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ABSTRACT

The effect of substitution in families of langueges, especilally AFL, is
considered. Among the main results shown are the following: The substitution
of one AFL into another is an AFL. Under suitable hypotheses, the AFL generated
by the family obtained from the substitution of one family into another, is the
family obtained from the substitution of the corresponding AFL. A condition is
given for the AFL generated by the substitution closure of a family to be the

cobstitution closure of the AFL generated by the family.







16 September 1968 3 ™-738/049,/00

SUBSTITUTION IN FAMILIES OF LANGUAGES

INTRODUCTION

In an eerlier paper [6], the authors were led to consider the family of
~~zusges obtained I. - the family of linear couiecai-iree ianguasges by iteratea
substitution. This in turn suggested to us a study of the substitution of one
arbitrary family of languages into another and is the subject of the present
work.

Recently the notion of an AFL (ebstract femily of langusges) was introduced
(3] as an sbstraction of many of the formal langusges of concern to computer
science. In particular, it was shown in (3] that tlere is an intimate connec-
tion between AFL and the fuamilies of languages accepted by families of one-way
nondeterministic acceptors. Thus AFL play a special role among arbitrary
families of languages, at least for device theory. The theorems contained
herein are concerned with the relationship of AFL and substitution. These
theorems, in turn, are based on lesser results which are concerned with the
relation of substitution to other operations. These lesser results are formulated
in terms of arbitrary fem‘lies of langusges because (1) many of them are interest=
ing in their own right and mey have other applications, end (2) they isolate

the Aifficulty inherent in the proofs of the main results.

*Resea.rch sponsored in part by the Air Fcrce Cambridge Research Laboratories,

Office of Aerospace Research, USAF, under contract F1962867C0008, and by the
Air Force Office of Scientific Research, Office of Aerospace Research, USAF,
under AFOSR Grant No. AF=-AFOSR-1203-67.
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The paper is organized into four sections. The first one 1s devoted to
general concepts of families of langueges, to a prool that under a mild condition
substitution satisfies a kind of associativity, and to a formulation of the AFL
properties in terms of substitution. Section two is concerned with showing
that the substitution of one AFL into another is an AFL. Section three contains
a proof that under suitable hypotheses the AFL generated by the family obteined
from the substitution of one family into another is the family obtained from the
substitution of the corresponding AFL.

Section four considers iterated substitution and the substitution closure
of one family with respect to another. A special case 1is the substitution
closure of a family. It is shown that the various substitution closures give
AFL when applied to AFL, and a condition 1is given for the AFL generated by the
substitution closure of a family to be the substitution closure of the AFL
generated by the family. A condition is also given for the substitution closure
of a famlly, not necessarily an AFL, to be an AFL. This specializes to the case
of the family of linear context-free langueges and implies that the substitutiqn

closure of this family is a full AFL (a result obtained by other means in [(]).

Section 1. Families of langusges

In this section we review some corncepts about familles of languages. We
also examine certain methods of constructing new families from old, especially
substituting one family into another. Finally, we consider the concept of an

sbstract family of languages and reformulate it in terms of substitution.
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Definition. A family of languages is a pair (Z, £), or £ wvhen I is understood,

vhere
' (1) = is an infinite set of symbols,
(2) for each L in £ there is a finite set Zlc Z such that(l) L< EI,
and (3) L # @ for some L in L.
Notation. Given I in &, Z‘.L will denote the smallest set Z'.l such that L & ).‘.I
Henceforth, I will always denote a given infinite set of symbols and I with
a subscript a finite subset of L. All symbols given or constructed will be 5
agsumed in Z.
We now distinguish some elementary conditions for families of langusges.
Definition. A family of languages £ 1s sald to be
(1) symmetric if it is invarient under all permutations of I.
(2) e-free if each L in £ 1s e-free (i.e., € 1s not in L).
(3) nontrivial if there is some L in £ containing a non-e¢ word.
We shall be interested in varioue operations on languages and families
of languages. We first present two operations on pairs of families.

Notation. Given families of langusges £. and £, let

1 2

p L in 32].

(2) suwb (£l, £2) be the femily obtained by substituting languages of £

(1) .tlA £2-= [Lln 1,2/1.l in £

1

into lengusges of £_, i.e., the family of all sets 'r(L2), vhere L, is in £

2 2 2
and T is a substitution(a) such that t(a) is in £, for each a in ZI.Q

)
(1) % is the free semigroup with identity € generated by ), 1. -3 the set of
allz*inite strings a; ... &,, each ay in Z;. Each element of Zl is called a word
of

* *
(2)I.et L< and for each a in I, let La: Za. let T be the function defined on
Z* by 1(e) ="{e}, (a) = L, for eich a in L., and 'r(a.l za.n)'== 'r(a.l) . -r(an)
fo; each 8, in }_‘.3 and k21. Then t is call a substitution. 71 1s extended

z *
273 vy defining 7(X) = U 7(x) for all X € ).‘.3.
xin X

~
— - e e
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As is evident from the title, our interest here is in substitutions in

families of langueges.
We next ¢ °nt two operatiovas on a family of lenguages.
Notatian. For each family £ le-
(1) *m(g) =(h(L)/- .. i, h & hananorphism(3) on L}, and
(2) Hom(£) = (h(L)/L in £, h a restricted homomorphism on L(l‘)].
Clearly Hom(f) and Hongr(.t) are monotonicelly increasing in £(5), and both
LA £, and Sub(.sl, £2) are monotonically increasing in each of the families

1l
£, ard £,. For each femily &, Hom(£) and Hom.r(.li) are symmetric, Hom Hom(f) =
Hom(£), and Hom,_ Homr(.t) = Homr(l). If £, end £, are symetric, then so is
£,AE,. If L, is symmetric, then so is Sub(.tl, £2) for each femily f,.

From the definition, 1t is trivial that .1'.1/\ £2 = £2/\ £1 and

(.1:1/\ 1:2)/\ .c3- .tlA(x,A .c3). However, Sub(.cl, 1:2) need not equal Sub(.ta, .cl).
For exemple, if £, = (Z) and L, [Lal, vhere L, (a”/a in Z,}, then
Sub(£,, 1‘.2) = (((ab)3/a., b in ).‘.1]) # Sub(£2, L) = [{33b3/a, b in 2‘1]]. However,
substitution does have the following associative properties:
Prcposition 1.1. Let J:l, £2, end .\'.3 be femilies of languages. Then
(a) Sub(.tl, Sub(£2, £3)) < Sub(Sub(£1, .s:a), £3).

(b) Sub(.\'.l, Sub(.ta, £3)) = Sub(Sub(.cl, £2), £3) if .:2 is symetric.

(3)1\ mapping h of }.'1* into T is called a homomorphism if h(xy) = h(x)h(y) for
* 2
all x and y in }.‘.l

(u)A homomorphism h on L 1s restricted on T if h(w) = € for w in L implies w = ¢
and there is e positivc integer q such that h(w)fe for each subword w of length
2 q of each word in L.

(5)’me ordering, of course, is understood to be by family inclusion.
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Proof. (a) Given L3 in £3 5

a substitution of 1'2(L3) by languages of ":l' Then

, let v, be a substitution of L3 by lenguages of

£2(6) and Ty

’ [ 4 =
71(72(L3)) = (1.3), vhere ' is the substitution such that T'(a) 1‘1(1'2(8.))
for each a. Since 72( a) is in L, end 7, is a substitution by languages of
L1 'rl('ra(a.)) is in Sub(.sl, £2). Therefore T’ is a substitution by langueges
of Sub(.tl, £2), so that Sub(.ﬁl, Sub(.ta, £3)) c Sub(Sub(.tl, .s:e), £3).

(b) Suppose £2 is symmetric. Let L3 be in £3 and v’ a substitution of

Ly by languages of &zb(sl, £ ). Then for each a in E‘L , v'(a) =71 a(L‘ a)’

vhere L is in £, and 7 is a substitution on Z’L by languages of £
2,a 2 l,a v 1’

Since .Ca is symmetric and I is infinite, we may assume that E.L n. Z’.L =g
2) 2’
for a # a’. let Z, =V Z‘.I . Then there exists a substitution 7, of ).,h by

languages of I, such that 'r (b) T, a(b) for each & in &, and b in EL2 -
¢4

Hence 1"(L3) = 'rl('ra(L3)), wher: T, 1s the substitution of L3 by langueges of

[
£, defined by 'ra(a) L2,a for each a in . Thus v’ is in Sub(-l'.l, Sub(.te, £3)).
Therefore ,.m[Sub(.tl, £2), £3] < subl(£,, Sub(.tz, £3)], vhence equality by (a).
Remark. The hypothesis in (b) cannot always be removed and the result be true.
For exemple, let I ={a /121] £,= {{a ]/:121] £," [31]] end £q= [(a a )/1, J21}.
- 2
Then Sub(L,, .c3) = [{a.l]], Sub(.f,l,Sub(.ﬁe, .s:3)) = [[ai]/izll, S'ub(.tl, .c,,_) = £, and
&m[s\m(sl, 5:2), 5:3] =L, Clearly Sub(Sub(.i‘.l, zz), £3) is not contained in
. Iv

Sub{fy, sub(L,, £5)).

Recently, femilies of languages with six additional properties have been

introduced [3] because of their intimate connection with families of langueges

mA substitution T is & substitution by languages of L. if r1(a) 1s in £

for each a.

2 2




16 September 1968 8 ™-T738/049/00

of interest in computer science. These famiiles, called "abstract families
of langueges" are currently under extensive investigation and the present
paper may be viewed as an addition to their literature.

Definition. As sbstract family of langusges (abbreviated AFL) is a family
(8)
>

of languages closed under union, concatenation, + (Z) e€-free homomoxrphism

inverse homanorphism(g) , and intersection with regular sets.(lo)

then h"l, the inverse hamomorphism,

* *
If h is a hcmomorggism from El into 2‘.2

is the mepping from 2 2 into 2 - defined by h™I(A) = (w/h(w) in A} for each

AS Z:*
2'
For our purposes 1t is convenient to consider a reforrulation of the
closure properties of an AFL, expressed as follows:
Notation. lLet R be the family of regular sets (over L) and Ro the family of
e-free regular sets.

Proposition 1.2. A family £ of lengueges is en AFL if and only if (1) R& £,

(2) sw(r, £) < £, (3) sub(s, R = L, (¥) LARS £, and (5) Hom (£) < L.

Proof. It is known [3] that each AFL satisfies all five of the conditions.

Thus consider the converse. Assume £ satisfies (1) - (5). Thus £ has all the
closure properties of an AF'L except possibly for closure under inverse hcmomorphism.
Suppose £ contains a languege containing €. It follows from (L4) that £ contains

{e¢) and, from (1) and the fact that £ is closed under unicn, that £ ~ontains R.

*
(7)For each set AC I, A= UAi.
A homomorphism h is called e-free if h(w) = ¢ implies w = €.

If h is & homomorphism from ¥ into L’;, then h'l, the inverse homomorphism,

is the mapping from 2 € into 2 ~ defined by h~ (A) = {w/n(w) in A} for each x-'z

(10)mne ramtly of regular sets is the smallest family of lengusges containing a1
the finite langueges and closed under union, concatenation, and *, wvhere
A* = A" U{e) for each A S I*,
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It then follows from Theorem 4 of [7] that £ is closed under inverse
homomorphism. Suppose £ is e-free. By an argument similar to the one given in
the proof of Theorem 4 of (7], it follows that £ is closed under inverse
homomorphism. In either case, therefore, £ is closed under inverse homomorphism
and so is an AFL.
Remark. In the presence of conditioms (2) - (5), condition (1) is equivalent
to the condition that £ is nontrivial. That 1s, the only lamily £ satisfying
(2) - (5) but not (1) 1is the femily £ = {(e}, ¢@).
Notation. Given a family £ let AFL(L) be the smmllest AFL containing £.

It is known (3] that AFL{f) exists for each family £.

o
Corollary. Given a family £, let £( )= .\:URo and for each n20 let £(

n+l)_
Sub(R, 208}y 4¢ p=0 (moa b), £(8")a gup(e(®), R,) if n31 (modk), {a*l)_
£ MAR 1 n=2 (moa k), ana £{7*1)a Homr(.t(n)) 1f n¥3 (modl ). Then
ces@c e ® e | maar (o) = v,
izo
Proof. lLet £’ be any AFL conteining £. Then £(°) €t and & simple induction on

n shows that L(n) c £’ for all n>0. 'Merefore U £(n) c £’. To complete the

proof it suffices to verify thac U £(n) is an KFZE

Clearly U £(®) gatisries corﬁ:tion (1) of Proposition 1.2.
Since 7=

sub(R, U ALY sub(R, U g(mly oy (1), gln)

\ n2o0 neo n=o n2o
gr,(“’ satisfies condition (2). A similer calculation shows that it satisfies condi-

tions (4) end (5). Finally, observe that each substitution T by languages of

U L(n) involves only finitely many langueges. Therefore there is some m such
n2o0

that v 1s a substitution by languages of S(m). Hence
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sub( U s(n), R) S U Sub(-ﬁ(n), R) = U Sub(.\:("), R,)

n=o n=o n=l
BTG T O
n=sl n= o0

whence condition (3). Therefore U £(n) is an AFL.
n2o

A particularly important type of AFL is one which 1s closed under

arbitrery homomorphism. That 1s,
Definition. An AFL £ is said to be full [3] 4f it 18 closed under arbitrary
homomor phism.

The following result provides a useful reformilation of full AFL.

Proposition 1.3. A fandly £ of languesges is a Sull AFL if and only if

(1) R S S, (2) suw(r, £) < £, (3) sub(s, ao) <L, and (4) EARCS £,
Proof. Suppose £ is a full AFL. By Proposition 1.2, £ satisfies (1), (3), and
(4). By Theorem 2.4 of [3], & satisfies (2).

Now assume £ satisfies the above conditions. Then £ satisfies condition
(1) - (4) of Proposition 1.2. Since each homomorphism is a substitution by
languages of R, (2) above implies £ is closed under homomorphism. Thus £
satisfies (1) - (5) of Proposition 1.2 and so is en AFL. Being closed under
arbitrary homomorphism, £ iz a full AFL.
Notation. For each ATL £, let AFLf(I.) be the smallest full AFL containing f.
Corollary. Glven a family £, let £(°)= £URO and for each n=o, let £(n+1)=
sun(R, £™) 1f n=o(moa3), £(M) = (™) R,) 1f n=2(mod3), end £(2*1),

LU, n=2(mod3). Then £ & t@c e e | aa AFL.(Z) = U g(n),
n20

The proof 1s analogous to that of the carollary to Proposition 1.2 and

1s omitted.
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Section 2. Substitution of AFL

In this section we show that the substitution of an AFL into an AFL is
en AFL. To do this we first prove two technical lemmes. The first esserts a
kind of distributivity of regular set intersection with respect to subititution
and the second a kind of distributivity of Homr with respect to substitution.
(These lemmas are also used in section 4.)

Notation. Letl .'Fo be the famlly of e-free finite sets.
. - 5

Note that 30 is symmetric and Sub(.'r'o, 3-’0) o
Terma 2.1. For all femilies of langueges ':1 and £2,

Sub(£l, £2)A RS Sub(.i',l/\ R, Sub(.'r'o, 1:2)/\ R).

- ! = [ < /
Proof. Let £, Sub('.f'o, £2). Then £ 1:2 and Sub(.cl, £2)/\ R &m(.cl, £2)/\ R.
By (b) of Proposition 1.1, Sub(¥ , .cé) = Sub(¥ , Sub(:ro, .c2)) =
Sub(&zb('f'o, ?o), £2) = Sub(3"o, 12). Thus

Sub(£,A R, Sub(¥ .s:é) AR) = sub(£.AR, sub(F, £,)AR).

Hence it suffices tc show the lemma for £2 replaced by £é. Thus, without Joss
of generality, we may assume that Sub(.'r'o, .82) = £2. Using this assumption it
suffices to show

&xb(.tl, .ca)/\ R S Sub(LAR, I R.)

is

Since £, is closed under substitution by 3-'0, it follows that £

2

symmetric. Let L2 be in £2 1 be a subztitution of L2 by lenguages in

£1. Iet R be a regular set, with R & ::I by ectending }:l if necessary, we may
#*

> is symmetric, we may assume that L2‘2 22, with

*
ENE = g. let T, be the substitution on I, defined by 'r3( a) = a 'rl(a.) for each

2
and let r

»*
assume that ‘rl(La) S Z,. Since £

*
ain Z,. Let h be the homomorphism on (z:luze) defined by h(a) = € for each a
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in Z, end h(b) = b for eaca b in L. Then Ty =hr, and

'rl(Le)ﬂ R = hfz(La)ﬂR = h['ra(La)ﬂh-l(R)].

Since R is regular, h-l(R) is regular [5]. Thus there exists an fea(u),

(12)

A = (X, 5UZ,, 8,2, F) such that T(A) = h"l(R). Let

4 = ol
R’ = (1{A)n{e}) U[(a.l,po,pl) (am,pm_l,pm)/mzl, each &, in I,
each p, in K, and p_ in F}.
As is well known (2], R’ is regular.

For each (a,p,q) in L X KXK, let

2
R(e,p,q) = (v in EI/G(p,aw) = q}.

Then R(e,p,q) is regular (since R(a,p,q) = T(B), where B is the fsa

»*
(X, Z,, 8, 8(p,e), {q))). Let 73 be the substitution defined on (22x KXK)
by 'r3((a,p,q)) = a R(s,p,q) for each (&,p,q) in Z,X K X K. Then 1'3(R') is the
subset of h-l(R) of all words that do not begin with a symbol of Z,. Since

72(L2) contains no word beginning with a symbol of Z,,

75(L,) Nh ~I(g) = r () Ny(R').

*

Let r/ be the substitution on I, defined by r'(a) = (a)JX K X X for each a

*
in £, end " the substitution on (22 XK X K) by r'((e,p,q)) = 1'2( a) for

each (&,p,9). Then 7, = t"r’, so that

2
Ta(Lp) N hH(E) = 17 (L,) N 75(R).

(as £se (finite state acceptor) is a S-tuple A = (K, Z}, 6,p ,F), vhere (1)
K and are finite sets (of ste‘es and inputs, resp.), (I1) 6 1s a function

from KXE to K (the next state function), (111)90 is an element of K(the start

state), and (v) F < § (the set of accepting states). The function § is extended
inductively to K X £; by letting Mp,e; = p and 6(p,81 an) =
6[5(p,a.l an_l),an] fer each p in K, each n2l, end'each &, ..., & in I,.
*
(lZ)For each fsa A, T(A) = {w in El/é(pdw) in F}. It is known [8] that a
set R € }:; is regular if and only if T(A) =~ R for some fsa A.

I e e

R
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Let 73 be the substitution on (I, X K X K)* defined by

73((8p,0)) = 1"((8,p,0)) 1 75((e,p,0))
= er,(a) N eR(s,p,q)

for each (ea,p,q).

We now show that

(*) 'r”'r'(Le) n 73(R') = TS[T'(La) nR'].
stnce 75((8,p,0))= "((8,p,9)) N 75((8,p,q)), ve have 3(R’) < 7,(R’) and
Tg[T’(LZ)] 5 -r”['r'(Le)]. Thus

‘rg['r'(Le) AR 'S 73 T'(La) N T;(R')

K T'(L2) n 73(R').

To see the reverse containment, assume w is in T”T'(La) N -r3(R').
Suppose w = €, Then ¢ is in L, and in R, since 7"’ and Ty 8Te e-free

(3)

substitutions. Therefore € is in ‘rg['r'(La) N R’]. Suppose w ¥ €. Then

WoEaX) ... aqxq for some g2l1, some Byy ceey a.q 1n>:2, and some

* w1 =
Xpy wens Xg in Z. Since w is in 1’7 (L2) 72(L2), it follows that a, ... 8y

is in L2 and x1

that Pysy = 6(pJ, aJ+li+1) for each J, 0 < J < q. let v, =

is in 'rl(ai) for each 1. Define p, in K by induction on 1 so

(al’po’pl) (aq,pq_l,pq). Since w is in 1'3(R'), v, 1s in R’. since t'(a) =
X / [ ’

{a} X K X X for each s, v, 18 in v'(e; ... aq). Therefore W, is in 7 (L2) nR’.

By definition of 'rg, a;x, 1s in -r'é(ai,pi_l,pi) for 1€ 1 <q. Therefore,

w is in 'r'é(wa) so that w 1s in 'rg['r'(Le) N R’']. Hence T”T'(Lz) n -r3(R') s ¥

['(L,) N R'], implying ().

X
("3)A substitution 7 is e=free if ¢ in r(a) implies & = .
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From (*), it follows that
r (L) N R = hir (L) N h7H(R)]
= nlr*r’(L,) N 74(R")]
= h‘rg['r'(La) nR').

Now 7/(L,) 1s in Sub(¥, £,) = £, end v'(L,) N R’ 4s in LA R. The composite

2 2

ht’, is a substitution such that hfé((a.,p,q)) = h[a.'rl(a.) N eR(e,p,q)] =

3
-rl(a) N R(e,p,q) for each (a,r,q). Since 'rl(a.) is in & end R(a,p,q) in R, hrt

»

3
is & substitution by sets of £;A R. Therefore ‘rl(La) NRis in

Sub(£,A R, LN R), and the lemma is proved.

The result pertaining to the distributivity of Homr is
Lemms 2.2. For all families of langusages £1 and £2,

Hom_[ sub(£,, .1:2)] < sub[Hom (£,A R), Homr(Sub(ﬁo, :2))].
Proof. Let L2 be & language in £2, r a substitution of L2 by langueges of

* *
£l, Z‘.l = E’T(La)’ )_‘.2 = 2‘.[’2, and h a homomorphism from 2‘1 to 83 which is
restricted on T(La)- By definition of 22, for each a in 82, there is a word w in
L2 contalning an occurrence of a. Let R be the set contalning € and all words w
* -1, +

in £ such that h(v) f ¢. TenR = (e} U h 1(133) 1s & reguler set. Since, for
each a in 22, each subword of a word of t(a) is also & subword of some ward of
'r(La), h 1s restricted on T(a) N R. ILet t* be the substitution by langueges

of Ho%(.tl/\a) defined by t“(a) = h{r(a) N R) for each a in T

2.
For each a in I, let a’ be a new symbol and let Zé = (a’/a in ).‘.2}. Let v/
be the substitution on Z’"a“ defined by t’'(e) = (a) if r(a) contains ¢ or hr(a) is

e-free, and 7'(a) = (a,a’} 1f 7(a) is e-free and hr(a) contains €. Then ¢’ is

a substitution by languages of ¥ . Let h’ be the hamomorphism on (22u zé)* defined
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br h’(a) = a and h’(a’) = ¢ for each a in Z,. Ten h’ 18 restricted on TI(Lé).
[For let &) = (a/r'(a) = a) ena I = {a/r'(a) = {(a,a’)}. By definition of r’,
tor each e in 25 there is a nm- word v, in v(a) such that h(wa) = ¢. Since h
is restricted on T(La) it follows that (a) L, N 2; =L, N (e} and (B) there
exists q20 such that any subword cf length > q of a word of L2 contains an
occurrence of an element of I). Now (@) implies that if h'(w’) = ¢ for w' in
T'(Lz) then w' = ¢, and (B) implies that if h'(u’) = € for a subword u’ of some
word of T’(Lb) then |u’|<q. Therefore h' is restricted on T'(Lz).] Therefore
h’T'(La) is a language in Homr(Sub(So, 52)), so that T”h’T,(La) 18 in
Sub[Homr(£IA R), Homr(Sub(so, sa))].

To complete the proof it suffices to show that hT(L?)' T”h,T,(La)-
Therefore let w be & word in L_. We shall show that hr(w) = t"nh'r'(w). If

2

w=¢, then hr(w) = e = v"h't'(vw). Assume w = & ... 8

n? n2l, each a, in Z..

i 2
By definition,

h‘r(a1 oo an) = [h(wi) 2B h(“h)/vi in T(&i)}.

For each i, let w, be & word of T(&i). Let J be the set of all J such that

h(wd) = ¢ and 7(33) is e-free, and let J' = (1, ..., n} - J. Thexr h(wJ;) is in

' -
4 8, if 1 {2 in J and

b, =&, if 1 18 in J’'. Since h(wJ) = ¢ and T(aj) is e-free for each J in J,

T”(aJ,) for each J' in J’. For eachi, 1< 1 <n, let b
§ ~ "y
4 [
b, ... b isinr (a1 a%ls ah). If 41 18 in J then h (bi) =¢ = h(wi) and h(vi)
is 4in T”h'(bi). If i is in J’, then h'(bi) = &, and h(w,) 18 in 7"(a,). Thus
n(w) ... h(v ) is in 'r"(h'(bl e bn))’ so that hr(w) € v"h'r’(w).
To see the reverse containment, note that

T”h'T'(al o8 ) = [ul el un/u1 in T”h'(bi), b, in 7'(&1)).
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[

1 i i)
contains € = u,; and if b, = a,, then u, is in T"(ai) = h['r(ai) N R]S h‘r(ai).

= a, then h'(b

For each i, if b € uy = e,'r(e.i) is e-free, and h'r(ai)

In either case, u, is in h'r(ai). Thus w ... u is in l'rr(a.l an) and
"’ '(w) € hr(w).
We are now ready for the main result of the section.

Theorem 2.1. if £, and 82 are AFL, then so is Sub(.tl, £2).

Proof. SinceR & £, and R E £2, it follows that R_ = Sub(R o,ao)c Sub(.cl, .5). Thus

1
Sub(.cl, £2) satisfies (1) of Proposition 1.2. By Propositions 1.1 and 1.2,

Sub(R,, Sub(£,, £,)) = sub(sub(R,, £,), £,) S sub(L,, L))

and

Sub(Sub(.sl, £2), ao) Sub(.cl, Sub(£2, no)) & Sub(£l, £

2)'
Thus Sub(.tl, £2) satisfies conditions (2) and (3) of Proposition 1.2. By
Lenma 2.1,
S

:mb(.cl, .cz) ARS Sub(.l'.l/\ R, Sub(so, £2) AR) Sub(.cl, £2).
By Lemma 2.2,

Hom, [ Sub(£,, .ca)] S Sub[Hom (LA R), Homr(Sub(so, .ca))] c Sub(.f.l, £2).
Thus Sub(xl, £2) satisfies conditions (4) and (5) of Proposition 1.2.
Hence Sub(.l!l, £2) is an AFL.
Corollary 1. If £, is a full AFL and £2 is an AFL, then Sub(£l, £2) is a full
AFL.
Proof. By Theorem 2.1, Sub(.tl, £2) is an AFL. By Propositions 1.1 and 1.3,
we have

Sub(R, Sub(L,, .\:2)) = Sub(sub(R, £,), 1:2) S Sub(.tl, 1:2).
Thus Sub(.l!l, .1:2) satisfies (1) - (4) of Proposition 1.3 end so is a full AFL.
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Corollary 2. If £ is an AFL, then AFLf(.S) = sub(R, £).
Proof. By C~wollery 1, Sub(R, £) is & full AFL. If £’ is any full AFL con-
teining £, then Sub(R, £) S sw(R, £’) € £’ by (2) of Proposition 1.3. Thus
Sub(R, £) is the smallest full AFL containing £, i.e., Sub(R, £) = AFLf(.t).
Remarks (1) Theorem 2.1 and Corcllary l both hold if £2 is a family of languages
such that Sub(Ro, 52) is an AFL. For in this case

sub(£,, £2) c Sub(.i!l, m(ao, :2)) - St.tb(Sub(.Cl, ao), .ta) c Sub(.tl, :2).
Thus mb(zl, .ca) = Sub(.l!l, Sub(ao, £2)) 1s a (full) AFL if f, 18 a (full) AFL.
In perticuler, the results are valid if £, is & pre-AFL or e-free pre-AFL (&].
Similarly, Corollary 2 is valid if £ is any family of langueges such that
Sub(R.o, $) 18 an AFL, hence if £ is a pre-AFL or e€-free pre-AFL.

(2) 'Theoren 2.1 suggests the following general problem (which is not

studied here): "Identify" Sub(.tl, £2) for well-known AFL :1 and £2.

Section 3. AFL of Substitutions

This section is concerned with relations between substitution and the

AFL generated by a family. The main result asserts that, with suiteble
hypotheses,

AFL{Sub(L,, £,)] = SublAFI(S,), AFI(L,)].

In order to prove the main result, a sequence of lemmas is needed.
Lemma 3.1. Let £, be an e-free (or arbitrary) family of languages. Then for
avery femily of lenguages £2,

Sub(.tll\ R, LN R) € Homr[Sub(IlU!"o, Sub(.'r'o, .:2)) AR )

(or Sub(.tl/\ Ry LN R)S Hom[sma(xluso, Sub(so, 1:2)) ARJ).
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Proof. We prove the lemma for the e-free case, the argument for arbitrary

£1 differing trivially.

Let L2 be in £2, > Iet 7
*
be a substitution on Z

c ok
R, in R, and consider LG R2, with L2U R2 22.
, by langueges of LA R. Then for each a in I, r(a) =

LOR, vhere L 1s in £, and R_ 1is in R. For each e in I, let a’ be & new

ik 2
*

symbol and let Zé = {a'/a in 2.2]. Let 7’ be the substitution on %, defined by

r’(a) = (a’a) for each a. Then T’ is a substitution by languages of F 80
that -r'(L2) is in Sub(’.f’o, £,). Let t” be the substitution on (22u zé)* defined

by t"(a’) = {a’) end 7"(a) = L, for each & in L. Then r" 1is a substitution

2.
" ’
by languages of LU ¥ , so that 77 (La) is in &Jb[.!!lU Fo Su:b(’.r'o, £2)]. Let

*
R"=( U a'Ra)* and let R’ = -r’”(Rz), where " 1s the substitution on z,

a in 2‘.2

defined by v"(a) = &’ Z‘.E for each a. Then R’ and R’ are regular sets,(lh)
and 'r”'r'(Lz)ﬂR'n R' 1s izrix Swl£,U ¥, Sub(¥F , 52)]’\ R. Let h be the homomorphism
such that h(a’) = € for each a’ and h(b) = b if b is a symbol not in zé. Since
£, 1s e-free, h cannot erase two consecutive symbols of a word in 'r”'r'(La).
Furthermore, if w is in 'r”‘r'(La) and h(w) = ¢, then w = ¢. Therefore h is
restricted on T”T,(La) and thus restricted on T”T’(Le)n R’N R”.

To complete the proof it suffices to show that T(LG Ra) =

" »*
h[T/‘r'(Lz)ﬂ R'NR"]. ILet whbe any word in Z_.. If w = ¢, then 7(e) =(el)=

2.
hit’r’(e)N R']. Suppose w = & ... &, n2l, each a, in %,. Then
T(w) = lw ... wn/wi in L N Ra]
i i
" ' ]
= h[a.lwl anwn/wi in Laiﬁ Rai}

(lh)ReguJ.ar sets are closed under intersection [8] and under substitution by
regular sets [1].
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& '] ' ') 4
n{{ay, ... agn%/u1 in La1]”[°1"1 anvn/vi in Raj]]
= h(7"+'(w)N R'].
*
Therefore T(w) = h[t“r'(w)N R’) for every word v in %, Hence
(LN Ry) = h{r"r '(LG RN R'].
Clearly t”r/(R,)= R”. Hence -r"r'(L2ﬂ R 7"7/(L,)N R’. We prove the
2 2 2
reverse inclusion, thereby obtalning equality.
Suppose W 1s in 'r”'r'(La)n R’. Arsume w = ¢. Then ¢ is in 'r”'r'(Le) and in R’,

thus in L, and in R,. Hence € iu in sz‘l R, and therefore in T”T'(LEP. R2). Assume

2.
a ’ ’ n_! »
VEaw ...aw, 2], is in 7’7 (La)ﬂR . Then each w, is mLai, end &, ... &8

is in L, -and in R,. Therefore v is in r'-r'(Lé'lBe). Thus -r"-r'(Lg)nR'Cr"r'(LGna).

2'
Since T"T'(L?ﬂ R2) = 'r"'r'(La)n R’, we have
= n_1 4
T(Leﬂ Rz) = h(r"T (L,gﬂ Ra)n R’)
= h[f”-r'(La)n R‘N R’).
Lemma 3.2. Let £2 be a family of langusges. Then
(a) for each e-free symmetric family £
Sub[Homr(.tl), .:2] S Homr[&lb_(-ﬁl, £2)].
(b) for each e-free family L
sub(<,, Hom (.s )] S Homr(Sub[-t us, (s L )]).
Proof.(a) Let L, be in £, and T & substitution of }.'.L by langusges of Homr(.t

2 2
Then for each a in r.La, 7(a) = b (L), vhere L_is in s

1 R
1 and ha is restricted
on La' Since £l is symmetric, we may assume that Z.L N )'.Lb- g for a # b. Then
there is & homomorphism h on (Uz )* such thet h(x) = b (x), where x is in }.‘.L
Hence t is the composite hr’ » where v/ 18 the substitution on }.‘.L defined by

T (a.) = L for each a. Since v’ is a sufstitution by langueges o £1, it
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suffices to show that h is restricted on T,(La).

Since hﬁ1 is restricted on La for eaci: a there exists qa>0 such that
|w'|$q, vhenever w' 15 a subword of e word of L, end ha(w') = €. Furthermore,
since L 1is e-free, ha(w) # € for each v in L, Let q= max{q_a/a} and consider

h on 'r'(L2). If w' is a subword of & word of -r'(La), then w’ 1s a subword of &

word of the formw, ... w, with w, in L for each 1. Also, v o=
1 n i ay
4 4 " I [
WyWigq ooe wj_le, vhere 1 < j, v, is a subword of Vo and wJ is a subword of

! 4
<q. =g, =
L Thus ]wiISq and IwJI q. Suppose h(w) = €. Then Wi4pee Wy T € 80 that

! ! ’ .
|w/|s2q. If w' is a word of T (L2), that 1s, v =w, ... w, each w, in Lai,

and if h(w) = €; then w, = € for each i, so that w = ¢. Therefore h is

restricted on 1"(L2) and the proof of (a) is complete.

(b) Let L, be in £,» h & homomorphism restricted on L,, and 1 a

2 2}
substitution on Z‘h(L ) by languages of .El Let ¢ be a symbol not occurring in

2‘.h(L)U'rh(L ) and let T’ be the substitution on Z.L defined by v'(a) =(ch(a))

for each a in & . Clearly r (L2) is in Sub(f:‘o Let v° be the substitution

)5

2
2

on ((ciy r‘h(L))* defined by 7“(c) = {c} and v“(b) = 7(b) for b in Z‘h(L) Then

T [-r (L }] is in Sw(< Y % Sub(’fo, £.)]. Let h' be the homomorphism on z:"r'(L )
15

defined by h’(c¢) =€ end h (b) b for b in zT.T,(

h'r”r/(w) for each w in Z.L

L) - {c). Obviously th(w) =

To compl~te the proof it suffices to show that h’ is restricted on 'r”'r'(La).

Suppose there exists w in L. and w' 4n +”7'(w) such that h'(w’) = €. Then ¢ is

2
in th(w). Since - is a substitution by e-free sets, h(w) = €. Since h is

regtricted on L., w = €. Hence w = e, Suppose there exists w ;‘ € in L and =

2 2
subword w’' of some word in 7”r’(w) such that h'(w’) = e. The w' = ck for some
0. Let w = 8 oe B, each a, in ZL . Then there exist positive

2
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integers 1 and J, with 1 < j, and words Uy Uygqs ooy uj-l’ u'j such that

u, end u, are subwords of words in c'rh(ai) and c*rh(aj) resp, W 1is a word in

1 J
. ’ = 4
cth(e ) for each m, 1 <m< J, and v’ = wu . ... uy_juy-  Thus ks| 3-1] +2.

Since £, 1s e-frec, h( am) = ¢ for each m, 1 < r < j. Since h 1s restricted

s
on L2, there exists g>0 such that |v]<q if h(v) = € and v is a subword of
e word i L,. Hence |Jj-1|<q+2, so that |w'|= k < qtk. Therefore h’ is

2
restricted on 17t '( L2) ?

Remark. The method of proof of Lemma 3.2 shows that both parts (a) and (b)

hold if the e-free condition on £, is dropped and Hom " is repleced throughout

1
by Hom.
Lemma 3.3. Let £, be a family of lenguages such that Sub(Ro, £2)C £2 and let

1:3 be a (full) AFL. Given an e-free (arbitrary) symmetric family £

containing R such that Sub(£L, £2) c s
= J
fa) € 53)

Proof. Let A be the collection of all e-free (or arbitrary) symmetric families

30 then Sub(AFL(£), .1:2) c .c3 (&Jb(AFLf(.ﬁ),

£’ conioining R, and such that sub(L’, 1:2) < s3. Let {.c(“)] 1> De defined with
respect to £ as in the corollary to Proposition 1.2 (the corollery to Proposition
1.3). Then £(°) =L,

We shall show that £’ in A iwplies sw(R,, £’) (or sub(R,L’)),
su(L’, Ro), $'AR, and Homr(£')(15) are all In A. By inductior on n it will
then follow that each -ﬁ(n) is in A. Clearly each of the sbove sets is symmetric.

Aleo,

(15)Homr(£') is omitted if £ 1s not e-free.
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1

Sub[ Sub(R, £’),£2] Sub(R , Sub(£',£2)] < Sub(R_, .c3) <L

(or Sub[Sub(R, £’), £,] = sublR, Sub(£’, £,)] < su(r, £3) = .c3)

and  Sub[Sub(L’, no),.ce] sub[£°, &m(no,sz)] S sw(L’, -2) < £3.

Clearly Sub(£'A R, £,) € Sub(L'A R, IAR.) Since RE £, Fs £'. Thus, by
Lerma 3.1,
Sub(£'A R, £2) & Homr[Sub(.E', Sub(% , £2)) AR]
14
c Homr[Sub(.t . £2)/\ R]
< Homr[£3/\ R]

C£3

(or Suw(LAR, £)€ Hom(£3/\ R) & £3).
By Lemma 3.2 (a),
Sub[Homr(.t'), £2) = Hom_[ Sub(£ ‘ £2)]
< Homr(£3)

S £3.

It now follows that the sequence of families {.E(n)] S defined for £ as
in the corollary to Proposition 1.2 (or the corollary to Proposition 1.3) is

in A. To complete the proof of the lemma it suffices to show that uc(®) 4
n20

in A. Clearly U£(n) is e-free if £ 1s e-free, contains Ro, and 1is symmetric.
nxo
Suppose T is a substitution of L, in £2 by langueges of U.E(n). Then T(La)
n2o
(n)

involves only a finite number of languages of Uf(n) Since £ is increasing

in n, there exists m such that v is a substitution by langueges of .C(m). Heuce

Sub( U £(“),£ ys U Sub(.t:(“), 1:2) c £3.

n=o n2o

Therefore U£(n) is in A and the proof is complete.
n=o

i — —— e e e —— e
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Next we have the analogue to Lemme 3.3 for the second varieble in
Sub(.cl, £2).
Lemma 3.4. Let £l be a family of languages conteining R, and such that
Su'b(.tl, no) L. let £3 be en AFL, with £.< .s:3, and let £ be a family of
langueges such that Sub(£l, L)< .c3. If £, is e-free (or £3 is & full AFL),
then Sub[.!!l, AFI{L)] & .r.3 (or Sub(.s:l, AFLf(J:)) S 53).
Proof. Let 4 be the collection of all families £’such that Sub(.tl, £ s £3.
Let u'(n)]nzo be the sequence of families defined for £ in the corollary to
Proposition 1.2 (or the corollary to Proposition 1.3). Since .l'.(o) =2V R, end

Sub(£ no)c £s L

Y I L4
sub(<,, .c(°)) = su(£;, £) U sub(£,, R) < L.
Therefore £(°) is in A. We shall show that £’ in A implies Sub(Ro, £’
(or sub(R, £°)), sub(L’, Ro), £'A R, and Homr(.t') (16) ere all in 4.

Clearly

Sub(£,, Sub(R_, £’)) = Sub(Sub(£;, R ), L)

< Sub(.tl, £’) s L5

sub( sub(£,, R), £')

(or  sub(L,, Sub(r, £))

sub[ Sub(£,, R W{e), £']
S Sub[-BlU[e], £’]
< HomSub(£,, £
< ;3)
and  Sub(£,, sub(L’, R)F Subl[ Sub(<,, 4, R ], by (&) of Proposition 1.1,
S Sub(.l:3, ao)

S £3.

(ls)nomr(.c') s omitted if £ 1s a full AFL.
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Now sub(£,, £'AR) s Sub(.ﬂl/\ R, £'AR)
< Hon (Sub[£,UF , Sub(¥F , £')IAR), by Lemma 3.1,

= Hom (Sub(£,, Sub(F , £')1AR)

l)
= Hom_(Sub[sub(L, ¥ ), $'1AR)
S Hom (Sub(Z,, L' AR)

S Hom (£ R) € £,

(or sup(£,, L'AR) < Hom(£3/\ R) < .c3).

By Lerma 3.2(b),
Sub(£,, Hom (£')) € Hom (Sub[£U F , sub(% , =N
!

S Homr(Sub[&lb(f.l, fr’o), £'])

< Hom [sub(£,, £’

C £ L]

3

From the above, it follows that S(n) is in A for each n20. Then

sup(£, AFL(L)) = sub(£y, U .c(n))

n2o0 (n)
SV Su.b(.i!l, £ )
nzo0
(5 £3

(or, similarly, Sub(.tl, AFLf(I.)) S £3) and the proof is complete.
Lemma 3.5. Let £l be an e-free (arbitrary) fam.’ of languages containing 5‘0

such that Sub(.tl, 30) = .£l, and let £2 be & nontrivial family of languages.

=
Then £, € AFL[Sub(.Sl, £2)] (or L) AFLf[Sub(.tl, £2)]).
Proof. let L, be a language in £, containing a word of length k»1 and let

2 2

Ll be a langusge in £l. [L2 exists cince £2 is nontrivial.] let c be a new

symbol. Since ¥ S L., (c) 1s in £,. since Sub(.tl, 5‘0) € £,, Lyc, hence

*
Lye Ulc), 1s in £,. 1let 7 be the substitution on I defined by 7(a) = Lyc Ule)
2



16 September 1968 25 m™-738/049,/00

+
for each a in . . Then 7(L,) is in Suw(L,, £.). Thus 7(L. ) N & ok
L, 2 12 =2 2 L,

and

* k k + k k LI <
2 =1(L. )N, ¢
(L) lec ere in AFL[Sub(£,, £,)]. Then Lyc'=r(L,) N z:Llc (1 (L,) ELl
or ck =+(L.) N * ck) Thus ck is in AFL{Sub(L,, £.)]
Ly 2! Ml 2y, ¢ ) Ly 2
*
(AFL[ Sub(L,, .:2)]). Let h be the homomorphism on (£ Ul{c))" defined by
1l
h(c) = € and h(b) =b for b in ):Ll Tnen h is restricted (arbitrary homomor-
k _ k .
phism) on L,c” and L= h(Ij_c ) is in Homr[AFL(Sub(.Bl, .\:2))] S AFL (Sub(.r.l, .cz))
(or L, is in Hom[AFLf(Sub(.tl, £2)] S AFL[ Sub(.tl, £2)]).
We are now ready for the main result of the s~ction.

Theorem 3.1. Let .l!l be an e-free (or arbitrary) symmetric family of languages

conteining Ro and let £2 be a nontrivial family of languages. If elther

Sub(Ro, .r.2) S L or Sub(.sl, ao) S .cl, then

2
AFL[&Jb(.I:l, 32)] = Sub[AFL(.ﬁl), AFL(£2)]

(or AFLf[Sub(J: c?_)] = Sub[A.FLf(.El), AFLf(Sa)].)

K
Proof. We only consider the case when £l 1s e-free, since thke other case can
be treated similarly.

By Theorem 2.1, Sub[AF‘L(.!ll), AFL(£2)] is an AFL. Since thie AFL contains
.s&m(.sl, £2), it follows that

AFL[Sub(£y, £,)] S Sub[AFI(E,), AFL(L,)].

Consider the reverse inclusion. First assume that Sub(Ro, £2) < £2.

Since Sub(£1, £)s AFL[Sub(.El, £2)], by Lemma 3.3 we obtein

o)
(¥)  swlAFL(L,), £,] < AFL[Sub(L,, £,)].
Since £2 is a nontrivial family,

AFL(.Cl) = AFL[Sub(AFL(£l), 52)], by Lemma 3.5,

(%) S AFL(Sw(L,y, £,)], by (*).
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By (**), (*), and Lema 3.k, |

Sub(AFI(EL, ), AFL(L,)] < AFL{Sub(S,, £,)].

Next assume that Sub(.tl, Ro) G £,. Since £, is e nontrivial family, °

£ AFL{Sw(E,, £,)] by Lema 3.5. since sub(£y, £,) S AFL{Sub(S,, £2)]’

Sw(<y, AFL(E,)] S AFL{Sub(S), £,)]

v
by Lemma 3.4. Then, by Lemma 3.3,
Sub[AFL(.cl), AFL(£2)] < AFL[Su.b(.Cl, £2)].
Remarks. (1) The proof of Theorem 3.1 shows that the inclusion
AFL[Sub(.tl, .c2)] < Sub[AFL(.Cl), AFL(£2)]
(or AFLf[Sub(.tl, £2)] < Sub[AFLf(.tl), AFLf(.ta)]) 3
is valid with no hypotheses on ":l or £2.
(2) The reverse inclusion in remark (1), thus Theorem 3.1, is not velid
without some hypotheses. For example, if 'I:l is the trivial femily consisting
of Just (e}, tien Sub(.ﬁl, .ce) =L, and AFL[Sub(.tl, £2)] =g = AFLf[Sub(.l:l, .\:2)]
need not contain Sub[A.m.(.sl), AFL(£2)] = AFLf(Se) = Sub[AFLf(.tl), AFLf(.Ce)].

Similarly, if £, is the trivial family, then AFL[Sub(.cl, £2)] =R = AFLf[Sub(.cl,

2
£,)] need m+t contain Sw(AFL{L,), R) vhich conteins AFLS,). If £, = a' and
£2 is the AFL generated by [anbn/nzl}, then Sub(R,o, .52) = £2, AFL[ Sub(£l, 32)]

S AFL(S)) =R, end SW[AFL(L), AFI(EL)] = SRy, £,) = £,

Section 4. Iterated substitution

We are interested in families of langusges closed with respect to substitu-

tlon into another family, or closed with respect to substitution by langueges ’
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of another family. If a family lacks the desired closure property, then we
apply the substitutions in question and enlarge the original family by adding
the langueges obtained by these substitutions. Iterating this procedure leads
to a family containing the original one and having the desired closure property.
This ssction contains the definitions and some results about iterated
substitution. In particular, we show that iterated substitution applied to an
AFL ylelds an AFL. We present a condition that guarantees the substitution
closure of a family to be an AFL even if the original family is not an AFL.

Definition. Let £, and £, be families of languages. Then £, is closed under

1l 2 2
£, substitution if Sub(.cl, £2) < £2. The closure of .:2 under £, substitution
is the smallest family containing £2 and closed under £l substitution.

Since the intersection of all femilies containing £2 and closed under

* _ _*
£, substitution (the family of all sets L & I, € L dis one such family) is

also such u family, the closure exists., In Lemma 4.1, we shall show how to

calculate it.

Notation. Given £
k+l( T

and £, let Subo(.ﬁl, £2) = £, and, by induction,

it
.1:2) = Sub[.cl,

2

swl(£., £.)] for each k0. Let Sw (<., £.) =
A 1 %2 1 2

U swi(L,, £.)
’ L
i=o0 S
Note that for every .Sl, £2, and k,
suble,, sw(s., £)1c & swif, swi(c., £.)]
v R v 1 I

_ i

k+1
S Sub (.tl, £2).
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Also, for each k=1,
X k-1 1
Sub (£l, £2) = Sub[£l, Lé Sub (.cl, £2)]

]

k
i
c Sub[.L'l, Li Sub (.cl, £2)

Ll

Sub 12 2).

It is not necessarily true that £, = Sub°(£1, 32) S Subl(.ﬁl, £2). [ For example,
let £, = ({ab)) and £, = ({&)). Thus Sub(l)(.tl, £,) = £,, which does not

o
contein £, = Sub (.Sl, £2).]

Suppose £, conteins {a) for each a in £, Then £ & Sub(.tl, £2) for every

2
family £2. Thus, for every k>0,
K+l B
(£ Sw(f,, U sw (£, £.)]
1 iZs 1Y 72

k
Sub[£l, Sub (.cl, £2)] .

Sub p £2)

Lemme 4.1. The family SL1b°°(£ , £.) is the closure of £, under £, substi+ution.
e Y 72 2 1

Proof. Let £ be the closure of £, with respect to £, substitution. Since

2 ph

k k+1
sw(L,, suw(£,,L,)F sw™ (£, L),

® P
S\lb[£l, Sub (£l’ £2)] = &ib['cl’ g Sub (Sl’ £2)]

T k

—tg Sub[.El, Sub (.cl, 1:2)]
ktl

S g suo™ (£, £,)

S Sub (.cl, £2).

Thus Sub°°(£l, £,) 1s closed under £, substitution, so that £ < Sub°°(.cl, L)

1
To see the reverse containment, it suffices to show that Subk(.i!l, £2) S
for each k=0. By definition, Subo(.tl, £2) = £2C L. Continuing by induction,

suppose Subi(.L'l, £2) €L for0< i<k, kx2l. Then

B

e

="
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k-1

k 4
Sub (.s:l, £2) = sub[£,, g Sub (.cl, .c2)] S Sub(.i!l, ) e L.

Thus the induction is extended end the proof is complete.

Definition. Let .i!l and £2 be families of languages. A family £l is closed

under substitution in £2 if Sub(£l, £2) < Ll. The closure of £l under

substitution in £, is the smallest family containing £l and closed under

2
substitution in £2.

Again, it 1s easily seen that the closure exists.

Notation. Given £, end L, let S\zbo(.tl, £2) = £, and, by induction,
k
Subk+l(£l, £2) = Sub[iLiOSubi(.El, £2), £,] for each k0. Let Subm(.ﬁl, £2) =

o]
U
e Subi(.!!l, £2) .

Again, Subk(.ﬁl, £2) < Sllbk+l(£l, £2) for k1. If £, contains {a} for
= c
some a in I, then Subo(£l, £2) Ly Subl(.ﬂl, £2).

Lemme 4.2. The family Subm(.!!l, £2) is the closure of £l under substitution in

£2.
Proof. Let £ be the closure of £l under substitution in £2. As 1n the proof

of Lemma 4,1, it is easily seen that Sub, (£ £2) S £ for each k20. Hence

y e

Subm(.ﬁl, £2) < £. To see the reverse containment, we have

S( b, (£, £5), £,] = SV Suby (£, £,), £,].

2
@
Let L, be in £2 and T a substitution of L2 by languages of U Subk(.i:l, £2).
Since L 1s finite, there exists m*0 such that t(a) 1s in U Subk(-tl, £2)
2 o
m
for each a in I,. Therefore T(L2) is in Sub[ch) Subk(.ﬁl, £2), £2] =

Subm+l(£l, £2) < Subw(.ﬁl, £2). Thus
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Sub[Sme(‘gl} £2)’ £2] < S'U.bm(-sl, £2))

so that £ < sub (£, £,).

Definition. A family £ is substitution closed if Sub(f,£) S £. The

substitution closure of £ is the smallest substitution closed family £_

containing <.

Clearly £_ exists.

Theorem 4.1. (&) For each family £, £ = sw_(£,<).

(b) If £ is & symmetric family such that £ S Sub(£,£), then L = Subm(.l!,.l‘,).
Proof. (a) Since £ is substitution closed and contains £, it is closed
under substitution in £. By Lemma 4.2, Sub (£,£) S £_.

To complete the proof of (a), it suffices to show that Sub_(£,Lf) is
substitution closed. [For this will imply that £_< Sub_(£,£).] Since
Sub_(£,£) 1s the closure of £ under substitution in £,

Sub( sub_(£,£), Subo(.fz,.c)] = Sub[sw_(£,£), £] € sub_ (£,£).

Continuing by induction, assume n>0 and that Sub[Sub_(£,£), Sub J(1:,.&:)] S sup_(£,£)

n=-
for all 0 < j<n., Then for &£’ = U Subd(.t,.t),
J=o

-1
subl Sub_(£,£), £'] = U sublsu_(£,£), sub ,(£,£)]
J=o
< su_(£,L).

Furthermore, Subn(.!!,-ﬁ) = sub(£’,£). Thus

Sub[ Sub,(£,£), Sub (£,£)] = sub[swb_(£,£), sub(£’,£)]
S sub(Sub[sub_(£,£),£'], £),

by (a) of Proposition 1.1,
= Sub[swb_(£,L), £]

< sup_(£,£).
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Hence the irduction is extended. Therefore
Sub[Subm(.ﬁ,.i‘,), Subk(.ﬁ,.t)] S Subm(.ﬁ,.t)
for all1 k=0, so that

Sub{ Sub,,(£,£), Sub,(£,2)] = U sub[sub,(£,£), sub(£,L)]
k=0

S sub, (£,L).

(b) sSince £_ is substitution closec end coatains £, it is closed under
I substitution. By Lemma 4.1, Sub (£,£) € £_.

To complete the proof of (b), it suffices to show that Subw(.t,.ﬁ) is
substitution closed. By hypothesis, Sub®(£,£) =£ < Subl(z,.c). Thus
Sub™(£,£) S sub®Y(£,£) for all k»0. Hence Sub: *(g,) = sublf, Sw(L,L))
for all k20. Obviously Subk+l(£,£) is symmetric for all k=0. By Lemma 4.1,

Sub(£, Sub (£,£)] = sub[Sub®(£,L), Sub (£,£)]

S sw (£,L).
Continuing by induction, assume that

Sub[ Sub™(£,£), Sw(£,£)] € sub™(L,L)
for 0 £ k < n, n21. Then

sub[5ub™(£,£), Sub (£,£)] = Sub[sub(E, su" 3(L,2)), sub (£,L)]

= sub(f, Sub(Sw®H(,L), sub (£,£))],
by Proposition 1.1,
S subl£, sub (£,£)]
S sub (£,£).
Therefore the induction is extended, so that
Sub[ Swb™(L,L), sub (£,£)] € swT(L,L).

Now let L be in Subm(.ﬁ,.t) and r & substitution on I by lengusges in
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®© @ mn
sw (£,£) = U Subk(£,£). There exists m2C such that 7(a) is in U Subk(.i‘,,.ﬁ) =
k=0 k=0

[ -]
sub™(£,£) for each a in . Thus 1(L) is in sub[Sub™(£,£), Sub (£,£)). Hence

sub[ sub (£,£), swb (£,£)] < OUOSub[Subk(.E,.S), sw (£,£)]
k=0

¢ b (£,8),
cormpleting the proof.

We Ao not know to what extent the hypotheses in the theorems of Section k4
can be weakened. In particular, we do not know if the hypotheses of Theorem 4.1
can be weakened. In general, (b) of Theorem 4.1 is not valid without some
hypotheses on £, i.e., Subm(.ﬁ,.t) is not always substitution closed. For example,
let £ = {{ab}/a,b in ¥}. Then Sub (£,£) consists of all words of length 2" for
all 1>1. However, the substitution clesure of £ contains {a6] for each a in Z.

The rest of this section is concerned with relations between the various

substitution closures and AFL.

Theorem 4.2. Tf £, end £, ere AFL, then so are Subm(-ﬁl, £2)

and Subm(.tl, .s:2). If, in addition, £, is full, then so are Sub (£l, .82) and Subm(£1,£2).
Proof. Since £, contains (a} for each e in %, Subk(.tl, .C2) =

k-l(

mb(sl, Sub L, £2)). Similarly, Subk(.ﬁl, L) = Sub(Subk_l(.Cl, .ce), £2).

2)
By Theorem 2.1 and induction, Subk(.Cl, £,) and Sub, (£, £,) are AFL for all

k (and are full if L. is full, by Corollary 1 of Theorem 2.1). Therefore

al

Sub°°(£l, £,) and Sub (£, £,) ere AFL (and full if £; is full).

1
From Theorems 4.1 and 4.2 we get
Corollary. For each (full) AFL £, £_ = Sub (£,) = Sub_(£,£) and is a(full) AFL,

[o+]
Remarks. (1) For AFL £, erd £2, Sub (.cl, £2) and Subﬂ(.ﬁl, £2) are not necessarily
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the same. For let £l = Ro and .1‘.2 be the family of context-free langages.
ow
Thus Sub (.cl, £2) =<, Subm(.tl, .c2) = £, and .s:l;! I,
(2) For well-known iFL there arise the general problems of ' Sifying"

Sub“(sl, £,) snd Swb (£, £,).
Theorem 4.3. ILet £ be an e-free (or arbitrary) symmetric family of lenguages
containing R end such that either Sub(Ro, £) < £ or su(L, Ro) € £. Then
AFLL,) = [AFLL)], (or AFL(L,) = [AFL(£)],).
Proof. We shall prove the theorem fc the e-free case, an analogous argument
holding for the arbitrary f case.

Note that since R € £ and R & AFL(L), £ € Sub(£,f) and AFL(L)S Sub[AFI(L), AFL(£)].
Hence, for each n>0,

(%) Subn(.c,.c) = &mb[Subn_l(.t,.ﬁ), £
and (%) &mn[AFL(.S), AFL(L)] = Sub(&zbn_l[AFL(.E), AFL(£) ], AFL(L)).

We first show that for each n20, AFL[ Subn(.ﬁ,.t)] = Subn[AFL(.ﬁ), AFL(L)].
For n = O, AFL[ Subn(£,£)] = AFL(L) = Subn[AFL(.L‘), AFL(£)]. Continuing by
induction, suppose n>0 and that AFL[ S\lbn_l(£,£)]= Subn_l[AFL(.ﬁ), AFL(L)].

Then

AFL{sw (£,£)] = AFL(Sub[sub__.(£,£), £]), by (*),
n n-l (17)

Sub(AFL[Subn_l(.I!,.B)], AFL(L)], by Theorem 3.1,

Sub(Subn_l[AFL(::), AFL(L)], AFL(L£)), by induction,

sub [AFL(L), AFL(£)], by (%),

extending the induction.

(17)Since £ is symmetric, Subn_l(£,£) is symmetric. If Sub(R,, £) € £, then
the hypotheses of Theorem 3.1 are obviously satisfied. Suppose Sub(£, Ro) c s,

A simple induction, using Proposition 1.1, shows that Sub[Suby(£,L), R, <
Swp, (£,£) for each k20. Thus, in this case also, the hypotheses of Theorem 3.1
are satisfied.
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To complete the proof, we see that AFL(L_) = AFL{Sub_(£,f)] =
AFL[LIJl Subn(£,£)] =\ AFL[Subn(.ﬁ,.!!] =y Subn[AFL(.S), AFI(L) ] = [AFL(£) ], .
Corollary. If £ is a substitution closed AFL, then the full AFL generated by
£ 1s also substitution closed.
Proof. By Theorem k.3, [AFLf(S) ], = AFLf(-Cm). Since £ 1s substitution closed,
£ =£. Hence [AFLf(.‘T)]cm = AFLf(.S), so that A.FLf(.L')is substitution closed.
Our final theorem provides a criterion for £m to be an AFL even if £
is not.
Theorem 4.4, (a) Let £ be a family of languages containing ZI for every finite
£, © T and such that Sub(.'f'o, £) < £. Ten £ is an ArL if and only if
Hom (LAR) < £_.
(b) ILet £ be a family of langusges containing )_‘.; for every finite
£, < £ end such that Sub(.’,‘o, £) <€ £. Then £ 4s a full AFL if and only If
Hom(£AR) € £_, or equivalently, if and only if £ARS £_.
Proof. (a) Suppose £_ is an AFL. Then Homr(.l‘.m/\ R) < £,. Since £< £,
Homr(.ﬁ/\ R) < Homr(.i!m/\ R) = L.
To prove the sufficiency, assume Homr(.C/\R) €L . Let Lbein R
Then ZE is in £, so that L = Z‘.;ﬂL < Homr(.ﬁ/\ R) S £_. Thus R, < L,. Since
£, 1s substitution closed,
sun(R,, £.) < suw(L , £ ) £,
Sub(£_, Ro) S sw(Ls, L) & £_-
Thus, to show that £ 1s an AFL, it suffices to verify that

LIARS L and Homr(i!w) S £ . Since (EAR)U Homr(Sw) < Homr(.ﬂm/\ R), 1t



16 September 1968 35 ™-738/049/00

suffices to show that Homr(.ﬁm/\ R)S L_.
We first show that Homr[Subn(-ﬁ,S) AR} S L for each n20. For n =0,
Homr[Subn(.C,.E)A R] = Homr(-‘! AR) € £_, by hypothesis. Assume n>0 and
a=1
Homr[Subj(.ﬁ,.ﬁ) AR]S £ forall §, 05 J<n. Lt = U SubJ(-E,.E Then
J=o
Homr(.ﬁ'/\ R) € £ and, by definition, Sub (£,/) = sub(£’,£). Therefore
Hom [Sub (£,L) A R] = Homr[Sub(.ﬁ',.t) AR)
= Homr(Sub[(J:'Aa), Sub(¥ , £) A R]), by Lemma 2.1,
S Homr(Sub[(-ﬁ'/\ R), LA R]), since Sub("fo, L)<,
S Sub[Homr(-ﬁ'/\ R AR), Homr(Sub(So, £AR))], by Lemma 2 2,
< swblL,, Hom (Sub(F_, £ AR))],
since R AR =R and Homr(.c'/\ R) S L_.
Now

Homr[ Sub(go, LAR)] = Homr[Sub(.'f'o/\ R, £AR)], since 30/\“ =

n

HomrHcmr[Sub(.'F Sub("fo, £)) AR), by Lemma 3.1,

0’

n

Hom_[ Sub(¥ , £) AR], since Sub(:"o, £)s ¢

end Hom Hom_ = Hom_,
bl b5

n

Hornr(.ﬁ AR)

C £ .

Therefore
Homr[Subn(.B,.B) AR]S sub(L_, L)
SR

so0 that the induction is extended.

To complete the proof, we have
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Hom (£ A R) = Hom ([ oS J(.c,a:)r\ R], by Theorem k.1,

Homr(Jgo[SubJ(s,.c) ARD
s £ .

(b) It suffices to show that "only if." Thus assume either

Hom(£AR) S £ or LARS £ . Clearly R € £_. Thus £ 1s closed under arbitrary

homomorphism since it is closed under substitution. Hence Hom(L AR)S .!!m if
IAR = L. (Obviously, £ AR € L if Hom(LAR) € £ .) By (8), £ is an AFL.
Since £ is closed under arbitrary homomorphism, it is a full AFL.

The sbove theorem gives another proof of the following result (6].
Corollary. The family of derivation-bounded languages is a full AFL.
Proof. It is known (6] that the famiiy of derivation-bounded langueges is the
substitution closure of £lin’ the family of linear context-free langueges.

Since £ contains R and is closed under intersection with regular sets, and

1lin

Sub(’w'o, 'clin) < the substitution closure of £ is a full AFL by

lin’ lin

Theorem 4.4,
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