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FOREWORD

The initial investigations of plastic models described in this
report were carried out under Contract No. DA-U9-1L46-XZ-508 for the Defense
Atomic Support Agency (DASA). The current work on variable moduli models
is part of Contract No. DACA 39-67-C-0048, "Investigation of Ground Shock
Bffects in Nonlinear Hysteretic Media," being conducted for the U. S.
Army Engineer Waterways Experiment Station (WES) under DASA sponsorship.

This work has been done in close cooperation with the WES Project
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Engineer, Mr. J. G. Jackson, Jr. The authors wish to thank him for his
assistance in describing the behavior of real materials. They also wish
to acknowledge thne contribution of Dr. Hans H. Bleich, Consultant, to
the early thecretical development of the plastic and the variable moduli
models.
The WES contract is under the general supervision of Mr. W. J.

: Turnbull, Chief, Soils Division. COL Levi A. Brown, CE, is the

;_ Contracting Officer.
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ABSTRACT

A historical outline of mathematical modeis used previously
to represent soil and rock behavior in ground shock computations
at low pressure levels is presented. The problems and de-
ficiencies of these early approaches are discussed. Sub-
sequently, two types of models are developed; one a plastic
model in which the yield condition depends on the mean stress
and in which differeﬁt variable bulk moduli dre used in loading
and unloading. The second type of model, called the "variable
moduli model", has variable shear as well as bulk moduli, but
no explicit yield condition. The behavior of both types of
model In uniaxial strain and triaxial compression tests is

examnined.
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UN
Bulk modulus.
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Components of deviatoric stress tensor.

Principal deviatoric stresses.
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Coefficient of J, in Coulomb yield condition.

1
Variable «.

Constant, 2(1l+v)/(1-2v).

Constant in alluvium-playa bulk relation.

Constants in combined variable shear modulus.

Kronecker delta.

Change in deviatoric strain in time step.
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i ¥ I INTRODUCTION.

#: The growing interest in the determination of the response

% of structures at relatively high pressure contours has stimu-

z lated the study of zround shock from both direct and air in-

;t duced sources. As the investigations have progressed into

§% the range of thousands of psi air overpressure contours, the

“ studies of combined air and direct ground shock, as well as

%« zir-induced ground shock only have required the development

% of considérably more comnlicated and, hopefully, more accurate

% material models. ‘'Thereas previously, air-induced ground shock

g effects at low overpressure levels were approximated by means

§ of linearly elastic models, the requirements of problems in-

; volving combined air and direct ground shock effects necessi-
tated a definition of the material behavior in a range ex-
tending from the hyvdrodynamic behavior at extremely high

) pressure regions in tne neighborhood of Ground Zero, through

g« various types of inelastic solid material regions and finally

% to essentially elastic ranges at sufficiently low pressures.

? Parallel to the theoretical development of these more realistic

%' material models have been the difficult demands on the ex-

R
<

perimentalists for tests which would mirror the behavior of

-,

the material throughout the entire range of pressures. The

e

tests served two major purposes: (a) to give an idea of ihe

prover type of material behavior as an aid in the mathematical

JREFCUN e

modeling of the soil or rock at appropriate pressure levels,
and (b) to provide data from which the required material

constants in the mathematical models could be determined.
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In the high pressure range (say above 100 KB) Hugoniot data

is obtained from high velocity impact flying plate tests. In
the lowerr range from about 5 KE to 30 KB, data is presently
being obtained from both flying plate tests and explosive

tests with spherically diffusing wave geometries. Below 2 KB,
the usual soil tests of uniaxial strain and triaxial compression
are utilized. Unsupported uniaxial compression tests which are
rur. for rock are essentially a special case of a triaxial com-

pression test in which the lateral stress 03 is zero.

For a given eril, the uniaxial strain and trjaxial com-
pression tests give the most detailed informaticn and are
generally utilized in the development of the mathematical model,
particularly in those cases in which air-induced ground shock
only is being studied. Typical experimental curves for each
test are shown in Fiz. (l). The stress-strain curve in the
uniaxial strain case, Fig. (la), typically shows a reversal in
curvature on loading. On unloading, the slope is almost
constant and is much larger than the slope during initial
lcading, except for a sharp tail in the low stress range.
Reloading generally follows the unloading curve up to the
previous maximum stress and then continues along the initial
loading curve. The lateral stress o0, , rejuir>d to maintain

3

unlaxial strain, is sometimes also measured, Fig. (lb).

In the triaxial compression tests, the stress-strain

curves, Fig. (lec), are concave downward up to a horizontal
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L tangent at what is called "failure". Different curv2s are
3
obtained for different values of the confining stress o5 -
A

Although the lateral strain €, is not generally available,
experimental work, currently in progress, is aimed at providing
this information. By plotting the Mohr's circles at failure

for different lateral stresses Oq s the Mohr envelope, Fig. (1d),

——
e ST B -

is obtained. This envelope is generally either a straight line

(for some dry sands) or is concave downward (for partially

" ”
.
I Mg A

saturated soils). Both the theoretical and the experimental

-

programs have made considerable progress in recent years.

The present paper will describe some of the recent theoretical
approach~s which have been and are being used in cthe development,

of the material models.

Before discussing these models, it is perhaps of some
interest to review the development of material models from a

historical viewpoint. Originally, linearly elastic models

were used in the analysis of air-induced ground shock effects
at low pressure levels (20-100 psi contours). As technological

changes in weapons design and delivery systems forced the

3

}
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?‘ locazions of the hardened structures to considerably higher
3 overpressure levels, inelastic effects were introduced into
| the analysis. For the most part, these effeclts conslisted of

. introducing a yield conditicn into the material model of the
1

form suggested by Prager and Drucker, Ref. [1]:

4

: '

}, = -

! ad, + VJ2 k (1-1)
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or a condition of the von Mises type

J2 = k (1-2)

where o 1Is a coefficient which depends upon the angle of in-
ternal friction of the material, k is a constant proportioned
to the cohestion, Jl = ~3p 1s the first invariant of the
stress tensor, and J; is the second invariant of the stress
deviators. The early models of materials which were assumed
to act linearly elastic below certain stress configurations

and to obey the yield condition of Eq. (I-1l) were called

Coulomb materials with cohesion or Prager-Drucker materials.

A considerable amount of both numerical and theoretical
work has been done for the special case in which the cohesion
constant k was taken to be zero, Refs. [2], [3], (4], and [5].

Such materials have been callad Coulomb materials and satisfy

1]
aJl + y J2 = 0 (1-3)

For cases in which the yield condition satisfies Eq.(I-1) or

the yield condition

Eq.(I-3), the materials have a conical yield surface and ex-
hibit the phenomenon of dilation, that is, an inelastic
volume increazse when loaded to sufficlentiy high stress in
compression and subsequently unloaded. Figure (2) shows
typical stress-strain plots far such materials in a uniaxial
strain compression test configuration. It is seen that upon

full unloading, a net residual extension is obtained for this

e

]
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essentially one-dimensional configuration., 1In three-dimensional
problems (two dimensional space~time), this manifests itself

in an inelastic increase of the volume. The von Mises material,
on the other hand, which satlsfies the yield condition of

Eq. (I-2), has a cylindrical yield s.rface and exhibits no
dilatancy effacts as shown in Fig. (2). Theoretical solutions
to several problems have also been obtained for the von Mises
material, Refs. [6], [7],and [&]). Problems arose in the use

of both of these models. First and perhaps foremost was the
dilatancy effect from the dependence of 1[5210n Jl in the

yield condition for the Coulonb material model. While such
phenomena have been observed in certain types of sands under
special loading conditions, this is certainly not typical of
many of the soils and rocks which are encountered in practical
design problewns. The von Mises material on the other bhand,
requires that the material maintain essentially the same sheoar
strength at all stress levels, since no variation in yrgzﬁis
allowed in the yield condition as the stress range increases
and hence, 1J1| increases. While such a situation is probably
quite true at extremely high pressure levels, e.g., as the
material passes from a hydrodynamic to a solid state, it is
certainly not genarally true at lower stress levels in which
tests usually show that an increase in y[:;qbcforc yieldlug
occurs as J1 increases. Consequently, two problems arose:

(1) while many materials of interest acted essentially as a

Coulomb material at low pressures, at higher pressures they
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acted as a von Mises material and consequently, the mathe-
matical material model would have to act in a similar fashion,
and (2) the Coulomb model would have to be amended so that
it had a zero net dilation at the end of a complete loading-~

*)

unloading cycle “.

The next advance in model development was the intro-
duction of a nonlinear pressure-velume relation, i.e., 1
variable bulk modulus K = K(Jl), in the material description.
At the same time, the shear modulus G was kept constant**).
The use of the variable bulk modulus, in addition to giving
the proper concavity to the stress-strain curve from a uni-~
axial conpression test, aided materially in obtaining a smooth
transition at high pressures from the hydrodynamic material
(governed by a suitable equation of state) to the solid in-
elastic material. In the neighberhood of the transition, the

solid inelustic material acts as a wvon Mises materisl with a

nonlinear pressure~volume relation. By properly chonsing the

*) In any material in which the plastic flow rule is derivabie
from a yield condition which depends on the mean pressure p
(or the first invariant Jl), the incremental dilation cav-
not be zero but the net dilation from a complete loadiig-
unloading cycle may be eliminated,

k%)

A model in which the shear modulus G was made a function
of Jl

numerical ground shock calculations were not made for this

in unloading was also considered, but extensive

model.

v - N S s e A, s
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i . constants in the expression K = K(Jl), the shock velocities

228

for the inelastic solid material in the selected transition

kit

range nmay be matched to those given by the equation of state
of the hydrodynamic material in this range, thus eliminating
possible impedance mismetches and resulting iu a imooth tran~

sition.

The problem of modeling a material which okewved a Coulomdb

type yield condition at low pressures and a von Mises yield

condition at bhigher pressures vas solved by requiring a smooth
transition between the two condltions through the use of a

yield coadition of the form

4
. f(Jl) + V J2 = % (1-4)

. where the functlon of J1 was chosen so that the material had
the proper bebavior in the appropriate ranges, e¢.g,, ea-
sentially Coulomk at low values of the mean pre,sure p and
von Mises at high values, 1In an early version of this type

of poudel for a volcanic tuff, the relation

&

Jl 2 1 ; X
@l +-2)" 3, 4 VI, =k {Jll < ¢ (1-5)

J, =k i“’li > ¢ (1-6)

X S

wag uiilized, Fig. (3}, tcgether with the relavions

LT

K= K = K3, + K,J

1 2

Foaall ¥

g (1~
= Gg {1-8)
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In this model the constants Ko , Go’ ¢, and k were chosen

from whatever information was available from triaxial com-

pression (0 and k) and uniaxial strain (K° and Go) tests. N
The constants Kl and K2 were chosen to make the shock velori-

ties from the hydrodynamic equation of state model (which was

used in the higher pressure ranges) match those from the

solid inelastic material model over a 20 KB to 100 KB range

of mean pressures, From Fig., (3) it is seen that the yield

condition in this modsl was chosen such that a smooth .ran-

sition exists between the Coulomb type material and the

von Mises type materisl. Since the cohesion constant k was

kept the same at both low and high values of Jl,a reversal

in curvature, as shown, wag obtained for the yield surface.

This model was inherently questionable because ¢f this nega-

tive curvature of the yleld surface, since uniqueness has .
not been mathematically proved for such cases. It represented

one of the very early wodels of this type and hasg long been

gsupérseded by what we consider to be more accurate models

wilch are describad in detail laver in this report.

The later models utflized a yield condition of the form

;/sz,(-. cngc.L-{--i—c—) J1+c> 0 (1-9)
ac
-k o+ Jy+c<0 (1-10)

as shown in Fig. (4). Again, the condition approximates the

Coulomd material at low pressures and a v a Mises material .
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at high pressures, while the transition surface is such that
the curvature is positive over the entire surface, a sufficient
condition for uniqueness. A detailed discussion of a model in
which the yield condition is utilized is given in Section II

for an alluvium-playa material.

The use of different nonlinear pressure-volume relations,
i.e., nonlinear bulk moduli in loading and unloading enables
one to eliminate the net dilation for a complete locading-
unloading cycle in uniaxial strain, Fig. (5). This also
satisfies the requirement of a steep unloading slope as found

in the experiments.

It is in order to make some general observations regarding
the problems involving dilation, particularly those which arise
in reloading situations. 1In material models which utilize
plastic yield condicions, it is usually advisable to derive
the flow rule from a plastic potential which is identical to
tne yleld condition. since for such cases, uniqueness theorems
have been derived for specific yield conditions such as the
von Mises and Coulomb conditions, and can be deduced for other
more generalized cases. The introduction into the model of a
nonlinear pressure - volume relation together with the yield
condition creates no new difficulties when the same curve is
used for both loading and unloading. While this may be per-
missible ’n some ranges for certain types of rocklike materfials,
there are many other rock and soil materials for which, in the
range of in’=rest, material property tests indicate important

hysteretic energy losses in a complete loadiag-unloading cycle.
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In mathematical models for such materials, different K and G
relations must be used in loading and unioading. This may
lead, however, to problems on reloading as shown in Fig. (6).
For example, if we load, unload, and then reload along the ua-
loading curve until the original loading curve is reached, we
will generally find ourselves off the original loading curve
because of the inherent dilatancy effect (inelastic volume
change) in the material if a yield condition is used in which
the first invariant J1 of the stress tensor appears. The
question of how to return to the original loading curve arises
and is not an easily answered one. For example, one way of
doing this would be to use a yield conditlon of the form

f(Jl) + J2 = k, but at the same time use a flow rule derivable
-—
1]

from a plastic potential of the type F = Vrsz - k. Such a
procedure would still determine yilelding by the general yield
condition, but would correct for the yielding by changing only
the stress deviators, and no change would be made in the mean
pressure p = - %% in the correction for yielding. This procedure
would eliminate any incremental dilation effect in any portion
(time step) of the numerical calculations. This approach has
been used in several of the existing codes. Ancther possibility
might be to return to the original P-V curve by some sort of
interpolation procedure. A third possibility would bte to con-
tinue loading along a curve parallel to the original P-V curve.

There are several possibilitics no one of which can be said to

be correct as compared to the physical evidence for real materials.
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It 4s important, however, to determine the sensitivity of the
various models to the several possible procedures. Investigations

of these effects are currently being made.

An alternative approach to the determination of mathematical
models has led to a series of what we call "variable moduli"
models, In these cases, the bulk modulus K and the shear

modulus G are assumed to be functions of appropriate stress

,*; and/or strain tensor invariants,and no plastic yield conditions
¥ are specified for the material. Different functional relation-

! ¥ ships for K and G are used in loading and unloading. The

study of such models is relatively recent and has been con-
fined at this time to theoretical investigations. It is hoped
1 that the work will be applied to the analysis of real materials

in ground shock problems in the near future.

The models are developed by requiring that the truncated
series expansions for both K and G in terms of stress and/or
strain tensor invariants have their constants chosen so that
the three-dimensional model conformsto both the triaxial com-

pression and the uniaxial strain results when it is run for

these configurations. Once the appropriate form of the K and
: G functions 1is determined, the constants appearing in these
expressions are determined by means of a curve-fitting routine

r ¥ from uniaxial strain and triaxial compression test data for a

given soil.
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One possible advantage of these models is that they
accurately reproduce the available test data from the material
property tasts that are generally made. This is an advantage
over the previously discussed plastic models in which K was a
function of Jl and G was kept constant. In the latter case,
excellent reproductions of uniaxial strain results were ob-
tained, but the results from triaxial compression tests were
not reproduced., The combination of the two types of models,
namely a variable modulus model which also satisfies a yield

condition, has not yet been studied in detail.

Section III describes three of the variable moduli models
that have been studied thus far. Conclusions are presented
regarding their suitability as models for real soil mrterials.
While the studies on the variable moduli models are still at a
relatively early stage, it appears that this apprecach shows

promise.
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II NONLINEAR PLASTIC MATERIAL MODEL - ALLUVIUM-PLAYA.

The model utilizes a nonlinear bulk modulus and a
constant shear modulus, together with a modified Prager-

Drucker yield condition. The vield condition is of the form

/ '
J2 = k - aJl (1 +

oc
k + 5 = k

J
1
5;) J

1 +c¢c >0

=k - a(Jl)J1

. J, + ¢ €0

effective 1

This condition approximates the Prager~Drucker condition

for lJll << ¢, while in the high pressure range, the

material behaves as a von Mises material with k = k
effective

Fig. (4). At J1 = -¢, a smooth transition occurs. It is

of interest to note that in this model, the value of the

cohesion constant k at low pressures is less than the corre-

=k + 28

sponding constant k 2

effective at higher pressures,
thus resulting in a transition yield surface which maintains

a positive curvature, a sufficient condition for uniqueness.

From available test information, in particular uniaxial

strain test data, it was noted that this material exhibited
a considerable amount of hysteresis in a loading~unloading
cycle. In order to obtain the proper amount of hysteresis
in the mathematical model,
were used for loading and unloading. These relations were
defined by variable bulk moduli through the relation

3

p = 3K gy

(I1-1)

(I1-2)

different pressure~-volume relations

(I1-3)
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The shear modulus G = Go was kept coanstant for initial

loading.

In uniaxial strain, experimental information showed
that this material is characterized by an initial softening
and a subsequent hardening, Fig. (la). The simple quadratic
relation for the bulk modulus, Eq. (I-7), used previously
in the earlier tuff model, was not sufficient to both match
the hydrodynamic material shock velocities at high pressures
and to provide the proper curvature for the stress-strain
curve at lower pressures. Consequently, an altered bulk
modulus was used for higher pressures |Jl| > ye. At lower
pressures, IJll < yc, the simplest expression which yields
an initial negative curvature in ur‘axial strain and which
matches the value of the higher pressure K relation at
= yc¢ wag used. The initial loading bulk modulus K is

|91]

given by the relation
xe Ky )
K p(3y) = (K - = K]+ 7o (3, + 5 IJll < ye (LI-4)

2
= K - K (3 + ye) + Ky(J) + ye) |J1| > ve (II-5)

so that KLD = Ko = elastic bulk modulus when J

when J1 = -yc., Betuveen these values of Jl y X

1 - 0 and again

drops to a

LD
minimum at J, = - L= . At J, = -yc, both K and its
1 2 1 dK LD
derivativae with respect to J] , 1.e., EFLE , are continuous.
1

Above J1 = -yc, KLD increases monotonically.
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At very large pressures, one might expect the material
to behave essentially as a fluid (little or no energy dis-
sipation) with similar loading and unloading characteristics.
A quantity Jl,LIQ is defined as a measure of the pressure
above which the behavior of the material in loading and un-
loading is similar. Below Jl,LIQ y, particularly where ex-
perimental data 1s available, it appears that the slope of
the unloading curve in uniaxial strain is congiderably
greater than the corresponding loading curve slope, thus
indicating a considerable amount of energy dissipation in
this material. Moreover, the unloading slope avpears to

diminish gradually. The bulk modulus for unloading was

chosen to give this behavior, and is given by

2
KUN(Jl) = Ko - KlJ1 + Kle Jl + Jl,LIQ <0 (I1-6)
= K 1 -2 J, +J > 0 (11-7)
4 k 71 1 1,LIQ
where
K +J K, + J2 K
K a0 1,LIQ "1 1,LIQ 2
4 o J )
YR
is chosen so that KUN ichontinuous at J1 = _Jl,LIQ .
a I‘
Note that the quantity N is discontianucus at this point.
dJ1
The value of K , can never be zero since J. < k bv the
UN 1 a -

yield condition requirements. When |J1| > >> e,

T1,L1q

KUN is always greater tham K but the difference is small.

LD °*

(11-3)
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Below J1 = _Jl,LIQ s KUN very gradually decreases with

decreasing pressure until at very low pressure de~

Kun
creases rapidly. Figure (7) shows a typical diagram of the

relation between K and J1 for both loading and unloading.

With respect to the shear modulus G in unloading, three
different variations of the model have been considered.
First, the same constant Go was used in both loading and un-
loading for a series of ground shock calculations for an
alluvium~playa medium. Secondly, a constant value of
G = GUN which differs from the initial loading shear modulus Go
was studied theoretically. Finally, a variation in which
the shear modulus on unloading has been allowed to vary as

a function of KUN(Jl) over a portion of the region,

G =G, when Sy A ey >0 (11-9)
G Ko (J5)
G un'Jy i
G = 2 [1 + Ko ] when sij A eij <0 (II 10)

has been studied theoretically.

The determination of the varlous constants which appear
in the model was based predominantly on uniaxial strain test
data. Attempts to make the model also fit available in-
formation on the Mohr failure envelope from triaxial com-
pression tests were unsuccessful. Since the geometry for
the ground shock problems are closer to a uniaxiel strain
test configuration than to that of a triaxial compression
test, the model was chosen to conform as closely as possible
to the uniaxial strain experimental data. The constants Ko

and GO were chosen from the uniaxial strain data, while the
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constants Kl and K2 were determined so that in thr higher

pressure ranges (say 20 KB - 90 KB) the shock valocities

of the solid material matched those from the h-drodynamic

equation of state material over this range of pressures.

The constant Y was chosen s¢ that the strair. at the voint

of inflection of the uniaxial stress-straia curve falls

within the

range of the experimental valves. The quantity c¢

was determined from available strength Jata while the

constant J
results in
the presen
the JI.LIQ
data. The

was essentially guessel, As new experimental
1,L1Q g
to higher pressure ranges become available under
t DASA experimental program, it is hoped that
value may be determined directly from the test

plastic constants o and k were approximately

determined from triaxial compressfon data and were modified

to make the model ~onform to the uniaxial strain results.

Theoretical curves for th¢ uniaxial strain test are

presented

in Figs. (8)-(9) feor the plastic model described

in this section. The results are for the case in which G

UN

is given by Eqs. (II-9) - (II-10). The following constants

were used

in the calculations

G, = 0.5 KB o = (.15 o, = 1.6 gm/em>
Ko = 1.222 KB k = 0.001 KB Y = 0.15
Kl = 8.0 ¢ =25KB Jl,LIQ = 12 KB
- *
K, = 0.07(kB)"" (vy= 0.32)") (E,= 1.3200 KB)
*) Only two of the four constants, Ko’ Go’ Vo and Eo are
independent.
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Figure (8) shows the curve of the axial striss O, versus

1
the axial strain £, for a complete loading-unlo.aiing cycle
for the uniaxial strain configuration. Figure (9) shows

the laterai stress 03 versus the axial stress 01 in uniaxial

strain, It 1s seen that both curves givs the characteristic

shape of the e¢xperimental results, Figs. (la)-(lb).

A series of ground shock calculations uvsing the three-
dimensivnal (two-dimensional space-time) alluvium-plava model
have been made for a model configuration in which (a) the
same constant shear modulus G = G0 has been used in both
lcading and unloading, and (b) the yield condition of
Fq. (II-1) has been used, but a plastic potential of the
form J; - k = 0 has been used in computing the plastic
strains, so as to avoid the dilation problems which occur

on leocading and unloading as described in some detail in

Section I.

The effect of using G = G0 in both loading and unloadiug
results in a stress~strain curve for the uniaxial test wvhich
although slightly softer in unloading, is essentially the
same as the curve in Fig. (8). The lateral stress curve for
unloading would differ from the curve shown in Fig. (9), since
the unloading and loading curves would coincide at low stresses.
The use of the generalized yield condition, Eq. (II-1), together

with a plastic potential whlch is indevendent of J results

l ’

in a slightly softer stress-strain curve than is shown in

Fig. (8).

,_...,..,.m,..
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1t is of interest to consider the behavior of plastic
material models of this general type in the triaxial com-
pression cest. TFigure {(10) shows a sketch of a typical
a

- 04 versus € diagram. Because of the variable bulk

1 1
modulus K(p), the initial loading case first softens and

then hardens. As the yield surface is reached (at different
levels for different values of the lateral stress 03), the
material “"fails" and "flows" along the horizontal lines

shown parallel to the strain axis. It is apoarent that
plastic models of this type in whirh a constant shear modulus

G is used do nut mirror the usual stress-strain curves from a

triaxial compression test.

A way to remedy this situation is an approach in which
variable moduli are used for both K and G. This approach

is discussed in detail for several cases inr Section 1II,




11T VARIABLE MODULI MATERIAL MODELS.

This section descrives the development of the variable
noduli models in which no explicit plastic yield condition is
specified. As mentioned in the Introduction, these models
are an alternate to the approach utilizing plastic yield con-
ditions as described in Sections I and II. 1In the variable
nodull models, both the shear modulus and the bulk modulus
will be assumed to depend upon the stress and/or strain in-

variants.

The mathematical description of the model is in terms

of the incremental stress-strain relations
3 = 26 & (I11-1)
p = 3K é (111-2)

where sij and eij are the deviatoric stress and strain,
respectively, and p and e*) are the mean stress and strain.
In general, different functions G and K apply in initial
roading and subsequent unloading and reloading. The present

discussion will be largely confined to the case of initial

loading.

It is noted tha:, even in cases of initial loading,
there is not in general a3 unique stress-strain relation.
The final state of strain depends not only upon the “inal

state of stress, but also upon the stress path used to reach

*
) In this section compressive stress and strain are defined
ag positive in accordance with the usual soil mechanics

convention.
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the final state. In this sense, the varjiable moduli material
cannot be considered a nonlinear elastic material where such
a unique stress-strain relation would exist. Three different
models of this type are discussed in this section: (1) a
model in which Poisson's ratio is kept constant; (2) a
model in which both K and G are given as a function of the
strain tensor invariants, and (3) an essentially equivalent
model to (2) in which K is a function of the strain tensor
invariants and G is a function of the stress tensor invariants.
The latter model is more convenient for large computer codes
since it requires less storage capacity per computation point

than does the model of type (2).

Each of these models will be discussed from the stand-
point of the uniaxial strain and triaxial compression tests,
since these are the soil tests which will generally be available
for the determination of the material constants for the three-
dimensional (two-dimensional space-time) codes. It should
be noted that when such models are run for the simple geome-
tries of these two material tests, it is a necessary condition
that the experimental test results be closely checked by the
mathematical computations. It will be shown that the constant
Poisson's ratio model of type (1) cannot match both the uni-
axial strain and the triaxial compression experimental results,
but that both of the models of type (2) or type (3) do match
both tests, and consequently, appear to be suitable mathematical

material models.
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(1) Constant Poisson's Ratio Model.

A simple variable moduli model which has been suggested
and used by some investigators is one in which the ratio %
remains constant, It will be shown here that a model of

this type cannot satisfy both the uniaxial strain and the

triaxial compression test resuits.

By analogy with the linearly elastic relation

2(1+v) _
3(1~2v) (111-3)

L
G

this model may be called a constant Poisson's ratio material.

However, K and G will not be constants, but functions

of the mean strain e

K = K(e)
(I11-4)
G = 6(e) = 3 K(e)
where B 1s a constant. Alternatively, K and G may be
viewed as functions of the pressure p. Since for initial
loading, the pressure
e
p = I 3K(E) d§ (111-5)
0
is a monotonic function of e, a unique 1nverse e(p) exists.
Thus, the moduli K and G may also be written as
K = K(p) = K[e(p)]
(111-6)

G = 6(p) = 3 Kle(p)]
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(a) Uniaxial Strain.

In general, the strain increment may be written as

$ pé
SRS % RS & | -
Eij T T (I111-7)
o él
In the case of uniaxial strain $, = &, = - == and
él 5
b €y = €y = = ge+t 3 =0 (I1I-8)
Thus,
4G 4
. §)=3g P =p7FP (I11-9)
' él 5 |
: Cl = _ZE + IR = ?(- (111-10)
{
{ and
| =8, +p = (241)p (111-11)
] 1 1 ]
f Combining Eqs. (III-10)and (I[I-11) leads to the relation
| ‘
: g £
, —x - 4 L -
‘ T, " (g + 1) K(5) (I11-12)
The lateral stress is found from the relation
‘ EOR - 241y ; (177-113)
i 7 7 p = - 3 ) p LIRS
or
do >
3 2 1
TE, = (1 - 8) K(=) (111~14)

-
T apnn i Gesananils
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Integrating Eq. (III-12) and Eq. (III-14), the expressions

for the principal stresses &, and 0, become:

1 3
“1
- 4 3
0
2 'El £
oy(e) = (1 - ) | k() dE
0

Equations (III-12), (III-15), and (III-16) uefine a
constant Poisson's ratio material during initial loading
in a uniaxial strain configuration. If K(e) initially
decreases and subsequently increases, the axial stress -~
axial strain curve [see Eq. (ITI-12)] will have the
characteristic softeniag-hardening shape found experi-

mentally, Fig. (la).
From Eqs. (II1-15) and (1II-16),
93(ey) = (ggz) 9,(¢y)

so that the radial stress versus axial stress relation is a
straight line of slope T¥3 . This agrees reasonably well
with exverimental data, Fig. (1b).

(6) Triaxial Stress.

In the triaxial test, s, = é3 = - —= and

. él
Gy =g Fh=0

(I11-15)

(I1I-16)

(I11-17)

{111-18)

- - - - - [ R
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4 Thus, él = 2p and 61 = 3p. The axial strain increment is
\‘ given by
\ $§ , o}
. S § A, 1 (111~
“ €23 3= G 3R 3 (111-19)

and the slope of the stress-strain curve by,

6, o
: &%, = w K(e) (111~20)
!
T The radial strain increment is
§ . o
¢ s oLy P oL Ly L 111~
.3 " " et~ U ig I 3 (111-21)
or
= =(B=2) - _ _¢ -
€,y = 7(BF1) €, = -ve, (111-22)
) which, not surprisingly, is the same as the linear elastic
. relation. The mean strain increment is also proportional
| vo &y
6= 2 [E 426 = 2 & (111-23)
3 1 3 B+1 "1
so that the actual total mean straia :n by
e = e + oo Ae I11-24)
o B+1 1 )

where e, is the strain reached during the loading of the
specimen hydrostatically up to the stress 03,and where

Ael = El - eo is the measured axial strain.

Typical experimental triaxial results, Fig. (lez),

have the following characteristics:
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1. The stress-strain curve at a given value of 04 is

concave downward.

2, At some point a horizontal tangent, "failure", is
reached.
3. At a higher value of o, the initial slope and the

3

stress difference at failure,(c1 - 03) , both

max

increase.

From Eqs. (III-20) and (II1-24) one sees that the re-

a’o dK

gquirement of negative currature 3 < 0 means that 1o
de
1

must be negative, which contradicts the behavior of K(e)
which was required for the uniaxial test. Moreover, the

assumption K > 0 is not compatible with the existence of
dol

"failure" (-—= = 0).
del

Even if a yield condition of some type were included

in the model specificaticn, well below the yield point,

negative curvature would require g% < 0. On the other hand,

recuiring the initial slope to increase with o, , or

¢o, 9 dx] de 3K

de,do, TS ‘:J v “ TB*D)K de >0 (111-25)
A€1=0 e=c Pra, e=e

requires that Q% > 0, wnich contradicts the requirement

dX
that Te < 0.

One may therefore conclude that, although the constant

Poisson's ratio model appears oromising when only the uniaxial

e




results are considered, such a model must be rejected, even

in conjunction with a yield condition, since its behavior
in the triaxial configuration contradicts experimental

evidence.

> (2) Moduli Dependent Upon Strain Invariants.

Models in which the moduli were assumed to be independent
functions of the first and second invariants of the strain
were investigated in the order of increasing cemplexity.
initially, strain rather than stress was chosen for analytic

convenience, at least with the simpler models.

The most promising of the strain models thus far con-

sidered 1is defined by the relations

2

: K = K(e) = Ko + Kle + Kze (I11-26)
; i o |
G = G(e, 12) = G0 + G1 12 + Gle (I11i-27)

where I; is the second invariant of the strain deviators.
Equations (II1I-26) and (III-27) may be thought of as the
first terms in the series expansions of more general
analytic functions K and G of the strain invariants. The
quantity Vrzz’was used, rather than I; itself, since it

18 of the same order as e and the components of Lhe strain

tensor. At zero strain, the bulk and shear moduli reduce

9

respectively to Ko and Go , the "linear elastic" values,

which are related in terms of the "elastic" Poisson's ratio v,
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ko 2(1+v°)

6T 3(-2v) (111-28) )
o o

4

although the ratio % is not, in general,constant. With Gl -

positive and 61 negative, the material hardens in shear
with increasing hydrostatic strain and softens with in-

creasing shear strain.

o

(a) Uniaxial Strain.

The general incremental stress-strain relation is

given by
. § pé
Eyy — 1] ' + i - (111-29)
2[Go + Gl ]/Iz + Gle] 3[Ko + Kle + Kze |
51
In the case of uniaxial strain, éz = é3 = -, 8o that .
. -8, R
€, = - ' + E 5— =0  (II1-30) .
4[Go + G1 VIZ + Gle] 3[1(o + Kle + Kze ]
— 5
3
1[12 ==y e, (111-31)
’ (since in lcading e, > 0) and,
e, = 2e = 2z £ (II11-32)
1 371

Combining Eqs. (LII-30) - (I1I-32) one obtains an ex-

pression for the tangent modulus &zt any strain

[~ 9

a K K

K
#
=
+

l
m
+
[y]

& -
+ 3 [co + 3 (G, + 3 cl) e, =

G = M (111-33) g

[=%
(9]
o
w
—
o
=

[y E-

. = K +
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Integrating Eq. (III-33) aud combining terms, the axial

stress iIs obtained in closed form as

-

4 1 4 = 2 2 3
op = (Ko v 36,0 e) + 5 [K) + 3 (G + VTG e] + 55 €]
(111-34)
Noting that 53 = - % Sy s the lateral stress at any strain

may also be written in closed form as

=

_ 2 1 2 = 2 203
o3 = K, = 56,0 ep + g (K -5 (6 +/38)] e} + 55 €
(111-35)
The pressure is given by the relation
K K
P =% (c:1 + 203) = Koel + Tl ei + 3_% ez (II1I-36)
and the deviator s, as
s, =0, ~p=2ge +2(, +/TE) ¢ (111-37)
1 1 3 7071 9 1 1 1
(b) Triaxial Stress.
During triaxial loading, the lateral stress is held
constant, so that
. él - - 1
Gy ==~ + b =-[G +Ge+ 6 VIZI &y *
» , c 221 4 - _
- 3[k0 + kle + kze ] é 0 (I11-38)
Thus,
§.o=2p =25 (111-39)
~1 371
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and since 12 = é; €y (during loading ey > 0), the strain

rate él is given by

3[Ko + Kle + K,ezj
él = = & {I11-40)
e
3 G.,e.)
2 171

[Go + Gle +

The total axial strain increment is given by

él =& +& (111-41)

Combinir, Eqs. (ITII-39) and (III-40), the tangent modulus

is obtained as

a

.2 -
do, i 9[K° + ) c Kye ][G0 + Gie + 5 Glell 11-42)
de ; e
3[K° + Kje + Kye ]+ [CO + Gye + = Glell
or
ddl 9K (e) G(e,el)
de; ~ 3K(e) * Gle,ep) - E(e,ey) (I11-43)

where E may be considered the local modulus of elasticity,

i.e., Young's rodulus,

Equations (III-40) - (II1-42) consitute a system of
nonlinear di‘ferential equations relating the variables
ey ey: s and 9y - The system may be solved numerically
by forward integration. The initial conditions are obtained
from the hydrostatic state of stress which exists ia a
triaxial compression test before the additional axial

loading {is applied, namely,

e o e
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[
01(0) = 0,
el(O) = 0 (I1I-44)
81(0} = e{0) = e
o
! where e, » one third of the hydrostatic volumetric strain,
is the sma'. positive root of the cubic equation
) . 3, 2 . . 3
0y = JKOLO + 5 Lle0 + hzeo (111~45)
Since K is always positive, @y ipcreases monotonically
with e,
. 0
(¢) Choice of Constants.
) If all stress quantities are ncndimensionalized with
{
1 respect to the initial bulk modulus, Ko , then five param~
|
: eters remain to fully describe the model, namely,
{
EB E.:.l. .(.‘:l El .l.(.g (111-46)
K K K K 'K
, ) o 0 0 0

The first of these is inherently positive and is related to

the initial Poisson's ratio v, by Eq. (I1I-28). The higher
; K K
' order terms in the bulk modulus El and = may be positive
o o
or negative. However, the values are restricted by the

condition ¥ > 8, Taking the derivative of Eg, (III-28) one
[ 1‘\1 N
win? ¢ minimum K occurs at e = ~ =»=— , which is posi-~
min 2K2

tive (i.e., relevant) only for Kl and K2 of opposite sign.
-Kl

1f Kz is taken to be negative, T would be the value
2

of e at which X would reach a maxinum. With Kl negative
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and KZ positive, the requirement that the minimum bulk

modulus be positive

2
£y
Kmin = k(emin) = Ko - ZE; >0 (111-47)
requires that
K]
K, > 5 (111-48)
0
Kl K,
it should be noted that any values of e and E: are
0 o
permitted as long as K > 0 for the range of e of interest,

especially 0 < e < % .

In the triaxial stress test the initial slope

2 i~
do, ) 9[KC t Kye ¥ KzeO][Go + hleo] .
de ’ 2\ B
1 e1=0 3[}\o + Kleo + Kzeoj + [GD + Gleo]
e=e
o

9K(e°) G(eo,O)

- o (111-49)
3k(e°) + G(eo,O)
should incrcase with increasing lateral stress (or eo).
This leads to the relation
3[K(e )1% G, + [Gle ,0)]%(R, + 2K.e ) > 0 (111-50)
o 1 o’ 1 270
which, for e suffrciently small, becomes
G G K
1 1 0.2 1
=t 3 (E—) © 0 (I1I~-51)
o 0 o)

Wwith K, < 0, Eq. (II1I-51) sets a lower bound for G‘1




Ll et e

Ll £

T T

Nt

—

aw— o ®

BY e e e B W e it TR i

In the uniaxial strain test the curvature

[~

|
€

|

= 1
=3 (X +

[
wies

1

is initially negative, or

~
4
(YRS

(G, + 3 6,) <0

and the curvature changes sign at the

defined by

3
£ = - = [K, +
1inf1ection point ZKZ 1

Equation (III-53) sets an upper bound

Eq. (I11-54) relates K2 > 0 to the inflection point once

K

flection point)

= 2
(G1+/—3-Gi)]+-9—1(5

271

inflection point

4 -
3 (Gl + V3 Gl)]

on 51 , while

1 Gl’ and El are known. The minimum slope (at the in-

(K, + % (6, + V3 G)1°
min o 3 7o 4K2
must be positive, so taat
[k, + 2 (6, + /381
Ky 2 Z
4(!(o + 3 Go)

In practical application of this model to experimental
curves, the various constants are chosen by curve-fitting
routines to best match the data. For a purely theoretical

investigation in which no specific real material is con-

G
sidered,
o

Eg is obtained from a reasonable value of vo , a

(I11-52)

(II1~53)

(I1I-54)

(III-55)

(I1I-56)
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Ky €y
value ' < 0 is chosen, e is taken to satisfy Eaq., (III-51),
o o
61 K,
and g to satisfy Eq. (III-53). Finally, I is chosen to
) 0

satisfy both Eqs. (I1I-48) and (II1I-56)., It is seen that the
salient features of both the uniaxial strain compression test
and the triaxial compression test can be matched by material

models of this type.

(d) Numerical Results.

Typical numerical results were obtained for the param-

Kl K2 Gl
eters vo = 0.30, rals =100, e 4000, T - 48 and
_ o o o
Ei = -32, For the uniaxial compr. ssion test, the plot of
o

axial stress versus axial strain, Fig. (11), shows the re-~
versal in curvature which is characteristic of the experi-
mental curves. The point of inflection occurs at 4.17%
strain, again a typical experlmental value The plot of the
radial stress 03 required to maintain uniaxial strain versus
axial stress 9, is shown in Fig. (12). The general trend of
this curve conforms to the experimental curve, Fizg. (1b).

It may be noted that a slight reverse curvature occurs at
the low end of the theoretical curve. Although a change in
the material parameters could alter or possibly remove this
effect at the low end, it is not completely clear as to
whether such effects occur in some real materials. In any
case, this effect is a minor one and is not sufficient
grounds for rejecting the model., Figure (13) is a plot of

S

the deviater El versus the pressure éL , again for uniaxial
o 0

e e e e c———

P

A —— . < I,
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3

E strain. OCnce more, at the low end there is a reverse in

] curvature. However, bevond the inflection point, the slope

ﬁ , of the curve is remarkably similar to the curve of the playa-

, . type yield condition, described in Fig. (4). More will be
said about the similarities and differences between the

plastic and variable moduli models later.

In the triaxial test, the stress difference 01 - g

the axial strain El is shown in Fig. (l4) for the same con-

versus
3

stants that were used in the uniaxial calculation, and for

O3

T = 0.04, 0.06, 0.08, respectively. The curves are found
o

by the numerical integration of Eqs. (III-40) - (I1I-42) and

reflect the experimental results, Fig. (lc). The curves are

concave downward, exhibit horizontal tangents, "failure", and

s+ 2 Mo

at higher lateral stresses the initial slope increases and

-

the stress difference at "failure" increases.

Since an analytical expression for the stress difference

at failure is unattainable, the computer program was run to

W i ——

failure for nine different values of the lateral stress, 03 .
1

Table I shows the stress difference, the pressure, and the

axial strain at failure as well as the initial modulus for

each value of lateral stress. The Mohr envelope 1s plotted
in Fig. (15). Again, there is overall agreement with ex-
perimental envelopes, Fig. (1d), except for a small dis-

crepancy at very low stresses.

e =
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Triaxial Test at Various Lateral Stresses
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TABLE 1

Ky K, G ¢,
(v0 = 0,30, T -100, T = 4000, T 43, T -32)
o o o
No E} (01—03)failure Prailure elfailure Finicial
) K K K K
0 o ) 0
1 0.000 0.0139 0.0046 0.0211 1,200
2 0.001 0.0153 0.0061 0.0232 1.231
3 0.005 0.0230 0.0126 0.0317 1.350
4 0.010 0.0577 0.0292 0.0667 1.479
5 0.020 0.1608 0.0736 0.1045 1.594
5 0.040 0.2385 0.1195 0.1212 2.977
7 0.060 0.2819 0.1540 0.1310 3.973
8 0.080 0.3162 0.1854 0.1374 4.6253
9 0.100 0.3456 0.2152 0.1426 5.117

U
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On the basis of the present investigation, it appears
that the variable moduli model under consideration, defined
by Egs. (III-26) and (II1-27), shows promise as a mathematical
representation of the mechanical behavior of scils. The model
behavior in both uniaxial strain and triaxial stresc con-
figurations (in initial loading) 1is essentially similar to

that found experimentally.

No attempt was made to use this model to match actual
data numerically, nor was the problem of unloading given more
than a cursory glance., These activities were postponed in

order to develop a variable moduli model which depends unon
-1

] *)

the stress invariants p and 1[;2 as well as the m2an strain e
This was done for practical as well s theoretical reasons.
Practically, in the general three-dimensicnal problem, ane
is physically more interested in stresses than strains and
already stores the stresses in the computer. To require the
storage of even a single extra quantity at each grid point
significantly reduces the number of grid points which can be

utilized.

From a theoretical viewpoirt, this stress invariant
model allows an interesting comparison with plastic models

which will be discussed later.

*
) In the various computer codes fer evaluating grourd shock,
the dersity 0 is generally stored at each point and the
mean ctrain e may be computed from it.




(3) Combined Stress-Strain Variable Moduli Model.

This section presents the develooment of a material
model in which the bulk modulus K i3 a function of the
mean strain e, and the shear modulus ¢ is a function of
cthe etress tensor invariants, through the mean pressure »

and the sauare root of the second invariant of the stress

'—l
deviator p J2 .

The simplest relatior in which the shear modulus
1

depends upon both p and J2 is given by

el
]

= +- -
C G0 + Y;? Yl J (I11-57)

N

The bulk modulus is retained as a quadritic function of

the volumetric strain

2 N i
K = Ko + Kle + Kze (ree Eq. I11-26)

As mentioned in Section III-1 for the constant Poigson's
ratio model, 3 unique pressure-volumetric strain relation
exists during initial lsading as lore as the bulk modulus
depends only upon o or e. Therefore, Eq. (II1-26) is

equivalent to vritlng K as a fuuction of p [See Eq. (III-6)].

The bulk modulus was chosen to be a jquadratic in ¢
rather than in o, since the typical uniaxial strain test
curve suggests that the axial stress i1s a cubic function
of the axfial strain. Since the moduli K and 6 refer to

the incremental stress~strain relations,




¢
)

3K é (See Eq. I11-1)

e
L}

(13

i1 = 2G eij (See Eq. 111-2)

the pressure may be obtained by direct integration of
Eq. (III-1) as

e
p = I 3K(E) dE = 3K e + 3
0

K. e + K_.e (I11~-538)

ol
Sk
[y}

Moreover, in the preparation of a computer code for the
solutien of three-dimensional (two-dimensional space-time)
ground shock nroblems, the density (or the volumetric
strain Ekk) must be stored at each grid point, since the
density avpears in the equations of motion. Since the

relution betreen density and volumetric strain is given by

€,, = 3e = &n (5&) (I11-59)

1]

kk

it 1s noted that the use 0 a bulk modulus which is a
function of the mean strain, Eq. (III-26), requires no
significant additional computer storage*). It should also
te noted that in Eq. (III-57), the nondimensional constant Y,
will be positive for a G which hardens with increasing

prascure, while 71 will be negarive for a G which softens

with an increace in the deviatoric stresces.

*) In the large ground shock problems, the problem of
minimizing computer storage requirements at each
prid point becomes extremely important, since the
size of the problems challenges the capacity of
even the largest computers.
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(a) Uniasial Strain.

Irn a manner quite analogous to the carse of the strain

invariant model, Section IT1I-2, it mav be shown that in

unfaxial strain

’-

S » 2 I N = 1’
& F Kyt A+ v kY 1J

-

;] (I11-60)

;—| 3
Notinz that ? 1, = %; s = é; (Ul - p), substitution of

P4

(VS

Fa. (111-58) into Eq. (III-60) yields the first order non-

homogeneous differential equation

a0, ) -
o "~ 23 oy = OR+ 46+ R (v - 5 ) F K] e+

, Y3 - - 2 ;o y
+ 3[21\1(}1 -5 yl) + 32] e + 4K - yl) ¢ (I1I-61)

Using the initial condition that stress and strain vanish
simultaneously, the solution for stress as an explicit

function of strain is found by intesrating Eq. (I1I-61)

2G Y K 2K .
o = - oS ok L B 1 - exn (2T V] -
3y Y 2/3 ¥ (2¥3 ¥y~
1 1 1 1
2¢¥3 K Y K
-.j~~—*—(~{-ﬁ—~?>+-<x+—2 e -
IS 1 7 Ty 2 S
!’ v KR, Y 2K, ~ "
- l____.,.k\yl--'/?il)«v-_—% }:2] ,*__/_-_-,,(Yl_lz_';l)e;
(111-62)
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Closed form expressions for the remaining stress quantities,

84 and 03 » Are easily obtainable from Eqs. (III-58) and

(111=-62).

2G0 Yl Kl 2K2 _
Sy ==\t [Ko + — + = =] (1 - exp(2Y3 Yle)] -
3y ¥ 2V3 ¥y (2V3 %)
) 1 1 1
2/3 v, Y )
- [ KO = (!t1 + =z )} e ~
Ty L8 I
V3 Y Y 2y
el I I 00 IPC S S (111-63)
71 Y1 3y
G ¥ K 2K -
o, = ?_ + ‘:% [ho +* 1_ + E 2] [1 - exp(2/§ Yle)] +
V3 Yy 27} 2v3 Y, (2v3 )
V3 ¥ _ Y, K,
O e R R A B B (e D
Y. 2y7 V3 y
i 1 1
/3 K, _ Y, 5 K, 3
ol (v # 3 Yt 3 Kol 7 4+ —= vy * V3 Y e
2\1 271 3 Yy

(111-64)

Finallvy, from Ea. (I11-62), the slope of the stress-strain
carve at any point, or the tangent {(constrained) moduius

is found to be
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. 42 -=
da, 2y, K, 2K, i )
e V3%, * T [Ko + — ] exn(2V3 vle) -
1 V3 ' 2/3 Y, (2/3 Y ©
2Ko V3 = Y1 . KZ
- — (v =3 oY) - (B —E) -
Y3y 3y N
1 1 1
2K 2 2K
/3 - i /3 -
e v - R I gl e - =Ry - 25 F
VER “ 3y Y3y
1 1 1
(I11-65)
(b) Triaxial Stress.
In the triaxial stress configuration the second in-
variant of the stress deviators {s simplvy related to the
stress difference by
t
VJ -3 Lo -ap (111-66)
2 2 1 ~ 1 3
V3
lsing the relation p = (o1 + 203)/3 aud Eq. (III-66), the
expression for the shear modulus becomes
L5 Y ;
G=Go+—§ (01+203) +7§—.(01 -03) (111-67)
Thus, the strain deviator €, mav be found by inteeration
, 9y
ds
ey = | 5o = 48 p— (U 1-68)
36+ 0402y, - V3 TP F e+ 3y
o1
3
since ey = 0 vhen 01 =0, (hvdrostatic compression).
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From Eq. (I11-68), ey is obtained as an explicit funciion

of the stresses 01 and 03

. [}Go + 0,2y, :,/? Y to v+ V3 Ty
3(G0 + 7103)

1
e, = ——

SRR

]
1

(I11-69)

A necessaryv condition for 5 to decrease as 01 increases,

see Eq. (I11-67), is

Y, * V3 ?1 <0 (TI1-70)

so that the argument of the logarithmic function in

Eq. (I111-69) is always less than one, and e, is alwavs

positive. Alternatively, Eq. (II1-69) mav be written as

e, = 1 2n R

1 - a (111~71)
Y, + V3 Y, initial

vhere Ginitial = G0 + 7103 is the initial value of G, i.e.,
the value under hydrostatic conditions. From Eq. (III-71),
it is evident that ey becomes arbitrerily large (as does

el) as G approaches zero, or [from Fg. (III-67)] when

3(G_ + y,0,)
(0, -0 = - —=2 1 3 (111-72)
‘ Y, + V3 ¥
1 1
it is seen that for (31 - 53) larger than (51 = 53)nax ’

the strain becomes imaginary, that is, the strain cannot
exist. Thus, Eq, (III-72) expresses the maximum stress

difference in triaxial compression for a givea lateral

- e
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stress 0, . It should also be noted that the local slope

of the triaxial stress-strain curve

4oy 9KG . _*)

de, 3K + ¢

(See Eq. 1I1-43)

goes [0 zero when G > 0, so that the stress difference

(o, - 03) represents a point of horjzontal tangency,

1 max

i.e., "fallure”.

The measured strain AEl is simoly related to the
strain deviator ey the mean strain e, and the initial

(hydrostatic) mean strain e, by

Ael = e + e = eo

where e, is found for the given lateral stress 0, by
Eq. (I1I-45). Equations (III-57), (11I-26), (I1I-69),
(11I1-43), (I111-73), and the small positive root e of the
cubic Eq. (III-58) completely define the system in tri-
axial stress for all valid stress states 01 , 03

[ (o

- 03) < (ol - 03) ].

1 max

If the Mohr failure envelope were plotted fo this

material, it is evident from Ea. (II1-72) that the plot

would be 3 straight line passing above the origin, similar

to the yield condition for a Prager-Drucker material. This

similarity will be discussed later in the paper.

It can be shown that Eq. (II1-43) applies for quite
general functiens K and G,

*)

(I111-73)

e
>

N

+
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ot o gt it e
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¢ (¢) Choice of Constants.

As for the case of the strain invariant model, Section

; I11-2, five parameters are required to fully describe the

material in initial loading:

ottt o

G
o 1 - 2
k'— ' X s Yl s Yl y (111—7[’)

The choice of a suitable value of vo determines the ratio
G

Eg , Eq. (I11-28). The requirement that K > 0 again leads
o

to the condition between Kl and K2 as given by Egq. {I11-48).
The fact that Yl > 0 and ?1 < 0 for physical reasons has
already been discissed, as has the inequality between them,

, Eq. (I1I-70),

To further restrict the range of the five material
parameters, one requires the initial slope in triaxial con-
pression to increase with lateral stress, and the initial
curvature in uniaxial strain to be negative. Differenti-

ating Eq. (III-43) with respect to ©

3
32 d6_ , 2 dE_
do do
1 dE  _ 3 3 1 75
3 do. = 5 (111-75)
! 3 (I +« )
i and requiring the result to be positive when 0, = @

yields the inequality

UG SN S
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3

+

» k4 r 2
9Y1 [ko + kleo + kzeol

, 2 3.,2,., ,
kleo + Kzeo)] (hl + Zkzeo) >0 (L11-76)

N

* [Go + Y1(3Koeo +

For Eq. (III-76) to hold in the limit as e, approaches zero

the inequality

e ]
G “ K
1 [ o 1 -
Y1>'9(K/ (K) (111-77)

must be satisfied. Equation (III-77) is a necessary cou-
dition for the initial slope in the triaxial test to in-

crease with increasing lateral stress O Requiring the

5
initial curvature in the uniaxial strain test to be negative
results in the condition

K P G 3y

_K_l< -3, [2¥_°+__..__1] (111-78)
0 V3 ‘o Y,

Equation (III-78) is obtained by evaluating the derivative

of Eq. (ILI-65) at e = 0. 4an attempt to find an analytic

expressicn for the inflection point leads to a transcen-

dental equation and will not be discussed further.

(d) GCUnloadling.

The model for unloading (and subsequent reloading) of
variabie moduli materials is presently in the very early
stage of development. Thus far, only unloading in the uni-
axial strain configuration has been considered. FExperi-

mentally, Fig. la, the uniaxial strain unloading curve has
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a slope much larger than the loading slope, which is ap-

proximately constant until very low stress levels are

reached.

As a first approach, the material model in unloading
was chosen to be defined by the following 2xpressions for

the bulk and shear moduli:

K = KUN = constant (111~-79)

- 1 ot
G = GUN = bo + Ylp + Yl VJZ h(JZ) (111-80)

'
where h(Jz) is the unit step function. The effect of the

step function in Eq. (1II-80) is that at the same values
1
of p and J2 , the material is stiffer in shear when it 1is

!
unloading in shear, J2 < 0, than when it is loading in
ot
shear, J2 > 0. In a completely general three~-dimensional

configuration the terms "loading'" and "unloading" no longer
have such clear-cut meanings. It is possible that the

o !
material will be loading in shear (J2 > 0) and unloading in

pressure (p < 0) simultaneously. 1In fact, if one studies

the 63 - G

strain test, Fig. (1b), it can be shown that on unloading,

y curve for as simple a geometry as a uniaxial

-

L
the deviator S1 3 (¢

decreases, then changes sign and continues to decrease

1 03) (originally positive] first

[increases negatively] until a minimum is reached at a very
low stress level. Beyond this point, 81 appears to increase

slightly, {i.e., to decrease in absolute value. At the same
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OI + 20
~;~jf~—— and the strain El both

decrease monotonically during unloading. Clearly, the

time, the pressure p =

sharp tails found experimentally upon unlecading at very
low stress levels in both the uniaxial stress-strain curve,
Fig. (la), and the radial stress-axial stress curve, Fig. (1lb),

are related to this unusual behavior of s1 .

Plastic models in which the yield condition is a

function of Jl . Eq. (I-4), can adequately represent thais

*)

behavior “. Presently, the variable moduli modes which is
described by Eqs. (I1I-79) ~ (III-80) in unloading does not
adequately describe this behavior at very low stress levels,
It is not clear that j; should be the c¢riterion upon which

the choice of the proper G is based. Further study may in-

dicate that some combination of J, and p should be used for

]
2
this purpose.

The slope of the wniaxial stress-strain curve in un-
loading, K + 4

un t 3 Sy o

were permitted to be negative for some range of stresses.

could not be less than kUN unless GUN

Thus, in order to obtain the sharp break found in the ex-
perimental curve, Fig. (la), at lov stress levels, a des-

cription of G N such that it could be negative at very low

J

.« - - - ~ v =V o L - - d - d - . - % - e L4
stress levels appears to be promising. WOoTR Oit the propet

*)

It can be shown that the minimum value of the deviator s
occurs when upon unloading, the oprosite face of the
yield surface is reached. Upon continued unloading, the
stress path is along the yield surface,




renresentation of unloading for variable moduli moedels 1is

continuing.

For the present model, must be chosen larger than

Kun

the maximum value of K found during foading. A second re-

' quirement is that % :UV must be greater than the maximum value
*
of GUN ). Since the work is still in the early stage of

development and is subject to revisioa, a detailed de-
scription of the equations applicable to unleoadinzg will not

be given.

! (e) Numerical Results.

i Tvpical results for the variable moduli model of this

{ section are shown in Figs. (16) - (19). The parameters used
¢ K K

¢ in the computations wvere v, = 0.30, El = -100, and Ez = 4000,
‘ o 0

the same as were used in the previous strain model. 1In

addition, the values Y, = 60 and Y = -133.3 were chosen.

In loading, the uniaxial stress~strain curve, Fig. (16), has

the characteristi. reversal of curvature which is fcund in ex-

perimental curves. Again, the point of {nflection occurs at

a strain close to 4%, a typical value., On unloading, with

) §?~ = 30, the stress decreases shsrply, Although the un-~
1;;d1ng portion appears to be a strairitl liune, the slope at
lJow stress levels 1is in fact less than half the value at

N high stress levels., Nevertheless, the distinct tafl which

is found on unloading experimentally, Fig. (la), does not

7‘:)

This corresponds to the requirement v > 0,

e e ————
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appear, iliustrating the inadequacy of the present unloading

model at these very low stresses.

The plot of the radial stress versus axial stress in

uniaxial strain is shown in Fig. (17). On loading, the

curve is actually concave upward at very low stress levels.
At higher stresses, the curve is essentially a straight line.
The unloading radial stress is always greater than the corre-
sponding value in loading. The unloading curve is concave
downward and changes in curvature at Gl = 0,164, where sy
changes sign. The plot has the same general characteristics
as the experimental curves, Fig. (lb), except that in the

experimental unloading curve 63 drops off much more sharply

as 0, is brought back to zero.

Finally, the deviator s, is plotted versus the pressure

p in Fig. (18) for loading and unloading in uniaxial strain.
On loading, the initial curvature is concave downwird. How-
ever, the major portion of the curve is essentially a straight
line. On unloading s is always less than its corresponding
_value in loading and the curve 1is concave upward. At s, = 0,
the slope is continuous, but the curvature suddenly increases,
refilecting the change in sign of 3;

hat 01 = Q) with the slupe slmost

in Eq. (IX11-80). The

(2]

plot ends at sy = -P (5o

horizontal.

The results for the triaxial compression test are
illustrated for loading only in Fig. (19). The curves are

drawn for the same parameters which were used in the uniaxial
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strain test and for the same values of the lateral stress

il
:;"ﬁw\ .
PRRAP N A —— |

wh’'ch were used in the strain variable moduli model, Fig. (14),
g

namely Eé = 0,04, 0.06, 0.08. Each of the curves is concave
o

2 dowaward and approaches asymptotically the value (01 - 03)

oo

max
given by Eq. (III-72). At a higher value of the lateral

stress, the stress difference at failure increases, as does

the initial slope.

On the basis of the present results, one sees that the

ﬁ theoretical combined variable moduli material, when subjected

to two special loading configurations, namely the uniaxial

o

s

strain and triaxial compression test, reproduces all the

»

salient features found experimentally in these tests. There-
fore, the present model offers promise of being able ro give

a reasonable representation of real soils in more general

e perah f Wiiveniigiir & sierpnic g wr v VOO

loading configurations.

el

The tentative unloading model appears to mirror the uni-

axial strain experimental results over must of the stress

Plem s g

range of interest. Further work is required to clarify the
3 material behavior at very low stresses aud to study unloading

in the triaxial compression test.

o The ability of the present model to match, numerically,
‘ real soil data and the process used to determine the various
constants must await the completion of current investigations,

beth theoretical and experimental.
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It 1s of interest to expiore in some detail the relation
between the variable moduli models in Section III and the
various plastic models discussed in Sections I and IXI. This

discussion follows in Part (f).

(f) Comparison of Variable Moduli and Plastic Models.

In the previous portion of this section, sir rities
between the variable moduli models and the plastic models
have been mentioned. This subsection discusses several of
these similarities for simplified models of these types. On
the basis of the present study, 1t appears that the concepts
of a "yield condition" and of plastic flow may be contained

within the theory of the variable moduli models.

For many materials, empirical evidence suggests the
existence of states of stress (and/or strain) at which the
material undergoes continuously increasing deformations with
little or no increase in loading. This combination of
stresses at which flow occurs is often called a "flow con-
dition" or a "yield condition". When these dz2formations
become sufficiently large so that unaccentable changes in
the geometry occur, this state is called "failure™. Plastic
material models describe the stress state at which flow
begins hy a yield condition and the subsequent deformations
by a flow rule. The variable moduli models describe the
behavior ol materials as they approach this critical state

of stress (and/or strain) as well as their behavior at the
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state itself. TFor example, if one were to define an
"incremental shear modulus" as the change in shear stress
divided by the corresponding change in shear strain and

apply this definition to the alluvium-playa model in tri-
axial smpression, Fig. (10), this incremental shear modulus
would be zero at "failure". Large lncreases in shear strain
would suddenly occur with no increase in shear stress in this
situation. In the case of either of the variable moduli
models, Figs. (l4), (l9), tae material does not suddenly fail,
but instead gets increasingly scfter up to the "failure"

point, i1.e., G decreases continuously to zero. Examining

the behavior of the deviator s, for a Coulomb material in

1
uniaxial strain in the very low stress range during unloading
(this corresponds to the flat portion of Fig. 2), one finds

that s, is opposite in sign from o, and becomes smaller in

1 1
magnitude. The strain deviator, e, = % € for uniaxial strain,
ds1
decreases monotonically. Thus, the ratio To. is negative in
1

this region. Although the present unloading relation, Eq.
(I1I-80), does not adequately represent this behavior at low
stresses, it is felt that improved versicns of the mathematical

*)

wmodel 4in which G on unloading may be negative for certain com-

binations of stresses, may provide a better representation,

An interesting 1llustration of the relation between
plastic and variable moduli models can be obtained by a com-

parison of the simple Prager-Drucner material and the combined

*)

In the present combined variable modulus model, the
shear modulus G is necessarily positive in both loading
and unloading.

RN SN S T eGP P S
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variable moduli materlal with Kl = K2 = 0, For both models,
the Mohr failure envelcpe is a straight line, In the
Prager-Drucker material, permissible states of stress may be

defined in terms of the yield condition

k + 3op -~ 32 >0 (See Eq. I-1)

In the combined variable moduli material, pernissible
states of stress are those for which ¢ > 0, or, dividing

Eq. (III-57) by -?l > 0

Go A
)+ ) p- jI, 20 (111-81)
™ 1

The two conditions are ildentijcal if

G

() =k (I11-82)
and

Y1

(—__—) = 30 (I11-83)

The requirement that Yy + /3 ?1 < 0, Eq. (YLII-70), is thus

equivalent to requiring that & < L . There is no obvious
iﬁ"‘ /5
requirement for Yl + ?f Y, < 0, which would correspond to

*)

the usual restriction on «

a < — (I111~-84)

*)

Equation (III-84) is not an obviocus requirement either;
it comes either from the restriction ¢ < 90° in plane
strain, or that the slope in uniaxial strain in un-
loading be positive.
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In uniaxial strain, the requiremenc for initizl soften-

ing, Eq. (I1I-78), with K, = 0 reduces to

1
G Y
2 2>+ /3 Lo (ITL-85)
(V] Yl
e
which upon substitution of Eq. (II1-83) and B = 3 T
o
becomes
2 .
af < — (111-86)
V3

The identical condition must be satisfied for a Prager-

Drucker material to yield in uniaxial strain,

Finaliy, examining the slope in uniaxial strain for

the combined mixed moduli material, Eq. (III-565), when

Kl = Kz = 0, one finds
5, 4 2 Y1 2 - 2 N1 .
rralie [3 G, +— == KO] exp (— Ylel) + Ko(l - == =) (1T1-87)
1 /3 Y, V3 Y3 Y,
The initial slope, Eq. (TII-87) evaluated at €, = 0, is
the elastic constrained modulus Ko + % Go . At large
strains, since 71 < 0, the exponential term vanishes and
the slope approaches asymptotically
;;i =K (1 - 2 ;l) (111~-£8)
! -¥,8, >> 1 3N
If the Kl and KZ terms were kept in the bulk modulus

relation, the slope would simply continue to increuse.

L
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Tn the linear elastic Prager-Drucker material, the slope
in uniaxial strain, [see Fig. (2)], is the elastic slope
Ko + % Go until yield, at which point the slope becomes

discontinuously the plastic slope

do 2
1 Plastic (1 + 3078)
The limiting value of the variable mcduli slope
2 1
K (1 - == =) = K (1 + 2/3 a) (I11-90)
V3 ¥ °
1
is not, however, the plastic slope, Eq. (III-89)., The two
are equal at the end points o« = 0 and o = —%: of the range
2 gv3
0 <a < —7: , but the variable moduli value is slightly less
BY3

tnan the plastic value elsewhere in the raage. The value,

Eq. (III-90), is that which would be obtained for a hybrid
material, 2.e.,, one which obeyed a yield condition of the
Coulomb type, but obeyed a flow rule of the von Mises type, [2].
For this material, even incremental dilatancy effects (see
Section I) are suppressed. It is not surprising that in a
material such as the variable moduli material in which the

bulk modulus is a function of the mean strain only and in which
shear effects canaot cause an increase in volume, the slope
approaches that of the hybrid plastic material and not that

3om of the Coulomb material itself.

Finally, cemparing both the triaxial stress and the uni-

axial strain tests fcr the variable moduli material and the
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Prager-~Drucker material, Fig. (20). one sees that the latter
describes yield, while the former describes material behavior

approaching "yield".

(4) Closing Remarks.

A theory of variable moduli materials has been partially

developed in this section., The results ohtained for two of
the models appear to essentially match those found experimentally

in both the uniaxial strain and triaxial compression tests, at

least for some soils in certain ranges of stress. Further
work must still be done in unloading. Horeover, as new ex-
perimental resulcs become available for higher stress ranges,
the extension of the variable moduli models to these higher

stress ranges must be examined.

It should be noted that whereas the alluvium-playa model
discussed iu Section II may be considered to be a relatively
advanced plastic model, the variable moduli models presented
in this section are a first attempt at such a theory. Further
development will hopefully lead to variaile moduli modaels of

more general appllcabllity.
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