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PREFACE

A great deal o( progress has been made in the deve'opient and ap-

plication of the thecry cf prediction and estimation L.-oise for the

cate of linear problems. A major research frontier today concerns the

problems oi estirmation using noise-corrupted observations in nonlinear

sys tems. In this Mmcrandum a theoretical approach to maximum-likelihood

ediction and eretiniatien is developed for certain such nuaiinear situ-

ations and is applied to the special case of nume~rically estimating the

initial condiL'ions of a ra.dar-observed reentry body.

The work repuyted here Ls part of Ranu's continuing basic research

in engineering and systeis science.

d
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SUMMARY

It is often desirable to estimate certain parameters, such as in-

itial conditions, of a dynamic physical process, using nc'se-coizupted

observations. This Memorandum describes a maximum-likelihood solution

when the process is time-invariant nonlinear m-vector and the observa-

tion is a linear combination of true process coordinates and noise. It

is applied to a white-gaussian-noise case in which the initial conditions

have a known a priori joint gaussian distribution and all other process

parameters are known. It is desired to estimate the state at t 0,

given continuous observatton over (0,T) and a priori statistics.

Given a maximum-likelihood estimate of initial conditions, a nat-

ural estimate for the system state at t > 0 simply updates the process

differential equation from the estimated initial conditions. The al-

gorithm therefore estimates initial conditions. It can be shown that

the maximum-likelihood estimate is th initial condition which mini-

mizes a certain functional on that initial condition, the observation,

and the a priori statistics. This functional describes an (m # I) sur-

face at time T, and the desired estimate corresponds to its minimum; a

differential equation is developed which governs the evolution of this

estimate with time T.

Using this differential equation, the algorithm calculates as a

function of T that maximum-likelihood solution which evolves from the

unique solution at time T - 0 (given by the a priori mean vector).

Usirig this differential-equation algorithm to stay near the desired

solution when updating T, Newtonian techniques may be used to improve

the solution for constant T.

_I
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Earlier computational results suggest that maximum likelihood ;'

preferred to various approximations. This Memorandum explores computing

feasibility for difficult vector cases, rather than extending these nu-

merical comparisons for simpler scalar situations. Both pure differen-

tial equation and differentiai-equation/Newtonian solutions were used

to estimate reentry-vehicle initial conditions. A priori statistics

presumably result from prior less accurate tracking; the observation

from a more accurate tracking system. One coordinate time rate is not

measured, and its initial condition serves as an unknown parameter with

a priori statistics.

A fiyed reentry-path observation was generated using Monte Carlo

noise, and initial conditions were estimated. Convergence depended upon

the size of integration constants used. The estimate converged to within

'he order of the Cramer-Rao conditional bound. Accuracy was exchanged

betweet coordutates to improve the overall estimate. The initial angle

rate, which could be viewed as an unknown parameter, waq handled with

the same or better rapidity and accuracy of convergence than the other

initial conditions. Readily available programs and the use of a general-

purpose computer resulted in processing times much larger than real-time

observation. However, efficient programs and special computers could

reduce this to on-line realization.
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SYMBOLS

AC . reentry-vehicle frontal (drag) area

A(X),G(X),J(X) - functionals on H(s), X(s;X), R, and Z(s), 0 - s T

TV = unit vector along the reentry-vehicle line of flight

B(XoT) - matrix function of X0 and T

C D reentry-vehicle drag coefficient

5 drag-force vector acting on reentry vehicle

Dett .1 - determinant

E(-) - expectation

E(.IY) - conditional exDoctation, given Y

- total-force vector acting on reentry vehicle

(f I (X ;t ;o
Frx; t;,Y- F X !,c - FrX - d(t)L dt

f(X,T) - functional on u, A, ari Z(s), 0 < s S T

G - factor in error statistic

G - gravity-force vector acting on reentry vehicle

g - gravitational acceleration

gk(s,) - function related to rk(a,u), ,(U), and X(u;i)

H (0)- i h row of H(s)

matrix which defines the effect of each coordinate on

HI the observation

I - identity matrix

K - normaliLng constant

L(s) - vector Wiener process
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M(i;X) = conditional expectation of Z(i), given X

m reentry-vehicle mass

m X) = expectation of random variable related to li(s), X(s;X)
mi ()=epcainoradmvralreaetoHk GXSX

N = T/6T = number of updatings in T

N(s) = noise in observation at s, 0 < s 5 T

n = number of Newtonian approximations

p(.) = probability

R(i) = covariance matrix for Z(i)

R(,s) = rcovariance of the noise

0 r~(s coaineoPu os

R(0,s) = 6(F - s) = cc arian-e of white noise

r = radial distance to reentry vehicle

r. = unit radial vector

T = upper i..dex limit of observation interval

t,s,u = process index, 0 < s, u < T, 0 < t

V = ieer ry-velicle v ,locity

W = weight of reentry vehicle

X = transpose of matrix X

X(O) = X0 = true initial condition of X(t) at t 0

X(s;X) = X(s), given that X(O) X

XCT) = i(O;T) = X

X(t) = '  physical process

.... . . ... . { [



t( ;T)

X(t;T) =I m-axuimm-l - i ho'd estimate of true X(t)

k\Ut;T)! t 0, given Z(s) E T

/ l\
2( \

Z(i1) 1= randomip vector

1 iz
/l(S)

Z~s)= =noi. ~-cr ~ :ed hservatio'r at s, 0 s T

Y- unit vector along z-cco.dinat_

k z{= randomn variable reiated to z.. (s) , 0 -s < T
^ K

r = vector of arbitrary paras-ieters

= inverse of reentry-vehicie ballistic coefficient

Y = weighting factor in max!mum-likelihood estimate

..k k* k k*j k
Y X) = infinite sums related o z , m (X)-! 1 ' 1

,I - t ' k k ^  k
'(X.,-t(X) = finite stms relat'd to z,, m1 (X), X1

As = index interval used in numerical integration

6T = step size at thich update X(0;T) in T

6= computer execution time per As calculation

6(s - u) = delta function

( Ci°PI )

OS= function related to r k(,u) and Zk(U)

Ti= average number of Newtonian iterations per Ti
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number of Newtonian iterations at Ti

= angle between zenith (z-axis) and radius vector to

reentry vehicle

unit angular vector in plane of motion

A = covariance of the joint gaussian distribution of X(O)
and (Y

= mean of the joint gaussian distribution of X(O) and o'

= AT/As

.i, 7 = stopping thresholds

o = air density at altitude

T = total computer execution time for processi.ig signal

T, = computer execution time at Ti

0 = zero vector

r ~,k K = orthonoinal eigenvectors and related elgenvalues of
Srk(S~u)

(V(XoT) = bias of the MIE X(O,T) of X0

V w(X),'7w(X) = gradient of w(.) with respect to m-vector argument
C 'X

V w(X),V-^w(X) = second gradient of w(-) with respect to m-vector
cc )argument

ixIli = norm of X, over interval (0,T)
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I. PROBLEM DEFINITION

GENERAL PROBLEM STATEMENT

A general problem of much interest and importance in prediction,

estimation, and contil areas is th following: Given an m-vector

p.ysical process

!x(t) •(i)

where X(t) satisfies a differential equation

dX t) = FrX;t;,vl, (2)
dt

and where !- is a vector of arbitrary paramet. (some known, some

unknown), given some priori statistics oi the value assumed by the

initial condition X(O), and given a noise-corrupted observation over

some (variable) interval FO,T' of a p-vector process related to X(t):

Z(s), 0 s- s - T, (3)

then it is desired to make a best estimate of X(t), 0 t, in terms

of the observation fZ(s), 0 - s - Tj and the a priori X(O) statistics.j If some components of the parameter vector o are unknown, then they

may also have to be estimated in the process.

This problem has been essentially solved for the case where F()

is linear and the noise-corrupting Z(t) is additive. (1)This Memoran-

dum will construct and apply a numerical algorithm for solving this

problem when F(.) is nonlinear, but the corrupting noise is still
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additive. The generality of the above statement 0 be restxicted

somewhat for present purposes, but the result' can then be extended

in obvious ways to cover the more general case.

SPECIAL NONLINEAR CASE TREATED

!x (t)\

The vector X(t) = will be a real m-vector physical

process satisfying the nonlinear, time-invariant differential equation

fI(X ; ))

9-£: -_ F (X ;,,Y) - "(4)

fm (X ,

where F(X;a) depends upon an unknown but fixed (throughout the obser-

vaticz interval) vector parameter cy: known parameters are subsumed in

F(. ;o). Observations of the p-vector Z(s) over a varying interval

FO,TV are available, where ii is known that

Z(s) = H(s)X(s) + N(s), 0 s T, (5a)

where
1/h11(s) " 1" 1M(') I 00S

H(s) )(5b)
h (s) . hp (S)p1  pm

(nls)

n (s)



and

Z(S) 5 (d)

It is assumed that F(X;ci,) and H(s) are smooth functions, e.g., ana-

lytic. Finally, it is assumed that t1oe initial condition on X(s) at

time zero, X(O), and the values for a have a joint gaussian distribu-

tion for which the distribution mean and covariance are known:

E (X(O) =

[( ) - }j = positive definite, (6)

and that the noise process N(s) has

EN(s) = 0 (7)

and covariance function

ErN(C)N (s)1l R(r,s) positive definite (8)

with ni independent of n, i J j; thus R(C,s) is a diagonal matrix

r "s)

E[N(r)N'*(s)1 - R(,s) 0 • ( • (9)

(0 r(,'8)j)

The problem is then to construct a best estimate of ( and X(t), 0 t,

given fZ(a), 0 s S T1.

_____ __ __ __ 1
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HISTORY OF THE PROBLEM

This problem intersects related research areas which have been under

investigation for several decades: optimum filtering, control theory,

and prediction and estimation. An early form was the Wiener filtering

problem, now largely solved for linear F(.) and additive gaussian noise.

In the linLr case the optimality criteria of minimum RMS error, as well

as of maximum likelihood, were successfully pursued. It is well known

that in all cases (linear or not) the minimum MS estimator is given by

the conditional expectation of X(O), given Z(s), 0 ! s T. In the lin-

ear case, it is also well known that the conditional expectation and the

maximum-likelihood estimate (given Z(s), s s T) coincide.

Only in the simplest linear cases is it possible to derive R simple

closed expression for the conditional expectation. Rather, it is often

necessary 'o derive the differential equation which the estimator satis-

fie3 as a function uf t and T, and then to solve this differential equa-

tion as T increases. This is done for the linear case in Ref. I by

Kalman and Bucy.

In the nonlinear case, it is natural to try to extend the results

for the conditional expectation, since it satisfies the intuitively

appealing minimum RMS criterion. The increased complexity of the non-

linear case forces use of the differential-equation approach, via which

the estimator is calculated numerically as T increases. However, the

maximum-likelihood estimator no longer coincides i general with the

conditional expectntion. Since it has certain computational advantagt:s

ovet the corditional expectation, the max mim-likelihood er"imator hat

also been explored via the differential-equation approach. Both
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approaches (conditional expectat!--- and maximum-likeiiood estimator)

involve the conditional-probability function of X(t), given Z(s),

0 t s 5 T. It, too, can be approached via the differential equation,

which it must satisfy as a function of t and T. This is related to the

differential equation which the unconditional-probability function of

X(t) must satisfy. See Ref. 2 for a discussion of these so-called

diffusion equations.

An early attempt to derive such differential equations for the

conditional-probability function is 6iven in Ref. 3 by Stratonovich.

The continuous-time results were incorrect but have been subsequently

derived correctly, as noted below. An interesting and useful early

effort is described in Ref. 4, by W. M. Wonham; it addresses the dis-

crete case primarily and suggests a heiiristic extension to continuous

observations.

A natural way to extend the earlier linear results is to general-

ize the filters from linear weighting coefficients of the observatici

to more komplicated functional ..f the observati-n. In Ref. 5,

Balakrishnan develops the theory of functionals upon the space of ran-

dom observations, shows that functionals useful for out problem can be

approximated by certain kinds of polynomials, and then shows how the

method of steepest descent can be used to construct a polynomial

approximation to a minimum RNS estimator.

In Refe. 6 and 7 , Kushner derives correct diffe-ential equations

which must be satisfied as functions of t by the conditional-probability

function. Kushner there suggests approximating the optimal filter,

which is infinite dimensional in the Pense of requiring specification



of all moments of tne conditional-probability function, by a finite

filter--i.e., by ig-ring all but a fin'te number of moments. Bucy in

Ref. 8 develops these differential-equation results of Kushner's also.

Another natural way to extend linear iterative results to non-

linear problems is to try to extend the weighting techniques straight-

forwardly to approximate optimum nonlinear filters. This is done 17

Ref. 9 by Mowery for the discrete-ohservation case; he displays some

interesting error calculations for the approximate estimators developed.

Another aroroach is that of invariant imbedding; in Ref. 10, E:llman

et al. derive a numerical (computer) technique for finding X(t) which

minimizes the usual quadratic norm over (0,T) of the difference between

X(s), 0 %. s -5 T and the observation, Several examples are calculated

out to show convergence performance of the estimation.

In Ref. 11, Friedland and Bernstein derive differential equations

for a first-order approximation to the maxinmum-likelihood estimator fcr

the discrete sawnplL case and then derive an analogous firs -order

approximation for the continuous-time case. In Ref. 12, Bass et al.

derive an approximation for the conditional expectation. Specificallv,

by neglecting higher-order terms in the noise and in error differences,

differential equations governing the evolution with T of the condi-

tional expectation are derived; the a r-Pxia tion for the RNS ,-ror (rel-

ative to conditional expectation) matrix is similariv derived. These

two differential equations theoreticallv could be Iointl v solved Mu7,eri.-

ca!l I to c 'culate the approximated condti ional expLc ta~ton.

Vortous calculations have been made in order to ccnpare the effi-

ciency of the various possible estimators ir very special cases. One
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such calculation by Carney and Goldwyi. is desc~ribed in Ref. 13. There,

a (scalar) nonlinear estimation problem relative to a linear dynamnic

system is treated by estimators based on least -squares and amaxiinum-

likelihood criteria; in a linearized form of the problem, two versions

of the Kalman-Bucy estimator are used. Monte Carlo techniques are used

to generatp comparative error statistics. In all cases, and over wide

ranges of governing parameters, the maximum-likelihood estimate is

prefe'-red. Kushner p.3poses in an exploratory way in Ref. 14 possibly

useful. rinite filters, derived either by assuming specific forms for

the cold-iticnal-probability function or by similar assumptions on a

finite -'unber of the conditional moments. Severr-i specia'. results are

then calculated.

In Ref. 15 Kushner derives tile exact uifferential equation which

tile conditional mode at time I must satisfy. Howe~ver, solution of

this equation is not possible, since it involves higher derivatives o!.

all orders of the contiitiorsl proi-abilit distribution. Recourse wouid

tlbere fore have to be made ,o approximations. HoweVe-, the r-suIlts of

Carney azid GolIdwyn (Ref. 13) sigg ,st that the maxi-mun- like', ihood esti-

mAte for the initial condition is preferred to Thr various. approxi-.A-

t ions tried theit andt the rc. )rt lhok an exac ' i ~ 4

mate of the initiAl cono.i~ion would he prefe rable '.o APpr0XJtatln tO

either the conditional expectation or the axE lkliodestinster.

The numt-rical coiparisonii made in Ref- 13 and elsewlhere arv for

the scalar cace, in order to render the rtquired work lone. acceptable.

This Memorandlim is addressed to the vec-tor s ituat ion, to exa;minle the

feasibility of risorically solving th" vector differential equations



satisfied by the rnaxi m-m-likelihood estimator. The calculations

-equired are sufficiently large that it is not possible to gen'-'te

error statistics allowing coniparison with other techniques. Rather,

attention is focused upon a specific ob-et-vation saffrie, and the

questions of computational feasibility, convergence, and solution

usefulness are examined.



II. NUMERICAL TECHNIQUE

In general, the components of X(O) cai be expanded to include a,

nC those of F(X;-) to include -(t) -Y(O) - (i.e., - 0); and

.herefore can be estimated as part general ized X(O) This is

as-sufnid done in the followirg, ir whith ., ave set, F(X; v) =  F(X).

CONDITIONAL EXPECTATION

As discussed in Section I, a desirable criterion for a ",est'

estimate of X(t), 0 in terms of 'Z(s), 0 s < T!, is that func-

tion X(t) wiich is unbiased and minimizes

E X(t) - X(t) YXt) - Xkt) . l

It is well known that the conditional expectation of X(t, given

Z(sY,0-. s T, minimizes (3):

Xit) - K Xtt)Zs), 0 . s

Ffx'"X given Z(s , 0 -s ( Dl

In the vec'e r-lincsr iituatioo, X(t) as defined by (1l) can be caicu-

laced (see Ret. lt, pp. 3-cO - 3-b2; also Ref 1). Hkwever, r th,. vec-

tor nonlineAr situ.Ation :'der consideral ic-n here, such - nt the c e

MAXI.MN- LIKELIHOOD ESTIMATE

An cstir.trte alternate to that which minimires 1,10) Is the ,o-

. .xd maximum-likellhood estimate (? :) of X(t): the vs uie X(t)

which, giver- Z(s), 0 ", -, T, has the mAximuim, conditional probabilitv

cf occurrence p(X(t) Z(., 0 . T). This 7Av be developed as ,h.own
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n Appendix A (where necessary and sufficient corditions are also

given) and leads to the following results.

Defining

X(s;C) = X(s), given that X(O) = C:,

and

X(o) = X

then

p(C Z(s) , 0 (VLa)r C(C)dC
Jc

where

T

G(C) exp - (C -( ) + 7 ' (s)C (s)ds
k=l J k

T T

(s)g (s;C)ds + 71 FH(S)X(s;C)g (sCds , (12b)
k=l 0 k=l /0

and whe.- ' k(s) and gk (s;,) satisfy

T T

Jg k (s;C)r 1(s;u)ds Hk(T)X(uC) (12c)

Necessary and sufficient conditions that these results hold are

developed in Appendix A and are

1. r k(su) positive definite, k = 1, pI

[mk(C)l 
2

2. k 1 k -p,



k 2

3. k=

k k

wh e re z k and m.k(C) are defined by

0 k

k k

and , arc- the orthonormal eigernvectors an!! related igen-

k k

k k~k

Eqliation (12) simplifies greatly when the noise N(s) is such' as to

permit its development as in Appendix A and the r k(s,u) can be treated

as delta functions:

Thc~n (1)bcms r(s 'u) 6( u) , k I 1., p.

p(CIZ(,) , 0 < s <T) j(2 1afJ(C)dC
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wher e

J(C) = exp 2 - ) (C -

T

+ rZ(s) H(s)X(e'Ck1*R -FZ s) H(s)X(s;C)lds}jI (13b)

S0 P/)

Equation (12) can now be used to write a general expression

for the MLE. However, in order to reduce the computing complex-

ities, the MLE will be derived and applied for Eq. (13), the sne-

cialization of (12) to the case of white noise. This is an important

case ia its own right and can be generalized straightforwardly.

Since the denominator of (13), for given Z(s), 0 s T, is

a constant, the MLE is that C which maximizes the numerator, which

is clearly that C which minimizes

i(C,T) = (C - I) A'(C -

+ j z(s) - H(s)X(s;C)]*R- Iz(s) - H(s)X(s;C)lds. (14)

0

Direct minimization of (14) for fixed T is in general impos-

sible because the available numerical techniques require an Initial-

estimate C close enough to the sought X(T) tu guarantee convergence.

For arbitrary T this is not available. Rather, an ir,raLive numerical

X(T) may or may not equal X0, the true initial condition.
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procedure which builds upon preceding estimates for increasing values

of T must be devised. This can be done by develcping th _ differpntial

equation which the best estimate must satisfy as a funaction of time T,

the -ipper limit of the interval oi observatin. A.-i indicated below,

the MLE of Y~t), 0 < t, follows naturally from the MLE of X(0), &o

the lattei will be Pstimated.I Let us assume that for each T over a range of T beginning at

T = 0) there does exist a unique value of the vector C, X(T.), which

minimizes (14). Then X(T) must be the solution, for each T, of

T

V Cf(C ,T) =2A 1 (C 2 - 2 X s;C)H (sR 'rZ(s)
c ~f~x

That is, X(T) must satlIy (5

X(T + 17X (;X) (sR F~s) H(s)X(s;X)Ids . (16)

But f iT) stisies(1b) over the entire assumed T range, then, it

dX X dT d
dT 'TdT + C''dT (7

It s uefu towrite (17) as shown, because it explicitly iden-

tifis te vriaionin X(T) due to variation in T and that due to

varatin i i.However, because of the white-noise comuponent in Z(s),
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(17) can )nly be viewed as 5 symbol ir representation of a corresponding

differential expression:

a Tc* .• * -l
dX= 7 X (T,X)H (T)R 1H(T)7X(T;Xo X(T;X)7dT

. /7CX (TX)II (T)R dL(T) + 7"cX(T)dX

where

L(s) =

2(S))

and the 2 (s) are appropriate independe-'t scalar Wiener processes.(2,4)

In the following the convenient sym,,olism of (17) will be used. The

results are correct as long as onl) differential expressions are used

in the calculations; this is the case, Of course, a true differential

equation analogous to (17) does apply it the colored-noise case. How-

ever, computations then are more difficult because of the need to cal-

culate g ks;C) of Eq. (12) as T and C change,.

Equation (17) is entuivalevit to

X (T)X , 1R(T

'I ( T ,T c.c (T;X)H*(T)R ' T (T)X(T ,X)!. (18)

From (16),

* *

CX(T) cc X (s;X)1l (s)R Z(s) h(sX(s;X) 'ds

T

-C X  (s;X) (J,-,)R 1 (s)' X( S;X)ds
.1(0
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or

T

,7-(T) + X (s;X)H (s)R- H(s)7cX(s;X)ds

T

- f CCX (s;X)H(s)R 1 Z(s) - H(s)X(s;Xl'd .

0

But from (15),

T

ccf(X,T) = 2 ' -1 + 2 /7cX(s;X)HI(s)R 'l(s) cX(s;X)ds

0

- 2 J .X (s;X)H (s)R- -Z(s) H(s)X(s;X)'ds, (19)

0

and tlh-u s

1 7C X(T) 1 CCf(X,T),

so that (18) becomes

f(X ' T) d X (T;X) (T)R- WZ(T) - H(T)X(T;X) (20)
cc dT C

Expression (20) is the iund&..ental differential equation of

interest; and if 7c f(X,T) is nonsingu!ar, it can be written as

dT cc-. 2: c t - -1 * * -
dT ,T. -c (;) ( ZT |(T)X(T;X)1,. (21)

It was assumed above that there did exist a unique :,iution to (15)

'7hich minimized (14) over some T interval beginning at T = 0. A nec-

essr'r and] sufficient condition for this is that '.'C/.f(C,T) be positit
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definite at C = X (for constant T), which requires that 7 ccf(C,T) be

nonsingular in that inte: al. Therefore, under this assumption, (20)

dR
can be solved for in the form of (21).

Further, at T = 0, (16) and (19) imply

X(O) = and 7 ccf(X , 0) 2A-  (22)

Thus at T =0 we are guaranteed the nonsingularity of 7 cf(X,T); the

legitimacy of the form (21); and the initial conditions with which to

start a numerical s lution:

X(0)

di
dT = A H (0)R lrZ(0) H(0h)L, (23)

T-=0

since ?CX( 0 ;X) = I.

Furthermore, (22) implies that iCCc(X,T) is nonsinuglar in some

finite T neighborhood to the righ!t of T 0; since

T

rI17X (s;X)H*(s)R IH(s) X(s;X)ds
=0

T

- f ccX (,;x)h()R 'z(s) - H(s)X(s;X;)ds (24)

0

is a continuous function of T, it follows from (19) that ?ccf(XT)

must be norsn&ular over some T neighborhood of I - 0. Finally,

'7 (X O) V 2'I so that I bing positive definite makes VC,T)
cc

convex at (C,T) - ( ,C). Again, the continuity in T of (24) guaran-

tees that fcct(XT) will te convex in some T neighborhood of T - 0.
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The existence of a minimiring solution to 7f(C ,T) =0has been
C

shown in Ref. 17 to exist as per the followi::

k if

X (s)F(X(sls)ds K(T)(I + IIXH12 >

0

for each T, where X(s) = F(X(s),s) and fl)XH is the norm of X(s) over

(O,T), then for each T there exists a minimizing solution X(T), and at

each such T the matrix 7  f(X,T) is positive definite. This condition_, cc

is widely met. Summarizing the foregoing, we have:

THEOREM. Given A and R positive definite and that for all T

of interest

T

J (s)F(X(s),s)ds S K(T)(i + XII2),

then there exists a solution X(T) L,

.(X ,T) 2 (X - iL)

T

2 j YcX (s;X)H (s)R Z(s) H(r)X(s;X)'ds 0 (25)

which minimize#

f(C,T) (C - .) {(C -)

T

_ $.- i;(C)7 P;)) H(s)X(s;C)'ds. (26)

~ ~ .--.-- - - . ,-. ... - '-a
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Further, ?clf(X,T) is positiv, definite, and X(T) s,"isfies the differ-

ential equation

d- c ') 7X (T, )H (T)R'rZ(T) - H(T)X(T;i) (27)

with initial conditions at T 0:

XkO) (28a)

dXI * -,
TT H (o)R Z(0) - H(O),i§ (28b)

The usefulness of these results in calculating the MLE for X(O)

wiil depend upon

1. Me ease with which a nueri, cal solution of (27) can he im-

plemenced,

2. The integration interval which must be used in order ,to

guarantee continuation in the neighlborhood of he desirod

Iolit ion,

The n-ture of the solution to whicil X L() conver41s with

inlcrcds "-, I",

M e rate af which convergenc of ,XCr) *cfIrs,

Thes," dept-nd, naltuailIv upon R Ir,d in . riti 'o '.

Since h., skll!.t i.n ol

dX
F(X.

c'r"espoDm ' ivt c a v }ig' X ' )  1-4 t it e n, thc" ont i ;'-> ,d i '

extend a M-E for X(O} to . MLE for X'. t 0 .. For in that ase
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it is natiral to take as the MLE of X(t) given X(O)

X(t;T) X(t;-X J;-T') (29)

where to show the dependence upon both t and T we have written X(t;T)

MLE of X(t).

it thetrefore suffices to estimate X(O) and then nucmeric I v inte-

grate

dX(t)= F(X) (30)
dt

fromL this init ial condition to find the MLE of X(t). This is th.

approach assumed in the applicat ion. However, it is of ii.te'rest to

deve lop the differential equation wtiich X(t T) satisfies.

By kA9)

Xt 1) X(i t';T)

whet X(O;T) KLE of XkO) , given 7As), 0 s T.

Th e,

(IT L7 dT

T
IF(X I " FX), t T
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and (27) then imply

I.-

R-1 Z(1) -H(T)X(T;-0;-7)l

fort r.

= and

F X(T;X O;Tl)l - 2- )((T;X 0-1")

cc (X';T'T)" cX (T;;X0;Tl)

H (T)R F (T) H(T)X(T;;XOT)

for t T. (31)

Equation (31) may he rewritten as

17C f(XC;T T I<7X TT)H (PR

2(T) - H(T)X(T;T)'

for t -rT

dX(tjT) and
S~T

F-X(T T)- 27 c X(T:.T)7 ccf (X7;T' jT) c.( ) (PR-

Z()- H(T)X(T.T)

hit T.

In the abovv, X( tj) has h1ern timed tc indf cjte- d3pendenr- 'r'on t and T;

note that X(T' XO 0,T) , frcq7 e'Ar1 er n~ectr'Isc j ) i 1 i fo
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III. ERRORSTATISTICS

A lower bound for ihe c nditional -error stitistics of the MLE de-

veloped La Section I! will he derived--specifically, the unbiased Cramer-

Rao bound. It has not been possible to deri\*e an exact error est imate

or an upper bound which is us-ful When T is large, the estimare cia

he ex'ected to heco'-e .f r . md more independent of he a priori tratrix

The hound developed here does not involve ad could onI v appl 5 for

large T. As such, it is a useful hoond with which to compare conver-

ence -,f the estimator for large r.

Defining the bias of the MLE X(r of x( as

.(X ,T) = F(i(T) - X c o (33)

thevn a dirt ct gener a izatio n of the. ralt. of Ref. h (pp. 3 -

to t e C01t n UP IOS SaMp V0 t i11 C se givt's

(X T ' Trace E -( - X ( T, - L "

STiact 'I "- T a'(\o,T! ' 4 T IsX. ,T'! It
l
.*, 3

,;trev t h v i r-a t i o' - x

0 C s C 0 0

iis is 'he CraLmerRao .hbountd and t 1t 34" hold . or tile CT: Ou

sample time -a e to l iows t rc m a 1 1 .tIng dev i opme, It ana ogous r , t h

in Appendix A. Direct 1v frkc , App..i.di.. A !-1 s the' exprei- i .i,



T
P(ZS), 0 S TiX) K ex)-HP)~.X\

0 ~ s - H7(s ) (35)s; ,,\

where K is an appropriate nornalizig c( start.

We then have

4G E 7{ [X*(S'X )H (,)R- H(s)X(Y,) + N(s) -Hts)Xs.X~

H( 1)Y k1; + N(u) HR 1~u)XuXxdsdu
0

3

T T

"Cx(-;xO~ * \)-l R ( R 1 H(U)'7X(U O1(s) R~ iSs -; 0 d s d ot,
O0

(36)

c. r 17X* s ( ;X)HH(sR14(sVX( (37)

Substituting (37) into (34) gives

C (XG0 IT) >' 4 Trace 4~ - ~ ,)Y T

T1-

x (s;X )H*(',R i!(s)7 X(s;X )dsJ(8
LO J

A Singularity does not occur in (38) at T =0, since T =0 the

-0efficient ri + v '1(XOT)1 is zero. For, from (16) thle MLE X(T)

';;atisfivc (suppressing t'I T in xFT1 in the rIght-hand side)



T

= F X (s:.X)} (s)R Z(s) - 11(s)X(s;X)ds. 39)

0

Subtracting X0 from (39) and taking the expectation gives

rT
.XT )  -X + E< cX(s;XlH(s)R'z(s) lH(s)X(s:X)1dsX ,

(40)

from which

I' T

rT -

I£. COX* *-1 i,

) X (s;X)H (s)Rs;)) H(S) 7 cX )d X s (41)
E c c s;.X)dsiX,

=0

so that

I + Vc ,!(XO T) = c.x(s;i)H(s)R- z(s) H(s)X(s;x) ids IX

- f Tc X (s;x)H( s)R-I]-(s)vcx(s;X)dsXo} (42)

"0

which is zero for T = 0.

The expression (42) for I + VC x<XoJT has not been evaluated

exactly. Using gross eliminations, we heuristically show that

7 C UXoT) decreases monotonically as T increases. This amounts to

linearizing the error expressions, so that the resulting expressions
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are correct for the linear case but are onl y approximate in the non-

linear situation. Assuming that X(s;X) and 7cX(s;X) can be expanded

about X0 in power series, we have

X(s;X) - X(S;Xo) + 7cX(S;Xo)(X - X)

1 A *

2"-- (X - XO) 7ccx(s;xo)(X - XO) + (43)

and

CX(s;X)  7 cx(s;xo) + vccX(s ;x0 )(X - X0)

+ (, - X VcccX(s;XO (x - XO) + (44)

Substituting (43) and (44) into (39) and linearizing the error

expressions by dropping all terms in (X - XO) higher than the first

and in (X - Xo)n and N(s) where n > 1, there results

T

-X 0 = - (X0 -) - 7 J cX (s;Xo)H (s)R'H(s)cX(s;Xo)ds(X - X0)

T

+ Af cX (s;Xo)Ht s)R-1 N(s)ds.

0

Factoring out and solving for X - X. gives (45) below, which is exact

for the linear case: tbi, fact can be shown simply by substituting

Z(s;X 0) for the linear case into (39), subtracting X0 from both sides,

and solving for X - XO .
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T

x [A- + fVCX*(ui;x 0)H*(s)R H(sB C X(s;X)dj

r T

A X - LI) + f X(s;X )H (s)R 1Er()dsJ (5

0

orsfr ag

W(X OI 1 B - lT
OPT)XrT) = B (X,) (X -(4a

A-X0 (T a) +~ +7 f 7xs ) (S)R H (s)Rx EFNxo)Ids 4b

00

B(XQ.T) can be written- (0(4a

T

B(X) 7 A' + RHs(s;X ) s 1 H(Ls)VcX(s.X )ds 4b)

0

Eqution the' suaftorre andi thepreoedn ais tillanyb

inAcesn i t s o fit sqas an inc res is ufiintonlylg. t
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B (X 0 IT) - (Xo -0 0. (48 )
T-4n

For such X0 and for large T the inequality (39) becomes

0T

2 (X,T) > 4 Trace 7CX (s;Xo)H (s)R H(s) cX(s;X0)dsj (( X 0 C 0....

which is the unbiased Cramer-Rqo bound. The lower bound given in the

right side of (49) is probably too small, in view of the assumptions

employed in its heuristic devc'opmeot, and because (48) will not

always be satisfied. In fact, comparing (46b) and (37), it is evident

that (except for very large A- ) B (X,T) very smal implies that G

is also very small; i.e., the unbiased Cramer-Rao bound is then also

essentially zer,. When (48) is not satisfied it is possible to

approximate the biased Cramer-Rao bound using the gradient of U(XoT)

as found from (4oa). However, the sound given by (49 will be dis-

played later for the application being made. As mentioned earlier,

this result could only apply for large T, when it is expected that the

estim; e becomes independent c A, which does not appear in (49). In

any case, the unbiased Cramer-Rao bound Is an interesting standard

with which to compare the estitiate.
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IV AN APPLTCATION: REENTRY PREDICTION

GENERAL

As an example application of the foregoing theoretical results,

they will be used to estimate the initial conditicns of a reentry

vehicle (RV) which has been detected and is being tracked. It is

assumed that a priori information is available relative to the space

point at which the RV will be detected and to its velocity at that point.

In the particular case at hand, the acquisition and tracking take

jplace during the last 5 seconds before impact, so that it is natural

to think of these a priori data as having bepn supplitd by a long-range

surveillance radar for purposes of acquisition and track initiation.

In such a situation, it is natural to ask how to use these a prior..

daca following acquisition, in order to make the best estimates and

predictions during the tracking phase.

Depending upon the circumstances, it may be necessary to estimate

certain RV parameters, either initially or continuously, in order to

predict its reentry path. In particular, the RV lift and drag coeffi-

clents are often poorly known constants or functions of time. These,

and other unknown parameters, could be estimated within the framework

of the preceding theory, simply by including them as extra components

of the vector X(t) and including components describing their varia-

tion with time in F(X). Similar remarks apply to certain variable

environmental factors, such as air denbity &t the referenc' althi'de,

which vary continuously. However, inclusion of these extra parameters

in the estimation example greatly increases the complexity and diffi-

culty of the computing task without adding very much to the usefulness
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of the example. Therefore, the estimation procedure will assume that

all RV and environmental parameters are known accurately.

Similar reductions in computing complexity can be made by restrict-

ing the RV motion to a well-known vertical plane containing the tracking

id~r. Estimatioy and prediction within just that plane is still a

sufficiently rich problem to display the technique. Also RV character-

istics are assumed to cause only drag accelerations; no lift or deflec-

tion forces operate (the latter Is ruled out by the pianar-nrtitn af-

sumption). Finally, for simplicity a flat earth will be? assumed, as

well as a force of gravity that is constant throughout the altitudes

concerned and directed along the radar vertical. In the case at hand

these latter are both acceptable assumptions because the ground range

and altitude variations are so slight. However, ever, if they were not

slight an estimation example which treated them as constant would be

as dsefA as if they were otherwise treated, as long as the equations

of motion actually used are correctly reflected in the trajectory esti-

mation procedure.

EqUAION OF MOTION

Civen these restrictions, the situation can be displayed in

spherical coordinates as in Fig. 1, where the vector meanings are

notd. In spherical coordinates the equation of motion in one plane

is(18)

V -r + .1 + r F] / F-D ' G7/m, '50)

where the dot represents the time derivative, the bar represents a

vector, and



z RV

Legend: V0
A1  i:Unit vectors

V: Velocity vector

D: Drag vector

G.- Gravity vector

Impact 0
poi nt Radar

Fig.] -- Space and vector relationships
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V RV veloc'ty

unTit rad'al -vector

i it angular vector in plane o~f mnotion

r radial distance Ilk RV

aingle between zenith (z-axis) a-nd radius vector to RV

F totaI-force vctor acting on RV

D =drag-force vector acting on

,ravity-force vector acting on IRV

mn RV mass

Force D may be written as

wh e re

C D RV drag coefficient

A - RV frontal (dra') area

=air densitv at altitude

? un,.t vector 41ong the RV i-ne of filighto

- V 1 1

vJ~T + r

t orce G, becausv of the s impli fvingi i-zsumpt on iibouc Its~ Oir,_

tion, nT-.v he witten as

g=gravitat ionA al ac e r at orn

T, unit vector along rcont
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Thus

F -K-~.CDACPV2) 08~ m o e] -F

+ (~CDACPV2)~+ mg sin6]61

and combining this with (50) gives

r- 2Jl+ [2r; + r01i61 = - [1 CAV CoIvm+ g co. '

- T%~ v 7*- g sin f] (5)1

Equating coefficients of 71 and l in (51),

62 1 CclIT i g cos 8, (52a)

2i4 + re _ _ _ CDcAplVlr- + g sin 6. (52b)

Substituting IVI = (i2 + r262)I/2 into (52) gives

r62 1i CDkCP(i2 + 2g2)1/2 (5a

r = " +" g cos , (53a)

1 .2 2.2 1/2 re2 r + r - - CDAcp(r 2+r ) + g sin e. (53b)m

If we now define

1 1
W/CDC mg/C ,A

where

W mg

is the weight of the RV, there results the final form for the
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equations of motion:

- r62 .- _- 1 8gpr( 2 + r262)1/2 - g co , (54a)

2 rgpri(r 2 + r2;2)1/2 + g sin e. (54b)

We will take as the basic vector to be estimated or predicted

x I(t) r(t)

x (t) ;(t)

X(t) x- 3(t) - e(t) . (55)

\ 4( t 8(t) )

From (55),

dx dx 3

- x2 (t) and dt3- x4 (t).

From (54),

dx 2 = 62 _ I2 262)1/2 _ g cosr rr~ +r

a XX2 - I Px (x2 + x2X21 - g cos x

and

dx" "  1 2;A .1g ;2 + 262)1/2 + g sin 0

dt r 1  2  gpl( +  x )  gsnx

2x x {I 2x~x4 2 2 21/2 + g sin x3}
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Thus we can write

2 1 2 2 21/2

1 4 - Bgpx2 (x2 + Xx 4 ) - g cos 3
d - F( ) - x2

dt 4
{ 2 2 2 1/2

1 2 gXx 4 (x 2 + x 4 ) + g sin x3

(56)

Here p varies with altitude and for this application will be

assumed to vary as

p - pO exp (- ax) = p0 exp (- a r cos 0). (57)

This uses Z as the effective altitude for estimating p but is accept-

able, given the small ground ranges met in the current application.

Equation (56) can then be rewritten as

x2

x x 4 - 8gPx 2 (x 2 + xx 14 ) exp (- ox1 cos x 3)

- g cos x

d - F(X) xx

dt 4 '

1 -2x+x'< 4 , ex>(-<<+ X221/o/2

+ g sinx 3}

(58)

Equations (55) and (58) describe the physics of the process.

Values for P, and the time interval of observation, have been selected

so as to result in highly nonlinear variations in position and velocity

coordinates. This is illustrated in Fig. 2, which gives these coordin..
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Fig.2-Reentry path used
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ates as a fun,2i on of time as well as the values used for , g, '0

and -,. Also shown is the axial RN accelerat on, to il lustrate thc-

Iiighly nonlinear nature of the RV forces and motion. These results

were computed using a Rand computer pro-.gram called ROCKET. (19)

RADAR OBSERVABLES

The radai is assumed able to measure di- ctly the RV coordinates

, ~r 3  - with. measurement being exact except for addi

ti,.e noise. Any multiplicative factors could have been inserted into

che measurement of these three coordinates with no added complexity.

This is eviiivalent to taking

/1 0 0 o l

H(s) 0 1 0 0j H,

\0 0 1 0/

sn that

0 0 0

Z(fs" H(s)X(s) + N(S) =10 1 0 0 x(s

x3(

O0 1 0

4(s)

n (S) X (S) n (s)

+n n2(S) x x2(s) + n2n(S)

00s x3(S) n 3 (S)x 
9)3
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COPUTATIONAL APPROACH

Mixed Diffe-rer.~ial-Equation/Newtonian Approach

The objective of a computational scheme is to ca!_i-late the

solution X(T) to (25) which minimizes (26.

T

f f(X ,T) =2,A (X LL) 2 1 ~2X (s;X)II RrZs
C C

- HX(s;X)ds 0,(25)

f(,T =(C -1 (C- +f -

0

- ID(s;C)Ids. (26)

Two applications are posr-Ible: real-ti~iie. on-line computations, and

nonreal-time, off-line computations. Both applications can be

approached via the preCeding theoretical developments. The approach

involves solving (27) for X(T) as the observation interval for Z(s),

(0,T) grows with titfie T; the solution is initiated by using the initial

condt:ions given by (28):

* a*

dT:2Vc f(X ,T)1IVC (T;X)H R [Z(T) - HX(T;X)1, (27)

=(O AH R FZ(O) - HL.(28)

T=O

Sincr- the sol~ition of (27) is to be done numnerically, it really

amounts to taking
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dXT)X(T + iT) = X(T) + d4 LT (59)dT

using (28) as the statlng condition; actually a suitable numer!,°l

integration technique is used to effect (59), specifically Runge-

Kutta. The question of suitable AT size imnediately arises. Depend-

ing upon the magnitude of the factors in (27), very small AT values

may be iequired to keep the resulting X(T + AT) from diverging from

the desired exact solution to (27). When this situation applies, com-

puting times can become so great as to be impossible, even for off-

1.4re applications.

$ir c ~ ,. &- iating the Initial condition X(O), X(T) need not

chai!g2 rapidly with T; for example, it certainly need not change as

per F(X). It is reasonable, therefore, to consider weighting ATj in

(59) so as to decrease its destabilizing effect for a given ai-e AT:

X(T + AT) = X(T) + Y 6 AT, (60)
dT

where Y is a constant, 0 Y 1.

Naturally, for finite AT and constant Y the value for X(T + AT)

resulting from (60) will differ from that value which truly minimizes

(26). However, if it is close enough to the correct value, then

steepest-descent or Newtonian techniques can be used to improve the

estimate for constant T. For example, if Newton's method is applied,

then a sequence of improving estimates for X(T) results from taking

n+l) Xn(T) - F7ccf(nXrT1,T). (61)

It is immediately clear that several exchanges can be made between

these two techniques, in order to gain either computational accuracy
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or efficiency, or both. Note that even for 0, the application of

(60) and (61) affords an approach as near as desired to the correct

X(T), provided the conuitions for Newtonian convergence are met,

These conditions are (see Ref. 20, p. 63)

If the left member of

7cf(CT )  =

m

satisfies

1. d , j = I . . .m

2. The matrix 7 cc f°XO,T) has a nonvanishing determinant D (with

absolute value JDJ) and, for the absolute vaue IAi,, Of its

cofac to s Ai

n

max 1 1 - ax ]- i0 j~ :,

i J=l

3f
3. The elements of cc f (X,T), slj = ' i C Sk are all bounded:

iijk ] " d3

in the region

.0 -1 - 2 b0m. ax 1X^ - dl d ,d,,

t . . . . . . . . .
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where = and

b0 is defined by and satisfies

2
b = d 2d Id 3 1/2,

then the system 7 cf(X,T) = has a solution which can be obtained by

Newton's method (61).

Joint application of (60) and (61) would then proceed as follows.

At T = 0, take X(O) = 4; compute dT fro (28) ond apply (60 to

estimate

X (ATI ) = L + 'AH R FZ(0) - h.jATI .

1'

Then apply (61) until Xn'ATI) satisfies certain conditions, sach as

all coordinates of Vcf(XnFATI1, ATI) being less than some constant, or

all coordinates of Fin(AT1  R-I (AT1 )I/IIX"-I(A1) II being less than

some constant. Taking th.s last estimate for X(AT[), then apply (60)
^0

to compute X (AT1 + AT2) and so forth until E AT, T, the upper limit
i

of the observation interval, We will refer to each application of

(61) as a Newtonian iteration. Application of either (60) or (61)

involves numerical calculation of the various factors o:ccurring there-

in, and as these equations suggest, involve essentially the same

amount of computing time. Assuming this to be case, it i, possible

to make a rough estimate of the altera'iuns in computing time possible

via (60) and (61), as follows.
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Computat ion Time

In general, the integration interval As used in the numerical

calculaticn of the factors of (60) and (61) need not equal AT; in

gener,'1 it will be preferable not to have As = AT, in order to permit

sufficient data density over (0,T) even though AT is fairly large.

For reasonably large T, the calculation tJi:e is dominated by the per

As integrations.

Let

"T step size at which update X(T) in time T

A s time interval used in numerical integration for

calculating the factors in (60) and (61)

u = AT/As

= computer execution time per As calculation, assunmed

the same in application of either (60) or (61)

= number of Newtonian iterations at time T i

Ti = average number of Newtonian iterations per time T i

T = total time of observation to date

i computer execution time at time T

T = total computer execution time for processing signal

over (0,T)

N = T/AT = number of updatings

At time Ti. the computer i:st process iumerical inte .rations

across -1 intervals in each calculation of the factors ot (61), plus

once again for the updating via (60). Thus we can write

= 6(1 1 + l)T 6( + I) iAT MrT + 1) AT
i As As i As'
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or

i8(7! + !) (62)

Then

N N N
= T = 6-i(Y + 1) .o(T + 1) ,,2f + '~j

se that from N =  and N + N there lows

" -+ '.L 1 63)
2 (AT 2

It is th vari:.tion f total computer execution time with that

forces the ius. of -ther large As values, as well as the use of rather

large AT,

E 2n wit,. only a four- oordiaate vector X(s) , the number of eq,ia-

tions which aust be integrated numerically to apply (60) and (61) gets

excessive unless th computer is of special design. Vic computers

available are far irom specially designed, naturally, and further,

a"ready-progran-wed numericil procedures have been used whenever pos

sible to reduce programning ffort. Lie result is tht the procedure

used here for computation is very inefficient, timewise, tak-.ag about

one second per ct~aplete is calculation integration)--i.e , 6 i 1 ec-

ond. The resulting effect upon T, given by (63), is pl tted in Fig. 3

Is s function of T fr A 10 4
. Since r suales linearly with

k iA+_+ Fig. 3 can eqsily he read for valuEs other than 0 4for

this fat-or. Except for lither small values of T, Fig. 3 sugge ts

X(T) caicuid: 'on limes two or three orders of magnitude greater than

tCie real-tite obstrvatlon being processed, Sine, it appears that such



factors can be recovered by specially designed computers, and Slnct' w-

are here principally concerned with the poten~tial capabilit-'es Of th(e

proposed technique, this is an acceptable limitation.

10 Y4 SAT 10L :TIl-

8 
.........

CH:2r. T
i 

T

0
0 12 3 45

T-time (beconds)

Fig..3--Computing-tirno variation

Integration Routines

It remains in this section (C'omputational Approach) to describeI

the specific equations which were numerically solved in the appiica-

tion of (60) and (61).
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Given an X(T), to apply (60) to the calculation of X(T + -T) re-

quires the calculation of the factors in (27', that is, c f(XT) -

7 cX(T;X), X(T;X), and the performance of manipulations i-dicated inC^

(60). First consider X(T;X). A basic given in the problem statement

is the differential equation

dXd- F(X). 
(64)

The Runge-Kutta integration routire in the Rand program library

has been directly utilized to compute X(T;X) via (64). Directly from

(04),

T T

X(T;) ds ds + j F X(sX,)ds + X, (65)

0

so th.it

T T

___ - ds + 1k
ax(T;X) :Jo ~ lc as + k - o'~ Frx(s;xy' X(s;X) d+ ,

Ck Ck k XsX k
0 0

(66a)

where

0//

c 0
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Equation (66a) may be rewr on as

T

7X(T;j) r7XS FrX(s;X), '~x(s;X)ds + 1, (7

0

where 1 is th , mXm identity matrix.

Equation (67) can then be written as

~7 CX(T;X)
'TX(TX )FX(TXi) 'c(x(68'

and the same Runge-Kutta integration can be used to calculate 7 X(T:X)
C

via (6P), once X(T;X) is known via (64), using as the initial condi-

t ions

7cXOX I , F'X(cXY) F(X). (69)

cc f(XT)
( ,T CCmybewt

17X(T;X)N I~ Z(T) - :iX'T;XY, (70&)

With 7cc f(k,O) -2. -z (7ub)

Tile vectors X(T;X) and 7CX(TPi) are availab>e from (64) and (68)-(69);

simi',arly, from (67),

7 CX(T;X) T jX F FX(s;2) :7"X(O). - d
____k JO X; ) c kd
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X X)
~c kC

+ 7 FXXssXX

+~~~ X( Fr;s;)

=~ ~~ ~ I) \S I SsX;X )s X

+ ' ,~X"S;X) ~ "ds,

T

+S C';XFXCX X(S:X')dS'

which can be re'writte'n as,

cc X(T;X

4T X(T (T)X X) XTXCX(TC(

(XX(T; (T;\ 'ccx( )kI A

wh e re

Again, the' sarr' nv -u~t techn iques' -an tie ro o l ve

given outp,,ts fro'm similar RneKta ppi1 i~at ions t, (- hnd!('i



II
for X(T;X) and 7 CX(T;X). All thie inputs for solving (70) are then

Available, which can also b? solved via the same Runge-Kucca techniqup.

V7 f(XT) is then inver'ted, and d formed via the multiplications

shown in (27). We are, in effect, solving simultaneously via Runge-

Kutta techniques the equations (64), (68), (70), and (71). This

involves m + m2 + + m2 = m + 2m2 + m3 simultaneous equations; for

m = 4 this tcal is 100. Given this solution for a given T, the same

Runge-Kutta technique then used to update X(T) to X(T + AT) as per

(60),

In addition to the preceding, it is necessary to calculate

V f(i,T) in order to apply (61). From (25),

T7 f(XXT) (T;X)I RIZ(T) - HX(T;x)1, (72)

which can be solved immediately with the preceding set, leading to a

total of 104 simultaneous equations. This explains the large computer

execution times per 6s.

The actual imple-ntation of the preceding is sketched in the

program flow diagram in Appendix B.

COMPUTATIONAL RESULTS

The objectives of the calculations performed are several. The

first is simply to show that the maximum-likelihood estimator derived

above can be numerically calculated. Another aim is to show the rate

of its convergence and the usefulness of the limit to which the MLE

tends. A third goal is to illustrate som of the computational

choices which must be made (e.g., magnitudes of AT and As) and their
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eftects. Finally, it is desired to display relative to the computed

solutions some numerically derived values for the Cramer-Rao bound.

Computations

The nonlinear and complicated nature of F(X) makes it necessary

to calculate X(s;X 0 ) for any given X0 num, cally. Although this can

be done quite easily with the ROCKET ( 19) program, it is relatively

expensive in computer time. In part for this reason, the computations

to be described were made for only one X0 , that corresponding to

Fig. 2:

77929 ft

- 21836 ft/sec

X0 .83200 rad

- .011849 rad/sec

Variations in X0 relative to i, the expected value of X0 , were accom-

04
plished by changing LL. Two such variations were examined, one corres-

ponding roughly to X0 - coordinates of two, twenty, twenty, and two

times their standard deviations (about their i values, respectively);

and another corresponding to X - u coordinates of three times the

above differences. The smaller excursion was used as the principal

case and corresronds to an excursion which should not usually be

exceeded; the relative magnitudes were chosen to test for convergence

by coordinate. The more extreme excursion was used simply to test

initiation and convergence for an extreme deviation from the initial

value of the estimator at T - 0: .
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The trajectory corresponding to the above X0 was calculated at

10 3-second steps over a 5-second interval preceding (and near) RV

impact. This served as the basic trajectory. For each noise matrix R

used, a random sequence of noise inputs was generated at 10_3 second

steps, and a sample observation waveform Z(s), C ! s ! 5 seconds, cal-

culated from

Z(s) = HX(s;X0 ) + N(s).

Given the random (noise) component in Z(s), it is impossible to store

Z(s) over all points of a time continuum in closed form; but Ls - 10-3

second was an adequate density for our purposes.

Only two noise matrices (R) were used, one representing a nominal

radar performance, the other an extremely accurate performance to test

the impact of R upon estimator initiation and convergence. The former

nominal) R was used as the principal case. Those used were, the

first being the principal case.

10 4ft2  C)
R 10 2(ft/sec)2

(0 3X10_ rad2

10 2 ft 2 0

R a llWz/sec)
2

0 3.04110 6 ad 2

It is useful to express the last component ot R in square feet, to make

- -- ---- ---- ----
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it visibly comparable to the first two components. It becomes at X0

( 
4 

4
ft 

2

Q
2G 2

10 (ft/sec)

l .82Xi10 6 ft
2 /

10 2 ft 2  Q
R a .(ft/sec)2

0 1.85X1O 4ft
2

With R in this form it is more clear that the angular accuracy ascribed

to the radar is not out of line with the range accuracy.

Given the preceding selections, there remains only A unspecified.

Its value principally has two effects. First, its magnitude c6upled

with that of R influences (in some complex way) the feasibility of

numerically inverting cc f(X,T) --and therefore that the basic differ-

ential equation (27) will be applicable and soluble for all T of inter-

est. This interactiout between A and R was explored in a very limited

way by varying R as per above. Second, the magnitudes of A and R help

determine what values of AT (the step size used in the numerical up-

dating in time of the estimator) can be used. That this is the case

can be seen by examining the expression (28) for at T = 0:

- * R'I rZ(o) - L (28')dT
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The vector gives the direction in which X(T) should be changed; how-

ever, use of too large a value for AT in (60),

dT(T+ AT) = i(T) + V - AT, (60)

w4_l cause divergence from the required solution. It is clear from

(28') that large A tends to emphasize the influence of the radar mea-

surements on -and large R to emphasize the a priori statistics, as
dT

should be the case. Altering AT does not alter the direction of change

dX
given by T; it only alters the magnitude of the change in that direc-

tion.

As explained earlier, the computing routine used here employs as

many existing programs as possible and is therefore expensive in cLo-

puter time; therefore, relatively large AT values are preferred--In the

range 10- 3 to 10"I seconds. These factors constrained the computa-

tions to the use of just one A and the use of various values of AT

in order to examine its influence upon initiation and convergence.

The A used was

( 92
10O?(ft/sec) 

2

3Xl0 4rad
2

0 10- (raatsec)2

It iv of irnterest to express all coordinates of A in feet and display

A' ', in order to indicate the comparability of all the error compo-

,,-nts and to make clearer the a priori error magnitudes involved:
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10 El0
A1/2 l0ft/sec

1.34X1O ft

78 ft/sec

There remains to be assumed the step size, As, to be used inside

the integration routines for fixed T--e.g., in the calculation of

X(T;X 0). In these calculations, this has been taken equal to AT and

thus has fallen in the range Pf 10 - 3 to 10 "I seconds and was varied with

AT to examine the effect upon estimator performance. The principal

effect that As size has is to introduce a g--nular structure into the

surface f(C,T), the minimum of which is being estimated. Clearly, the

accuracy of estimation possible will be limited by this granularity

and therefore by Is.

Computational results will be shown in terms of tine absolute

er-or between individual components of the estimator and the actual

initial condition XO; also shown will be the same errors transformed

to the equivalent absolute errors in distance and in velocity. For

X 10  r 0

0 x3 0  0

X0 x4 \j

30 0

x\

3 0

x4 0
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we define the errors of interest as

e~ =1r - 01

{ , = lo -o

=e -- % - 0
r l 0  o

2 C 2 21/2
D r + r0

2 2 2 1/2
CV =F, + roel

where eD and eV are the errors in iistance and velocity, respectively.

Pure DLffere&.ial-Eauation Solution

In Fig-, 4 and 5 are shown these errors as a function of time T

-1 2 -3for several fixed values of As AT (10 , t0 , and 10 seconds).

In these estimates Y - I and no Newtonian improvements to the pure

differential 2quation solution were employed. The different ranges

of T over which the errors are shown (for different As) result be-

cause of the greater computing time required f:- the smaller As

values. The intent is to show enough T range collectively to indi-

cate the performance of the estimator.

Figure 4a indicates that for As - 10 - 1 seconds f0 is either di-

verging or tending to a limit some distance from rO. Three things

are probably occurring. First, the granularity introduced Lnto the

surface f(R,T) by a finite sampling interval As - 10 - I seconds is

probably such that great accuracy is not possible. This is borne

out later by the diffetentia, -equation/Newtonian calculation, which
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1500 4

1000 44

I FT ~. [ i

.. ... ...

0
0 1. .030O.

T - time (seconds)

Fig.4b-Rang-ae error fr pure differential-equation
solution, for various A and varying T



0
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T - ti r (seconds)

Fig.4c -Angle error for pure differentialI-equation
solution, for various As and varying T

.003 4..'

0 

1.0 1. 04

T - time (sec.orJs)

Fig .4d-Angle-rote error for pure dlfferentlclkequation
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400 J~r7- V

20
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Fig .Sb- \ e'ccity error for p.jre differenticl-equatlonl
s ,tion , for various Az cj-cj a.orInrq T
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apparently has an Cr asymptote at about 1500 feet which should depend

mainly u.pon this granularity. Second, AT 10- I seco!nds is probably

just too large, with resulting divergence from the desired solution.

Third., as will be shown below, this estimator will sacrifice perfor-

mance in one coordinate in order to improve overall performance, and

this may be occurring. Similar remarks apply to Fig. 4 for As 10 -

seconds, which displays r,. In Fig. 4 c, it appears that 90 is cor.'erg-

ing usefully. Figure 4d, however, indicaces that for As 1 !0 seconds

e is diverging rapidly. In Fig. 5 are shown the errors CD and cV. It

appears that cD is converging to zero; since cD is a combination of
A

and C it would appear that the behavior of r0 depicted ior
r 0

As i0"I seconds in Fig. 4a was in part an attempt by the estia.tor

to producE a better overall miss-distance result. Similar remarks

apply to eV for As = 0 "1 seconds, presented in Fig. 5b. However, it

is clear from Fig. 5b that AT = As = 10- seconds is too large for

convergence.

Figures 4 and 5 indicate that As values of 10-- and 10-3 seconds

provide convergence. The slight divergence of er for As - 10"2 sec-

o;dq (Fig. 4a) is shown in Fig. 5 to be the result of an overall

improvement in c D and CVP as discussed above. However, two results

shown in Figs. 4 and 5 deserve special discussion.

First, although rr, o0, and €0 all appear to converge rapidly

0 0 0
to limits near zero Cr0 does not (Fig. 4b); similarly for the rapid

convergence of gD towarra 'ero, but not rV. Near T - 0 this is due in

part to the relative cmphasis placed upon the radar measurements by the

eletnen- ,- f A aud R and can b..st be visualized by examining at

dTl
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T 0 given by (28). Given the diigonal nature of A, R and H,

takes the form, substituting in the values of fa 1 and ftij from A

and (nominal) R,

lOorz (0)

T X 2(0) - U2

t3 (0) - '.3 /

This value of 0 in the fourth coordinate will change, of course, as T

increases. It is apparent from this expression that the r0 estimate

will emphasize the radar measurements much more than will the estimate

of i in the vicinity of T = 0. The relative performance of the two

estimates shown in Figs. 4a and 4b near T - 0 is therefore to be

expected, and similarly for Figs. 4c and 4d, inasmuch as the radar

errors are rather small. The degree of radar-measurement emphasis

away from T = 0 will then depend upon the growth of the product of

EV ccf(X,T)i'l and VcX*(T;X) (see (27)). It would appear that such

growth is not as favorable to convergence of f0 as for the other esti-

mates. Naturally, the poor convergence of eV in Fig. 5b results

because c, contains et. Is the poor converbence shown by c. and V

worth the effort? The answer lies in two quarters. First, 4f the

initial error (between L2 and to) had been Inrger, then convergence to

the shown level would have been more Impressive; this is discussed

iiter relative to such large excursions (see Fig. 8). The second

aspect deals with the other result of Figs. 4 and 5 deserving greater

discussion: estimation of A0 shown in Fi. 4d.

04
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In the present application the variable P cannot be measured

directly by the radai and so nimst be estimated entirely in terms of

the other observables. Therefore, P0 can be considered an unknown

parameter (which has an a priori statistical distribution). It is

seen that 0 converges for appropriate .As values; eV' which includes

s, also be.,l -s appropriately with increasing T. This is discussed

in greater detail below, under "he differential-equation/Newtonian

solution.

Differential-Equation/Newtonian Solution

If As were infinitesimal, then use of the Newtonian technique

to improve the pure differential-equation solution for finite AT

should reqult in an exact soiution corresponding to infinitesimal

AT (given convergence of the Newtonian iterations and within the

limits of computatinnal accuracy). Since As is finite in these cal-

culations, only smaller improvement relative to this theoretical

maximum can be expected, In the results that follow, once converg-

ence for the differential-equation/Newtonian estimator was indicated,

values for small As (10-3 seconds) and large T were calculated by

setting - 0 and using just the Newtonian iterations. That is,

for such computer-expensive cases Y = 0 was used in (60). Alterna-

tively, large AT was used to get an approximate starting solution

for large T, at which T smaller As was then used in the Newtonian

iterations to estimate the solution for AT - As.

Results for the joint routine are displayed in Figs. 6 and 7.

It is seen that again lor As = 10- seconds (as discussed earlier)

er approaches a limit considerably greater than zero. All the other
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.3'.

0 1.0 2LI30Z.

T- time- (seconds)

Fig .6c -Angle error for differential -equation/Newtonian solution,
and Cromer-Rao te.rm, for various As and varying T

.003 -F~ T"
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0u.002 T 1 ,j:I i i

.001

0 1.0 2.0 3.0 4.0
T- time (seconds)

Fig .6d -Angle-rate error for differentiul -equation/Newtonian solution,
and Crarner-Rao term, for various As and varying T
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300

0 . 2.G 3.0 4.0
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Fig. 7a -M iss-di stanc e error for differential -equation/Newtonian solution,
and Cramner-Rao terms, for various As and varying T
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Fig.lb -Veloc it,,' rrroi for differential -equation/Nt "tonian~ solution,
and Cromet-Rao termis, ior various As and varying T
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components converge even at As = 10- 1 seconds, and CD and eV converge

1 -2 -3for all values of ts employed (10 , 10 , and 10 seconds). The

apparent slight divergence of c and e. after their initial convergence
r r

again results from an overall improvement in the eptimation, as is

borne out by reference to eD and eV in Fig. 7. Again, o, and rV do not

converge toward zero as rapidly as the other errors.

Also shown in Figs. 6 and 7 are the corresponding unbiased Crame

Rao lower bounds on the conditional RMS error. It is clear that the

estimator converges with increasing T to a solution and that the solu-

tion is a useful overall estimate of X0 of the order of +he Cramer-Rao

bound. In particular, the estimation of A., for which there are no

direct radar observables, is good. It is this excellent estimate of

(and of P0) which makes these results useful even though fO Is not

handled as well. For unless all coordinates are estimated reasonably

well, such accuracy in particular ones is impossible. But the esti-

mator has exchanged accuracy between coordinates, thereby reducing

C, for which there is no direct measurement, to less than 10-

radians/second, or less than 5 percent of its original magnitude; c€

is reduced from 0.347 radians to less than 10"3 radians, or less than

0.3 percent of its original magnitude; and er goes from 2000 feet to

less than 200 feet, or less than 10 percent of itb origit.,.l size. it

is this overall estimate of Xo and especially of the coordinate 0

f- which no direct radar measurements are available, that makes these

results of interest.

I
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The above example used a value of X0 differiwZ from its expected

value, u, by about two, twenty, twenty, and two qtandard deviations in

its four coordinates, respectively. To explore tie initial conve--

gence of the estimator, a u differing from X0 in each coordinate by

three times the above differences was employed. Convergence of the

differential-equation/Newttian solution for this case is shown in

Fig. 8, where it is seen that by time T = 0.25 seconds the solution

has converged to that corresponding to the smaller-deviation case.

At T = 3 seconds these solutions correspond to errors in distance (D)

and velocity (V) which are about I percent and 25 percent of the ini-

tial error at time T = 0. This performance for large initial errors

is another reason that relatively poor performance in one coordinate

(f0) for the more nominal case of Figs. 4, 5, 6, and 7 may be accept-

able, as discussed earlier.

Excursions in A

As discussed above, AT must be sized so as to match i and R if

initiation and convergence are to occur successfully. The preceding

variation of AT over two orders of magnitude indicat- the range of

insensitivity of this variation for the particular example. Experi-

ence with the routine illustrates that the R and -to-.YT relationship

is a very sersitive one.

Excursions in R and Estimated-to-Actual Noise

The secondary R-matrix given on page 48 was used to explore its

effect upon initiation and converge,-e. Neither the pure differ.,:lal-
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equation nor the doffereLcial.-equation/Newtonian estimator would con-

verge appropriately for as values of 10" and 10 2 . For As - 10- 3 the

pure differential-equation estimator converged weii, as shown in Fig. 9.

It is also of interest to explore convergence of the estitLator if

the noise does not correspond exactly to the R-matrix employed. This

is -hown for As - 10 - 2 seconds in Fig. 9, where the terminology is de-
fined as follows:

No noise--large R: primary R-natrix was used in equations,

but there was no noise added to radar observations.

o Small noise--large R primary R-matrix was used in equations,

but noise added to radar obsc.vations corresponded to second-

ary R-matrix,

o Large noise--iarge R: primary R-matrix was used in equations,

and noise added to radar observation corresponded to primary

R-matrix.

The T range :hown is great enough just to show how rapidly all three

cases converge to the same solution, independent of the estimated-to-

actual noise relationship. It is clear that as long as R is "larger"

than or equivalent to the actual noise, convergence takes place. The

contrary case--noise "larger" than R--should also ccnverge for appro-

priately small 6T. However, its calculation requires considerably

more machine time and was not done here.
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V. CONCLUSIONS

These calculations did not compare MLE performance to other

estimators. Since comiputational results by other researchers (see

Ref 13) had ind'icated the greater accuracy of the MLE in the scalar

case, the calculatins here were designed to test the feasibility of

applying MLE techniques to complicated vector situations. To that end,

they oxq.mined convergence, limit of convergence, effect of initial

error, noise magnitude, accuracy of noise estimation, and ability to

estimate unknown parameters.

THEORETICAL RESULTS

j. The likelih;od expression p(riZ(s), 0 1 s • T), upon which the

maxI'M.-likelihood estimate for thc initial condition is based, wa-

derived and then 8pecialized to the white-noise case, The desired

maximum-likeliho:d estirmte is that initial condition C which maxi-

mizes p(CIZ(s), 0 s s T).

2, The -axiw~m-lkeiihood es.timate was shovi to satisfy (as a

function of the upper observation limit T) a dUfce-ential eqtIsticn (27)

of relatively simple fcrm; it war also shown that the resutlng com-

3. The condiiional Cramer-Rae boo.u:', fcr the m.x,-_.-likelthcx4

estimator was dc-ed and an a- n-toxtma- iot. der ived.

The maxlrmir-iir.lIhood est-mator for a K-pec fic r, was

then derived fiom the preccding theoretical :es I't and aptioid ,- a

5 w;'te-noise case; simi Iai rl for the, C a-&-er-Rak, :e.,nd.

Ig



68-

NUMERICAL RESULTS

1. For appropriate values of As AT the estimator converges zo

a useful eclution for X, even given extreme initial c rors. The con,

ditional error appears to be of the same order as tle Cramer-R.-o lower

ound,

2. in the application presented, the variable cannot b measi.ed

by the radar, and so P must be estimated entirely in ters of the other

observables, Therefore, , e con4dered a6 an unknown paranetex

(with known a prior! statistics). The eitimator apryroaches the .Tue

value of 6C as wtli a ehos. -if r,, end 8,, with consicerc i c

Tlis is done zt the epL.nse of velact'gejy slower cc--ge-ce of 'i

3, As a fufction ci ,. the i.divldua5 estimates z.§ r0,

and 0 nmy not converge monotoicaiiy bt't may vary sc- as to in-prixve

,.he ov erall eqtinate of X-o

4 Convergence the pure differentie I-equation Sac>tion eatt

mator depends criticslly upon the value of AT used. This is to be

Aexpect.d, since AT ia th e factor by wbich ,:he derivative of, X(T) is

teighted in torward projections to time. The nature of this dependence

is influenced by A and R.

5. Convergence of the different 4 al.-equationiNewtonian estimaltor

is less dtendent upon the value of 6T; both estimators have basic ac-

curacy 1imitations determined by the size of As, which introduces a

granularity into tpe wurface f(X,T).

6. In1-tIatin difficulties presented by large values for X -

can be overcome .,)y the uee of sufficiently smsll values for AT. A



-a~~b~ tT. incrcasing with T. co--li perhaps be ured in ftutz.:rer-

Fox~ the' case at hsid: 3 to 4 secrndg of reei trAck zime su'.-

X.i c ed for esential co'nvergence, eecon-C.'

ClrCcnutir tnerequired W~s ac- erai crcdei.- of .agn~itlude greater

thant; he raal-tiau cheer-,vtion prc:essed. With apecially !Titt:en pic-

pa~r anj specia': -purpcse rn-q~s~Shoto1d lbe_ -educibl& to -on-

i o o prv r t ' ner a, Gi-ven the .ipparent -cuiracy advantsges of !MLE over

ce-.tain a-?znLati-c eaatdheofr and i.ts cornpurational

feaziiity is. e, 3aoltion at arpd cot-Auin; frm T 0)XLE tech-

niiues pro~iSt A USeflil approach to complicated iionillnear Problems of

the ~i~examint-d ,iere,

FTTV WV.C?-T

1, ~. nten ~~ii rolbli is that of detek~i.niig Lhe

relativi.i.:tp I ~tn:h ~"ji~1krtodeqtteate a~i the minimumi

2. Tihe bi4& of t -,e maxi~nmi-lkelih-oo4 estite is not understooi

--nd nee~i to be fuzther znhd

3. Tbe exror eva%.attor. v~de hwre needh to be extended to -nclude

eatimra if the W2 error.

4, More cffticei',t progrema. need to be deised, now that it has

been 6evioni-lat-eI ch.t the alrithtt dc,-eltoped here is tiseful in the

vcctor case. This evil assist In the evaluation .' 3 juat atove,



Appendix A

DERIVATION OF "C"ONDITIONAL FROaBAIL LCIK O 0

Defining

X(s;C) = X(3), given that X(O) C, (Ala)

and

X(O) = X0, (AIb)

then for given X = C we have
0

EFZ(s) itC Fr(s)X(s',) + N(s) = H(s)X(s;C) + EFN(s)j

= 1(O)x(s;c), (A2)

and the proc. covariance conditioaed kipon C is

R(s,ujC) = EF(Z(s) .. FZ(s) Ici)(z(u) - rz(u jIcb*jc

- Err(s)x(;C-, + N(s) H(s)X(s;C)l

rH(u)X(u;C) + N(u) - H(u)X(u;C)*3

= - ErN(s)N (u) = R(su).

That is, the covariance function of Z(s) is independent of X0  C

and is the same as the noise covariance function, However, the mean

varies with X0 = C as per (A2).

We wi,l assume for this development that R(su) satisfies certain

zonditions permitting the following manipulations, these conditions

will be spelled cut later.
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Let

k k

rk(s,u); that is, t.1k(s), XI satisfy

TT k k k (3
r k(s'u)*i uMdu = X i~i(s). (3

k

(Note: k (u) is a scalar function,)

Define

T
zk Z k('Ot (s)ds, and (A4)

0

m.k(C) E= IC1 (A 5)

Then
m i(C) Efz k(S)*i (s)dsic% jz E (S)IC1I(* d

or, from (A2),

T
M. (C) (A6)

S0

whe'e

H(s) (.,s) S (itk(s) ... hkm(S))
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Then, defining

r k (C) =-r' F(z k _)irzk E(- I) I1 (A7)

one gets

T T

k (C) =IkEn (s) nkdu) k (s)d ku lu (A8)
0 (C

~T T
_r ( = / j S (s)(u) d

0 0

T T'6 J AO

r kPC ('~ k Wl'k (udd-r k (A9)

r = j (), ()s ud= d

0

independent of C, so oA3) gives

T

k P k .k

r -j J k~(s)k( s)ds x~ k 6W (ALO)
:1 ii

0

It is locerb nlg ih(8ita n r needn

k v

for k 0 v, since nk (s) and n (u) are independent noise processes. Wev

thus can define the random vector series fZ(i , 1 1,2, .. 1, where

zi

Z(M) = , (Al2)

pZ.
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and -we know fctoty, above that Z(iIC) is gaussian with mean

m1 (C)

M(i;C) =(A13)

MP(C){

and covariance matrix

.10

R(i) (independent of C), (A14)

k0 X

where m k(C) is given by (A6):
1

T
k (C kA6M =JC H k(s)X(s;C)*P s)d;. (6

0

Letting p'C,Z(1), ... , Z(I)] be the probability density for

7CZ!), ,., MIwe can write

and so



-75-

Thus, p(C Z(s) , 0 < s <T) =p(CIZ(1) , Z(2) , )is given by

urn prcIz(1),..,Zk)

Kexp {( A- (C , + E2 rz(i)2 - ~ i=1

MwiC)R (i)FZM Mt)~ (A17)

Then, F- FZ(1) - M(i,C)l R- (i)rZ(i) - M(i,C)1
1i=1

_LCk mk ()2

i =1 k=l 1 - r i

P~ z k k ) fm k (01 2

1=1 f= 7.k Ir1 2z 1  + (C

kkik k

or k 2 z1 kn(C fm

17. f k2 - k 2
- k 1 2 a (C) + r (C)l with

k'1 Inl \ k~l k~l

k m k(C)
a (C) E (Al~a)

1.

mk (12
(C)1 1=1l 2 (Al8b)

k
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which gives

p[CIZ(s), 0 s T T

K3 exp - (C - )A I(C - 4) 2 E 4 (c) p 1y2(C)1
k=i k=1

(A19)

If we define

kC(s;C) k (s), (A20)

then we have from (A6),

T
kc = f0 Hk(s)X(s;C)gk (s;C)ds. (A21)

0

From (A20), provided the ftj (s)l are complete, g (s;C) satisfies

T
TfO Wk(s;C)r k(S,u)ds = H k(!)X(ul;C )  ,(A22)

anu from

zk m k(C) 
T

L (C) -- ixk j zk(s)gk(s;C)ds, (A23)

i 0

We hive
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pFC Z(s), 0 < s T=

~T

k k13 exp [O 4{( (C - fzk(s)gksCu
0

fHl()X(;c)gk(s ;c)d , (A24a)00

kk

where gk(s;C) satisties

Tf gk(sC)r(s;u)ds H;C). (A24b)
00

I': we define

k
k kbk (s) = -r q (s

k (S , k i- )(S), (A25a)

there results

T

J kkk0 k(S)r k(s'u)ds 7 x z. 1 4i u) K. (u), (A25b)

0 i

provided (again) that the k k(u)" are conpiete. That is,

k 2 T

k k f- !k (s)ds,

where (s) sati fies

T

k(Or k(q,u)ds z k (U).

0
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Since the last is independent of C, we can rewrite (A24) as

p(CIZ(s), 0' s T) K G(C) , (A26a)

wherek

G(C) exp [(C +(C z (s)C - * ds
kl f

k TJ? Tk

an'd k(s) and k.( ;C)s $ti5v

T T
k,

A 2c)

C lrn h~ rcc'~~in~d~v' Iprnnt andl mn-nc latuiv) it i6 no~w

k"''veni-I to 4ve onditVon,; 1::nder whc~ it isAns~e

i~ t r, ks is- p,-itive delinite, tlivthet exists a countable

n~ -rpzv5"t of or thollor-,aU e i gervec tors I 1 (,01 and cor re spond ing
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eigen'values fk I such that the rX are uositive or zero and bounded
above; there are no other e!genvectors orthnorma' to these : s),;

- k

and the f, i(s)j are complete over the functions of incegral'le square

on (OCT). The latter means that for any function g(s) of integrable

square it can be written is

N
g(s) l.i.m. gi (s)

where

T
TfO '(s)us

9 i g(s) k "i U

and the meaning of 1.i.m is that

N k
im (s - gs .s) ds 0.

Mercer's Theorem t i , n applies, which status that

r,(su) k k s) k. ' ' i vi " v
, 1

where the conve-irI.e-n. v is uni form in s vi ft -j -1 Furh k-r

Picard s Th,. rein then statez th-It thc g (sJ') In (Ad'- exists -mid 1.-

of inte'rab>' squat,.vet (0,T) it' and en v f

N k
E, ;u' X ,.:C -o i.:. v €' k~v:



where

k C k

and the series

Picard's Theorem further states that the unique solution is theI

k

A (C)

k kk

k k

as in A20) with 8(C) = m(C)o
i i

Similar remarks (from Picard's Theorem) apply to C,(s) of (A25) where

now we irsist that

where

T f
Y J zk(s)*i(s)ds.

0



The iaque txpres.iion ior -k(S is then

N k

• (s 1.i m.g ,s
N- i=i ,

N- 1

as in A25-a) with* = k .k
I 1,

We thus see that necessary and sufficient conditions fcr the pre-

ceding development are

-k '(s,u) posit!-2e definite. k = 1,....p

'> Y' • k 1 P)
<k 1

k2

k . , < ) kd (06).

where kXw(C) are defined in (A3) , (A4), and (A6)

Equation (A26) simplifies greatly when the noise N(s) is such as

to perm.t the above development and the rk (s,;,) ca~t be treated as

deita-funetions:

rk(su) 4'k 8(s u), k 1., .. p.

rrom (A26) we then bave ( and gk(s;C) satisfying

T

ku) k5 5(s - u)du = k k S )  = (s)0 ~ ) :
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and

T

/g g(S;CYI 5(s -u)ds H (u)Xtu;c),
0

k 'k

9(s;:") H.()s:)

(CZs, 0 s T) K J ),(A2 ",')

J(C) =exr [a)C

+ fFZ() H~)X~:C1~R -H(s)X(s;ClIds} (A27b)

(A27c)

K = J(C)dc. (A27d)

c
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Appendix B

PROGRAM FLOW DIAGRAM

In Fig. 10 is shown a flow diagram depicting the operation of the

rnaxirum-likelihood-estimator program. The following describes what

takes pl, e at particular points in the program.

1. Star,,

2. Input of indices, constants, observati-on. T is the observation-

interval upper limit, fT.) are the poLIts ac which estimates are

made, X(TI) is the stimate at time Ti.

3. Question leading to use of certain input values if answer is

no; leading to update if answer is yes.

4. Update of X(T i) to X(Ti + AT) via basic differential equation

(27) governing X(T) and (60).

5. Update of time from Ti to Ti 4 T.

6. Setup of i i-tial conditions for integration to get functions

tabled over 0 - s T which are needed in Newtonian iteration

in 13, as well as needed in 4.

7. Integration to table over 0 - s T functions needed for New-

tonin iterattion in 13

8. Print X(T,), f(X(T ),T ), D)etF7Af(X(Ti) ,T.)1 , '"f(Xi'Tt),T)
7X (T I ; x Ttx)'

9. T-'- of whether r'Vf(X(T) ,T) is near enough to 0.

10. If 7Vf(X(T i ) T t ) is suffic ienti y near in iere

has ,een calcu ated a previous NWwt.onian solutiion X at 'rT
C
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11. If there was a previous Newtonian solution X0 at Ti, compare

the difference between it and the current solution to see if

there is need to proceed further with Newtonian iterations.

12. If the difference between soljtions in 11 is too great, tem-

porarily store the latesL solution as the best one.

13. Ir.mprove this best solution via another Newtonian tteratio-.

Toen go back to 6 and redo this series of tests et a].

14. If 7if(X(T i),T.) is near enough to 0 or X0 is rsear enough to

X(Ti) ask if 7i T. If T, / T, go to 4 and update X(Ti)
i *l i

to X(!i + AT) via basic differential equations (27) and (60),

etc.

15. If in 14 Ti = T, stop.

I
I

..q' - . - -. ,
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