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ABSTRACT

A historical outline of mathematical models used previously

to represent soil and rock behavior in ground shock computations

at low pressure levels is presented. The problems and de-

ficiencies of these early approaches are discussed. Sub-

sequently, two types of models are developed; one a plastic

model in which the yield condition depends on the mean stress

and in which different variable bulk moduli ire used in loading

and unloading. The second type of model, called the "variable

moduli model", has variable shear as well as bulk moduli, but

no explicit yield condition. The behavior of both types of

model In uniaxial strain and triaxial compression tests is

examined.
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LIST OF SYMBOLS

Al , A2  Area in stress-strain curve, Fig. (2).

c Constant in yield condition, see Eqs. (1-5), (1-9).

c P c 2 , c Constants.

E Young's modulus.

e Mean strain.

e Initial mean strain in triaxial test.

eij Components of deviatoric strain tensor.

eI  e 2 , e3  Principal deviatoric strains.

G Shear modulus.

G , GI Constants in shear modulus.

GUN Shear modulus in unloading.

i h Step function.

12 Second invariant of strain deviator.

i1 First invariant of stress tensor.

J 2 Second invariant of stress deviator.

Ji ,LIQ Constant appearing in KUN in alluvium-playa model.

K Bulk modulus.

KK 1 , K 2 Constants appearing in bulk modulus.

KLD ,K Bulk modulus in loading - unloading.

k Constant related to cohesion.

!I M Constrained modulus.

p Pressure.

8 slj Components of deviatoric stress tensor.

Ss s 2 , s 3  Principal deviatoric stresses.

* L
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a Coefficient of J in Coulomb yield condition.

a Variable a.

Constant, 2(l+v)/(l-2v).

y Constant in alluvium-playa bulk relation.

YI 7Constants in combined variable shear modulus.

6 ij Kronecker delta.

Aeij Change in deviatoric strain in time step.

As Measured axial strain in triaxial test.I

Eij Components of strain tensor.

E1 E 2 , E3  Principal strains.

£kk Volumetric strain, 3e.

f". Constants appearing in Fig. (2).

V Poisson's ratio.

V Poisson's ratio at zero stress and strain.
0

Variable of integration.

P Density.

PO Initial density.

aoij Components of stress tensor.

1, a2 , 03  Principal stresses.

*Angle of internal friction of granular material.



I INTRODUCTION.

The growing interest in the determination of the response

of structures at relatively high pressure contours has stimu-

lated the study of ground shock from both direct and air in-

duced sources. As the investigations have progressed into

the range of thousands of psi air overpressure contours, the

studies of combined air and direct ground shock, as well as

air-induced ground shock only have required the development

of considerably more comnlicated and, hopefully, more accurate

material models. whereas previously, air-induced ground shock

effects at low overpressure levels were approximated by means

of linearly elastic models, the requirements of problems in-

volving combined air and direct ground shock effects necessi-

tated a definition of the material behavior in a range ex-

tending from the hydrodynamic behavior at extremely high

pressure regions in tne neighborhood of Ground Zero, through

various types of inelastic solid material regions and finally

to essentially elastic ranges at sufficiently low pressures.

Parallel to the theoretical development of these more realistic

material models have been the difficult demands on the ex-

perimentalists for tests which would mirror the behavior of

the material throughout the entire range of pressures. The

tests served two major purposes: (a) to give an ided of "he

proner type of material behavior as an aid in the mathematical

modeling of the soil or rock at appropriate pressure levels,

and (b) to provide data from which the required material

constants in the mathematical models could be determined.
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In the high pressure range (say above 100 KB) ilugoniot data

is obtained from high velocity impact flying plate tests. In

the lowvr range from about 5 KB to 80 KB, data is presently

being obtained from bot;' flying plate tests and explosive

tests with spherically diffusing wave geometries. Below 2 KB,

the usual soil cests of uniaxial strain and triaxial compression

are utilized. Unsupported uniaxial compression tests which are

run for rock are essentially a special case of a triaxial com-

pression test in which the lateral stress 03 is zero.

For a given sril, the uniaxial strain and triaxial cum-

pression tests give the most detailed information and are

generally utilized in the development of the mathematical model,

particularly in those cases in which air-induced ground shock

only is being studied. Typical experimental curves for each

test are shown in Fig. (1). The stress-strain curve in the

uniaxial strain case, Fig. (la), typically shows a reversal in

curvature on loading. On unloading, the slope is almost

constant and is much larger than the slope during initial

leading, except for a sharp tail in the low stress range.

Reloading generally follows the unloading curve up to the

previous maximum stress and then continues along the initial

loading curve. The lateral stress 03 , requiid to maintain

uniaxial strain, is sometimes also measured, Fig. (lb).

In the triaxial compression tests, the stress-strain

curves, Fig. (1c), are concave downward up to a horizontal
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tangent at what is called "failure". Different curves are

obtained for different values of the confining stress a .

Although the lateral strain c3 is not generally available,

experimental work, currently in progress, is aimed at providing

this information. By plotting the Mohr's circles at failure

for different lateral stresses 03 , the Mohr envelope, Fig. (ld),

is obtained. This envelope is generally either a straight line

(for some dry sands) or is concave downward (for partially

saturated soils). Both the theoretical and the experimental

programs have made considerable progress in recent years.

The present paper will describe some of the recent theoretical

approaches which have been and are being used in the development.

of the material models.

Before discussing these models, it is perhaps of some

interest to review the development of material models from a

historical viewpoint. Originally, linearly elastic models

were used in the analysis of air-induced ground shock effects

at low pressure levels (20-160 psi contours). As technological

changes in weapons design and delivery systems forced the

locations of the hardened atructures to considerably higher

overpressure levels, inelastic effects were introduced into

the analysis. For the most part, these effecLs coutisiztd of

introducing a yield condition into the material model of the

*form suggested by Prager and Drucker, Ref. [1]:

aJ + k (1-1)
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or a condition of the von Mises type

2 - k (1-2)

where a is a coefficient which depends upon the angle of in-

ternal friction of the material, k is a constant prooortioned

to the cohesion, J = -3p is the first invariant of the

stress tensor, and J2 is the second invariant of the stress

deviators. The early models of materials which were assumed

to act linearly elastic below certain stress configurations

and to obey the yield condition of Eq. (I-1) were called

Coulomb materials with cohesion or Prager-Drucker materials.

A considerable amount of both numerical and theoretical

work has been 'one for the special case in which the cohesion

constant k was taken to be zero, Refs. [2], (3], [4],and [5].

Such materials have been called Coulomb materials and satisfy

the yield condition

aJ 1 + F77= 0 (1-3)

For cases in which the yield condition satisfies Eq.(1-l) or

Eq.(I-3), the materials have a conical yield surface and ex-

hibit the phenomenon of dilation, that is, an inelastic

volu me -ncrcase whcn loadcd to sufficicitly high stress in

compression and subsequently unloaded. Figure (2) shows

typical stress-qtrain plots for such materials in a uniaxial

strain compression test configuration. It is seen that upon

full unloading, a net residual extension is obtained for this
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essentially one-dimensional configuration. In three-dimensional

problems (two dimensional space-time), this manifests itself

in an inelastic increase of the volume. The von Mises material,

on the other hand, which satisfies the yield condition of

Eq. (1-2), has a cylindrical yield s,rface and exhibits no

dilatancy effects as shown in Fig. (2). Theoretical solutions

to several prob~ems have also been obtained for the von Mises

material, Refs. [6], [7],and [8]. Problems arose in the use

of both of these models. First and perhaps foremost was the

dilatancy effect from the dependence of 1'2on Jl in the

yield condition for the Coulomb material model. While such

phenomena have been observed in certain types of sands under

special loading conditions, this is certainly not typical of

many of the soils and rocks which are encountered in practical

design problens. The von Mises material on the other hand,

requires that the material maintain essentially the same shear

strength at all stress levels, since no variation in is

allowed in the yield condition as the stress range increases

and hence, I increases. While such a situation is probably

quite true at extremely high pressure levels, e.g., as the

material passes from a hydrodynamic to a solid state, it is

certainly not generally true at lower stress levels in which

tests usually show that an inerpase in I/ 7 2 before yieldia

occurs as J increases. Consequently, two problems arose:

(1) while many materials of interest acted essentially as a

Coulomb material at low pressures, at higher pressures they
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acted as a von Mises material and consequently, the mathe-

matical material model would have to act in a similar fashion,

and (2) the Coulomb model would have to be amended so that

it had a zero net dilation at the end of a complete loading-

unloading cycle

The next advance in model development was the Intro-

duction of a nonlinear pressure-volume relation, i.e., a

variable bulk modulus K = K(JI), in the material description.

At the same time, the shear modulus G wa6 kept constant .

The use of the variable bulk modulus, in addition to giving

the proper concavity to the stress-strain curve from a unt-

axial copression test, aided materially in obtaining a smooth

transition at high pressures from the hydrodynamic material

(governed by a suitable equation of state) to the solid in-

elastic material. In the neighberhood of the transition, the

solid inelastic material acts as a von Mises materi-l with a

nonlinear pressure-volume relation. By properly choosing the

In any material in which the plastic flow rule is derivable

from a yield condition which depends on the mean pressure p

(or the first invariant J 1 ), the incremental dilation can-

not be zero but the net dilation from a complete loadiig-

unloading cycle may be eliminated.

A model in which the shear modulus G was made a function

of J 1 in unloading was also considered, but extensive

numerical ground shock calculations were not made for this

model.



constants in the expression K = K(JI), the shock velocities

for the inelastic solid material in the selected transition

range may be matched to those given by the equation of state

of the hydrodynamic material in this range, thus eliminating

possible impedance mismatches and resulting in a irmooth tran-

sit ion.

The problem of modeling a material which obey'ed a Coulomb

type yield condition at low pressures and a von Misc3 yield

condition at higher pressures was solved by requiring a smooth

transition between the two conditions through the use of a

yield condition of the form

f(JI) + - k (1-4)

where the function of J was chosen so that the material had

the proper behavior in the appropriate ranges, e.g., es-

sentially Coulomb at low values of the trmean pre~sure p and

von Mises at high values, In an early vrrsion of this type

of model for a volcanic tuff, the relation

S(1 + 2 j+ k j < c(1-5)

,,d, uLS.ized, Fig. (3). tcgth-r wirh rhe relations

K K - + (-7)

" G (I-8)
oi
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In this model the constants K , G o , a, and k were chosen

from whatever information was available from triaxial com-

pression (a and k) and uniaxial strain (K and G ) tests.0 0

The constants K and K2 were chosen to make the shock velori-

ties from the hydrodynamic equation of state model (which was

used in the higher pressure ranges) match those from the

solid inelastic material model over a 20 KB to 100 KB range

of mean pressur-s. From Fig. (3) it is seen that the yield

condition in this model was chosen such that a smooth ran-

sition exists between the Coulomb type material and the

von Mises type material. Since the cohesion constant k was

kept the same at both low and high values of Ja reversal

in curvature, aG shown, was obtained for the yield surface.

This model was inherently questionable because of this nega-

tive curvature of the yield surface, since uniqueness has

not been mathematically ptoved for such cases. It represented

one of the very early models of this type and haE long been

superseded by what we consider to be more accurate models

S hich are described in detail later in this report.

The later models atilized a yield condition of the form

'-T7 Jl

J2 k - (J l + r J + c > 0 (1-9)

k J + c < 0 (1-10)21

as shown in Fig. (4). Again, the condition approximates the

Coulomb material at low pressures and a v, a Mises material
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at high pressures, while the transition surface is such that

the curvature is positive over the entire surface, a sufficient

condition for uniqueness. A detailed discussion of a model in

which the yield condition is uti]ized is given in Section II

for an alluvium-playa material.

The use of different nonlinear pressure-volume relations,

i.e., nonlinear bulk moduli in loading and unloading enables

one to eliminate the net dilation for a complete loading-

unloading cycle in uniaxial strain, Fig. (5). This also

satisfies the requirement of a steep unloading slope as fouind

in the experiments.

It is in order to make some general observations regarding

the problems involving dilation, particularly those which arise

in reloading situations. In material models which utilize

plastic yield conditions, it is usually advisable to derive

the flow rule from a plastic notential which is Identical to

the yield condition, since for such cases, uniqueness theorems

have been derived for specific yield conditions such as the

von Mises and Coulomb conditions, and can be deduced for other

more generalized cases. The introduction into the model of a

nonlinear pressure - volume relation together with the yield

condition creates no new difficulties when the same curve is

used for both loading and unloading. While this may be per-

missible !n some ranges for certain types of rocklike materials,

there are many other rock and soil materials for which, in the

range of in' rest, material property tests indicate important

hysteretic energy losses in a complete loading-unloadin,; cycle.
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In mathematical models for such materials, different K and G

relations must be used in loading and unloading. This may

lead, however, to problems on reloading as shown in Fig. (6).

For example, if we load, unload, and then reload along the ua-

loading curve until the original loading curve is reached, we

will generally find ourselves off the original loading curve

because of the inherent dilatancy effect (inelastic volume

change) in the material if a yield condition is used in which

the first invariant J of the stress tensor appears. The

question of how to return to the original loading curve arises

and is not an easily answered one. For example, one way of

doing this would be to use a yield conditlon of the form

f(Jl) + k, but at the same time use a flow rule derivable

from a plastic potential of the type F 2 - k. Such a

procedure would still determine yielding by the general yield

condition, but would correct for the yielding by changing only

the stress deviators, and no change would be made in the mean

pressure p = - -3 in the correction for yielding. This procedure

would eliminate any incremental dilation effect in any portion

(time step) of the numerical calculations. This approach has

been used in several of the existing codes. Another possibility

might be to return to the original P-V curve by some sort of

interpolation procedure. A third possibility would be to con-

tinue loading along a curve parallel to the original P-V curve.

There are several possibilities no one of which can be said to

be correct as compared to the physical evidence for real materials.
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It is important, however, to determine the sensitivity of the

various models to the several possible procedures. Investigations

of these effects are currently being made.

An alternative approach to the determination of mathematical

models has led to a series of what we call "variable moduli"

models. In these cases, the bulk modulus K and the shear

modulus G are assumed to be functions of appropriate stress

and/or strain tensor invariants, and no plastic yield conditions

are specified for the material. Different functional relation-

ships for K and G are used in loading and unloading. The

study of such models is relatively recent and has been con-

fined at this time to theoretical investigations. It is hoped

that the work will be applied to the analysis of real materials

in ground shock problems in the near future.

The models are developed by requiring that the truncated

series exoansions for both K and G in terms of stress and/or

strain tensor invariants have their constants chosen so that

the three-dimensional model conforms to both the triaxial com-

pression and the uniaxial strain results when it is run for

these configurations. Once the appropriate form of the K and

G functions is determined, the constants appearing in these

expressions are determined by means of a curve-fitting routine

from uniaxial strain and triaxial compression test data for a

given soil.
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One possible advantage of these models is that they

accurately reproduce the available test data from the material

property tasts that are generally made. This is an advantage

over the previously discussed plastic models in which K was a

function of J1 and G was kept constant. In the latter case,

excellent reproductions of uniaxial strain results were ob-

tained, but the results from triaxial compression tests were

not reproduced. The combination of the two types of models,

namely a variable modulus model which also satisfies a yield

condition, has not yet been studied in detail.

Section III describes three of the variable moduli models

that have been studied thus far. Conclusions are presented

regarding their suitability as models for real soil mr.terials.

While the studies on the variable moduli models are still at a

relatively early stage, it appears that this approach shows

promise.
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II NONLINEAR PLASTIC MATERIAL MODEL - ALLUVIUM-PLAYA.

The model utilizes a nonlinear bulk modulus and a

constant shear modulus, together with a modified Prager-

Drucker yield condition. The yield condition is of the form

k - cU1 (1 + = k - (J+ c > 0 (I-)

k + = kef e  + c < 0 (11-2)
2 effective* 1

This condition approximates the Prager-Drucker condition

for IJll << c, while in the high pressure range, the

material behaves as a von Mises material with k = kffti

Fig. (4). At J = -c, a smooth transition occurs. It is

of interest to note that in this model, the value of the

cohesion constant k at low pressures is less than the corre-

sponding constant kf= k + - at higher pressures,effective 2

thus resulting in a transition yield surface which maintains

a positive curvature, a sufficient condition for uniqueness.

From available test information, in particular uniaxial

strain test data, it was noted that this material exhibited

a considerable amount of hysteresis in a loading-unloading

cycle. In order to obtain the proper amount of hysteresis

in the mathematical model, different pressure-volump relations

were used for loading and unloading. These relationo were

defined by variable bulk moduli through the relation

1 = 3K(J1 ) 1 kk (11-3)
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The shear modulus G G was kept constant for initial0

loading.

In uniaxial strain, experimental information showcd

that this material is characterized by an initial softening

and a subsequent hardening, Fig. (1a). The simple auadratic

relation for the bulk modulus, Eq. (1-7), used previously

in the earlier tuff model, was not sufficient to both match

the hydrodynamic material shock velocities at high pressures

and to provide the proper curvature for the stress-strain

curve at lower pressures. Consequently, an altered bulk

modulus was used for higher pressures I iI > yc. At lower

pressures, I il < yc, the simplest expression which yields

an initial negative curvature in urlaxial strain and which

matches the value of the higher pressure K relation at

JI 1 = -yc was used. The initial loading bulk modulus K is

given by the relation

KI  2
KLD(J 1  (K K- + K1 ] +J + L ll < yc (I-4)

-K -K (J I + yc) + K2 (J 1 + yc) 2 I1iI > yc (11-5)

so that KLD = K = elastic bulk modulus when J = 0 and again

when Jl -= yc. Between these values of Jl 1 KLD drops to a

minimum at J 2 . At J= -yc, both K and its
dKLD LD

derivativ2 with respect to J , ie., dj-- are continuous.

Above J = -yc, KLD increases monotonically.
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At very large pressures, one might expect the material

to behave essentiaily as a fluid (little or no energy dis-

sipation) with similar loading and unloading characteristics.

A quantity JllIQ is defined as a measure of the pressure

above which the behavior of the material in loading and un-

loading is similar. Below JI,LIQ I particularly where ex-

perimental data is available, it appears that the slope of

the unloading curve in uniaxial strain is considerably

greater than the corresponding loading curve slope, thus

indicating a considerable amount of energy dissipation in

this material. Moreover, the unloading slope appears to

diminish gradually. The bulk modulus for unloading was

chosen to give this behavior, and is given by

K ( I  K K I + K2J 2  J +J < 0 (11-6)

iUN 1 0  1 1  2 1 1 I,LIQ

= K1 1 - J J + J1 > 0 (11-7)4 k 1 I 1,LIQ>

where

K + J K + 2
K 0 l LIQ I 1,LIQ 2 (11-8)K4 - (18

Ia JlLIQF+ k

is chosen so that K UN is continuous at J I = -JI,LIQ
%IdK UNLI.3TKuN

dJ I"I k
The value of K can never be zero since J < - by the

yield condition requirements. When Ill > "1,LIQ

KUN is always greater than KLD , but the difference is small.
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Below Jl I -j1,LIQ ' KUN very gradually decreases with

decreasing pressure until at very low pressure KUN de-

creases rapidly. Figure (7) shows a typical diagram of the

relation between K and J for both loading and unloading.

With respect to the shear modulus G in unloading, three

different variations of the model have been considered.

First, the same constant G was used in both loading and un-0

loading for a series of ground shock calculations for an

alluvium-playa medium. Secondly, a constant value of

G = GUN which differs from the initial loading shear modulus G O

was studied theoretically. Finally, a variation in which

the shear modulus on unloading has been allowed to vary aq

a function of KUN(Jl) over a portion of the region,

G = G o  when sij A eij > 0 (11-9)

G KUN(JI)

C = -- (1 + K ] when s A eii < 0 (11-10)
2K0 ii i

has been studied theoretically.

The determination of the various constants which appear

in the model was based predominantly on uniaxial strain test

data. Attempts to make the model also fit available in-

formation on the Mohr failure envelope from triaxial com-

pression tests were unsuccessful. Since the geometry for

the ground shock problems are closer to a uniaxial strain

test configuration than to that of a triaxial compression

test, the model ,ias chosen to conform as closely as possible

to the uniaxial strain experimental data. The constants K
a

and GO were chosen from the unlaxial strain data, while the
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constants K I and K2 were determined so that in th( higher

pressure ranges (say 20 KB - 90 KB) the shock valocities

of the solid material matched those from the h'drodynamic

equation of sLate material over this range of pressures.

The constant y was chosen so that the strair, at the point

of inflection of the uniaxial stress-straia curve falls

within the range of the experimental valves. The quantity c

was determined from availble strength data while the

constant J was essentially guessel. As new experimental
1,LIQ

results into higher pressure ranges become available under

the present DASA experimental program, it is hoped that

the JI,LIQ value may be determined directly from the test

data. The plastic constants a and k were approximately

determined from triaxial compression data and were modified

to make the model conform to the uniaxial strain results.

Theoretical curves for th( uniaxial strain test are

presented in Figs. (8)-(9) for the plastic model described

in this section. The results are for the case in which GUN

is given by Eqs. (11-9) - ZII -10). The following constants

were used in the calculations

G = 0.5 KB 0 = (.15 P =1.6 gm/cm 3

K - 1.222 KB k = 0.001 KB y - 0.15
0

K 1 . 8.0 c = 2 5 KB JI,LIQ = 12 KB
1-1 *)

K2 = 0.07(KB) (Vo. 0.32) (Eo= 1.3200 KB)

Only tv'o of the four constants, K , G , Vo, and E are
independent. 0 0 0
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Figure (8) shows the curve of the axial strtes 01 versus

the axial strain C for a complete lodding-unloAing cycle

for the uniaxial strain configuration. Figmre (9) shows

the lateral stcess a versus the axial stress 0 1 in uniaxial3 1

strain. It is seen that both curves give the characteristic

shape of the experimental results, Figs. (]a)-(lb).

A series of ground shock calculations -sing the three-

dimensiunal (two-dimensional space-time) alluviunr-plava model

have been made for a model configuration in which (a) the

same constant shear modulus G = G has been used in both
0

loading and unloading, and (b) the yield condition of

Eq. (II-1) has been used, but a plastic potential of the

form 11T2y- k = 0 has been used in computing the plastic

strains, so as to avoid the dilation problems which occur

on loading and unloading as described in some detail in

Section I.

The effece of using G = G in both loading and unloading0

results in a stress-strain curve for the uniaxial test which

although slightly softer in unloading, is essentially the

same as the curve in Fig. (8). The lateral stress curve for

unloading would differ from the curve shown in Fig. (9), since

the unloading and loading curves would coincide at low stresses.

The use of the generalized yield condition, Eq. (II-1), together

with a plastic potentia] which is independent of J1 ) results

in a slightly softer stress-strain curve than is shown in

Fig. (8).
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It is of interest to consider the behavior of plastic

material models of this general type in the triaxial com-

pression cest. Figure (10) shows a sketch of a typical

C1 - C 3 versus I diagram. Because of the variable bulk

modulus K(p), the initial loading case first softens and

then hardens. As the yield surface is reached (at different

levels for different values of the lateral stress 03), the

material "fails" and "flows" along the horizontal lines

shown parallel to the strain axis. It is apoarent that

plastic models of this type in which a constant shear modulus

G is used do nut mirror the usual stress-strain curves from a

triaxial compression test.

A way to remedy this situation is an approach in which

variable moduli are used for bith K and G. This approach

is discussed in detail for several cases ii Section III.
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III VARIABLE MODULI MATERIAL MODELS.

This section describes the development of the variable

moduli models in which no explicit plastic yield condition is

specified. As mentioned in the Introduction, these models

are an alternate to the approach utilizing plastic yield con-

ditions as described in Sections I and II. In the variable

rioduli models, both the shear modulus and the bulk modulus

will be assumed to depend upon the stress and/or strain in-

variants.

The mathematical description of the model is in terms

of the incremental stress-strain relations

sl - 2G 6ij (11-1)

= 3K 6 (111-2)

where s j and eij are the deviatoric stress and strain,

respectively, and p and e* " are the mean stress and strain.

In general, different functions G and K apply in initial

loading and subsequent unloading and reloading. The present

discussion will be largely confined to the case of initial

loading.

It is noted tha:, even in cases of initial loading,

there is not in general a unique stress-strain relation.

The final state of strain depends not only upon the linal

state of stress, but also upon the stress path used to reach

In this section compressive stress and strain are defined
as positive in accordance with the usual soil mechanics
convention.
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the final state. In this sense, the variable moduli material

cannot be considered a nonlinear elastic material where such

a unique stress-strain relation would exist. Three different

models of this type are discussed in this section: (1) a

model in which Poisson's rat-io is kept constant; (2) a

model in which both K and G are given as a function of the

strain tensor invariants, and (3) an essentially equivalent

model to (2) in which K is a function of the strain tensor

invariants and G is a function of the stress tensor invariants.

The latter model is more convenient for large computer codes

since it requires less storage capacity per computation point

than does the model of type (2).

Each of these models will be discussed from the stand-

point of the uniaxial strain and triaxial compression tests,

since these are the soil tests which will generally be available

for the determination of the material constants for the three-

dimensional (two-dimensional space-time) codes. It should

be noted that when such models are run for the simple geome-

tries of these two material tests, it is a necessary condition

that the experimental test results be closely checked by the

mathematical computations. It will be shown that the constant

Poisson's ratio model of type (1) cannot match both the uni-

axial strain and the triaxial compression experimental results,

but that both of the models of type (2) or type (3) do match

both testv, and consequently, appear to be suitable mathematical

material models.
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(1) Constant Poisson's Ratio Model.

A simple variable moduli model which has been suggested

K
and used by some investigators is one in which the ratio E

G

remains constant. It will be shown here that a model of

this type cannot satisfy both the uniaxial strain and the

triaxial compression test results.

By analogy with the linearly elastic relation

K = 2(l+vL (111-3)
G 3(1-2v)

this mode] may be called a constant Poisson's ratio material.

However, K and G will not be constants, but functions

of the mean strain e

K = K(e)

(111-4)
3

G = G(e) = K(e)

where 0 is a constant. Alternatively, K and G may be

viewed as functions of the pressure p. Since for initial

loading, the pressure

e

p 3K( ) d (111-5)

0

is a monotonic function of e, a unique inverse e(p) exists.

Thus, the moduli K and G may also be written as

K K(p) Kfe(p)J

(111-6)

G G(p) = K[e(p)]
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(a) Uniaxial Strain.

In general, the strain increment may be written as

" i + r- i (111-7)

ij 2G 3K

In the case of uniaxial strain 2 =3 and

2 3 4G 3K (111-8)

Thus,

4G 
(111-9)

S,
" +  _ (I1 -10)

I 2G 3K K

and

1 : + =(-+I) (III-i)

Combining Eqs. (III-10)and (III-11) leads to the relation

da1  €1
d 1  4 + 1) K(-) 

(111-12)
de13

The lateral stress is found from the relation

2, 4 - 2 + 1) (TTT-11)
2

or

d o3  2 11 4
-) K(T)1( -14)

de 1
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Integrating Eq. (111-12) and Eq. (111-14), the expressions

for the principal stresses a1and a 3 become:

=(1 + 4~) JK(3 ) d 11-5

0

a3 I (9 (l )jK(-.) dE (111-16)

0

Equations (111-12), (III-15), and (111-16) uefine a

constant Poisson's ratio material during initial loading

in a uniaxial gtrain configuration. If K(e) initially

decreases and subsequently increases, the axial stress

axial strain curve (see Eq. (111-12)] will have the

characteristic softeni.ag-hardening shape found experi-

mentally, Fig. (la).

From Eqs. (111-15) and (111-16),

a3 (C ) = (i*) Cr (e1  11-

so that the radial stress versus axial stress relation is a

straight line of slope 1- V This agrees reasonably well

with experimental data, Fig. (lb).

Wb Triaxial Stress.

In the triaxial test, 2 = 3 - and

3 2
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Thus, = 20 and = 30. The axial strain increment is

given by

1 2G 3K G3AK
: -+  :(- -) T(iI -19)

and the slope of the stress-strain curve by,

da11 9K(e) (111-20)

The radial strain increment is

43 l.1 ( L + (111-21)
4C 3K 2G+3K 3

or

-(8-2)(111-22)£3 2(0+1) 1 1

which, not surprisingly, is the same as the linear elastic

relation. The mean strain increment is also proportional

to E I

1 + 2 (111-23)
3~ [1 23I B+1 1

so that the actual total mean strai., -n by

e =e +- A (1l-24)
0 8+1 1

where e0 is th.e strain reached during the loading of the

specimen hydrostatically up to the stress C 3 ,and whero

Ace= 1 - e is the measured axial strain.
1 1 o

Typical experimental triaxial results, Fig. (le),

have the follow~'ng characteristics:
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1. The stress-strain curve at a given value of 03 is

concave downward.

2. At some point a horizontal tangent,"failure", is

reached.

3. At a higher value of a3 the initial slope and the

stress difference at failure, (oI - a3)ma x , both

increase.

From Eqs. (111-20) and (111-24) one sees that the re-
d2° dK

quirement of negative cur'ature < 0 means that d

1

must be negative, which contradicts the behavior of K(c)

which was required for the uniaxial test. Moreover, the

assumption K > 0 is not compatible with the existence of
"failure" (d 1 

= 0).

Even if a yield condition of some type were included

in the model specificaticn, well below the yield point,
dK<0.Othotehad

negative curvature would require - < 0. On the other hand,
de

requiring the initial slope to increase with a., , or

d 2 9 dK de ' (K > (111-25)

dc aI  0 deJe p 3  e e=e

requires that dK > 0, wnich ontradicts the requirement

dK
that j- < O.

One may therefore conclude that, although the constant

Poisson's ratio model aopears promising when only the uniaxial

.1
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results are considered, such a model must be rejected, even

in conjunction with a yield condition, since its behavior

in the triaxial configuration contradicts experimental

evidence.

(2) Voduli Dependent Upon Strain Invariants.

Models in which the moduli were assumed to be independent

functions of the fi.st and second invariants of the strain

were investigated in the order of increasing ccmDlexity.

Initially, strain rather than stress was chosen for analytic

convenience, at least with the simoler models.

The most promising of the strain models thus far con-

sidered is defined by the relations

2
K = K(e) = K + K e + K 2e (111-26)

G = G(e, V1 2 ) G + a, 12+ Gle (II-27)

where 12 is the second invariant of the strain deviators.

Equations (111-26) and (111-27) may be thought of as the

first terms in the series expansions of more general

analytic functions K and G of the strain invariants. The,l.
quantity 12 was used, rather than 12 itself, since it

is or the same order as e and the components of Lhe bLrdin

tensor. At zero strain, the bulk and shear moduli reduce

respectively to K and G , the "linear elastic" values,
0 0

which are related in terms of the "elastic" Poisson's ratio v
0
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K 2(1+v )
30 0- (111-28)GO 3 0-2 vo)

K

although the ratio E is not, in geaeral,constant. With GI

positive and G1 negative, the material hardens in shear

with increasing hydrostatic strain and softens with in-

creasing shear strain.

(a) Uniaxial Strain.

The general incremental stress-strain relation is

given by

• = ii + (111-29)
2[G + G1 -/2I+ Gle] 3[Ko + Kle + K e

In the case of uniaxial strain, 2 = s3 = - - , so that

1 3 + = 0 (111-30)

3 4[G 0 + GI i/T2 + G1 e] 3[K + Kle + K2e
2]

I- e I  (111-31)

(since in lcad ing e1 > 0) and,

2e = 3 C1 (111-32)

Combining Eqs. (111-30) - (111-32) one obtains an ex-

pression for the tangent modulus Lt any strain

d KI K2d~l -- + 22+4 0+1 (C1 + /G C) cij -
M

de 1 o 3 -1 9 3 0 3 1 1

- K + 3G = M (111-33)
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Integrating Eq. (111-33) aud combining terms, the axial

stress is obtained in closed form as

=4 + I 4 2 23

a1  [K + A Go] 1 [KI + A (C' + T a 2 + l

(111-34)

Noting that s= - s I , the lateral stress at any strain

may also be written in closed form as

2 K2

C3 = [K - (] I  [ - 2 (L + 2 7 -3 ) C I

(111-35)

The pressure is given by the relation

11 2 K2 3

i( + 3  K o + 6  1 + 7  1  (111-36)

and the deviator s I as

4 + 2 G ) 21II-)
s I  = 1 - S G = 1  1 + 1 1 (111-37)

(b) Triaxial Stress.

During triaxial loading, the lateral stress is held

constant, so that

= - +  =-[Go +Ge + G1  e] +

2I 3[K e +e K = 0 (111-38)

Thus,

2-lin 2 (111-39)
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and since 2 1 (during loading e I > 0), the strain

rate Al is given by

2 1 1

3[K ° + K e + K e2

el 1 2  (111-40)

[G0 + Gle + 23aIel ]

The total axial strain increment is given by

1 6 + 6 (111-41)

Combini-, Eqs. (111-30) and (111-40), the tangent modulus

is obtained as

2 Jda1 9[K0 + I r K2e ][G0 + GIe + -- e)
__ ( m ],+~ (111-42)de 1  3rK + K e + K e2] + + G e + V- 1

0o1o0 1 2 ' 1 '1

or

do 1 9K(e) G(e,el1)
K) (e e ) (111-43)

d 3K(e) + G(e,ul) - ' 1

where E may be considered the local modulus of elasticity,

i.e., Young's iodulus.

Equations (111-40) - (111-42) consitute a system of

nonlinear dirftrential equations relating the variables

e, el: Ci, and I .1 The system may be solved numerically

by forward integration. The initial conditions are obtained

from the hydrostatic state of stress which exists in a

triaxial compression test before the additional axial

loading is applied, namely,
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1 03

e (0) =0 (111-44)
e

(O)= e(O) e

where e , one third of the hydrostatic volumetric strain,

is the sma', positive root of the cubic equation

3 2 3
. 3Ke + 2 1 e + K e 3  (111-45)

Since K is always positive, 0.3 increases monotonically

wi th e
0

(c) Choice of Constants.

If all stress quantities are ncndimensionalized with

respect to the initial bulk modulus, K , then five Param-o0

eters remain to fully describe the model, namely,
G KI G K 2Go 1 1 1iG 0 K 1 G- 1 1 K 2 (111-46)
o 0 0 0 0

The first of these is inherently positive and is related to

the initial Poisson's ratio v by Eq. (111-28). The higher
K I  K 2

order terms in the bulk modulus K- and K- may be positive
0 0

or negative. However, the values are restricted by the

LO~UU~U ~ n.. , ~t4v of f-TTT-)AN

K1
,ir' ,e minimum K occurs at emin 2K2 , which is posi

tive (i.e., relevant) only for K 1 and K2 of opposite sign.

-K 1

If I,, is taken to be negative, 2K would be the value

of e at which K would reach a maxinum. With K negative



-- 32

and K2 positive, the requirement that the minimum bulk

modulus be positive

2K

K = K(e n ) K - -K' > 0 (111-47)
n i min 0 4K 2

requires that

K2K1

K > (111-48)
2 o

K I  K,,

It should be noted that any values of - and - are
K K

0 0
permitted as long as K > 0 for the range of e of interest,

i
especially 0 < e < .

In the triaxial stress test the initial slope

dcl1  9[K +Ke + K2)[G + Ge
I = - C' 1 0 K 2 e( + 0 eId e i= [o o 2,

1 e =0 3[K + K e + K 2  + fG + G eo ]

e=e
0

9K(e o ) G(eo,0)

03K eo ) + G(eoO5)

should increase with increasing lateral stress (or eo).

This leads to the relation

3[~e~ 2 23[K(e0)]2 G 1 + [G(eo,0)] (K1 + 2K2 eo) > 0 (111-50)

which, for e suff-ciently small, becomes
Lo

G1 1 (o)2 K1K (3---) 1 > 0 
(111-51)

0 0 0

With K1I < 0, Eq. (111-51) sets a lower bound for G
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In the uniaxial strain test the curvature

dI [ 1 + 4 (G Gv )  +  I KE2 : (111-52)

dc 1 [ 3 '~( 1  9 ~ 2c 1

is initially negative, or

4

K 1 + (C I ,I < r (111-53)

and the curvature changes sign at the inflection point

I " defined by

3 4

Cinflection point 2 2 1  3 1

Equation (III-53) sets an upper bound on G , while

Eq. (111-54) relates K2 > 0 to the inflection point once

K I , G I , and G1 are known. The minimum slope (at the in-

flection point)
4

[K1 + A (C 
+ r 5 

2

m n  ( + ) -+ 5 G 4KG2  (111-55)

must be positive, so taat

24
4(K ° + - G

In practical application of this model to experimental

curves, the various constants are chosen by curve-fitting

routines to best match the data. For a purely theoretical

investigation in which no specific real material is con-
G

sidered, .0 is obtained from a reasonable value of V , a
0
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K 1  G I
value K < 0 is chosen, K- is taken to satisfy Eq. (111-51),

0 0

and -- to satisfy Eq. (111-53). Finally, _- is chosen to
0 

0

satisfy both Eqs. (111-48) and (111-56). It is seen that the

salient features of both the uniaxial strain compression test

and the triaxial compression test can be matched by material

models of this type.

(d) Numerical Results.

Typical numerical results were obtained for the param-
K K 2  G I1

eters V = 0.30, R R - = 4000, T = 48 and
0 0 0

= -32. For the uniaxial con:pr ssion test, the plot of
K
0

axial stress versus axial strain, Fig. (11), shows the re-

versal In curvature which is characteristic of the experi-

mental curves. The point of inflection occurs at 4.1%

strain, again a typical experimental value The plot of the

radial stress 03 required to maintain uniaxial strain versus

axial stress a1 is shown in Fig. (12). The general trend of

this curve conforms to the experimental curve, Fig. (lb).

It may be noted that a slight reverse curvature occurs at

the low end of the theoretical curve. Although a change in

the material parameters could alter or possibly remove this

effect at the low end, it is not completely clear as to

whether such effects occur in some real materials. In any

case, this effect is a minor one and is not sufficient

grounds for rejecting the model. Figure (13) is a plot of

the deviator versus the pressure , again for uniaxial
0 0
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strain. Once more, at the low end there is a reverse in

curvature. However, beyond' the inflection point, the slope

of the curve is remarkably similar to the curve of the playa-

type yield condition, described in Fig. (4). More will be

said about the similarities and differences between the

plastic and variable moduli models later.

In the triaxial test, the stress difference a- 03 versus

the axial strain C is shown in Fig. (14) for the same con-

stants that were used in the uniaxial calculation, and for
03
3 = 0.04, 0.06, 0.08, respectively. The curves are found
0

by the numerical integration of Eqs. (111-40) - (111-42) and

reflect the experimental results, Fig. (1c). The curves are

concave downward, exhibit horizontal tangents, "failure", and

at higher lateral stresses the initial slope increases and

the stress difference at "failure" increases.

t Since an analytical expression for the stress difference

at failure is unattainable, the computer program was run to

failure for nine different values of the lateral stress, 03

Table I shows the stress difference, the pressure, and the

axial strain at failure as well as the initial modulus for

each value of lateral stress. The Mohr envelope is plotted

in Fig. (15). Again, there is overall agreement with ex-

perimental envelopes, Fig. (ld), except for a small dis-

crepancy at very low stresses.
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TABLE I

Triaxial Test at Various Lateral Stresses

K K G
(vo =0.3 0, -= -100, L = 4000, 8- , = -32)

0 0 0 0

N 3 (cl- 3)failure Pfailure I fEinitial
No. K K failure K

0 0 0 0

1 0.000 0.0139 0.0046 0.0211 1.200

2 0.001 0.0153 0.0061 0.0232 1.231

3 0.005 0.0230 0.0126 0.0317 1.350

4 0.010 0.0577 0.0292 0.0667 1.479

5 0.020 0.1608 0.0736 0.1045 1.594

6 0.040 0.2385 0.1195 0.1212 2.977

7 0.060 0.2819 0.1540 0.1310 3.973

8 0.080 0.3162 0.1854 0.1374 4.625

9 0.100 0.3456 0.2152 0.1426 5.117



-- 37 --

On the basis of the present investigation, it appears

that the veriable moduli model under consideration, defined

by Eqs. (111-26) and (111-27), shows promise as a mathematical

representation of the mechanical behavior of soils. The model

behavior in both uniaxial strain and triaxial stress con-

figurations (in initial loading) is essentially similar to

that found experimentally.

No attempt was made to use this model to match actual

data numerically, nor was the problem of unloading given more

than a cursory glance. These activities were postponed in

order to develop a variable moduli model which depends uoon

the stress invariants p and i J2 as well as the mean strain e*)

This was done for practical as well s theoretical reasons.

Practically, in the general three-dimensional problem, one

is physically more interested in stresses than strains and

already stores the stresses in the computer. To require the

storage of even a single extra quantity at each grid point

sipnificantly reduces the number of grid points which can be

utilized.

From a theoretical viewpoirt, this stress invariant

model allows an interesting comparison with plastic models

whic h will be discussed later.

In the various computer codes for evaluating grourd shock,
the dexstty P is generally stored at each Point and the
mean stairn e may be computed from it.
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(3) Combined Stress-Strain Variable Noduli Model.

This section presents the develonment of a material

model in which the bulk modulus K is a function of the

mean strain e, and the shear modulus G is a function of

che -tress tensor invariants, through the mean nressure D

and the sauare root of the second, invariant of the stress

deviator 1 2 "

rhe simplest relatio in which the shear modulus

depen;ds upon both p and fJ2 is given by

C=G + Y + (111-57)

The bulk modulus is retained as a quadratic function of

the volumetric strain

2
K = K + K e + K e (see Eq. 111-26)

0 1 2

As mentioned in Section III-I for the constant Poisson's

ratio model, a unique pressure-volumetric strain relation

exists duiing initial liading as lor! as the bulk modulus

depends only upon o or e. Therefore, Eq. (111-26) is

equivalent to vriting K as a function of v (See Eq. (111-6)).

The bulk modulus was chosen to be a quadratic in e

rather than in o, since the typical uniaxial strain test

curve suggests that the axial stress is a cubic function

of the axial strain. Since the moduli K and r refer to

the incremental stress-strain relations,
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= 3K 6 (See Eq. III-l)

i = 2G 6j (See Eq. 111-2)

the pressure may be obtained by direct integration of

Eq. (III-1) as

e

3K(&) d = 3K e + - Ke 2+ K e( 3J o3K 22

0

Moreover, in the preparation of a computer code for the

solution of three-dimensional (two-dimensional space-time)

ground shock Problems, the density (or the volumetric

strain ckk) must be stored at each grid point, since the

density aupears in the equations of motion. Since the

relation bet,'en density and volumetric strain is given by

Ek 3e - Zn(- -) (111-59)Ckk o

it is noted that the use o" a bulk modulus which is a

function of the mean strain, Eq. (111-26), requires no

significant additional computer storage . It should also

ie noted thit in Eq. (111-57), the nondimensional constant y

will be positive for a G which hardens with increasing

pr'arire, while Yl will be negative for a G which softens

,ot-1. an inrrpnzp in the deviatorie etreqoec .

In the laree ground shock problems, the problem of
minimizing computer storage requirements at each
grie point becomes extremely Importamnt, since the
size of the problems challenges the capacity of
even the largest computers.

I.



(a) Uniaxtial Strain.

In a manner quite inalogous to the case of the strain

invariant model, Section 111-2, it nav be shown that in

uniaxial strain

de 3K + 4C 3(Ko + K Ie + K 21 + + YI I + 1 (1l2-60)

Notin2 that 2 1 Cr p), substitution of

Eq. (111-58) into Eq. (111-60) yields the first order non-

homogeneous differential equation

do I 2 (3 =(3K + 4C, ) + 3[.4K (Y - + Kll e +
de 2 " 1  / (3 2 1I

+32 y1 ) + e 2 + 4K2 (Y1 - )e1 3212 Y 2 22 1 Y1

Using the initial condition that stress and strain vanish

simultaneously, the solution for stress as an explicit

function of strain is found by integrating Eq. (111-61)

= { o + _( K + K + 2 [1 - exp(2/" v" e)J -

/T 2 , 1 (2V 1

T2,/-3K r3 K2_ (Y - -i- y 1 ) + - ( + - )

1 1 i2 1I - I v3 Y

K . +K -1 1 ? - 3

- ~ ~ ~ 7 ' l +-K 2  1 2----~ 1 y

(111-62)

K.. _ .2
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Closed form expressions for the remaining stress quantities,

s and 3 , are easily obtainable from Eqs. (111-58) and

(II1-62) .

1 { o; + _[K [I - exp(2V' Y e)] -
1 2 0 2/T Y_ 2 /7 Y1 ) 2

" K2

K + 2 )- e

31y

Y1 2 2y 13

¢ Y1 YI 2 2 1 3f3 Y

K 1 +/_3 YK 2 e Y 2  -2
[r3 F Y1 + K2+

+ o + [K + [1 - exp(2/T ye)1 +

2 2y 1  (2/TY0 1

v3 K" 11 2 K23
S(Y 1 + 3 + 2 + L) v e + Y e

2Y 1  2y 1  2 v I

(111-64)

Finally, from En. (111-62), the slope of the stress-strain

cuirve at any point, or tile tangent (constrained) modulus

is found to be

I
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d 4 2Y K1  2 .7 e) -d '-i = - ' [Y+ exp(2v 3 e)

0 3V r3 (2r'Ty 1 )

2 K 0r - Y 1 K 2
o/0 (y - y) - (K + --3 ) -

31
2KI y - +Y e 2K 2  / - V- 2

¢' I I- z- YI +  
I '2' e ¢ I(I- 2 Y

(111-65)

(b) Triaxial Stress.

In the triaxial stress configuration the second in-

variant of the stress deviators is simply related to the

stress difference by

2 2 1 ..., ( 1 -7) 
(II1 -66)

,'3

Using the relation p = (aI + 2a3)/3 and Eq. (111-66), the

expression for the shear modulus becomes

G = Go + "3 (al + 20 ) + - (1 - o3) (111-67)
3 1 3 V 1 3

Thus, the strain deviator v I may be found by interation

e d- d-- (U11-68)
2G C- -3, + ( 3 (2yI - r 1)  + E(y± + 1T

:3

since e 1  0 w'hen a I C, 3 (hvdrostptfc compression).

1,



-- 43--

From Eq. (111-68), e is obtained as an explicit funcLion

of the stresses o I and 3

e3G 0+ a0 (2y 1 - r 1 ) + a1(Yl + /3 y1)1 3(G +

(111-69)

A necessary condition for ' to decrease as < 1 increases,

see Eq. (111-67), is

Yl + r3 -i < 0 (111-70)

so that the argument of the logarithmic function in

Eq. (111-69) is always less than one, and e is always
1

positive. Alternativelv, Eq. (111-69) may be written as

e = n I n(111-71)
Y + /3 initial

here Ginitia G Y3 is the initial value of G, i.e.,

the value under hydrostatic conditions. From Eq. (111-71),

it is evident that e1 becomes arbitrprilv large (as does

El) as G approaches zero, or [from Eq. (111-67)] when

(a1 - )ma - + yIo 3 ) (111-72)

i t i s S e u lz t h a t f o r 1 . .. . .. 1r t - ta xr'

che strain becomes imaginary, that is, the strain cannot

exist. Thus, Eq. (111-72) expresses the maximum stress

difference in triaxial compression for a givet lateral

- I,
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stress 03 It should also be noted that the local slope

of the triaxial stress-strain curve

K1 9KG E (See Eq. 111-43)d e 3K + G

goes zo zero uhen G + 0, so tbat the stress difference

(a - o3)Max represents a point of horizontal tangency,

i.e., "failure".

The measured strain Ae 1 is simnly related to the

strain deviator e, , the mean strain e, and the initial

(hydrostatic) mean strain e by
0 .

A l = eI + e - (111-73)
1°

where e is found for the given lateral stress a by
0 3.

Eq. (111-45). Equations (111-57), (111-26), (111-69),

(111-43), (111-73), and the small positive root e of the

cubic Eq. (111-58) completely define the system in tri-

axial sLress for all valid stress states a1 , 0 3

[(a - 03) (oI - 3) max

If the Mohr failure envelope were plotted fo this

material, it is evident from Ea. (111-72) that the plot

would be a straight line passing above the origin, similar

to the yield condition for a Prager-Drucker material. This

similarity ,,ill be discussed later in the paner.

It can be shovn that Eq. (111-43) applies for quite

general functions F and c..

L
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(c) Choice of Constants.

As for the case of the strain Invariant model, Section

111-2, five parameters are required to fully describe the

material in initial loading:

G K K2
o 1 -l 2 1 (111-74)K- ' K ' Yl ' l ' K i - 4
o o 0

The choice of a suitable value of v determines the ratio
0

o Eq. (111-28). The requirement that K > 0 again leads

0

to the condition between K I and K2 as given by Eq. (111-43).

The fact that yI > 0 and y1 < 0 for physical reasons has

already been discissed, as has the inequality between them,

Eq. (111-70).

To forther restrict the range of the five material

parameters, one requires the initial slope in triaxial com-

pression to increase with lateral stress, and the initial

curvature in uniaxial strain to be negative. Differenti-

ating Eq. (111-43) with respect to 03

3K2 dG + G 2 di,

dE (111-75)
9 do3  (3K - ,) 2

and requiring the result to be positive when a1 a3,

yields the inequality

I1
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[K+ K1 e + K2 e2 +

+ [G + Y(3K e + 2 K e2 + Keo3 ) 2 (K + 2Ke) > 0 (111-76)

0 1 0 0 2 10 2 0+1 20

For Eq. (111-76) to hold in the limit as e approaches zero0

the inequality

Y1 > 1 ( 0oK (111-77)

must be satisfied. Equation (111-77) is a necessary con-

dition for the initial slope in the triaxial test to in-

crease with increasing lateral stress a3 * Requiring the

initial curvature in the uniaxial strain test to be negative

results in the condition

KI 4 G r3 y
S 4 - y 1 [2 -2 (--1-78)

K 1

Equation (111-78) is obtained by evaluating the derivative

of Eq. (111-65) at e = 0. An attempt to find an analytic

expression for the inflection point leads to a transcen-

dental equation and will not be discussed further.

(d) Unloading.

The model for unloading (and subsequent reloading) of

variabie moduli materials is presently in the very early

stage of development. Thus far, only unloading in the uni-

axial strain configuration has been considered. Experi-

mentally, Fig. la, the uniaxial strain unloading curve has
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a slope much larger than the loading slope, which is ap-

proximately constant until very low stress levels are

reached.

As a first approach, the material model in unloading

was chosen to be defined by the following expressions for

the bulk and shear moduli:

K = KUN = constant (111-79)

, GUN o

G = GUN =G0 + y 1 p + lf1 1/7( '2 ) (111-80)

where h(J;) is the unit step function. The effect of the

step function in Eq. (111-80) is that at the same values

of p and J2 , the material is stiffer in shear when it is
.1

unloading in shear, J 2 < 0, than when it is loading in
.,

shear, J 2 > 0. In a completely general three-dimensional

configuration the terms "loading" and "unloading" no longer

have such clear-cut meanings. It is possible that the
*1

material will be loading in shear (J2 > 0) and unloading in

pressure ( < 0) simultaneously. In fact, if one studies

the a3 - a1 curve for as simple a geometry as a uniaxial

strain test, Fig. (lb), it can be shown that on unloading,

the deviator s I = E - ) [originally positive] first
1 3 a1  03)

decreases, then changes sign and continues to decrease

[fincreases negatively] until a minimum is reached at a very

low stress level. Beyond this point, s I appears to increase

slightly, i.e., to decrease in absolute value. At the same
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a ! + 20 3
time, the pressure p +2 3 and the strain c both

3

decrease monotonically during unloading. Clearly, the

sharp tails found experimentally upon unloading at very

low stress levels in both the uniaxial stress-strain curve,

Fig. (la), and the radial stress-axial stress curve, Fig. (lb),

are related to this unusual behavior of s

Plastic models in which the yield condition is a

function of Jl I Eq. (1-4), can adeqtately represent this

behavior*) Presently, the variable moduli modei which io

described by Eqs. (111-79) - (111-80) in unloading does not

adequately describe this behavior at very low stress levels.

It is not clear that J2 should be the criterion upon which

the choice of the proper G is based. Further study may in-

dicate that some combination of '2 and 1 should be used for

this purpose.

The slope of the uniaxial stress-strain curve in un-

loading, K U A , could not be less than KUN unless GUNlangKUN 3 UN5UNN

were permitted to be negative for some range of stresses.

Thus, in order to obtain the sharo break found in the ex-

perimental curve, Fig. (la), at lot, stress levels, a des-

cription of G ON such that it could be negative at very low

stress levals appears to be proiising. -Work or, ",,e proper

) It can be sho ,n that the minimum value of the deviator s

occurs when upon unloading, the oprosite face of the
yield surface is reached. Upon continued unloading, the
stress path is along the yield surface.
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renresentation of unloading for variable moduli models is

contilnuing.

For the present model, K must be chosen larger than

UN

the maximum value of K found during loading. A second re-
3

quirement is that 2 KUN must be greater than the maximum value

of GUN Since the work is still in the early stage of

development and is subject to revision, a detailed de-

scription of the equations applicable to unloading will not

be given.

(e) Numerical Results.

Typical results for the variable moduli model of this

section are shown in Figs. (16) - (19). The parameters used
K K

in the computations were V = 0.30, K -100, and K= 400o,oKK
0 0

the same as were used in the previous strain model. In

addition, the values y1 = 60 and y = -133.3 were chosen.

In loading, the uniaxial stress-strain curve, Fig. (16), has

the characteristi- reversal of curvature which is fund in ex-

perimental curves. Again, the point of inflection occurs at

a strain close to 47, a typical value. On unloading, with
KUN

= 30, the stress decreases shrplv. Although the un-
0

loading Portion anpearS LO be a SLrdiy1!L HLue, Lit . -,lo1 dt

low stress levels is in fact less than half the value at

high stress levels. Nevertheless, the distinct tall which

is found on unloading experimentaIly, Fig. (]a), does not

This corresponds to the requirement V > 0.
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appear, illustrating the inadequacy of the present unloading

model at these very Low stresses.

The plot of the radial stress versus axial stress in

uniaxial strain is shown in Fig. (17). On loading, the

curve is actually concave upward at very low stress levels.

At higher stresses, the curve is essentially a straight line.

The unloading radial stress is always greater than the corre-

sponding value in loading. The unloading curve is concave

downward and changes in curvature at 01 = 0.164, where s1

changes sign. The plot has the same general characteristics

as the experimental curves, Fig. (ib), except that in the

experimental unloading curve 03 drops off much more oharply

as 01 is brought back to zero.

Finally, the deviator sI is plotted versus the pressure

p in Fig. (18) for loading and unloading in uniaxial strain.

On loading, the initial curvature is concave downw.ard. How-

ever, the major portion of the curve is essentially a straight

line. On unloading s1 is always less than its corresponding

value in loading and the curve is concave upward. At s l 0,

the slope is continuous, but the curvature suddenly increases,

reflecting the change in sign of J in Eq. (111-80). The

plot ends at sl = -p (so that l= ) with the bluvi, almost

horizontal.

The results for the triaxial compression test are

illustrated for loading only in Fig. (19). The curves are

drawn for the same parameters which were used in the uniaxial



-- 51 -

strain test and for the same values of the lateral stress

wh'ch were used in the strain variable moduli model, Fig. (14),

3
namely = 0.04, 0.06, 0.08. Each of the curves is concave

0
downward and approaches asymptotically the value (aI - 3)max

given by Eq. (111-72). At a higher value of the lateral

stress, the stress difference at failure increases, as does

the initial slope.

On the basis of the present results, one sees that the

theoretical combined variable moduli material, when subjected

to two special loading configurations, namely the uniaxial

strain and triaxial compression test, reproduces all the

salient features found experimentally in these tests. There-

fore, the present model offers promise of being able to give

a reasonable representation of real soils in more general

loading configurations.

The tentative unloading model appears to mirror the uni-

axial strain experimental results over most of the stress

range of interest. Further work is required to clarify the

material behavior at very low stresses and to study unloading

in the triaxial compression test.

The abilizy of the present model to match, numerically,

real soil data and the process used to determine the various

constants must await the completion of current investigations,

both theoretical and experimental.
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It is of interest to explore in some detail the relation

between the variable moduli models in Section III and the

various plastic models discussed in Sections I and II. This

discussion follows in Part (f).

(f) Comvarison of Variable Moduli and Plastic Models.

In the previous portion of this section, sir rities

between the variable moduli models and the plastic models

have been mentioned. This subsection discusses several of

these similarities for simplified models of these types. On

the basis of the present study, it appears that the concepts

of a "yield condition" and of plastic flow may be contained

within the theory of the variable moduli models.

For many materials, empirical evidence suggests the

existence of states of stress (and/or strain) at which the

material undergoes continuously increasing deformations with

little or no increase in loading. This combination of

stresses at which flow occurs is often called a "flow con-

dition" or a "yield condition". When these deformations

hbrnmp atuffieient1y large so that unaccentable changes in

the geometry occur, this sLate is called "failure". Plastic

material models describe the stress state at which flow

begins by a yield condition and the subsequent deformations

by a flow rule. The variable moduli models describe the

behavior o: materials as they approach this critical state

of stress (and/or strain) as well as their behavior at the
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state itself. For example, if one were to define an

"incremental shear modulus" as the change in shear stress

divided by the corresponding change in shear strain and

apply this definition to the alluvium-playa model in tri-

axial impression, Fig. (10), this incremental shear modulus

would be zero at "failure". Large Increases in shear strain

would suddenly occur with no increase in shear stress in this

situation. In the case of either of the variable moduli

models, Figs. (14), (19), the material does not suddenly fail,

but instead gets increasingly softer up to the "failure"

point, i.e., G decreases continuously to zero. Examining

the behavior of the deviator s I for a Coulomb material in

uniaxial strain in the very low stress range during unloading

(this corresponds to the flat portion of Fig. 2), one finds

that s I is opposite in sign from a 1 and becomes smaller in
1

magnitude. The strain deviator, eI = Z e for uniaxial strain,
1 31

ds1

decreases monotonically. Thus, the ratio - is negative in
de1

this region. Although the present unloading relation, Eq.

(111-80), does not adeqLately represent this behavior at low

stresses, it is felt that improved versions of the mathematical

Model in which G utt unloading may be negative for certain com-

binations of stresses, may provide a better representation.

An interesting illustration of the relation between

plastic and variable moduli models can be obtained by a com-

parison of the simple Prager-Druc~er material and the combined

In the present combined variable modulus model, the
shear modulus G is necessarily positive In both loading
and unloading.
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variable moduli material with K K = 0. For both models,
1 2

the Mohr failure envelope is a straight line. In the

Prager-Drucker matertal, permissible states of stress may be

defined in terms of the yield condition

k + 3ap - > 0 (See Eq. I-1)

In the combined variable moduli material, pernissible

states of stress are those for which 0 > 0, or, dividing

Eq. (111-57) by -yl > 0

(-) + (_) p > 0 (111-81)

The two conditions are identical if

G
( ) k (111-82)

and

(Y) 3a (111-83)

-Yl

The requirement that y, + / < 0, Eq. (111-70), is thus

equivalent to requiring that a < -- There is no obvious

requirement for y + -2- Y1 < 0, which would correspond to

the usual restriction on

2 r3

Equation (111-84) is not an obvious requirement either;

it comes either from the restriction t < 900 in plane
strain, or that the slope in uniaxial strain in un-
loading be positive.
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In uniaxial strain, the requiremen for initial soften-

ing, Eq. (111-78), with K 1  0 reduces to

G Yl

2 K2 + r - > 0 (IIi-85)

K

which upon substitution of Eq. (111-83) and G 3-
0

becomes

aa < 2 (II-86)

The identical condition must be satisfied for a Prager-

Drucker material to yield in uniaxial strain.

Finally, examining the slope in uniaxial strain for

the combined mixed moduli material, Eq. (111-65), when

K1 = K2 0, one finds

d~d l  [-KG + -3-K ] exp(__ y 11 ) + Ko(l - Yl) ( -87)

The initial slope, Eq. (111-87) evaluated at el 0, is

the elastic constrained modulus K + - G At large
o 3o

strains, since I < 0, the exponential term vanishes and

the slope approaches asymptoticelly

do~1  2 -L11-1

1YC1 >> 3Y-1

If the K I and K2 terms were kept in the bulk modulus

relation, the slope would simply continue to increase.
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In the linear elastic Prager-Drucker material, the slope

in uniaxial strain, (see Fig. (2)], is the elastic slope

K + - G until yield, at which point the slope becomes
o 3 o

discontinuously the plastic slope

del K0 (1 + 2/ 2) (111-89)

dlPlastic (1 + 3a2

The limiting value of the variable mcduli slope

K ( 2 K (1 + 2/' a) (111-90)

is not, however, the plastic slope, Eq. (111-89). The two

are equal at the end points a - 0 and a =-- of the range

0 < a < - , but the variable moduli value is slightly less

tnan the plastic value elsewhere in the range. The value,

Eq. (111-90), is that which would be obtained for a hybrid

material, i.e., one which obeyed a yield condition of the

Coulomb type, but obeyed a flow rule of the von Mises type, (21.

For this material, even incremental dilatancy effects (see

Section 1) are suppressed. It is not surprising that in a

material such as the variable moduli material in which the

bulk modulus is a function of the mean strain only and in which

shear effects canaot cause an increase in volume, the slope

approaches that of the hybrid plastic material and not that

of the Coulomb materfil itself.

Finally, comparing both the triaxial stress and the uni-

axial strain tests for the variable moduli material and the

__-______ _____
-

_
-
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Prager-Drucker material, Fig. (20). one sees that the latter

describes yield, while the former deqcribes material behavior

approaching "yield".

(4) Closing Remarks.

A theory of variable moduli materials has been partially

developed in this secuion. The results ohtained for two of

the models appear to essentially match those found experimentally

in both the uniaxial strain and triaxial compression tests, at

least for some soils in certain ranges of stress. Further

work must still be done in unloading. Moreover, as new ex-

perimental resulcs become available for higher stress ranges,

the extension of "he variable moduli models to these higher

stress ranges must be examined.

It should be noted that whereas the alluvium-playa model

discussed ii, Section II may be considered to be a relatively

advanced plastic model, the variable moduli models presented

in this section are a first attempt at such a theory. Further

development will hopefully lead to varialle moduli models of

more geneLal applicability.
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The, problems and definicnciec* of these early approachet are diocus;.ed. Subscequently,
tzio t~rpes 0 of el are lcveloa'. ; one a plastic mcde! in which the yield condition
d~pc Is -.n thI? mean strese Lnu in which different variable bulk moduli are Used in
loading and unlo~zding. 7h.e second type of mcdel, cgaled the "variable bulk moduli
i(Oel," has variable shear as; well as, molji, b~ut no epl Lyield condition. The
behav.IJ0 Of both typeS 0~' rnoiel in uni-ixil str&in and triaxial cc'npression tests

zs examined.
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Hysteretic material models

Elastic-plastic material models

Ground shock

Soil and rock models
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