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PREFACE

A great deal of progress has been made in the development and ap-

plication of the theory ¢f prediction and estimation :.. noise for the

cace of linear problems. A major research frontier today concerns the

probiems of estimation using noise-corrupted observations in nonlinear

systems. In this Memorandum a theoretical approach to maximum-likelihood

‘ediction and estimaticon is developed for certain such nvaiinear situ-

ations and is applied te the special case of numerically estimating the

initial ccondicions of a radar-observed reentry body.

The work repcried here is part of Rand's continuing basic research

in engineering and systems science.
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SUMMAR Y

It is often desirable to estimate certain parameter., such as in-
itial conditions, of a dynamic physical process; using ac’se-coicupted
observations. This Memorandum describes a maximum-likelihnod solution
when the process is time-invariant nonlinear m-vector and the observa-
tion is a linear combination of true process coordinates and noise. It
is applied to a white-gaussian-noise case in which the initial conditions
have a known a priori joint gaussian distribution and all other process
parameters are known. It is desired to estimate the state at t 2 0, .
given continuous observation over (0,T) and a priori statistics.

Given a maximum-likelihood estimate of initial conditions, a nat-
ural estimate for the system state at t > 0 simply updates the process
differeatial equation from the estimated initial conditions. The sal-
gorithm therefore estimates initial conditions. It can be shown that
the maximum-~likelihood estimate 1Is th initial condition which mini-
mizes a certaln functional on that initial condition, the observation,
and the a priori statistics. This functional describes an (m + 1) sur-
face at time T, and the desired estimate corresponds to its minimum; a
differential equation i{s developed which governs the evolution of this
estimate with time T. :

Using this differential equation, the algorithm caiculates as a

function of T that maximum-1likellhood solution which evolves from the

L e S e

unique solution at time T = O (given by the a priori mesn vector).
Using this differential-equation algorithm to stay near the desired
solution when updating T, Newtonian techniques may be used to improve

the solution for constant T.
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Earlier computational results suggest that maximum likelihood i~
preferred to various approximations. This Memorandum explores computing
feasibility for difficult vector cases, rather than extending these nu-
merical comparisons for simpler scalar situations., Both pure differen-
tial equation and differentiai-equation/Newtonian solutions were used
to estimate reentry-vehicle initial conditions. A priori statistics
presumably result from prior less accurate tracking; the observation
from a more accurate tracking system. One coordinate time rate is not
measured, and its initial condition serves as an unknown parameter with
a priori statistics.

A fired reentry-path observation was generated using Monte Carlo
noise, and initial conditions were estimated. Convergence depended upon
the size of integration constants used. The estimate converged to within
the order of the Cramer-Rao conditional bound. Accuracy was exchanged
between coord.nates to improve the overall estimate. The initial angle
rate, which could be viewed as an unknown parameter, was handled with
the same or better rapidity and accuracy of convergence than the other
{nitial conditions. Readily available programs and the use of a general-
purpose computer resulted in processing times much larger than real-time
observation. However, efflcient programs and speclal computers could

reduce this tc on-line realization.
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I, PROBLEM DEFINITION

CENERKAL PROBLEM STATEMENT

A general problem of much interest and importance in prediction,
estimation, and conti2! areas is th following: Given an m-vector
p.ysical process

/x, ()
1
X(t) = : . (1
xm(t)/

where X(t) satisfies a differential equation

Q%éﬁl = FlX;t;n]1, (3
and where 7 is a vector of arbitrary paramet. . {some known, some

unknown) , given some o priori statistics o the value assumed by the
initial condition X(0), and given a noise-corrupted observation over

some (variabie) interval [0,T] of a p-vector process re'ated to X(t):

Z(s), 0<ss<T, (3)

then it is desired to make a best estimate of X(t), 0 < ¢, in terms
of the observation {Z(s), 0 < s < T} and the a priori X(C) statistics,
If some components of the parameter vector o are unknown, then they
may also have to be estimated in the process,

This problem has been essentially solved for the case where F(-)

(1)

is linear and the noise-corrupting Z(t) is additive,. This Memoran-

dum will construct and apply a numerical algorithm for solving this

problem when F(:) is nonlinear, but the corrupting noise is still




additive. The generality of the above statement w!' be restricted

somewhat for present purposes, but the result: cam then be extended

in cobvious ways to cover the more general case,

! SPECIAL NONLINEAR CASE TREATED

/xl(t)\

The vector X(t) = will be a real m-vector physical

xm(t)

process satisfying the nonlinear, time-invariant differential equation

1 /fI(X;W)
I
% S : ()
: dt
£ (X57)
where F(X;0) depends upon an unknown but fixed (throughout the obser-

vatica interval) vector parame.exr o known parameters are subsumed in

F(--.a)., Observations of the p-vector Z(s) over a varying in-~rval

[0,T? are available, where it 1is known that

Z(s) = H(s)X(s) + N(s), 0 <86 <T, (5a)
where
| (o 4(s) <ou hy (s)
H(s) = | : : (5b)
I
, hpl(s) hpm(s)/
/nl(S)
N(s) = , (5¢)

np(SL/




and
’1(5)\\
Z{g) = . . {5d)

ZP(S)

It is assumed that F{(X;o») and HE{s) ave smooth functions, e.g., ana-
lytic. Finally, it is assumed that tle initial condition on X(s) at
time zero, X(0), and the values for o have a joint gaussian distribu-
tion for which the distribution mean and covariance are known:

(xw)\
E = U

& H

X(0) X{0) 1*
E ( N ] o - %J = A positive definite, (6)

and that the noise process N{s) has

>

EN(8) = 0 (n
and covariance function
E[N(C)N*(s)7 = R((,s) positive definite (8)
with n, independent of nj, i1 # 3§; thus R(C,s) is a diagonal matrix
1, (7,8
E[N(ON ()71 = R(7,8) = O . )

O rp(‘f’g)

The problem 18 then to construct a8 best estimate of o and X(t), 0 < t,

given (Z(s), 0 <5 s T},
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HISTORY OF THE PROBLEM

This problem intersects related research areas which have been under
investigation for several decades: optimum filtering, control theory,
and prediction and estimation, An early form was the Wiener filtering
problem, now largely solved for linear F(.) and additive gaussian noise.
In the lincar case the optimality criteria of minimum RMS error, as well
as of maximum likelihood, were successfully pursued. It is well known
that in all cases (linear or not) the minimum RMS estimator is given by
the conditional expectation of X(0), given Z(s), 0 < s < T. In the lin-
ear case, it is alsc well known that the condi:ional expectation and the

maximum-likelihcod estimate (given Z{(s), ™ < s < T) coincide.

Only in the simplest linear cases is it poussible to derive a simple
closed expression for the conditional expectation. Rather, it is often
necessary “o derive the differential equation which the estimator satis-
fies as a function vi t and T, and then to solve this differential equa-
tion as T increases. This ias done for the linear case in Ref. 1 by
Kalman and Bucy.

In the nornlinear case, it is natural to try to extend the results
for the conditional expectation, since it satisfies the intuitively
appealing minimum RMS criterion. The increased complexity of the non-
linear case forces use of the differentfal-equation approach, via which
the eatimator 15 calculated numerically as T increases, However, the
maximum-likelihood estimator no longer coincides in general with the
conditional expectation, Since it has certain computational advantages
over the corditional expectation, the max mm-likelihood er  imator has

also been explored via the differential-equation approach. Both
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approaches (conditional expectatf - and maximum-like:ikood estimator)
involve the conditional-probability function of X(t), given Z(s),

0 -8 =<T. It, too, can be approached via the differential equation,
which it must satisfy as a function of t and T. This is related to the
differential equation which the unconditional-probability function of
X(t) must satisfy. See Ref. 2 for a discussion of these so-calied
diffusion equations.

An early attempt to derive such differential equations for the
conditional -probability function is given in Ref. 3 by Stratonovich,
The continuous-time results were incorrect but have been subsequentiy
derived correctly, as noted below. An interesting and useful early
effort is described in Ref. 4, by W, M, Wonham; it addresees the dis-
Crete case primarily and suggests a heuristic extension to continuous
observations.

A natural way to extend the esarlier linear results is to general-
ize the filters from linear weighting coefficients of the observaticn
*o more complicated functionale _f the observati~a., In Ref. 5,
Balakrishnan develops the theory of functionals upon the space of ran-
dom observations, shows that functionals useful for ou: problem can be
approximated by certain kinds of polynomials, and then shows how the
method of ateepest descent can be used to construct a polynomial
approximation to & minimum RMS estimator.

In Refe. 6 and 7, Kushner derives correct diffe-ential equations
wvhich must be satisfied as functions of ¢ by the conditional-probability
function. Kushner there suggests spproximating the optimal filter,

which {s infinite dimensional in the mense of requiring specification
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of all moments of tne conditional-probability function, by a finite
filter--i,e., by ig~vring ail but a fin'te number ¢f moments. Bucv in
Ref, & develops these differential-equation results of Kushner's also.

Another natural way to extend linear iterative resu'ts to non-
linear problems 1s to try to extend the weighting techniques straight-
forwardly t~ approximate optimum nonlinear filters. This is done 1:
Ref. 9 by Mowery for the discrete-ohservation case; he displays some
interesting error calculations for the approximate estimators developed.
Another aporoach is that of invariant imbedding; in Ref, 10, L. llman
et al. derive a numerical (computer) technique for finding X(t) which
minimizes the usual quadratic norm over (0,T) of the difference between
X(s), 0 s s £ 7 and the observation, Several examples are calculated
out to show rconvergerice performance of the estimation.

In Ref, [1l, Friedland and Bernstein derive differential cquations
for a first-order agpproximation to the maximum-likelihood estimator fer
the discrete sample case 3and then derive an analogous first-order
approximation for the continvous-time case. In Ref. 12, Bass et al.
derive an approximation for the conditional expectation. Specificalily,
by neglecting higher-order terms in the noise and in error differences,
differential equutions governing the evolution with T of the condi-
tional expectaticon are derived; the approximation for the RMS error (rel-
ative to conditional expectation) matrix is similariy derived. These
two differcential equations theoretically could be jointiy solved nuneri-
cally to crleulate the approximated conditional expectation,

Various calculations have been made in corder to compare the effi-

clency of the various possible estimators in very special cases. One
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such calculation by Carney and Goldwy:. 1is described in Ref. 13. There, fiﬂ
a (scalar) nonlinear estimation problem relative toc a linear dynamic
system is treated by estimators based on leasl-squares and maximum-
likelihood criteria; in a linearized form of the problem, two versions
of the Kaiman-Bucy estimator are used, Monte Carlo techniques are used =
to generats comparative ervor statistics, In all cases, and over wide
ranges of governing parameters, the maximum-likelihood estimate {s
preferred, Kushner p.oposes in an exploratory way in Ref. 14 possibly
usefui finite filters, derived either by assuming specific forms for
. the conditicnal -probability function or by similar assumptions con a

finite ~rumrber of the conditional moments. Severel specia. results are

then calculated.

In Ref. !5 Kushner derives the exact uifferential equation which

tie conditiona! mode at time T must satisfy. However, solution of

N

this equation is not possible, since it invoives higher derivatives of

all orders of the condftiorsl probability distribution. Recourse would

therefore have to be made (o approximations, However, the results of

P

Carney ard Goldwyn (Kef. 13) suggest that the maximum-likelihood esti-
mate for the initfal conditien is preferred to the varicus approxiva- -
tions fried there and thereiore that an exact maximum-ilkeithood wsir-
mate of the initial copdition would bhe preterable o approximations te
either the conditional expectation or the maxioum-likelilhood estimator.
The numerical comparisons made in Ref. 13 and elsevhere arv for
the scalar cage, in order to render rthe required work load acceptahle.
This Memcrandum is addressed to the vector situation, to examine the

feasibility of numerically solving th= vector differential equations

- Cnrmn




satisfied by the maximum-likelihood estimator. The calculations

i -equired are sufficiently large that it 1is not possible to gen~~nte ;

8 !

4 i 1
error statistics allowing comparison with cther techniques. Rather, ) . ‘

R attention is focused upon a specific obr~ervation samrie, and the :

questions of computational feasibility, convergence, and solution

usefulness are examined,
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II. NUMERICAL TECHNIQUE

In general, the components of X(0) cai: be expanded to include o,

«n¢ those of F(X;2) to include (t) = ~(0) = ~» (i.e., %% =@ ; and
herefore can be cstirated as part .. . generalized X(0). This is

assuned done in the followirg, ir which we cave set F(X;2) = F(X).

H

CONDITIONAL EXPECTATION

As discussed ir Section I, a desirable criterion for a "hest’
estimate of X{(t), 0 < *. in terms of "2(s), 0 s s < T}, (s that func-

tion X(t) which is unbiased and minimizes

-2 *—A s N
EDX(e) - X(r) "X(t) - X¢t) -. (105

It is well known that the conditiconal expectation of X(t), given
Z(s), O < s £ T, mintmizes {10):

-

X(t) - EXeolzgs), 0 < s s T

4

< ETX{ey given TisYy, 0 . s - (1D

1o the vecror-linesar situaticn, X{(t) as defined by (11) can bhe calou-
ltated (see Ret. lo, pp. 3J-vd - 3-62; alse Retf 1Y, However, 1ov the vec-

tor nontinear situation under consideraticn here, such is not the case,

MAXIMUM-LIKELTHOOD ESTIMATE

Al estimate alternate to that which minimizes (1) {s the so-
cailled maximum-likelihood estimate (MLE) of X{(t): the vaiue X{t}

which, given Z(sY, 0 ~ s =~ T, has the maximum conditional probability

of orourrence p(X(t)%Z(s\. Q -~ 5 <T). This may be developed as shown

. . — e 5 e T — O




-10-

in Appendix A {where necessary and sufficient conditions are also
given) and leads to the following results,

Defining

il

X{5;C) X(s), given that X(0) = (,

and
X(0) = X,
then
p(Clz(s), 0 - s - T = —~«§i§i——-, (1Za)

/° G(CYdC
Jc

where
> T

) 1 1, r
G(C) = exp [~ 7 {(C w L - )+ T

and whe.. Kk(s) and gk(s;c) satisfy

T T

Jf £ (8)F (5,00ds = 5 (W), Jf gK(s;C)rk(s;u)ds = B ODX(ui0) . (1ze)
0

b

Necessary and sufficient conditions that these results hold are

developed in Appendix A and are

1. rk(s,u) positive definite, k = 1, ..., p,

» fmt(C)lz
2. 12 - < 7,k =1, ..., p,
i=1 (xt)z

r—
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Y0
.
mk(c) = EFZ§!37 = f Hk(S)X(s;C)“t(s)és,

D

. .k Lk . . R . .
and ‘fi(S), ai} are the orthonormal cigenvectors and reiated cigen-

. K LK .o
values of rk(s,u); that is, f&i(s), ki1 satisiy

Equation (12) simplifies greatiy when the noise N(s) is such as to

permit its develcpment as in Appendix A and the rk(s,u) can be treated

as delthr functions:

rk(s,u) = %ké(s -u), k=1, ..., p.

Then (12) becomes

p(Clz(s), 0 £ 5 <) = & (13a)
fJ(C)dC
C




where
S | * o3
J(C) = exp |- 3 {(G - u) AT - ud
[
T
* e, . 1
+ [ Tz(a) - H{s)X(2;2)T R T2{s) - H{e)X{s;C)]ds j, {13b)
0
/3
-0
R = ( . j, (13¢)

\O ."GP/

Equation {12) can now be used to write a general expression
for the MLE. However, in order to reduce the computing complex-
ities, the MLE will be derived and applied for Eq. (13), the spe-
cialization of (12) to the case of white noise. This is an important
case ia its own right and can be generalized straightforwardly,

Since the denominator of (13), for given Z(s), 0 < s < T, is
a constant, the MLE is that C which maximizes the numerator, which

is clearly that C which minimizes

. LIS
£(C,T) = (C - p) A T(C - w
T
+f [2(s) - H(s)x(s;C)]*R“I(Z(s) - H(8)X(s;C)]ds. (14)
0

Direct minimization of (14) for fixed T is in general impos-
sible because the available numerical techniques require an lnitial-
estimate C cleose enough to the sought i(T) ty guarantee convergence.*
For arbitrary T this is not available. Rather, an ircracive numerical

* o
X(T) may or may not equal XO' the true initial condition.
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procedure which builds upon preceding estimates for increasing values
of T must be devised. This can be done by developing the differantial
equation which the best estimate must satisfy as a fuunction of time T,
the upper limit of the irterval of observati~n. A3 indicated below,
the MLE of ¥!{t), 0 < t, follows naturally from the MLE of X(0), sc
the latte:r will be estimated.

Let us assume that for each T over a vange of T beginning =t
T =  there does exist a unique value of the vector C, Q(T), which

minimizes (14)., Then ﬁ(T) must be the sclution, for each T, of

T
-1 * % Y
VCE(C,T) =20 (€ - u) -2 f VCX (s;C)H (8)R “TZ(s)
0
- H(8)X(8;C) 1lds = @, (15)
That 1is, ﬁ(T) must sati.fy
T
X(TY =u + A !ﬂ VCX (s;X)H (s)R rZ(s) - H(s)X(s;X) ds . (16)
‘0

But if i(T) satisfies (16) over the entire assumed T range, ther 1t

satisfies there

& W dT A X
atr *rar * KD gt - an

It is useful to write (17) as shown, because it explicitly iden-
tifies the vartation in i(T) due to variation in T and that due to

variation in X. However, because of the white-noise component in Z(s),
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A

(17) can »nly be viewed as u symholir representation of a corresponding

differential expression:

A R * A R -1 e T , i A.q
dX = MVCX (T,X)H (TR H(r)'X(T§XO) - X(T;X; {dT

. * - * -1 - N
+"1ZCX (T; %) (T)R dL(T) + 7CX(T}dX‘

where

21(5)

L{s) =
?p(S)

and the Pi(s) are appropriate independe—~t scalar Wiener processes.(z’a)
In the following the convenient symrolism of (17) will be used, The
results are correct as long as only differential expressions are used
in the calculations; this is the case, {f course, a true differential
equation analogous to (17) does apply ia the colored-noise case., How-
ever, computations then are more difficult hecause of the need to cal-
culate gk(s;C) of Eq. (12) as T and C change.

Equation (17) is eauivalent to

S . dﬁ Vi . c% -1 -
v -7 — —— = T . ™ Foemy - Ny 1
M1 C)((T) aT T CX (T;X)H {T)R 2(T) H(TIX(T,X) ', (1I®)

From (16),

"
i

~ * - * - R - B
”rX(T) s ?ch {(s:X0H ()R 1"2(3) - H(s)X{s;X) ds

T
* . -1 ) -
- [ "CX {s;X)H (=R H(s)'rX(s;X)ds.




or

* Nk 1 -
VCX (s;X)H (s)R H(S)TCX(s;X)ds

—
1
a
(@]
L)
o~
-3
St
"
—
+
=N

* " * =ir > hl
TCCX (s;X)H (s)R ! Z(s) - H(s)X(s;X) ds

O'\ar-]

But from (13),

T

“ i) =27 4 v X" ')E)Hk Ry YT X(s:X)ds

CC(,)— 2 c (s; (s) (s -C(s,)s
0

T
B I -1 ~-
-2 f Y'CCX (s:X)H (s)R " Z(s) - H(s)X(s;X) ds, (19
0

and thus

- R "
I-7XTD =3 ‘ee XM,

so that (18) becomes

~

e Bl o xR (mr
'cc('dT"c(’ ¢

201 - HDXT0 . (20)

Expression (20) 1is the funda.ental differential equation of

interest; and 1if chf(X,T) is nonsingular, it can be written as

r - a-1 * A % -1 -~
— = 2.7 (X i . ; r _ TX) )
a7 . CCI(A,T) CX (T;X)H (T)R 2(T) HITYX(T;X) !, (21

It was assumed above that there did exist a unigue -~olution to (15)
which minimized (14) over some T interval beginning at T = 0. A nec-

esséry and sufficient condition for this is that Vcﬁf(C,T) be positive
LS




e
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definite at C = X (for constant T), which requires that VCCf(C,T) be
nonsingular in that inte: al. Therefore, under this assumption, (20)

can be sclved for

| =N

in the form of (21).

i

Further, at T = 0, (16) and (19) i{mply

I

X(0) and vCCf(i,O) = 2871, (22)

"
i =

Thus at T = 0 we are guaranteed the nonsingularity of 7CCf(i,T); the 5
legitimacy of the form (21); and the initial conditions with which to i

start a numerical s lution:

X(0) = u ﬁ
%5 = AH(ORZ(0) - HO)WT, (23)
Tlrao

since VCX(O;i) = 1.
Furthermore, (22) implies that VCCF(i.T) 13 nonsingular {n some
finite T neighborhood to the right of T = 0; since
T
* A & -1 -
/' 7. X (s:XH (8)R H(8)7 X(s;X)ds
0

T
DT DN 2,
- ][ 7ecX (80K (DR 7Z(s) - H(s)X(8:X) ds (24)
0

is a continuous function of T, it follows from (19) that ?Ccf(i.T)

must be nonsinzular over some T neighborhood of T =~ 0, Finally,

T X, 2)Y = 20 7, so that M being positive definite makes £/C,T)

convex at (C,T) = (u,0). Again, the continuicty 1in T of (24) guaran-

2,

tees ithat ?CCf(i’T) wiil he convex in some T nelghborhocd of T =




i
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The existence of a minimizing solutfon to ch(C,T) = @ hag been
shown in Ref. 17 to exist as per the followiig:
If

T
* . 2
X (s)F(X(8),s)ds < K(T)(1 + ||x]|])
Y0

for each T, where X(s8) = F(X{s),s) and }lXI! is the norm of X(s) over
(0,T), then for each T there exists a minimizing zolution f(T), and at
each such T the matrix Vccf(i,T) 18 positive definite, This r~ondition
is widely met, Summarizing the foregoing, we have:

THEOREM. Given A and R positive definite and that for all T

cf interest

* 2
X (s)F(X(8),8)ds s K(T)(1 + |[x]]9),

OQ\\. -

then there exists a solution i(T) to
- 2 -1
J(X{k*T) = 2% (X - )
T

~ * A~ % -1- A
2 [ v X (50N (R Y2(8) - H(OX(8:X) ds = @ (29)

which minimizes

£C.T) = (C - w) e - W)

f. r ; . --,* "3-;‘ : » o\ Y .
+ J 2(a) « Hia)K{a;C) R "1Z(%) - H(e)YX(s;C) ds. (26)
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Further, 7CPf(§,T) is positive definite, and i(T) st isfies the differ-

ential equation

* Ak -1 ~o.
7X (TR (T)R TZ(T) - K(TX(T;X) 2n

P4

with initial conditions at T = O:

i\o) = 0 (288)
< * -1~ .

%g = H(ORITZ(0) - HO0)L) (28b)
{

The usefulness of these results in calculating the MLE for X(O

wiil depend upon

. The case with which a numericai solution of (27) can be im-

plemented,

N The integration interval which must be used in order to
cuarante . ti atii i the neichbhorhood of !} lesired
guarantee continuation ia the asighborhood o he desired
solution,

Y. The nature of the solution to which X{I) converses with
increasice [

1 o AI
-+ The rate at which convergence of X{T) occars,
These depend, naturally, upen R oand in critical wav,
Since the solution og
JdX .
— = F{X}
Gt

. 3 : . o - H R B
correspeonding o a wivea X0 s unigee, then one mas Tornediately

extend a MLE for X(0) to a MLE for Xuetd), ¢ <1

ol

or it that case

o




it s natural to take as the MLE of X(t), given Q(O)x
X(t:T) = X(t:X ;T (29)

where to show the dependence upon both t and T we have written i(t;T) =
MLE of X(t).

It therefore suffices to estimate X{0) and then numericlly inte-
grate

é%%EL = F(X) (30

frow this initi1al condition to find the MLE of X(t). This iz th.
approach agssumed in the application, However, it 1z of interest te
deveiop the differential equation which X{t.,T) satisfies.

By (29)

S0t = X(t:270:TH,

wheto i(O;T\ = MLE of X{0Y given Z(sY, O - 5 - T,

Then
W, . X roy.or” i) -7
BR{;T) . \‘\U‘gio,r,} Cxccnrer SO
a1 °T C dT
‘ 0, v 271
XX
AT
VXTI - FeXy, ot =T
PV O iinsdadinsinenste el - -




and (27) then imply

27 XF05T) "7 £(XT0;17, 1) 7
( K(LXT05T) 77 E(XT0;17, 1))
i

!

* -~
7K (T:XT0:TW ()

‘l-— o h !
’ R Z(7) - H(DX(T:X 0;7H°

for ¢t £ T

~

X(r-T _ and
r )

x0T D)

L for t = T,
Equation (31) may be rewritten as

2T - H(DX(T,; T
tor t ¢« T

4T =4 and

T2(TY - K(DIX(T.T)

L for ¢ = T,

In the above, X(t;T) has been used te i{ndicate dependencs uron t and T,

note that X(TY = X{0 ,T), from earlier nomencliature, We

ase X(T) tn the foliowing.

cC C

* A
X (T;X70;TD

* ~1ir o b
| H (T)R ! Z(T) - K(DX(T;X0:ThH

A B ~_ . . pore re _1
XTI BT T 1*Cx (T.TVH (TR

P

(30

-n - A s (™ ol v - 1‘;., "*. * "'1
F X(T.T) + <4~(,X(T;T) -CC{(X.O;T—,r‘) .Cx (T:TYH (TR

e il

.
.
.
¢
1
'
®
C - 9
4 -
T ¢
. 3
.
PR
i
- ‘
i
B
-3
-3
¥
- .
*
&
-
|
Y
-
-
3




II1. ERROR STATISTICS

A lower bound for the c¢onditional -error statistics of the MLE de-
veloped 1n Section IT will bhe deri{ved--specifically, the unblased Cramer-
Rao bcund. It has not been possible to derive an exact error estimate.
or an upper bound which 1is useful. When T is large, the estimare cun
be exnected to become more ind more independent of the a priori ratrix
The bound developed here does not fnvolve ~ and could enly apoly for
large T. As such, it is a usetful bound with which to compare conver-
rence ~f the estimator for large T.

Defining the bias of the MLE X(T} of X, as

HXy,T) = FOR(TY - 2 X)) (33

PO

then a direct generalization of the results of Ref, s (pp. 3-2 - 3-9)

te the continucus sample time case gives

o~ e *
e (X, T) = Trace E5°X(T) - X 7X{(TY - x 7 'x2
¢ U \ e
- - T ~ vy - i RN
> Trace I - ‘w(‘;‘"\)&),T\ I+ '(““(Xl'\”I, G . {3da
vhere the {nformation m (rix
*
_ o~ v, ~ . 14 T e . v . . i v HECA Y
o= it ; Toe nyZ{s), © s - T 4\0) c tog p{Z({sY, 0 8 TrX,‘_‘) r:\O’.,

This 1s the Cramer-Rao hound; and that (3% holds Yor the continuous

sampie time case foliows trom & ilwiting develiopment analogous to thar

fn Appendix A, Divectly froem Appendi. A tnllows the expression

o




. § . I |
PZ(S), 0 < s+ TIX) = K exp i 5 1/ Z(s) - H(s)X(s;X,2 TR
’9
“2(s) - 11(5),‘<(s;x0>“‘ds} , (35

J

where K is an appropriate normalizing co-.stapt,

We then have

T T

f . * ~1- . A i . _

4G = E Jf f X (s;XO)H fs)R H(s)k(s:xq) + N(s) - h(s)X(S;XO)
0 0

- . w* "]. . H l
Vi Y R T . R Y7 Xfy- 1 ooy
H(u).\u,ko, + N(u) h(u)X(u,XO) R "H(u) CX‘U,XO)CS dqlho
T

T
[ f

* LIS -1
/ VCX (s;XG)H {s)R R&(s - wR H(U)TCX(U;X

yds da,
J 0
0 ¢ (36)
ar
T
A X (s:x )H*(S)R-IP(S\V X(s*¥ yds (37)
Z X C 3 O : / C = 0 . i
e
Substituting (37) into (34) gives
Z 4 J"I 9 X TT*rI 7 X ]
> . + 7 3
€ (XC'T) ; Trace < + Cl( 0 ) + CJ( 0,1)
—
T -1
V*x* )H* iy 7 X{s:X )d
l_/ ‘o (ea,X0 (=)R "(S)'C (s; O)fs . (38)
"0

A singularity does not occur in (38) at T = 0, since «. T = 0 the

coefficient [T + ch(XO,T)] is zero. For, from (16) the MLE i(T)

satisfies (suppressing t'» T in X[T] in the right-hand side)




:
¢
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T
*oaox %, s s 5
YT) = 4+ f X (5 OH (ORTT2(s) - HE)X(530) Tds, $39)
“0

Subtracting X, from (39) and taking the expectation gives

¢

T
KT = u - X+ B4 [ TX (RO ()R TZ(s) - H(8)X(s:X) lds X \
-“\‘O) 2 }ko N 'C 59 \ S > (8, 53 OJ)

Vs

(40)

f’£ L3 A X -1 A 1
CMX. T = -1 4 2L | Tk (OB (9RT278) - ()X (53K s (X
" . do L )[
T
. (i' * ALKk -1 I, - ,
- fES ; 7K (s30H ()RTH() T X{s:X)ds X, 7, (1)
L'O

so that

T

v 1 = &4 [ v R ()R 20 - H(s)X(s;K) Tds X

1+ Vc""‘(xo") = AE o (s;X)B (s) (8} -~ H(s)X(s;X) lds 0
0

4
T
- e [ v X (s K0H ()R IH(s) Y X(s;K) ds |X (42)
c* (85 B(s)TX(s; of
0

which 1s zero for T = (.

The expression (42) for 1 + ch(KO,T) has not been evaluated
exactly. Using gross eliminaticns, we heuristically show that
VCu(KO,T) decreases monotonically as T increases. This amounts to

linearizing the error expressions, so that the resuvlting expressions
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are correct for the linear case but are only approximate in the non-
linear g¢ituation. Assuming that X{s;X) and 7CX(5;X) can be expanded

about XO in power series, we have
XY = Yy T . § -

X(s;X) X(s;Xy) + CX(s,XO)(X Xy
s @& - x M x X (
ey X - O) e (s,XO)(X - XO) + ..., (43)
and

7 X{s:X) = 7 X(s: Y . X - X

X8 3E) cK(s3Xy) + Yok (s X)) (X - Xp)

v G oo x0T XX - x4 (4)
2 o) Voot (BiXg) (X - Xp) 4L

Substituting (43) and (44) into (39) and linearizing the errorx
expressions by dropping all terms in (ﬁ - XO) higher than the first

and in (ﬁ - Xo)n and N(s) where n > 1, there results

T
* * - ~
R-Xy= - (g -w -4 Jf 7K (X )H (s)R 1H(s)vCX(s;xO)ds(x - Xy
¢

T
* ¥ -1
+ A Jr VCX (s;XO)H (8)R 'N(s)ds.
0

Factoring out and solving for X - XO gives (45) below, which s exact
for the linear case: thi: fact can be shown simply by substituting

Z(s;xo) for the linear case into (39), subtracting XO from both sides,

and solving for X - X

0




-25-

- T il S
- -1 * * -1
X - XO = ih T+ Jf VCX (G;XO)H (s)K H(s)VCX(s;XO)ds
- Q
r T
-1 * * 1.
-y - W +J[' K (83X H (R N(s)ds|.  (45)
- 0

Trus for large T

- -1
w(Xy,T) = E[X(T) - xoixo'I = R (X,,T)

T T
-1 v X ¥ e)RTET 1d
- A (X0 - ) +f CX (s,XO)H (8) EiN(s) ids | ,
0

or
oX,, 1) = - BTN, DA - W (46a)
0’ 0’ 0 '
where
T
B(X.,T A7l X (X K (8)R™H(s) V. X(s;:X.)d {46b)
(X5,T) = A"+ X (XK (8) (s)V.X(8:X;)ds.
0
Equation (4€°, arrived at via the preceding li. .arization, can be
u ith (38) to estimate the biased Cramer-gauv hounl, However,

B(XO,T) can be written as

T
B(X,.T) = Al +f [n"‘n(s)vcx(.;xo)1*(n“ﬁ(u)vcxu;x0) lds, (47)
0

v .ich is the sum of two squares and therefore is monotonically

incressing. If its limit as T increases 18 sufficiently large, then




o1

B (R, T > e(Xy) 0. (48)

T

G 5

For such XO and for large T the inequality (3% becomes

N

T ~-1)

205 1) > 4 Tr: ' f 7 X (s K IE (53R H(s)7 X(s:X ) ds| (49) 5
e ( 0’ ) race o SR S} 8}V X R ) i

[L"’u
which is the unbiased Cramer-Rao bound., The lower bound given in the
right side nof (4%; 1is probably too small, in view of the assumptiocns
employed in its heuristic deve'vpment, and because {48) will not
aiways be satisfied. 1In fact, comparing (46b) and {(37), it is evident
that (except for very large Aul) Bul(XO,T) very small implies that G
is alsoc very small; i.,e., the unbiased Cramer-Rao bound is then also
essentially zer~, When (48) 1is not satisfied it is possible to
approximate the biased Cramer-Rao bound using the gradient of w(XO,T)
as feund from (4oa)., However, the “ound given by (49 will be dis-
played later for the application being made. As mentioned earlier,
this result could only apply for large T, when it is expected that the
estim: e becomes independent ¢ A, which does not appear in (49). In
any case, the unblased Cramer-Rao bound is an interesting standard ;

with which to compare the estimate. §

-
——
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IV, AN APPLTCATICN: REENTRY PREDICTION

GENERAL

As an example application of the foregoing theoretical results,
they will be used to estimate the initial conditicns of a reentry
vehicle (RV) which has been detected and is being tracked. It is
assumed that a priori information is avajlable relative to the space
point at whichk the RV wil] be detected and to its velovity at that point,
In the particular case at hand, the acquisition and tracking take
place during the last 5 seconds before impact, so that it is natural
to think of these a priori data as haviong been supplied by a long-range
surveillance radar for purposes of acquisition and track initiation,
In such a situation, it is natural to ask how to use these a prior:
data following acquisition, in order to make the pest estimates and
predictions during the tracking phase.

Depending upon the circumstances, it may be necessary tc estimate
certain RV parameters, either initially or continvously, in order to
predict its reentry path. In particulay, the RV lift and drag coeffi-
cients are often peorly kanown constants or functions of time. These,
and other uunknown parameters, could be estimated within the framework
of the preceding theory, simply by including them as extra components
of the vectoxr X{t) and including components describing their varia-
tion with time in F(X)., Similar remarks apply to certain variable
environmental factors, such as air density at the reference altitude,
which vary contiruously., However, inclusion of these extra parameters
in the estimation example greatly increages the complexity and diffi-

culty of the computing task without adding very much to the usefulness
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of the example. Therefore, the estimation procedure will assume that

all RV and environmental parameters are known accurately,
Similar reductions in computing complexity can be made by vrestrict- é
ing the KV motion to a well-known vertical plane containing the tracking {
v3dar. Estimatior and yrediction within just that plane is still a
sufficiently rich problem to dieplay the technique. Alsoc RV character-

istics are assumed to cause only drag accelerations; ro lift or deflec-

tion forces operate (the latter is ruled cut by the pianar-moticn as-
sumption}. Finally, for simplicity a flat earth will bz assumed, as : »Q*a;f
well as a force of gravity that (s constant throughout the altitudes
[ concerned and directed alorg the radar vertical, Ia the case at hand
these latter are both acceptable assumptions because the ground range ﬁ;jfﬁ
and altitude variations are so slight. However, even {f thev were not "::ﬁ
slight. an estimation example which rreated them as constant would be
as ausef:l as {f they were otherwise traated, as long as the equations
of motion actually used are correctly refiected in the trajectory esti- ?»:yg

mation procedure.

EQUATICN- OF MOTION

{f Given these restrictions, the situation can be displayed in A
spherical coordinates as in Fig. 1, where the vector meanings are

noted., In spherical coordinates the equstion of motion in one plane

13(18)

o T
VT (F - bf) 526k di) - o (D G/, (50

= where the dot represents the time derivative, the bar represents a

vector, and




i R g

e

Legend:
/T],é,,: Unit vectors

V: Velocity vector
Drag vector

D
G: Gravity vector

.29,

xy

— ¢

impact
point

0

Radar

Fig.1—Space and vector relationships




V = RV velocity

I, 7 unit radial vector
A = nit angular vector in plane of motion
: g

r = radial distance to RV
angle between zenith (z-axis) and radius vector to RV

F = total-force vecter acting on RV

=

D = drag-force vecter acting on WV

G = zravity-force vector acting on RV
m = RV mass

Force D may be writter as

D= - CDACQVL’JV‘

taj—

where
C_. = RV drag coefficient
A = RV frontal (drag) area
o = air density at altitude

X, = unit vector along the RV iine of flight, o1t
24 ®

_ v o5E

- v LT

Y T W T2 22172
o T+ r 9

Force G, because of the simplifving assumption about its direc-

tion, may be written as

G = - mpg¥ = - mg cos fr, o+ omg sin

whete
g * gravitational acceleration

F. - unit vector along z-coordinite

y

1

N e s G E
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Thus

F = [(- %CDACpVZ) T%I- - mg cos e] ?1
+ [(_ ..l..cAcpv )W+mg sin 6] 91,

and combining this with (50) gives
[t - réz]? + [2;6 + rB]E = 1 pV + g cos 8|T
1 1 D (o | | "1
1 2 18
- [2 CDACOV m - g sin 9]'51.

Equating coefficients of T

, and 31 in (51),

Y- bl .- % CDAcplvli - g cos 8,

210 + 18 = - % cDACp.lvll";fi + g sin 6.

Substituting lv! = (i'z + rzéz)]'/2 into (52) gives

T - réz = - 2é2)1/2 i - gcos 9,

N

o2
CnAcp(r +r
221/2

216 + 16 = - CDACp(r + 8%

N
8 l"'

+ g sin 6.

1f we now define

1 1

°" W/CpAc T melCAC

where

W =mg

is the weight of the RV, there results the final form for the

(51)

(52a)

(52b)

(53a)

(53b)
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equations of motion:

T - ré2 = - % ngi‘(i‘z + r:zéz)l/2 - g cos 6, (54a)
2;6 + r.e. = - % ng!.'é(’::2 + 1:'262)1/2 + g sin 0. (54b)

We will take as the basic vector to be estimated or predicted

xl(t) r(t)
%, (t) r(t)
X(t) = x3(t) =| o(t) . (55)
x,(t) 8(t)
From (55),
dx1 dx3
-a-z- = xz(t) and el xl’(t) .
From (54),
X, W 42 1. .2 252.1/2
Tl --Z-ngr(r + 8% - g cos B
= xlxz - % ngxz(xg + xixi) 1/2 - 8§ cos Xg,

and

4 - P - l .o l . 02 2.2 1/2
Ty 8 t{- 2r9-2ngr9(r +r0Y) + g sin 9}
1 2 2 2.1/2
= "_11 - 2x2xl’ -3 Bgnxlxl‘(x2 + xlxa) + g sin x3} .
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Thus we can write

X

2
2 1 2 . _2.2.1/2
X)X, = 3 ngxz(xz + xlxa) - g cos x,

QK = F(X) = X,

LI _ 1 2 2.2.1/2
{ 2x2x4 2 Bgoxlxa(xz + X% 4) + g sin x3}
(56)
Here p varies with altitude and for this application will be
assumed to vary as
P =Py exp (- ox) = Po €XP (- o r cos 0), S ¢-Y))

This uses Z as the effective altitude for estimating p but is accept-
able, given the small ground ranges met in the current applicdtion.

Equation (56) can then be rewritten as

1/2

; ngo 2(x + xl h) exp (- ox, cos x3)

- CO8 X
8 3

1/2

{ 2x ngo 1 A‘X + ‘1 &) exp (- axi cos x3)

+8 sin’xi}i
(58)
Equations (55) and (58) describe the physics of the process.
Values for B, and the time interval of observation, have been selected
so as to result in highly nonlinear variations in position and velocity

coordinates. This is illustrated in Fig. 2, which gives these coordin.

-
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ates as a functien of time, as well as the values used for *®

. | g’ :O)
and ~., Also shown is the axial RV accelerat on, to illustrate the
Lighly nonlinear nature of the RV forces and motion. These resuits

(19

were computed using a2 Rand computer program calied ROCKET.

RADAR OBSERVAELES

The radas is assumed able to measure di.cctly the RV coordinates
Xy =T, X, o® f, Xy = =, with measurement being exact except for addi-
tive ncise., Any multiplicative factors cculd have been inserted intc
the measurement of these three coordinates with no added complexity.

This is ecuivalent tc taking

//1 0 0 o\
] \'\
H(s)=\0100|-—-ﬁ,
|
\0 0 1 0/
so that
\
x.(8)
/i 0 O 0 !
x,(s)
2Z(s, = H(8)X(s) +N(s) =1 0O 1 0 O
x,.{8)
0O 06 1 9 3
4(8)
nl(s) xl(s) nl(s)

+ nz(s) = xz(s) + nz(s)

n3(s) x3(s) n3(s)
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COMPUTATIONAL APPROACH

Mixed Differential-Equation/Newtonian Approach

The objective of a computational scheme is to caisulate the

solution i(T) to (25) which minimizes (26):

T
5 "1‘t fp o] * " * 'll'
ch(X,T) = 28 (K - ) -2 j vCX (s;X)H R “[Z(s)
]
- HX(s;X) 1ds = @, (25)

)

T
£ - \* -1 - "-* ‘1r. 3
E(C,T) = (C - u)} A (C - ) + Z(s) - HX(s:;C) ! R "1Z(s)
0

HX(8;C) 1ds. (26)

Two applications are pos:sible: real-time, on-line computations, and
nonreai-time, off-line compucations. Beoth applications can be
approached via the preceding theoretical developments, The apprecach
involves solving (27) for i(T) as the observation interval for Z(s),
{0,T) grows with tline T; the solution is initiated by using the initial
conditions given by (28):

A

«@ " 1y v *meyutr ey . .Y
i z[vccf(x,r)] VX (T;X)H R™TE(T) HX(T;X) 1, 2n
i(O) = % = AH*R'l[z(O) - Hpl, (28)
T=0

Since the sol=tion of (27) is to be done numerically, it really

amounts to taking
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aX(T)
4T

X(T + AT) = X(T) +

4T, (5%}

using (28) as the starting condition; actually a suitablie numeric-l
integration technique 1s used to effect (59), specifically Runge-
Kutta. The question of suitatble AT size immediately arises. Depend-
ing upon the magnitude of the factors in (27), very small AT values
may be required to keep the resulting i(T + AT) from diverging from
the desired exact solution to (27). When this situation applies, com-

puting times can become so great as to be impossible, even for off-

iine applications,
Since we ave 2aiimating the initial condition X(0), X(T) need not
change rapidly with T; for example, it certalnly need not change as

A

5 )
per F(X). It is reasonable, therefore, to consider weighting ﬁ% in

TSI R T e

{59) so as to decrease its destabilizing effect for a given zize ATl:
X(T + 4T) = 3(T) + v iﬁ"%fl AT, (60)

where Y is a consgtant, 0 < Y < 1,
Naturally, for finite AT and constant Y the value for ﬁ(T + AT) f}?  y
resulting from (60) will differ from that value which truly minimizes

i (26). However, if it is close enough to the correct value, then

steepest-descent or Newtonian tecliniques can be used to improve the
estimate for constant T. For example, if Newton's method is applied,

then a sequence of improving estimates for i(T) results from taking

™ = N1 - rvccf(i“m,r)1‘1vcf(i“m,1). (61)

It is immediately clear that several exchanges can be made between

these two techniques, in order to gain either computational accuracy
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or cfficiency, or both, Note that even for v = 0, the application of
{60) and (61) affords an approach as near as desired to the correct
i(T), provided the conditions for Newtconlan couvergence are met.
These conditions are (see Ref. 20, p. €3)

If the left member of

1
Vef(C,T) = : =g
3f(C,T

ac

v m /
satisfies
JERC,T)

1. f‘ - 2 ’ sd L j=1, .m,

2. The matrix VCCE(QO,T) has a nonvanishing determinant B (wich
absolute value {D}|) and. for the absclute value ;Aij, of its

cofactors A, ,,
£]
1 n
; , <
m?x TBT jEI'Aij‘ d2,

3 ~
E(ﬁ,l‘), s = 2 £00T) , are all bounded:

3. The elements of 7

cCce fik Acixcjack
‘51Jk| 4y

in the region
1 -/1 -2b

4. max |%. - §0| <~ -0 d.d,,
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where X = . and

b0 is defined by and satisfies

if

2 2 .
by = dyd dam” < 1/2,

0 27173 :

then the system 7 _f{X,T) = @ has a solution which can be obtained hy

c

Newton's method (61).

Joint application of (60) and (61) would then proceed as fullows.

~

At T = 0, take Q(O) = |4; compute %% from (28) end apply (60} to
T=0
estimate
(o] * -
XO(ATl) -u + v R Z(0) - LTV

Then apply (61) until ﬁn(ATl) satisfies certain conditions, such as
all coordinates of ch(ﬁanTl], ATl) being less than some constant, or
all cocrdinates of {in(ATl) - ﬁn—l(AT1)1/'|ﬁ“—l(AT1)!! being less than
some constant, Taking this last estimate for ﬁ(ATl), then apply (6¢)
to compute }20(/\'1'l + ATZ) and so forth until ? ATi = T, the upper limit
of the observation interval. We will refer to each application of
(61) as a Newtonlan iteration, Application of either (60) or (61)
involves numerical calculation of the various factors occurring there-
in, and as these equations suggest, involve essentially the same
amount of computing time. Assuming this to be case, it i, possible

to make a rough estimate of the alteraliovns in computing time possible

via (60) and (61), as follows,
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Computation Time

In general, the integration interval /s used in the numerical

calculatican of the factors of (60) and (61) reed not equal AT; 1in

genere! it will be preferable not to have As = AT, in order to permit

sufficient data density over (0,T) even though AT is fairly large.

For reasonably large T, the calculation time is dominated by the per

As integrations,

Let

4T = step size at which update X(T) in time T

As = time interval used in numerical integration for
calculating the factors in (60) and (61)

v = AT/As

5 = computer execution time per As calculatlion, assumed
the same in application of either {(60) or (61)

7N, = number of Newtonian iterations at time T

fars

i

=3
t

= average number of Newtonian iterations per time Ti

T = total time of observation to date

T, = computer execution time at time Ti : SR

T = total computer execution time for processing signal

over (0,T)

N = T/AT = number of updatings

o AR

At time Ti’ the computer m:.st process numerical integrations
T

across Kl intervals ip each calculation of the factors ot (61), plus
s

o

once again for the updating via (60). Thus we can write

5(M, + DT 5(n, + 1) i
- i i _— 4T .
T, - = iar 16(“1 +1) A’ )

As As

e N S A o 1 S AR 4 S e e e St e e R W1 e %
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or
T, = 16(ﬁ{ + Do, (62}
Then
N N N "
;0( 7 | { 3
T= T v, =0vd I (M. + 1 s8N+ ¥ d 07 + LICK f“iLs
i . 4 2
i=1 i= i=1

so that from N = g% and N + | £ N there osllows

2 2
W8 {7 i) o« - & T .
280+ 1) (_?_) SN+ T . (63)
2 T 2 ASAT

Co

It is th wvaricvion £ total computer execution time with Rg%f that
forces the uws. of ~ther large As values, as well as the use of rather
large AT,

E-2n wita only a four- ocordiuate vector X(s), the number of equa-
tions whick aust be integrated numerically to apply (60) and (61) gets
excezsive uniess th computer is of special design. The computers
available ave favr from specially designed, naturally, and further,
aiready-programned numericail procedures have been used whenever pos-
sible to reduce programming -ffort. Tlae result is that the procedure
used here for computation is very inefficient, timewise, takiag about
one second per ceaplete As calculation integration)--i,e , & $ 1 sec-
ond, The resulting effect uvpon T, given by (63), is plortted in Fig, 3

T '
28 2 function of T for éi*:%& L 10&, Since T scales iinearly with
i+ 1)

/
= , Fig. 3 can easily be read for values other than 10 for
As
this fac-or. Except for rather small values of T, Fig. 3 sugge.ts
X(T) caicuial ‘on times two or three orders of magnitude greater than

the real-time obscrvatinn being processed. Since it appears that such

PR
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tactors can be recovered by specially designed computers, and since we
are here principally concerned with the potential capabilities of the

proposed technique, this 1s an acceptable limitation.

.
)
t
[
"
g
C
S
18]
&
vi
~3
o
S’
LN
|
'

2 3

T~time (seconds}

Fig.3—-Computing-time variation i

Integration Routines

It remains in this section (Computational Approach) to describe
the specific equations which were numerically solved in the appiica-

tion of (60) and (61).
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" Given an ﬁ(T), to apply (60) to the calculation of X(T + &T) re-

1

[}

quires the caiculation of the factors in (27, that is, "“Ccf(i‘T)"
7CX(T;§), X(T;i), and the performance of manipulatiocns irdicated in
(60). First consider X(T;ﬁ). A basic given in the problem statement

is the differential equation

57 = FOO. (64)

The Runge-Kutta integration routire in the Rand program library

has been directly utilized to compute X(T;ﬁ) via (64). Directly from

(043,
T . T
X(T:X) = fd—xid-i-*& ds + X = f FX(s:K)ds + X, (65)
0 0
so that
. ; T
; X)) Xy 1 » 4 -X
XKD | Q££§£§A§li ds + 1. = v A FIX(s:X)" 2X(siX) ds + 1
3ck J € k (s:X) \ck k
0 0
(66a)
where
0\
SN N '
X C ‘
/ 1\
X = C = . I 1 kth place. (8eb)
. k
-~ / O
(m \(m/
7 /7

. \
5
0./
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Equation (66a) may be rewr ' ~iecn as
T
7 X(T:X) = | 7., & FX{s:X) 7 X(s;X)ds + I 7
CX(T,X) ]f X(s;X)F X{s:;X) CX(s,X) s 1, (67)
0

where I is the mXm identity matrix,

Equation (67) can then be written as

27 R(T;X) R .
—_— =7 a FT XY T X(T: 68)
T (T F X(T:X) 77 X(T;X0, (68)
and the same Runge-Kutta integration can be used to calculate 7CX(T:ﬁ)

via (68, once X(T;i) is kpown via (64), using as the initial condi-

tions
vCX(o,i) S 1. FX:X) = F(X). (69)

"y X
CCf(X,T)

a7 may be wi tten as

MEWorh (19) ,

Vet R ,
[T 2‘7 0 . \,; ) m; Y
T CR (T;XxYH R H CX(L X)
* o % -1_ AL
- ZVCPX (T:X)H R 7Z(Ty - {X(T;X)  , (70a)
. - : -1
with 'Ccf(x’O) = 28 (7ub)

The vectors X(T;X) and vcx(T;i) are available from (64) and (68)-(69);

simi.arly, from (67),

a T . :
hY Y . are a f . T w . 3
7X(TX) r Af X{;jX)F'X(S’R) Cx(s,X» N
3 o
Ck Jo Buk

e v 1 o
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- RIS

'T‘Il.'] A Frx(s‘i)ﬂ.‘
N [ __X(s:X)
L k

" 7 X(s;i)}
+ 7 A FiX(s:X) —=

X(s;X) *ck J
T L3
ro A X(s3X) - 5
- 7 - - (g:) .
{ X(s R)x (s R F (530 =T X (s X0
ro K
A >"Cx(s;i)
+ 7 A FTx¢ 1y
X{s:hﬁF Xs:X) o } as,

which is equivalent to

]

T
S O O I
KT jﬂ X(s KX (s T XS F KK Xy
0

T
ol T A FTX(s K0T X (5K ds
/. )'Z(S;X)F (s ;%) LTC\( Xods |
J
O
which can be rewritten as
AT KT .
e L TR XD xR
T X(T:0x(T 5T FTHR TRTET XX

Pl - ¥y .{ AN 7\ (7
X(T;X\F X{(T.%) CCX(T,X., (71a)
vhere

fccx(ﬂ;x) .y (TIm)

Again, the same Runpe-Xuita techniques can ne used to solve (7iY,

given outputs from similar Runge-Kutta applications to (uo) and ()
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for X{T;X) and 7CX(T;§). All the inputs for sciving (70) are then

avallable, which can alse t» sclved via the same Runge-Kutta technique,

"

VCCf(ﬁ;T) is then inverted, and %% formed via the multiplications

shown in (27). We are, in effect, solving simultaneocusly via Runge-
Kutta technigues the equations (64), (68), (70}, and (71}, This

2 3 2 2 3 .
involves m+m” +m” +m” =m+ 2m” + m” simultaneocus equations; for
m = 4 this tcral is 100, Given this solution for a given T, the same
FPunge-Kutta technique then used to update i(T) to i(T + AT) as per
(60) .

In addition to the preceding, it is necessary to calculate

ch(i,T) in order to apply (61). From {25),

BVCf(X,T)

T = - zvcx*('r;i)ﬁ*n"lEZ(T) - HX(T;}?)W,, (72)

which can be solved immediately with the preceding set, leading to a
total of 104 simultaneous equations. This explains the large computer
execution times per As,

The actual implem-ntation of the preceding 1s sketched in the

program flow diagram in Appendix B,

COMPUTATIONAL RESULTS

The objectives of the calculations performed are several, The
first is simply to show that the maximum-likelihood estimator derived
above can be numerically calculated. Another aim is to show the rate

of its convergence and the usefulness of the limic to which the MLE

tends. A third goal 1s to illustrite some of the computational

choices which must be made (e.g., magnitudes of AT and As) &nd their
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efrects, Finally, it is desired to display relative to the computed

solutions some numerically derived values for the Cramer-Rao bound,

Computations

The nonlinear and complicated nature of F(X) makes it mecessary
to calculate x(s;xo) for any given XO num¢ cally. Although this can
be done quite easily with the ROCKET(IQ) program, it is relatively
expensive in computer time. In part for this reason, the computations

to be described were made for only one XO, that corresponding to

Fig. 2:

77929 ft
- 21836 ft/sec
.83200 rad

-.01184% rad/sec

Variations in Xo relative to u, the expected value of XO, were accom-
plished by changing u. Two such variations were examined, one corres-
ponding roughly to Xo - 4 coordinates of two, twenty, twenty, and two
times thelr standard deviations (about their u values, respectively);
and another corresponding to Xo -  coordinates of three times the
above differences. The smaller excursion was used as the principal
czege and corresponds tc an excursion which should not usually be
exceeded; the relative magnitudes were chosen to test for convergence
by coordinate. The more extreme excursion was used simply to test
initiation and convergence for an extreme deviation from the initial

value of the estimator at T = 0: .
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The trajectory corresponding to the above XO was calculated at

10 "-second steps over a 5-second interval preceding (and near} RV

impact. This served as the basic trajectory. For each noise matrix R

used, a random sequence of noise inputs wes generated at 10'3-secand

steps, and a sample observation waveform Z(s), C < s £ 5 seconds, cal-

culated from

Z(8) = HX(s;XG) + N(s).

Given the random (noise) component in Z{s), it is imposaible to store
Z(s) over all points of a time continuum in closed form; but As = 10'3

second was an adequate density for our purposes.

Only two noise matrices (R) were used, one representing & nominal
radar perfcormance, the other an extremely accurate performance to test

the impact of R upon estimator initiation and convergence. The former

‘nominal) R was used as the principal case. Those used were, the

first being the priancipal case.

10%¢e? O

R =l 10%(st/sec)’ |,
O 3x1o"‘rad2
10242 O

_ 2
R = 1({:/sec) .

O 3.04X10 8 rad?

It is useful to express the last component ot R in square feet, to make

e o
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it visibly comparable to the first two components. It becomes at xO

164802 O

R = 102(ft/sec)2 ,

O 1.82x10%¢¢2
10252 <::>

R = i(ft/sec)2 o

\\C) 1.85%10%f¢2

With R in this form it is more clear that the angular accuracy ascribed
to the radar is not ocut of line with the range accuracy.

Given the preceding selections, there remains only A unspecified.
Ite value principally has two effects. First, its magnitude coupled
with that of R influences (in some complex way) the feasibility of
numerically inverting Vccf(i,T)--and therefore that the basic differ-
ential equation (27) will be applicable and soluble for all T of inter-
est. This interaction between A and R was explored in a very limited
way by varying R as per above. Second, the magnitudes of A and R help
determine what values of AT (the step size used in the numerical up-
dating in time of the estimator) can be used. That this is the case

caén be seen by examining the expreasion (28) for %%-at T = 0:

« m'RIr2¢0) - mal. (28')

al&.
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~

The vector g% gives the direction in which i(T) should be changed; how-
ever, use of too large a value for AT in (60),

)

R(T + AT) = X(T) + v g% AT, (60)

will cause divergence from the required solution, It is clear from
(28') that large A tends to emphasize the influence of the radar mea-
surements on %% and large R to emphasize the a priori statistics, as
should be the case. Altering AT does not alter the direction of change

A

given by g%; it only alters the magnitude of the change in that direc-
tion,

As explained earlier, the computing routine used here employs as
many existing programs as possible and is therefore expensive in couia-
puter time; therefore, relatively large AT values are preferred--in the
range 107" to 10‘1 seconds. These factors constrained the computa-
tions to the use of just ome A and the use of various values of AT
in order to examine its influence upon initiation and convergence,

The A used was

10%5¢? <::>

2, 2
107 {ft/sec)

1X10" %rad?

<;:> 10-6(raa/sec)2

It is of interest to express all coordinates of A in feet and display

1/
A"/A, in order to indicate the comparability of all the error compo-

vents &nd to make clearer the a priori error magnituldes involved:

Wk e
L e
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103,
172 10ft/sec
1.3AX103ft

<::> 78 ft/ses///

There remains to be assumed the step size, As, to be used inside
the integration rcutines for fixed T--e.g., in the calculation of
X(T;XO), In these calculations, this has been taken equal to /T and
thus has fallen in the range of 1073 to IC)O1 seconds and was varied with
AT to examine the effect upon estimator performance. The principal
effect that As size has is to introduce a gr~nular structure into the
surface £(C,T), the minimum of which is being estimated. Clearly, the
accuracy of estimation possible will be limited by this granularity
and therefore by As,

Computational results will be shown in terms of tue absolute
ervor between individual components of the estimator and the actual
initial condition Xo; also shown will be the same ervors transformed

to the equivalent absolute errors in distance and in velocity, For

//“10

X

—_—

20 0
0 *30 % ;
X0 / \\éo
/ i
p !
/’ﬁ ///§ i
1 0 f
.| R t :
X =| 2 . (\\ 0 :

A — e -




-52-

we define the errors of interest as

(3]
"
T
1
la]

r 0

e, = Ifo - ;Oi

fe = 1% EA’oi

eg = 18, - 8,1

€4 7 [ei + récg]l/?
e, - reg + réegll/zs

where € and €, are the errors in distance and velocity, respectively.

Pure Differen’ial-Equation Solution

In Fige, 4 and 5 are shown these errors as a function of time T
for several fixed values of As = AT (10-1, 10_2, and 10.3 seconds) .
In these estimates Y = 1 and no Newtonian improvements to the pure
differential- >quati.n solution were employed. The different ranges
of T over which the errors are shown (for different As) result be-
cause of the greater computing time required fror the smaller §js
values. The intent is to show enough T range collectively to ind{i-
cate the performance of the estimator,

Figure 4a indicates that for As = 107! seconds ?0 {s either di-

verging or tending to a limit some distance from r Three things

0°
are probably occurring. First, the granularity {ntroduced into the

surface f(R,T) by a finite sampling interval ps = IO-l seconds {8

probably such that great accuracy {s not possible. This is borne

out later by the differentia.-equation/Newtonian calculation, which
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Fig.4a —Range error for pure differential-equation
solution, for various As and vary

(puodas /j09y) ¥a

T ~ time (seconds)

Fig.4b—Range-raie error for pure differential-equation

solution for various As and varying T
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apparently has an €, asymptote at about 1500 feet which should depend
mainly uvnon this pgranularity. Second, AT = 10-1 secends is probably
just too large, with resulting divergence from the desired solution.
Third, as will be shown below, this estimator will sacrifice perfor-

mance in one coordinate in order to improve overall perfeormance, and

this may be occurring, Similar remarks apply to Fig. 45 for as = "10-1

A

seconds, which displays € In Fig. &c, it appears that 9, is converg-

e
ing usefully. Figure 4d, however, indicaces that for As =~ 10~ seconds

9 is diverging rapldly. 1Ian Fig. 5 are shcwn the errors ¢ and & It

appears that ¢, is converging to zero; since is a combination of

D ‘p
Y and €as it would appear that the behavior of ;O depicted for
As 10-1 seconds in Fig. 4a was in part an attempt by the estim.tor
to produce a better overall miss-distance result, Similar remarks
apply to &y for As = 10 sgeconds, presented in Fig. 5b, However, it
is clear from Fig. 5b that AT = As = 10-1 seconds is too large for
convergeucsa,

Figures 4 and 5 indicate that As valuee of 107 and 10-3 seconds
provide convergence. The slight divergence of €, for As = 10“2 sec-
ouds (Fig. 4a) is shown in Fig. 5 to be the result of an overall

improvement in ¢, and evg ag discussed above. However, two results

D

shown in Figs. 4 and 5 deserve special discussion,

First, although ¢ , ¢. . and ¢ all appear to converge rapidly
o % %
to limits near zero € does not (Fig. 4b); similarly for the rapid
0

convergence of & towar? -ero, but not ey Near T = 0 this is due In

part to the relative cmphasis placed upon the radar measurements by the

A

element» £ A aud R and can L.st be visualized by examining g%"at

e R ST T et e
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i T = 0 given by {28). Given the diigonal nature of A, R and H, & 1-0
: takes the form, substituting in the values of {aii} and {$.1 from *

and (nominal) R,

100{:1(0) -y

Load

= 22(0) = uz

25(0) - u, /
N0 J/

This value of 0 in the fourth cooxrdinate will change, of course, as T
increases, It is apparent from this expression that the T egtimate
will emphasize the radar measurements much more than will the estimate
of T in the vicinity of T = 0. The relative performance of the two
estimates shown in Figs. %4a and 4b near T = 0 {s therefore to be
expected, and similarly for Pigs. 4c and 4d, inasmuch as the radar
errors are rather small, The degree of radar-measurement emphasis
away from T = 0 will then depend upon the growth of the product of
[VCCf(i,T)}-l and VCX*(T;i) {see (27)). 1t wouid appear that such

growth is not as favorable tc convergence of 30 as for the other esti-

mates, Naturally, the poor convergence of in Fig. 5b results
€y

because ey contalins €y Is the poor convergence shown by ¢, and ey

worth the effort? The answer lies in two quarters. Firat, {f the

initial error (between Ko and fo) had been larger, then convergence to

the shown level would have been more {moressive; this is discussed

larer relative to such large excursions (see Fig, 8). The second

aspect deals with the other result of Figs. 4 and 5 deserving greater

discusgion: estimation of 50 shown in Fi~, 4d,

L TRRE e A
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In the present application the variable @ cannot be measured
divectly by the radar and so mist be estimated entirely in terms of

the other observables. Therefore, 8 can be ccnsidered an unknown

0
parameter (which has an a priovi statistical distribution). It is

a
v
[=1

seen that 0

converges for appropriate s values; which includes

€y
€z, also beis =c appropriately with increasing T. This is discussed

in greater detail below, under >he differential -equation/Newtonian

soiution.

Differential~-Equation/Newtonian Sclution

If As were infinitesimal, then use of the Newtonian technique
to improve the pure differential-equation solution for finite AT
should re<ult in an exact solution corresponding to infinitesimal
AT (given convergence of the Newtonian iterations and within the
limits of computaticnal accuracy). Since As is finite in these cal-
culations, only smaller improvement relative to this theoretical
maximum can be expected, In the results that follow, once converg-
ence for the differential-equation/Newtonian estimator was indicated,
values for small §As (10"3 seconds) and large T were calculated by

A
setting %% = § and using just the Newtonian iterations. That is,
for such computer -expensive cases Y = 0 was used in (60), Alterna-
tively, large AT was used to get an approximate starting solution
for large T, at which T smaller As was then used in the Newtonian
iterations to estimate the solution for AT = §ps,

Results for the joint routine are displaved in Figs. 6 and 7.

It is seen that agaln Lor ps = 10-1 seconds (as discussed earlier)

€ approaches a limit considerably greater than zero. All the other

e ar— ——— A bMA
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T ~ time (seconds)
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components converge even at As = 10-1

seconds, and € and e, converge

1, 1032, and 107> seconds). The

for all values of As employed (10~

apparent slight divergence of € and € after their initial convergence

again results from an overall improvement in the estimaticn, as is

borne out by reference to €p and €y in Fig. 7. Again, ¢, and ¢, 40 not

i 3

f;i converge toward zeroc as rapidly as the other errors.

Also shown in Fige. & and 7 are the correcponding unblased Crame

Rao lower bounds on the conditional RMS error, 1t is cleay that the

estimator converges with increasing T to a solution and that the solu-

;f tion is a usefu! overall estimate of XO of the order of *he Cramer-Rao

bound, In particular, the estimation of §,, for which there are no

direct radar observables, is good. It is this excellent estimate of Yi?illf
éO (and of Po) which makes these results useful even though tG is not
handled as well. For unless all coordinates are estimated reasonably
well, such accuracy in particular ones is impossible. But the esti-
mator has exchanged accuracy between coordinates, ‘hereby reducing
€4s for which there is no direct measurement, to less than EO-Q

radians/second, or less than 5 percent of its original magnitude; ¢q S

is reduced from 0,347 radians to less than 10-3 radlans, or less than
0.3 percent of its original magnitude; and €, 8ues from 2000 feet to

less than 200 feet, or less than 10 percent of its origlu.l size, 1t A
is this overall estimate of Xo, and especially of the coordinate 60‘
fr which no direct radar measurements are available, that makes these

results of interest,
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Extreme Excuysion of (X - p)
A%

The above example used a value of Xn differii; from its expected
value, u, by about two, twenty, twenty, and two standard deviations in
its four coordinates, vespectively. To explore tne initial conve--

gence of the estimator, a u differing from X, in each coordinate by

0
three times the above differences was employed. Convergence of the
differential-eguation/Newtogian solution for this case is shown in
Fig. 8, where it ig seen that by time T = 0.25 seconds the solution
has converged to that corresponding to the smaller-deviation case.

At T = 3 seconds these solutions corvespond to errors in distance (D)
and velocity (V) which are about 1 percent and 25 percent of the ini-
tial error at time T = 0. This performance for large initial errors
is another veason that relatively poor performance in one coordinate

{fO) for the more nominal case of Figs, 4, 5, 6, and 7 may be accept-

able, ag discussed earlier,

Excursions in A

As discussed above, AT must be sized so as to match » and R if
initiation and convergence are to occur successfully. The preceding
variation of /T over two orders of magnitude indicat.- the range of
ingsensitivity of this variation for the particular example. Experi-
ence with the routine illustrates that the R and 7-to-'T relationship

is a very sensitive one.

Excursions Iin R and Estimated-to-Actual Noilse

The seceondary R-matrix given on page 48 was used to explore its

effect upon initistion and convergeunvce, Neither the pure differc.>ial-
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equation nor the ol ffereuclal -equation/Newtonian estimator wouid con-
verge appropriately for As values of 10-1 and 10_2. For As = 10“3 the
pure differential -equation estimator converged weil, as shown in Fig. 9.

It is also of interest to explore convergence of the estimator Lf
the nolse does not correspond exactly to the R-matrix employed. Thie
1s ~hown for As = 10-2 seconds in Fig., 9, where the terminology is de-
fined as follows:

o No noise--large R: primary R-matrix was used in equations,
bur there was no noise added to radar observations,

o Small noise--large R: primary R-matrix was used in equations,
but noise added to radar obse.vations corresponded to second-
ary R-matrix,

o Large nofse--iarge R: primary R-matrix was used ia equacions,
and noise added to radar observation corresponded to primery
R-mairix.

The T range chown is great enough just to show how rapidiy all three

cases converge to the same solution, {ndependent of the estimated-to-
actual ncise relatlonship. It {s clear that as long as R is ''larger"”
than or equivalent to the actual noise, convergence takes place. The
contrary case--noise ''larger” than R--should glso converge for appro-

priately small sT. However, {ts calculation requires considerably

more machine time and was not done here.
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V. CONCLUSIONS

These calculations did not compare MLE performance to other
egtimators. Since computational results by other researchers (see
Ref. 13) had indicated the greater accuracy of the MLE in the scalar
case, the calculations here were designed to test the feasibilicty of
applying MLE techniques to complicated vector situations. To that end,
they oxamined corvergence, iimit of convergence, effect of initial
evror, nolse magnitude, accuracy of noise estimation, and ability to

estimate unknown parameters,

THEORETICAL REFSULTS

1. The likeiihood expression p(‘!Z(s), 0 s 8 < T), upon which the
maximem-likelihood estimate for the inicial condition is based, war
derived and then specialized tv the white-nolse case, The desired
maximum-likelihood estimate ig that initial! condition € which maxi -
mizes p(C!Z(s), 0 <5 471).

2. The vaximum-likelihood estimate wag shown to satisfy (as a
function of the upper observaticn llmit T) a diffuvential equation (27}
of relatively simple form; it vae also shown that the resulting <om-
putational algorithm can be useful iy spplied.

3. The condisicnal Cramer-Rac boumd for the maximun.-likelihcood
estimator weas devcicped and an aporoximaiion devived.

4. The maxirum-iikelihood estimator for 4 spec Zic preblenm was

then derived from the precoding thesretical resuvite and applingd to a

white-noise case; nimilarly for the Jramer-Rao hound,

e e

L

vt ey

S




NUMERICAL RESULTS
1. ¥or appropriate vslues of As = AT the estimator ¢ouverges o

a usefui zslution for X, even given extreme initial cyrors. The con

o’

sy 2000

ditional error appears to be of rhe same order as tize Cramer-Ran lower

bound, 3

2. 1Iu the applicatiovn presented, the variable £ cannot be measvred

by the radax, and 3o & wmust be :£ the other

observables, Therefore,
(with known s priori atatistics). The eztimator azuvcaches the dvue

value of éG’ as well as those of v, end Gq, with considershls scouracy.

. ~
- Ttis ix done at the sxpense of velavivelv sicwsr conwergesnce of rOn
o 3. As a function of T. the iadividusil estimates »f r,, I, 8.,

and GC w2y not converge monotonically bt may vary s as to lmprove
;

o the overali estimate of X..
% e r—— Vi
o 4. Comvergence the pure differenticl-ejuaticn solution egti-

mator depends critically upon the value of AT used, Tals is to be

expected, since AT i3 the factor by which the derivative of X(T) ie
?‘ rejghted in forward projections ia time, The nature of this dependence
is influenced by A and R,

5. Convergence of the different‘al-equation/Newtcnian estimator
is less depeadent upon the vslue of AT; both estimators have basic ac-
curacy limitations determined by the size of As, which Introduces a
granularity inte tae suvface £(X,T).

6. In.tisrlon difficulties presented by large velues for X . - .

0

can be overcome by the use of sufficiently smsil values for Al. A
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B

varizbie AT, increasing with T, could perhaps be used in future pro-

RTAmMS ,
7. Tar the case ar hand, 3 to 4 secondy of real track rnime suf

3
C seconds,

V]
"y
‘e
)
I
Aed

ficed for essential ceonvergence,

o

3, Computer time requires was seversl crders of vagnivude grester

iz}

than che rea!-time chservation processed. With apacially writsen pro-

gYams and special -purpoese mannines this sbwald be reducibie te on-
Tine prugsytionz, Given the apparent sccuracy advantuges of MLE over
cextaln sppronimations svajuated heretufore and {ts computational
feazibility {i.e., solution &t and centinuing from T = 0), KLE tech-
niques prowise 1 usefni approach to compllicsted nonlinear groblems of

s

che dind examined here,

PUTURE EVELCHMERTS

1, As Impovient rewalining probles is rhat of deteimining the
relaticaship betwesn the maxbmim-likelihood estimate and the minimum
RHS (ervox) estlmats.

2, Tue bilag of tne maximum-likelihood estimate 18 not understood
end aeeda to be fusther szamined,

3. The exvor evaluatiorn mnade here needs to be extended fo include
eptimates of the RS evrrorx.

4, More effictent programs need to be devised, now that it hasg

vector case, This will assist {n the evaluation (n 3 juet above,

o
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Appendix &

DERIVATION OF COMDITIONAL PROBABILITY p(ClZ(s}, 0 < s <)

Defining
X(s;C} = X{s), given that X{0) = C, {Ala)
and
X0 = XO’ (A1b)
then for given X, = C we have

0

EfZ¢e) 1) = EMR(8)X{s:L) + N(s) |

H({s)X(s;C) + EMN{8)]

R{s)¥(s;C}, (42)

and the proce .. covariance conditioaned upon C is

%
R(s,ulC)

i

Ef(Z(s) ~ Efz(s) [eD(Z(w) - Efz(u}|cTy €}

[

EITH(s)X{s;C) + N(s8) ~ H(8)X(s:;0

TH(WX(u;0) + H{uw) - H(u)K(u;C)w*}

#

EMN(sIN (u)] = R(s,u).

That is, the covariance function of Z{s) is Iindependent of XO =

and is the same as the noise covariance function. However, the mean

varies with XO = C as per (A2),.

We wiil assume for this development that R(s,u) satisfies certailn
conditions permitting the following manipulations; these conditions

will be spelled cut later,

o
3
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Let

k k
fwi(s), A

be the orthonormal eigenvectors and the related eigenvalues of

k k
rk(s,u); that is, {ji(s), xi} satisfy

T
k k k
f e (s, v wau < 15 ). (#3)
0
{Note: w?(u) is a scalar function.)
Define
T
2 :./ zk(s)«&‘;(s)ds, and (AG)
0
nt(0) = Elzy[CY. (AS)
Then
- T T
.k r k
m:(C) = E{\[ zk(5)¢1(5)d5'é} = j E{zk(s)|C}wi(s)ds
0”
¢ 4 0
or, from {A2),
T
k. k
£ (0 = [ H, (s) -s;C)wi(s)dF, (A6)
o
0
wheve
1;1(s)"\
H(s) = s l.e., Ro(s) = (h, (s) ... h (8)).
, % 1 tam
Hp\s)

A b Aot A M ¢




Then, defining
k - r lr;r' f !
rij(C) = Ef.z - Bz, Y] zj - E(z lcylley, (A7)

one gets

T T
ORS fj ny ()0, () ¥ (5) ¥, (v) dsdulC (48)

' P - k.
r al " .
£ nk(s)nk(u)]C ;i(s) j(u)dsdu,

c;“"‘xra
O‘"\. L]

T T
k _ i k k Lk
rij(C) = f frk(s,u)wi(s)wj(u)dsdu - Iij (A9)
¢ 0
independent of C, so A3) gives
T
k k
= = A
rij f 3 i(:s)‘jvj(zs)de, Jﬁij' (A10)
0
where Bij is the Kronecker delta:
1, 1 =}
8 = . (A1)
13 0,14

It i{s also clear by analogy with (AB) that zt and z; are independent
for k # v, since nk(s) and nv(u) are independent noise processes., We

thus can define the random vector series {2(i), i = 1,2, ... }, where

(1) = . (A12)




T4

and we know from above that Z(iiC) is gaussian with mean

m;(c;\
M{i;C) = . (Al13)
mE(C)
and covariance matrix
Rl ]
O
R({i) = . (independent of (), (A14) ‘§
P d
Xl ;
&
)
where mi(C) is given by (A6): ;
T
k £ k
mi(C) = J Hk(s)x(s;C)ﬁi(s)ds. (a6)
0

Letting p(C,Z(1), ..., Z(4)] be the probability density for

[C,z¢Y, ..., 27, we can write

plCc,z(1), ..., 2(8))

it

p(O)p(2(1), ..., Z(0)|C)

"

plz(1), ..., «)dplclz(), ..., 2(0)], (A15)

and so

~ L pOp), ..., z(W o)
plclzcn, .., 20 - plZ(), ..., Z(O]

- K,p(Op(1), ..., D ]0). (Al6) -

- h—— 73 A
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Thun, p(ClZ(s), 0 <s «<7T) = p(ClZ(l), 2(2), ...) is given by

Then,

lim prCiZ(l),
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o 2]

@

= K, exp [ %{(C - u)*/\'l(c -u) + oz

fowo
@©

T rzqt) -
i=1

= 7

i=1

= L

i=1

1%

= %

k=1

P

= L

k=1

i=1

]
I

- (1,0 TR () Tz(e) - m‘i,cﬂ}

M(i,cH*R'l(i)rzu) - M(i,0)]

p
s L F{zl;‘l?‘ y 221: ml;(C) + fm‘;(cﬂz?

<

k=1 X
k
o ‘ z mk(C) [mk(c)12
1 . &,2 1™ i
o= 1271 -2 +
-1 ko \K \K
1 ¥ i
® p
D L LT I (S I
L=1 k=1 k=1
EETC
u ¢y = ¢ P
=1 A
i
Kk 2 ® (mk(C)}z
Yoyt .y ,
1=1 %

(Al17)

(51, with

(AlBa)

(Al8b)




which gives

plclz(s), 0 < s < T =

( * . p P
Kyexp [- 24 - w2l - -2 ¢ w50 + % v 012} .
3 2 .
k=1 k=1
(A19)
If we define
k
k m (O
g (s;5C) = T - v (8), (A20)
i=1 A
i
then we have from (A6),
T
{ k L2 k.
Y(C)i® = Hk(s)X(s;C)g (s;C)ds. (A21)
¢
. k k
From (A20), provided the (wi(s)l are complete, g (s;C) satisfies
T
Jr gk(s;C)rk(s,u)ds = Hk(u)X(u;C), (A22)
0
ana from
k k T
K 2oz m (0 K
u () = T — ‘/. zk(s)g (s:C)ds, (A23)
i=1 Xi 0
we have
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plclz(s), 0 < s < T1 =

T
1 * -1 P k .
K, exp |- =4(C-uw) / (C-~-yy -2 T z (s)g (s;C)as
3 2 ~ k
k=1
0
T
P K
+ T jr Hk(s)x(s;c)g (8;C)ds . (AZ4a)
k=1
0
k .
where g (8;C) satisfies
T
fgk(s,C)rk(s;u)ds = Hk(u)x(u;C). (A24b)
0
1% we define
i k
Ck(S) = T -~ ﬁi(s), (A25a)
i=1 X\
i
there results
T o o)
r k k
S(s)r (s,udds = T 27 3 (u) = oz, (u) (A25h)
k K =] 1 e N ?
0 )

LN
provided (again) that the - (u)} are compiete. That is,

i
ro ka2 T
™ :Zi
!;1 ~*\k :f!k(S)‘k(S)ds'
' B C

where ( (s) satisties
X

T
jr 'k(s)rk(s,u)ds - zk(u).
0
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Since the last is independent of C, we can rewrite (A24) as

p(ClZ(s), 6 < s < T) = K G(O), (A2ha)
where
T
1 * o) i
G(C) = exp |- 54(C - L)~ (C-u) + T zk(s)’k(s)ds
- k=1
- 0
T T
p - P , k
-2 T jr zk(s)g‘(s;c)ds + T H, {(s)X(5;C)g (s;Cds
b - 128
k=1 0 k=1 N
(A26b)
. k oo
and k(s) and ¢ (=:0) satisty
T T
Lo eands = 2 i, [N 0T (wds = i (X (0
J Sl (e wdds =z (ud, s {5;C xk(a,u ds = :k(u, (u;0),
¢ 0
{A60)
o i
N [ GO de . (A20d)
v
A

Given the preceding development (and nomenclature) . 1t is now

’W‘V\
5 . N . N . PN
convenisnt to s e the conditions under which it 1s admisslhle.(

First, 1§ r is,u) is posttive delinite, then there exists & countable

X

o .k ‘
tnon-empiy) set of orthonormal eigenvectors 71(5)1 and corresponding




eigenvalues (\:7 such that the fk?} are positive or zero and bounded

k
above; there are no other efjenvectors orthnorma. to these fﬁi(s)1;

k
and the (wi(s)} are complete over the functions of integralle square

on (0,T). The latter means that for any function g{s) of integrahle

square it can be written as

and the meaning of 1.i.m, is that

S

lim [
‘o)

J

Mercer's Theorem thin applies, which startes that

where the converzence s untform {n (s ) for 0
) . . & .
Picard' s Theorem then states that the g (s;0) {n

of {ntegrabic square over (O.T) if and enly it




Ei

T
L i
o~
BOry = }& ALY k(‘\xri.»
“(C) = ! _Q\4_4{V,</YJ\J:tJ
i 4.7 -

and the series

b}
.3 .
?g’r%‘é
= .>i.~., ‘
< “l, - @
v ] .
i=1 a7
kS

e
s~
(g)
o

gk{s;C) =1, im T A ¥

o

o
o~

k k
as in {A20) with B(C) = m({).
i i
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e b AR A A Ko

Similar remarks (from Picard's Theorem) apply to (s} of (A25) wheare
v X

now we insist that

8

™~

i

H

k
R
R

vhere

T

k _ LK

Yi = zk(s)ti(s)ds.
0
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The wunique expression for ~ {s} is then

) k
NOoOY, o,
- i ¥
{(g) = 1l.,i.m. T < {(s),
N—= i=1 & ;
i
, ... .k K
az in {A252) with \1 TR

We thus see that nccessary and sufficient conditions fcr thke pre-

ceding development are

i rk(s,u} positive definite, k = 1, ..., p,

o l’m:(ﬁ)?

2. 7 k’-" m'k.-l' » B
i=1 xxi)
5 g8

3. T ;{;,E<T=k=l, cony P
i=1 (Ki)

v

where 1}, zt, and mﬁ(cy are defined in (A3), (A4), and (26).

Equation (AZ26) simplifies greatly when the noisc N(s) is such as

to permit ths above development and the rk(s,“) cat bhe treated as

delta-functions:

rk(s,u) = ék 6(s ~u}, k=1, ..., p.

Trom {A26) we then have Qk(s) and gk(s;C) sarisfying

T
f ‘rk"u):k 5(s ~ uddu = 'Ak "'k(s,\ = zk(s)
0
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and

T
k . .
g (85001, 3(s - u)ds - R, (u)X(u;0),

[ 4

1
“Lgd o= =z (s),
k K k
k' 1 £ ol
8 (53%) = v H (s)X{(s:0),

$0 that (AZ€) may be rewritten as

T2
o
@]
o
Uiy
Ui
St

, 0 <5 <T) =K JC), (8272)

where

i "
J(CY = exn [' 2 i‘c - ) e - w)
K4

T
- el .
o T2 - roxeio T e - H(s)x(s;mds}]. (A27b)
d

R = ' (A27C)
©
k-1 - f.s{c)dc. (A274)
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Appendix B

PROGRAM FLOW DIAGRAM

In Fig. 10 is shown a flow diagram depicting the operation of the
maximum-{ikrelihood-estimator program. The following describes what

takes pla e av particular points in the program,

1. 3tarr,

2. Input of indices, constants, observation. T 1s the observation-
interval upper limit, {Ti} are the po.uats ar which estimates are
made , i(Ti) is the cstimate at time Ti'

3. Question leading to use of certain input values if answer is
no; leading tc update if answer 1is yes.

4, Update of i(Ti) to i(Ti + AT) via basic differential equation
(27) governing i(T) and (60).

5. Update of time from Ti to Ti + AT,

6. Setup of iritial conditicns for integration to get functions
tabled over 0 < 5 ~ T which are needed in Newtonian iteration
in 13, as well as needed in 4.

7. Integration to table over 0 < s < T functions needed for New-
tonian iteration in i3,

8. Print )'(('rg, f(ﬁ(ri),ri), Detl Vs £(1(T 5,11, vﬁf(iz_ri),ri),
RICID (S R

9. T--r of whether ”ﬁf(i(Ti),T{) is near enocugh to @,

10, 1If r’;('f()AE('I‘i),’I'i) {s sufficiently near 0 in 9, L there

X
-~

has ween calcutated a previous Newtonian solution X( at T, .
i




11,

12,

13.

14,

15,
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If there was a previous Newtonian solution QO at Ti’ compare
the difference between it and the current solution to see if
rhere is need to proceed further with Newtonian iterations.
If the difference between solutions in 11 is too great, tem-
porarily store the latesc sclution as the best one.

Isiprove this best solution via another Newtonian iteratien.
Then go back to 6 and redo this saries of tests et ail.

If 7ﬁf(i(Ti)’Ti) is near enough to @ or % is near enough to

0
i(Ti), ask {f T, =T. IfT, # T, go to 4 and update i(Ti)
to i(fi 4+ AT} via basic differential equations (27) and (60),

etc,

If in 14 Ti =T, stop.
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Start @

i
input @

V.V AT, By, g, p 0, XUT )
AR and 7 (si, O%s<T

Updote X 1T,)10 X (1,41 ()
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Set up initiol cond:tiom at 3 O @
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e ious solution
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Fig.10 —Program flow diagram
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