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ABSTRACT 

A recent paper described a method for using narrowband interferometry 
at small bistatic angles to obtain two and three dimensional images of targets 
in terms of their scattering centers.    The present paper is intended primarily 
to provide additional background information and a theoretical foundation for 
such narrowband interferometry and to consider some of its limitations, and 
secondly to indicate what information is to be found in the data and how it 
might be used. 
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SECTION I 

INTRODUCTION 

A recent paper        described a method for using narrowband interfer- 

ometry at small bistatic angles to obtain two and three dimensional images 

of targets in terms of their scattering centers.    The present paper is intended 

primarily to provide additional background information and a theoretical 

foundation for such narrowband interferometry and to consider some of its 

limitations, and secondly to indicate what information is to be found in the 

data and how it might be used.    This latter presentation will be brief,  since 

I intend to provide a more thorough discussion concerning data processing 

schemes in a later paper. 



TRANSMIT, 
RECEIVE 

Figure 1.   Geometry for a Two-Site Interferometer (Not to Scale) 
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SECTION II 

THE  FORM  OF  THE RECEIVED SIGNAL 

In this section wc will consider a target composed of  N  point 

scatterers rigidly connected to a center of gravity 0 (by means of the usual 

invisible rods) and rigidly rotating about 0 with constant angular velocity 

a.',   whilst at the same time   0  is being translated with velocity   V(t) .    This 

target is being tracked continuously by a radar interferometer consisting 

of a narrowband transmitter-receiver located on the ground at  A, and 

remote receivers located at   B   and   C ,   each capable of measuring phase. 

The angle subtended by the interferometer system at the target is assumed 

to be small.    Referring to Figure 1, the location of each scatterer relativp 

to   0   is given bv vector  r   .       Electromagnetic radiation striking each 
n 

scatterer is assumed to be reradiated isotropically, and each scatterer is 

characterized by a complex number   He    n ,   where   H    gives the relative 
n n 

strength of the re-radiated signal and *     gives the phase change upon re- 

radiation; for the present these numbers are assumed to be constants for 

each scatterer.    The vplocity of scatterer   n   is given by 

V    = V + u x r    . (1) 
n n 

The vector from radar   A  to target center  0   is called  R. ,   and similarly 

for   B   and   C . 

The target is assumed to be small in the sense that  min{R)  » 
—•* c A 

m.xxfr )   and   max |R  •   r )   «    —:—    where  A   is the length of the trans- 
n n 2 

mitted pulse in seconds.    This condition is trivially satisfied for all reason- 

able targets, distances,  and narrowband pulse length.    The radars operate 



at frequency  f  ,   where for concreteness in visualization   we may consider 

radar parameters like those of the present MITRE-Lincoln Lab interferometer, 
3 

i. e. ,   f    ^10   MHz   and   A <*  1ms. o 

Under the above assumptions the wave which strikes each scatterer can 

be well approximated by a plane wave whose frequency appears (to the 

scatterer n) to be 

l - f - 
f      *  f  (1 -- v    •   R\)   = f  (1 - - V •   R .)   + —  R   x r    • w   , n ovcn A' oc A c        An 

(2) 

due to the doppler shift.   Taking the x-direction along R     we can write the 
A. 

incoming wave near scatterer n  as 

I    ~   eJ0° exp [2TTj —  (x - ct) ]   . (3) n c 

Notice that the wave reaches each scatterer n,  at location x    =  R .  + 
n A 

R.   •   r    ,    at time  t   = x /c , so that  I     ~   e   °  at each scatterer as 
An n n n 

the wave front of the pulse strikes it.    For re-radiation, two cases must 

now be considered. 

Case I RE-RADIATION BACK IN THE DIRECTION OF TRANS- 
MITTER A. 

The wave re-radiated by scatterer  n  goes in the direction  -R    .    The 

doppler shift causes an additional change of frequency, such that the new fre- 

quency is 

-AA   = f* a-1 7   • Aj - f a-- V • RA) + 2^ R f = f    (1--   v     •   RA)  «   f   (1--V-   R J + 2— R . x   r  .   a; 
n ncn A oc A cAn 

(4) 



As it approaches the receiver   A  the signal again looks like a plane wave, 

and can be written in the from 

Tv rA.A. 

A J(%+V f n 
S      -He exp{27rj  [(x-x )   +  c(t-t )] } .        (5) 

n n en n 

The nominal time of arrival of the re-radiated wave front of the pulse at the 

receiver   A   (at x  s   0)   is    t  =  2R  /c ,    giving the time from the object's 

center   0.    Substituting  x = 0 and t - 2R  /c   into Equation (5), gives the 

form of the received wave front from scatterer   n   as 

](©    + *   ) f 

SA   ~   H e     °       n    expHirj-11- (R     • 7 )]    . 
n n J   c      v   A        n;j 

Adding the results from all the scatterers, making use of Equation (4), and 

recalling that   A     =  c/f   ,   we get for the total received signal at  A: 

N 

J0       x-^ -1>T' 
§A   ~   e   °    Z  V    n  «P["xf   J(1"cV   •    Vc   V V   * <V  *n)] 

(6) 
n=l 

~ 4 
But for reasonable objects   r    < 10 m. ,   u> < 1 rad/sec,   and  V <    10   m/sec, 

n 
, 2 —     »    i -4 , 2    * —       — i -7 

whereupon      -   V •  R.     -   10       and     —  R    x   r    .    u>     <   10      .    Accord- 1 ' c A c      A       n 

ingly we can ignore the second and third terms in the parenthesis in compari- 

son with the first term, leaving 

N 
10 , j* r 

A o   V^ n n S      ~  e Z_j H
n

e exp(-4 7rj—   RA •   r^ . (7) 

n=l 



Case II RE-RADIATION IN THE DIRECTION OF REMOTE 
RECEIVER B. 

The wave re-radiated by scatterer  n  goes in the direction  -R    .    The 
B 

doppler shift causes an additional change of frequency, such that the new 

frequency is 

f^    *   fA (1 - - 7   . R_)   *   f    [ 1 -" 7   •  (R    + R   )]   .   (8) 
n n en B' o  L       c    n A        B 

Now if we define 

R.   +  R^ 
R       =    -VTA ^-r (9a) 

AB RA   +  R_ K    ' A B 

and 

cos9AB S   RA •   RB    ' (9b) 

then it is easily seen that 

RA  +  RBS    2RABC°S(-f")     ' (10) 

whereupon Equation (8) becomes 

f^   *   f   [1-- v     •   R\     cos(|)]    * f   [1--    V-   R.eos(§)] n            o l       c n          AB           2'J o L       c               AB          2 

fo ,          -      -            6 
+  2T RABX   Vw00i(2>-                                                    (U) 



As it approaches the receiver  B  the signal again looks like a plane wave, 

and can be written in the form 

rAB 
j(0o+  *  ) f 

Sn  *   Hne exp{2^j-^-  [(y-yn)   +  c(t-y]) ,     (12) 

whore the y-direction is taken along  R   , y    s   R    + R     •    r   ,   and  t 
B      n B        B n n 

as before.    The nominal time of arrival of the re-radiated wave front of 

the pulse at the receiver   B (at y = 0) is   t = (R    + R   )/c, giving the time 
-A 1 > 

from the object's center   0 .    Substituting into Equation (12) gives the form 

of the received wavefront from scatterer  n  as 

AB 
j( 0    +*  ) f oB « o       n;        r   .    .    n - — 0 , 

S       ~   H e exp 1—4 7r J ~Z~ RA„ • r   cos (-)l   . 
n n L        J   c AB       n v 2,J 

By adding the terms due to each scatterer and proceeding as in Case I we 

finally get the total received signal at B: 

N 
JB J%   V    _    J \ 
S     ~   e / .    H e        exp He     n 

n 

rn     - . AB 
-4 7TJ -—  R. _, • r  cos\ J X AB       n       \    z 

o 
(13) 

A similar analysis can of course be done for remote receiver   C   also; 

the result is Equation (13) with  B  everywhere replaced by   C . 



SECTION III 

TIME  DEPENDENCE OF  THE RECEIVED SIGNAL 

The values for the received signal  S  given by Equations (7) and (13) 

are for one pulse only.    To find out how  S  varies from pulse to pulse we 

must find an expression for the time dependence of  S.    The assumption of 

isotropic re-radiation which we have made implies that the time dependence 

cannot involve   H    or   *    .    Therefore the only quantities which can contain 

the time dependence are   R. •  r    in Equation (7) and  R. _ "  r   cos (   AB ) 
An AB       n —-—' 

in Equation (13).    Let us examine these quantities. 

We will eventually need to take the finite Fourier Transform of  S(t), 

integrating over a time interval of length   T  centered on some time 
T T 

t:t    --    < t < t    +—    .    Usually   T  will be "small," the precise 
o     o       2 o       2 J 

meaning of which will become clear as we proceed.    Therefore we will 

expand all time-dependent functions in Taylor series about  t    and keep only 

first-order terms in small quantities. * 
df _ 

For  r   (t)  we note that   -7—   =    o>(t) x r (t) ,   whereupon the Taylor 

Series gives 

T   2 

rn(t)   -   yy   +   (t-y  w(to)x rn(to)   + O  (c" )    . (14) 

T2 

In order for this linearization to be valid, it is necessary that   (OJ—)     «  1 

hold true.    To be concrete, suppose we require that  u T/2 < 0.1 .    Then 

writing w =   2ir/ r ,   where  T  is the period of the object's rotation, this 

* 
For certain purposes it may be useful to retain the second-order terms also, 
but this will not be considered in the present paper. 



condition becomes approximately 

T  * 0.03   T   . (15) 

This may be regarded physically as a limitation on the length of the integra- 

tion interval   T  in comparison with the body rotation period  T ,   such that 

the Fourier Transform not be "smeared-out" by rotation through too large 

an aspect angle during the integration.   If amplitude weighting is used during 

integration to reduce the contributions of data points near the ends of the 
i i       T interval   ( | t-t   | ~ —  )   in comparison with data points near the center, 

then presumably this condition may be relaxed a bit.    How much, depends 

on the form of weighting used; perhaps   T ^ 0.05 r would be all right. 

The function  R.(t)  varies quite slowly under most conditions; if we 

write 

-t   *A   2   «AW   * RA(t) • <16) 

-2 , 
then  o>,   <    10       rad/sec except near zero-Doppler of very close   asses. 

A 
Furthermore,   w.   itself changes quite slowly, so that it is reason? >le to 

assume that ——    on     «   0  for  t    - —   < t < t    +  -  even if   T     i not 
dt A o      2 o        2 

absolutely small.    Therefore we can approximate  R . (t)  by the fir t two 

terms of its Taylor Series expansion: 

- T   2 

RA(t)   *   RA(V   +   <t-to,wA(to)   X   RA(V   +°<WA? (1?) 



For the bistatic case, if we write 

oT   [RABC°S(~)]    S   WAB(t)  XRAB(t) 

and make use of Equation (10) to express R      cos (—-— )   in terms of  R 
A.X5 A J\. 

and  R^ , then it turns out that the difference between   w,      and  ix>.   is of 
B AB A 

second order in small quantities.    Therefore we can write, analogously to 

Equation (17), 

R      (t)  a   R       ft  )   +   (t-t ) w.(t  ) x  R .a  )   + 0(0)  ~)    . 
ABW AB  o'        v      o'    Av o' AB  o' A2' 

(18) 

Notice that, if desired, the geometrical constraints would allow us to express 

R.   (t)  in terms of R   (t), w.(t), and D . 
A. o Pi. Pi. 

Now, combining Equations (14),  (17), and (7) leads to the expression 

S^-e^XX/   n  expf-^jf-  [R^y .  yy 
o 

(t-t0)RA(yxVy-n (V]) • (19) 

where 

fi(t)  =   w(t)  -   to   (t) (20) 

10 



Similarly, from Equations (14),  (18), and (13), 

N 

SB(t)   ~   e V]   He    "expMijf   cos (|) [RAn(t) • rjt ) 
t   4     n A I       AB   o        no 
n-1 

(t_t )^A-D(t )x r  (t ) • n (t ) ]} , (21) o     AB   o n   o o   J ' v 

with 

fi(t)    -    w(t)   -    wA(t) (22) 

as before. 

These return signals are compared with the reference signal for 

phase: this eliminates the phase factor  0     but adds a "range phase" term. 

We assume that this range phase can be removed by an appropriate phase 

extraction process, and we assume this has been done.    The resulting signals 

are ready to be integrated in the Fourier Transform. 

11 



SECTION IV 

TAKING THE  FOURIER TRANSFORM 

The finite Fourier Transform is defined by 

T 
t   +_ 

0   ^ -2 7TJf(t-t0) 
3(f)   s       I       S(t) e dt . (23) 

o    2 

Operating thus on Equation (19) leads to 

N 
j* r 

SA(f)  ~  T    V   Hne    n exp [-4irj ~   R^y •  r^y ] sine   [T(f-Q ] , 

n-l' 
(24) 

where 

and 

sine k =   Sin \ g (25) 

. 2r _ 
f     =     R   (t ) x r (t ) • S2(t )   . 26) 

n        A A  o        no o 

Similarly, from Equation (21), 

N 

3B(f)   ~   T   ^   V     n exp H ir j^1-   RAB(t0).  rn(to)cos(|)]sinc[T(f-f^)] 

n-l 

(27) 

12 



where 

2r                                                                    0 
B        " n    -                  *               —                       AB 

f      5-—   RAT5(t ) x r (t )   •    fi(t)cos( —: )   . (28) 

I hose are the functions which result from the doppler mapping procedure with 

iii.' approximations described above-.    They can be used in attempts to under- 

stand what information is contained in the doppler maps. 

i:; 



SECTION V 

AMPLITUDE AND PHASE,   MODULUS AND ARGUMENT 

But it ought to be noted that although the forms of the received signals 

given in Equations (7) and (13) or the forms of the Fourier transforms given 

in Equations (24) and (27) are most convenient for certain types of analyses, 

they do not correspond directly to the forms that are actually determined by 

experiment.    By this I mean that the measured signal is found in terms of 

its amplitude and phase at each instant of time, and the calculated doppler 

map is found in terms of its modulus and argument at each value of frequency 

shift.    Therefore it may be useful in some future work to be able to express 

these measured quantities in terms of the variables which have appeared most 

suitable to the theoretical calculations.    These expressions are exhibited 

below. 

Consider first the received signals.   It is well known that any complex 

number   Z   can be written in terms of amplitude   A  and phase   <i>   in the 

form 

Z  =  Aej*   , (29) 

where 

2 * Z-Z* 
A    a   ZZ       and      j tan $  H »   . (30) 

14 



Writing the received signal at site   A  in the form of Equation (7), and applying 

Equations (.10). we find easily that 

N N 

A2(t) =      V*       V   HH    cos((* -*   )-|2L    RA • ["r (t)-"r   (t)]) 
/ j A      n  m n    m'    A A n   '       m     J 

o 

(31a) 
n=l        m=l 

.ind 

tan <J>(t)    = 

N r 4»* 
y H

n 
sin f*n -— R

A
(t> • V^ 

^ o 
n=l 

N 4 — 
\^ H   cos [ *  -—— R . (t) •  r (t) 1 
>       n n     \        Aw       nw J 

n=l 

The equivalent expressions for the case of reception at site B or site   C   are 

obvious,  given Eq.   (13). 

In order to distinguish in terminology between the received signals and 

the calculated Fourier Transforms, we have adopted and shall consistantly 

use the following convention:   we refer to the "amplitude" and "phase" of the 

signal, but we   refer to the "modulus" and "argument" of the transform (or 

doppler map).    In this terminology, we shall now find the modulus and argu- 

ment of the transform function, using Equations (24) or (27).    Let  f    be 

defined by either Equation (26) or Equation (28) as the case may be.    Further- 

more, let 

F (f)  =   TH   sine [T(f-f )]    , (32) 
n n n 

15 



and let 

r 

or 

0    =   * 4,T -$-   R.(t ) • r   (t ) (33a) 
n n X A  o        n   o 

o 

r 0 
0    =  *    - 4rr 7s- RATD(t ) • r (t ) cos   (—— )               (33b) 

n         n           X AB  o'       n o                 2 
o 

as the case may be.    Then Equations (24) or (27) can be written in the form: 

N 

10)  ~£ Fne   n J0. 
F < 

n 
n=l 

We now write  §   in the "mod and arg" form: 

N        N 
2 

(f) = y^ y^ F w F <f) c°s (0-0 >. '        L i    / J      n        m n    m 
M 

n=l    'm=l 

(34) 

~ iA(f) 
S (f)   ~ M(f)eJ   K '   , (35) 

and use the expressions analogous to Equations (30) to find that 

(36a) 

16 



and N 

/—'     n 
(f) sin 0 

n 
n=l 

tan A (f)   = . (36b) 
N 

EF  (f) cos 0 
n n 

n=l 

It is in connection with these formulae that an important point arises. 

With the approximations of Equations (15) and (17), we found that   F (f) was 

as given in Equation (32).    The basic property of these functions   F    is that 
n 

they are sharply peaked at  f = f    and relatively small elsewhere; i. e. , they 

are approximations to    <5(f-f ) .    It is reasonable to suspect that if different 

iipproximations were made, or if somehow the exact integrations could be 

performed, the forms of Equations (36) would remain unchanged, but the 

function   F     and  o     might be somewhat altered.    But if the approximation 
n n 

procedure is to mean anything at all, these functions cannot be changed very 

much.    Tn particular we may assume that the more exact functions   F    are J n 
still sharply peaked at some values  f    which should not differ much from 

those values given in Equations (26) or (28), and that the more exact func- 

tions  o     may now depend somehow on  f but should not differ from Equations 

(33) to first order at least. 

Now if   F (f) were very close to a true delta function (which would be 

the ideal situation), what should we expect to happen ?   Equations (36) would 

then be effectively decoupled, in the sense that we would have 

17 



M(f) 

F (f ) at f = f   for any n 
n  n n J 

~ 0 at f * f   for any n n 

A(f)   = 

0  at f - f   for any n n n J 

random at f *f   for any n 
n 

Thereupon we could easily find the true values of  f    and  0     (mod 2TT ) and 

be well on the way towards solving for the locations and motions of all the 

scatterers.    But if  F (f)   is not very close to a perfect delta function but 

rather has significant sidelobes (as for example in the form Equation (32), 

since the first sidelobes of the sine function are down by only about 6 db), 

then the different terms of Equations (36) become seriously cross-coupled. 

This intermodulation has three deleterious effects, all of which can easily 

be observed in the case of the sine function: 

1. Spurious peaks may appear in the modulus function at values of 

f  not corresponding to any true scatterer. 

2. The values of  f  at which genuine peaks appear in the modulus 

function are somewhat displaced from the correct values  f . 
n 

3. The values of the argument corresponding to peaks in the modulus 

function are somewhat displaced from the correct values  0 . 

These problems can, if sufficiently severe, make correct interpreta- 

tion of the data rather difficult.    Therefore it is important to try to insure 

that the functions  F (f) are reasonably good approximations to delta functions. 

18 



Naturally, we can't change the data as the target presents them to us.    But it 

may be possible to take steps during the Fourier integration procedure to 

ensure that the functions   F    have high, narrow peaks and low sidelobe 
n 

levels.    Amplitude weighting, for example, can considerably reduce the 

sidelobes, but only at the cost of some broadening of the peaks.   Increasing 

the integration time T with the help of previously estimated body motion con- 

straints might go a long way toward alleviating this problem, if it can be 

done. 

19 



SECTION VI 

SOME  CONSIDERATIONS ON  USING THE  DATA 

If we can ignore the complications of intermodulation described above, 

and if we may assume the approximations to be reasonable ones, then the 

Fourier transform function (doppler map) contains two sorts of information 

about the target.    The frequency shift, f, corresponding to each peak in the 

modulus function is related via Eq.  (26) or (28) to the angular velocity vector 

of the target and to the "cross range" component of the location of one of the 

scattering centers relative to the target center.    And the value of the argu- 

ment corresponding to each such peak in the modulus contains information 

concerning the "down range" component of scattering center location (un- 

fortunately corrupted by the unknown intrinsic phase shift  *  ).    The argu- 

ment information is quite precise but ambiguous; the modulus information 

is less precise but unambiguous.    Reference 1 described how the argument 

information could be used, but ignored the modulus information.    It seems 

very reasonable to think that the best way to handle the data is to use both 

types of information together to refine our knowledge both of the locations 

of the scattering centers and of the body motion of the target.   A more de- 

tailed scheme for doing this will be presented in a subsequent paper, together 

with considerations of errors and uncertainties in the method and of their 

possible effects. 

20 
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