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ABSTRACT 

The vast and rapid advancement in telecommunications, computers, controls 

and aerospace science has necessitated major chances in our basic understand- 

ing of the theory of electrical signals and processing systems. There is 

strong evidence that today's engineer needs to extend and to modernize his 

analytical techniques.  The latest fundamental analytical approach for the 

study of signals and systems seems to have its roots in the mathematics of 

Functional Analysis. 

This report contains a bird's-eye view of the elements of Hilbert spaces 

and their associated linear operators. The first chapter of the report gives 

an exposition of the most essential properties of Hilbert spaces. The second. 

chapter presents the elements of linear operators acting on such spaces. 

The report is addressed to engineers and scientists interested in the 

theory of signals and systems.  The applications of the theory will be under- 

taken in a separate report. 
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Chapter I 

ELEMENTARY HII.HKRT SPACE  THEORY 

1-1.     Introduction 

In the report m-65-599 we have discussed the finite-dimensional linear 

space and metric space in some generality.     The reader recalls that the con- 

cept of distance between pairs of points of the space,  such as the familiar 

Euclidean distance,   played an important role in our studies.    In this chapter, 

we wish to investigate a more general type of space,  that is,  metric spaces    of 

Infinite dimensions. 

A vector space of finite dimensions is said to be an n-space if it con- 

tains a maximum of n linearly independent elements.    A vector space of infinite 

dimensions in its simple form is a generalization of the n-space when the number 

of linearly independent elements becomes arbitrarily large.    An understanding 

of the concept of a space with infinite dimensions in itself requires some pre- 

liminary preparations.    The introduction of "infinity" is accompanied by certain 

problems of convergence and continuity.     Therefore,  our first Job is to make some 

inquiry about the continuity of the metric associated with pairs of elements in 

this space.    Moreover,  when the dimension of the space is an uncountable number 

(nondt numerably infinite),  the structure of the space becomes considerably more 

complex.    There lies a professional area of mathematics beyond our aim.    A com- 

prehenaive mathematical study of abstract Hilbert spaces requires certain 

specialized preparations beyond the scope of this undertaking.    In view of the 

fact that Hilbert space,  Banach space,  and function space often appear in engineering 

literature,  a rudimentary knowledge of the subject seems to be indispensible to 

the engineer.    To comply with this need,  we will give an elementary account of 
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the generalization of the concept of a finite-dimensional Euclidean space 

to the case where the dimension of the space may become countably infinite. 

We will limit ourselves to what may be hopefully termed, in the words of 

mathematician P. R. Halmos , "a glimpse into Hilbert space". 

(1-1) 

1-2.  Continuity in Metric gpacgs 

A set X of elements of any kind is called a metric space if to any 

ordered pair of elements 2» X e X there corresponds a real number d(jc,j) with 

the properties; 

(1) d(S,x) > 0 

(2) d(ac,x) = 0 if »ad only if jc ■ y 

(5) dOc,x) = dCy,«) 

(h)    dCjc,y) < dCac,^) + i(z,x)    (triangle inequality) 

The  presence of a metric on the elements of X allows us to talk naturally about 

convergence, and continuity in the sense of the metric. 

This section deals with the general concept of continuity in a metric 

space.  For the sake of brevity, we merely restrict ourselves to the most per- 

tinent definitions and basic theorems.  For our limited purposes the definitions 

relevant to metric spaces may be considered as generalizationsof the alike familiar 

concepts of Euclidean spaces. 

/ •& «M 

Fig.   1-1    An open sphere 

d(fi,2) <T 

Fig.  1-2    A closed sphere 

d(a,x) < r 

Halmos  studies  in Lectures on Modern Mathematics.   T.L.   Saaty,  Editor,   Vol.   1, 
John Wiley and Son,  New York,   pages 1-22,   1963. 
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^The words "element", "point" and "vector" are used synonomouslyj vectors are 

underlined with a wavy line.) 

Open Sphere - An open sphere in a metric space X, with center at point 5 

and radius r,   is defined by 

S(a,r) = {^ • X| d(a,ac) < r} (1-2) 

Closed Sphere - A closed sphere with center at point 5 and radius r is 

defined by 

S(Ä,r) = £jc e X| d(a,2) < r j (1-5) 

The closed sphere includes the points on its surface, i.e., points je e X such 

that 

<HS,S)  = r (l-M 

The pictorial representations are used to facilitate an understanding of the 

concepts involved by analogy of the Euclidean space.  They should not be employed, 

however, as substitutes for the formal definitions. A limitation of pictorial, 

representation is, for instance, that pictures may assume a variety of forms, 

depending on the definition of the distance function. For example, in the space 

of continuous functions C[0,1] with Chebychev norm (see Sec. h-2),   Fig. 1-3 may 

be envisaged for the open sphere dfoc-fi.' < £.  (Compare with Fig. 1-1.) 

a(t)+r 
-=> x(t) 

Fig. 1-5 Open sphere in C[0,1] 
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Neighborhood 

Let g be a point of the metric space X; a set of points In X Is said to be a 

neighborhood of a, denoted by N(a), if there exist a B > 0 such that N(a) contains 

the sphere S(.g>6)* i.e.: 

N(a) =.{« € X| d(Ä,ac) < e) (1-5) 

The collection of all neighborhoods of a point is referred to as the complete 

or fundamental system of neighborhoods of that point.  The characterization of 

the continuity of a function at a point is based on this concept.  Frcm this 

definition it follows that the open sphere S(a,r) is a neighborhood for each of 

its points.  Geometrically, the latter statement implies that for any point b in 

S(a,r) a number r' can be found such that S(b,r') Is contained in the sphere S(a,r). 

Fig. 1-4 An open sphere is a neighborhood 
for each of its points. 

Boundedness 

A non empty set in a metric space X is called bounded if it is contained in 

some open sphere In X. 

Limit of a sequence 

Let ^.g^gg, ... ^be a sequence of points In a metric space X.  A point g in X 

is said to be the limit of this sequence, if for any specified € > 0 there exists 

an integer N, generally depending on e,   such that whenever n > N, then d(a, a ) < e 



or equivalently a lies in the open sphere S(a,e). This statement, sometimes, 

is abbreviated by writing 

lim  d(a,a ) = 0 (1-6) 
n -> oo     a 

Alternatively, it is said that the sequence converges to a 

lim a = a (1-7) 
n -» oo 

Function-continuous mapping 

Let X and X' be metric spaces with distance functions d and d', and let f be a 

mapping of X into X'.  A function oi" a vector argument f(x) defined over subset 

D of a metric space X is said to be a continuous mapping function at a point 

x- e D, if for any specified e > 0 there exist a 5 > 0 such that whenever 

d(x,X0) < 6 

then in the metric space of the images X', 

d'CfOs), f(ac0)) < € 

Alternatively, the function is said to be continuous at a point g, if whenever 

a is the limit for a sequence of points in X, then f(a) is the limit for the 

corresponding sequence of image points in the image space X'.  A mapping is said 

to be a continuous mapping in D if it is continuous at each point of D.  In parti- 

cular, if f(x) is a numerical function, i.e., D is mapped into R' or C', then we 

have the more familiar definition of a numerical function continuous at a point 

x0 e X;   i.e.. 

d(x,x0) < 5 => |f(x) - fUo)! < e 
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Fundamental sequence 

A sequence of points Ja.,^, ... 1 of a metric space X is called a fundamental, 

or a Cauchy sequence. If for each € > 0 there Is a positive Integer N such 

that d(a .a )< c whenever n and m > N .  It is not difficult to see that every n ^n c 

convergent sequence is a fundamental sequence.  In fact. If the sequence J f 1 

converges to f, then for any specified € > 0, one can find N such that 

<i(fn,f) < €/2 n > Ne (1-8) 

Now consider a point f for m > N 

dCf^f) < €/2 (1-9) 

But due to the triangle inequality 

Thus a converging sequence Is a Cauchy sequence. 

Complete Space 

A metric space X is said to be a complete space if every fundamental sequence 

in X converges to some element in that space. 

Separable Space 

A thorough discussion of the separability property of a metric space requires 

some mathematical preparations beyond the scope of the present undertaking.  Since 

the terms separability and separable metric spaces appear frequently in the 

statements of theorems on Hilbcrt space, an introductory notion of this concept 

is included. In the space of real numbers R, let us consider the set of rational 

numbersj this set has a very Important property.  Every real number x e R can be 

expressed in the form of a limit of a sequence of rational numbers.  Take, for 



instance, the number n;   the following sequence of rational numbers converges 

to n: 

3, 5.1, 3.IS 5.1^1, 5.1^15, 3.1,+159, ... 

The set of rational numbers is denumerable, i.e., the rational numbers can be 

put into a one-to-one correspondence with the set of positive integer. Further- 

more, the set of rational numbers is dense in the upace of real numbers.  In other 

words, between any two distinct real numbers there is a rational number. 

A metric space, consisting of an infinite set of elements is said to be 

a separable space if there is a denumerable subset of elements dense in X: 

f iSj/ ^2»    •'•>   3in>    ••.  I (l-HJ 

That is,   for  any specified x e X and e > 0 there exists an element x      in the 
o 

above  sequence  such that 

d(x,acn   ) < 6 (1-12) 
o 

In the finite-dimensional real Euclidean space R , the set of all points with 

rational coordinates is a countable set dense in R .  Therefore, R is a 

separable space.  Same is true for a finite-dimensional complex space. 

Compact Set 

A set E of a metric space X is said to be compact if every infinite sequence of 

elements in E contains a subsequence which converged to some x e X.  The require- 

A more formal definition of the term dense results from the following.  Let X 
be a metric space, and E is a subset of X, then: 

(1) x e X is a limit point of E if every open sphere about x contains a point 
y ^ x such that y e E. 

(2 ) E is dense in X if every point of X is either e.  limit point of E, or a 
point of E (or both). 

Rudin, W., Principles of Mathematical Analysis, McGraw-Hill Book Co., New York, 
1964, p. 28. 
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ment that a space be compact Is very rigid and more restrictive than the 

requirement of separability and completeness.  The set of points I =  Jo, 1,2,3, ... I 

of R  is not a compact set, because the sequence VO, 1,2,3, .. .1 e I does not contain 

any convergent subsequence. Therefore, the Euclidean space R  (and likewise R ) 

is not a compact metric space.  One can show that every subset of points on the 

real line R , or of the Euclidean space R  is a compact set if and only if it is 

closed and bounded.  (For instance, the set a < x < b is a compact set. ) 

Example 1 

Show that the set of all continuous real-valued functions defined on the 

real interval [a,b] with distance function 

d(f,g) = max J|f(t) - g(t)|\ , a < t < b 

forms a separable metric space. 

Solution:  It is readily seen that the suggested distance function 

satisfies the requirements of axioms 1 to 4.  To see whether a metric space is 

a separable space, consider all polynomials with rational coefficients.  There 

are  countably many such polynomials.  By virtue of the Welerstrass approximation 

theorem, any element of the space can be uniformly approximated by a polynomial 

with rational coefficients. Therefore, this is a separable metric space. 

1-3« Normed Linear and Banach Spaces 

In Chapter k  of "01-65-399 we have defined metric spaces of finite dimen- 

sions. In this chapter the same basic concepts are presented In a more general 

fashion, and without regard to finiteness or infiniteness of dimensions.  Consider 

a linear vector space V with finite or Infinite dimensions. A norm In a linear 

vector space is defined as a real number associated with every element x of the 

space (denoted by ll^tll) having the following properties. 
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1. I|x|| > 0 for  every x  e  V 

2. ||x|| = 0 if and only if x =  0 

3. ||x.x|i =   |\ |   •   |[x|| for  any .£ €  V and any scalar \ 

^- llx+y|| <  ||x|| +   ||y|| for  any pair  of elements  in V. 

The  relation between normed linear   spaces and metric   spaces  is  a  simple  one. 

Let   ||x|| be  the norm of an element ^c of a  linear  vector   space V;   define the 

following distance  function over  the  elements  of that   space. 

d(x,y)  =   ||x-yll  =   lly-afll (l-U ) 

The fact that this is a permissible distance function is an immediate consequence 

of the aforementioned properties.  In fact, (l), (2), and (5) can be easily 

verified.  To show the validity of (h),   note that 

d(x,y) = llx-yll = ll(x-z) + (z-y)|| (l-Ut) 

<  llx-zll +   ||z-y||  =  d(x,z)  +  d(z,y) 

Thus the normed linear spaces sure metric spaces. 

In view of the material of Section 1-2, we are now in a position to study 

metric spaces where a concept of convergence of vectors has been introduced.  We 

say that x is the limit of a sequence  35 , i.e., 

x =  lim xn (or «n-»^) if  llx -xll -»0 (1-15) 
n -» oo n _» oo 

This type of convergence is convergence in the norm.  If every fundamental sequence 

of a linear normed space has a limit in that space, then the space is said to be 

a complete linear normed apace.  A linear normed space which is complete with 

respect to its norm is also referred to as a Banach space (named after the Polish 

mathematician S. Banach).  Our plans do not require a detailed mathematical study 
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of normed spaces and Banach spaces.  Nonetheless, we note in passing that many 

familiar properties of ordinary Euclidean spaces are valid for this broader 

class of Banach spaces.  The key to the generalization lies in the fact that 

Banach spaces, like ordinary real Euclidean lines, are linear, normed and com- 

plete.  Some of the familiar concepts which may be directly extended from the 

ordinary R  to Banach spaces are:  the concepts of linear dependence of elements, 

linear manifold, subspace, plane and sphere, and convergence in norm.  The 

concept of orthogonality, the elegant properties of projection, and the least 

square distance criterion are not inadvertently maintainable in a Banach space. 

The applicability of these latter concepts is restricted to the Hilbert space 

which is a subclass of the Banach spaces.  This matter will be discussed shortly. 

Example 2 

Show that the space R  is a Banach space. 

Solution:  R  is, of course, a linear normed space.  It remains to show 

that it is complete with respect to the Euclidean norm.  Let 

L-i) = l-l'^a'* *- J'  ^k ='lxlk'x2k'",'xnk3 

be a fundamental sequence of elements in this space; that is, for every e > 0 

there exist an N such that for p, g > N we have 
€ e 

L/2 

d(x ,x ) = | /  (x_ - :c T I   < e (vV = [Jl (xkp-VaJ 
2 

If the sum of a finite number of non negative terms is smaller than e then 

2 
everyone of these terms must be smaller than e ;  hence. 

lXkp-Xkgl
<e     ^-1,2,. 
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That Is, J x^i^vp* • • • 1 is a fundamental sequence of real numbers 

Let 

6k ^  lim  ^ü      k =. 1,2, ...,n 

and 

2 - [IJL* Ig' •*•' en} 

Then it becomes clear that 

lim ^n = * n -♦ 00 

Example ^ 

Consider the half-open set of real numbers between zero and one, 

including one but excluding zero. Show that in this space the sequence x = — 

is a Cauchy sequence which is not converging. 

Solution:  The above Cauchy sequence has no limit point in the specified 

space.  However, if the space was to include zero, then the Cauchy sequence would 

converge to a point in the space. The latter space, *x: 0<x<lt, is a 

complete metric space.  This is an example of a metric space which can be made 

complete by adjoining additional elements. 

Example k 

a) Show that the set of rational numbers form a metric space with respect 

to the norm 

IIS» = Ul 
where x Is a rational number. 

b) Is this a Banach space? 
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Solution:  Fart (a) Is straight forward. In order to answer (b), take, 

for instance, the sequence: 

W'th h h • • • ? 
nils is a fundamental sequence since It converges to zero which is an 

element of the space.     On the other hand,   the set 

lrJ - fd + i)1, a * I)2 , (i + j)5, ...J 
has no limit in the  space of rational numbers,   since 

11m    (1 + i)m = e 
n -»" 

This is a  simple example of a metric space in which there are fundamental 

sequences which do not  converge to a limit  in that  space.     This is not a 

B-space. 

Example 5 

The  space of continuous function 0[a,b] Is a Banack space.  The distance 

between vectors x(t) and y(t) is assumed to be the absolute value of their 

largest deviation in the Interval [a,b]. 

dübx) = Max |x(t) - y(t)I , a < t < b 

Solution:  Consider a fundamental sequence 

^(t), XgCt), ...} 

Ihus for a given e > 0 there exists an N such that for n.m > N 

K - -J < e 

or 

|xn(t) - xm(t) | < e a < t < b 
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This implies that the sequence converges uniformly and its limit is a con- 

tinuous function x(t) such that 

|xn(t) - x(t)| < e        n > N 

a < t < b 

This implies the convergence in the sense of the applied metric. 

Example 6 

Show that the space of square integrable continuous function CT [a,b] is 

not a Banach space.  The distance being defined by: 

b . Va 

d(x,y) =lf  [x(t) - y(t)]2 dt 

Solution:  It is not difficult to show that the space of all continuous functions 

C [a,b] is a metric space. 

In order to show that this metric space is not a B-space, let uö simply 

construct a Cauchy sequence in the space (J [-1,1] which does not converge to a 

vector in the same space. 

Let 
f (t) = 0        for -1 < t < 0 

f (t) = nt       for „O < t < l/n 

f (t) = 1        for l/n < t < 1 

The sequence f f (t)j is indeed a sequence of continuous functions.  But as 

n approaches infinity, we find: 

11m  fn(t) =0   for -1 < t < 0 
n -»oo  n 

11m  *■_(*) =1   for 0 < t < 1 
n -» oo 
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The limit vector is a discontinuous  function.     You may wish to show aa an 

exercise that the sequence 

fgn(t)2   =      arctan nt for -1 < t < 1 

is also a fundamental sequence which converges to the discontinuous  function: 

g^t) = -jt/2 for t < 0 

geJt) =  n/2 for t > 0 

1-^.     Abstract Hubert Spaces 

As far  as the application of the concepts of abstract     space to physical 

sciences  is  concerned,   the  so-called Hilbert  space,   commonly denoted by H, 

occupies the dominant place.     Hilbert  space,   or Hilbert function-space,  is a 

space  of finite or  infinite dimensions defined over  the field of complex numbers 

having the following main characters.     There  should be a  suitable distance 

function defined,   that  is,   the metric   should ai " 3e from an  inner product form. 

The  space must be complete,   i.e.,   it  should possess the convergence property 

for  all its fundamental sequences with respect to its metric.     Furthermore,   the 

elements  of the  apace must have a  certain property of "closeness" which is 

referred to  as  the  separability requirement. 

Hilbert space as defined here is an inner product space which is complete 

with respect to its norm, and may be separable or non separable. More specifi- 

cally,   the  following axioms,   1,  2,   3,   and k are required: 

1. H is a linear vector  space over the field of complex numbers. 

2. With every pair of elements, x,y of H^ there is associated a 

complex number (x,^) called the scalar or inner product of jc 

and y,  with the properties: 
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(Bar denotes the complex conjugates;   note that  (x,x)  is 

real,   and the number  (x,x) '     =   ||jc|| is called the norm 

of  (£). 

b) (x+z,y) =  (z,x) + (z,jr) 

c) (^»x) = M-gii) for arbitrary complex number \ 

d) (as,x) > 0 

e) (x>ac) =  0        if and only if ^c = S 

5.     H is  complete with respect to the metric 

d(x,y) = llas-yll 

k.    For every positive integer n, the space contains n linearly 

independent elements. 

5. H is a separable space.  (This property is optional as a great 

part of the theory Hilbert function-space is applicable without 

regard to separability.) 

We note in passing that if properties (l) and (2) are satisfied, the space 

is referred to as a Pre-Hilbert space, also a Unitary space. An n-dimensional 

unitary space is a complex Euclidean space.  In the definition of Hilbert spaces, 

it is not unusual to forego the separability requirement, or even the requirement 

of infinite dimensions, at times. In the present work, however, we shall always 

adhere to the first three requirements, but will not insist on the separability 

condition for every problem discussed. A Hilbert space which satisfies conditions 

(l), (2), (5), and (4), but not (5), is referred to as a non separable Hilbert 

space.  Hilbert space is a subclass of B-space which arises as a direct generallza- 
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tion of Euclidean space.  In view of the fact that Hllbert space is an inner 

product space, its geometry is closer to the geometry of the ordinary Euclidean 

space than to any other B-space. 

The following two important inequalities for elements of Hubert spaces 

are direct consequences of the defined axioms. 

a )  Schwarz's inequality 

l(x,j)l < llxll llyll (1-16) 

To prove this inequality, note that for any arbitrary X 

the norm 

|(jc+\y|| is a non negative number, that is 

(x + Xy, x + \y) > 0 (1-17) 

Note that this inequality holds trivially if y = 0.  So we 

assume y ^ 0. 

(x,x)  + \(x,y) + \(y,3c) + M2 (^y) > 0 (1-18) 

By letting 

(x,y) 

One obtains 

(1-19) 

l(x,y)|2 
(x,x) > 0 (1-20) 

(Y,i) 

\U.x)\ < hll h\\ (i-2i) 
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b)     Triangle  tnequality 

llx + i-|l<  fell -   k\\ (1-22) 

This  inequality can be  derived  in  a  similar  vein. 

Il(x + z)f =   (x + y,   x + X) (1-23) 

=   (x,   x) +  (Y»  x) +  (x, i:) +  (iC,  x) 

<  llxf  + 2 llxll   IJxIl +   fell2 

llx + yll <  llxll +   h\\ (1-24) 

2 
1-5.  Infinite-Dimensional Euclidean Space - Space i 

In the previous section, we have defined the basic requirements for 

abstract Hubert spaces.  In this section, we propose to investigate in some 

detail the infinite-dimensional Euclidean space as an example of Hilbert  space. 

2 
This space is often referred to as the space £   .  The coordinates of every vector 

may be real or complex numbers; the usual vector operations and the norm of an 

element are defined as follows: 

*3?= '5n' ^2' '*"' ^n' ■•"' 

X = (l!» n2> •••* T)n> •• • ) 

x + i = (I-L + T]^   $2  + V * * •* en + V " * * ^ 

>oc = (X.5-.* ^So* •••» ^n'    •••)  , ^ a complex number 

The inner product and the norm are respectively: 

oo 

(x,x) = Y.   ti^i (1"26) 
i=l 
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iixii Jf iij2! 
1/2 

<r 00    for  any x e  i (1-27) 

The condition of finlteness of length is essential for convergence 

2 
requirement, and must be included in the definition of the space i   •  The 

first thing is to show that this space is actually a linear normed (inner 

product) space.  The first three conditions of normed spaces are obviously 

met.  The completeness of this space can be inferred from Example Z,   for a real 

Euclidean space of infinite dimensions.  The same line of reasoning is essentially 

valid when the components are complex numbers.  It can be also shown that the 

2 
space i  is a separable space, but this fact is not of an Immediate concern to 

our  studies. 
2 The following two basic  inequalities,   of course,   are valid for £   . 

2 

H 6i ^i 
i=l (SHL?^1) (1-28) 

These   inequalities are rather   interesting and often lend themselves to useful 

physical  interpretation  in applications.     For  this reason,   a slightly different 

derivation is presented below.     In order to show directly the validity of the 

inequality 

ibc+yii < iy + ly 

one may use a simple and well-known voriational procedure.  Let us first prove 

the validity of these inequalities for E — an extension to the case of £    will 

present no difficulty.  Consider the finite sets of real numbers 
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£al'a2'■*''anJ       and     Cbl'b2'•■''bn^ 

A familiar variational method suggests the calculation of the quadratic 

function n 

i=l 
(x) =     T*   (a^ + bi)

2 = Ax2  + 2Bx +  C (1-30) 

where x  is  an  arbitrary real quantity,   and 

n 

A =     £     (a2)     ,     B =     £   aibi    ,     C =     JjT    (bf) (1-31) 
i=l i=l i=l 

Since f(x) must remain non negative for all real values of x.,   the condition 

B2 - AC < 0 (1-32) 

promptly gives 

t-AAim (1-33) 

This is a useful inequality which was originally obtained by Cauchy. Now the 

triangle Inequality can be derived without difficulty-  In fact, by taking the 

square root of both sides of Cauchy"s inequality, multiplying by two, and adding 

A + C we find 

2 VB~+ (A+C) <2 VÄ"Vc"+ (A+C) (1-34) 

n 

£ (a2 + 2aibi + b
2) < ( VÄ'Wc)2 (1-35) 

i=l 

or, the triangle inequality: 
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[l>i + v2]   5 [Zv]   +[t^]        (1-36) 

ihe  extension of Cauchy's inequality to the case where n = «>, (also for complex 

i     spaces) is not difficult.  The only restriction is that A and C should remain 

finite; this is guaranteed by virtue of the assumption of finite norm for all 

2 
elements of £   . 

2 
Separability of Space I 

2 
Consider the set D of all elements of £     having only a finite number n of 

non-zero coordinates} all such coordinates being rational numbers.  We will show 

2 
that D is dense in £ .  To this end, for any x and e > 0 we set forth to find a 

suitable converging sequence, by means of a point z c D. 

o 
x = fx^Xg, .. .?        x e ^ 

z = iz , z2, .. .,0, 0, .. .1 z e D 

Note that the series    } |x, |  is convergent by hypothesis.  Therefore, 

k=n+l 

can find an  n =  n     such  that o 

o n o 
Consequently,   in the  finite  sum     )       |x,-z   | we may choose the rational numbers 

k=l 
z,    close  enough  to x,    such  that 
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n 
o 

2 
e E K-**fii 

h-zf < t2,   h-d < e 
2 

This  inequality proves  that  D  is  dense  in i   . 

Example  7 
2 

The unit  sphere  of the   infinite-dimensional Euclidean  space   (i   )  is  not  a 

compact   set. 

Solution:  To show the validity of this statement, consider for instance the 

infinite z±t  of orthogonal vectors i" ej?: e, = (1,0,0,...)» Sp = (0,1,0,0,...) 

Ilekll = 1 k = 1,2,3,... 

We cannot select a convergent subsequence from J CjJ since the distance between 

any pair of elements is "V2. 

||e - e ||2 = (e - e , e - e ) = 2 
^-n  ~m    v^n  ~m' ~n  ~m' 

2 
1-6.  The Space L - Function Space 

An important realization of Hilbert space is provided by the so-called 

p 
L  space.  Let [a,b] denote a finite or infinite interval on the real axis. 

. . ♦ 
Consider the set of all real valued square integrable functions f(t),  i.e.. 

D 

/ 
[f(t)]2 dt < + co (1-37) 

a 

Under the usual definition of sum, and product by a scalar, and defining the 

zero element as a function which is "equal" to aero (almost everywhere) in [a,b], 

we have a linear vector space.  In this vector space induce the inner product 
_   -    ^ . . 
f(t)   is  denoted by lower-case  letters  and  is represented in  the vector   space  by 
a  vector  f. 
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(£,&) = r f(t) g(t) «it (1-38) 
a 

The integral is to he taken in the sense of Riemann.  The functions space thus 

2 2 
defined is referred to as L space.  It will be shown now that the space L is 

a linear vector space. 

2 
1.  L is a linear vector space. 

2 
i)  The product of any two elements of L is integrable, since 

|f(t) g(t)| < i [f(t)]2 + i [g(t)]2 (1-39) 

observation is needed for the proof of (ii) below. 

2 2 
ii ) The sum of any two elements of L is an element of L . 

Er oof 1 

[f(t) + g(t)]2 < [f(t)]2 + 2|f(t) g(t)| + [g(t)]2       (1-40) 

2 2 iii)    If f e  L    and \ a constant,   then evidently \f e L  . 

f[\ f(t)]2  dt =  \2     f[fit)f  dt < 00 (1-41) 

2.     Properties  a,b,   and c  for  the   suggested inner product  function are 

easy to verify.     For  d one  notes  that the  integral of a non negative 

quantity.     Part e  is more difficult to verify.     The  difficulty arises 

on account  of some mathematical  subtleties.     Take,   for  instance,   square 

integrable  functions n(t) whose  integrals  are  zero but  the  functions can 

take  on positive values.     The  difficulty can be  circumvented by re- 

sorting to  the fact that  the   set  of  t  for which n(t) > 0 has  the 

measure  zeroj   that  is,   a   set  of points  on  [a,b]  which  can be  covered 

by a  finite,   or  countably infinite,   set of intervals with an arbitrarily 

small total length.     This amounts to saying that any non negative func- 
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tion whose Integral is zero differs from zero element on a set 

of measure zero.  One may say that such an element is equivalent 

2 
to the zero element. In other words, the null element of L is the 

collection of all functions defined on the real axis which are equiva- 

lent to zero.  Two elements differing on at most a set of zero measure 

are referred to as "equivalent".  The integrals of the square of 

equivalent elements are equal.  Therefore, from the strict mathe- 

matical point of view the space of functions considered here is 

rather a space of "equivalence classes".  The distance between two 

functions f(t) and g(t) equals zero precisely when f(t) = g(t) for 

almost all t.  To depict this situation, let us write f ~ jg if and 

only if d(f,g) = 0. We do not pursue this matter further; a prfsenta- 

tion encompassing measure theoretic consideration (Theory of Lebesque 

integral) is not within the scope of our present undertaking. 

2 
3. The L space is a complete space. 

For proof, see standard texts, such as W. Rudin, Real and Complex 

Analysis: McGraw-Hill Book Co.; Akhiezer and Glazman, Theory of 

Linear Operators in Hilbert Space. Vol. 1, pages 21-23 of the English 

translation. 

2 
U / 5. For a discussion of the validity of these properties for L , see 

Chapter 1 of the last-cited reference, or Chapter VIII of Functional 

Analysis, by Kolmogorov and Fomin.  Detailed proof of separability 

with its implications can  be found in Chapter 2 of L.V. Kantorovich 

and A.P. Akilov, Functional Analysis in Normed Spaces, Macmillan Co., 

New York, 1964. 
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For the sake of exercise, Schwarz' inequality and the triangle Inequalities 

2 2 for vectors of L will be derived directly. Let f and g  be elements of L not 

equivalent to the zero element, and X. an arlbtrary parameter. 

b b b       b 

j   (\f+g)2 dt = \2 A f2 dt + 2X / fg dt + T g2 dt       (1-^2) 
a a a       a 

This  quadratic function must remain non negative for  all real values of \, 

hence 

This  inequality is known as Cauchy-Bunyakovski' s inequality.     By taking square 

roots,   multiplying by two and adding      J    r    dt +    /g    dt to both sides,   one 

obtains an Inequality bearing the name of Minkowski. 

1/2      f b 1    1/2 (     2 
J (f+g)2 dt <)lj / dt J       + U g2 dt J 

a 

These inequalities are readily recognized as the Schwarz and the triangle 

inequalities discussed earlier for Hilbert spaces, i.e., 

I (£,£)! < llfll Its II (1-^5) 

llf+£ll< llfll + IIäII (1-46) 

2 
In the definition of the  space L  [a,b],   for  simplicity,  the assertion was 

made  that    these  functions are real valued.     This restriction can be easily 

removed.     Let 0(t) > 0 ue a non negative  square  integrable  function on ta,b]  and 

-24- 



2 
denote by L^fajb] all complex-valued functions  square Integrable with respect 

to the weighting function 0(t),   that  is: 

b 
y 0(t)   |x(t)|2 dt < «. (1-47) 

A simple extension of the foregoing material will enable one to show that 

2 
the space L^fa^b] is also a separable Hilbert space.  The chosen inner product 

is 

(£,X)  = /"«(t) [x(t) SFTt)] dt (1-48) 
a 

2 
Very often,   in application,   one deals with the case ♦(t) = 1;   that is L [a,b] 

b 
fex) =  J x(t)    y(t) dt (1-49) 

1-7.  Continuity of Scalar Product 

We wish to show that the inner product is a continuous function with 

respect to the norm of the Hilbert space.  Let .jc and y be the limits of the 

sequence/x i and Jy * respectively.  By virtue of the preceding inequalities 

one can write: 

IOcn,yn) - (x,y)| < Kx,^^ - (za>X)l + l(vx) - te>x)l        (1-50) 

= \(za,Xa-x)\ +  l(icn-X/X)l 

< ll^ll ha-x\l + fell llv*'-' 

< M||yn.y|| +   llxil  l^-acll 
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where M denotes the upper bound of ||x || and |(j ||.  As n is infinitely increased. 

we find 

l|xn-«ll -0 h-x\\ -»o (1-51) 

whence 

l(xn,^n
) " ^'^^ ->0 (1-52) 

This proves that the inner product in a Hilbert space is a continuous function 

with respect to the norm. 

1-Ö.  Linearly Independent Vectors 

The reader is already familiar with the definition of a finite set of 

linearly independent elements of a finite dimensional metric space. 

A finite set of elements }^-,f$2''"'^ni    0^ a  Hllt)ert space is said to 

be linearly dependent if there exists scalars )a,,a2,...,a    i    ,   not all zero, 

such that 

n 

Y, ai$i  = S (1-53) 
i=l 

when the finite set is not linearly dependent, then is said to be linearly in- 

dependent.  The following statement is self-explanatory. 

Theorem:  The necessary and sufficient condition for a finite set of n 

vectors of an innei product space to be linearly independent is that its 

Gram Determinant be different from zero, i.e.: 

(i^^)       (*1^2) 

0(^,^2'•••'*n) 

&n,$   ) 
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An infinite set of vectors C^i'^' ' ' ' S    of a H:i-lber't space is said to be 

linearly independent if every finite subset of it is linearly independent. 

It is natural to extend the concept of basis from a finite-dimensional metric 

space to a Banach space of infinite dimension.  When the number of elements in 

a set of linearly independent elements of the space becomes infinite, the space 

is said to be of infinite dimension.  This number may be countable or uncountable. 

In this elementary exposition we only consider Hilbert spaces of countable dimension, 

or simply Euclidean spaces of infinite dimension. 

Let je.,ep,...,e ,...1 be a countable set of independent elements of a 

Banach space X such that every element x e X admits a unique representation 

^ Slz (1-55) 

k=l 

That is, to each x there corresponds a unique sequence x^,x^, . . ,,x  ,... of 

scalars such that 

lim 
m —» " 

]r W  - x|| - 0 (1-56) 

k=l 

Under these  conditions we   say that X has  a   countable basis.     In our   study we 

simply adhere to the  case' where the  space  has  a  counti. jle basis.     A  discussion 

of B-spaces with uncountable basis  is  indeed beyond our plans.     It   can be  proved 

that any Banach  space with a countable basis  is also a  separable  space.     Also,  we 

are  told that the  following question  is an unsolved problem of modern mathematics. 

"Determine whether  for  every  separable Banach  space there exists a 

countable basis." 

See,   for instance,  A.E.  Taylor,  General Theory of Functions and Integration, 
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Blaisdale Publishing Co., New York, I965, page 152.  The set of all linear com- 

binations of subsets of an infinite set of independent elements { $} Xs  referred 

to as the linear subspace generated by ^ ^j (also linear hull). 

1-9»  Linear Manifold and Subspace 

A non empty subset of elements of H is said to form a linear manifold L 

if for any ,f £ L, g e L and arbitrary numbers a and ß we have 

Of + ß .g € L (1-57) 

A  subset  of elements  in a linear  space  is said to be  closed  If the  set  contains 

all its limit points.     In view of this definition,  we note that in contrast with 

the  finite-dimensional inner product  space,  a linear manifold in a Hilbert  space 

may not. be necessarily closed.    A closed subspace is itself a Hilbert  space.     Trivial 

examples of closed subspaces  are  the whole space H,   and the null space of H con- 

taining the zero element only. 

As an example of a linear manifold which is also a closed subspace,   consider 
2 the following type of vectors of Z  : 

f = lt1,t2,tytk,t^...2     ,       f 1 = f2 =  f5 (I-58) 

g = {g1,g2>65,tV
g5'",l     '       sl = % = g3 (1-59) 

Evidently    all points  x = Ctf + ßg will have coordinates  of the   form 

x = ^x1,x2,x3,x4,x5, ...J    ,       x1 = ^ =  x^ (I-60) 

The points  of H  satisfying x.   =  Xp  =  x_   form a linear manifold L which is  also 

a closed subspace. 

As  an example of a linear manifold which is not  a  closed  subspace,   consider 
2 

the  set  L of all vectors in £    which have a finite number  of non zero coordinates 

relative to  some basis.     Then  the  sequence  of vectors       x,,JC>,X,, ...       where 
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X-L =  [l, 0, O, 0, . . .j 

is a converging sequence of vectors in L.  However, the limit vector of this 

sequence does not belong to L. 

x =  lim  xn =  (jlj^'B* ••'-■ 
n —> on 

1-10.   Orthogonality 

The  elements  x and ^  of H are  said to be  orthogonal  if 

(Z,X) = 0 (1-61) 

Orthogonal elements are denoted as x J_ ^.  An element x £ H is said to be 

orthogonal to a subspace S of H if x is orthogonal to every element of S, and 

we write x _[s.  If elements of two sets S, and S2 are pairwise orthogonal, the 

sets will be referred to as orthogonal:  S. J. Sp. 

The sets of all elements orthogonal to a given set S is a subspace of H. 

This subspace is called the orthogonal complement of S.  It is not difficult to 

see that if x J_ ^ and x J_ z, then x J. Cü i + Cü.z.  Also in view of the continuity 

of the scalar product, we find that if x J_ y  (n=l,2, ...) and y -* Xt   then x _[ X* 

The definition of length of a vector, and the angle between vectors in 

Hilbert space are identical with these definitions in finite dimensional Euclidean 

space,   i.e., _^__ 
llxll = +  V(x,x) 

(x,i) 
cosine of the angle between x and y 

ixli   \k\l 
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A set of elements e,.e„....,e of a Hilbert space is said to be orthonormal 

if [l  for i = 
(e^e.) = / \ (1-62) 

0  f or i ^ J 

It is easy to show that every orthononnal set of vectors is an  independent set. 

A set of orthogonal or orthonormal elements I ^■,)$2> ■ • • >$  >•••*  of H is said to 

be complete if there does not exist a non zero vector in H orthogonal to each 

vector of the set.  Problems concerning the completeness of a set of orthogonal 

vectors in a metric space are rather complex.  Here we quote some of the results 

without proof. 

1. There is a complete orthonormal set in any non empty inner-product 

space. 

2. If H is a separable space then there exists in H a complete ortho- 

nornal set with at most denumerable elements. 

Every finite or infinite set fh,,!^,...,h ,•••£  of linearly independent elements 

of H can be used to obtain a set of orthonormal elements by an orthogonalization 

process.  This process, in essence, was described in an earlier chapter for inner 

produce spaces with finite dimensions. 

In Section 1-15 ve shall present a procedure for construction of a set of 

orthonormal vectors in a Hilbert space. A Hilbert space may contain a countable, 

or an uncountable number of such orthonormal vectors.  In the first case, the space 

is a Hilbert space of countabJe dimension.  Finite-dimensional spaces and spaces 

of countable dimensions can be also defined as separable spaces. 

Example 1-8 

Let h be an arbitrary point of H except 0; show that the set of all 

points of H orthogonal to h forms a subspace of H. 

Solution:  In fact, if f _[ h and g J_ h, then due to the bilinear property 

of the inner product function, we find that (of + ßg)J_ h. 
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1-11  Isomorphism of Separable Hilbert Spaces 

The  definition of isomorphism between two separable Hilbert spaces can be 

formulated as a generalization of the definition of isomorphism between finite 

dimensional Euclidean spaces.  Two separable Hilbert spaces H and H' are said 

to be isomorphic if there exists a one-to-one correspondence between their 

elements such that: 

1. If x' e H' corresponds to x € H, and x'   e H' corresponds to ^ e H, 

then 

x' + x'   e H' should correspond to x + ^ e H. 

2. For any arbitrary number \ of the field, 

\x' e H' should correspond to \x e H. 

Moreover, the two spaces are said to be isometric if 

5-  d(x,y) = dCx1^1) 

It is not difficult to shew that all Hilbert spaces of countable dimensions 

2 2 are isomorphic to each other.  In particular, the spaces L [a,b] and £    are 

isomorphic and isometric. 

Let f e1, ep, • • • ( be a complete orthonormal system in a separable Hilbert 

space H, and x an arbitrary element of H.  Then x admits the (Fourier) repre- 

sentation: „ 
DO 

k=l 

where 

xk = (as*ek) and   / _   l^ I   < 
k=l 
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2 
We can establish a one-to-one correspondence between points of H and t,  , 

2 
for instance by selecting x' e i  to correspond to x e H such that x' has the 

same coordinates as x, i.e., 

x F Jx jXg,...^     relative to /g,,^, ... j 

x '= ^x1, vi^, .. .|     relative to fg-JiSg' ' • '\ 

2 
This correspondence obviously establishes an isomorphism between H and Z   .     In 

order to see whether the two spaces are isometric, let us calculate the inner 

product function for two arbitrary elements x and y of H, and their corresponding 

2 
images x' and y' of £   .     With seme mathematical care about the convergence of the 

incurring sequences, we find: 

CO - CO 

k=l     /   k=l 
(x-,y) = n   x^• ,  2. ^i   = L Vk 

(«,y) = f x(t) y(t) dt = r   Z x^J K; y^ dt = Y. vk 
a a  » k=l    ' « k=l    /      k=l 

2 
Thus, any separable Hilbert space is isometric with i   . 

The separability argument enters the discussion in view of the necessity 

of representing every vector of the space by its coordinates (the so-called Fourier 

coefficients).  (See, for example, Liusternik-Sobolev, page 79 of English trans- 

lation, Ungar Publishing Co.) 

1-12 Projection of a Point on a Subspace 

In many problems concerned with application, one wishes to find the 

"shortest" distance between a given point x of a Hilbert space and a subspace S 
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of that space.  An intuitive, but rather illuminating way of looking into this 

problem is to search for the point ^ which may be intuitively referred to as 

the "projection" of x on S.  This is schematically illustrated in the figure 

below.  In a rigorous mathematical approach, one has to show that there exists 

a unique point y e S which could justify the definition of projection.  To 

fulfill this, we require (a) that x - y be orthogonal to the subspace Sj and (b, 

that y be the "nearest" point of S to x, in symbols: 

(a) x - y lx' y" e S (1-6^) 

(x - y, y' ) = 0 

(b) Iix-y|| =  inf ||x-y'|| < ||x-y'll (1-6U) 
y'eS 

I 
I s£ 
/ -m 

Fig. 1-5.  Projection on a Subspace 

We prove formally; 

Projection Theorem.  Given x e H and S a complete subspace of H, there 

exists a unique point y e S satisfying requirements a and b above. 

Since llx-y'll, (for all y' e S) is bounded below by 0, it has a greatest lower 

bound, inf llx-y'll = d > 0.  Hence there exist a sequence d = lix-y II which 

converges to d.  Let Jy i be a sequence in S such that d = ||x-y || approaches 

das n -» °o.  Furthermore, let h be an arbitrary element of S, and \  an arbitrary 
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complex number.  Of course, ^ + \h is an element of S and by hypothesis 

h -   Ua  + Kh)f >  d (1-66) 

Since the space possesses an inner product, we may write: 

h-xj2 -  ^(h,x-yn) - X(x-yn,h) + \\\2   W&f >  d     (1-6?) 

This inequality must hold for any desired value of \.  In particular, letting 

yields 

(*-yn,h) 

h-^ - —w~ -d 

(dn-d)   felt3 >   Kx-y^h)!2 

(1-68) 

(1-69) 

(1-70) 

llijll VVd    >   l(x-yn,h)l (1-71) 

Thus,   for   any y    and v    of the  S we  have 

KXn-V^I ^   I   (Xn-2,i})| +   Kx-^h)! < 

  —— (1-72) 
( VlT-d + yTpi)      llhll 

For h = y  - y , we find 

This inequality leads to the conclusion that the sequence X^fXa' • •' 'Xnr • •' 

is  a fundamental sequence, and converges to a point y.  We will now 

-34- 



show that x e S is in fact the desired projection point defined by d = llx-^li 

=  inf  llx-y'll as follows: 
fe S 

h-xW < h-xj + lly-ynll (I-TM 

Taking the limit  of both sides yields: 

llas-xll <   d + 0 (1-75) 

but by hypothesis   llx-^ll > d for  all .y e  S,   hence 

llx-y|| = d (1-76) 

Taking the limit  in inequality 1-71 yields: 

(x-X,h) = 0 

2-X iö 
Since h is an arbitrary element of S, it follows that g-y J_ S. 

In order to show the uniqueness of this element ^, let ^jc-X = Z.  and assume that 

y' ^ y is another point of* S with the desired property. We have 

x=X+z   yeS  ,   zis (1-77) 

x = y" + z' y' e S ,   z" J. S (1-78) 

These relations suggest that 

y-y'eS, z-z'^S (1-79) 

whence 

llx-X'lf2 = U-X'.,X-Z') =   iz'-z,X-X')  = 0 (1-80) 

The latter equality implies that %  and y_ are coincident.  This unique point y 

with the described property is the projection of x on the subspace S. 
— 
An alternative proof may be based on the continuity of the inner product, that 
is: 

d = lim dn = lim  llx-yjl = || x - lim yjl = fe-yl 
n-»o°     n-»"» n-»o° 
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In particular, if the subspace S is the linear manifold generated by a sole 

vector g, then the projection of x on that manifold is the vector y such 

that 

(x-y,€) = 0 (1-81) 

Now y can be expressed as y = \g,   whence 

(x,  g) 

Fig.  1-7 
Projection on a multi- 
dimensional  subspace 

(1-82) 

Fig. 1-6 

Projection on a one- 
dimensional subspace 

The projection of x on .g is: 

(x, S) 
Proj. x on g =  g (1-83) 

i&, s) 

Moreover, when g is a vector of unit length, one arrives at the simplified 

familiar relation 

Proj. x in g = (x>g) g (1-84) 
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If a  subspace  S  is  generated by the  linear manifold     J     \~v*   where     e, 
k=l 

is an orthononnal set,   it is not hard to arrive at the simpler  result 

n 

ProJ,  jc on S =    ^   (^§k) % (1-85) 
k=l 

1-13 A Procedure of Orthonormalization 

Two sets of vectors in a Hubert space are  said to be equivalent if and 

only if each element of one set is a finite linear combination of the elements 

of the other set.  If every pair of vectors in a set of elements of a Hilbert 

space are mutually orthogonal vectors, then the set is said to be an orthogonal 

set. Moreover, if the elements of an orthogonal set have unit length, the set 

will be referred to as an orthonormal set. 

In the sequel a method is presented for constructing an equivalent ortho- 

normal set,  Te-,e2,...,g , ...?  for a given finite or infinite set of indepeadeiit 

vectors ^jg^jgg, ,..,£n, ...j .  Let 

ei= i^n (^ 

Denote by E, the one-dimensional space generated by either vector .g.. or g1 , 

Next, find the projection of g^  on space E,, and calculate the non zero vectolr 

hg orthogonal to E.. 

^2 = «2 " (%'%) §! ^ 0 (1-87) 

Thus hp and e, are orthogonal pairs, and hp j^ 0 due to linear independence of 

g, and gg.  In order to construct ai. orthononnal pair, fs2,   e.7 let simply 
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e2  =  ^ (1-ÖÖ) 

Now e     and e„  are orthonormal basis  of a  two-space Ep.     We  proceed likewise 

by finding the  projection of g^   on Ep,   and by continuing the  process described 

earlier we  find a vector  h,   ^  0 orthogonal to Ep. 

S3 = ^3  -   (^5»%)^ -   (g3,e2)e2  ^ 0 (I-89) 

Normalization yields 

^ - T§1I (x-90) 

The vector e , for any positive integer, can be constructed in e similar fashion. 

n-1 

K=^-     T.     ^n'%^k^0 (1-91) 
k=l 

A set of orthonormal vectors of H is said to be a complete orthonormal system, 

if the system is maximal, that is, there exists no other element different from 

2 
0 and orthogonal to every Hilbert space.  For example, for L [-«,«] by using 

vectors of the form sin nt, cos nt, we can derive the following complete ortho- 

normal system: 

1    cos t  sin t  cos 2t  sin 2t       cos nt  sin nt 

V2*    V^    ylT     yV    v« vV     yV 
(1-95) 

It is impossible to add any other orthonormal non-identically zero element to 

this system. 



1-lA Fourier Representation in a Hilbert Space 

As discussed before, the problem of representation is to ascertain the 

possibility of characterizing every element of thu space as a linear combination 

of the elements of a given basis of that space.  In other words, to represent 

a vector by its so-called "coordinates" with respect to a certain basis. 

Accordingly, in this section we study the representation of any vector h e H 

with respect to a complete orthonormal set of vectors 

It will be shown that the problem of determination of the coordinates 

of h, and the problem of least square approximation of h by a linear combination 

of elements of e are essentially the same.  Both these problems in turn coincide 

with the finding of the projection of h on the subspace specified by the ortho- 

normal set. 

The problem is to search for the "best" linear expansion of the vector h 

in terms of the elements of the specified orthonormal set 

00 

~ ~ Z! ai -i ^"^ 
i=l 

What are the "best" coordinates Sa. ,&-,...,a  ,..•? for representation of h? 

By the "best" it is meant that no other set of fa1, ap, ...,a i should lead to 

a lower error in norm, i.e., an error smaller than: 

00 

iih - XI ai %" (i"95) 

i=l 

This is the problem of least square approximation, or Fourier series expansion 

in Hilbert space. 
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We begin by studying the problem of the least square approximation in 

spaces of finite dimensions. 

Theorem 

Let h be a vector of a finite-dimensional iniier product space with an 

orthonormal set of vectors J^e.^eg, ...,e ? ,   the minimum of the 

expression 

lib -  ^ ai e.H (1-96) 

i=l 

over all possible values of a. ' s corresponds to the selection of 

«i = (h,^)   i=l,2,...,n (1-97) 

For any other values  of a.'s we will have 

n n 

lib -     JT   (fe^kjl <    llh -     ][]   a^ll (1-9Ö) 

Proof 

i=l i=l 

llö -     J^   ai5i1'2  =  (£-£]   ai%  '  fe "     J]ai€i) (1-99) 
1=1 i=l i=l 

=  (h,h) -   J^   ai(si,b) -   J]«i(h,Si) 
i=l i=l 

n        n 

i=i  j=i 

i=l i=.l 
=  (h,h) -    J]   aj^^,*}) -    J^   äidiSi) 

t K1 + 

i=l 
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By adding and subtracting the expression  ^  (g.>h)(h,e. ) to the right 

side, one finds 

n n n 
|fe - Z Vi"2 = (b'fe) - E |aj'gi)|2 + E |ai-(fe'si)|2 

i=l i=l i=l 

The first two terms of the right side do not depend on the coefficients 

a.; therefore, the minimization of the left side expression requires 

that 

*±  = (h,ei)       i=l,2, ...,n (1-100) 

Furthermore, the solution to this problem of least square approximation 

is unique, and 

n n 

minimum ||h - £ ^^^  = Ifell2 - £ l(h,ei)|
2 = 52     (1-101) 

ai        i=l i=l 

This is the square of the distance & of the point h to the linear manifold 

spanned by an orthonormal set /e1,e_,...,e (    .  Since the minimum of a 

distance cannot be a negative quantity, we have 

n 

Y,  !(&%)I2 5 hf (i-io2) 
i=i 

This inequality is referred to as Bessel's inequality.  The preceding 

theorem can be generalized to the case of infinite-dimensional Hilbert 

space. 

Let Je? = Je, ,e2, ...,e »•••I be a complete set of orthonormal elements of 

a Hilbert space H, and L the linear manifold generated by the first n vectors of 

fgj .  For any given element h and specified e > 0, we can approximate h by 

a linear combination of elements of L 
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E aisi' 

such that n 

||h - y      a.e. || < e    for n > N, some N 

i=l 

That is, this representation converges in the metric.  The least value of the 

expression to the left is obtained by the so-called Fourier coefficients, i.e., 

when 

at = (&,£.)        i=l,2,...,n (1-103) 
oo 

We now show that the series  y   airSv converges.  Let s and s be respectively 

k=l 

the sum of the first p and the first q terms of the Fourier series.  For q > p 

t   aÄll2 = t    l&*f (1-104) 
we will have 

q.        q 

l^q " ^pH2 = 
p+1 p+1 

q 

As p and q are increased infinitely the sum  \       |a. |  converges to zero. 

p+1 

Therefore, the sums s  form a fundamental sequence in the H-space.  Let .g be 

the limit for the sequence.   Since the space H is required to be complete, the 

point s must belong to H.  The fact that h = s can be seen from the following. 

In view of the continuity of the inner product, the Fourier coefficient (h,e ) 

can be obtained as follows: 

P 

(s,e ) =  lim  (s ,e ) =  lim  (   Y*   a-e.,e )        (1-105) 

= a = (h,e ) 
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For any fixed m and p > m, we find 

(h-5,^) = (fe,€m) - (s,^) = 0 (1-106) 

The identity of h and 5 follows from this relation and the fact that the set 

iej is complete.  Whence, 

00 

h =  lim £    =    Y   anSn (1-107) 
p - " n=l 

Theorem 

Let H be a separable Hilbert space, with a complete set of orthonormal 

vectors Te,,^, e_, . .. ? .  We can associate with any element x e H a 

Fourier series    y      (x,e. ) g. converging in the norm to x, and  such 

k=l  «> 

that the series ^       l'(x,e. )|     converges to 
k=l 

00 

Y.    l(^Sh)|2 =  (x,x) (1-108) 
k=l 

Alternatively, we state that every vector x e H can be approximated as closely 

as desired, in the mean square sense, by the above Fourier series. An element 
00 

can be exactly expressed by a Fourier sum    y      ^SrSk ^f Bessel,s inequality is 
k=l 

changed into the  so-called    Parseval's equality;   that  is, 

00 

Y   '(«'%) I2 = (2'«) (1-109) 
k=l 

Conversely, one may state a criterion for completeness of a set of orthonormal 

vectors in a Hilbert space as follows: 
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Theorem 

In order that the set of orthonormal vectors  e  be a complete set, 

it is sufficient that Parseval's equation holds for every x € H. 

(x,x) = liacll2 =  £ l(x,ek)r 

k=l 

If H is also a complete space (as in our present case), then this 

condition is necessary and sufficient for completeness of fe? 

In case of the space L [a,b], any arbitrary nonzero vector f(t) may be 

represented in terms of its Fourier expansion as: 

CO 

k=l 

But this representation does not necessarily converge.  However, when Je. (t)j 

is a complete orthonormal set, then it is well known that the series will 

converge. 

In the spirit of the elementary scope of this chapter we have primarily 

considered separable Hilbert spaces, which are obtainable as a simple extension 

of the Euclidean space.  In reality, Hilbert space may have countable dimensions. 

Then the left side of the Bessel inequality, Eq. (1-102), will represent an 

uncountable set.  The impact of such a generalization, on the selection of a 

complete orthonormal set, and related convergence consideration for Fourier 

expansion, will require a full understanding of LebesRUe integral; this is 

beyond our plans. 

_ ___ .   . .    ^ ^   . . 
The completeness of a metric space X and the completeness of a set of ortho- 
normal vectors in X are to be distinguished. 
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In brief, as long as we remain content with a direct countable infinite- 

dimensional generalization of the Euclidean space, things are under control. 

A step beyond that into the most general type of Hilbert and Banach space 

requires more specialized mathematical preparations. 

1-15 Representation by Fourier Trigonometric Polynomials in a Function Space 

In this section we will apply the content of the previous section to a 

problem of common interest.  Let h(t) be an arbitrary vector of the real function 

2 
space L [0,2IT].  It is desired to obtain the best Fourier representation of h(tj, 

in the sense of minimizing the norm of error, in terms of real trigonometric 

polyromials of degree n or less: 

a 
f (t) = ö- +  al cos ■t + ^i sin * + ••• + a cos nt + b sin nt    (1-110) 

The totality of these polynomials forms a subspace S of dimension 2n+l over the 

field of real numbers. 

We set forth to derive the trigonometric polynomials f (t) which is the 

best linear approximation to h(t) in the least square sense, that is minimizing: 

2n 
h-rj2 =    £ [h(t)-fn(t)]

2 dt (1-111) 

0 

In other words, the problem is that of projecting h on S.  Let us choose a 

normalized version of the common Fourier trigonometric series as the maximal set 

Jg ( of an orthonormal basis for S, 

1 _ cos t _  sin t 

*0=   V^" 'Sl= VT 'S2= V7 ' •••' 
(1-112) 

cos nt sin nt 
e2n-l VT"   ' 



It is to be noted that the orthonormal set 5e^ is "complete", that is, no 

additonal non zero vector of S can be found which is linearly independent of 

the elements of Se? . Whence, 

2n 

Prog, h on S =  V c^e^. (1-113) 

k=0 

where 

Ck = (V3^ (1-11^) 

Recalling the usual definition of the inner product, we find 

2n 2n 

-—z       f    h(t) dt, c2k ^^ = -~—• f   h(t) cos kt dt 

(1-115) 

C0 

C0. = ~=r     \   h(t) sin kt dt V7 { 
These constants specify the best trigonometric polynomial approximation for 

elements of L"[0,2it] relative to the 5e$ basis.  Since the question was formulated 

relative to f , from these relations we derive the familiar Fourier series co- ~n 

efficients: 2n 

o=7^Co = " /   h(t) dt (1-3a6) 
0 

2n 
ak=7FC2k-l  =  J   /h(t)   c-kt^ 

2n (1-11^ 

bk^C^=  "   /h(t)   Sinktdt 

0 

The square of the error in approximating h by f is: 
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2n 

llö-fjl2 = Itell2 -   Y.    '^i^2 (1-118) 
i=0 

No other trigonometric polynomial of the above type f (t) with m < n may offer 

a lower error. When n is increased, the error is reduced and when n -*00  the 

converging Fourier series expansion approaches the exact representation of h. 

Example 1-9 

Calculate the Fourier coefficients for the function 

f(x) = x -it < x < IT 

in [-it,it] using the orthonormal set 

sin x      sin 2x       sin 3x 

Solution; 
it 

x sin kx dx        k=l,2, ... 
c
k = <W = -v / 

-It 

i   I   x cos kx I r ^ i r     v ^ = ^= j^- —— |j^ - 2 yco8 ^ ^j 

= ^^ cos kx 
A. 

The projection of x on the linear manifold of the  above orthonormal set is: 

„   /   .              sin 2x   ,   sin 5x « x ~ 2   (sm x -  —5  + —-  ^       -   ...) 

This orthonormal set is not a basis for the  infinite dimensional space.     A 

complete  set of orthonormal basis containing the above set can be obtained by 

the addition  of elements 

1 cos x       cos 2x 
•yzn     yV     yzn | 
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But the projection of x on the  latter  set  is the vector Q.     Therefore,   the 

exact representation of x in the infinite-dimensional space is 

x = 2       Y.   (-D*'1 sin kx 

k=l 

1-16 Optimality and Closed Convex Sets 

A set of points X in a vector space is said to be convex if for any 

arbitrary paii 3 x and ^ of X and 0 < t < 1 we have z = [(l-t)x + t^] e X. A 

simple geometric interpretation of this property may be visualized by thinking 

that all points z on the line segment connecting x and x and between x and x 

must belong to X. The figure below sketches a non-convex set of points: 

Fig. 1-8  A non-convex set of points 

In view of this definition the following important theorem may be proved. 

Theorem 

Every non-empty closed convex  set X  in a  Hilbert  space H contains a 

unique  elements h-  of  smallest norm. 

Proof 

Let B = inf ||x|| for x e X denote the least value of ||x|| for all points 

in the convex set X. Consider a sequence Vx j of points in X such that ||x 11 -♦ 6 

and n -»"o . A proof of the theorem requires the following two steps: 

1. /x I is a Cauchy sequence. 

2.  x -» h- and n -*o°. -n      -0 
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For  any arbitrary points x  and y of  H in  view of the  existence   of an  i riner pro- 

duct,  the  so-called parallelogram law gives: 

h+zf  +   k-xf  = 2||xf  + 2||y|P x^ e   H (1-119) 

i  llx-ylf2 - i llaclP + i  llyll2  -   11^  f (1-120) 

Now by considering points x,  y in X,   in view of the  convexity  of X,   the  vector 
x+y 
-s— will be  also  in X,  whence: 

llx-xll2  < 2|lac|P  + 2||y|P   .U62 x,iC €  X (1-121) 

This inequality may be applied for points x and x for showing that ix • is 

a Cauchy sequence: 

H^-xJI2   <2\\xnf + 2|bcml|2   -  U62 (1-322) 

As n -» «> and m -»<» the right side of this inequality by definition tends to zero. 

Therefore 'ix   <  is a Cauchy sequence.  The limit point of this sequence must be 

in H since H is a complete space.  Let hn be the limit point of the sequence 

£~nV then 
lbcn-h0l| -»0   as n -»«> (1-125) 

Tlie point h0 belongs to X since X is assumed to be a closed convex set.  It 

remains to show that llhJI = lim  ||x || = B, i.e., the norm is a continuous 
n -»t»   " 

function.  To prove this consider once again the fundamental triangle inequalities: 

llxll <  lls-xll +   llxll (1-124) 

llxll -   ||y|| < ILx-ill (1-^?) 

If x approaches y, the right side tends to zero.  Thus, ||x|| is indeed a continuous 

function on H, whence 
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ii-  JbsJI 
n -♦• 

(1-326) 

To «bow that feo la unique, let Ifegji - llf || - 6, then the Inequality (1-120) 

ylelda: 

ho-tf < o 

a0-i 
(1-127) 

The importance of thia theoren is probloma of application is aelf-evident. 

Whenever we have a closed convex set X in a Hubert apace, we can find a unique 

eleaent of smallest norm. If points in X portray the performance of a physical 

system then Ju describes the most "efficient performance" among all £ c X. 

Many problems of optimal control fall in this category. The challenge to the 

reader is to identify such a clear mathenatical model in the heart of the 

tedious technical literature of application where no main path is visible. 

y 
s 

Pig. 1-9« The element of 
minimal norm is unique 

Fig. l-9b The elements of 
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Chapter 2 

UHEAR ORRATORS IN HZUBtT SPACE 

2-1. Introduction 

In the context of engineering application, the material of the pre- 

ceding two chapter! offers a representation and an approximation theory for 

elgnala in a Rilbert apace. In a eimilar vein, the material of this chapter 

la directed toward a repreeentatloo theory for linear processing systems of 

a Hllbert signal-space. 

The theory of operators is a powerful tool of functional analysis with 

broad applications to problems of engineering and physics. For exenple, in 

control theory, wave propegation and in quantum mechanics one is constantly 

faced with the problem of determining critical frequencies of a physical 

system which amounts to the determination of elgenfunctlons of certain 

differential or integral equations. In most applications, of this type the 

concept of linear operator plays a very important role. Take for Instance the 

familiar Integral transformation f(x) -*g(x} 

b 

g(x) - f k(x,y) f(y) dy (2-1) 
Ja 

The correapondence between functiona g(x) and f(x) can be denoted by the com- 

pact notation 

g-Af (2-2) 

In this format one can readily appreciate that the solution to the equation 
b 

f(x) - \     f *ix,y) f(y) dy (2-3) 
a 

where f(x) is an unknown function is coincident with solving an eigenvalue 

problem, since -51- 
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1 (2-*) 

LilufwiMf tlM solutloa to thm vmotat dlffer«ntl«l •^puttioii 

* - A x »(O) - « (2-5) 

«bar« A la • eonatant n x n aatrix, «aa found to to« 

»-•** 6 (2-6) 

w« haw dlaeuaaad In detail, that tha aolutlaa vector can b« obtained tram 

the initial condition vector £ by applying the linear operator «u • 

of the baale propertlea of linear operatora on finlte-dlaanalonal 

vector apacea were diacuaaed in Chapter 3 of ni-65-39U. Itae inforaation pro- 

vided there «aa adequate for an introductory treat—nt of tranafomation rf 

elaaenta of a finite dlaenaional Euclidean apace. More general and intereating 

reaulta nay be derived, however, if the content of that chapter la extended to 

linear operatora in Hubert and Banach apacea. The fulfiUjeent of thia aia la 

the Object of the preaent chapter. 

2-2. Functlonala and Operatora 

By direct analogy with the functlona defined in a flnlte-dlaanaioaal 

vector «pace, one can define aoalar aad vector functlona over the elaaanta of 

a linear apace of infinite dlaenaion. The flrat category of theae functlona 

la n—miljr referred to aa functional« and the aeeond type aa operator a. 

Let D be a subaet of the apace X, to each point £ c D, one nay attach mm 

scalar valued function (f(£). This la a functional whoae aaaain la D. 

The definition of an operator in an inflnlte-diaanalonal apace la eaaentially 

the aane aa in the caae of a finlte-dloenaional apace. Let X and Y be two 
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linear apaoas, and oonaldar th« Mt D c x> to «wry «iMwat g c 8, by ■ 

•ultable rul«, «• •■■ociat« MM «iMMUt Z c Y. XIM rclatiooahAp batwaan 

X aaA x MV be daaicaatad by 

X - A « (2-7) 

The aat D la referred to aa the doaain of definition of the operator A. The 

aet D. of all eorreapoodlng laage polnta y la called the range or the iVwaaln 

of valuea of the operator A* If the doaaln of definition eovera the entire 

apace X, and if D. c x, then it la aald that the operator A aapa X into itaelf, 

or A la an operation on X. 

In tha following we ahall concentrate on linear operetora acting on 

linear noraed apace« in general« and on Hllbert apaeea for the «o«t part. In 

thla reapect, first we need to define the linear opeaator, and than Ailly graap 

the aeanlng of the two Independent concepts, continuity, and boundedneas for 

linear operators of a metric space. 

2-3. Linear Qparatora 

nie definition of a lineer operator napping an infinlte-diaensional real 

linear apace X to Y atanda eaaentlally the aaae aa in the eaae of a real finite 

diaenaional apace. There la one laportant difference howerer that in the finite» 

diaenaional case the requiresMtnt of continuity does not present itself explicitly. 

In the infinlte-diaenalonal eaae an operator la aald to be linear if it la 

additive and continuous aa deacrlbed below. 

a) Additlvlty. for every pair jjj, ^u c X we reqiaire: 

*%. + %>-A»L 
+ A% <2-8) 

b) Continuity. If a sequence jt e X converges to 2 c X, then we require 

that the sequence A JL. c Y converges to A x c Y In the sense of the convergence 

In Y. 



i i       <<■——^Mi^——1— tm^a^ «MM 

teMd on prop«rtl«s •) and b) on« ean show that • Uiuiar oparator 

ia tflao hoao—naoua , l.a., for «vary raal nurtbar X, A(\#j() ■ X A (. 

fer any arbitrary additiv« oparator «• taavat 

A(0) - A(fl ♦ fl) - A(fi) ♦ A(fi) - fl (a-9) 

A(S) ♦ A(-») - A(»-») - fi *    A(-») - -AC») (8-10) 

Xf X and Y ara ecawlax apaoaa, ttaa addltlvlty aa daaorlbad la I«. (8-6) 

la lamfflelant.    Oom baa to add tka raqoiraamt. 

A(l «) - 1 AU) *    1 -"^T (8-11) 

Wa «hall atata without jreofa that a) «nary additiv« and bonocanaoaa oparator 

In any flnlta dl—ialnnal nocnad «poo« la a Uaaar oparator.   b) Irary llwaar 

oparator la taoaoaanaoaa.    (8aa tar inatano« B.8. Vbllkbt latenodootlon to 

Punetional Ana3ya«a# BnsllOta tranalatlon by I*H. Snaddon« Wm§tmo* Braaa, 

MOW York 1963« Chaptar 8). 

2-4.   Continuity. Boandadnaaa. ar^ ffTIT gt MlMt 8MWiMSi 

a)   Contiguity.    Continoity ot an oparator la • natrie apnoa baa a 

alapla naania«.    Ita eoneapt la baaad on tb« Idaa of "oloaanoaa" oT two vaotora 

As and Ay idianawar 3 and y ara oleaa to aaob otbar In tba aatrle 

lot a point s of tba aatrie apao« I vary within a aphara 8 at 

radlva & oantarod at 3^ 

Q) 
Fi«. 8-1« 

1 
Fl«. 8-lb 

In (anaral it la «aalar to chaek tb« boaoganaitar of an aomratev AIM«*'W «■*»> »— 



.:—-p.-^,.—^■^^»T,-^.»,;.. - ■ _,  

A 1* nld to b« • eoatlauoua opwator ttt ^ it th« iaag« of tb« sphar« 8 by 

A rMMim wittalB an wfeltrarilar mmiX ■ptaar« 8a of tb« apao« 1^ 

{•,«   IU»-i%ll<€) (2-03) 

In othar words. If for «ay arbitrary c > O tbero axlata a 6 > 0 auob tbat 

tba laacaa of all points of S raaaln «Itbla 8 • 

An oparator eontlmoas SB a (laaaln SbouH possass this proparty for t-11 

points in tbat dnaaln. 

AB ad'-UtiTa oparator baa as additional Intarastlng property tbat If It 

Is eontiouoos it any alngla point 4^ < X tbsn It «HI ba eootinuoua for tba 

«tola spse« l| and tbarsfcr« It Is a linoar oparator. In fact, lat 3 ba tba 

Halt of a aaqaanoa fa-tj   tban £x m 9 * ^.J approaebos 4^ for a -»••. 

ttorafarai 

AC^ - » + »„) -»^ (2-a*) 

AJ^ - AI ♦ ^ -»4^ (2-15) 

b) Beiindadnass» An oparator A daflnad ovar a notrle apace K la said 

to bo boundad If tbara exists a oonstaat M > O snob tbat 

I4KI <- hi   for all s a B (2-16) 

A aaaaatrlc "raainrtar" of tba ooaoapt of boondadnaaa la abatobad In n«. 2-2. 

9M nom of tba laaca point As of any point 3 vitb a finite norm . annot beooae 

arbitrarily Isroa.    In otber words» tba laaaa of any apaolfled spbere bl - k 

■ast be contained «Itbln tba spbere Iftsl < Mc of tbe Bj-spaee.    The distance 

any two points 3 and g of 1^ abould satisfy tba inequality 

l4s - dxl - ld(a-z)l < NNS-XI (2-17) 
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TUt'  2-2* /  Mft. 2-2b 

An op«rat«r nmrnA not b« bounded. For Instance, tb« operation of differentiation 

la linear tout it nay generate unbounded results. Likewise« an operator need 

not be continuous. For additive operators, bomver, it can be sbown thst 

tbo definition of continuity and boundedness beooae equivalent. 

If an additive operator Is bounded, then it is easy to Show that it is 

also continuous. In fact, consider a sequence of vectora ^Sj*^* • • •*£b; • • •} 

of the space S converging to 3.    For the corresponding sequence of iasges, «e 

can «rite: 

lU» - AsJI - llAte-^)« < N fc-^ll (2-10) 

«here N is the constant appearing in Iq. 2-35. Urns, the sequence 

Ä8x#Aj^#.««»Asn,».^coinrerges to A» as n -» ». She converse is also true« 

a continuous additive operator is bounded. (The proof of this stateaent is 

basienlay siaple and is available in nost texts on the subject. ) Hie essence 

of the proof is that «hen a vector £ is changed continuously, the vector Al 

varies also continuously, and a suitable constsnt N > O nay be found. 

e) Mam, of e yj^ME operator. The foregoing naterial suggests a 

natural definition for the "nora" of a bounded lineer operator A in a netrlc 

apace S. The nora of an operator A is the asallest nunber M satisfying the 

inequality (2-18). trem this definition, it follows that for a linear bounded 

operator and any arbitrary vector «, «e have 
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IM < «All IM (2-19) 

Anotter •qulvalant dsfinltioa of lUII !■ •■ followt: 

W« aay Htp tba cloaad unit Bphare of the ■pao« I toy the linear 

operator A, end eeerch for the niprenue of the "length" of the Image point 

IIASI in B. .    Oie nom of the operator A is denoted toy ||AII and defined toy 

IUII - »up IM for llsll < 1 (2.20) 

2-?. The Space of Linear Operator» 

We have already ehown that the linear operator! defined over a linear 

vector apace of finite dlaenalona theaaelvea for« a linear vector apace. The 

null operator la the aero eleaent of thla apace. The aum of two linear 

operatora and the product of a linear operator toy a acalar are well defined. 

Thua the linearity of the apace of the linear operator la aaally eatabUahed. 

Ihe introduction of a nom for the operator allowa ua to atate: 

Theorem 

The apace of linear operatora defined over a named linear apace la 

a iimaMid lineer apace. 

Bfoof 

The validity of axiaaa of a metric apace folloira directly from 1« 2, 

3 below. 

1.    In the firat place, «e have aaaociated a norm with every element of the 

apace of linear operatora, i.e., a non-negative number 

jJAJI - auplUxll > 0 for  llxll < 1 (2-21) 

Thla nuaber la equal to aero if and only if A la the null operator. 
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  ...■-■.■        .■;- ■       . 

2. IM - «up ÜVAxll -   \K\  «uplUxl .   |X| llAli (2-82)     ) 

tot h\\ < 1 

3. IIA+B|| - ■upIlAs+^tll < mp lUsll » mpIlBKll - ||A|| ♦ I|B|| (2-23) 

tot  llsll < X 

In addltioa to th* abanrm thmofm, oom e«n d«rlv« tb« followlnc «lapl« 

ln«4uallty far tb* nam of ttao product of two llnoar operators A ■ AgA, 

V    HAS« -  ^(AjX)« < 11*2«  lUjiBll < lUall  ll^ll  llsll (2-24) 

That la, 

IIV^II < lUgll l^ll (2-8?). 

Ibe identity operator playa the role of unity. 

Kvldently, the operation of ■ultlplleatloo of linear operatora la aaaoelatlve 

and dlatrlbutlve. I.e.« 

A1(A2A3 ) - (AjAg ^ (2^6 ) 

A5(AX+A2) - Ayk^ + A^Ag (2-27) 

(Aj+AgjAj - Aj^^ + AgAj (2-28) 

2 
If oparatora A^ > Ag - A,  than the product A^Ag aay be denoted by A .    In this 

we can define powara of an operator A and note that for any positiv« 

Integer n 

HA"! < lUr (2-29) 

theore« 

The space of linear operatora which transform the no—id space I Into 

a coaplete noonaed apace B. is Itself a Banach space. 

Proof 

One baa to show that the linear spaoe of operatora is a coaplete 
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■pao«.    Iff   JA^Agf^A...., Aa. ..^   is • converging Mqpene* off linear 

operators« that is llA -AL II —> 0 (n,«       > "), than ffor any arbitrary element 

X of I tha corresponding sequanea at iaagas will also convarge 

llA^Ä-V" * ll<ViSa) *" ^ ^n-^11 H»11 -^ 0 (2-30) 

n,m > " 

Ttaxn,    'oa aaqaanca   JASJ 1* • converging aequence ffor every « «hieb converges 

to AS«    Since the noraed space I-   is coaplete, than the lialt off any sequence 

in E, will be contained in l.|    but it is not obvious that A also belongs to 

the space off linear operators. 

The ffollowing three steps are required ffor eoaplating the prooff. 

a) A ia additive 

b) A is bounded 

c) A - lia A^ 
n —> «• 

A proof aay be derived by the interested reader.  (See B.Z. VUlikh, Chapter 8, 

or M. Davis, A first course in Functional Analysis, Qordon and Breach Co., 

New York 1966, pages ^9-50). 

2-6.    Tha Invarsa Qperatpr 

In order to give a preeiaa definition of tha invarsa operator, conaidar 

the operator A which aaps a Banach apace I into a Baaaeh apace B. • 

X-ACXCB, ^«B! (2-31) 

A is said to be an invertlble operator,  iff for every si s—at y c B. 

equation x - As has a unique aolution 2 in B.    Ihe operator which represents 

this corraspondanca is referred to aa tha invarsa operator A and ia denoted 

by A'  .    When A has an inverae, wa can fforaally write 
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Ä - A"1 X 

.1 (2-32) 
A« • A A 'If - X 

The following theorem can be proven without difficulty: 

P»eorea 

If A la ■ bounded linear operator, whoae invera« A- exiati, then 

A' la alao bounded, 

me proof for thla theorem la rather long. 

It requirea aeveral preliminary atepa and more apace than we can afford. The 

intereated reader la referred to atandard mathematical texta, for instance 

Kolaogorov-roain, Chapter III. t 

To give an example, note that the operator Ax- / x(a) da on C[0,1] 

to C[0,1] la bounded, but A" V m T£ yC*) 1* unbounded Ofor a certain aubaet 

of eontinuoua functlona« The inverae operator doea not exlata for all polnta 

of the apace. 

Likewiae the Stum-Liouville operator 

A«-ft  {'<*> ^] + ^t>x 

which la defined on the aubapace of twice continuoualy differentlable elements 

of C[0,1] la unbounded. Its Inverae however la a bounded linear operator for 

all C[0,1] (Green*a function) 

1 

A"1« - f 0(t,m)  y(a) da 

In dealing with operators we frequently need to apply the following 

important theorem which allowa a power aerlea expanalon of the inverse (l-A) 

in terma of power a of A. 
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Theorem 

If A la an operator, with  ||A|| < 1, napping a Banach space E Into 

Itself,  and I the Identity operator,   then the Inverse of the operator 

I-A can be written as 

00 

(I-A)-1-    £   Ak (2-33) 
k>0 

Proof 

Die proof,   in essence,   is similar to the elementary proof for convergence 

of the scalar series 

00 

jij -    £!    xk       for   |x| <1 (2-3^) 
k-0 

Here, we consider the transformation (l-A)jc » y, and set forth Vi find its 

solution by means of iterations: 

2n+l ~ ^ " x n " 1'2' *'' (2-35) 

With je.  K X this procedure yields: 

j^-y + Aj^-yAy 

iu-JC + Ay + Ay 
^ (2-36) 

J£n - i + Ay + A2y.+ ...  + Aa'\ 

Tte key to the convergence of this sequence is the fact that if ||AII < Q < 1> 

then ||A || < q .    Therefore,   as n  > <», jc    tends to the unique solution of 

ic ■ y + As»  that is, 

ao 

» ■ Y, *** (2-37, 
k-0 
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Ttoam JC sstiefles & = X + AJS#   and we have shown elsewhere  (section on contraction 

mapping) that this equation has a unique solution; whence 

00 

(I-A)"1«-    Y.   ^ <2-58) 
k-0 

Example 2-1. 

Is the differential operator A on the set of continuous functions In 

[0,1] a hounded operator? nie norm of x(t) Is taken as max|x(t)| In [0,1]. 

Solution; 

A« = ft tx(t)] 

Consider a sequence of points on the unit sphere: 

sin met      n ■ 1,2, ... 

2  n« cos nnt 

IIAJC II Increases without hound as n  > «> , thus the operator A is 

unbounded. Note that A is additive but not continuous, as it Is not defined 

everywhere in the space C[0,1]. 

Example 2-2. 

Consider a mapping of the linear space C[0,1] of all functions x(t) 

continuous In the Interval [0,1]. a) Show that the operator A defined by the 

Integral below is a linear operator from C to C. 

1 

y(t) - j   k(s,t) x(t) dt 
'0 

where the kernel k(s,t) is a function continuous in the square 

0<s<l  ,  0 < t < 1 
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b) Show that 
1 

lUII - nuc      f    |K(s,t)| dt - M 

0 < a < X 0 

Solution; 

a) Evidently A maps C Into Itself. Moreover, 

A(X+.Y) - AJC + AK 

Die continuity of the operator can be proved by considering a sequence of 

vectors JC converging to jcj and the convergence of the corresponding sequence 

of images.  The convergence here Is taken In the sense of uniform convergence, 

whence we can take the limit tinder the integration sign. 

b) The proof Is slightly more complicated than a) and can be found for instance 

in Kantorovltch-Akilov's Functional Analysis in Normed Spaces page 108-109. 

Example 2-3. Determine the norm of the following operators: 

a) Zero operator, b) Identity operator,  c) similarity operator. As = NJE 

Solution; 

a) llAll - 0, 

b) IIAII - 1, 

c) IIAII - M 

Example Z-h.     (operators of the normal form). Let fg J be a complete ortho- 

normal system for a Hllbert space H of countable dimension, and JX.,^,.. .,X ,...? 

a bounded sequence of real numbers with \K.\ < C.    For every x »   /  xi ~i 

of H we define the following operation; 

^ - £ xj xd «j 
d-i 
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a) Is A a linear operator? 

to) Find ||A||. 

Solution, a) A Is a well defined operator on H. Its linearity Is an immediate 

consequence of the properties of addltlvlty and homogeneity. 

b) Jjet  C be the upper bound of the sequence |\ I - C, and let 
oo n 

hf '   Y. xl ' ^ then 

i-i 

00 

IIAJSII2 =   £ >?±*l   < c2 

i-i 

whence Ikll < C 

On the other hand 

||A|| > sup|lAsnll - «up h^W - sup||\nl| - C 

Consequently  ||A|I - C 

2-7.    Approximate Solution of Functional Equations 

Consider the linear operator A defined over a normed space.    Frequently, 

we wish to solve a functional equation of the type As * y <*' 3 - Ag + y 

for a given y, but the Inverse operator A-    Is not known«    This Is for example 

the case when it Is desired to solve a set of algebraic equations but the 

inverse operator A-     (Inverse matrix) is not readily available}   or when an 

exact solution to an Integral or differential equation is hard to derive. 

According to a method suggested by L.V.  Kantrovlch,  A"    nay be approximated 

in the following way. 

a) JE « A« + y 

Let A be a linear operator mapping a Banach space X into Itself,  I the 

identity operator of X,   and A    an appraxinant to A,  then 

(I-Ate - y (I-AQ^O " * 
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The success of the method c .-.pends on the choice of a suitable A such 

that we can assume that A-A0 - A is relatively »mall, that is, ||A|| ||(l-A) ||< 1, 

and if (I-A)~ exists. Under these conditions it follows that (l-A0)'  also 

will exist and: 

£0- £*   (l-Ao)"1(A0-Ate 

IkJ < IKl-A,,)-1»   l|A0-A|i   fell < d-A^"1   jJAJI   fell (2-39) 

Thus if A Is a approximant for A, then for any x  ■the functional equation 

(l-A )jc = x will yield an approximate solution JC for je. Ulis inequality 

however does not explicitly indicate a bound for the erroir. If A is chosen 

such that: 

IWI IKl^r1« < q < 1 

Then we find: 

fe0-xll < <i fell < «i(ll» - x0ll + fe0li)   - ih-zj + qfe0ll 

or 

"V^ft 'fee'1 

b) x = A« 

Let A be an approximation to A such that A~  can be found more easily. 

Let A =  A-A , and assume that ||A|| ||A || < 1. For a given y we may approximate 

JC by the element: 

&0  - A-0\ (2-40) 
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nie error vector 2-2. utlsflec the Inequality: 

fc-xjl - IIA-VA/^IIA-1-*/1!! M (a-ui) 

It can be shewn as an exercise (for instance by analogy with the scalar case) 

that under the above hypothesis 

\\A-^A'H <      "Ao"1" (a-te) 
I-IIA/1« IWI 

In spite of the fact that A"    is not known,  this inequality provides a direct 

upper estimate for the norm of error,  by writing 

,^,,<r^«M<rJ^-L 
An example of the application of Kantorovich method is to be found in solving 

Fredholm's integral equation, by replacing its kernel with a degenerate kernel. 

2-8. Representation of Linear Operators in A Hilbert Space 

In Chapter 3 we discussed the general form of linear operators defined 

over finite-dimensional vector spaces. In this section we tsake a generalisation 

of that material for It near operators on Hilbert and Banacb spaces. Here we 

shall investigate whether linear operators on Hilbert space also admit a matrix 

representation similar to the representation of Sec. 3-8 of m-65-599. 

Consider a separable Hilbert space with an arbitrary complete set of 

ortbonomuil elements rSi/Jb» •••£b* •• • J:  • With respect to this set, any vector 

2 e H can be uniquely represented as 

00 

« " E Vk &-kk) 
k-1 
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where 

A linear (continuous) operator A maps £ to ^ auch that 

"AS - Z ^ AS* 

(2-^5) 

(2-i»6) 

k-1 

Hie Image of £. under A may he specified by its Fourier coefficients, i.e.. 

AS* " £ "kj ^    k ° i*2'-" (2-^7) 

Iherefore, the Fourier coefficients of y In its representation with respect 

to the  £  basis are 

k-l J-l it^) 
whence 

Z   VJ ^       imX'z' 

(2-48) 

(2-^9) 

k-l 

In this manner,   the vector y - AS !■ completely specified through an infinite 

matrix: 

"11      *12 

"21      "22 

*di    *d2 

"Ik 

•2k 

'Jk 

(2-50) 
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niere is an important difference between representation theorem of 

linear operators in the cace of Hilbert apace (and B-spaces) of infinite and 

finite dimensions. In contrast with the finite dimensional case, not all 

infinite matrices represent linear operations on some Hilbert space. 

2-9. Adjoint Operator 

In Sec. (4-8) of m-65-599 it was point out that with every linear operator 

A defined on a real Euclidean space of finite-dimension Rn, we can uniquely 
« 

associate an operator A in a manner that for any pairs of vectors 2 ud X of 

that space 

(A*&l) - C&Al) (2-51) 

The operator A is called the adjoint of the operator A. In any orthogonal 

basis, the matrix representing A la the transpose of the matrix of A . In 

particular, it may occur that the matrix of A is a eymnetric matrix, i.e., 
* 

a.. - "vi*  In Bucb * cltuatlon we have A » A , whence 

(Ajc,x) - (X,AX) (2-52) 

When this relation is satisfied, the operator A is said to be aelf-adjoint. 

When the space is a complex Euclidean space C11, the above defining 

equation remains valid; but the elements of A and A are generally complex 

numbers. In the iipedal case where a.. » «L. then A is identical with its 

transpose conjugate; that is, A » A is self-adjoint. A self-adjoint trans- 

formation A m A defined on CT is represented by a Hermltian matrix. 

Hie above definitions remain essentially valid for Hilbert and Banach 

spaces. Let A be a linear operator on H, whose range is also in H. According 

« 
The necessary and sufficient conditions which the matrix in Eq. 2-50 must 
satisfy are given for Instance in L.V. Kantorovich and Q.P. Akllov, Functional 
Analysis in Wormed Spaces, The KacmiUan Co., Hew York 1964. 
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to Chapter 3, tor  each pair of vectors of H, the quantity (A&x) defines a 

linear functional on H. We consider the equation 

(A&X) - te,X#) (2-53«) 

* 
For every pair of 2 «nd y, this equation provides a unique y e H. When y 

Is changed, y will be ch&nged also.  Let us denote their relationships by 

y - A y, or 

(AjEry) - te,A*y) (2-53b) 

* 
This relation characterizes a unique operator A on H with range in 

H, referred to as the adjoint of A. It can be shown without difficulty (see 

Liueternik and V. Sobolev Sec. 23.) that the adjoint operator A of a linear 

operator A defined on H is Indeed a linear operator and ||A || -• ||A||. 

Ohe followics properties of adjoint operators are easily verified. If 

A and B are linear operators over a Hllbert space H, and K  a scalar, then 

(2-54) 

(2-55) 

(2-56) 

(A"1)* - (A*)"1 if A"1 exists (2-57) 

I* - I (2-58) 

Normal Operator.    A linear operator A is said to be normal if it connutes 

with its adjoint,  i.e., 

AA* ~ A*A (2-59) 

Normal operators of a Hllbert space satisfy the relation 

llAsll -  llA*«|| , 2 € H (2-60) 

An arbitrary self-adjoint operator is clearly a normal operator. 
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Unitary Operator.  Ulis 1B a aubclua of normal operatora aatlsfylng 

the additional requirement 

AA* • A#A - X (2-61) 

It la to be noted that for unitary operatora Eq. 2-60 reducea to 

Ml - yi, aince (Ajt,Ajc) - (jc,A*As) - (2,x) 

A rotation in Hilbert apace is an example of a unitary linear operator. 

Tbe rotation operator A maps the apace into Itself while preserving the norm, 

that la: llAgll - II »H- 

As an application of the foregoing mateial, consider the familiar 
2 

linear integral operator of L [a,b], 

b 

y(a) - J *(*,*)  x(t) dt (2-62) 
a 

where K(s,t) ia a continuoua kernel function, whence 

b    b 

f J    |K(a,t) I2 da dt < + » (2-65) 

In our current notation, thia integral equation ia written aa y - Ajc. Tbe 

adjoint operator A now may be introduced by y -Ay. We require that the 

equation (2-64) remains satisfied.  It is not difficult to show that thia 

requirement ia equivalent to choosing the integral tranafoneatlon below with 

the new kernel as: b 

y*(s) - y"K*(s,t) y(t) dt (2-64) 

a 

K*(a,t) - JcTt^T (2-65) 
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In arim- to verify whether this is the true adjoint of the linear operator 

under conalderation, we «rite: 

b r h 

(A&X) t) x(t) dt I y^äT da 'III   X(a't) XCt) "I 
- J x(t) I J K(a,t) ?&) da 

(2-66) 

us,«*) - / x(t) y (t) dt 

The equality of the two quantities logpliea that 

b 

y*(t) - J K(«*t) yTTJ da 

(2-67) 

(2-68) 

0 

y*(t) - J fräTÖ y(a) da (2-69) 

A change of variables yields 

b 

y*(s) - J Kft^T y^) dt (2-70) 

A conparlson with Bq. (2-52) eoapletes the validity of the atatanent. 

nie above linear integral operator la self-udjolnt if 

STSrn - K(t,B) (2-71) 

When the kernel is a real Auction s and t, then the requireaent for 

self-adjoint «ill reduce to that of the ayasetry of the kernel, i.e., K(stt) 

K(t,s). 
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2-10. Positive Operators.  A self-adjoint operator A is said to be a positive 

operator if for any jc e H, (Ajc, x) > 0.  If (A&£) > 0 for every non-zero 

vector of }, then A is said to be a positive-dieflnlte operator. 

An arbitrary positive operator A has a unique (self-adjoint) positive 

square root B, -that is, B = A, B > 0.  An operator A. is said to be greater 

than an operator JU if A.--^ is a positive operator.  The following statements 

can be directly established: 

1. For arbitrary operator A, we have AA > 0, A A > 0.  This is in 

view of 

(A*Ajc,Jc) =   (Ajc,Ax) > 0 (2-72) 

o 
2. For arbitrary A,  A'  > 0. 

3. If A > 0,  then for any positive integer n,  A    > 0. 

2-11.     Symnetric Operator. 

In common mathematical terminology the term symnetric operator applies 

to an operator A which is additive,  homogeneous,  and satisfies 

(Ajc,x) - (x,Ay) (2-75) 

Based on this definition,  a symmetric operator needs not be bounded.    Thus, 

a self-adjoint operator is a bounded symmetric operator.     The class of self- 

adjoint operators is a subset of the wider class of symmetric operators. 

Examples of applications of symmetric operators occur in the study of 

Sturm-Liouvllie equations: 

" 5t (p(t) %) ' q(t) x(t) = x   x^t) ^-7U) 

where 
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p(t) is a continuous function C.Ca,*)] 

q(t) is a continuous function C[a,b] 

\ is a real paxameter  and the boundary conditions can be arbitrary. We 

search for the set S of functions x(t) which are twice differentiable and 

2 
belong to L [a,b]. By rewriting the left hand side of this equation as an 

operator A acting on ^c we find: 

Ax = \ x (2-75) 

The operator A is additive and homogeneous but not continuous, thus unbounded. 

In order to show the symmetry of A, we calculate: 

D 

b b 

- f  (px')' y dt - y qx y dt (2-76) 

In view of the assumed bounder''' conditions we find: 

b  b 

J  (px- )• y dt = (jbx') V   f     f (PX* ) y' dt = - y x'Cpy') dt 
a ■'a  a a 

(2-77) 

b   b 

-xipy')    J +   f AW)'** ~   f x(py')'<it 

whence 
b 

(As, x) = - f xlw')'  + q y] dt = (j, Ajr) (2-78) 
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Thi« establishes the symmetry of the Sturm-LiouviXle operator.  The Importance 

of this result in solving boundary value problems of this general type Is 

due to the fact that symmetric operators possess a number of simple pro- 

perties. Tiie  most interesting property of these operators pertains to the 

class of positive operators and can be outlined in the following statement. 

If A is a symmetric operator and (Ajc, Jg) > 0 for all jc in some 

linear subspace of a Hubert space, then all its eigenvalues 

are non-negative. 

For proof, let X be an eigenvalue of A and jc a corresponding eigen- 

function, and observe that: 

(Ajc, 2) = (\jc, ac) = \(ic, jc) > 0 (a-79) 

2-12. Projection Operator 

We have discussed in full detail the projection of a point JC of a 

Hilbert space H on a subspace S c H.  Let jcn be the unique point called the 

projection of jc on S.  This relationship between JC and jc0 ■»By be denoted by 

I^c where P stands for "projection operator" or "projector".  Hie following 

properties of a projection operator of a Hilbert space are easily verified. 

1. Pjc laj - I'JS 

2. x c S and PJc = x are equivalent statements. 

5.    as i S and I^c = Q are equivalent  statements. 

4. \kf =  Ifrf + h-Psf. 

5. Iil5?ll <  llx||.     This  inequality follows from 4,   above,   and Implies that 

P is  a bounded operator. 

6. ||p|| = 1 unless S is reduced to null element. 
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To prove the latter assertion,   let ;c e  S with  lljcll = 1.     Whence   ||P|| < 

ll^jcll =   liasII = 1.     Since  ||p|| =  sap  lljcll far   ||jc|| < 1,  we must have  in this case 

||p|| > 1.     On the other hand,  assertion 5 along with the definition of the 

norm of an operator  implies that   ||p|| < 1.     Therefore,  we  conclude that  ||p|| = 1. 

7-     Projectors of Hubert space are positive operators;   that is, 
p(2»¥) > 0-     In fact, we will show that 

(P)c,ic) =   (P2«,«) > 0 (2-80) 

The following statement is an interesting theorem about projection 

operators of a Hubert space. 

Theorem 

The necessary and sufficient conditions for  a linear  operator P to 

be a pnojection operator  in a Hubert  space are a) the  operator P be  self-adjoint, 

and b) P be an idempotent operator;   that is,   r    = P. 

Proof 

The necessity of a) and b) will be considered first.     Let S be a sub- 

space of H,  jc and £ arbitrary points of H,   and F a projector from H to S. 

Consider vector jc',  y' 

x -  Ps = ac* (2-8la) 

y - PK - y' (2-8lb) 

whence 

X'   is, y'    |S (2-82) 

(Px,y) =   (£-£', y'  + PX) (2-83) 

= is-z', PK) - OE, PK) 

For part b), we note that for any as e H 

P(Pjc) = F^-ac') = Pjc -  Pjc"  = Pjc (2-8^) 

-75- 



To show the sufficiency of requirements a) and b), let S be the set of 

all elements JC of H such that their images by the linear operator F satisfy 

the relation I^c = jc.  One must show that S is a subspace.  To this end, any 

element je e S can be conveniently written as 

X = RS + te-Ifc) (2-85) 

Note that by assumption P(l^c) = Ijt, therefore Qc e S, and jc - Qc e S.  More- 

over, for any two arbitrary points 2» I e s we have 

(«-^Y) - (2,X) - (P£,X)  = (Z,X) -  feli) = 0 (2-86) 

That is, ^ - I^c £ S. 

2-13. Coiiip3etely Continuous Operators 

There is a natural class of linear operators in a Hilbert space which 

is very similar in its behavior to the class of linear transformation in a 

finite-dimensional space.  These are referred to as completely continuous 

operators. A bounded linear operator A on H, in order to be completely continuous, 

must satisfy the following property: If (jc 1 is any bounded sequence of 

vectors (that is, there exists some k > 0 such that for all n, ||xl| < k), the 

sequence £A jc } must contain at least one convergent subsequence. 

Hie definition of completely continuous operator encompasses the concept 

of the so-called "compact" sets. Thus, the above definition can be replaced by 

an equivalent statement using the concept of compactness. 

* 
A set S contained in a met^lc^ space X is said to be compact, if from any in- 

possible to select a subsequence 
convergent in X to some limit,  (nie limit 

operator defined over a metric space 
X is said to be completely continuous, if the image of any bounded set of X 
is a compact set in the image space Y. 

A  sex » concainea in a metric space A is 
finite sequence of pointsjTx^ e S it is 

&nl'*n2' * * ''^nk' "'l    nl  "k < • • •» com 

may or may notn&elong to S. ) An additive 
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In a finite-dimensional space every bounded linear operator is 

completely continuous since it maps bounded sets.  But this is not necessarily 

true in infinite-dimensional spaces.  Take, for instance, the identity 

operator in i  space. The  sequence of an orthonormal basis ye-t is certainly 

a bounded sequence since lignll = 1 for all n.  But the sequence lg  contains 

no convergent subsequence.  In fact 

ha-&Jl  =  2  for n ^ m (2-8?) 

The identity operator of an infinite-dimensional Hubert space is not 

a completely continuous operator.  Completely continuous operators along with 

self-adjoint operators are the simplest and the most common type of linear 

operators in a Hubert space.  The relatively complete results available in 

problems of applications are generally pertinent to this category. In particular, 

if a completely continuous operator of a Hilbert space is also self-adjoint, 

the structure of the operator will resemble a generalization of the symmetric 

matrices representing finite-dimensional self-adjoint operators.  The broad 

class of linear integral operators with continuous kernel on 0 < s, t < 1. 

b 

X(s) =. r K(s,t) jc(t) dt (2-88) 

a 

offers a most common example of completely continuous operators  on the  space 
p 

L [0,1].    For an introductory treatment of completely continuous operators, 

theorems,   and related proof see Kolmogorov and Fomin,   Chapter IV,   or other 

standard texts. 

2-lk. Completely Continuous Self-Adjoint Operators 

In this  section,  we  state  some of the properties of completely con- 

tinuous self-adjoint operators A in H. 
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As we know, an eigenvalue of A is a number X such that there exists a 

non-zero element jc0 satisfying 

AS0 = **<, (2-89) 

Any element x, satisfying this equation Is referred to as an eigenvector or 

eigenelement.  The totality of eigenvectors associated with an e Igenvalue X 

form an elgensuhspace which will be denoted by H. .  The subspace H* of H Is said 

to be an invariant space of the self-adjoint operator A, if for jjc e H' we have 

also AJS e H'. 

As an extension of the material of Chapter k, of TO-65-599 the following 

assertions for every element of H and every completely continuous self-adjoint 

operator A are maintained. 

1. The expression (A&jc) is real. 

(A«,i£) = (x,Ajc) = (AäS, 2) (2-90) 

2. The eigenvalues of A are real. 

(A25,x) 
X =   (2-91) 

(j?»ac) 

3. Eigensubspaces KL-   and IL-  corresponding to distinct non-zero 

eigenvalues are orthogonal.    Let £ e  H^.,  X e  H^ 

AlS ' \t AX = ^X (2-92) 

Ohen 

Whence 

(x,x) = r ^>X) ■ J- U,K.) - g (X,l) (2-95) 

(«,X) = 0, jc  ij (2-9^) 
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k. The operator A has at least one eigenvalue. 

5. The operator A has at most a denumerable set of eigenvalues. 

6. The  spectrum of a self-adjoint operator A lies entirely In the 

Interval [m»M] of the real axis, where 

M = sup (Ajc,2) for   fell = 1 
(2-95) 

m = Inf  (Aj£,«) for   ||jc|| = 1 

(For the proof of these latter statements, see standard texts.) 

The main motivation for the study of completely continuous self-adjoint 

operators stems from the fact they are the natural extension of linear 

transformations of a finite-dimensional Euclidean space. As we know, finite- 

dimensional Euclidean spaces are complete and separable - and all linear operators 

on such spaces are completely continuous.  A most essential property of com- 

pletely continuous self-adjoint operators Is expressed by the following funda- 

mental theorem due to D. Hilbert: 

Theorem; 

In a complete separable Hilbert space every completely continuous self- 

adjoint operator possesses a complete orthogonal system of eigenvectors. If 

the proof of this theorem requires more space than what is available at present. 

In view of this theorem one can visualize the particular simplicity for handling 

problems, one may search for a complete system of eigenvectors from which a 

complete set of orthonormal coordinates  .g.  may be constructed.  Thus, every 

point jc € H will have an Image representable as: 

00 

1=1 

Where Xi(l=l,2,... ) are eigenvalues of the operator A, .§.(1 = 1,2,...) the 

corresponding eigenvectors, and 
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Cs^Sj) - &iä (i,d =■ 1,2,...) 

8ii ' 1     6i1 ^ 0   yAiea  i j' J' 

We will show in the chapter on Integral equations that due to the avail- 

ability of orthogonal coordinate systems In the function space, the solution 

to Integral equations with completely continuous self-adjoint kernels admits 

a very simple form. 

♦Spectrum of a self-adjoint operator 

Consider the equation 

(A - \I) « = i (2-96) 

where \ and y are given, JC is unknown, A Is a self-adjoint operator, and K 

any arbitrary coaplex number.  Let us assume that for a certain value of X, 

the operator Rj. = (A - XI)~  exists.  Oben R^ is called to as the resolvent 

of Eq. 2-96, and for this value of \ and any arbitrary y the equation (2-96) 

has the unique solution 2 a R. y. 

Those X. for which Eq. 2-96 has a unique solution for all y are referred 

to as regular values of the operator A.  Any non trivial solution of the 

homogeneous Eq. 2-96, i.e., y / Q is an eigen element of A for this eigenvalue 

\. the  totality of non-regular values of X is called the spectrum of the 

operator .A. In particular all the eigenvalues belong to the spectrum. 

Example 2~k. 

a) Show that the (real) operator 

A ^ = tx(t)      jc € L2[0,1] 

0 < t < 1 

Is self-adjoint. 

b) Show that A > 0 
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Solution: 

a) Clearly A is an additive operator.  Hie image of any point 

2 2 
x € L is also a point in L • Moreover A is bounded since 

IM < fell 
Thus A is a linear operator.     In order to show that A is 

self-adjoint we write: 
1 

(A«>X) ' ft x(t^ y^) dt 

i 
(2,A*y) =    /'x(t)  •  t(y(t) dt 

0 

1 
b) (Ajc,x) =    f t[x(,t)f dt > 0 

It can be also shown by Cauchy-Buniakovskl' s inequality that for 

iy - 1: 
0 <  (Ajc,«) < 1 

2 
Example 9-5-  In the function space L [0,1] an operator A is defined by 

A f = t f(t) 

a)     Show that A is a positive operatory b) determine  the  square    root 

of A. 

Solution,  a) For two arbitrary functions f(t) and g(t) we have 

1 

(Af,Ä) =      ft f(t)  g(t) dt =   (f,A*jr) 

Hence 

* /      V A   s = t g(tj,   that  is A  is  self-adjoint.     We note also that 

(Af»  £) > Oj   consequently A is a positive operator. 
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b)    Hie square root of A Is defined by B: 

B f « V*"~   f(t) 

Example 9-6.    Consider the operator 
t 

x(8) ds 
'o "■/ 

defined over the Banach space of real continuous functions C[0>1]. 

a)  Is A bounded?  b) Is A" bounded? 

Solution:  a) yes 

b) A-\ - |j: y(t) 

A"  IS n^t bounded. 

Example 9-7.    Show that the  (real) linear operator 

Ajc - tx(t) jc c L2[0,1] 

0 < t < - 

Is self-adjoint. 

Solution: 

(Ajc.y) - t x(t) y(t) 

(&  A*y) = x(t)   •  t(y(t) 

Example 2-8. Determine the eigenvalues and elgenfunctlons of the operator 

A m  = x' ' with the periodic boundary conditions 
dt 

x(0) = x(2ff)   ,  x'(0) • x'i2*) 
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Solution:    A 1« • linear «ymnetric operator on the aubapace Cg[0,2n].    The 

determination of eigenvalues amounts to solving 

x" + X. x - 0 

or 
V-^t -yfixt 

x » Cj^ e + c2 e 

There are three possibilities to be examined: 

a) \ < O 

nie specified boundary conditions requires c1 - Cp » O, whence there 

can be no negative eigenvalues. 

b) X - O 

In this ease the solution to the differential equation reduces to 

x ■ c. + Cpt. The boundary conditions impose Cg » 0. nierefore, \ > 0 is 

an eigenvalue, and all functions x - c. in [0,2*] are associated eigenfunctions. 

c) \> 0 

In this case one finds that the set of integers^V\ - 1,2,3,...1 are 

2 
eigenvalues. With each eigenvalue ^"h , ve can associate an eigenspace of 

dimension two spanned by sin kt and oos kt. 

Example 2-9. 

-x" - t 

x(0) - x(n) - 0 
d2 

Solution.    The operator A g   acting on the subspace CgCO,«] satisfying 
dt 

the specified boundary conditions is a linear synmetric operator.    The 

eigenvalues of A maybe found fron the equations» 

-x" - \x - 0 

x(0) - x(n) - 0 
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2 
Diese are Xi = n , (n = 1,2,... )•  The set of elgenfunctlona  f »sinnt, 

n a 1,2,...  forms a complete set for the space under considerations.  This 

allows us to write: 

x(t) = )   -s-     f 
f-n n   (f ,f )  n 

(jc,fn) = /" t sin nt dt = (-l)n+1 it/n 

Ua.fa)  = n/2 

c(t)= j; (-i)n+1^ 
n=l 

siii nt 
n^ 
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