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PREFACE 

This Memorandum was prepared as a part of RAND's continuing 

research on selected problems In space trajectory Mechanics and astro- 

dynamics. In recent years many studies of interpltnetary trajectories 

have described the use of a close approach to an li te-mediate planet 

to obtain savings In fuel or time In transfers to a taiget planet. A 

logical extension of this technique Is the use of the target planet*s 

moon(8) to save fuel upon arrival at the planet. Although he present 

study Is concerned with the usefulness of the moons of Tupl er In 

effecting such savings, the formulas derived and the tat tnluue? used 

are sufficiently general that they could also be applied to similar 

Investigations of the use of the moons of other planets, ach as those 

of Saturn and Neptune. 

The author Is a consultant to the RAND Corporaf.on. 
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SUMMARY 

The energy and direction of motion of a space vehicle can be 

changed significantly by a close encounter with a moving gravita- 

tional body. This fact suggests that a spacecraft making a hyper- 

bolic approach to a planet might use the gravitational attraction 

of a planetary moon in order to transfer to an elliptical orbit about 

that planet without expending fuel. This study investigates the use 

of the four large moons of Jupitei to effect the capture of a space- 

craft by Jupiter. 

In order to analyze the effectiveness of these four moons in the 

spacecraft's transfer to an elliptical orbit, one must determine the 

energy loss required by the spacecraft and compare it to the energy 

loss obtainable from a moon flyby.  After a Hohmann transfer from earth, 

a space vehicle's specific energy (energy per unit mass) with respect 
2   2 

to Jupiter is roughly 16 km /sec ; it would be higher after a faster 

transfer. It is assumed that the most desirable final elliptical 

orbit about Jupiter is highly eccentric, since such an orbit allows 

close observation of the planet at pericenter without requiring a 

large energy loss. The eccentricity of the final orbit is limited 

only by the length of the orbital period. For an orbit with a period 
2   2 

of 100 days, the energy is -10.21 km /sec .  If the period is extended 

to 360 days--perhaps the longest period that could be considered 
2   2 

acceptable--the energy becomes -4.35 km /sec . Thus an energy loss 
2   2 

of at least 20 kmVsec , and possibly much more, is necessary for a 

transfer from a high-thrust approach trajectory to an acceptable 

final orbit. The maximum possible energy loss obtainable from a moon 
2   2 

flyby, for an incoming energy of approximately 16 km /sec , is slightly 
2   2 

above 9 km /sec  (for the moon Ganymede) and is significantly less 

if the approach trajectory is not optimal. Thus, even with a moon 

swlngby some chemical retrothrust is necessary to obtain the desired 

transfer. The velocity changes which result from a flyby are on the 

order of 0.54 km/sec at the moon's distance from Jupiter. The im- 

portance of such a free velocity change depends on the particular 

rocket used. Of course, a smaller velocity change produced chemically 
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could result in the same eneigy loss if it were applied closer to 

Jupiter. 

Gravity assist from a moon becomes more promising when low-thrust 

trajectories are considered. Optimum low-thrust trajectories, designed 

to make the spacecraft pass close to Jupiter, typically have approach 

energies lower than the Hohmann value given above (for roughly compar- 

able flight times), and this energy is further reduced if there is some 

retrothrusting during the later portions of the transfer. If the in- 
2   2 

coming energy is reduced to about 6 km /sec , a swingby can give an 
2   2 

energy change slightly above 10 km /sec . In this case a no-impulse 

capture could result in a final orbit with a one-year orbital period. 

If such a trajectory is compared with a low-thrust trajectory designed 

to place the spacecraft directly into an elliptical orbit, the moon's 

contribution to the necessary energy change is found to relax the 

transfer endpoint conditions and allow shorter flight times or in- 

creased payloads for any given low-thrust vehicle. 

The above figures are given for optimum encounters. The energy 

changes obtainable from moon flybys are degraded by variations in the 

distance of closest approach to the moon, ir. the approach angle, and 

in the plane of the approach orbit. The sensitivity of the energy 

change to these factors is considered here. Also, timing and aiming 
2   2 

requirements are indicated for an approach energy of 5 km /sec . 

Since the energy changes obtainable in one-moon encounters are 

not as large as might be needed, several two-mcon encounters are con- 

sidered. The much more stringent timing and aiming requirements for 

chese are not treated here. 

It might be added that trajectories using a moon flyby have the 

advantage of allowing observation of the moon as well as of Jupiter. 

Since it is sometimes suggested that these moons might be used as land- 

ing sites, observation of them might well be of interest. 
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SYMBOLS 

A ■ the angle between the spacecraft's velocity vector 
with respect to Jupiter as it approaches the moon and 
the moon's velocity vector with respect to Jupiter 
(see Fig. 1). 

A ■ the angle between the spacecraft's velocity vector 
with respect to Jupiter as it departs from the moon 
and the moon's velocity with respect to Jupiter (see 
Fig. 1). 

A - the angle between VJS and V^ (0 deg s A * 180 deg). 

it* —* '     —* *' 
A  - the angle between V_c and V_. (0 deg * A  £ 180 deg). Jo       JN 

A   ■ the angle of approach A which produces the largest 
p   energy decrease for a constant initial energy. 

a * semimajor axis of an orbit. It is taken as positive 
for elliptic and negative for hyperbolic orbits. 

E - the initial energy of the spacecraft with respect to 
Jupiter. 

AE, A|VI ■ changes in the energy and the magnitude of the velocity 
vector resulting from a moon encounter. 

M ■ r /r - the ratio of the distance of closest approach to the 
moon and the moon's radius, i.e., the miss ratio. 

Q ■ the angle between the moon's velocity vector with re- 
spect to Jupiter and the spacecraft's asymptotic 
direction of approach to the moon (see Fig. 1). 

q ■ Jupiter central angle from pericenter of the space- 
craft orbit to the moon's position. 

qM ■ nominal value of q. N 

r_. ■ the moon's orbital radius. 
JN 

V , V ■ the circular and parabolic speeds at the surface of 
P  the moon. 

V  , V  * the spacecraft velocity vector with respect to the 
1   2  moon as it approaches and departs respectively from 

the sphere of influence of the moon. 

V ■ the magnitude of V  or V  . 
•l    "2 
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V_" the velocity of the moon with respect to Jupiter. 
JM 

V._, V_- ■ the velocity of the satellite with respect tc Jupiter 
as it approaches the moon and departs from the moon 
respectively. 

VJS, VJS, V^ - the vectors obtained by projecting VJS, VJS, and VJM 
onto the spacecraft's orbital plane about the moon. 

it ♦'   it <k       —"k* —Wir 
VJS' VJS* VJM * the ma«nltude8 of VJS» VJS» and VJM" 

a  * the ratio of the spacecraft's velocity at the moon's 
orbital distance from Jupiter to the circular velocity 
at that distance. 

ß * the angle between the moon's orbital plane and the 
plane of the satellite's hyperbola about the moon. 

A = the perpendicular distance from the moon to the 
spacecraft hyperbolic approach asymptote to the moon 
(see Fig. 2). 

e a eccentricity. 

T] = the angle between Vj^ and the plane of the space- 
craft 's hyperbolic orbit about the moon (see Fig. 4). 

H , |i ■ the gravitational constants for the moon and Jupiter 
respectively. 

v, v        m  the angle between V^ and V^ (see  Fig. 2). Vj^x  is 

the maximum value v  can have'without the spacecraft 
colliding with the moon's surface. 

cp, cp   * the half angle between the asymptotes of the hyper- 
bola about the moon (see Fig. 2). cpmin 

is the smallest 

value of cp for which the spacecraft does not collide 
with the moon. 

¥ = the angle between the projection of VJ^J onto the plane 
of the spacecraft's hyperbolic orbit about the moon 
and the semimajor axis of the hyperbola (see Figs. 3 
and 4). 

Y_ - the nominal value of the angle Y. 
N 

u)     ■ the angular velocity of the moon in its orbit. 
JM 
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I. INTRODUCTION 

Many gravity-assisted trajectories have been suggested which use 

the close approach of an intermediate planet to perturb a trajectory 

going between the earth and a target planet. Considerable savings in 
(1-4) 

fuel and/or time can result from using such a trajectory.     In 

fact, a proposed gravity-assisted mission passes by Jupiter, Saturn, 

Uranus, and Neptune and requires only 8.9 years to complete, while a 
(3) direct flight to Neptune requires 30 years.    A logical extension 

of this technique is to use a flyby of a planet's moon(s) to effect 

capture of the vehicle by the planet. The earth, Jupiter, Saturn, and 

Neptune ail have sizable moons. 

Two missions for the not too distant future might use moon flybys: 

1. Because Jupiter is the nearest of the large planets, flights 

whose objective is to go into orbit around the planet would certainly 

be of great interest. Jupiter is extremely massive—in fact, more 

massive than all the other planets combined—which Indicates that the 

fuel required to enter a low-altitude orbit is considerable. Among 

its many moons there are four massive ones with diameters comparable 

to that of Mercury and masses up to one-half that of Mercury. A flyby 

of one of these moons might not only decrease the minimum propulsion 

requirements significantly but would also afford observation of the 

moon itself. 

2. Round-trip flights from the earth to Mars might fly by the 

earth's moon on the return leg of the journey in order to minimize the 

overall fuel requirements. Also, swingbys of the earth's moon to in- 

crease a space vehicle's energy might be used on many outward-bound 

interplanetary trajectories. However, the large sensitivity of the 

resulting trajectories to initial launch errors must be weighed against 

the fuel savings. Some discussion of the use of the earth's moon can 

be found in Ref. 4. 

The purpose of this study is to investigate the usefulness of the 

moons of Jupiter in effecting capture of a spacecraft. A simplified 

model is used to approximate the maximum possible energy change as a 

* -ö*«^a**»*.4ii»««/rt**--««-WM*»»t«s~--' 
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functton of the approach energy for each of the four large moons. If 

the energy change is sufficient to decrease the space vehicle's energy 

below the zero parabolic energy level, capture is accomplished. The 

sensitivity of the energy change to variations in the angle of approach 

and the distance of closest approach to the moon is also investigated, 

but little attention is given to the trajectories required to obtain 

the energy change. None of these results in a final circular orbit, 

but because of the large energy decrease required to orbit at low al- 

titudes, the most desirable final orbit is considered to be highly 

elliptic to afford close observation of the planet at pericenter without 

requiring too large an energy loss. Perturbations of the final orbit 

due to the presence of other moons have been ignored, as have any con- 

straints due to possible radiation belts.    Perturbations due to 

other moons can, of course, be minimized by introducing some velocity 

component out of the moon's orbital plane during the swingby. 

The moons' orbits are considered to be circular and coplanar, and 

all gravitational forces are assumed to obey a perfect inverse square 

law. The trajectories are treated as a series of two-body problems 

using the sphere-of-influence argument. In Table 1, the values used 

for the surface parabolic speed of each moon and its mean distance to 

Jupiter in planetary radii come from Ref. 7. The value used for the 

radius of Jupiter is 70,000 km; its mass is taken to be 318 times that 

of the earth. 
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II.  ANALYTICAL BACKGROUND 

If we consider the mass of the spacecraft as negligible compared 

with the mass of the moon, then the motion of the moon will be unaltered 

by a flyby. The total potential energy field, which is the sum of the 

potential energies due to Jupiter and the moon, i.s then explicitly time- 

dependent because of the dependence of the moon's position on time. As 

a result, the total energy of the spacecraft is not conserved. Actu- 

ally, the energy of the moon and spacecraft combination is conserved 

and energy is exchanged between the two during a flyby. 

To investigate the change in energy of the vehicle, the vector dia- 

grams shown in Fig. 1 are useful (see Ref. 8 for a similar approach). 

We examine Fig. la in detail. The vector Vjg is the velocity the space 

vehicle has with respect to Jupiter at the moon's orbital radius from 

Jupiter if the gravitational attraction of the moon is not considered. 

We subtract the vector velocity of, the moon with respect to Jupiter, 

VjM» to 0Dtaln tne vector Va,,. The sphere of influence of the moon is 

considered to be negligibly small compared with the moon's orbital ra- 

dius, yet large enough that it can be considered at infinity with re- 

spect to the moon.  (Using the formula from Ref. 9, with an obvious 

correction, the sphere of influence of Ganymede is 0.347 Jupiter radii 

compared with an orbital radius of 15 Jupiter radii.) Under these 

assumptions Vjg is the velocity of the satellite with respect to Jupiter 

as it enters the moon's sphere of influence, and the direction of V«,. 

is the direction of the hyperbolic approach asymptote to the moon while 

its magnitude is the velocity of approach at infinity with respect to 

the moon. The effect of the hyperbolic encounter is to rotate the vec- 

tor V^. through v  degrees from the inbound asymptote to the outbound 

asymptote, and its magnitude remains unchanged. After performing this 

rotation and calling the new vector V,»«, we obtain the new velocity 

with respect to Jupiter as the spacecraft leaves the moon's sphere of 

influence from VJS ■ Vj^ + V^«. This defines the new orbit of the space 

vehicle and determines its new energy and angular momentum. 

The magnitude of the angle v  is limited by the finite size of the 

moon. Let us define a miss ratio M = r /r where r is the radial cm      c 



-5- 

(a)    Energy loss 

(b)    Energy gain 

Fig. 1 — Vector diagram of the velocities before 
and after a moon flyby 
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distance from the center of the moon to the point of closest approach 

and r is the radius of the moon. Clearly the choice of M is limited 

to M > 1. Using the conservation of angular momentum and energy, we 

obtain the perpendicular distance from the moon to an asymptote, A, 

1 + i(M
2 

1/2 

where V is the parabolic velocity at the surface of the moon and V 

is the magnitude of V_, and Vm„. When M ■ 1, r « r and A becomes 12 cm 
the collision length (see Ref.   6).     From Fig.   2 we see that sin cp * 

A/(r    - a) where "a" is  the semimajor axis of the hyperbola, which is 

taken as a negative quantity.    Under the assumptions stated above,  the 

energy of the vehicle with respect to the moon is given as 

i     o ^ 

2 v*> 2a 

where M< is the product of the universal constant of gravitation and 
m 

the mass of the moon. Thus we can write 

cp ■ sin 
-1 

r + -r c vf 00 

which can be written as 

cp * cos -1 

1 + 2M 

(1) 
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Fig. 2—Hyperbolic encounter with a moon 

p -'.W.^^4^ ^p*6»jMs<<W*Ai^^  rimr» MM mmiiMi 
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Knowing cp, we obtain v - 180 deg - 2cp. 

By adding v to the angle Q as in Fig. la we obtain a decrease in 

energy, which corresponds to a hyperbolic trajectory that crosses the 

moon's orbit ahead of the moon.  If u is subtracted from Q as in Fig. 

lb, the energy of the vehicle increases.  In this case the spacecraft 

crosses the moon's orbit behind the moon.  In general, in order to max- 

imize the energy change, we want v to be as large as possible (v  ), or 

equivalently CD to be as small as possible (cp  ). This is accomplished 

by lettin0 M approach 1 so that the spacecraft comes within an infin- 

itesimal distance of the moon's surface. There are, however, some 

cases in wh.'.ch the maximum energy change is obtained for a v + v 
max 

Figure la shows that if v   + Q > 180 deg, the final velocity is min- 

imized and the energy change maximized when u » 180 deg - Q. Any value 

of v that is less than v   can be obtained by increasing the miss ra- 
max '        ■ 

tio M, since this gives all values of cp, cp   < cp < 90 deg. When the 
mln 

best value of v  is given by v  * 180 deg - Q, we see that V'  V_.f and 

VQO« are ail colinear and that he magnitude of the velocity after an 

encounter is given by V' ■ |v  - VÄ|.  Its direction is parallel to 

V*JM if V^ > V.2 and opposite to V^ if V^ < V^.  Similarly for the 

case of energy addition if u   > Q, the best value of v is not v e/ max   ' max 
but v « Q, which gives V' ■ V  + V«,. These special cases occur for 

Jo    JM 
energy subtraction when the approach velocity V  is smaller than the 

moon's velocity and the approach angle is small, and for energy addi- 

tion when the approach velocity is larger than the moon's velocity and 

the approach angle is small. 

Since spacecraft performance is often considered in terms of a 

"AV budget," it is of interest to examine the maximum possible change 

in the magnitude of the velocity vector |AV| which can occur in a moon 

flyby. To do this we first consider the maximum magnitude of the vec- 

tor change in the velocity |AV| which we recognize as an upper bound 

for JAVJ.  From trigonometric considerations 

|AV| - 2V cos cp 
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Maximizing with respect to V after using Eq. (1) gives 

max  |AV| » — 
[VJ      /M 

where V is the circular velocity at the surface of the moon. The maxi- 

mum occurs when 

V 
V --§ (2) 

and Eq. (1) indicates that cp = u ■ 60 deg independent of M. Examining 

Figs, la and lb, we see that unless V //S > VTW there will exist a vec- _ C       JM 
tor V  such that the angles A and A are equal and V  becomes colinear 

J5 Jo 

with v' . In this case all of the |AV| can be realized as A|Vf • so that 

the maximum possible change in the magnitude of the velocity vector is 

V 
max A|V| « — (3) 
[vj    /B 

If M is allowed to approach 1, the result is that the maximum velocity 

change obtainable from a flyby is equal tc the circular velocity at the 

surface of the moon.  (For Ganymede, the largest moon of Jupiter, the 

circular velocity is 2.0 km/sec.) However, this condition occurs at an 

approach energy well below the range of interest, which is roughly be- 

tween 0 and 20 km /sec , and more realistic values for the A|v| lie be- 

tween 0.5 and 0.7 km/sec. The approach energy which gives the maximum 

A|V| can be determined from the approach velocity V c. By simple trig- 
J 5 

onometry the maximum decrease of A|V} occurs when 

i /z:     2 J 

2     V2 V  - —— + - "1/4V   - 3 — 
JS  2 /M  2 ' M M 
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Converting to the case of a maximum increase by interchanging V^ and 

V»2i VJS and vjg> we get 

o m     2 * JS    2/M  2 " ^    M 

which differs from the maximum decrease case by V /JÜ. 

For purposes of the present study the change of energy is of 

greater interest than that of velocity. The energy change can be writ- 

ten as 

2 
AE-(a|v|)vJS+i(i|v|) 

where A|v| is taken as positive for a velocity increase and negative 

for a decrease. Because of the presence of VjS, the approach energy 

at which A|V| is extremized is not the same as that for AE. To find 

max AE we use Fig. 3, which defines an x-, y-coordinate system in the 

plane of motion of the space vehicle wilh the x-axis fixed along the 

semimajor axis of the hyperbola. Temporarily we consider the velocity 

of the moon with respect to Jupiter V  to lie in the xy-plane at 

an angle ¥ from the x-axis. 

Denoting a unit vector along the positive x-direction as i and 

along the positive y-direction as j, we can write 

VJM " VJM "' * I + VJM 8ln * J 

V .  ■ V    cos cpi+V    sincp3 
GDI 00 CD 

V n ■ - V    cos cp t + V    sin cp j 

V       * V      + V VJS        JM        »1 
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Fig. 3—Moon encounter in a coordinate system fixed to 
the major axis of the hyperbola. (Coplanar case) 
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V'    m v      + V 
JS        JM        -2 

«■ i [<v;s>2 - <v2] 

AE = - 2V-.V    cos  f cos cp 
JM   oo (4) 

We consider AE as a function of Y and V    and use Eq.   (1) to obtain the 

maximum possible energy change 

max      AE  - ± V^V  //M 
[Y,Vj Ä c (5) 

which occurs at V «V lM and cp * 60 deg as in the case of maximum 
00      Q 

A|v|. The sign depends on the choice of the angle Y as 0 deg for 

energy decrease and 180 deg for energy addition.  (Note that if AE is 

maximized for a constant energy of approach to Jupiter, these values 

of Y will no longer hold.)  Since Y » 0 deg for energy subtraction, 

Q ■ cp -  60 deg.  For energy addition, with Y * 180 deg, Q « Y - cp .  « 
- min 

120 deg.  Note that V  and V' are not colinear.  Note also that the 
Jo Jb 

maximum energy change can never occur for a value of u which is not 

equal to u max 
The maximum energy change occurs when 

JS 
■# 

2        2 1 
c JM     yr:    JM c 

2  VM Vc       VJM      yg 
N       * i-xlsv.+vM.*-vJMveV    r 

J 

JM 
(6) 

A ■ cos 
-1 

v2   +v2   -±v2 

JS JM      M    c 
2V    V VJS JM 
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where the plus sign is used in the case of energy subtraction and the 

minus sign for energy addition. 

We now consider the problem of finding the energy change that re- 

sults for any given initial energy E (or equivalently for any initial 

VT«) and approach angle A, using Eq. (4). For energy subtraction 

Y * cp - Q, and for energy addition Y * y + Q. When the best value of 

v is not u  , then for energy subtraction 2cp . < Q and for energy 
max OJ Mnin 

addition u   > Q. We write 
max 

VJS 
sin Q * -rr- sin A 

CD 

cos Q 
VTn cos A - V^, 
JS        JN 

sin 

211/2 

cp = 2/M8^J 1 +M(^J S   COS cp 

Combining these results we obtain 

-2V\ JM 

i-m 
2    VJS C0S A  " VJM * 2VJS   Sln A wy^f 

when -  1 < ± 
VJS COS A  * VJM 

AE - < E~fcJ] 
2 VVJM        »/        2 VJS 

when  -z -i > ± 
VJS C0S A - VJM 

(7) 

W« 
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wtth 

V = v vjs * v» • "JS'JM "' s 

Whenever there Is a sign choice, the upper sign is used for energy sub- 

traction and the lower for energy addition. When AE is known, A|V| 

can easily be found as 

A|V| = V2AE + VJS ' VJS 

The departure* angle A is given by 

A s cos 

* *M  Y'JS + 2" 

Knowledge of AE, A', and the position of the moon at the time of the 

encounter completely determines the resulting orbit around Jupiter 

(actually, one needs to know not only E and the magnitude of A, which 

determines AE and A', but also whether the satellite approaches the 

moon from outside or inside the moon's orbital radius).  It is inter- 

esting to note that the amount of energy addition possible in a swing- 

by starting from a given initial trajectory is in general different 

from the amount of energy subtraction possible starting from the same 

trajectory, a fact which is obvious from Fig. 1. 

Equation (7) assumes that all spacecraft motion takes place in 

the moon's orbital plane. It is easy to generalize the equation to 

the case where the moon's velocity vector V^ makes an angle T) with 
JM 

the satellite's plane of motion within the moon's sphere of influence. 

The component of V  out of the xy-plane in Fig. 3 is then V 
j PI __  w _ 

sin T), which equals the out-of-plane components of both V- and V' 

Thus the out-of-plane component is unaffected by the encounter with the 
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moon, which implies that Eq. (7) will still hold if V_., VTC, and A 
*   *      * JM  J& 

are replaced by V.w, V_c, and A , the values given by a projection of 
JM        Jo 

V      and V      onto the xy-plane.    Figure A shows the geometry involved. 

VjMsinH 

Fig.4—Modifications of Fig. 3 when the moon's velocity vector makes 
an angle y with the satellite's plane of motion near the moon 

t mmmmmm 
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The projected values are determined from 

VJM ' VJM COS * 

* 111 2 
VJS  -  VVJS   - VJM Sln    1 

A    ■ cos 

VJS cos A - VjM sin    1) 

cos T|^s  - V^ sin2 Ü 

with  (0° < A    s 180°) (8) 
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III.  NUMERICAL RESULTS 

ENERGY CHANGE RELATED TO INITIAL ENERGY, MISS RATIO. 
AND APPROACH AUGLE 

Since no analytical expression was found to determine the maximum 

energy decrease obtainable for a given initial energy, a computer pro- 

gram was written which uses a numerical search technique to determine 

the maximum energy change and the corresponding optimum angle of ap- 

proach A  . Figure 5 gives j- -, AE versus E for the four large moons. 

(Note this uses M £ 1, T| Ä 0. Note also that Eq. (7) and Fig. 1 indi- 

cate that whenever M is constrained to be greater than or equal to 

some constant, the r.-i LZ will occur when M equals that constant.  Thus 

each point on Fig. 5 occurs for M ■ 1.) The maximum point of each of 

the curves is given by Eq. (5), and the energy at which it occurs is 

given by Eq. (6). The point at which each curve gives zero energy 

change corresponds to the potential energy at the moon's orbital radius; 

it is the minimum energy a space vehicle can have and be at the moon's 

orbital distance from Jupiter. 

The space vehicle's energy with respect to Jupiter after a Hohmann 

transfer from earch (assuming circular coplanar orbits) is approximately 
2   2 

16 km /sec .  For a faster transfer the energy would be higher, and if 

a low-thrust trajectory is used, the energy could be much lower. Addi- 

tional information concerning low-thrust trajectories to Jupiter is 

given in Ref. 10. Thus the energy range of greatest interest is roughly 
2   2 

between E ■ 0 and 20 km /sec . The most desirable final orbit is per- 

haps a highly elliptical orbit with a reasonably short period. If the 

period of the orbit is taken as 60 days, the required final energy is 
2   2 

-14.35 km /sec with a semimajor axis of 63.14 Jupiter radii. A period 
2   2 

of 100 days gives an energy of -10.21 km /sec and semimajor axis of 

88.76 Jupiter radii; if we relax the requirement to a period of 360 days, 
2   2 

the final orbit has an energy of -4.35 km /sec and a semimajor axis of 
2   2 

208.48 Jupiter radii. Thus an energy loss of at least 20 km /sec , and 

possibly much more, is necessary for a higher thrust approach trajectory. 

For the energy range of interest, Fig. 5 indicates that Ganymede 

gives the largest energy change. Obviously on a high-thrust trajectory 

«*»• 
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a no-impulse capture resulting from a moon flyby is impossible. There- 

fore, either some chemical retrothrust must be applied or a low-thrust 
2   2 

trajectory must be used. Below an incoming energy of about 9.8 km /sec 

no-impulse captures can be accomplished by an optimal encounter, but 
2   2 

«.he approach energy must be below approximately 6.0 km /sec before 

the period of the final orbit is shorter than one y«ar. 

The changes in the magnitude of the velocity vector for initial 
— 9    9 

energies of interest may vary from A|V| ä
 0.72 km/sec for E * 0 km /sec 

— 0     0 
to A|V} ■ 0.54 km/sec for E * 20 km /sec • The importance of such a 

free velocity change depends on the particular rocket used. Note that 

the same energy changes could be produced by chemical impulses of 

A|V| * 0.18 km/sec and A|V| « 0.15 km/sec, respectively, if the impulses 

were made near the surface of Jupiter (ignoring the atmosphere and 

using 70,000 km as Jupiter's radius). 

The above assumes that M is constrained only to be greater than 

unity. Since in practice this would never be attempted, and because 

aiming errors would cause M to deviate from any chosen nominal value, 

it is important to consider how much AE is degraded by variations in 

M. Figure 6 gives ,..-. AE versus E for Ganymede using M £ 1.0, 1.25, 

1.5, 1.75, and 2.0. As shown in Eq. (5), the height of the peaks of 

these curves is proportional to the inverse square root of M (and the 

peaks move to lower energies with increasing M, as predicted by Eq. (6)). 
2   2 

However, in the region E * 0 to E * 20 km /sec the values seem to vary 

approximately inversely with M. 

Each point in Figs. 5 and 6 results from a particular optimum ap- 

proach angle A  . Figure 7 gives A   as a function of E for Ganymede. 

This angle--which is the magnitude of the flight path angle when the 

moon's orbit is circular--and AE determine the two possible approach 

trajectories that can be used to accomplish the flyby. Obviously, AE 

may also be degraded by variations in the approach angle A from the 

optimum angle. Figure 8 indicates the sensitivity of AE to A for dif- 

ferent energies of approach. The reverse curvature observed at low 

energies and small approach angles occurs when u f* v      .In the energy 
2   2 max 

range E s 0, 20 km /sec deviations of ±5 deg from A   cause only about 
2   2 _ ° 

0.3 or 0.4 km /sec change in AE.  It is important to note that the 
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optimum approach angle changes only slightly with M in the energy range 
2   2 

E ä 0, 20 km /sec as shown in Fig. 7. Thus deviations in A from A & opt 
will be nearly independent of deviations in M from a nominal value. 

ENERGY CHANGE RELATED TO TIMING AND AIMING ERRORS 

The variation in AE with approach angle A can be given in a more 

readily understandable form by relating the approach angle to the time 

of arrival at the moon's radius. We define a nominal trajectcvy with 

the approach angle A   which defines a nominal approach asymptote for 

the approach to Jupiter. If the spacecraft arrives at the nominal 

point on Jupiter's sphere of influence but not at the nominal time, 

corrections for the change in the position of the moon must be made. 

We assume that the spacecraft makes these corrections perfectly. With 

the assumption that the sphere of influence of Jupiter is infinitely 

far from Jupiter, an infinitesimal velocity increment can change the 

approach asymptote to any desired asymptote parallel to the nominal 

one, as shown in Fig. 9.  (Corrections made at a finite distance from 

Jupiter will alter the time scale in Fig. 10 and require a finite 

velocity increment.) 

We use the fact that the semilatus rectum is equal to the square 

of the specific angular momentum divided by the gravitational constant 

for Jupiter to give the angle of approach for any energy and eccentri- 

city: 

"V*6 lj^     "2*>   0 £ A £ 180° (9) 

JM 

where a is the ratio of the spacecraft's velocity at the moon's orbital 

radius from Jupiter to the circular velocity at that radius (the moon's 

velocity). 

We now determine the eccentricity as a function of the time of 

arrival. Since the moon's orbit is circular and the direction of the 

perpendicular to the approach asymptote remains fixed by assumption, 

we can write Y = YM + üJT_,At, where r' is the nominal angle V, UJ  is 
N    JM          N JM 

>** «.*►<•*« tea «a» »WMfiii-■*■■' M '«*»»' '■ 
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Modified approach asymptote 

Nominal approach asymptote 

Modified position of moon 

Nominal position of moon 

Moon's orbit 

Fig. 9—Modification of approach asymptote for changes 
in time of arrival 
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the angular velocity of the moon in its orbit, and At is the deviation 

in time of arrival at the moon's radius from the nominal time of ar- 

rival. Simple trigonometry shows that the semiminor axis of the hyper- 

bola equals the perpendicular distance to the asymptote.  Combining 

this with sin cp ■ A/ae yields the result cos cp = 1/e . Using this re- 

sult and the fact that q * Y - (cp - 90 deg) (see Fig. 9), we can write 

the polar equation of the orbit at the moon's orbital radius as 

r »<e2 - 1) 
JM  1 + e cos [y - cos"1^) + 90°] 

This is quadratic In »;  - 1 , giving v> 

^y—      rm cos Y +   jfr*j cos2 Y + 4a r^l  - sin Y) 

2a 

The angle of approach as a function of time becomes 

-1 /rJM C0S Y(t) + VrL cos2 *(t) + 4* r [1 - sin Y(t)] 
A * cos  I  I (10) 

Y„ can be found from Y„ ■ q„ + <p« - 90 deg after getting q„ from the 

orbit equation, and using Eq. (9) to get the nominal eccentricity, 

which determines the nominal cp * cp„. 

The energy change as a function of time is determined from Eqs. 

(7) and (10), which were used in two example flybys of Ganymede with 
2   2 

miss ratios of 1.0 and 1.5, and initial energies of 5 km /sec relative 
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to Jupiter. This energy could occur after a low-thrust transfer from 

earth.  The results of these calculations appear in Fig. 10.  Note 
2   2 

that times for which the energy change is greater than 5 km /sec re- 

sult in capture, although the resulting orbits may have extremely long 

periods. Thus for M s 1 we have two capture windows for arrival of the 

spacecraft at Jupiter that are approximately 2.4 days wide, while for 

M = 1.5 these windows are reduced to approximately 1.4 days. For times 

between -0.72 day and +2.4 days, the trajectories encounter the moon 

before reaching the pericenter of the approach orbit. For all other 

times pericenter is reached before the moon flyby. Of course, if it 

is discovered in an actual flight that the time of arrival at Ganymede's 

orbital radius will produce too small an energy change, it is possible 

that an improvement could be mude by adjusting the trajectory to fly by 

a different moon. 

The variation of AE with miss ratio M and angle 71 can also be given 

in a more readily understandable form. This variation establishes f;he 

degradation in AE due to aiming errors. Since it would be difficult to 

show this in general, encounters with Ganymede were considered with an 
2   2 

initial energy of 5 km /sec and a near-optimum approach angle of 

19.656 deg. In Fig. 11 we look toward the moon in a direction parallel 

to the nominal approach asymptote, which is at the collision radius in 

front of the moon and in its orbital plane. We assume that any aiming 

errors will result in approach asymptotes that are displaced from but 

parallel to the nominal one. Thus any point in Fig. 11 defines an ap- 

proach asymptote, and the spacecraft's orbit about the moon resulting 

from that asymptote will be in the plane determined by that point and 

the center of the moon, with its normal in the plane of the figure. 

The moon's orbit plane is represented by the horizontal line, and the 

moon's velocity has a component to the right. Thus, in general, energy 

decreases are obtained for asymptotes to the right of the moon, and in- 

creases are obtained for asymptotes to the left. 

Figure 11 was obtained from the following considerations. It is 

a simple matter to relate the miss ratio to the radial distance from 

the moon to the asymptote A. Since the perpendicular distance from the 

moon to the asymptote is equal to the semiminor axis of the hyperbola, 
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Fig. 11—Locus of approach asymptotes giving equal energy change 
for a Ganymede flyby.   Approach angle A - 19.565 deg. 

Initial energy, with respect to Jupiter, 5 km2/sec2. 
Collision radius = 1.087 moon radii 
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we can relate eccentricity to a. We use the energy equation to relate 

the semimajor axis to V^ and combine these results to get the peri- 

center distance as a function of V , A, V . Thus 
CD p 

-K:-!)2 V-44 - 1 (ll) 

where A must be specified in moon radii. 

Let us designate the angle between the moon's orbital plane and 

the plane of the satellite orbit within the sph€re of influence of the 

moon as 6.  Simple trigonometry shows that 

sin 7) ■ sin Q sin (12) 

We use this in Eq. (8) to obtain V  , V  , and A projected onto the or- 

bital plane. We use these results and Eq. (11) in 

-2V 
AE JM 

f~ft)] 
VJSC0SA     "VJM ± 2VJS si 

1/2, 

■4Gj) ♦■■(%)] (13) 

to obtain the energy change for any asymptote (A, ß).  (Equation (13) 

differs from Eq. (7) in that the latter picks the best value of M, and 

hence A, to use when M is constrained to be greater than or equal to 

some constant.) The sign of the last term in brackets in Eq. (13) is 
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taken as positive if |ß| < 90 deg and negative if |ß| > 90 deg. When 

ß = ±90 deg this term is zero. The total energy change is found to be- 

come zero at. 3 ■ ±90 deg only if V  is perpendicular to V^. 

Figure 11 shows the locus of all asymptotes that result in the 

same energy change. The moon's radius and the collision radius are also 

indicated. Energy changes for asymptotes within tue collision radius 

are calculated assuming no collision occurs; they are included only to 

indicate the overall behavior of the loci. This graph gives a good in- 

dication of the significance of aiming errors.  Obviously, vertical dis- 

placements of the asymptote about the optimum have much less effect on 

the energy change than horizontal displacements. 

TWO-MOON ENCOUNTERS 

The energy changes obtainable in a one-moon encounter are not as 

large as might be needed; as a result, several two-moon encounters were 

considered. Of course, the timing and aiming problems become much more 

severe for these cases. The only methods of adjusting for deviations 

in time of arrival (and hence in the separation angle between the moons) 

is to adjust the miss ratio of the first moon or introduce some rocket 

thrust. As shown in Table 2, the change in the flight path angle as a 

result of an encounter with a moon is on the order of 2 to 4 deg. Thus 

correcting for time-of-arrival errors by varying M has severe limita- 

tions, and of course increases in M degrade the total energy change. 

Two-moon encounters can be classified into four types. The satel- 

lite can encounter the outermost moon first. Then it can encounter the 

second moon at either of two places, since the orbit resulting from the 

first encounter must intersect the second moon's orbit at two points 

(unless the two points happen to coincide). An encounter at either of 

these positions will give the same energy change, although sensitivity 

problems will be different. Also, the satellite can encounter the inner- 

most moon first, at either of two points, and then the outermost moon. 

Again the energy change will be the same. Example trajectories for op- 
2   2 

timal encounters using an initial energy of 5 km /sec are shown in 

Figs. 12 and 13. The changes in the orbits resulting from the swingbys 
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Approoch 
trajectory 

Final orbit 

Fig. 12—Example of two-moon encounters for initial specific energy 
5km2/sec2, Callisto-Ganymede 
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Approach 
trajectory 

Fig. 13—Example of two-moon encounters for initial specific energy 
5 km2/sec2, Ganymede-Callisto 
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Fig. 14—Maximum possible specific energy decrease for various 
two-moon encounters assuming the moons are 

oriented as needed 
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are shown in Table 2. The maximum possible energy changes (M 2 1 for 

each moon) for different approach energies are given in Fig. 14 and 

the corresponding optimum angles of approach in Fig. 15. For each 

initial energy and approach angle, a given anuglar relationship between 
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Che two moons is implied.  Because the periods of revolution of the 

moons are rather short, the required angular relationship may be found 

fairly frequently.  It is more difficult to find an opportunity to 

effect the required approach angle to the first moon when the angular 

relationship between the moons is correct. 
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IV.  CONCLUSIONS 

The energy change obtainable from a moon encounter constitutes 

at most less than half the necessary energy change for high-thrust ap- 

proach trajectories according to the simplified model used.  This en- 

ergy change may not be sufficiently large to justify the use of a moon 

swingby (unless, of course, one of the mission objectives is observa- 

tion of a moon). However, for the low-thrust case these flybys are 

considerably more interesting.  The guidance problems associated with 

a swingby are probably more easily handled by low-thrust vehicles, and 

since for these vehicles it is more difficult to create significant 

velocity changes close to the surface of Jupiter, the free velocity 

change from a moon, in terms of resulting energy change, becomes cor- 

respondingly more important.  Furthermore, the relaxation of the re- 

quired velocity endpoint conditions for low-thrust trajectories may 

allow significantly increased payloads or shorter flight times. 

The energy change is found to vary significantly with variations 

in the time of arrival. Arriving three-fourths of a day ahead of the 

nominal time in Fig. 10 cuts the energy change to less than one-fourth 

its nominal value. The arrival windows for the case considered are 

2.4 days for a miss ratio M - 1 and 1.4 days for a miss ratio of 1.5. 

Encounters with Io or Europa will have shorter arrival windows for the 

same approach energy due to their shorter orbital periods and smaller 

energy changes. 

Trajectories which use gravity assist from two moons give much 

larger energy changes but also present much more difficult timing and 

aiming problems. 
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