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PREFACE

This Memovandum was written for the Office of the Assistant Sec-
retary of Defeuse (0QASD), Systems Analysis. It supplements material
presented in the proposed OASD handbook, An Introduction to Military
Hardware Cost Analyzis.

The cost analys: draws heavily on formal statistics in general and
regression analysis in particular when developing estimating relation-
ships. Theve are numerous times when, because of data limitations, he
must instead rely on mechanical curve fitting and ;he development of
empirical equations.

The material presented here is intended tc provide the practicing
cost analyst with a basic knowledge of the mechanics of curve fitting
and of the properties of the equations he uses. For the most part, the
choice of material reflects an attempt to answer those questions which
years of experience have shown to be most common and troublesome.

Similar information can be found in other sources, but to the ULest
of the author's knowledge does not exist in any single source. The
integration of analytic geometry with curve-fitting methods and the
selection of the material itself are the unique features of this pre-
sentation. The mathematical discussions are purposely intuitive. They
are intended to be understandable by persons having, at best, iimited
mathematical training.

Special-purpose functional forms and curve-fitting methods have
not been I{ncluded. Only those forms and methods that have already

proven to be of general usé to the cost analyst are described here.
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Although the computational schemes presented in the Memorandum
are for the most part sultable for the desk calculator, high-speed
digital computers are widely available today, and should be used when

possible.




-

SUMMARY

Much of the difficulty cost analysts have with curve fi+*ting .e-
sults from an inadequate grounding in the analytic geometry o{ the en~
pirical equations with which they work. This Memorandum attempts to
provide a concise but relatively thorough discussion of this subject
while at the same time demonstrating selected methods for Jcl.; mechan-
ical curve fitting.

The material is presented in three parts. Section I discusses
the properties of the straight line, the exponential, the power func-
tion, and the parabola. Included in the discussion of the exponential
are the laws of exponents and hence logarithms. Emphasis is on pro-
viding insights into the impact of the parameter values on the form of
the resultant curves. Graphical illustrations are used extensively.

Section II presents Ffferent methods of using these curves to de-
scribe the relationship between two variables. It discusses the method
of selected points, the method of averages, and the method of least
squares, making considerable use of scatter diagrams. It describes a
number of measures of goodness of fit iancluding the standard deviation,
the coefficient of variation, and an average percent deviation. Through-
out this section, computational procedures are carried out in complete
detail.

The discussion of curve fitting is continued in Section III, where
cases with more than two variables are considered. By using the method
of successive approximations, the initial discussion attempts to con-
vey the idea of a nec relationship between two variables, eliminating
influence of any others, and thus to clarify the meaning of the coeffi-

cients in the multivari{ate linear equation. The method of least squares

e poin
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is shown to produce the same results as did the method of successive
approximations and with significantly less computatioral effort. The
discussion turns next to the nonlinear case. Each of the functional
forms described earlier--the exponential, the power function, and the
parabola--is used to describe a nonlinear relationship between three
variables. Although the method of successive approximations may be
used for fitting ~mrv>c *o nonlinear relationships, only the method

of least squares is described.

The decision to discuss the analytics and the curve-fitting methods

in separate sections of the Memorandum was purely arbitrary. For many
purposes, the user of this material will want to combine his readings
in the first section with hisg readings in subsequent sections. The
parallel nature of the presentations in each saction was designed to

facilitate this.
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1. CURVE FITTING AND EMPIRICAL EQUATIONS

INTRODUCTION

An effecrive cost analysis capabilityv cannot exist without the
systematic collection and analysis of data on past, present, and pro-
jected programs. The analysis must result in the development of esti-
mating relationships which can be used as a basis for estimating the
resource impact of future proposals. These relationships typically
relate resource requirements to the physical, performance, or copera-
ticnal characteristics of the system, and are, in essence, formal
statements of the way one or more variables relate to each other. At
times a simple factor such as cost ,.r mile is all that is needed.
Frequently, .owever, a more complax relationship is required such as
the one between the weight and cost of an aircraft and the manhours
required to maintain it. The necessary relationships are usually ex-
pressed as mathematical equations, as curves drawn on coordinate paper,
or both. In either case, the methods of curve fitting are essential
to the development process.

Just what do we mean by curve fitting? Suppose we plot a set of
corresponding values of two variables on coordinate paper. The prob-
lem of curve fitting is that of finding the equation of a curve that
passes through (or near) these points in the graph so as to indicate
their general trend. An equation determined in this way is called an
empirical equation between two variables, and the process of finding
it is called curve fitting. While curve fitting as such.deals

primarily with relationships between two variables, certain of the




basic methods can be used to establish empirical equations among
three or more variables. 1In cost analysis it is often useful to show
the relationship between two variables in the form of a curve even
when there is no mathematical expression possible; the methods of
curve fitting can be used to establish such curves.

One of the interesting things about curve fitting is that there
are so many different ways to do it, and a review of the literature
on the subject wculd lead one to believe that there are as many
methods as there are authors and problems. In fact, we may reason~
ably conclude that curve fitting is more of an art than a science.
Fortunately, however, many of the methods are useful in solving
only a limited number of unique problems, and for that reascen are not
of interest to us here., It is the intent of this Memorandum to ex-
plain curve fitting irn a general sense and to present only those
methods that experience has shown to be of general use to the cost

analyst.

SOME BASIC ANALYTIC GEOMETRY

This section disc'sse: the mathematical properties of some func-
tional forms, the general shape of the curves portrayed by each, and
the relationship between the shape of the curve, its location, and
the values of the equation constants. Since our greatest concern at
this point is to develop the equation describing a particular rela-
“ionship, we will present the techniques for calculating the equation

parameters, both constants and cceificients.
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The different fu.ctional forms that will be treated are summarized

below:

y = a + bx, straight line,
y =a+ bx + mrg parabola,

y = abx, exponential,

y = axb, power function.

These suffice for most cost analysis problems with two variables. Although
there are other forms that are frequently used, they generally can be re-

lated to those given above through appropriate scale transformations.

Straight Line

The straight line is certainly the simplest functional form to
deal with. It is completely defined by knowing any two points on
the line. The main feature of any straight line is the slope or
tilt of the line. If the line rises reading from left to right as

in Fig. 1, from points x to P(x,y), the slope is said to be positive;

11
if the iine falls reading from left to right, the slope is said to be
negative. The actual value of the slope (b) is the ratio of a change
in y to a related change in x, that is, the ratio of the length of
the vertical dashed line to the length of the horizontal dashed line
in Fig. 1.

If we are given any point on a line, say P(x,y) as in Fig. 1, and
the slope (b), we would be able to deduce the equation of the line.
This may be expressed symbolically as

(y - yl)

b= EEENE
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Fig. 1--Straight line with known slope
drawn through point SRR

or

(y - yl) = b(x - xl),

which is known as the Point-Slope form of the equation of a straight
line. If we are given one point and the slope, we would immediately
be able to substitute in the above and have the equation of the line.

A slight modification of this results when, as in Fig. 2, the
slope is not known directly, but two points on the liue are given.
Then the slope can be calculated as follows:

(y2 - yl)

b = (xz

and this value may in turn be substituted into the Point-Slope formula.
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Fig. 2--Straight line drawn through

two points, & and .y,

The modified form of the Point-Slope formula for the equation of a

straight line is

This particular torm is probably used more than anv other in titting
stralght lines.

There are other instances when, as in Fig. 1, the slepe and the
intercept are known. The intercept, more properly called the  inter-
cept, is the point where the line crosses the oaxis. This point is
identitied in Fig. 3 as PO, ). Because the coordinates of the inter-
cept are as useral as the coordinates of anv other point, we may use

them to write the equation of the line. The Point=slope tormula por




v e Ao e ]

a straight line {s used and the resuit is

(y -a) =b(x-0)

which simplifies to y = a + bx where both the intercept (a) and the
slope (b) are immediately recognizable. This is known as the Slope-

Intercept formula for the equation of a straight line,

Fig. 3--Straight line with y intercepting at a
and passing through pcint Tolin
The remaining case is where both the r and the . intercepts are
known. As in Fig. +, @ is the value of y when xr is equal tc 0, and ¢
is the value of r when . 1is equal to 0. Notice that, {n this case,
the li:e sleopes downward from left to right so that we would expect
the slope to be negative. Writing the equation for calculating the

slope using the modified Point-Slope formula, wve have
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L gy = ta =0
(y - a) 0 = o) (x - 0),

(PR TS)

\\(O,a)

(c,0)

N

X

Fig. 4~-Straight line showing
r and y intercepts
Not{ce that the y intercept is equal to < and the slope is equal
te q divided by . This form of the formula for a straight line is
called the Intercept form. Another form of this equation which re-

sults from a slight rearrangement is

o ik

i,

In this form the coordirates of the twe intercepts are immediazely
recognizable.
The next {igure, Fig. 5, shows two special cases of the straight

line, the line parallel to the r axis and the line paraliel to the .
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axis. In the first case the slope, /, is 0 and in ‘he second it is
infinite. The equations for these two lines are quite simple. In
the first case where the line is parallel to the » avis, the equation

is

where ; is the constant distance from the r axis. In the second case

where the line is parallel to the . axis, the equation is

o oz
Y -

]
where o is the constant distance of the line from the - axis.
d
£ o= 0
b= 2
e
—
Al
Fig. S-=-Straight liae paralledl to o oor . axis

Anv of the formulas presented above mav he used to write the
equation of a straight line. The choi e will depend on the particu-

.

lar kind of intormation availabie 1 the time, for there are times




when each is useful. The most generally useful, however, is the modi-

fied Point-Slope formula.

Parabola

The parabola i~ not as commonly used as the straight line, but
nas sufficient appli-ation to make it worthy of treatment here. The
varabola is defined as the curve described by points equidistant from
a fixed point and a fixed line. Figure 6 shows such a curve. The fixed
point F is .nown as the focus of the pa-:hola and the rixed line
as the directrix., Of course the equation of such a curve depends on

its location with respect to the coordinate 3. For the moment,

however, we will position the curve as shown in Fig. 7. The vertex

A

el Tl

kRS




is at the origin of the coordinate axes and the line of symmetry of
the curve is the x axis. Referring to the definition, we find that
when tne value of y 1s 0 (which is the case at the origin), the di~
rectrix is the same distance to the left of the origin as the focus
is to the right. Further, assuming the distance f{rom the directrix

to the focus on the line of symmetry is p, the coordinates of the focus

are by definition (p/2,0), and similarly the equation of the directrix is

x = -p/2,
Letting P be any point on the parabola and setting the distances
FP and PL equai to each other, according to the definition, we cen

derive the equation for parabolas symmetrical to the x axis, the

Fig. 7--Parabola with vertex at the origin,
opening to the right
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vertex at the crigin, and opening outward to the right. Using the
standard distance formula for determining the length of the two

*
lines FP and PL, and setting one equal to the other, we obtaln

FP = \[(y - 0)2 + (x - p/2)2,

PL = \/ (x + p/2)2.

Vy-02+ @-pl= Ve + o/

When both sides of this expression are squared and the result expanded,

we have
2 2
2, 2 |2 N A
y +x px + =7 + px + g

*
The distance between any two points on rectangular coordinates
may be calculated by using the following formula:

y
N _ 2 ” 2
d = \/?91 yz) + (2 9:2) , /,,»0
e X
where Jd = the required distance, (xlyl)

(z,,y,) = the coordinates of the
first point,

(xz,yz) = toe coordinates of the
second point.




which simplifies to

5" = 2pa,

and is the equation of the parabola shown in Fig. 7. If the parabola
were as pictufed in Fig. 8, the equation could be obtained by using

the same method:

Vi - /2% + @2,
\/(y + /)7,

Vo + 027,

gy o
¥y~ oyt

which is the equation for a parabola with its vertex at the origin,
symmetrical tc the y axis, and opening upward. Notice that the ninety-
degree rotation, as was made between Fig. 7 and Fig. 8, caused the x
and the y terms to be interchanged. Otherwise the two equations are
identical.

When the vertex of the parabola is shifted away from the origin,
as in Fig. 9, the equation will again be altered. To show how, we
regard the problem us one of shifting the intersection of the axis of
the coordinate system from the point (h,k) to the point (0,0), To

moke the translation we set
rx=x' +h

y =y' tk
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Fig. 8--Parabola with vertex at the origin, symmetrical
to the y axis and opening upward

Y
-~

yV
|
|
I
|
|

———=(h kM ~—|———— '
l _—
|
!
|
|
|
]
B Fig. 9--Relationship between parabola and two

sets cf coordinate axes

¥
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where  and y refer to the original axes; x' and y' refer to the axes

whose center coincides with the vertex of the parabola; and % and k
are the coordinates of the origin of the &', y' axes measured from
the x,y axes.

When we substitute (x - h) for x' and (y - k) for y' in the

equation y'z = 2px', we have
Vi
(y = k)" = 2plx - h),

which when expanded yields

yz - 2ky + k2 = 2px - 2ph,
yz - 2px - 2ky + 2ph + K = 0.

Because in all cases h, k, and p will be constants, the equation may

be written as follows:

9
y + Dz + Ey+ F =0,

where D = -2p,
E = -2k,
F=2ph+ k2,

This is the standard form of the equation for all parabolas symmetrical
to a line parallel to the x axis.

If instead of y'z = 2px' we had started with x'z = 2py', we
would arrive at the standard form of the equation as follows: Sub-

stituting (y - k) and (xr - k) for y' and x' respectively gives us

@ - =P -k,
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which when expanded yields
2
" - 2h + h - 2py + 2pk = 0.

After substituting as atove, we have

2 ' '
xX +Dy+E‘:x:+F=0,

where D=-2p,
E' = -2hn,
F' = 2pk + hz.
This is the standard form of the equation for all parabolas symmetrical

to a line parallel to the y axis.
If we take each of the two standard forms in turn, shift the
terms and divide through appropriately, we arrive at the following

equations:

12 E _F
vt Tp T
12 E _F
* tprtp Ty

As each of the coefficients in the above expressions is a constant,

‘we can make further substitutions and obtain either

Ayz + By +( =ux,

or

Azt 4 Hr o+ C o=y,
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where A = 1/D,

B

E/D or E'/D,

Fal

F/D or F'/D.

Ihese are the forms of the parabola that are most commonly used
in curve fitting. Since there are three coefficients, or unknowns,
at least three points must be known to define the curve. Given three
peints on a parabela, the equation may be obtained by using the coordi-
nates of each of the points to obtain an equation of the above form

and then solving the three equations simultaneously for i, X, and

To illustrate, we are given the three points (0,2), (3,4), and
(4,12). Plotting these points as in Fig. 10 leads us to believe a
parabola opening upward and symmetrical to a line parallel to the .
axis would be the correct form to fit. The standard form of the

equation for this type of parabola is

o]
= et o4 Ero4

4
12~ ® (4,12
10
- s L
(-
4 b o 4)
2 (D
0 1 i ] S R
0 I J | )

Fiy. 10--Points used to illustrate titting the parabola
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Substituting each of the three points in this expression allows us to
write the following three equations. Notice that the x coordinate

must be squared to make certain of the substitutions:

2 =04+ 0B+ C,

=~
L

94 + 38 + C,

12 164 + 4B + (.

-

It is obvious from the first equation that (¢ is equal to 2. Using
this knowledge to adlust the two remaining equations will reduce the

problem significantly. In this case, the two remaining equations

are

o
#

94 + 3B,

10 l6A + 4B.

There are a number of ways to so.ve simultaneous equations.
Probably the simplest for only two equations is the determinant meth-
od. As the number of variables and thc number of equations get larger,
however, other methods are preferred. In fact, when four or more equa-
tions are involved, it is probably best to look for computer programs
to do the job. The determinant methed is particularly well adapted
to the desk calculator, but not particularly well suited for illus-
trative purposes. lere we will divide by the leading coefficlents
and eliminate variables by subtraction,

Dividing the first cquation by 9, the second by 16, and subtract-
ing the first equation from the seccnd, A i{s eliminated. These steps

follow:
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x.
<+
—
\olu/

w
"
Olro

and

Subtracting the first from the second, w -

(-9 -G-9)

The n.cessary simplifications and other arithmetic having been performed,

We next substitute the value of B into the first of the two variable

equations and calculate . as follows:

0690

The required coefficients are now seen to be

11

A m

6 »
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Tt is usually good practice to substitute all of these coefficients
into one of tie original equations to test the correctness of the

arithmetic. Substituting in the second equation we have

11 24

Y=Y + 3= =)+

The required arithmetic shows us that the values of the coefficients
calculated are in fact correct. The equation that we have been loocking

for is therefore

Solving this equation for ., given a range of values of & and plotting

them, allows us to draw the curve shown in Fig. ll. Contrarv to our

7

expectation, this form of parabola is not a good representation of the

relationship implied bv the three points.  This example {llustrates

.__
[ 2")

(4,10

o
T

Yig. !'--Parabela passing through three points
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an inherent difficulty assoclated with using the parabola. It we had
not examined the characteristics of this curve over the relevant values
of r, the fact that . is negative between x = l'y and »r = 2 would not
have been noticed and could have led to absurd cost estimates.

In curve fitting we are concerred primarily with the best repre-
sentation of the data at hand. In cost estimating we are typically
concerned with extrapolation beyond the range of the existing data.
When we choose a paraboela to represent 4 relationship hetween two sets
of data, we generally use onlv a limited segment of the entire curve.
Figure 12 illustrates how this fact can lead fo trouble The boxed-in
segmerts of the curve show the part of the curve used to describe the
data. Examination of the curves outside the limits of the various
boxes shown in Figs. i1l2a, 12b, and l2¢ indicates the kind of trouble
one can wgei into by using this tvpe of curve for making extrapolations.

There are times when the best parabolic function to represent a

ser of doa is of the form

Since {t is conventional for . to be the dependent variable, tuls
equat fon vauses some ditficulty. One way this difficuity van be
overcome, after fitting the curve, is to solve the resultant eguation
for o using the guadratic formula. First the eguistion must be re-

written as tollows:
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2N

e

{12a) Parabola orening dowrward

-

¥4

CIIBY Parabola opening to the right

Fig. dl=-tmplications of the vse of parabolas tor extrapalation
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8

{12¢) Another parabola opening downward

Th2n, using the quadratic formula,

~-B \/32 - 4(A) (C-x)
24

y:

Use of this formula will probably resuit in two solutions because the
gquarc root of a numver can be either positive or negat. ve. Each

equation must be evaluated to deterwi.» which is appropriate.

Evponential

The general form of tne exponential equation is y = ab™. Graphs
of two expcnential equations that diifer frem each other oniy with
respect to the value of b arc ~hown in Fig. 15. 1In each case a has
been set equal to 1. As will be shown, only the level of the expo-
nential is affected by the value of a.

A graph similar to that shown ia Fig. 13a results wherever b 1.

greater than 1, and a graph similar to that in Fig. 13b if b is between

*
In this text, the function with the independent variable x as the

exponent is called the exponential, while the function y = azl, where
the exponent is a constant, is called the power function.




I and 0. If / is equal to | the exponentiail equation becomes

:1’

fer 1 oraised to anvy power is equal to 1. If ! is 0 there is no equa-

tion. for 0 raised to any power is 0O, and censeguently

When / is negative (less than 0), th > exponential is discontinuous

and, for that reason, of no value to uvs for curve fitring.
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(13a) Exponential with & > | (13b) Exponential with O < £ <

Fig. 13--Negative and positive exponential curves

For our purposes, the fact that the exponential curve rises from

left to right when b is greater than i and from right te left when b




is between 1 and O is the relevant characteristic. Also notice that
both curves pass through the point » =1, x = 0.

The influence of a is illustrated in Fig. 14 Larger values tend
to raise the curve while lower values cause a downward shift. When x

is equal to O, ho = 1, and the exponential becsmes

)

a.

(el

Consequentiv, a may be thought of as the y intercept.

= 15(2%)

L | 1
. 3002 3 2 1 1 2 3
i
b
0 0
; (l4a} Exponential with b > 1 (l4b) Exponential with 0 < b < ]

‘ ¥ig. l4--The effect of the values assigned to a on
the level of the exp-nential

Since facility with the exponential requires an understanding of

exponents and logarithms, we will digress temporarily to review these
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topics. The system of exponents is based entirely on five basic laws
and four definitions. The first definitior states that the expression
¢, where i is an exponent and a is greater than 0, is the product of

a multiplied 'v itself » times:

3]
1]

g a X aQ,

)
L}

a x ax 2,

. . ”m no, m+n
I'he first law of exponents states that the product of @ and a is =2

which incidentally follows directly from the initial definition. To

illustrate:

A T A R A, a~ = a ok X A,
5
(@a xa)la xa xa) =(axaxaxaxa) =a .
Each of the other laws can be similarly derived and it would be a
worthwhile exercise for the reader to do so. All five laws are sum-

..irized below:

I. o x4 = am+n.
1. aat =4
111. (am)n - amxw.
. @)t =t <"

124 n

v, (@) = d




0
Three additicnal definiticns complete the system; u 1is defined as |,
~n n * 1/n
a is defined as 1/a , and a is defined as the nth root of a. The
root is positive if g is positive, and negative if a is negative and
7 is odd. This system not only gives meaning to the expression ax
when g is greater than Q0 and » is any rational number, but also provides
the inputs essential to a discussion of logarithms.
The logarithm of a number is the power to which a base number must

be raised to equal the original number; it can be more conveniently

expressed as

where xr is the legarithm of y to the base a. In the language of loga-

rithms we would write
x = lo .
gay

The logarithm x is also an exponent. From this and our earlier
discussion of exponents, we conclude, and rightly so, that any rational
number greater than O can be the base of a system of logarithms. In
actual practice, however, 10 and the constant e are most commonly

*k
used. When the base is 10, the logarithms are called common (logs)

*
It should also be pointed out that such definitions seem logical
from the law of division. That is,

n
a =7 0 1
— = q = q and — =
n n

a a a
*

*
The constant e is the limit of the expression (1 + v)l/v as v

approaches 0; the limit is equal to 2.7183 to five significant figures.
It is one of the most important limits in calculus.
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logarithms, and when the base is e they are ralled naturmal (ins), or
Napierian logarithms. We shall follow the general practice of using
the abbreviation log where 10 is the base and 1ln where e is the base.
Tables of each are readily available.

Any rational number greater tharn O can be expressed in terms of
its logarithm and consequently in terms of 10 or e. Expressing a
relaticnship in terms of e leads to simplification both of form and

of required computations. Suppose, for example, we have a number,

Yy, which we wish to express in terms of e. We would only have to find

ln » in a table of natural logarithms to write
Iny = x,

or in exponential form,

Figure 15(a) shows us that these two equations have exactly the same

graph as do the equations

1nx=:/,

and

Fig. 15(b) provides similar information for reciprocal relationships.
Interchanging the x and » terms does, however, cause an exchange

of coordinate axes.

"y _
To express the exponential y = 16.5" in terms of e we treat the

number 16.5 as ek and write

e i
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or x =1lny

4 2 2 4 6 8
2 x
(i5a) y = e” or £ = 1In y and
x=é¥ or y = Ilnx
4
Yy
F.S
H"l_ S
x
e ~ 6
or /
x-lnl—/
y
— 4
2
L 1
4 2
- 2 i .
(15b) y = — or x = In ~- and
or x Y
e
l
y-ln; xz—l—oryzlnl
&Y ¥

Fig. 15--Turves illustrating the relationship between y = ex. X = ey,

T “
w = 1/e", and x = |/e” and their logarithmic transformations
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16.5 = e

and

[op
w
il

In

From a table of natural logarithms we find that In 16.5 is approximatelv

2.83 and we write either

In 16.5 = 2,83,
or

2.83
e .

16.5

i

Substituting in the original exponential equation and applving the

third law of exponents we obtain

l}

(64.83).’1'

and

2.83xr
= e .

When the exponential is expressed in terms of e, the slope of the curve
. at any point is equal tuv the value of the expression at that point.

When the exponential is not expressed as a function of e, the slope

is proportional to, but not equal to, the value of the expression at

the point; i.e., slope = <.

L
~—
to
—

For :xample, Fig. 16 shows the graph of the expression , =

. T ; Co .
which is an exponential of the form . = " . Since this is not writ-
ten in terms of e, we would expect the slope at any point to be pro-

portional to the value of the expressiorn at that point. We can check

this--at lerst approximately~-by estimating the slope uf the curve
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at two points and comparing tne results with the value of the function

at those points. To do this we establish the equation

the estimated slope at point r,

€
=
m
~
1)
e
5
it

o

the value of the function . = 2(2") at point x,

.
il

the counstant of proportionality.

Xy,

Fig. lb--Fstimating the slope of the expression
vo= 2(2)7 at points P, and P,
i -

Two points, P, and P, have been selected, one at either end of

1
the curve. It is obvious that the slopes at these two points are Jditr-
terent. Let us assume that the curve extended an -qual distance from

cach P {n either directlion (shown on the gra,h as the hvpotenuse of the

indicated traingles) is a straight line. Remembering the discussion of
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the straight iine, we see that, having made this assumption, the coor-

dinates of the vertexes of the triasngles provide sufficieant information

to estimate the slope of the curve.

of the upper triangle are

= 2,00,

v.o= 1,60,

The coordinates of the vertexes

8.00,

*
6.0613,

H

The formula for caiculating the slope of a line given two points {s

> T
S T
Xy T
and on substitution
¢ o 8.000 - 6.063
2,00 - 1.60 7
S

The x coordinate of point P1 is the average of o and x, (.80
. . - ) . . U
shere this point, x , is substituted in the expression y = (2 7Y, the

4

resulting value of ¥ {s 6,964, Returning te our proportionality state-

ment

we zubstitute appropriately and get

G.BRLA =

*

TN,

0\ . h’*)-\ .

The » coordinates were obtained bv substituting the > coordinates

{n the expression . = 2(2); values
tained by solving, a procedure that
estimated slopes.

to three decimal places were ob-
improves the agreement between the

L e ey




-32-

indicating that the slope of the curve can be evaluated at any point
by multiplying the value of the function at that point by 0.695. To
check this we use point P2 in exactly the way we did Pl and derive
another estimate of the slope and the value of k.

For the lower trianple

x, = =-0.4, y, = 1.516,
x, = -0.8, y, = 1.149;
therefore the slope
e 1.516 = 1.149

-0.4 + 0.8 °
S5 2=0.918.

The value of the function at xa(-0.6) is 1.320; therefoure

7.918 = 1.3204,

I = 0.695;

and we are satisfied that the required constant of proportionality does
evist, The value of the expression at each of the two points was calcu-
lated to four significant figures using the expression itself. Values
were not read from the curve. It is also interesting to note that for
the {llustrative expression of the form y = abx, the value of b was 2,
Further, the natural logarithm of 2 is equal to 0.6931 which is quitc
close to the value of ~ estimated above. The fact that our results

were no closer to the theoretical value of + is due largely to the

assumption that the curve was linear over the relevant range.

S
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The constant of proportionality can be proved analytically to be
evactly equal to the ratural logarithm of b, Further, in an exponential
of the form y = ex. b is equal to e and the natural logarithm of e is
equal to 1, Thus for these kinds of exponential expressions it is ob-
vious that k must also be equal to 1.

Let us turn now from the digression to our main discussion. It
has probably alrcady becn noticed that the exponential expressed in
logarithmic {orm is a straight line function: 1i.e., the expression
A " s equivalent to the expression In = In 2 + ln bx; notice
In 2 and In / are constants. This fact greatly facilitates fitting
with exponential expregsions.

if we are given the exponential y = ea+bx and we want to put it
into logarithmic form, we take the logs of each side. Although the
logarithm of y presents no problem, the logarithmic form of ea+bx may
appear to. When we remember the laws of exponents and the fact that
logarithms are in fact exponents, we find that g + bx is the logarithm
of y to the base e, and as such becomes the natural form of the right-

hand side of the equation
In y = a + bx.

The exponential expression is therefore linear when stated in
terms of the logs of one of its members. To illustrate this, take

the following expression
Iny = a + bx.

We can recognize this as a semi-log straight iine. If we were to



convert to exnonpential torm we would have
A
P .
If we also examine the ejuation
e

we find that this is ancother form of the exponential whic

1~

verted to log form as follows: First, we divide bcth sid

¥
“

equation by which gives us

We can also express an we look up the na

of -, which, for lack of a better name, we will call »

write

o2

= (e) s

or, again according to the third law of exponents,

, Tr+2n
e

The expression may be further simplified by letting 2» be

by the constant, *. This produces

ret”
RN

y/q 2

Now converting to logarithmic form we have

.

b

In (/1) = or +

Il can be con-

es of the

tural log

We can now

represented




which once again is a linear expression when the quotient of y/a is
given in terms of logarithms.

The equation of an exponential passing through two points may be
determined quite simply. We need only set up the required functicnal
form in terms of logarithms, then proceed .. with a straight line.
The folleowing example illustrates this method.

Given the two points, 1,7 and 4,! on x,. coordinates, we chocse

o
o

an expression of the form y = gi” as the appropriate general exponential
to fit. The next step is to restate this expression in terms of loga-

rithms as follows:

With the cooruinates of the twe points, (ml,y1) and (xz,yz) we

may write the two equations:

In ¢ + xy 1n b,

[
o]
(29
—
1]

In g + x, 1n b.

In Yy

Taking the logarithms of y, and », and substituting the logs of
LA : g

2

the ys and the xs in the above equations results in two equations with

two unknowns that may be solved simultaneously:

1.9459 = Ing + 1 1n b,

0.0000 = lna + & 1n b.
Sub racting the second equation from the first leaves

1.9459 = -3 1n b,

In b = -0.6486.
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This value can in turn be substituted into the first egquation above
with “he result that
1.9459 = 1In a - 0.6486,

In g = 2.5945,
and with this we can write the required expression as follows:
In 4 = 2.59 - 0.649zx.

The expression has been evaluated, and the results plotted in Fig. 17
pass exactly through the two pcints as required. We can simplifv the
expression by converting it to exponential form. To do this we mus*

have the numbers represented by In 2 aad 1n &. Looking in a table of

natural logarithms we find that
Inag = 2.59 = 1n 13.4,

Inb = ~0.649 = 1n 0.523,
and we may write
v = 13.4(0.523)%.
Notice that 13.4, the value of a in this expression, is ir fact the
y intercept. We can simplify still further by converting the expres-

sion to one In terms of e. To do this we thin" of 13.4 as ep and

- 5
0.523 as e ; thus

13.4 = ¢

1}
1]
-

m

0.523

(]
1
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la -

12

2.59 - 0.649x

(1!7) lny
or

13.4(0.5231)%

«w
"

or

2.59 - 0 649rx
= e

Fig. 17-~Exponential fitted through .wo points

and we find the value of both r and s by again consulting a table of

natural logarithms. Another way to write the last two expressions is

r = 1n 13.4

and

g = 1In 0.523.

IR X
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We really did not need to use the table again because the lns of these

values are already available from our calculations above:

s = 1n 0.523

]

~0.649,
» = 1n 13.4 = 2.59.
r s Y
Now {f we substitute e and e  in the equation y = 12.4(0 "23}7, we
have

- 4 4
2.5) R O.64J>x.

y = (e (

Using the first and third laws of exponents we convert this expres-

sion to

e(2.59 - 0.649x)

Rewriting this expressicn in logarithmic form results in
Iny = 2.59 - 0.649x,
that is, the same expression that we had initially.

Power Function

The power function is one of the most commcnly used mathematical
expressions in cost analysis because in many cases it adequately
describes the phenomepon of decreasing costs of successive units of

production. The general equation of this function is

b
y = ax .

To avoid confusing the power function with the exponentjial, which

looks somewhat similar, we must observe the placement of the variable,
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x. In the power function, the variable x is raised to the power b,
while in the exponential, a constant is raised to the variahle power

x as below:

The characteristics of the power function can best be illustrated
by initially setting a equal to 1, because a affects primarily the level
of the curve and has little influence on its shape. Havirg done this

we are left with the equation

For certain values of F, the function is not continuous for negative
values of x. Therefore, we wiil restrict the variable x to values
greater than O; the exponent » can assume any value, positive, nega-

tive, or 0. However, when & is 0, the equation becomes

y =1,

for any value raised to the 0 power is equal to 1. When b is positive
and varies from 0, the family of curves shown in Fig. 18 results.

The smallest value assigned to b in Fig. 18 ig¢ 0.2. Had 0.0 been
used, the result would have been a straight line parallel to the x
axis and passing through y = 1 as absve. When b is between O and 1
the curves generated are conceve dowaward. When /' = | a straight line
(y = x) results, because any number raised tc the first power is the
number itself. As values greater than | are assigned to b, the curves
become concave upwards. The curves pass through the point x = 1,

y =1 for all values of », because | raised to any power alwavs equals 1.
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When x is greater than | the curves rotate upwards as the value
of I increases. When xr is between l and 0, however, the situation is
not the same, as shown by Fig. 19. At the upper end all cf the curves
go through the poiut » =1, , = 1 as before, but at the lower end thev
all tend towards the point x = 0, - = 0. When / is made smaller the
curves beceme higher, the reverse of what happened when x was greater
than 1. When /' is greater than 1 the curves are concave upwards; when

k]

bk is less rhan ! the curves are concave downwards. As hefore, when
%

7 is equal to 1 the curve is the straight line . = .

" .en the exponent b is negative, the family of curves shown in
Fig. 20 is generated. Regardless of the value of b when it is negative,
the curves are concave upwards. As before, however, each of the curves
passes through the point x = 1, y = 1, and for values of x greater
than | the curves wi.h the lower values of b lie above those with higher
values of b. When x is less than 1, however, the reverse is true.

When b is equal to -1 we do not have a straight line, as was the case

vhen b was equal to +1; in this case the resulting equation is

which is a reciprocal or a form of hyperbola.

Figure 21 illustrates the etfect of including ; in the equation.
When 7 is increased from | the curves shift upwards by dircet mulcipli-
cation. Wwhen g 18 r:duced from 1 to O the curves shitt similarly but

in a downward direction.

This is true because a decimal raised to a power greater than
I gives a smaller number. Also, a decimal raised to a positive power
less than ! sives a larger number than itself.
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w <1

and 0 -

,» with positive expor- L

E
=
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Fig. 17 --Fower fur .
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In most cost analvsis applications only that part of the curve
where r is -~ 1 is of interest. Since we are generally concerned with
depicting a cost-quantity relationship with . the cost and »r the quan-
tity, we are not concerned with the cost of less than one unit. But
both because the curve might be useful for other applications aud
because of its special behavior, we should become familiar with its

*
more general characteristics.

The power function also is linear when expressed in terms of

logaritims. Returning teo the general equation

= sy
‘ el oy

and raking the logarithms of both sides, we have
Tog » = log 7 + o log .

which is quite clearly a linear expression in logarithms. As most
curve-titting techniques are simpler when handling linear relation-
ships, it is commen te make this transformation before ritting the .
power tunction., Figure I shows the complete fanmilv of pawer func-
tions plotted uring logarithmic caordinates.
When two lines (power functions) are parailel on lopgarichoic -
coordinates, they difter from each other by a constant ratio o, per-
centage, which {8 contrary to the case where two paratlel lin
arithmetic coordi ates Jdiffer by a vonstant number. To demonstrate !

analviically, assume that e have two curves, one o percent hivher

= It ¢
than the other. The equatiors Yor these curv: . are ‘i.

i A
lt should also be pointed ocut that this curve is undefined tor .

a negative » and » = . I+ this vase L goes o

direction.
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and in legarithmic form
log ¥y = log a + b log x,

log Yy = log 1.5 + log a + b log x.
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In the second equation let the constant terms log 1.5 + log a be set

equal to log a'. We then have
log ¥y = 1 a+ b log x,
log Yy = log a' + b log x.

The only difference between the two occurs in the constant terms log
a and log a'. When these two equations are plotted on logarithmic grids
there will be two pavallel lines with the spacing between them equal to
log a' - log a or log 1.5.

Fitting the power function through two points can be accomplished
by transforming both variables into logarithms and proceediag as with a

linear case. "o review the method, see the discussion of the straight

. %
line,

*
p. 3ff.




11, FITTING CURVES TO TWO-VARIABLE RELATIONSHIPS

THE STRAIGHT LINE

Although there are many methods of fitting straight lines, three

are usually sufficient for fitting curves to two-variable relationships:

the method of selected points, the method of "averages, and the method
of least squares. Of course one can always draw the curves freehand,
but even so the equation of the line must be determined by using one

of the other methcds.

The Method of Selected Points

When it is apparent that data plotted on rectangular coordinates
can be described by a straight line, the equation of that line can be
found using the method of selected points. With the use of a straight
edge, a line is drawn through the points such that the points are uni-
formly distributed around the line. Twc points are then read from the

line near the extremities and substituted in the equation
w =a+ bx.

The two equations are then solved simultaneously for & and &,
In the example shown in Fig. 23 cthe two points selected were

P, (4, 8.3) and P2

i (26, 24). The two equations were therefore

8.3 = 4 + Alr,

26.0 = g + 26b.

When the fir:+ is subtracted from the second, the result is

[ T o
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10 +~

1
°

- 34

15.7 = 222,
b= 0.714.
®
[ ]
‘\i‘pq (26, 24)
&
®

°
‘~\“Freehand curve
Y y = 5.44 + 0.714z
®
®

® TSP (4, 8.3)

e
(=]

30

Fig. 23--Straight line fitted usi the method of selected points

When / is substituted in the first equation

8.3

o

The equation of the desired

When values of x taken

in this equation, values of

a + (4)(0.714),

5.44.,

line is

= 5.44 + 0.71l4z,

from the original data are substituted

y ceorresponding to each of the original
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values can be calculated. One way of showing how well the line fits

the data is to compare the calculated values with the original values

using a percent deviation for each data point as in Table 1. When

comput ing the percent deviaiion, it is usual to base the percentages
* ’

on the observed values. For example, the percent deviation for the

first data point is

100
(8.00 - 6.87)g5> = l4.1.

Table 1

USING THE METHOD OF SELECTED POINTS TO
FIT A STRAIGHT LINE: DATA AND RESULTS

p x 4(cale.) Percent Deviation
8 2 6.87 14.1
6 4 8.30 -38.3
12 6 9.72 19.0
10 10 12.58 -25.8
14 12 14,01 -0.1
18 1h 16,86 6.3
20 27 21.15 -5.8
28 24 22.58 19.4
26 26 24.00 7.7
22 30 26.8¢ -22.1
i 15.9 av

After the percent deviations are calculated for each data point,
an average percent deviation can be calculated by adding each devia-
tion, disregarding the sign, and dividing the total by the number of
data points.

Notice that the placement of the line in the example was quite
arbitrary; this is one of the weaknesses of the method of selected

x

observed - y calculated) 100.

Percent deviation = (H
Yy observed




points. The same equation could have been arrived at in a slightlyv
different manner. Had the line been extended to the left until it
intercepted the , axis, we could have read the value of 2 directlw

from the graph and calculated the slope as follows:

b= (24 - 8.3)/(26 - 4) = 0.714.

Still another method using the two points given and the modified point

glope formula would be

Ueqg — 4
v2 o1
. - 11 —(;-—_—J_—>' (1‘-1‘1),
2 1
24 - 8.3
i -8 =(5=5) - @ -,
u o= 5.44 + 0,714,

The Method of Averages

To use the method of averages the data must first be arraved in
ascending order according to one of the variables. Second, the numbers
are divided so that two approximately equal groups are tormed. [(f the
number of data points is even, there should be an equal number in each;
if odd, the extra point will have to be placed in one group or the
other, The average value of each of the variables is calculated tor

each group and substituted into the equation

wo= .0+ br,

Two equations result as before; these are solved simultaneously for

1 and b,
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In the example shown in Fig. 24 and Table 2, the data are ordered
according to the variable r. As there are an even nunber of data
points (10), 5 are to be assigned to each group. When average values
for both xr and y are calculated for each group, they define the two
points (6.8, 10) and 23.6, 22.8) which are then plotted and a straight
line connecting them drawn. The equation of the lire is obtained by
substituting the coordinates of the average points into the equation

v = a + bxr as befeore and solving the two equations simultaneously for

a and b.
10 = a + 6.8,
22.8 = a2 + 23.6h.

0

[ ]

°

\\\\ ]

20 | ° P, (23.6, 22.8)
[ )
y Curve drawn hrouvgh Pl and .‘2
w o= 4,82+ 0.7b2r

10
0 A A J

0 10 20 30

4

Flg. 24--Straight line fitted using the method of averages




When tte first is subtracted from the second, the result is

i

12.8 le.8b,

e
]

0.762;

and substituting b in the first =quation,

10 = a + (6.8)(0.762),

Therefore,

y = 4.82 + 0.762x.

Percent and average percent deviations as calculated are showr

in Table 2.
Table 2
USING THE METHOD OF AVERAGES TO FIT A
STRAIGHT LINE: DATA AND RESULTS
e e — A
u £ v (calcl) Percent Deviation ‘
— i DI W — e e S,
8 2 6.3, 20.7
6 4 7.87 -31.2
12 6 9,139 21.7
to 10 12.44 -24.4
12 13.96 0.3
b o . ) T
|
10 av i 6.8 av -- -
? e N
s e 17.01 5.5
00 1 22 21.58 -7.9
i
28 24 23.11 17.5
26 26 24.63 5.3
22 30 27.68 -25.8
N — } - - . - - N - e s m—
22.8 av { 23.6 av - 16,0 av
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A slightlv different version of the method o! averages is some-
times used. Instead of calculating average values as was done before,

the data are used to establish ten separate linear equations as follows:

8= a+ 2b 18 = a2+ l6b

ho= g+ 4b 20 = g+ 22h

12 = a+ 6b 28 = g+ 24b .
10 = 2 + 10k 26 = a9+ 26p

14 = a+ 12 22 = g + 300 ‘
50 = Sa + 34b 114 = S5¢ + ligk

These groupings are preserved and the equations apptaring in each
group are added ‘o obtain the required two equations which are solved

simultaneously for a and b:

50 = S + 347,

—
L~

= Sq + 1184,

Subtracting the first from the second,

b4 = 84!,

Po= 0,762

and substituting ! in the first equation

S0 = Sz o+ (34 (0.762),

The same solution results from either averagiug or adding. Although

the method of averages is simple to use and does give a reproducible




solutio i does not ensure that a fegt fitting straight line will

be chosen.

[he Method of L

st squares

[he method of least sanares is probably the most widelv used

N - . . . . . . . . . B "
method of ohrainineg emnirical eauyntions, Tho feidi itaoi sguares

reflects the criterion used o0 determine the desired equation. The

%

line is chosen such that the sum of the squared deviations of the

. . *
points from the 'ine is ninimized. The wav this criterion is used
in the formula for caleulating a least-sgquares lire is worked out in

full in Appendix A. Brietlv it is as follows:

We are seeking an equation of a straight line

such that the sum of t7» squared distances of the data from tha lire
will be minimal.
the sum of the squared deviations () is expressed marbematicaily

as

Yo oobtain values ot s oand 7oso that (his expression can e cinimized

it {s necessary to take partial derivatives with rvespe t 1o both

P
and 7 oand to equate them to U, These pa. tlal derivatives are
= 0y Ny e = 0 and

Woere the cquation {s of the form & = 3 + br, the distances are

measured parallel to the y axis. (onversely, where the equation is of

a

the form r = q + ry, the distances are measured parallel to *the r axis.

-

*
This is a method of calvulus included here only as a mitter of
{nterest. Its comprehension {s not essential to anvth'ug that

t oL lows
in this text.
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%—"2L1?+20;1+22*12=0;

and with the obviocus simplifications made, the resultant two equations

-1

Ha + b | x,

Ny
]

e
8
i}
-
23
+
oy
1
33
to

are called the normal equations for fitting a least-squares straight
line. Each of the values other than g and b can readily be determined
from the data, leaving two equations with two unknowns that can be
solved simultaneously.

In applying this method it is convenient to array the data as in
the first two columns of Table 3. (The ordering of the values is not
essantial, although {t tends to make checking the calculations easier.)

The next step is to square each entry in the column headed x and enter

Table 3

USING THE METHOD OF LEAST SQUARES TO FIT
A STRAIGHT LINE: WORKSHEET

U x = xy y(calc.) d Dgs;:::;n d2

8 2 4 16 7.07 0.93 1.7 0.£65

6 4 16 24 8.49 ~-2.49 -41 .5 6.200
12 6 36 72 9.90 2.10 17.5 4.410
10 10 106 100 12.73 -2.73 -27.3 7.453
14 12 14 168 14.14 -0,14 -1.0 0.020
18 16 256 288 16.97 1.03 5.7 1.0661
20 22 484 440 2'.21 ~-1.21 -6.1 1.464
738 24 576 672 22,63 5.37 19.2 28.837
26 26 676 676 24.04 1.96 7.5 3.842
22 30 900 660 26.87 -4.87 -22,1 23.717
164 152 3,192 3,116 -- -- 16.0 av.f 77.869
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2
the product in the column headed xr . The entries in the column headed

. are the products of the & and . values for each point. After these
calculations have been made, each column ‘s totaled as shown. .V is
the number cf data points; the remaining values :equired by the normal
equations are the totals of the appropriate columns. Wwhen these are

substituted in the normal equations, we have

ro

164 = 10 + 1

u

16 = 1522 + 3192,

and when these are solved simultaneously,

= 5.66

vy
|

0.707.

e
i}

The equation is therefore

4 = 5.66 + 0.707x.

Figure 25 shows the data and the straight line described bv this
equation. The average percent deviation is calculated as before. An-
other measure of goodness of fit that is often uscd, particularly in
conjunction with least-sjuares, is the standard errcr of the estimate
of y, S.* This measure is obtained by squaring each of the deviations,
adding the results, dividing the total vy N (the number of data points),

and taking the square root of the : sult, e.g.,

*

The standard error of the estimate of y allows a heavier penalty
for extreme data points than does the average percent deviation method,
yet it is more difficult to interpret.

h

Y
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30 -
)
®
20
[
y ‘\\\Least squares fit
‘ = 5,66 + 0,707
°
10 b P
e
)
0 ] ] ]
0 10 20 30

2]

Fig. 25--Straight line fitted using the method of least squares

In our example

9

Since the standard error

same units as the variable y,

_ . [77-869

= 8 ’

+3,120.

of the estimate of y is expressed in the

it is often better, when making compcrisons,

to convert to a non-dimensional number. This is usually done by dividing

S by the arithmetic mea.. of y, y:

v = (5/y)100,

or

Vo=

T6.4 = 1003




C = 19,027,

where . is called the coefficient of variation.

Of the three metheds for fitting straight lines the method of
selected points is the easiest to use, but when the required line is
not obvious from the data, the choice is strictly a matter of judg-
ment and the results ave not easiiy reproducible. The method of aver-
ages provides a relatively simple and yet definitive way of choosing
an equation {although not necessarily the best fitting line). The
only place where uncertainty znters the picture is in the placement
of the odd data point. The methud of least squares requires more in
the way of calculation but provides a completely unambiguous way of
selecting and fitting the line; for that and other reasons it is the
most widely used method.

An average percent deviation can be used to show how well the line
fits the data. It is easy to calculate and to interpret. The standard
error of the estimate of y, while recuiring more calculations to be made,
is more widely used because of its implications in drawing statistical
infeirences. The coeificient of variation, a non-dimensional term based
on the standard error, is useful especially for making comparisons.

Although the results of applying the three different methods to
the same data, as displayed in Fig. 26, are strikingly similar, the

user cannot expect that this would always be the case.

THE_ PARABOLA
The same three methods used to fit the straight line may be used

to fit the parabola. To iit the parabola, both the method of selected




spoylow 23IBUiLITE 2eaY3 Buisn
elep awes ayl 03 AUl qy8te13s ® BUIIATI JO SIINSIY--9¢ 813

z Of 9¢ [ g1 v 01 a [4 G

¥ 0
i 1 | 1 1 | 1 !
Juigd=z19AY U0 paseg Sivlod 26 {;
sautogd pa2i1d’dfas O
sjulcd evled @&
20070 + 99°G = 7 saienbg 3jsea —g
LY 7 " o
X79.°0 + 8% = A sa8eaaay 10 @ozuwrilllill
° \ o1
\ °
— 7
—81
® —4z¢
s3uTo4d pelvaIes
L0 + Y776 =
—9¢
®

-0t

R




L T TR R TR
e

-61-

poirnts and the method of averages rely even more on the judgment of

the cost analyst than was the case with respect to the straight line.
For this and other reasons, the method of least squares is p:eferred.
Meaguring goodness of fit is the same as it was for the straight line
and will not be discussed again. There are two forms of the parabola

which may be used by the cost analyst. The first is
y=a+bx+ca:",
which is illustrated in Fig. 27. The second is

2
x=a+by+cu,

or, in terms of y,

-b t V%Zi- boela - )

2 ?

which is fllustrated in Fig. 28.

Fig. 27--Parabola form 1




“

-

S~ - -b Jbz - be(a - )

2]
v 2c

Fig. 28--Parabola form 2

In the first case, the line of symmetry of the parabola is parallel
to the y axis and in the second it is parallel to the & axis. Each form
will be examined separately. Form 2 requires y to be the squared term.
In order to accomplish this, the equation of the first form is written

interchanging y and x as follows:
2
z=a+by +cy;
and solving for y using the quadratic formula

cyz +by +ta- =0,

b + b2~ de(a - x)
y = 2¢ ‘

Parabola Form 1

The Method of Selected Points. When it is clear that the rela-

tionship described by the data can be represented by a segment of a
parabola, the method of selected points may be used. First, draw a

freehand curve roughly the shape of a parabola through the data, and
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read three points from the curve, two at the extremities and one some-

et -

where in the middle. If there is a relatively sharp maximum or mini~
mum point (vertex), it would be best to read the third point from the

area of the vertex. Then substitute three points in the equation
2
u=a+br+ex”,

and solve the resulting three equations simultaneously for a, b, and
¢. Notice that x appears twice in each equation, once as it is read
from the curve and once squared.
In cthe example shown in Fig. 29, numbers for which are given in Table

4, we draw the freenand curve indicated by the so0lid line and read from

Table &

USING THE METHGD OF SELECTED POINTS TO FIT THE
PARABOLA FORM 1: DATA AND RESULTS

v : ¢ (eale) eviation
3 l 2.00 -33.3

2 3 2.99 50.0

4 4 3.56 -11.0

5 8 6.37 27.4

7 10 8.08 15.4
16 11 9.01 -9.9
12 1y 12.13 1.1
15 17 15.70 4.7
18 18 17.00 -5.6
17 19 18,35 7.9
- [ -- -- 16,0 av

the curve the points (18, 17), (12, 10) and (1, 2). The required

three equations are
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3

17 = a + 18b + 324c, '
10 = g + 12b + l44e, 3
2=a+ b+ 0. i

When we subtract the second from the first and the third from the

sacond, we get

7 = 6b + 1802,
8 =11 + 143,
20 -
/
/
/
°/
[}
Ny (18, 17)
15 I~
‘--‘“Freehand Curve
Lo by o= 1582 4 0301 .

¢ 0.,0259°

P (12, 10)

0

Fig. 29--Parabola form | fitted using the method of selected points




To eliminate b, we multiply the first equation by 1l and the

second by 6, then subtract the second from the first:

ro
Ve
[{]

1122~

0.0259.

&

Substituting ¢ in the first equation,

~
L}

6l + (180)(0.6259),

H

0.391.

Next, we substitute both » and » in the third of the original

equations, and calculate 1 as follows:

a = 2-0.391 - 0.0259,

The required equation is therefore
o= 1U982 4+ 0.391x + 0.0259x07,

The graph ¢ this equatfon is shown by the dashed line in fig. 29.

As with the straight line, the chances are small that two analvsts
independent !y using this method would arrive at the same result. The
only argument in favor ot it is that it is relativelv simple to use.

The Method of Averages. Three points similar to those obtained

in the methced of selected points by arbitrarily choosing them from a

*

The discrepancies in rhe arithmetic result from the fact tiat
more decimal places than those shown were used in making t'e actual
calculations.

R s 3
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frechand curve may be obtained by averaging. In this method, we array

the data in ascending order of one of the variables, form three groups
of approximately equal size, and calculate the average values of both x

and . for each group. We substitute the average points in the equation

2
=+ hr + o,

and solve the resulting three equations simultaneously for a, b, and ¢.
Table S5 {llustrates the procedure for the example case. The 10

numbers are arraved in ascending order according to the value of x.

Three groups are forme.. by assigning 3 points to the first and last

groups and 4 points to the middle one.
P p

Table 5

USING THE METHOD OF AVFRAGFS TO FIT THE
PARABOLA FORM 1: WORKSHEET

. T x " (Calc) Percent
< N Deviation
; —_— et B U
‘ 3 1 2.34 22.0
t 2 3 3.15 -57.5
i 4 | 4 . 3.64 9.0
E 3 av 2.67 av -~ -
5 5 8 6.20 -24.0
' 7 10 7.83 -11.9
; 10 x 11 8.73 -12.7
, ! ! 14 11.78 1.8
2 B L L R A S N
8.5 av 10.75 av - -
15 17 15.36 -2.4
18 18 16.67 7.4
17 19 18.04 -6.1
16.67 av 18 av - i 15.5 av

(The assignment of the odd point is arbitrary.) By averaging, we obtain
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three points, (18, 1£.67), (10.75, 8.5), and (2.67, 3), and plot them

as shown in Fig. 30.

20
®
®
s b /,, P (18, 16.67)
4 = 2.018 + 0.290x + 0.0291x
y 10 =
P (10.75, 8.5)
5 b=
.
[ ]
~~p (2.67, )
[ ]
0 L { J }
0 5 10 15 20

Fig. 30--Parabola form | fitted using the methed of averages

We substitute these same points in the eguaticn

which results in the three following equations:

2
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3.00 = 1 + 2.67F + 7.1292,

B8.50 = 4 + 10.75) + 115.56%,

-,

16.67 + 18.00: + 324.000c.

£

When these equaticns are solved simultaneously, the result is

2.018,

a

P
>
I}

0.290,

= 00,0291,

)
i

The equation of the recuir 4 parabola is therefore

y = 2.018 + 0.290r + 0.0291x2.

This method is less erbitrary than the method of selected points,
but some a.biguity does exist because of having to assign any odd data
point to one of the three groups. Further, averaging may prevent us
from c! osing a point near the vertex of the curve,

The Mathod of Least Sauares. io fit a parabola using the method

of least squares, we must solve three normal equations simultaneously

for the values of the ccefficients a, b, and ¢ in the equation
2
y =a+ br+ox”.
The normal equations are

Na+hbh]x+c) 2,

[
«
[

oy =alax+b T rteel) x3,
Ly =al ! )

a E xz + b X x3 + o Z xa.

~
=
~
s
]
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The least-squares critericn and details of the derivation of these
equations, which are described fullv in the Appendix, are similar to
those for the straight line. As in previous Jiscussions, all cf the in-
formation required to solve the equations can be obtained from the data.

In a worksheet similar to the one shown in Table 6, we array the
data as in the first two columns, making entries in the other columns

after performing the cal-ulations indicated by the headings. .V is the

Table 6

USING THE METHOD OF LEAST SOUARES TO FIT
THE PAT.ABOLA FORM 1: WORKSHEET

. 2 3 4 2 Percent
S g * * Y =Yy (cale) Deviation
311 1 i 1 3 3 2,28 24.0
203 9 27 81 6 18 3.04 -52.0
4| 4 16 64 256 1& 64 3.51 12.0
5/ 8 64 512 4,096 40 320 6.03 -20.6
71 10} 100 1,000 10,000 70 700 7.66 -9.4

10y 11| 121 1,331} 14,641 110 1,210 8.58 14,2
12) 14§ 196 | 2,744 | 38,416 168} 2,352 | 11.69 2.6
15| 17 | 289 | 4,913 | 83,521 255 4,335 15.37 -2.5
18y 18§ 324 1 5,832 | 104,976 3241 5,832 16.72 7.1
7] 19} 361} 6,859 | 130,321 323 6,137 | 18.13 ~6.6
93{105 1,481 {23,283 | 386,309 1,3151 20,971 - 15.1 av

number of data points and the column totals provide the other neces-
sary inputs to the normal equations. The equations to be solved for
the example shown in Fig. 31 and Table 6 are:

93 = 10a + 1050 + l48le,

1315 = 1052 + 14810 + 23283c,




30971 = 1481 + 23283} + 186309,

Therefore

]

10
x

Fig. 3l--Parabola form 1 fitted using the method of least squares




Thus the desired equaticn is
b ! 2
= 1.993 + 0.254x + 0.031l4x .

The method of selected points, the method of
method of least squares can each be used to fit a
hecause the method of least squares results In an

it is usuvally preferred.

averages, and the
parabola. Hr rever,

unambiguous solufion,

Figure 32 shows a comparison of the results obtained by using

each of these methods to fit a parabola to the example data.

20
Selected Points
16
Averages
12
y
Least Squares
s |- q ~\\~
[ J
4
®
L Data Points
0 | | 1 i 2
0 4 8 12 16 20
x

Fig. 32--Fitting a parabola form | using three

alternate methods




Parabola Form 2

The equatiocu for this class of parabolas is
2
z=a+by+ey”.

The only difference between this and the equation for the parabola
form 1 is that x and y have been interchanged. In fitting this form
we invert the relationship between x and y in the data and proceed as
before until a, b, and ¢ have been calculated. At that point the equa-
tion in y as above must be solved for y using the quadratic formula.
The desired result will typically be one of the two possible solutions;
the appropriate one can best be determined by experimentation. While
all three curve fitting methods can be used here also, we shall only
illustrate the method of least squares.

The Method of Least Squares. The normal equations necessary to

fit this kind of parabcla are the same as for form 1 but with x and y

interchanged as

Je=nma+bly+ J4%

Jrymaly+blylvely’s

2 2 -
Tyl =al, +b]y +e]y"

When the appropriate values are calculated as shown in Table 7
and substituted in the above equations, we have
92 = 10a + 110b + 1530¢,
1370 = 110a + 1530b + 23690c,

22076 = 1530a + 23690b + 387858c.
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Table 7

USING THE METHOD OF LEAST SQUARES TO FIT
THE PARABOLA FORM 2: WORKSHEET

s yz 93 g& 4 xyz . (calc) Pe?ce?t
“*“WF“—*“"‘ o _ _ Deviation
21 i 4 8 16 2 b 0.76 62.0
41 2 16 64 256 8 32 3.99 0.3
6| 3 36 216 1,296 18 108 5.80 3.3
8] 5 64 512 4,096 40 320 8.40 -5.0
16 9 100 ¢ 1,000 | 10,000 90 900 12.i3 -21.3
12] 6 144 1,728 | 20,736 72 864 9.46 21.2
151 12 2251 3,375 | 50,625 180 | 2,700| 14.33 4.5
16| 16 256 | 4,096 | 65,536 256 | 4,096 16.84 -3.3
15118 324 | 5,832 | 104,976 324 | 5,832} 17.97 0.2
19| 20 361 | 6,859 1301321 380 | 7,220 19.04 -0.2 .
110 | 92 {1,530 | 23,690 | 387.858 | 1,370 |22,076 --- 12.3 av

The solution is

0.913,

[}

a

b = 0.0783,

3
"

0.0485;
and the equation sought is
2
x = 0.913 + 0.0783y + 0.0485y".

Since our objective i{s to use r to estimate ., we must solve this

equation for . We can do this by writing it as & quadratic equation

in u:
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0,0485y2 + 0.0783y + (0.913 - x) = 0,

and using the quadratic formula we obtain

_ -0.0783 + /0.0783% - 4(0.0485)(0.913 - x)
Y 2(0.0485) ’

whichk simplifies to

_-0.0783 * V=0.171 + 0.194x
Y 0.0971 :

We can see on inspection that the solution in which the sgquare-root

term is negative 18 not u.>ful; the correct equation is

-0,0783 +v-0.171 + 0.194x
y= 0.0971 :
This equation has been graphed in Fig, 33. The reason for selecting the
form 2 parabola 18 that as larger and larger values of x are used, the
value of y continues to increase--at a decreasing rate, however. Such
would not have been true had a form ! parabola been used. This problem

*
is discussed in the section of this Memorandum on analytic geometry.

THE EXPONENTIaL

In its simplest fo.m, the equation of the exponential is

£
y=e,
or

= 10x,

depending on whether base e or 10 is preferred. (Recall the earlier

discussion of the advantages of each.)

See op. 19-22,
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20 -
-
A
e
o
e
e
e
P *
15 - Sl
s
v
Vd ——— ——
7 =0.0783 + /=0.171 + 0.19z
R v ¥ 0.0971
s
/
10 |- 4 *
e
/
<
/
/
’
5 3= /
¢
/
S/
/
/
0 i ] 1 J
0 5 10 15 20
X

Fig. 33--Parabola form 2 fitted using the method of least souares

For our purposes, a more useful form of the exponential {is

at+br
= e

or

- 101+bx'

The latter equation allows the i intercept to take on values other

than 1, depending on the value of a, and to accelerate at a rate

[P ——
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greater or less than x, depending on the value of b. For illustrative

purposes, we will work exclusively with

a+h
- 1o Zx'

although those who prefer to use base e rav do so, since the procedures
are the same.

Unfortunately there is no direct least-squares solution for fit-
ting a curve of this type. Tlere are iterative methods that can be
used to approximate a least-squares soluticr, but they require a large

*
computer to be of practical use.

The usual method is to transform the exponential into a linear

equation by taking ‘he logarithms of each side as follows:
log « = 1 + ix.

We then substitute the logarithms of the y values for the actual
values and employ the least-squares normal equatlons for fitcing a
straight line. It should be noted, however, that this method dcoes not
yield the same least-squares solution for 2 and ©» as the exponenti::
form does. The criterion of leest squares {s applied to the logarithms,
not to the actual values of ;, which results {n minimization of the

Ak
relative rather than the absolute deviations. The fitted line is

also higher than would be the case had the least-squares criterion been

C. A. Graver and H. E. Borern, M ! vapiate Jogawithm’ s aid Pape-
nential Hegreecion Molels, The RAND Corporation, RM-u87%-PR, July 1967,
in this Memorandum, the term "exponential” applies to the power form
used in this text.

*

loid. This approach is fine when one wants to minimize rvelative
rather than absolute differences. One could argue that such i1s the
case for noust cost-analysis probiens.

b, o




applied to the actual values.

method of averages 1is used.

A similar phenomenon occurs when the

To illustrate the least-squares method we apply it to che data in

Table 8,

y values,

cated in the column headings.

for che linear case with log

z iog u

Z xr log u

From that point on,

Y
-

L}

"

Notice that the first step is to obtain the logarithms of the

the calculations required are as iadi-
The normal equations are the same as

substituted for y:
Na + b | x

<

a X + F E x.

Table &

USINS THE METHOD OF LEAST SOUARES TO FIT
THE EXPONENTIAL: WORKSHEET
(semi-log form)

y log v | * ‘ xz r log y |log y (calc) |y (calc{j‘niiizszzn
30| 1.4771 | 1 1 1.477 1.387 24,4 f 18.7
191 1.2788 | 2 | 4| 2.558 i.280 19.0 | 0.0
is|1.1761 | 3| 9 3.528 |  Lai2 | 1al9 0.7
101 1.0000 | 4 | 16| 4.000 f 1.065 1.6 ~16.1
910.9562 1 5| 25 4771 v.958 | 9.1 -1.1
0! 0.7782 | 6 | 36| 4.669 0.851 | 7.3 -18.3
500.6990 | 7 | 49| 4.893 ; 0.764 E 5.5 . -10.0
410.6021 | 8 | 64 | 4816 0.636 1 4.3 =75
4 0.6020 | 9| BL| S5.419  0.59 RN } 15.0
Jlowm o fio | 4am g0 ] s +£ .
__105] 9.0447 |55 |385 | 40.902 1 - T Moebav

Substituting the appropriate values from Tahle 8 yields

9.0446 = 103 + 55F,

40,902 = 553 + 385F,
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which when solved result {a

a = 1,494,

! = <0.1072,

The desired equaticn i{s therefore either

log y = 1.494 - 0.1072,

or

‘:‘ - lol 1694-00 l072.‘l"

The graph of this solution is shown in Fig. 34. Because only the left-
hand member of the equation is expressed in logarithms, this solution
i8 often called the semi-log form.

When the log transformation of y is not entirely sufficient to
straighten out the data, adding or subtracting a constant from the
value of y may help. The equation that results when the constant is

used is

y-a= loa+bz.

or

y = 10a+b:c + a,

and {n semi-log form:
log (y - a) =a + bx.

The value of the constant can be found by trial and error, but is more
conveniently estimated using the following procedure. The data are

plotted as in Fig. 35 (a) and a freehand curve is drawn. Three points
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are selected such that two lie at the extremities of the curve and the
third lies halfwayv between. If the first twe points have coordinates
SR and Loy Hys then Xy will be equal to (.r1 + xz) 2, The .

cocrdinates for each of these points are read from the curve and sub-

stituted in the equation

~
Aol 1o

and ¢ is estimated. See Appendix B for the derivation of this formula.

To illustrate, the three points read from the curve in Fig. 35a are

jas)
n

1 (a‘l,,vl) (1, 29,

Pz = (xzy yz) = (101 3)’

[}

P3 = (173, :43) (5-5; 7'2))
and

93 - (0.2)°
CT29+3 - (7.2

@ = 2.0.

The value of o is subtracted from each value of y in the data
and the logs of (y - o) are determined. The two steps are shown in
Table 9. From that point on, the steps are the same as uced in the
semi-log or exponential case. When the appropriate values are cal-

culated and the normal equations solved, the results are

1.559,

2
i

>
[}

-0.1522,

a = 2,00,
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Table 9

USING THE METHOD OF LEAST SQUARES TO FIT THE EXPONENTIAL
WITH THE CONSTANT a: WORKSHEET

y { (y-a) [log(u~a) | x xz xr log(y-a) log(y—u)c (y«a)c ¥, DijiZ:gin
30 28 1.4472 1 1 1.447 1.407 25.5 [ 77.5 8.3
19 17 1.2304 2 4 2.461 1.255 18.0 | 20.0 5.3
15 13 1.1139 3 9 3.342 1.103 12.7 | 14.7 2.0
10 8 0.9031 4 | 16 3.612 n.%50 8.9 ;10.9 -3.0

9 7 0.8451 51 25 4.225 0.798 6.3 3.3 7.8

5 4 0.6021 6 | 36 3.612 0.646 4.4 6.4 -6.7

5 3 0.4771 7 149 3.340 0.494 3.1 5.1 -2.0

4 2 0.3010 8 | 64 2.408 0.342 2.2 4.2 -5.0

4 2 0. 3010 9 | 81 2.709 0.189 1.5 3.5 12.5

3 1 0.0000 10 00 0.000 0.037 1.1 3.1 -3.3
105 85 7.2209 |55 (385 27.156 - --= ——— 6.19 av

and the estimating equation is

log (¥ - 2.00) = 1.559 - 0.1522r

or

101.559-0.15423: + 2.00.

The results are shown plotted on arithmetic grids in Fig. 35a,
and (y - a) and y are plotted on semi-logarithmic grids in Fig. 35b.
The extent to which the addition of the constant a improved the situa-
tion can be seen by comparing the average deviation of 6.19 calculated
using the constant a with an average deviation of 16.2 calculated in

the straight semi-log example. The same data were used in both cases.
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THE POWER FUNCTiON

The general equation of the power function is

As was true of the exponential, there is no direct least-squares
1 solution ror fitting the power function. Iterative methods can be used
to achieve quite close approximations, but require such extensive cal-

*
culaticn that they are only practicai when a computer is available.

The usual practice is to transform the power function by taking the

logs of both sides as
log ¥ = log a + £ log x.

The result is a linear equation in terms of the logarithms of both x
and y. When this transformation is reflected in the data by substi-
tuting the log of y for y and the log of x for x, the appropriate

values for the example shown in Table 10 and

ig. 36a may be calculated

and used in the normal equations for a straight line as follows:
X log y = N log a + b Z log x,

J logxlogy =a) logx+b ) log2 x,

9.6245 = 10a + 10.8786b,

8.5378 = 10.8786a + 14.34600,

log a = 1.7994,

b = ~0.7694.

“’ *

Graver and Boren, p. 75.
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We must recognize that, as before, the result is a least-squares fit
in terms of the logs rather than the actual values of y. The line will
be placed such that the relative, not the absolute, deviations have

been minimized.

Table 10

USING THE METHOD OF LEAST SQUARES TO FIT
THE POWER FUNCTION: WORKSHEET

Y log 4 | x log x 1og2 x |log x log . log u Yo DZiEZizzn
50| 1.6990 2 | 0.3010 | 0.0906 0.5114 1.5678 |36.98 26.0
251 1.3979 31 0.4771 | 0.2276 0.6669 1.4324 |27.07 -8.3
20| 1.3010 5 | 0.6990 | 0.4886 0.9094 1.2617 |18.27 8.7
131 1.1139 & | 0.7782 | 0.6056 0.8668 1.2007 |15.88| -22.2
10| 1.0000 | 10 ; 1.0000 | 1.00GC 1.0000 1,0300 |10.72 -7.2
60,7782 | 15| 1.i761 1.2832 0.9152 0.8946 | 7.84; -30.7
610.7782 | 20 | 1.3010 | 1.6926 1.0124 0.7984 | 6.29 -4.8
41 0.6021 | 40 | 1.6021 | 2.5667 0.9646 0.5668 | 3.69 -7.8
310.4771 | 50 | 1.6990 | 2.8366 0.8106 0.4923 | 3.11 -3.7
310.4771 7 70 | 1.8451 | 3.4044 0.8803 0.3798 | 2.40 20.0
140 [ 9.6245 [ 221 | 10.8786 | 14.3459 8.5377 T --= 13.94 av

The estimating equation expressed in logarithmic form is
log y = 1.7994 - 0.7694 log x.
The same equation expressed as a power funct 'on is
-0.769é.

y = 63.0lx

As was the case with the exponential, the addition of a constant
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Fig. 36--Power functicn fitted using the method of least squares
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to the equatior

N
]

ar ,
as in

b
y = axr +n,

can often help in using the power function to describe a relationship
as slightly curvilinear in terms of the logs of both x and y.

In log form the equation including the constant o is
log (v - ) = log a + log x.

Although the constant i can be determined here by trial and error,
it is more conveniently estimated by much the same formula as for the

*
exponential case:

In this case, it is easier to plot the data on logarithmic co-
ordinate paper, and to draw the smooth curve as before. We select
three points falling on the curvc, two at the extremities and one in
between such that its x coordinate is the geometric mean of the

coordinates of the other two points, as

1'.3 = fl'rl'z .

The entire procedure i{s illustrated in Table Il by Fig. 36(b), 37(a)
and 37(b). The extent to which the addition of the constant a improved

the result can be seen by comparing the average deviations.

*
See Appendix B.
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*
The calculation of .« is as follows:

g
il

= ey = (@2, 46),

P2 = (xz, yz) = (50, 3.2),
ry o= lexz = 100 = 10,

P3 = (IB; yj) = (10’ 9'5)!

‘ o2
‘1’2 "3

+o, - 2.
.2 2.3

)

1

(3.2) (46) = (9.5)(9.5)
‘ 3.2 % 46 - 2(9.5)  *

1.89.

The normal equations and their solution are given below:

0 log x,

]
+

Jolog (v - O =

b (log ) (log (v = )] =a Vlog x4 - (log x)7,

7.9013 = 107 + 10.8785},
5.9598 = 10.8785q + 14.3457h,
a = 1.9318,

Pos o -1.0494.

The equation is

log (0 = 1.9318 -~ 1.0494 log r,

- .
Sew example, p. 78,
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or as a power function,

e e RO R

y = 8335071049 L | gg,
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(a) logarithmic scale
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Fig. 317--Power functior with cons~ant ., fitced
usfng the method of least squares
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111, THREE-VARIABLE CURVE FITTING

An empirical equation used to describe a three-variahle linear

relationship has the general form

LT @by, by,

which is a simple edtension ol the two-variable Tinear (straizsht line)

*
equation previously disce  =d. To be consistent with the three-variable

equation, we will write the two-variable relationship as:
A

.[.l :a+b7n".

We have alreadv learned that the constant term, g, was tnhe value of

11 when v, was equal to 0. We further learned that &, was called

the slope of the straight line and that, devending o whiother b, was

positive or negative, the value of 2, determined the oxXtent to which

) L

Yoowould be increasced or decoreased with chanve= in v,
[

The three-variable relationship may be thought of as ‘two fwo-

variable relationships interacting with each other. For example,

I A ) .,
and
) T AT AN

are two separate two-variable linear relationships, the first de-

soribing the impact of 0 on the value of 0 and fhe sevond the {opa ot
} ¥ I
of ony In the rirst relatior thip, however, the extent to which o

*
When writing multi-—ariable equations s conventional to
{

D ]

it
use the subscripted x. as ahove rather han L an
previouslv. '

-

r as has heen Jdone
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influences the value of Xl is not accounted for, nor, in the second,

is the extent to which X2 influences the value of Xl' What we really

need is a relationshin between fl and ¥, and between El and X3 where

in each case the effe:t of the other independent variable on Xl has
vbeen eliminated. Assuming that it is possible toc obtain these, we

write

=ay oyt b oty

where subs ~ipts indicate the variable whose effect has besn riiminated,
In the equation above, g is identified by the subscript 1.23, indica-

ting that g is the value of Xl’ once the effects of X2 and X3 have been

oliminated. S‘nce a is a constant, the relation "iip is a simple one;

when Xz and X3 are eliminated from consideration, Xl is in fact equal

te @ 54. In this equation the slope b is subscripted 12.3, indicating

that b17 is the net slope of the relationship between X1 and X2 in-

3

dependent of the impact of X}. The numbers to the left of the decimal

point in the subscript identify which two variables are being related;
those to the right identify ihe variables whose effects have been
eliminated. The subscripts used follow a logical pattern, and in fact
this scheme of subecripting is often extended to four or more variable
relationships,

Now, given that in each of the two straight line relationships
shown above we have pure relationships (net relationships) between

Xl and each of the independent variables, and given that the two




Y

independent variables completely determine th2 value of Xl’ it is

proper to combine them to wri:ie

i, = a + b

Y Y
P9y T by ah By iy

3.2°3

this is the three-variable linear relationship with which we began.

The coefficients of X2 and Yj, b12.3 and b13.2, are frequently referred
to as net regression coeff cients and are in fact the slopes of the

two separate straight lines described above. Each describes the im-
pact of its accompanyling variable on the dependent variable 7 . The

1

constant 2y 93 is simply interpreted as the value of Xl ~shen both Xz

and X3 are equal to 0.
To explore the idea of a net regression coefficient further and,
at the same time, to illustrate one way that this tvpe of relationship
can be fitted to actual data, we will use the following example, In
this case, we will begin with the answer and use a curve-fitting tech-
nique to see how closely we can reproduce it.
Assume that we are going to publish a technical report and we
are concerned about the cost consequences of including various com-
binations of illustrations and plain printed pages. We contact a
number of prospective printers and find that, on the average, for each
report printed, there are three charges: a fixed charge of $1.00;
a charge of $0.10 per illustration; and $0.04 per printed page. The
charges may be more concisely stated in the following three-variable

linear relationship:

C = $1.00 + $0.107 + $0.04P,




where the cost per report,
" = the number of illustrations per report,
= the number of printed vages per rep-~vt.

At this point, we arbitrarily select a number of possibilities,
choosing some with differing numbers cf printed pages and a fixed
number of illustrations and others with varying numbers of iilustra-
tions and the same number of printed pages. Further, for each com-
bination chosen, we use the above cost equation to determine what it
would cost to print the particular report. We select twelve reports

as shown in Table 12, each with a different combination of illustra-

tions and printed pages, and determine the printing cost of exch.

Table 12

DATA ON SELECTED REPORTS

Report XNo. No. of No. of Cost to Print

11lustrations Frinted Pages per Copyv (§)
(D 1 (P) (0)
1 1 i 18 1.82
: 2 | 4 1.36
3 2 i 10 1.60
4 2 20 2.00
> 3 15 1.50
6 4 13 1,92
/ 5 7 1.78
8 5 16 2.14
? 6 6 1.84
1o 6 2 1.68
1 7 1 1.74

12 7 7 i 1.98 )
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Taking Report No. 3 as an example, we can see that the cost of $1.60

{s arrived at as follows:

Fixed charge . . . . . . . . . 81.00
Illustrations (2) @ $0.10 . . .20
Printed pages (l10) @ $06.04 . . _ .40

Total . . . . . . . . . . . 81.60

Let us now assume that, instead of having the equation which
allowed us to calculate the costs above, we have only the data contained
in Table 12 and we wish to find the equation. In such an example
(which is unlike the usual case) we will assume that we know the price
to be influenced only by the two variables, number of illustrations
(I) and number of printed pages (P).

As has been our practice in the past ir 1ittacking such problems,
we begin by constructing scatter diagrams, but, because it is difficult
(although possible)} to construct three-dimensional scatter diagrams,*

we will he content with the more usual two-dimensional diagrams. In

detng this, let us think in terms of the two two-variable straight

lines discussed earlier. We tcgin bv plotting the cost (C) against
the number of illustrations (/) on one graph ard the cost () against
the number cf printed pages (P) on the other. The first two diagrams
(a and b) in Fig. 38 show the results. As we should have expected,
in neither case do we see a clearly defined relationship. Any rela-
tionship that might exist between cost and the number of illustra-
tions is cbviously distorted by the fact that reports with the same

number of illustrations have different numbers of printed pages.

* L * . >
W. A. Spurr and C. P. Bonini, Stattetical Analysis for Business
Decigsions, Ricnard D. Irwin, Inc., Homewood, Illinois, 1967, p. 592.
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For example, theve are three reports each with two illustrations,
but one has four, one has ten, and one twenty printed pages. The
number of illustrations similarly distorts the relationship between
cost and number of printed pages shown in Fig. 38b. Fven with all of
the distortion pr-sent, it is possible to see a general upward trend
in Fiz. 38b. As the number of printed pages increases there is a com-
mensurate increase in the cost. Our curve-fitting technique will be
to capitalize on this by fitting a straight line to the data plotted
in Fig. 38b and to use the results to improve the relationship between
cost and the number of illustrations. For simplicity we will use the
method of averages to fit the straight line and the point-slope formula
to vrite the required equation. The details of these and other re-
quired computations are shown in Table 13. When using the method of
averages, the data are first ordered according to the value of the in-
dependent variable (see Columns a, b, c, d) of Table 13. Because there
are two independent variables involved and because the data cannot be
ordered according to beth of them at the same time, two separate set~
ups are required. Tiose calculations that require ordering according
to number of illustrations are shown on the upper half of Table 13,
and those that require ordering according to number of printed pages
are shown on the lower half of Table 13. Since the sequence requires
stepping back and torth between the upper and the lower half, the steps
are indicated by the numbers shown in circles at the head of each column.
The calculations of the average points for fitting the first
straight line (between cost and number of printed pages) are shown in

the lower half of the tabte in Column 1. The coordinates of the two
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(d) Costz vs printed pages

(h) (.‘6 costs vs printed pages

Cg= 1.074 + 0.0369 P

1 i L i 1 | i 1 1

2 4 6 8 10 12 14 16 18

{m) (J'3 costs vs illustrations

20

= 1.0114 + 0.0981 I

2 4 6 8 10 12 14 16 18

20

DI




USING SUCCESSIVE APPROXIMATIONS AND THE METHOD OF AVES
c

Expression:

Tabl:fv

Data '
(a) (%) (c) (d) ©) ® ©) ® O .
Report No. of Illus-iNo. of Printed Coat per 1 2 ) L
No. trations (I} Pages (F) Report () «H «*) (('3) (C‘) (Cs) .
(Fig. 38a) (Fig. 38¢) (Fig. 38e) (rig. 38g) . ‘
—F— P — . M
3 1 18 1.82 1.54 1.77 1.31 1.74 1.20 .
2 2 4 1.36 1.30 1.25 1.25 1.21 1.22 '
3 2 10 1.60 1.44 1.49 1.3 1.45 1.26 .
4 2 20 2.00 1.69 1.89 1.43 1.8% 1.32 .
5 3 15 1.90 1.66 1.74 1.47 1.67 1.39 .
& 4 13 1.92 1.72 1.70 1.55 1.61 1.48
Av. « 2,33 Av. = 1,56 Av, = 1.39 Av, =« 1.31 i
7 S 7 1.78 1.67 1.51 1.58 1.40 1.54 . .
8 5 16 2.14 1.89 1.87 1.68 1.76 1.59 .
9 6 2 1.68 1.65 1.35 1.62 1.22 1.61
10 6 6 1.84 1.75 1.51 1.67 1.38 1.63
11 7 1 .74 72 1.36 N 1.21 1,71
12 7 7 1.98 1.87 1.60 1.78 1.45 1.724 .
Av. = 6.00 Av, = 1.76 Av. = 1,67 Av. = 1.64 :
4= 3.67 A= 0,20 A= 0.28 A= 0.33
(‘l‘-l.bllﬁo.OSIASI "2-\‘—0.05451 ‘."3-1.2120'0.07637 (‘"C-0.07631 I (‘:-1.100«).05991{ :
B Py f i3 00
® @ ® ® ® O "
R «h ) " ) « E
(F1g. 38b) (F1g. 38d) (r1g. 38f) .
1i 7 1 1.74 1,72 1.36 1.71 1.21 1.71
9 [ 2 1.68 1,65 1.35 1.62 1.22 1.61
H 2 4 1.36 §.30 1.25 1.25 1.2t 1.22
t0 6 -] 1.84 1.7% 1.51 1.67 1.38 1.63
7 ] 7 1.78 1.67 1.51 1.58 1.40 1.5%
12 7 7 1.98 1.87 1.80 1.78 1.4% 1.74
Av. = 4,50 Av. = 1.7 Av. = 1.4) av. = 111
3 2 i0 1.60 1.44 1.49 1.31 1.4% 1.26
6 4 13 1.92 1.72 1.70 1.93% i.61 1.48
b) k) 1% 1.90 1.66 1.74 1.47 .67 1.3y
8 5 16 2. 14 1.89 1,87 1.68 1.7¢6 1.59
H i 18 [ ¥4 1.% 1.17 1.1 1.74 1.20
L3 2 20 2,06 1.69 1.09 1.4) 1.8% o
Av, =& 1% 30 v w190 Av, = 1. 74 Av. = .68
A e 10.8) s =017 A= 0.1 3 =03
. ; [ U . 2 . Jo \ A . S . $ ;
=1 059%40.0197F = -0.01%7¢ S.»1.30140.0280F ="-0.0280F 1. 1964003428 JeC-0,03412) Vo
K : R 0

.
‘ |
.
I




OD OF AVERAGES TO FIT A THREE-VARIABLE LINEAR EQUATION:
C=1.00 + 0.10T + 0.04F

on:

Table 13
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WORKSHEET

Calculations

9 10 1
«® «h % «h «% @'h «'h '
(rig. 1) (rig. 38a)
e fre— —
1.73 1.16 1.73 1.14 1.72 1.12 1.72 1.11
1.18 .21 117 1.20 1.17 1.20 1.16 1.20
1.42 1.23 1.41 1.22 1.41 1.21 1.40 1.20
1.82 1.26 1.8t 1.24 1.81 1.22 1.80 .21
1.63 1.35 1.62 1.1 1.61 1.32 1.61 1.30
1.5 1.44 1.55 1.43 1.5 1.42 1.53 1.40
Av. = 1.28 Av. » 1,26 Av, = 1.2% Av. = 1.24
1.33 1.52 1.32 1.51 1.30 1.51 1.29 1.50
1.69 1.5% 1.68 1.53 1.66 1.52 1.6% 1.50
1.14 1.6% 1.12 1.60 .1 1.60 1.09 1.60
1.30 1.62 1.28 1.61 1.27 1.61 1.2% 1.60
.11 1.70 1.09 £.70 1.07 1.70 1.05 1.70
1.33% 1.72 1.3 1.n 1.1 1. .29 i.70
Av, = 1,62 Av. = 1.61 Av. = 1.61 Av. = 1,60
5= 0.34 4= 0,35 4 =0.36 3= 0.36
6 J A 9 10 . al . a2z, ) RE .
C7=C-0.00997 § | C =1.06440.0926I)|  ("eC-0.09267 | | 1.035+0.0954 O w0, 09547 2t'e1.02140.09817 T te 00981 2 7e1.011440.0981
3 Ao 1 RS}
% «h ) «h 9 ot R ¢t
(rig. 3Wn) (r1g. 38%) (Fig. I8K)
111 1.70 1.09 1.0 ] 1.07 1.10 1.0% 1,70
.14 1.81 1.12 1.60 1.1 1.0 1.09 1,80
1.18 1.2 1.7 1.20 112 1.20 .16 1,20
1.30 1.62 1.28 1.8l 1.27 .61 1.25 1.%0
1.3 1.32 1.32 1.51 130 1.8t tois 1.5
1.3 1.2 1.1 1.2 1N 1 1.29 1.70
Av. = 124 Av. = 112 Av. = 1.2 Av. = 1,19
1.42 1.3 1.4t 1.22 1.41 1.2t 1.40 .20
1.% 1.44 1.5% 1.43 1.5 1.42 Y 1.0
1.4} 1.3 1.2 1.3 1.al 112 1.8l 10
1.49 1.9 1.08 1.9y 1.8 1,82 188 1.%
1.7 116 .13 114 1,12 112 .12 (T
1.82 1.1 1.81 124 1.8 .22 1.80 st
Av. = 1.&4 Av. = 1.8) Av, = 1.8) Av. = ). b2
4= 0.8 3 = 0,41 4 = J.42 A= 0.4}
) R 8 I . 10 . K1 RE . % TP
0107440, 0M9F [ T wC-0.0309P | =1,03040.0379F «-0.0379F | .'Ve1.03%¢0.0)88; = -0.0M88F | C=1.011)e0.0)07: PENNIAL L
e S < e PRGN S <
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points (F Cl) and (PZ’ C,) are (4.50, 1.73) and (15.33, 1.90) re~

l'

spectively. The modified point-slope formula is

S GRS P
] Ry 1

To simplifv calculation with a desk calculator, the modified point-

slope formula above was recast as follows:

T R
= e e .
R 2
or
= a +b' ,
where
12 X1
a = T
A
poo 2]
T

In the first case, tho values are subhstituted and

- .(.L;‘._ ‘_)_SJR_“,K_L‘___W‘(,_l-:..\i(,‘),k:ﬂ::’i? = ].654

(5.3 = 4.50

rnad
L0 - 73
,_); = .-E-__.’.._._l__-A = 0V 01A7
I5.33 - 4.H0
Because [, - 71 and - ) are most ecasily calvulated as o the numbers

are entered n the table, thev should bhe done at that time and in-

dicated by * entered in the appropriate column,
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The equati.» ui the straisht line dr:cribing the relationship

between cost and number of printed pages is thus

= 1.659 + (:.0157".

The subscript :» is used to indicate that values of  calculated from
*his equation are estimates ratber than actuals. When this equation
fs plotted as in Fig. 38p, it gives a rcugh approximaticr of the true
relationship. However, a rough approximation is betrer than none, as
we shall suhsequentlv ses.

At the moment, the value of the constant g is of no interest.
The value t or 0.0157 means that f{or each printed page we must add
1.57 cents to the cost. We can reduce the cost of each case by this
figure in proportion to the number of printed pages, and then examine
these resuits with respect o the aumber of illustrations. The ad-

justment is made by setting

For report No. Il the result would be

Lo s - oo,

= 1.72,

as shown in column 2 in the lower haltf of Table 11, We npext make the

same teduction tn cost for each report in proportion 1o the numher of
i ¥ P

printed pages. When this has been completed, we transfer the results

to Column 3, in the upper porticon of the table, and simultaneously
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; reorder them according to the number of illustrations in each case.
We indicate these values by the symbol Ul where 1 (known as a super-

script, not an exponent) signifies the first adjustment to the original

costs.

| : When we have plotted these adjusted costs against the number of
fllustrations as in Fig. 38c, we hav. a more definite relationship than
| that indicated in Fig. 38a. What has happened is this: Although the
equation relating cost to number of printed pages was extremely rough,

it vas sufficient to eliminate enough of the e{fect of printed pages

13

from to clear up the relationship between . aud /.

The next step is to follow our logic and determine the relation-

ship between o and [/ using the results to further clean up the re-

i lationship between cost and number of printed pages. Once again, we
emplov the method of averages, placing the results in Column 3 in the

upper portion of Table 13. This fitted line can be seen plotted in

Fig. 38c. The equation of the fitted line is
| e 1,433 + 0.05451,

i ) This equation gives us an approximaticn of the impact of the number
; . of 1llustrations on cost--in this case 5.45 cents per illustration.
| The costs are again adjusted as in Column 4 in the upper portion of
; Table 13, this time to eliminate the effect of the number of {llus-

trations according to the approximation given above. This adjustment

is made according to the formula

- 2 e 0.05457,




where 2 indicates that the cost has been adjusted for the second time.
The adjusted figures are next transferred to Column 5, lower haly
of Table 13, and the results plotted against the aumber of printed
pages as in Fig. 38d. A conmparison cof Fig. 38d with Fig. 38b shows
the extent to which our first approximation of the cost of illustra-
tions has improved the relationship hetween total cost and number of
print=d pages. This process of refining the approximations is con-
tinued first with respect to one of the independent variables and then
the other. Each time an approximatrte relationship is obtained it is
used to further adjust the cost; the adjusted cost is then related to
the other independent variable and the process repeated again. The
calculations ian Table ollow the adjustment process through thirteen
times. The calculations of Columns 3 through 8 and Cclumns 12 and 13
in Table 13 are iilustrated by Fig. 38d through Fig. 38m.
The relationship between cost and number of printed pages shown
in Fig. 38k which was arrived at on the 12th adjustment can be de-

scribed by the linear equation

Ciz = 1,0113 + 0.03977.

This equation is quite close to that portion of the original equation

dealing with printed pages,
T = 1.60 + 6.047,

The relationship between cost and number of illustrations shown
in Fig. 38m is also quite close to the relevant part of the original

equation:
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13

as compared to

= 1.0C + 0.16".

When the two two-variable equations are combined as

= 1.01 + 0.0987 + 0.0397:,

2

we have a very close representation of the original equation

T= 1,00 + 0.107 + 0.04-.

Had we continued with our process of successive approximation and
adjustment, we could conceivably have reproduced the original equation
exactly. But this would have meant carrying the calculations to more
significant digits which was unnecessary for the purposes of this
example. This method of curve fitting, quite appropriately called
the Method of Successive Approximations, can be used quite generally--
even in cases where the separate relationships can only be described
by freehand non-mathematicaily describable curves.

Fortunately the method of least squares accomplishes similar
results for the three-variable linear relationship by means of a di-
rect and absolute rather than an approximate solution. To show that
both methods result in the same solution, the method of least squares
is nex: applied to the same problem. Data are calculated in Table 14,
and the accompanying graphs plotted in Fig. 39. Normal equations for

this solution are as follows:
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Ya + b T+ b, ,

. 2 .
LT = T+ Yo7 & CoIr
a . b1 ‘ b2 ; )
r . - - 2
F ¢ = a s b . ‘7' + b “ ! .

1 - 2 -

This works out to

;
|
1
.5
!

21,76 = 12a + 30h, + 119b2,

91.88 = 50a + 258p, + 402b.,

224.36 = 119aq + AOZb1 + 1629b2.
Therefore the sclution is

¢, = 1.000 + 0.107 + 0.047.

c P=24 222 18 16 14 12 10 8 6
$2.20

[ SO RS

-
Y
0

._
Py o
N
-
0 p—
-
~

Fig. 39--Least-squares solution to the three-variable problem
showing one way to graph a three-variable equation
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TRE NONLINEAR CASE

It iz not unusual to encounter sets of three or more variables
that cannot be adequately described using linear relationships, and
that require nonlinear curve fitting. In this section of the Memo-
randum we will use the method of least squares to fit the straight
line, the exponential, the power function, and the parabola to a set
of one dependent and two independent variables.

Fitting a three-variable linear equation and using the method of
least squares has already been described. We remember that the linear

equation

X1 =g + bzkz + b3X3

resulted from the two two-variable equations

Kl = q + b2X2’

and

Xl =g + b3X3,

with each describing the relationship between the dependent variable

X1 and either X2 or X3. In each case, the influence of the other wan

not accounted for. In the combined relationship, b, and b3 were

2

written b12 3 and b13 9 to show that in the first case the cffect of

X3 was eliminated, and that in the second case the effect of X  was

2
eliminated. The method of successive approximations was used to
demonstrate how this could bc done. Further, it was shown that the

metnod of least squares produces the same answer with considerably

less effort.
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We will now build ¢n these fundamentals to illustrate three-
variable nonlinear curve fitting.

As there is nothing about the d:tailed calculatioms required here
that is different from those previously illustrated, we will rot de-
scribe them again. Instead, we will concentrate on shoving how vari-
ous nonlinear functional forms can be used. In particular, we will
point up their peculiarities and consequently the’r limitations.

Twenty sets of the three varjables--X XZ‘ and X,~--are shown in

1’ 3

is the dependent variable; X, and X, are the independent

Table 15. X 2 3

1

variables. We will proceed %o fit a linear, an exponential, a power
function, and a parabolic relationship to these variables. Good prac-
tice dictates that we start by examining the data more closely. As
with the two-variable case, preparing a scatter diagram is always a
good beginning.

Figure 40 shows the results of plotting X, against X, while

i

ignoring X Little more than a general scattering of points is ob-

3
served. But when each point is identified with its X3 value and con-

tour lines connecting all points with equal values of X3 are drawn,

as in Fig. 41, a relationsnip can be seen. For each value of X3 X1

increases with increases in XZ‘

Figure 42 shows similar results. Here X, is plotted against X

1 3

and contours connecting points having equal values of X2 have been

drawn. For fixed values of XZ' Xl increases with increases in X3.

At this point, we also note a distinct curvature in one or two of the
contours which suggests a nonlinear relationship between X1 and X3.

A point from which to compare the results of fitting nenlinear

relationships has been provided by fitting a linear relationship to

[N TR STy
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Table 15

RESULTS OF FITTING A THREE-VARTABLE LINFAR RELATIONSHIP
(Xl = ~20.01 + 0.4998X2 + 1 295X3)

e A et et B 7 i S

. Percent
Observation X1 X2 YB Xl(calc.) kl-Xl(calc.) Deviation
1 7.31 5 5 -11.08 18.39 251.5
2 37.67 5 49 45,92 -8.25 -22.0
3 67.37 5 71 74.42 -7.05 -10.5
4 121.31 5 1100 111.99 9.38 -7.7
5 20.93 16 27 22.92 -1.99 -9.5
& 24,77 27 27 28.42 -3.65 -14,7
7 33.57 27 38 42.67 -9,10 -27.1
8 22.78 38 16 19.66 3,12 13.7
9 29.16 38 27 33.91 -4.75 ~16.3
10 118.26 38 93 119.41 -1.15 -1.0
11 39.62 60 27 44,91 -5.29 -13.4
12 45.68 71 27 50.41 -4,73 -10.4
13 149,34 71 1100 144.97 4,37 2.9
14 41.97 82 5 27.40 14,57 34.7
15 59. 48 93 27 61.40 -1.92 -3.2
16 148.58 93 93 146.90 1.68 1.1
17 163.14 93 | 100 155.996 7.18 4,4
18 73.14 |100 38 79.15 ~6.01 -8.2
19 114.06 100 71 171.90 -7.84 -6.9
20 153,44 100 93 150.40 3.04 2.0
23.0 av

the data. The least-squares normal equations and the resulting linear

relationship follow:

~
]

Na + b2 ) x2 + b3 L Xq

. 2 .
) o= )
L X &y ma Xy v by f X, 4 by ] XoX3

) =aqx ) 7oyl
DXy =a f X +b, DX+ by T XS,

>
¥

-20.01 + 0.4998X, + 1.295X3.
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rig. 4l--Scatter diagram: X vs X, vith contours
showing equal values of X3
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i In Fig. 43, il is pleited against v, ignoring Xj. The straight

! 2

: ines result from solving the linear equation above, allowing ', to
¥ )

H vary over its relevant range while holding ', constant at the values

3

indicated in Fig. %43. The deviations of the points from the appro-

priate lines are indicated by the vertical connecting lines. As was

to be expected, the linear relationship does not describe the data

very well. A tabular presentation of the resnlts was shown i Tabie 5.
Given the indications of nonlinearity in Figs. 41 and 4! and the

poorness of it achieved with the linear torm, a nenlinear form seems

in order. When confronted with a similar situation, analvsts often

turn immediately to the power function on the grounds that it will

straighten anything out, We will try this and see what happens.

The basic power function in two variables is

.
'>
'1 AN
or
. 3
1 = ' .
1 }
in logarithmic form these equations bhecome
..V
oy .l log + Cotop v,
L4
and
log noT o tor + y tog N
3.

the transition trem the twe-variable equations to the one three-

variable equation is anaiogous to the equations presented in the be-

*
ginning of Section III.

See PP. G-y,
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Either

or

is the required equation and, as can be seer, the equation is linear
in terms cof the logarithms of the variables. The least-squares normal
equations used before are appropriate here, given that the logarithms

of the variables are substituted for the variables. For example,

z log Xl = Ja + b, Z log X, + £ I log XB’

72 2 3
2
N SR v , Y 32 T
> log Xl log Xz a * log Xz + b2 ) (log X?) + b3 . log XZ log X3,
Yoo v o= 5 T v 5T . , T v L2
.oog by log X3 2 ! log Xy + b, 0 log X2 log iy + byl (log i)

When the requir»d values are calculated and this set of equations

solved, the following power functicn results:

log X, = 0.16555 + 0.26963 log X, + 0.73198 log X

1 2 3)
or

X} - 1.&64X20'26963 qu'73198-

How well this equation does the job is shown in Fig. 44 and Table
16. It is obviously no better thau the linear relationship and possi-
bly even a little worse. The most striking shortcoming is that the
direction of curvature is wrong. Figures 41 and 42 indicate taat the

required curve should be concave upwards, and these curves are concave




Table 16

RESULTS OF FITTING A THREE-VARIABLE POWER ['UNCTION RELATTUNSHIP

(log Xl = 0.16555 + 0.26963 log X2 + 0.73198 log X3)
. ., . Percent
- i X A ¥ 4 ~ - - ~
Observation X ¥y Ly X ‘calc.) kl Xl(cal».) Dev:ation
1 7.31 5 5 7.34 -0.03 -0.4
2 37.67 5 49 39.01 -1.34 -3.6
3 67.37 5 71 51.18 16.19 4.0
4 121.31 5 {100 65.76 55.55 45,8
5 20.93 16 27 34,51 -13.58 -64.9
5 24.77 27 27 39.74 ~14,97 -60.4
7 33.57 27 38 51.03 -17.4¢ ~52.0
8 22.78 38 16 29.71 -6.93 30.4
9 29.16 38 27 43,58 ~14,42 -49.5
10 118.26 38 93 107.75 10.51 8.9
11 39.62 &0 27 49,29 -9.67 =244
12 45.68 71 27 51.57 ~-5.89% -12.9
13 149,34 71 1100 134,48 14,86 10.0
14 41.97 82 5 15.60 26,37 62.8
15 59. 48 93 27 55.47 4.01 6.7
16 148.58 93 a3 137,15 11.43 7.7
17 163.14 93 1100 144,64 18.51 11.3
18 73.14 1100 38 72.64 0.50 0.7
19 114.06 100 71 114.79 -0.73 -0.6
20 153.44 (100 93 139.86 13.58 3.9
24,3 av

downwards. Did we make a mistake in arithmetic? No, there was no
mistake, except in the selection of the power function in the first
place, Figure 18 (the general shape of the power function for values
of x greater than or equal to 0) could have told us that we would get
what we did. This is another illustration of the value of the scatter
diagram and a8 knowledge of the basic properties of the functional
forms with which we are dealing. Consider a situation similar to this
one except that tue fit js better. In such a case we might well have
used this relationship for extr-polating beyond the upper range of

the sample.
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= 100

= 93
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Fig. 44--Results of fitting a three-variable power function
relationship (log X1 = 0,16555 + 0.26963 log X2 +

0.73198 log X,)
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It Z8 true, however, that the exponential has the general prop-

erty we desire; refer back to Fig., 14. The two variable exponentials

would be
Xz
Xl =a,
and
Y}
Xl =aq
or, in more useful form
.. a+b2X2
1 - ¢ ’
and
a+b3’(3
X, = e

For further clarification on this point refer to the earlier section

on the properties of the exponentlal.

When the natural logarithms of each side of each equation are

taken, we have

1n XI =q + bZX2

and

in X1 = q + b3X3,

which combines into the following three-variable equation as before

In X| = a + byi, + by¥a,

1

which 1s linear when the logarithm of Xl is used in place of Xl.

e A it g
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The least-squares normal equations are as for the linear curve

with 1In X, substituted for X,:

1 1
SIn X, =Na+b, > X. +b, Y X
L 1 2 L% 3L %3
Y = o2 v
PXyIn X =a ] X, +b, | X+ by ] XX,

PXyIn Xy =al Xy +b, [ XX+ by ] X
The resulting equation is

In X1 = 2.509 + 0.0092732 X2 + 0.019415 X3,

or

2.509 + 0.0092732 X, + 0.019415 X
1 = ¢ 2 3,

Juct how well this equation [its the data is shown in Table 17
and Fig., 45. We note from observing the scatter diagrams and the
average percent deviations that the exponential relationship comes
closer to fitting tire data than does either the linear or the power
function. The direction of curvature is as we predicted. However,
while things are progressing, the exponential leaves much variation
to be explained.

Another curve which, in general, has the desired properties (at

least in part) 1is the parabola of the form

y =a+bx+ cx?.

The earlier section on the parabola pi.vided a complete discus-
sion of this equation. This equation is in two variables, however,

and for our purposes we need one in three. Fortunately, we may proceed
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Table 17

RESULTS OF FITTING A THREE-"ARIABLE EXPONENTIAL RELATIONSHIP
(In X, = 2.509 + 0.0092732X, + 0.019é15X3)

1 2
Observation X i i X, (cale.) Y -7 (calc.) Percent
1 "2 "3 1 - S8 TS e ) Deviation
1 7.31 5 5 14,19 -6,88 -94.1
2 37.67 5 49 33.34 4.33 11.5
3 67.37 5 71 51.10 16,27 24 .2
4 121.31 51100 €9.74 31.57 26.0
S 20.93 16 27 24,08 -3.15 -15.1
6 24.77 27 27 26.67 -1.90 -7.7
7 33.57 27 38 33.02 3.55 1.6
8 22.78 38 16 23.86 -1.08 -4.7
9 29.16 38 27 29.54 -).38 -1.3
10 118,26 38 93 106.38 11,88 10.1
11 39.62 60 27 36.22 3.40 8.6
12 45.68 71 27 40,11 5.57 12.7
13 149, 34 71 1100 165.49 -16.15 -10.8
14 41.97 32 5 28.98 12.G99 31.0
15 59.48 93 27 49,19 10.29 17.3
16 148.58 93 93 177.15 -28.57 -19.2
17 163.14 93 | 100 202.94 -39.80 -24.4
18 3,14 1100 38 64.938 8.16 11,2
19 114.06 | 100 71 123.32 -9.26 -8.1
20 153.44 | 160 93 189.03 ~-35.59 -23.2
18.1 av

as before. The two variable equations are:

’

o ro

Xl = qa + b2X2 + OEX

and
2

’ = X R
Tpoma b byly v gty

which combined, form

) 2 . .
Xl = g + 1’2’\2 + \2.\2 + z3,\3 + 04
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45--Results of fitting a three-variable exponential

(In X, = 2,509 + 0.0092732X2 + 0.018415X3)
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relationship
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Notice ithat instead of two independent variahles, X2 and X3, we now
2 2 2 2
have four variables: X2‘ Xy, X3, and X3. Fortunately X2 and XJ may

be calculated given X, and X3, so that we have a special case of fitting

2

what is essentially a five-variable linear relationship. The least-

squares normal equations follow:

B X = Na + b2 ) Xy, + e, B Xg + b3 B A3+ ¢y ) Xi,
5 XIXZ = g E Y2 + b2 5 Xg + 2, Z Xg + b3 E X2X3 + q E X%,
E Xng = g E X2 + b2 ) Xz + e, E Y? + b3 E X§X3 + 2 Z ngis
v XKy =a i Xy + b, ) X Xy + 2, 5 X§X3 + b, ) xg + ey ) (;
[xiaaldan, Tuxlec, Tt an, [ n)+ e i

Manual solution of this set of equations is lengthy at best. Con-
sequently, one of the many computer programs available should probably
be used. With a computer, the task becomes a simple one, and the
chance of maling errors in arithmetic is minimum. 1In the case of our

exampie the derived equation is

5
XI =~ 5,006 + 0.2498 Xz + 0.002301 Xz + 0.1499 X3 + 0.01000 X;.

Table 18 and Fig. 46 {ndicate that we have 1ndeed found the cor-
rect empirical equation. However, even with fits as good as this ocne,
unless there is a logical base for the particular equation, extrapola-
tions beyond the range of the data should be made with extreme >sitjon.
Such ts particulerly true when the relationship 18 a pa.abola. (X~-
view the section of this Memorandum on the general properties of

parabolas.)
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Table

18

RESULTS OF FITTING A THREE-VARTABLE PARABOLIC RELATIONSH.P

o]
(Xl = 5,006 + 0.2&98X2 + 0.002301X§ + 0.1&9913 + O‘OIOOXS)
. . . Percent
Y ) / . ‘v -"‘ - 1 .
Observation kl X2 X3 Yl\calc ) 7 I( alc.) Deviation

1 7.31 5 5 7.131 - ——

2 37.67 5 49 37.67 ——— ——

3 67.37 5 71 €7.37 ——— _——

4 121.31 51 100 121,31 —— ———

5 200,93 16 27 20.93 _—— _—

b 24.77 27 27 24.77 —— —_——

7 33.57 27 38 33.57 - _—

8 22,78 38 16 22.78 ‘ - ——

9 29.16 | 38| 27 29.16 | —_— —
10 118.26 38 93 118,26 - -
11 39.62 €0 27 36.62 - —_—
12 45,68 71 27 45,68 - ——
13 149,34 71 1100 149.34 _— _—
14 41.97 82 5 w1.97 -_— _———
15 59.48 93 27 59.48 ~—— —
16 148,58 93 93 148,58 ——— —_—
17 163,14 93 ] 100 163.14 ——— -
18 73.14 | 100 38 73.14 -— ———
19 114.06 100 71 114.06 — ——
20 153.44 }100 93 153.44 _— —_—
We ldve ilauodiaied the remblnation of uvwo similar two-variable

relationships to form 3 singie three-variable relationship.

In fact,

certain dissimilar two-vari{able relationships may also be combined.

For exampice,

may be combined with

to form
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Fig. 46--Results of fitting & three-varidableg parabolic reiationship
{Xl = 5.006 + 0.2498X, + 0.002301X7 + (J.l«-’n)‘).l’3 + ¢.oolooxs)
a < p
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If it wvere observed that Xl varied linearly with 12 and nonlinearly
with X3, an equation like the one above might then be an appropriate

choice.




appendix A
DERIVATION OF THE NORMAL EQUATTONS FOR A

LEAST-SQUARES FIT OF A STRAIGHT LINE, A PARABCLA,
AND A THREE-VARTABLE LINEAR TOUATION

A Straight Line

In curve fitting the general equation of a straight line is

where : and : are the parameters to be determined such that the sum

of the squares of the deviations from the resulting line is a mini-
mum. The carets are placed over those values that are to be estimates.
If we let each value of the dependent . variable be represented by ..

with the subscript assigned according to the data point we are using,

we can write the general formula for the deviations = as

On substituting the expression for y we have

- {a + 3z.).
L

! =
u.—‘lj.

< L

The squared deviations are

&=Ly - G @xz.)f" ,

wiich on expansion becomes

. - ] . )
0=yl - 2ay. - 28x.y. + a” + 208x. + RTx. .
dp T Y ¥z B 7 hel B 7

We need such an expression because our interest is in minimizing
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the sum of the squared deviations. The expression that follows repre-
sents symbolically the summation of the above expression across all

values of 7 from | to n, where 1 would represent the first data point,

s BN ST L BXCUP RN, AL SRR - -+ el

2 the second, and n the last:

2
~No
gl
()
i1 3
2}
+
9]
"o
e-1.3

From calculus we know that, for this expression to be a minimum, the

~
~

partial derivatives of Q taken with respect to a and B must bte equal
to 0. It can also be shown that this is & sufficient condition for

the above expression to be a minimum.* Thus the prncedure is to ob-
tain these two partial derivatives and to equate them to . The par-

tial derivatives are

” n
Tae T L tmar e
=1 1=l
:
‘ B(Zdi) n M no,
38 = ZEZIxiy/ + 2a Z x. + 28 lei.
i = i= 1=

After equating each of these to 0 and simplifying, we have

n ¢}

Yy, =na+ B ) x.;

o i=l *
n n n 2
Tay,=alz +8]a,
1=1 1=1 1=1

which are the required normal equations. All of the information in-

dicated both by the summation signs and by n can he determined directly

s

* ,
The condition of sufficiency applies to any function that is
linear with respect to all of its parameters, such as the parabola.




from the data; this will result in two equations in two unknowns (:

and ) which can be solved for simultaneously.

A Parabola
The gereral equation of a parabola is

; . - .2
o= oo vexr Fax o,

where ,, 2, and y are the parameters to be determined.

An individual sguared deviation may be represented as follows:

2 . 2.
A0 =T, = (CFEr, v,
7 o7 7 7
L ™ .
which when expanded is
2 2 . 2 -2 “ ca 2
AT =yl = 20y, - Nx.e. - Dxy. o+ 2l + 20y
: ‘ 2 157 174 o 7
22 .~ 3 24
+ 8Tx. ot 2Byx. v Y XL
7 L 7

The sum of the csquared deviations taken from ~ = 1 to n is

" 9 " 7 p‘ 1 2 .2 ?
). - y. = 2 ) po T 28 EoeoT 25 ) Ty doman 23R ) x;
7=l =1 " 1=1 " 7=l 7=l {=1
T2, 2% 2 e 27 4
+ 2y Yoot RT Yl 28y Jxl v T T
Lo S N N
=1 i=1 1=l 7]

To minimize, we take the partial derivatives with respect to a, R and

y and eguate them to 0 as follows:

§J2 n " no,

e = =) } y. + 2na + 28 2 r. + 2y } x.,

Yy L YL . ki . 1
=] 1=l 7=1
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n o n, N
%%— =-2) zu, v Yz, + 28 ) Z N ) oxs,
‘ i=1 "t i=1" =1 i=1 "
d2 10 n n g noou
%v-—=—223'y +20 Jx. v 2B ]2l vN xS,
Y 2 . el T Ty 1
‘L—l = t=1 =1
n n no
-Eyi=m+8'2x7+y[‘x7.,
7=1 1=1 i=1
n 7 no, M,
Vry.=a)x, 48 ) 2+ ) xl,
Loy Rt LY LY
r=1 =1 =1 =1
n ] i n
A 2 . 3 .
v x?y =a ) x., +8) x? +y 7 2
oy 1YL L =y ¢ 1
1=l =1 7=1 =1

These are the normal equations for fitting a parabola using the least-
squares criterion. The sums and sums of products are calcuylated di-
rectly from the data and substituied into the normal equaiions leaving
three equations and three unknowns. These three equations are solved
simultaneously for 4, 8 and v. As for the straight line, the solutions

are unique and exact for all x and y.

A Three-variable l.inear Equation

The general form of the linear three-variable equation is

~ -

yo=o+ Bz + Bz,

The derivation procedure is identical to that used in deriving the
normal equations for the straight line and for the parabola. The

squared deviations are

d* - (y - (a+ Bz, + ézxz)}z-
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The above expression 1s expanded and surmed across all the data points,

and the partial derivatives of the summation equation with respect to

Uy Ei’ znd £, are taken and equated to (0. The resulting normal equa-
A

tions are

L ¥

]
=
53

+
=
p—
1
8
—

4

e
N
~

33

[
-

jo]
o~
8
—
+
et

PN
) Zyy = ) x, + 8 ) x@, + éz ] x5,

In the above equation the subscripts are used to distinguish between
the twe independent variables and their coefficients rather than to
indicate the range of summation as before. Although it is not spe-
cifically indicated here, it should be understood that the sums are to

be taken across all data points.
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Appendix B

DERIVATION OF THE FORMULA FOR CALCULATING THE CONSTAN: a

oS e T RS e, L e "’I‘IE“""&:

The value of i, as is shown in Fig. B-l, must be such that when i
the values of the . coordinates of points on Ll are reduced by that
Further, L, must be

amount, the new pcines fail cn the line T,
&

linear in terms of logarithms.

For L2 to be linear in terms of logarithms, the triangles anC
and BDE must be similar. 1In other words, L2 must have a constant
slope. It is this fact that provides the basis for calculating =.

The slope of the triangle ABC is equal t»

cA
BC’

and the slope of the triangle BDE is equal to

EB
DE’

Also the two slopes must be equal to each other, e.g.,

CA EB
a2 e =2 ‘e

When the coordinates of the appropriate points are used to calculate

the lengths of the above line segments and the results are substituted
in Eq. 1, we have

log(y1 - ) - 1og(g3 - 1) log(y3 - zx) - 1og(y2 - x)

- - (2)
log Ty log Ty log z,

log x,

Since we are free to select the three points (xl, yl). (rz, yz) and

(xj, 33) in any way we wish, we do so in such a way that the denominators
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Fig. B-1--Determining the value of the coustant a
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of the two fractions in Eq. 2 are equal, such as

log x, - log Xy = log Ty - log x (3)

9
General practice is to choose xy and x, at the extremities of L1 and

to let Eq. 3 determine the value of Xq» such as

2 log xy = log x, + log Loy

or

log r, + log x

- 2
3 2 )

log x (4)

As can be seen, log r, is the average of, or half way between, log x

3 1

and log Lo

Equaticn 4 in arithmetic form is

Lo = VT Tns
3 172

Xq is seen to be the geometric mean of X and Lye

If Ty 1s chosen in this wav, Eq. 2 then reduces to

log(zr) = 1) = log(yy = ) = log(uy = a) = loglu, - ).

In arithmetic form we have
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2
Yi¥, - ¥
o=t 3 (5)
vyt ¥y T Wy

Equation 5 is the desired result.
If we had been concerned with the semi-log case, Fq. 2 would

have been

log(y1 - 1) - log(y3 - a) log(y3 - 1) - log(yz - a)

—

r - x - x

1 3 37 %

and Eq. 4 would be

We would therefore make x, the average of x

3 and r, instead of the

1

geometric mean. Equation 5 applies as before.
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