the elegant properties of projection, and the least
square distance criterion are not inadvertently maintainable in a Banach space.
The applicability of these latter concepts is restricted to the Hilbert space

which is a subclass of the Banach spaces. This matter will be discussed shortly.

Example 2

Show that the space Rn is a Banach space.
Solution: R" is, of course, a linear normed spece. It remains to show

that it is complete with respect to the Euclidean norm. Let

l‘i} = {l‘l’?’e”" } r & ={xlk’x2k’ ""xnkj
be a fundamental sequence of elements in this space; that is, for every ¢ ™ 0O

there exist an N€ such that for p, g > Ne we have
n /2
2
d = - <
(2prxg) Z (Xep = Xkg! €
k=1

If the sum of a finite number of non negative terms is smaller than €2 then

everyone of these terms must be smaller than 52; hence,
lx_kp-xkg'<€ k=l,2,...,n

-10-



That is, { Xy Xyeps o0 } is a fundamental sequence of real numbers.
Let

= Um x k=1,2...,n

and
X = {Elx Ers oovs gn}

Then it becomes clear that

lim x =%
n - o

Example 3

Consider the half-open set of real numbers between zero and one,

=] g

including one but excluding zero. Show that in this space the sequence X, =
is a Cauchy sequence which is not converging.

Solution: The above Cauchy sequence has no limit point in the specified
space. However, if the gpace was to include zero, then the Cauchy sequence would
converge to a point in the space. The latter space, {:x: 0<x< l} s i a
complete metric space. This is an example of a metric space which can be made

complete by adjoining additional elements.

Example 4
a) Show that the set of rational numbers form a metric space with respect

to the norm
Il = 1|
where x is a rational number.

b) 1Is this a Banach space?

-11-



S8olution: Part (a) is straight forward. In order to answer (b), take,

for instance, the sequence:

- (383 )

This is a fundamental sequence since it converges to zero which is an

element of the space. On the other hand, the set

1,1 l,2 1
frad = o+, adP, a2, .0
has no limit in the space of rational numbers, since
1m (1 + %)"‘
n

= e

This is a simple example of a metric space in which there are fundamental

sequences which do not converge to a limit in that space. This is not a
B-space.

Example 5
The space of continuous function ¢C[a,b] is a Banach space. The distance

between vectars x(t) and y(t) is assumed to be the absolute value of their

largest deviation in the interval [a,b].

a(x,y) = Max |x(t) - y(t)!, a<t<p
Solution: Consider a fundamental sequence

fry (6 xy(e), .03

Thus for a given ¢ > O there exists an N_ such that for n,m > N

g, - x Il < e
or
lx () = x ()] <e

®
1A
ct
IA
o
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This implies that the sequence converges uniformly and its limit is a cone

tinuous function x(t) such that

Ixn(t) - x(t)] <e n>N

a<t<b
This implies the convergence in the sense of the applied metric.

Example 6
Show that the space of square integrable continuous function Cz[a,b] is

not a Banach space. The distance being defined by:

b 1/2

a(x,y) = f [x(t) - y(t)F at
a

Solution: It is not difficult to show that the space of all continuous functions
Cz[a,b] is a metric space.

In order to show that this metric space is not a B-space, let us simply
construct a Cauchy sequence in the space C'2 [-1,1] which does not converge to a

vector in the same space.

Let
rn(t)=o for =1 <t <0
fn(t) = nt for L0<t <€1/n
fn(t)=l for 1/n <t <1

The sequence {fn(t)} is indeed a sequence of continuous functions. But as

n approaches infinity, we find:

1im f (t) =0 for -1 <+t
n—sw o»

IA
o

1im fn(t) =1 for 0<t
n =

IA
[

13-



The limit vector is a discontinuous function. You may wish to show aa an

exercise that the sequence

fsn(t)} = arctan nt for -1 <t <1

is also a fundamental sequence which converges to the discontinuous function:

8(t) = -n/2 for t £ 0

& (t) = n/2 for t >0

1-4. Abstract Hilbert Spaces

As far as the application of the concepts of abstract space to physical
sciences is concerned, the so-called Hilbert space, commonly denoted by H,
occuplies the dominant place. Hilbert space, or Hilbert function-space, is a
space of finite or infinite dimensions defined over the field of complex numbers
having the following main characters. There should Le a suitable distance
function defined, that is, the metric should a:. se from an inner product form.
The space must be complete, i.e., it should possess the convergence property
for all its fundamental sequences with respect to its metric. Furthermore, the
elements of the space must have a certain property of "closeness" which is
referred to as the separability requirement.

Hilbert space as defined here is an inner product space which is complete
with respect to its norm, and msy be separable or non separable. More specifi-
cally, the following axioms, 1, 2, 3, and &4 are required:

l. H is a linear vector space over the field of complex numbers.

2. With every pair of elements, x,y of I-f} there is associated a

complex number (x,y) called the scalar or inner product of x
and y, with the properties:
=lba



a) (xy) = (Lx)

(Bar denotes the complex conjugates; note that (x,y) is

real, and the number (3,5)1/2 = |lxll is called the norm
of (x).

b) (x+2,¥) = (5y) + (2,¥)

¢) (Ax,y) = M(x,y) for arbitrary complex number A

a) (x,x) >0

(o) if and only if x = O

e) (x,x)

3. H is complete with respect to the metric

a(x,y) = lx-yli
L. For every positive integer n, the space contains n linearly

independent elements.

5. H is a separable space. (This property is optional as a great

part of the theory Hilbert function-space is applicable without
regard to separability.)

We note in passing that if properties (1) and (2) are satisfied, the space
is referred to as a Pre-Hilbert space, also a Unitary space. An n-dimensional
unitary space is a complex Euclidean space. In the definition of Hilbert spaces,
it is not unusual to forego the separability requirement, or even the requirement
of infinite dimensions, at times. In the present work, however, we shall always
adhere to the first three requirements, but will not insist on the separability
condition for every problem discussed. A Hllbert space which satisfies conditions
(1), (2), (3), and (4), but not (5), is referred to as a non separable Hilbert

space. Hilbert space is a subclass of B-space which arises as a direct generaliza-

15~



tion of Euclidean space. 1In view of the fact that Hilbert space is an inner
product spuce, its geometry is closer to the geometry of the ordinary Euclidean
space than to any other B-space.

The following two important inequalities for elements of Hilbert spaces
are direct consequences of the defined axioms.

a) Schwarz's inequality

[(z,x) 1 < lell Nl (1-26)
To prove this inequality, note that for any arbitrary A
the norm

lx+ryll is a non negative number, that is

(x + 2y, x+ 2¥y)20 (1-17)

Note that this inequality holds trivially if y = Q. So we

assume y £ O.

(£x) + Mxy) + Myx) + MNP (vy) >0 (1-18)
By letting
(l‘:l)
= - (1-19)
(x,¥)

One obtains

l(x,3) P
(x,x) = —— >0 (1-20)
(v,x)
or
[, 3) 1 < el i ll (1-21)

«16-



b) Triangle inequality

e + xlh < lxll + iyl (1-22)

This inequality can be derived in a similar vein.

s+ IF = (x + x5 5+ 3) (r-23)
= (% x)+ (¥, x) + (x, ¥) + (¥, ¥)
< lel® + 20l lll + gl

e + yll < Nzl + fixll (1-24)

1-5. Infinite-Dimensional Euclidean Space « Space 22

In the previous section, we have defined the basic requirements for
abstract Hilbert spaces. 1In this section, we propose to investigate in some
detail the infinite-dimensional Euclidean space as an example of Hilbert space.
This space is often referred to as the space 22. The coordinates of every vector
may be real or complex numbers; the usual vector operations and the norm of an

element are defined as follows:

x = (Eys Epp vy Epp oee)
Y= (g5 s eces Mgy vee)
x+y o= (B + s &5+ Ty cees Bt N, ell)
A& = (MEgs Mo, eees MEL, ...)  , A a complex number

The inner product and the norm are respectively:

(my) = P &7, (1-26)
i=1

=17~



i 1/2
lell =] D" le,P] ¢ + = for any x ¢ £ (1-27)
i=1
The condition of finiteness of length is essential for convergence

requirement, and must be included in the definition of the space 12. The
first thing is to show that this space is actually a linear normed (inner
product ) space. The first three conditions of normed spaces are obviously
met. The completeness of this space can be inferred from Example 2, for a real
Euclidean space of infinite dimensions. The same line of reasoning is essentially
valid when the components are complex numbers. It can be also shown that the
space 12 is a separabl= space, but this fact is not of an immediate concern to

our studies.

The following two basic inequalities, of course, are valid for 12.
oo (o 0] [+°]
Lol s )IRA (1-28)
i=1 i=1 i=1

o0 o1/2 o 2q3/2 oo 27 1/2
I o I R ol I I B ol
i=1 i=1 i=1

These inequalities are rather interesting and often lend themselves to useful

physical interpretation in applications. For this reason, a slightly different
derivation is presented below. In order to show directly the validitv of the

inequality
ey ll < Ml + lgll

one may use a simple and well-known variational procedure. Let us first prove
the validity of these inequalities for En == an extension to the case of 22 will

present no difficulty. Consider the finite sets of real numbers

-18-



{al,ae,...,anz and {bl,bg,...,bnz g
A familiar variational method suggests the calculation of the quadratic

fanction

n
£(x) = Z (a,x + b, ) = & + 2Bx + C (1-30)
i=1

where x is an arbitrary real quantity, and

n n n
2
A= ) &), B= Yoap o, c= ¥ oD (1-31)
i=1 i=1 i=1

Since f(x) must remain non negative for all real values of x, the condition

B’ -ac<o (1-32)

Promptly gives

n 5 n n
Zl a;b. | < Zl a:e.L) (Z bi (1-33)
i= i= i=1

This is a useful inequality which was originally obtained by Cauchy. Now the
triangle inequality can be derived without difficulty. In fact, by taking the
square root of both sides of Cauchy's inequality, multiplying by two, and adding

A+ C we find

2 VB + (asc) <2 Ya Vo + (asc) (1-34)

n
Y (e +2ap, +13) < (VA N (1-35)
i=1

or, the triangle inequality:
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1/2

/2 n
+ Z bi (1~36)
i=1

n 1/2 n 1
2

Z (a-,L + bi) < Z a2

i=1 i=1

the extension of Cauchy's inequality to the case where n = ®, (also for complex
22 spaces) is not difficult. The only restriction is that A and C should remain
finite; this is guaranteed by virtue of the assumption of finite norm for all
elements of 52.

2
Separability of Space £

Consider the set D of all elements of 12 having only a finite number n of

non-zero coordinates; all such coordinates being rational numbers. We will show

that D is dense in .22. To this end, for any x and € > O we set forth to find a

suitable converging sequence, by means of a point z € D.

2
25

{xl,xz,...? x e £
izl,;z,...,o,o,...} z ZD

PR D W W

k=1 k=n+1

£

li-2 I

00
Note that the series Z ka|2 is convergent by hypothesis. Therefore, we
k=n+1

can find an n = no such that

(o]

2 1 2
Y I fsze
k=no+1 .

o)
Consequently, in the finite sum Z ka-zk |2we may choose the rational numbers
k=1

2y close enough to % such that



n
O

2 _1 2
Z 'xk'zkl S5 ¢

k=1

|'@-z|ld < 62, ”3;-2” <e

2
This inequality proves that D is dense in £ .

Example 7

The unit sphere of the infinite-dimensional Euclidean space (22) is not a

compact set.

Solution: To show the validity of this statement, consider for instance the

infinite -:t of orthogonal vectors {gkzz € = (1,0,0,...), e = (0,1,0,0,...)

”gk“ =1 kK =1,2,%5,...

We cannot select a convergent subsequence from égklsince the distance between

any pair of elements is V2.

2
le, - e I = (e, - ep» &, - g;) =2

1-6. The Space L2 - Function Space

An important realization of Hilbert space is provided by the so-called
L2 space. Let [a,b] denote a finite or infinite interval on the real axis.
*
Consider the set of all real valued square integrable functions f(t), i.e.,

b
f [£(£)1° dt < + (1-37)

a
Under the usual definition of sum, and product by a scalar, and defining the
zero element as a function which is "equal" to zero (almost everywhere) in [a,b],

we have a linear vector space. In this vector space induce the inner product

*
f(t) is denoted by lower-case letters and is represented in the vector space by

a vector f.
-21-



b
(£,8) = ffu)uwdt (1-38)

a
The integral is to he taken in the sense of Riemann. The functions space thus
defined is referred to as L2 space. It will be shown now that the space L2 is
a linear vector space.
1. L2 is a linear vector space.

i) The product of any two elements of L2 is integrable, since
1 2 1 2
le(e) ()] <5 (£(6)]° + 5 [&(t)] (1-39)

observation is needed for the proof of (ii) below.
ii) The sum of any two elements of L2 is an element of L2.

Proof';

[r(t) + gt)F < [£(6)F + 21e(t) g(t) ] + [e(t)F (1-40)

iii) If f e L2 and A a constant, then evidently Af € L2.

f[x £(6)F at = A% f[f(t)]2 dat < o (1-41)

2. Properties a,b, and ¢ for the suggested inner product function are
easy to verify. For 4 one notes that the integral of a non negative
quantity. Part e is more difficult to verify. The difficulty arises
on account of some mathematical subtleties. Take, for instance, square
integrable functions u(t) whose integrals are zero but the functions can
take on positive values. The difficulty can be circumvented by re-
sorting to the fact that the set of t for which u(t) > O has the
measure zero; that is, a set of points on [a,b] which can be covered
by a finite, or countably infinite, set of intervals with an arbitrarily

small total length. This amounts to saying that any non negative func-
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Lgs.

tion whose integral is zero differs from zero element on a set

of measure zero. One may say that such an element is equivalent

to the zero element. In other words, the null element of L2 is the
collection of all functions defined on the real axis which are equiva-
lent to zero. Two elements differing on at most a set of zero measure
are referred to as '"equivalent". The integrals of the square of
equivalent elements are equal. Therefore, from the strict mathe-
matical point of view the space of functions considered here is
rather a space of "equivalence classes”". The distance between two

functions £(t) and g(t) equals zero precisely when f(t) = g(t) for

almost all t. To depict this situation, let us write £ ~ g if and
only if d(£,g) = O. We do not pursue this matter further; a presenta-
tion encompassing measure theoretic consideration (Theory of Lebesque

integral) is not within the scope of our present undertaking.

The L2 space is a complete space.

For proof, see standard texts, such as W. Rudin, Real and Complex

Analysis: McGraw-Hill Book Co.; Akhiezer and Glazman, Theory of

Linear Operators in Hilbert Space, Vol. 1, pages 21-23 of the English

translation.

For a discussion of the validity of these properties for L2, see
Chapter 1 of the last-cited reference, or Chapter VIII of Functional
Analysis, by Knlmogorov and Fomin. Detailed proof of separability
with its implications can be fouud in Chapter 2 of L.V. Kantorovich

and A.P. Akxilov, Functional Analysis in Normed Spaces, Macmillan Co.,

New York, 196k,
-23.



For the sake of exercise, Schwarz' inequality and the triangle inequalities
for vectors of L2 will be derived directly. Let f and g be elements of L2 not

equivalent to the zero element, and A an aribtrary parameter.

b b b b
f (re+g)° at = x2[12 at + 2a ffg at +] & dt (1-42)
a a a a

This quadratic function must remain non negative for all real values of A,

hence

2

b b b
ffg at < jf2 dt f & at (1-43)
a a a

This inequality is known as Cauchy-Bunyakovski's inequality. By taking square

roots, multiplying by two and adding ] t2 at + ‘Zgz dt to both sides, one
a

obtains an inequality bearing the name of Minkowski.

1/2 b 12 2

b b
(£+g)° at < £ at + | [ & at (1-4%)
[ ] /

These inequalities are readily recognized as the Schwarz and the triangle

inequalities discussed earlier for Hilbert spaces, i.e.,
Ie,8)1 < leh gl (1-45)

lie+gl < lell + gl (1-46)

In the definition of the space L2 [a,b], for simplicity, the assertion was
made that these functions are real valued. This restriction can be easily

removed. Let ¢(t) > 0 Le a non negative square integrable function on [a,b] and

-24-



denote by Li[a,b] all complex~valued functions square integrable with respect

to the weighting function ¢(t), that is:
b
JESECIEEE (1-47)
a

A simple extension of the foregoing material will enable one to show that

the space Li[a,b] is also a separable Hilbert space. The chosen inner product

is
b
(£x) = [ ®(t) [x(t) ¥{E)1 at (1-48)
a

Very often, in application, one deals with the case ®(t) = 1; that is La[a,b]

b
() = f x(t) y(t) at (1-49)
a

1-7. Continulity of Scalar Product

We wish to show that the inner product is a continuous function with
respect to the norm of the Hilbert space. Let x and y be the limits of the

sequence § x and 2 y respectively. By virtue of the preceding inequalities
n n

one can write:

xpx,) - (23] < Hxpx,) = )l + 1(5,,3) - (&x) 1-50)

2~ + (=200

IA

e Ng=xl + Ml M -zl

Mlty_-xll + ligll ls-xl
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where M denotes the upper bound of ”5n” and "xn". As n is infinitely increased,

we find
lx,-xll =0, ly -xll -0 (2-51)
n 5w n -

whence
Hzx,) - (5x)] =0 (1-52)

This proves that the inner product in a Hilbert space is a continuous function

with respect to the norm.

1-8. Linearly Independent Vectors

The reader is already familiar with the definition of a finite set of
linearly independent elements of a finite dimensional metric space.

A finite set of elements [@l,gz,...,gnz of a Hilbert space is said to
be linearly dependent if there exists scalars fal,ae,...,an} , not all zero,

such that

n
Z a8, =0 (1-53)
i=1

when the finite set is not linearly dependent, then is said to be linearly in-
dependent. The following statement is self-explanatory.
Theorem: The necessary and sufficient condition for a finite set of n
vectors of an inner product space to be linearly independent is that its
Gram Determinant be different from zero, i.e.:
(¢,8,)  (2,8) ... (9,8)
G(DysBos -+ s2,) = | (B558;) (858) ... (9,9 )| #0 (1-54)
@,2)  (,%) - (¢,2)
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An infinite set of vectors Zgﬁ,gb,...} of a Hilbert space is said to be
linearly independent if every finite subset of it is linearly independent.
It is natural to extend the concept of basis from a finite-dimensional metric
space to a Banach space of infinite dimension. When the numbel of elements in
a set of linearly independent elements of the space becomes infinite, the space
is said to be of infinite dimension. This number may be countable or uncountable.
In this elementary exposition we only consider Hilbert spaces of countable dimension,
or simply Euclidean spaces of infinite dimension.
Let {gl,ge,...,gn,...} be a countable set of independent elements of a

Banach space X such that every element x € X admits a unique representation

= ) x e (1-55)
k=1

That is, to each x there corresponds a unique seguence xl,xz,...,xn,... of

scalars such that

lim i Z xe - xll =0 (1-56)

m — o

Under these conditions we say that X has a countable basis. In our study we

simply adhere to the case where the space has a count. sle basis. A discussion

of B-spaces with uncountable basis is indeed beyond our plans. It can be proved

that any Banach space with a countable basis is also a separable space. Also, we

are told that the following question is an unsolved problem of modern mathematics.
"Determine whether for every separable Banach space there exists a

countable basis."

See, for instance, A.E. Taylor, General Theory of Functions and Integration,
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Blaisdale Publishing Co., New York, 1965, page 152. The set of all linear com-
binations of subsets of an infinite set of independent elements {Q;is referred

to as the linear subspace generated by {Qg (also linear hull).

1-9. Linear Manifold and Subspace

A non empty subset of elements of H is said to form & linear manifold I,

if for any £ € L, g € L and arbitrary numbers & and B we have

af +8 g e L (1=57)

A subsget of elements in a linear space is said to be closed if the set contains
all its 1limit points. In view of this definition, we note that in contrast with
the finite~dimensional inner product space, a linear manifold in a Hilbert space
may not be necessarily closed. A closed subspace is itself a Hilbert space. Trivial
examples of closed subspaces are the whole space H, and the null space of H con-

taining the zero element only.

As an example of a linear manifold which is also a closed subspace, consider

the following type of vectors of 12:

£ = Efl,fe,fj,fh,f seed 5 £ == £ (1-58)
g = zgl.vgz:g}:ﬂ :35:"'2 ’ & =8& = 83 (1-59)

Evidently all points x = af + Bg will have coordinates of the form

X = éxl’x‘a’x3’xh’x5"")2 s X =Xy = Xy (1-60)

The points of H satisfying xl =X, = x3 form a linear manifold L which is also

a closed subspace.

As an example of a linear manifold which is not a closed subspace, consider
the set L of all vectors in 12 which have a finite number of non zero coordinates

relative to some basis. Then the sequence of vectors 51,52,353, 000 where
=28~



x5 §1,0,0,0,...7

l -
21,5,0,0, - §,

Ny

11
255 = Zl’éyn':o’---_f'

is a converging sequence of vectors in L. However, the limit vector of this

scquence does not belong to L.

g 111 M
X = lim L{n = 21,5,):,8,...:

1-10. Orthogonality

The elements x and y of H are said to be orthogonal if
(x,x) =0 (1-61)

Orthogonal elements are denoted as x l Y- An element x € H is said to be
orthogonal to a subspace S of H if x is orthogonal to every element of S, ami
we write x lﬁ. If elements of two sets Sl and 82 are pairwise orthogonal, the
sets will be referred to as orthogonal: Sl l S,-

The sets of all elements orthogonal to a given set S is a subspace of H.

This subspace is called the orthogonal complement of S. It is not difficult to

see that if x l Yy and x l,g, then x J_alx + a“g. Also in view of the continuity
of the scalar product, we find that if x l-xh (n=1,2,...) and ¥, "X then x l_y.
The definition of length of a vector, and the angle between vectors in

Hilbert space are identical with these definitions in finite dimensional Euclidean

space, i.e.
’ ’ Il = + V(g x)

(x,x)
cosine of the angle between x and y = ————
lizli Iyl
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A set of elements e

€)5835--58, of a Hilbert space is said to be orthonormal

1 for i = j
) = (1-62)
O fori#j

[

It is easy to show that every orthonormal set of vectors is an independent set.
A set of orthogonal or orthonormal elements Zghfgb,...,gn,...l of H is said to
be complete if there does not exist a non zero vector in H orthogonal to each
vector of the set. Problems concerning the completeness of a set of orthogonal
vectors in a metric space are rather complex. Here we quote some of the results
without proof.

1. There is a complete orthonormal set in any non empty inner-product

space.

2., If H is a separable space then there exists in H a complete ortho-

nornal set with at most denumerable elements.
Every finite or infinite set gl,gz,...,nn,...z of linearly independent elements
of H can be used to obtain a set of orthonormal elements by an orthogonalization
process. This process, in essence, was described in an earlier chapter for inner
produce spaces with finite dimensions.

In Section 1-13 we shall present a procedure for construction of a set of
orthonormal vectors in a Hilbert space. A Hilbert space may contain a countable,
or an uncountable number of such orthonormal vectors. In the first case, the space
is a Hilbert space of countable uwimension. Finite-dimensional spaces and spaces
of countable dimensions can be also defined as separable spaces.

Example 1-8

Let h be an arbitrary point of H except Q; show that the set of all

points of H orthogonal to h forms a subspace of H.

Solution: 1In fact, if £ l h and g J_Q, then due to the bilinear property
of the inner product function, we find that (af + pg)| h.
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1-11 1Isomorphism of Separable Hilbert Spaces

The definition of isomorphism between two separable Hilbert spaces can be
formulated as a generalization of the definition of isomorphism between finite
dimensional Euclidean spaces. Two separable Hilbert spaces H and H' are said
to be isomorphic if there exists a one-to-one correspondence between their
elements such that:

1. If x' € H' corresponds to x € H, and y' € H' corresponds to y € H,

then

=

x' + y' € H' should correspond to x + y € H.

2. For any arbitrary number A of the field,

Ax' € H' should correspond to Ax ¢ H.

Moreover, the two spaces are said to be isometric if

3. d(xy) = d(x',x')

It is not difficult to show that all Hilbert spaces of countable dimensions
are isomorphic to each other. 1In particular, the spaces Le[a,b] and ,82 are
isomorphic and isometric.

Let 221’22’ 3 be a complete orthonormal system in a separable Hilbert

space H, and x an arbitrary element of H. Then x admits the (Fourier) repre-

sentation: =
x = Z *x €k
k=1
where =
2
X = (g,ek) and Z ka| <
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We can establish a one-to-one ccrrespondence between points of H and £2,
2
for instance by selecting x' € £ to correspond to x € H such that x' has the

same coordinates as x, i.e.,
X & {xl,xé,...} relative to {él,ge,...}

x'= {kl,xz,...g relative to iéi,gé,...}

This correspondence obviously establishes an isomorphism between H and 22. In

order to see whether the two spaces are isometric, let us calculate the inner
product function for two arbitrary elements x and y of H, and their corresponding
images x' and y' of 12. With some mathematical care about the convergence of the

incurring sequences, we find:

hx) = mel s ) v | = Y. uF
k=1 k=1

k=1

b b o o
(%) fx(*-) y(t) at =f (Z "k?-k) Z Vi | ¢t = Z Yk
a a k=1 k=1 k
Thus, any separable Hilbert space is isometric with 22.
The separability argument enters the discussion in view of the necessity
of representing every vector of the space by its coordinates (the so-called Fourier
coefficients). (See, for example, Liusternik-Sobolev, page 79 of English trans-

lation, Ungar Publishing Co.)

1-12 Projection of a Point on a Subspace

In many problems concerned with application, one wishes to find the
"shortest" distance between a given point x of a Hilbert space and a subspace S
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of that space. An intuitive, but rather illuminating way of looking intc this
problem is to search for the point y which may be intuitively referred to as

the "projection" of x on 8. This is schematically illustrated in the figure
below. In a rigorous mathematical approach, one has to show that there exists

a unique point y € S which could justify the definition of projection. To
fulfill this, we require (a) that x - y be orthogonal to the subspace S; and (b)

that y be the "nearest point of S to x, in symbols:
() x-y |y y'es (1-65)
(x -y x')=0

() lix-yll = inf lx-y'll < lx-y'l (1-64)
Y'eS

Fig. 1-5. Projection on a Subspace
We prove formally:

Projection Theorem. Given x ¢ H and S a complete subspace of H, there

exists a unique point y € S satisfying requirements a and b above.
Since [x-y'll, (for all y' e S) is bounded below by O, it has a greatest lower
bound, inf ”g—x'” = d > 0. Hence there exist a sequence dn = Hg-xnﬂe which
converges to d. Let é;alg be a sequence in S such that dn = ”E‘Xnne approaches

d as n »», Furthermore, let h be an arbitrary element of S, and A\ an arbitrary
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complex number. Of course, ¥, + Ah is an element of S and by hypothesis

e - (v, + MNOIF > a (1-66)

Since the sprace possesses an inner product, we may write:

lx-y IF - A1,x-y) - Xz-y,,0) + W Iulf >4 (1-67)

This inequality must hold for any desired value of A. In particular, letting

e )l})
A o Etwl) (1-68)
lall
yields
ey [P l(>~<-nzn,l.1)l2 - e
X=Y -—_— 2 -
n lalP
(a,-a) Ialf > I(x-y,,0) 2 (1-70)
loll Va -a > I(x-y,,h)l (1-72)
Thus, for any Y, and X, of the S we have
Hypxp2) | < | (20 + I(exp0) | <
(1-72)

(Va -a+ Vi ) inll

For h = Y, - ¥, we find

lLyn = xmll < Vdn-d + Vdm-d (1-73)

This inequality leads to the conclusion that the sequence Yys¥preeos¥pseee
is a fundamental sequence, and converges to a point y. We will now
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¥*
show that y € S is in fact the desired projection point defined by d = ”L"M”

= inf |lx-y'll as follows:
Y'e s

eyl < Tyl + liy=y, | (1-74)
Taking the limit of both sides yields:

lle-yll < a+ o0 (1-75)
but by hypothesis lh-x” > 4 for all y € S, hence

-yl = a (1-76)
Taking the limit in inequality 1-71 yields:

(z-y,b) = ©

zy |n
Since h is an arbitrary element of S, it follows that x-y _L S.

In order to show the uniqueness of this element y, let x-y = 2z and assume that

x' ;! Y is another point of 5 with the desired property. We have

Yes , zls (2-77)

y'+2' y'es , z'|ls (1-78)

X

[l
&

+

N

These relations suggest that

Y-y es , z-2'1s (1-79)
whence
"l
- IF = (x-y'5y-x') = (2'-2,x-y') =0 (1-80)
The latter equality implies that y and y_ are coincident. This unique point y

with the described property is the projection of x on the subspace S.

*An alternative proof may be based on the continuity of the inner product, that

is:

d=21im 4 = 1lim ”g_c-xn” = “ X - lim xn” = IB'M”
n — n —x n —» o
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In particular, if the subspace S is the linear manifold generated by a sole
vector g, then the projection of x on that manifold is the vector y such
that

(x-y,8) = O (1-81)

Now y can be expressed as y = Ag, Whence

(x, )
N = — (1-82)
(8, &)
x
-
- f!
= I
/
=
e
s
i
(Elgl}gl
g
Fig. 1-7 Fig. 1-6
Projection on a multi- Projection on a one-
dimensional subspace dimensional subspace
The projection of x on g is:
(x, g)
Proj. xon g = —— g (1-83)
(g 8)

Moreover, when g is a vector of unit length, one arrives at the simplified

familiar relation

Proj. x in g = (%,8) & (1-84)
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n
If a subspace S is generated Ly the linear manifold E: akgk, where £,
k=1

is an orthonormal set, it is not hard to arrive at the simpler resulu

n
Proj. x on 8 = Z (%8, ) & (1-85)
k=1

1-13 A Procedure of Orthonormalization

Two sets of vectors in a Hilbert space are said to be equivalent if and
only if each element of one set is a finite linear combination of the elements
of the other set. If every pair of vectors in a set of elements of a Hilbert
space are mutually orthogonal vectors, then the set is said to be an orthogonal
set. Moreover, if the elements of an orthogonal set have unit length, the set
will be referred to as an orthonormal set.

In the sequel a method is presented for constructing an equivalent ortho-

normal set, zgl,QZ,...,gn,... for a given finite or infinite set of independeut

vectors {51’52""’5n""3 - Let

gy 86
e G-ee)
Denote by El the one-dimensional space generated by either vector £y or g,

Next, find the projection of £, on space El’ and calculate the non zero vector

22 orthogonal to El.

h, =8, - (gse,) e, #0 (1-87)

Thus gz and e, are orthogonal pairs, and h2 # O due to linear independence of

1
8y gnd J-P In order to construct ar orthonormal pair, {§2, glg let simply
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h
% =TT (2-88)

Now e, and e, are orthonormal basis of a two-space E2. We proceed likewise
by finding the projection of gz on E2, and by continuing the process described

earlier we find a vector h, # O orthogonal to E,

by = 8 - (8508))e) - (B5r8)e, # 0 (1-89)
Normalization yields

h

&5 = Tfhin (1-90)

The vector £, for any positive integer, can be constructed in e similar fashion.

n-1
b= g, - D (guee £ 0 (1-92)
k=1
'Lln
e, = o 1 (1-92)

A set of orthonormal vectors of H is said to be a complete orthonormal system,
if the system is maximal, that is, there exists no other element different from
0 and orthogonal to every Hilbert space. For example, for L2 [=-n, #] by using
vectors of the foru sin nt, cos nt, we can derive the following complete ortho-

normal system:

cos t sin t cos 2t sin 2t cos nt sin nt
e — =
(1-93)

It is impossible to add any other orthonormal non-identically zero element to

this system.



1-14 Fourier Representation in a Hilbert Space

As discussed before, the problem of representation is to ascertain the
possibility of characterizing every element of the space as a linear combination
of the elements of a given basis of that space. 1In other words. to represent
a vector by its so-called "coordinates" with respect to a certain basis.
Accordingly, in this section we study the representation of any vector h € H

with respect to a complete orthonormal set of vectors

{23 = {Ql’ggs---’gn:--gj 0

It will be shown that the problem of determination of the coordinates
of h, and the problem of least square approximation of h by a linear combination
of elements of e are essentially the same. Both these problems in turn coincide
with the finding of the projection of h on the subspace specified by the ortho-
normal set.

The problem is to search for the "best" linear expansion of the vector h

in terms of the elements of the specified orthonormal set

(=<
b~ Z 8 & (1-94
i=1

What are the "best" coordinates Zal, Byyeees8, ...} for representation of h?
By the "best" it is meant that no other set of Eal, a5, - ..,an'g should lead to

a lower error in norm, i.e., an error smaller than:

In - Z a, gill (1-95)

i=1
This is the problem of least square approximation, or Fourier series expansion

in Hilbert space.



We begin by studying the problem of the least square approximation in
spaces of finite dimensions.

Theorem

Let h be a vector of a finite-dimensional inner product space with an

orthonormal set of vectors gl,gz,...,gng , the minimum of the

expression n

o - D ey eyl (1-96)

i=1

over all possible values of ai's corresponds to the selection of

a, = (h,e i=1,2,...,n (1-97)

i i)

For any other values of a,'s we will have

i
n n
Iy - Z (b,ey)e;ll < b - Z aje, | (1-98)
i=1 i=1
Proof o n a
”D = Z ai-e.illg = (g = ai‘e"i ’ h = aigi) (1-99)
i=1 i=1 i=1l
n n
= (yn) - Y aylepb) - ) a ()
i=1 i=1
n n
i=l Jj=1
n n
= (3,p) - ) agle,h) - ) Flney)
i=1 i=l
n
2
© 5 lal
i=1




n

By adding and subtracting the expression 2: (gi,g)(g,gi) to the right

side, one finds i=1
n n M
2 2 >
o - Y ae, P = (p) - Y e+ Y dag-tnep)l
oty i=1 =1

The first two terms of the right side do not depend on the coefficients
a; therefore, the minimization of the left side expression requires
thet

a, = (g,gi) i=1,2,...,n (1-100)

Furthermore, the solution to this problem of least square approximation

is unique, and

n n
minimum | - Z 319'1”2 = |m||2 - Z l(b,si)lz = Ot (1-101)
8y i=1 i=1

This is the square of the distance & of the point h to the linear manifold

spanned by an orthonormal set {gl,gz,...,gng . Since the minimum of a

distance cannpt be a negative quantity, we have

n
Z I(Ll,:e_i)l2 < InlP (1-102)
i=1

This inequality is referred to as Bessel's inequality. The preceding
theorem can be generalized to the case of infinite-dimensional Hilbert
space.

Let Zg} = igl,ge,...,qn,...l be a complete set of orthonormal elements of

a Hilbert space H, and L the linear manifold generated by the first n vectors of

ZQK . For any given element h and specified € > O, we can approximate h by

a linear combination of elements of L

l1a



such that

In - E: aigi” < e for n > N, some N

i=1
That is, this representation converges in the metric. The least value of the
expression to the lert is obtained by the so-called Fourier coefficients, i.e.,

when

a; = (Q,gi) i=1,2,...,n (1-103)

oo

We now show that the series 2: akgk converges. Let gp and §q be respectively
k=1
the sum of the first p and the first q terms of the Fourier series. For q > p

we will have

q Q
2 2
lsg - gl =1 ) aelf = Y layl (1-104)
p+l P+l
q
As p and q are increased infinitely the sum 2: Iakl2 converges Lo zero.
p+l

Therefore, the sums s_ torm a fundamental sequence in the H-space. Let g be

the 1limit for the sequence. Since the space H is required to be complete, the
point s must belong to H. The fact that h = s can be seen from the following.

In view of the continuity of the inner product, the Fourier coefficient (g,gm)

can be obtained as follows:

(s,e
<m >

P
)= lim (spe) = lim () aee) (1-105)
=1
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For any fixedi m and p > m, we find

(B-s,e,) = (Bye ) = (8,e,) = O (1-106)

The identity of h and g follows from this relation and the fact that the set

Ze} is complete. Whence,

o«
P n=1
Theorem

Let H be a separable Hilbert space, with a complete set of orthonormal

vectors {91’92’53’ ...3 . We can associate with any element x ¢ H a
00

Fourier series Z (S,sk) &, converging in the norm to x, and such
k=l o
that the series Z I‘(Z,Qk)le converges to
k=1
oo
(s, ) P = ¢ 8
e )l = (xx) (1-108)
k=1

Alternatively, we state that every vector x € H can be approximated as closely

as desired, in the mean square sense, by the above Fourier series. An element
0

can be exactly expressed by a Fourler sum Z a.e if Bessel's inequality is
=1
changed into the so-called Parseval's equality; that is,

3]

Y e )P = () (1-109)
k=1

Conversely, one may state & criterion for completeness of a set of orthonormal

vectors in a Hilbert space as follows:

~435.



Theorem
In order that the set of orthonormal vectors e be a complete set,

it is sufficient that Parseval's equation holds for every x ¢ H.

0o

(e = Ixlf = ) e P
k=1

If H is also a complete space (as in our present case), then this

»*
condition is necessary and sufficient for completeness of {g? o

In case of the space IF[a,b], any arbitrary nonzero vector f£(t) may be

represented in terms of its Fourier expansion as:

(o]

£(t) ~ Z akek(t)
k=1

But this representation does not necessarily converge. However, when zék(t);
is a complete orthonormal set, then it is well known that the series will
converge.

In the spirit of the elementary scope of this chapter we have primarily
considered separable Hilbert spaces, which are obtainable as a simple extension
of the Euclidean space. 1In reality, Hilbert space may have countable dimensions.
Then the left side of the Bessel inequality, Eq. (1-102), will represent an
uncountable set. The impact of such a generalization, on the selection of a
complete orthonormal set, and related convergence consideration for Fourier
expansion, will require a full understanding of Lebesgue integral; this is

beyond our plans.

¥*
The completeness of a metric space X and the completeness of a set of ortho-
nornial vectors in X are to be distinguished.
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In brief, as long as we remain content with a direct countable infinite-
dimensional generalization of the Euclidean space, things are under control.
A step beyond that into the most general type of Hilbert and Banach space

requires more specialized mathematical preparations.

1-15. Representation by Fourier Trigonometric Polynomials in a Function Space

In this section we will apply the content of the previous section to a
problem of common interest. Let h(t) be an arbitrary vector of the real function
space L2 [0,21]. It is desired to obtain the best Fourier representation of h(t),
in the sense of minimizing the norm of error, in terms of real trigonometric
polyromials of degree n or less:

o)

f‘n(t) = 3 + ajcost+b sint+ ...+ acosnt+b sinnt (1~-110)

The totality of these polynomials forms a subspace S of dimension 2n+l over the
field of real numbers.

We set forth to derive the trigonometric polynomials fn(t) which is the
best linear approximation to h(t) in the least square sense, that is minimizing:

2n
g, )P = Y Ia(e)-r () at (1-111)
0

In other words, the problem is that of projecting h on S. Let us choose a
normalized version of the common Fourier trigonometric series as the maximal set

Eg}_lof an orthonormal basis for S,

e 1 _cos t - sin t
=, = = = » £ = 9 ooy
(0] Bn 1 Wf_-,f 2 o ’—n
(1-112)
cos nt sin nt



It is to be noted that the orthonormal set {g} is "complete”, that is, no
additonal non zero vector of S can be found which is linearly independent of

the elements of igj . Whence,

2n
Prog. hon S = Z &) (1-113)
k=0
where
¢, = (gh) (1-114)

Recalling the usual definition of the inner product, we find

27{ 2!1
1 1
c. = h(t) dt, c = - h(t) cos kt dt
o~ 3, f s C2x-1 ,,—-f
2n n
o} 0]
(1-115)
275
1 ]
Copy = = h(t) sin kt dt
2k T A A

These constants specify the best trigonometric polynomial approximation for
elements aof L2[O,2n] relative to the 3@3 basis. Since the question was formulated

relative to gn, from these relations we derive the familiar Fourier series co-

efficients: >
7
) 2R h(t) dat (1-116)
o] 7 (o] n *
o]
27
1 1 .
a, _ﬁcak_l S & fh(t) cos kt dt
[¢}
B (1-117)
1 1
by =_\/;c2k == jh(t) sin kt dt
(6}

The square of the error in approximating h by f is:
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2n

2
g, IF = IF - ) Icuey) (1-118)
i=0
No other trigonometric polynomial of the above type fm(t) with m < n may offer
a lower error. When n is increased, the error is reduced and when n — « the
converging Fourier series expansion approaches the exact representation of h.
Example 1-9
Calculate the Fouriler coefficients for the function
f(x) = x -t < x < g

in [-n,n] using the orthonormal set

_ sin x sin 2x e sin 3x

Solution:
n
c=(fe)=ijsinkxdx k=1,2,...
k =~k P 1=
-7

b1

1 _xcosk.x f+ jcoskxdx
Vr
2}\'" cos kx

[

The projection of x on the linear manifold of the above orthonormal set is:

x ~ 2 (sin x - si;2x+ si;}x = ees)

This orthonormal set is not a basis for the infinite dimensional space. A
complete set of orthonormal basis containing the above set can be obtained by

the addition of elements

-47=




But the projection of x on the latter set is the vector Q. Therefore, the

exact representation of x in the infinite-dimensional space is

0
x=2 Z (-l)k'l sinkkx

k=1

1-16 Optimality and Closed Convex Sets

A set of points X in a vector space is said to be convex if for any
arbitrary pair 3 x and y of X and O <t < 1 we have z = [(1-t)x + ty]) ¢ X. A
simple geometric interpretation of this property may be visualized by thinking
that all points z on the line segment connecting x and y and between x and y

must belong to X. The figure below sketches a non-convex set of points:

Fig. 1-8 A non-convex set of points

In view of this definition the following important theorem may be proved.
Theorem
Every non-empty closed convex set X in a Hiilbert space H contains a
unique elements L‘lo of smallest norm.
Proof
Let & = inf ”3_:" for x € X denote the least value of IQII for all points
in the convex set X. Consider a sequence fggn] of points in X such that Ih‘n" - &
and n =+ . A proof of the theorem requires the following two steps:
1. {ggrg is a Cauchy sequence.

2. X —>h_ and n -5 ®,
=n =0

=48



For any arbltrary polints x and y of H in view of the existence of an inner pro-

duct, the so-called parallelogram law gives:

lx+y P + lx-yIF = 2lxIF + 2]lylF 457 G (1-119)

£
£ ey lP = % 1P + 2 lylP - (1-120)

Now by considering points x, y in X, in view of the convexity of X, the vector
X+y

—5= will be also in X, whence:

le-yIF < 2lxlPF + 2llylPF -u&° 0 @ (1-121)

This inequality may be applied for points x, and X for showing that ‘,'xn-‘ is

a Cauchy sequence:

2

le -2 I < 2lls 1P + 2l [P - 48 (1-122)

As n -5 and m - ® the right side of this inequality by definition tends to zero.
Therefore zgn{ is a Cauchy sequence. The limit point of this sequence must be
in H since H is a complete space. Let h. be the limit point of the sequence

Z’én‘S » then

0

Ilggn-goll =0 as n — (1-123)

Tie point 1_10 belongs to X since X is assumed to be a closed convex set. It
remains to show that |[1_10|| = lim ||g_<n“ = 8, i.e., the norm is a continuous

n - o
function. To prove this consider once again the fundamental <triangle inequalities:

Il < Moyl + lixll (1-124 )
lxll - Il < lg-yll (1-1:5)

If x approaches y, the right side tends to zero. Thus, (x|l is indeed a continuous

function on H, whence
-49-



Moyl = 21m s N = 8 (1-126)

n-—se

To show that B, 1s unique, let [ li = ligll = 8, then the inequality (1-120)
yields:

llb(,-tll2 <o

ho'z

(1-127)

The importance of this theorem is problems of application is self-evident.
Whenever we have a closed convex set X in a Hilbert space, we can find a ‘unique
element of smallest norm. If points in X portray the performance of a physical
system then go describes the most "efficient performance” among all x ¢ X.

Many problems of optimal control fall in this category. The challenge to the
reader is to identify such a clear mathematical model in the heart of the

tedious technical literature of application where no main path is visible.

/ ~
./ \
'@
-, /
P 7 N - _,./ ;f
P s !’ - -
iVd il
e
Fig. 1-9a The element of Fig. 1-9% The elements of
minimal norm 1s unique minimal norms.



Chapter 2
LINEAR OPERATORS IN HILBERT SPACE

2«1, Introduction

In the context of engineering application, the material of the pre-
ceding two chapters offers a representation and an approximation theory for
signals in a Hilbert space. In a similar vein, the material of this chapter
is directed toward a representation theory for linear processing systems of
a Hilbert signal~-space.

The theory of operators is a powerful tool of functional analysis with
broad applications to problems of engineering and physics. For example, in
control theory, wave propagation and in quantum mechanica one is constantly
faced with the problem of determining critical frequencies of a physical
system which amounts to the determination of eigenfunctions of certain
differential or integral equations. In most applications, of this typ; the
concept of linear operator plays a very important role. Take for instance the
familiar integral transformation f(x) - g(x)

¢

b
&(x) = f x(x,y) £(y) &y (2-1)
a N

The correspondence between functions g(x) and £(x) can be denoted by the com~

pact notation

E =Af (2-2)
In this format one can readily appreciate that the solution to the equation
b
£(x) = f x(x,¥) £(y) &y (2-3)
a

where f£{x) is an unknown function is coincident with solving an eigenvalue

problem, since =51-




L£=AAZ

N (2-4)
£L=AZ
Likewise, the solution to the vector differential equation
$=-2r3 x(0) = ¢ (2-5)
vhere A is a constant n x n matrix, was found to be
x= (2-6)

we have discussed in detail, that the solution vector can be ocbtained from
the initial condition vector ¢ by spplying the linear operatar eib.

Some of the basic rroperties of linear operators on finite-dimensional
vectar spaces were discussed in Chapter 3 of TR-65-394. The information pro=-
vided there was adequate for an introductory treatment of transformation o
elaments of a finite dimensional Ruclidean space. More general and interesting
results may be derived, however, if the content of that chapter is extended to
linear operators in Hilbert and Banach spaces. The fulfillment of this aim is
the ocbject of the present chapter.

2-2. PFunctionals and Operators

By direct snalogy with the functions defined in a finite-dimensional
vector space, one cen define scalar and vectoar functions over the elements of
a linear space of infinite dimension. The first category of these functions
is commonly referred to as functionals and the second type as cperators.

Let D be a subset of the space X, to each point £ ¢ D, one may attach as
scalar valued function ¢g(f). This is a functional whose domain is D.

The definition of an operator in an infinite-~dimensional space is essentially

the same as in the case of a finite-dimensional space. Let X and Y be two
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linear spaces, and consider the set Dc X; to every element 3 ¢ 8, by &
suitable rule, we associate one element y ¢ Y. The relationship between
X and y may be designated by

Y=Ax (2-7)

The set D is referred to as the domain of definition of the operator A. The

set D, of all carresponding image points y 1is called the range or the domain
of values of the operator A. If the domain of definition covers the entire

space X, and 1if lJA < X, then it is said that the operator A maps X into itself,
or A is an operation on X.

In the following we shall conceantrate on linear operators acting on
linear normed spacesz in general, and on Hilbert spaces for the most part. In
this respect, first we need to define the linear opemator, and then fully grasp
the meaning of the two independent concepts, continuity, and boundedness for
linear operators of a metric space.

2-3. Linear Operators

The definition of a linear operator mapping an infinite-dimensional real

linear space X to Y stands essentially the same as in the case of a real finite

dimensional space. There is one important difference however that in the finite-
dimensional case the requirement of contimuity does not present itself explicitly.

In the infinite-dimensional case an operator is said to be linear if it is
sdditive and continucus as described below.
a) Additivity. For every peir z;, 3 ¢ X ve require:
Az + %) =A% +AX (2-8)
b) Contimuity. If a sequence X, e X converges to X ¢ X, then we require
that the sequence A g ¢ Y couverges to A g € Y in the sense of the convergence

m YI
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Based on properties a) and b) one can shov that a linear oparator
is dlso m’, 1.0., for every real mmber A, A(N,3) = A A 3.
For any arbitrary additive operator we have:

AQ)=a(+Q)=A(Q) +A(Q)=Q (2-9)
A(x) + A=) = A(x-3) = 9, A(-3) = -A3) (2-20)

If X end Y are complex spaces, the additivity as descridbed in Bq. (2-8)
1s insufficient. One has to sdd the requirement.

AL Z) =1 A(z), &=V1 (2-11)

We shall state without proofs that a) every additive and homogenecus operstor
in any finite-dimensional normed space is & lineer operstor. b) Bvery linear
operator is hamogenecus. (See for instance B.Z. Vulikh: Intvoductiom to
Punctional Analyses, English translation by I.N. Sneddon, Fergamon Press,
New York 1963, Chapter 8).
2k, of

a) Contimjty. Contimity of an operstor in a metric space has &
simple mesning. Its concepl is based on the idea of "clcasness™ of two vectars
Ag and AY whenever 3 and Y are close to each other in the metric space. We
let @ point x of the metric space E vary within a sphere 8 of erbitrary ssall

radius amoa.t;o.
{8 k-xl<e} . (2-12)

1

rg. 2-1la Fig. 2-2»
'In general it 1-__..-1.:- to check the homogeneity of an operator Adrantiw tham %

———_ A=
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A 1s 5aid to be a contimuocus operator at x, if the image of the sphere 8 by
A remains within en arbitrarily small sphere 8, of the space E,

{8, W - axl <<} (2-23)
In other words, if for any erditrary ¢ > O there exists a 5 > 0 such that
tho!.-uletmpointloflr-dnutma..

An operator contimuous in a domein should possess this property for 1
points in that domain.

An additive operstor has an additional interesting property that if it
ucaxtmat-wlhchpomtgocxtmnunbocontmtath
whole spece E; and therefore it is a linear operator. In fact, let g be the
imit of a sequence {‘n'? ﬂnn{;n-zd»;o} umouhu;oforn-o-.
Thereforse;

A(;. -3+ ‘o’ - A%, (2=24)
A, - A+ A5, A%, (2-15)
s, <A

b) Boundedness. An operator A defined over s metric space E is said
to be bounded if there exists a oconstant M > O such that

Il <=kl tra1zcs (2-26)

A geometric "reminder” of the concept of boundedness is sketched in Fig. 2-2.
The norm of the image point Ay of any point 3 with e finite norm . annot became
arbitrarily large. In other words, the image of sny specified sphere Il = k
mst be contained within the sphere luls&octh.xl-mco. The distance

betiteen any two points x and y of 5, should satisfy the inequality

Iz - axll = Ma(z-x)N < mbkp-xll (2-17)
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Pig. 2-2a Tig. 2-2b
An operator need not be bounded. For instance, the operation of differentistion’
418 linear but it may generate unbounded remults. Likewise, an operator need
not be contimuocus. For additive operators, however, it can be shown that
the definition of continmuity and boundedness becoms equivalent.

If an additive operator is bounded, then it is easy to show that it is
also continmuous. In fact, consider a sequence of vectors {;1,;2,....5,...}
of the space E converging to x. For the corresponding sequence of images, we
can write:

s - Ax = BAGe-z,)0 < o laez, (2-18)

where M is the constant appearing in Eq. 2-16. Tius, the sequence
t“l’%’""“n”" converges to A a8 n ~ o, The converse is also true;
a contimious additive operstor is bounded. (The proof of this statement is
basically simple and is available in most texts on the subject.) The essence
of the proof is that vhen a vector x is changed contimucusly, the vectar Ag
varies also continuously, and a suitable constant M > O may be found.

c) Norm of s Linear Operstor. The foregoing material suggests «
natural definition for the "norm" of a bounded linear operatoar A in a metric
space E. The norm of en operator A is the smallest mmber M satisfying the
inequality (2-18). From this definition, it follows that for a linear bounded

operator and any arbitrary vector x, we have
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gl < all Il (2-19)
Anotber equivalent definition of |lAll 18 as follows:

Ve may map the closed unit sphere of the spece E by the linear
operator A, and search for the supremum of the "length" of the image point
lh;l!.n!l. The norm of the operator A is denoted by [All and defined by

Al = sup Haxll tor gl <1 (2-20)
2-5. The Space of Linear Operators

We have already shown that the linear operators defined over a linear
vector space of finite dimensions themselves form a linear vector space. The
mill operator is the zero element of this space. The sum of two linear
operatoars and the product of a linear operator by a scalar are well defined.
Thus the linearity of the space of the linear operator is easily established.
The introduction of a norm for the operator allows us to state:

Theorem

The space of linear operators defined over a normed linear space is

e normed linear space.

Proof

The validity of axioms of a metric space follows directly from 1, 2,

3 below. '

1. In the first place, we have associated a norm with every element of the

space of linear operators, i.e., a non-negative number

Al = suplaxil > o for Ixll <21 (2-21)
This mumber is equal to zero if and only if A is the null operator.



2. Al = sup axll = IN] supllax] = IN| Hall (2-22) )
for il <1

3. la+Bll = suplax+rgll < sup WAzl & suplegll = Al + Uil (2-23)

for (il <2

In addition to the adbove theorem, one can derive the following simple
mqunntyrcrthomof‘thopo&wtortvom.uopcntmlA-%

v gl = WAz < BN gl < Ragh Bay b kgl (2-2k)
That is,
aa il < lay il Al (2-25) -
The identity operator plays the role of unity.
Evidently, the operation of maltiplication of linear operators is associative
and distributive, i.e.,

A (AAL) = (AA, A, (2-26)
Ay(AytAy) = AsA) + AA, (2-27)
(ayrag My = Aty + dhs (2-s9)

Ifopc.torr.Al-Az-A, MthwomctAlAa-whWWAa. In this
manner we can define powers of an operator A and note that for any positive
integer n

) < i® (2-29)

Theorem

The space of linear operators which transform the normed space B into
a complete normed space '1 is itself a Banach space.
Proof

One has to show that the linear space of operators is a complete
8-
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space. If !‘1"2"”"-’“"‘::"‘3 is a converging sequence of linear
operators, that is llAn-A-ll —> 0 (n,m —> ®), then for any arbitrary element
X of E the corresponding sequence of images will also converges

A z-Axl = HA-AL) 3l < A Al lsll —- 0 (2-30)
Nym =———>> ®

Thus, Je sequence 233 is a converging sequence for every x which converges
to Ag. Bince the normed space ‘1 is complete, then the limit of any sequence
in '1 will be contained in :1’ but it is not obvious that A also belongs to
the space of linear operators.

The following three steps are required for completing the xoof.
a) A is sdditive
b) A is bounded
c) A= lia An

n—>om

A proof may be derived by the interested reader. (See B.Z. Vulikh, Chapter 8,
or M. Davis, A first course in Functional Analysis, Gordon and Breach Co.,
Nev York 1966, pages 49-50).

2-6. The Inverse Operator
In order to give a precise definition of the inverse operastor, consider

the operator A vhich maps & Banach space B mtoahmchmll.

I=Ap 5cB, Yeb, (2-31)
A is said to be an invertible operator, ufwﬂuvol-.ntycllm
equation y = Ag has a unigue solution x in B. The operator which represents
this correspondence is referred to as the inverse operator A and is denoted
by 1. When A has an inverse, we can formally write
«59-
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-1
Xx=A" Y
- (2-32)
A= ANy -y
The following theorem can be proven without difficulty:

Theorem

If A is & bounded linear operator, whose inversc A © exists, then
AL is also bounded.

The proof for this theorem is rather long.

It requires several preliminary steps and more space than we can afford. The
interested reader is referred to standard mathematical texts, for instance

Kolmogorov=-Fomin, Chapter III. t
To give an example, note that the operator Ax = jx(l) ds on C[0,1]
b §

to C[0,1] 1s bounded, but A" y = § y(t) 1s unbounded °far & certain subset
of continuous functions. The inverse operator does not exists for all points
of the space.

Likewise the Sturm-Liocuville operator

Ag = % {f(t) %{-2 + g(t) x
which is defined on the subspace of twice contimiously differentiable elements
of C[0,1] is unbounded. Its inverse however is a bounded linear operator for
all C[0,1] (Green's function)
1
A'lx = jG(t,l) y(s) as
o
In dealing with operators we frequently need to apply the following
important theorem which allows a power series expansion of the inverse (I-A)

in terms of powers of A.
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Theorem
If A is an operator, with |[All < 1, mapping a Banach space E into
itself, and I the identity operator, then the inverse of the operator

I-A can be written as

(1-a)"1 - Z AX (2-33)
k=0

Proof
The proof, in essence, is similar to the elementary proof for convergence

of the scalar series

00
& - Z £ far |x] <1 (2-34)
k=0

Here, we consider the transformation (I-A)x = y, and set forth t> find its

solution by means of iterations:

By ~ A, =X n=1,2,... (2-35)
With X5 =X this procedure yields:
X =X +tAy YA
2
L =Y+ AN+AY (2-36)

e o o o e v 8 s s e o

L, =X+ AL+ By oo+ A%y

The key to the convergence of this sequence is the fact that if JA]l <q<1l,

then IlAnll < qn. Therefore, as n —> ®, X, tends to the unique solution of
X =Y + Ax, that is,
- -]
k
x - Z Ay (2-37)
k=0
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Thus x satisfies x = y + Ax, and ve have shown elsevhere (section on contraction

mapping) that this equation has a unique solution; vhence

Aty - ) A%y (2-38)
k=0

Example 2-1.
Is the differential operator A on the set of continuous functions in
[0,1] a bounded operator? The norm of x(t) is taken as max|x(t)| in [0,1].
Bolution:
d
Ax = g [x(¢)]

Consider a sequence of points on the unit sphere:

;n-\‘i.‘ 8in nnt n=12,...
".“"n = # 2 ax cos nnt

len" increases without bound as n —> « , thus the operator A is
unbounded. Note that A is additive but not continuous, as it is not defined

everywhere in the space C[O,1].

Example 2-2.
Consider a mapping of the linear space C[0,1] of all functions x(t)
continuous in the interval [0,1]. a) Show that the operator A defined by the

integral below is a linear operator from C to C.

h R
y(t) = fk(s,t) x(t) at
0

where the kernel k(s,t) is a function continuous in the square



b) 8Show that

1

Al = max f Ik(s,t)] at = M
0<s<1°70

Solution:

a) Evidently A maps C into itself. Moreover,

A(xty) = Ax + AY
The continuity of the operator can be proved by considering a sequence of
vectors x, converging to x; and the convergence of the corresponding sequence
of images. The convergence here is taken in the sense of uniform convergence,
whence we can take the limit under the integration sign.
b) The proof is slightly more complicated than a) and can be found for instance

in Kantorovitch-Akilov's Functional Analysis in Normed Spaces page 108-109.

Example 2-3. Determine the norm of the following operators:

a) Zero éperator, b) identity operator, c¢) similarity operator, Ax = Ax

Solution:
a) [l = o,
b) lall = 1,

c) liall = Inl

Example 2-4. (operators of the normal form). Let g_e_g be a complete ortho-

normal system for a Hilbert space H of countable dimension, and i"l”‘z"" S ,;..}
g n

a bounded sequence of real numbers with Ikkl < C. For every x = Z x; 8

of H we define the following operation: =

o0
Ag = Z PRI
J=l
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a) Is A a linear operator?

b) Find [l

Solution. a) A is a well defined operator on H. Its linearity is an immediate
consequence of the properties of additivity and homogeneity.
b) Let C be the upper bound of the sequence lhnl = C, and let

sl = Z x5 = 1, then

i=1

helf = ) 235 <&

i=)
whence all <c
On the other hand
lall > supllag, Il = sup In e Il = suplr Il = ¢
Consequently [All = ¢

2-T. Approximate Solution of Functional Equations

Consider the linear operator A defined over a normed space. Frequently,
we wish to solve a functional equation of the type Ax = y 0f X = AXx + ¥
for a given y, but the inverse operator A'l is not known: This is for example
the case when it is desired to solve a set of algebraic equations but the
inverse operator A”1 (inverse matrix) is not resdily av.ilable; or when an
exact solution to an integral or differential equation is hard to derive.
According to a method suggested by L.V. Kantrovich, A'l may be approximated
in the following way.
a) X =AL+Y

Let A be a linear operator mapping a Banach space X into itself, I the

identity operator of X, and Ao an approximant to A, then

(I-A)x = ¥ (I-A )5, = ¥
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The success of the method c¢:pends on the choice of a suitable Ao such
that we can assume that A-A_ = A is relatively small, that is, Jlall I(z-a)tl< 1,

and 1f (I-A)"! exists. Under these conditions it follows that (I-Ao)'l also

will exist and:

By = (1-A))7 Yy = (1-A )" H(T-A)g =(1-8,)"" [(T-A )+(A-A)1x

(2-A, ) (1-8, ) +(1-A )" (A -A)
x, - &= (I-A))" (A _-A)x

gl < Hez=a )M a-ali Nl < (z-a )% llall ligl (2-39)

Thus if Ao is a approximant for A, then for any y the functional equation
(I-Ao )zgo = y will yieid an approximate solution X, for x. This inequality
however does not explicitly indicate a bound for the error. If Ao is chosen
such that:

lall H(z-a )"t < q <1

Then we find:

lie~l < @ lsh < aClis = &, + fis ) = allsas i + alls,
or

Iyl < 2 e -

b) ¥ = Ag

Let A_ be an approximation to A such that A;l

can be found more easily.
=1

Let & = A-A_, and assume tnat lIall IIAO [ <1. For a given y we may approximate

X by the element:

-1
X, =AY (2-%0)
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B

The error vector x - b 5 satisfies the inequality:

ez ll = Ia~2g-a"gla~2a "2 fgl (2-41)

It can be shown as an exercise (for instance by analogy with the scalar case)
that under the above hypothesis

-1
a1

——— 2-42
1=l sl (e-ie)

Ia~t-a 2 <

1

In spite of the fact that A — is not known, this inequality provides a direct

upper estimate for the norm of error, by writing

a0
2 - a0 el

-/l < lIA"l-Ao'lII el < (2-43)
An example of the application of Kantorovich method is to be found in solving
Fredholm's integral equation, by replacing its kernel with a degenerate kernel.

2-8. Representation of Linear Operators in A Hilbert Spece

In Chapter 3 we discussed the general form of linear operators defined
over finite-dimensional vector spaces. In this section we 1nake a generalization
of that material for linear operators on Hilbert and Banach spaces. Here we
shall investigate whether linear cCverators on Hilbert space also admit a matrix
representation similar to the representation of Sec. 3-8 of TR-65-399.

Consider a separable Hilbert space with an arbitrary complete set of
orthonormal elements {31,32, “e 2y ...} « With respect to this set, any vector

X € H can be uniquely represented as

x - Z Xy (2-44)
P



% = (5g) (2-45)

A linear (continuous) operator A maps X to y such that
o
L=Ax= ) x A (2-46)
k=l
The image of _gk under A may be specified by its Fourier coefficients, i.e.,

Aoy = ). Sy X =1,2,... (2-47)
=1

Therefore, the Fourier coefficients of y in its representation with respect

to the e Dbasis are

= 0 vy =Y WX (Z amsj) (2-48)
J=1 k=1 J=1
whence S
vy = Z Ny Xy 3=1,2,... (2-49)
k=1

In this manner, the vector y = Ax is completely specified through an infinite

matrix:
Qu 512 see ‘1k . 01

%1 %2 ese .2k sew
Am e o o o v o ot oo e o e (2-50)

& Jk eee

%51 %2

b -
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There is an important difference between representation theorem of
linear operators in the case of Hilbert space (and B-spaces) of infinite and
finite dimensions. In contrast with the finite dimensional case, not all

*
infinite matrices represent linear operations on some Hilbert space.

2-9. Adjoint Operator

In Sec. (4=8) of TR=65-399 it was point ocut that with every linesr operator
A Qefined on a real Euclidean space of finite-dimension Rn, we can uuiquely
associate an operator A* in a manner that for any pairs of vectors x and y of
that space
(A%x) = (5AY) (2-51)

The operator A* is called the adjoint of the operator A. In any orthogonal
*
basis, the matrix representing A is the transpose of the matrix of A . 1In
particular, it may occur that the matrix of A is a symmetric matrix, i.e.,
*
Sy ™ Oy In such a cituation we have A = A , whence -

(Ax,¥) = (x,AY) (2-52)

When this relation is satisfied, the operator A is said to be self-adjoint.
When the space is a complex Euclidean space cn » the above defining
equation remains valid; but the elements of A and A" are generally complex
numbers. In the special case vwhere &y = =k:|. then A is identical with its
transpose conjugate; that is, A = A* is self-adjoint. A self-adjoint trans-
formation A* = A defined on 1:!n is represented by a Hermitian matrix.
The above definitions remaln essentially valid for Hilbert and Banach

spaces. Let A be a linear operator on H, whose range is also in H. According

*'me necessary and sufficient conditions which the matrix in Eq. 2-50 must
satisfy are given for instance in L.V. Kantorovich and G.P. Akilov, Functional

Analysis in Normed Spaces, The Macmillan Co., New York 1964.
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to Chapter 3, for each pair of vectors of H, the quantity (Ax,y) defines a

linear functional on H. We consider the equation

(A%,X) = (5x) (2-53a)

For every pair of x and y, this equation provides a unique x* € H. When y
is changed, y will be chenged also. Let us denote their relationships by
Y* = A*I’ or
(A%,¥) = (5,A’y) (2-53b)

This relation characterizes a unique operator A* on H with range in
H, referred to as the adjoint of A. It can be shown without difficulty (see
Liusternik and V. Sobolev Sec. 23.) that the adjoint operator A* of a linear
operator A defined on H is indeed a linear operator and [A™[ = [All.

The following properties of adjoint operators are easily verified. If

A and B are linear operators over a Hilbert space H, and A a scalar, then

(A+B)" = A" + B" (2-54)
()" = X" ) (2-55)
(8 A)" - A"B" (2-56)
(A1) = (A") T 1 AT exists (2-57)

I =1 (2-58)

Normal rator. A linear operator A is said tc be normal if it commutes
with its adjoint, i.e.,
A" - A" (2-59)
Normal operators of a Hilbert space satisfy the relation

laxll = (A"l , x € B (2-60)

An arbitrary self-adjoint operator 1s clearly a normal operator.
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Unitary Operator. This is & subclass of normal operators satizfying

the additional requirement

» *
AA =AA=1] (2-61)
It is to be noted that for unitary operators Eq. 2-60 reduces to

lagll = lill, since (Ax,Ax) = (x,A"Ax) = (x,x)
A rotation in Hilbert space is an example of a unitary linear operator.
The rotation operator A maps the space into itself while preserving the norm,
that is: [laxll = I xli.
As an application of the foregoing matelial, consider the familiar
linear integral operator of La[u,b],

y(s) = K(s,t) x(t) at (2-62)

P\‘U‘

where K(s,t) is a continuous kernel function, whence

I

In our current notation, this integral equation is written as y = Ax. The

IK(s,t)[° as at < + ® (2-63)

p—c

»*
adjoint operator A* novw may be introduced by x* = A Y. We require that the
equation (2-64) remains satisfied. It is not Aifficult to show that this
requirement is equivalent to choosing the integral transformation below with

the new kernel as:

b

v (s) = [ K"(s,t) y(t) at (2-64)
a

K"(s,t) = K(E,3) (2-65)
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In order to verify whether this is the true adjoint of the linear operator

under consideration, we write:

b b
(wx)-f[f X(s,t) x(t) at] 7(a) as (2-66)

b b
- jx(t)[f K(s,t) y(s) da]

b
%) = f x(t) ¥ (t) at (2-67)
a
The equality of the two quantities implies that
b
v (t) = jx(-,t) 707 as (2-68)
a
b
v'e) - _[ E(5,%) y(s) a8 ‘ (2-69)
a

A change of variables ylelds
. b

v'(s) = j (S, 3) y(t) at (2-70)
a

A comparison with Eq. (2-52') completes the validity of the statement.
The above linear integral operator is self-udjoint if

K(s,t) = x(t,8) (2-72)
When the kernel is a real function s and t, then the requirement for
self-adjoint will reduce to that of the symmetry of the kernel, i.e., K(s,t) =
X(t,s).
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2-10. Positive Operators. A self-adjoint operatcr A is said to be a positive

operator if for any x € H, (Ax,x) > 0. If (Ax,x) > O for every non-zero

vector of 1), then A is said to be a positive-definite operator.

An arbitrary positive operator A has a unique (self-adjoint) positive
square root B, that is, 82 = A, B> 0. An operator Al is said to be greater
than an operator A2 if Al-Az is a positive operator. The following statements
can be directly established:

1. For arbitrary operator A, we have AA° > 0, A'A > 0. This is in

view of
(AAx,x) = (Ag,Ax) >0 (2-72)

2
2. For arbitrary A, A~ > O.

3. 1f A >0, then for any positive integer n, An > 0.

2-11. Symmetric Operator.

In common mathematical terminology the term symmetric operator applies

to an operator A which is additive, homogeneous, and satisfies

(A5,Y) = (x,AY) (2-73)

Based on this definition, a symmetric operator needs not be bounded. Thus,

a self-adjoint operator is a bounded symmetric operator. The class of self-

adjoint operators is a subset of the wider class of symmetric operators.
Examples of applications of symmetric operators occur in the study of

Sturm=Liocuville equations:

- & () ) - a(t) x(t) = & x(t) (2-74)

where
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p(t) is a continuous function Cl[a,b]

q(t) is a continuous function C[a,b]

A is a real parameter and the boundary conditions can be arbitrary. We
search for the set S of functions x(t) which are twice differentiable and
belong to Lz[a,b]. By rewriting the left hand side of this equation as an

operator A acting on x we find:

The operator A is additive and homogeneous but not continuous, thus unbounded.

In order to show the symmetry of A, we calculate:

b
(Ax,y) = - f [(px')' + ax] y dt , x,y € 8
a

b b
= - f (px')' y at - f gx y dt (2-76)
a a

In view of the assumed bounde! » conditions we find:

b b b b
tye t = [ ' ' = - 1 1
[(px)yd (bx)y£ [(px)v at [ax(py)dt
(2-717)
b b b
= -x(py"') + x *)at = x t)rdat
( [ ja' (sv*) _{ (ev')
whence
b
(A%, y) =~ jx[py')' +qylat = (x, AY) (2-78)
a8
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This establishes the symmetry of the Sturm-Liouville operator. The importance
of this result in solving boundary value problems of this general type is
due to the fact that symmetric operators possess a number of simple pro-
perties. The most interesting property of these operators pertains to the
class of positive operators and can be outlined in the following statement.

If A is a symmetric operator and (Ax, x) > O for all x in some

linear subspace of a Hilbert space, then all its eigenvalues

are non-negative.

For proof, let A be an eigenvalue of A and x a corresponding eigen-
function, and observe that:

(A%, ) = (A%, 2) = Mx, %) 20 (2-79)

2=12. Projection Operator

We have discussed in full detall the projection of a point x of a
Hilbert space H on a subspace S ¢ H. Let x_o be the unique point called the
projection of x on S. This relationship between x and Xy may be denoted by

Px where P stands for "projection operator" or "projector". The following

properties of a projection operator of a Hilbert space are easily verifiled.
1. Px | x- P
2. x € S and Px = x are equivalent statements.

QO are equivalent statements.

3. x | 8 and Px
Lo (slP

5. |iPzg” < ”x” This inequality follows from 4, above, and implies that

iexlP + lx-Pxlf.

P is a bounded operator.

6. JPl = 1 unless S is reduced to null element.
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To prove the latter assertion, let x € S with [ix/l = 1. Whence |IP[| <

lIexll = lixll = 2. since |IPll = sup |[Pxll for llxll < 1, we must have in this case

[lPll > 1. on the other hand, assertion 5 along with the definition of the

norm of an operator implies that [[P|l < 1. Therefore, we conclude that [Pl = 1.
T. Projectors of Hilbert space are positive operators; that is,

P(x,x) > 0. 1In fact, we will show that

(Bx,x) = (Frx) 2 0 (2-80)

The following statement is an interesting theorem about projection
operators of a Hilbert space.

Theorem

The necessary and sufficient conditions for a linear operator P to
be a peojection operator in a Hilbert space are a) the operator P be self-adjoint,
and b) P be an idempotent operator; that is, 1;2 = P.
Proof

The necessity of a) and b) will be considered first. ILet 8 be a sub-
space of H, x and y arbitrary points of H, and P a projector from H to S.

Consider vector x', y'

x - Pg=x' (2-81a)

Y-P=y (2-81p)
whence

' |ls, y' Is (2-82)

(Px,y) = (x-x', ¥' + PY) (2-83)

(x-x', Py) = (x, Py)

For part b), we note that for any x ¢ H

P(Px) = P(x-x') = Px - Px' = Px (2-84)
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To show the sufficiency of requirements a) and b), let 8 be the set of
all elements x of H such that their images by the linear operator P satisfy
the relation Px = x. One must show that 8 is a subspace. To this end, any

element x € S can be conveniently written as
x = Px + (x-Px) (2-85)

Note that by assumption P(Px) = Px, therefore Px ¢ S, and x - Px € S. More-

over, for any two arbitrary points x, y € S we have

(x-Px,¥) = (%,¥) - (Px,x) = (%) - (x,Px) =0 (2-86)

That 15,25-1’5_]_8.

2-13. Comple tely Continuous Operators

There is a natural class of linear operators in a Hilbert space which
is very similar in its behavior to the class of linear transformation in a

finite-dimensional space. These are referred to as campletely continuous

e v aneor 1 AT

operators. A bounded linear operator A on H, in order to be completely continuous,

must satisfy the following property: If {gn} is any bounded sequence of
vectors (that is, there exists some k > O such that for all n, [ix Il < k), the

sequence {A ;5!3 mast contain at least one convergent subsequence.

The definition of completely continuous operator encompasses the concept

of the so-called "compact" sets. Thus, the above definition can be replaced by

*
an equivalent statement using the concept of compactness.

¥
A set S contained in a metyric space X is said to be compact, if from any in-
finite sequence of points } € 8 it 18 possible to select a subsequence

n

&Snl’zsn2"”’3 veod N

X is said to be completely continuous, if the image of sy bounded set of X
is a compact set in the image space Y.

-76-
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In a finite-dimensional space every bounded linear operator is
completely continuous since it maps bounded sets. But this is not necessarily
true in infinite-dimensional spaces. Take, for instance, the identity
operator in 12 space. The sequence of an orthonormal basis [_e_nl is certainly
a bounded sequence since llgn" = 1 for all n. But the sequence Ign contains

no convergent subsegquence. In fact

le el = 2 forném (2-87)

The identity operator of an infinite-~dimensional Hilbert space is not
a completely continuous operator. Completely continuous operators along with
self-adjoint operators are the simplest and the most common type of linear
operators in a Hilbert space. The relatively complete results available in
problems of applications are generally pertinent to this category. In particular,
if a completely continuous operator of a Hilbert space is also self-adjoint,
the structure of the operator will resemble a generalization of the symmetric
matrices representing finite-dimensional self-adjoint operators. The broad

class of linear integral operators with continuous kernel on 0 < s, t < 1.
b
vte) = [ K(a) x(e) ar (2-88)
a

offers a most common example of completely continuous operators on the space
L2[0,1]. For an introductory treatment of completely continuous operators,

theorems, and related proof see Kolmogurov and Fomin, Chapter IV, or other

standard texts.

2-14. Completely Continucus Self-Adjoint Operators

In this section, we state some of the properties of completely con-

tinuous self-adjoint operators A in H.
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As we know, an eigenvalue of A 18 a number A such that there exists a

non-zero element %, satisfying

Axy = N, (2-89)
Any element x, satisfying this equation is referred to as an eigenvector or
eigenelement. The totality of eigenvectors associated with an e igenvalue A
form an eigensubspa:e which will be denoted by H}\. The subspace H' of H is said

to be an invariant space of the self-adjoint operator A, if for x € H' we have

also Ax € H'.

As an extension of the material of Chapter 4, of TR-65-399 the following
assertions for every element of H and every completely contimuious self-adjoint
operator A are maintained.

1. The expression (Ax,x) is real.
(Ax,x) = (x,Ax) = (A, %) (2-90)
2. The elgenvalues of A are real.

(Ax,x)
(x,x)

(2-91)

3. Eigensubspaces H)»l and sz corresponding to distinct non-zero

eigenvalues are orthogonal. Let x € Hu’ Y € %

Ax = A X AY =N X (2-92)
Then

(5x) = %; (Ax,y) = %; (2 Ax) = %% (%,x) (2-93)
Whence

(£,¥) =0, x |l x (2-94)

-78-



4. The operator A has at least one eigenvalue.
5. The operator A has at most a denumerable set of eigenvalues.
6. The spectrum of a self-adjoint operator A lies entirely in the

interval [m,M] of the real axis, where

1

M = sup (Ax,x) for |ixli

(2-95)
m = inf (Ax,x) for |kl

1

(For the proof of these latter statements, see standard texts.)

The main motivation for the study of campletely contimuous self-adjoint
operators stems from the fact they are the natural extension of linear
transformations of a finite-dimensional Euclidean space. As we know, finite-
dimensional Euclidean spaces are camplete and separable - and all linear operators
on such spaces are campletely continuous. A most essential property of come
pletely continuous self-adjoint operators is expressed by the following funda-
mental theorem due to D. Hilbert:

Theorem:

In a complete separable Hilbert space every completely continuous self-
adjoint operator possesses a complete orthogonal system of eigenvectors. If
the proof of this theorem requires more space than what is available at present.
In view of this theorem one can visualize the particular simplicity for handling
problems, one may search for a complete system of eigenvectors from which a
camplete set of arthonormal coordinates e; may be constructed. Thus, every

point x € H will have an image representable as:

(-]
Ax= Z A%y €4) &
i=1

Where Ai(:l=l,2,...) are eigenvalues of the operator A, gi(i =1,2,...) the

corresponding eigenvectors, and
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(2195‘1) = 513 (1,3 = 4,2,...)

By =1 84 =0 when 1 # j.

We will show in the chapter on integral equations that due to the avail-
ability of orthogonal coordinate systems in the function space, the solution
to integral equations with completely continuous self-adjoint kernels admits

a very simple form.

*Spectrum of a self-adjoint operator

Consider the eguation
(A-AI)x=x (2-96)

where A and y are given, x is unknown, A is a self-adjoint operator, and A
any arbitrary complex number. Let us assume that for a certain value of A,
the operator R, = (A - AI)™) exists. Then R, is called to as the resolvent
of Eq. 2-96, and for this value of A and any arbitrary y the equation (2-96)
has the unique solution x = R, X-

Those A for vwhich Eq. 2-96 has a unique solution for all y are referred
to as regular values of the operator A. Any non trivial solution of the
homogenecus Eq. 2-96, i.e., y ¥ O 18 an eigen element of A for thie eigenvalue
A. The totality of non-regular values of A is called the spectrum of the
operator.A. In particular all the eigenvalues belong to the spectrum.
Example 2-4,

a) Show that the (real) operator

A x = tx(t) X € L2[0,l]
0<t<1

is self-adjoint.

b) &how that A >0
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Solution:
a) Clearly A is an additive operator. The image of any point

X € L2 is also a point in L2. Moreover A is bounded since

flaxll < lixll

Thus A is a linear operator. In order to show that A is

self-adjoint we write:
1

(A%,y) = [t x(t) y(t) at

1
(5AY) = [ x(t) - t(y(t) at
]
1
b) (Ag,x) - ft[x(t)l2 at >0
(o]

It can be also shown by Cauchy-Buniakovski's inequality that for
lell = 1:

0< (Ag,x) <1

Example 9=-5. In the function space L2 [O,1] an operator A is defined by
Af =1t f(t)

a) Show that A is a positive operatory b) determine the square root

of A.

Soiution. a) For two arbitrary functions £(t) and g(t) we have
1

(AL,8) = jt £(t) &(t) at = (£,a%y)
(o]

Hence

*

A g =1t g(t), that is A is self-adjoint. We note also that
(AL, £) > 0; consequently A is a positive operator.

-81-



b) The square root of A is defined by B:

B =YYt 1£(t)

Example 9=6. Consider the operator
t
Ax = j x(s) ds
o

defined over the Banach space of real continuous functions C[0,1].

1

a) 1s A bounded? b) Is A" bounded?

Solution: a) yes
) A7ly = 5 v(e)

A‘l is noat bounded.

Example 9-7. Show that the (real) linear operator

Ax = tx(t) x € 1°[0,1]
o<t<.
is self-adjoint.

Solution:

(Ax,¥) = t x(t) y(t)
(2, Ay) = x(t) - t(y(t)

Example 2-8. Determine the eigenvalues and eigenfunctions of the operator
-a% x(t)
A= with the periodic boundary conditions

at

x(0) = x(2x) » x'(0) = x'(2x)
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Solution: A is a linear symmetric operator on the subspace c2[0,21r]. The
determination of eigenvalues amounts to solving

x"+Ax=0

V-At -2t

x-cle +023

There are three possibilities to be examined:
a) A<O0

The specified boundary conditions requires c; = cy = O, whence there
can be no negative eigenvalues.
b) A=0

In this case the solution to the differential equation reduces to
x=cy+ czt. The boundary conditions impose cy = O. Therefore, A = 0 is
an eigenvalue, and all functions x = ¢ in [0,2x] are associated eigenfunctions.
c) A>0

In this case one finds that the set of utegerl{ A= 1,2,5,...% are
eigenvalues. With each eigenvalue J\k-ka, we can associate an eigenspace of
dimension two spanned by sin kt and cos kt.

Exarple 2-9.

-x" =t

x(0) = x(n) = O
Solution. The operator A = - :—iE acting on the subspace 32[0,1(] satisfying
the specified boundary conditions is a linear symmetric operator. The
eigenvalues of A maybe found from the equatioas:

X" « Ax = O

x(0) = x(x) = O
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These are A = n2, (n =1,2,...). The set of eigenfunctions £ =sinnt,
n=1,2,... forms a complete set for the space under considerations. This

allows us to write:

oo

(t, £))
wr -y 3 hl

n=1 n (gn)‘x,n)

(x,£.) = [ t sin nt at = (~1)"*! x/n

n

0\-‘4

(2 sf ) = 7‘/2

n’>n
0
x(t) = z (-1)n+l % sin nt
n
n=1
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