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SUMMARY 

Time-dependent properties of uniaxially fiber reinforced mate- 
rials composed of  linear viscoelastic matrix and elastic  fibers are 
investigated.     Sample calculations are given for the static and dynamic 
properties of a viscoelastic fiber reinforced material.     In addition, 
the behavior of fiber reinforced viscoelastic structures is  investi- 
gated,  and a number of practical problems  for beams,  plates,  and shells, 
subjected  to static and dynamic loadings,  are analyzed. 
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1.  INTRODUCTION 

The purpose of the present Investigation is to study the dy- 
namic behavior of uniaxially fiber reinforced material (FRM) for the 
case of elastic fibers and linear viscoelastic matiix. 

A large number of investigations have dealt with the static 
elastic behavior of uniaxially FRM.  Of these, the most fruitful ap- 
proach, in the writer's opinion, has been the analysis given by Hashin 
and Rosen [1], which was based on a geometrical model named the compos- 
ite cylinder assemblage (CCA).  The advantages of this approach are here 
briefly summarized: 

(a) The geometrical model is based on a random (though 
special) geometry. 

(b) The mathematical analysis of the model is rigorous. 

(c) The analysis yields simple closed expressions for 
four of the five elastic moduli of the CCA. 

(d) Experimental verification of the results has been 
excellent. 

The relative simplicity of the approach makes it possible to 
extend the approach to more complicated cases. Thus, the CCA model has 
been used successfully by Hashin et al [2], to analyse the elastic prop- 
erties of biaxially FRM.  Another extension which is of primary impor- 
tance for present purposes is a recent analysis by Hashin [3] of the 
static viscoelastic properties of a uniaxially FRM on the basis of the 
CCA model.  Our purpose here is to use the same model for prediction of 
the dynamic properties of a viscoelastic uniaxially FRM.  Such a study 
is of primary practical importance since: 

(a) In many cases, the matrix of a FRM is time dependent 
and, to a good approximation, linearly viscoelastic. 

(b) Frequently, structural elements of FRM are exposed to 
vibrations. 

Vibration analysis on the basis of elastic properties will 
predict resonant frequencies that should be avoided.  However, the time- 
dependent and dissipative nature of the matrix produces damping of vi- 
brations, which is of beneficial effect.  Free vibrations will rapidly 
die out, while forced vibrations will have a less dangerous character 
than that predicted on the basis of pure elastic behavior.  Thus, vibra- 
tion analysis which takes into account the viscoelastic nature of the 
materials should lead to more realistic design criteria. 



2. SUMMARY OF STATIC VISCOELASTIC BEHAVIOR OF UNIAXIALLY FRM 

The present summary is based on the results obtained in Refer- 
ence [3] . The static stress-strain relations of any anisotropic hetero- 
geneous viscoelastic material may be written in the form 

»ij (t) - cijk« (t T) dx (1) 

hi   (t) " hiU  (t T) 
d0k£(T) 

dx (2) 

where ö^J are average stresses, e-H are average strains, C^.. , are 
the effective relaxation moduli, and S-HJ^ are the effective creep com- 
pliances. The range of subscripts is 1, 2, 3, and repeated subscripts 
indicated summation over 1, 2, 3.  It should be borne in mind that be- 
cause of the dual nature of (1) and (2), the C^jid and Sijkn are relat- 
ed.  This relationship will be given later.  It is convenient to take 
the Laplace transform (LT) of (1) and (2). We define the LT, $(p) of a 
function (pit)  by 

<Hp) = e pt  0(0 dt. (3) 

By use of the convolution theorem and the rules for LT of derivatives, 
the LT of (1) and (2) assumes the form 

°ij (P) = P Ciiki  (P) hi(p) (4) 

hi   (p) = P Sijk^ (p) \i  (p) (5) 

•it A* 
'HkJi anc^ P ^iik£ matrices must be reciprocal, 
;n the effective relaxation moduli and the 

It is now seen that the p C] 
This is the relation between"' 
creep compliances. This relationship can be transformed to the time 
domain.  However, it then becomes very complicated and is not very use- 
ful in that form. 

It is convenient to define the following quantities; 

v*(p) p

 CiiU  (P) • (6) 

v*(p) p
 hiU  (p) • (7) 



Then (A) and (5) assume the form 

Ki^ -^i^K^ • (9) 

The relationships (8) and (9) bear a formal resemblance to 
elasticity stress-strain laws.  Therefore, the quantities Bi-jiC£ are 
called transform domain (TD) moduli, and the Jijk£ are called TD compli- 
ances. 

The results given so far apply for any anlsotropic viscoelas- 
tic material. A uniaxially fiber reinforced material is transversely 
Isotropie, with respect to an axis in fiber direction. As a consequence 
of this symmetry, it may be shown that f as in the elastic case, there 
are only five independent material functions (i.e., relaxation moduli or 
creep compliances). The relation (8) can then be simplified to the form 

°ll(p) = Bll(p) ^ll(P) + B12(p) ?22(p) + B12(p) ^33(p) '   (10) 

ä22(p) = B12(p) e11(p) + B22(p) e22(p) + B23(p) ^(p) ,   (11) 

533(p) = B12(p) ^ll(p) + B23(p) ^22(p) + B22(p) ^33(p) '   (12) 

512(p) - 2B*4(p) e12(p) , (13) 

513(p) = 2B*4(p) ?13(p) , (14) 

°23(p) " B22(p) " B23(p) e23(p) , (15) 

where x^ is fiber direction and x«, x_ are transverse directions 

(Figure 1) . A similar simplification holds for (9).  It is seen that 

(10) through (15) contain the five independent quantities B.., B 11» 12' 
B22, B _, and B ,. In view of (6), we may define the quantities C1 , 

C.2. Coo» C23, and CLL*  which are related to the former quantities by 

BÜm(p) " Pd (p)   ;   mn - 11, 22, 23, AA.      (16) 
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Figure 1.    Geometrical Model of the Material 



When (16) is Inserted Into (10) through (15) and Inverted to the time 

domain, we have 

ft 
511(t) 

'       de  (T)   ^      dt „(T)    ^ de -(T) 
Cii(t-T) -77~ + Ci2(t-T) -i— + Ci2(t-T) "TT- dT  , 

(17) 

rt 
ä22(t) 

*      d?ll(T)  .* ..  . d?22(T)   ^* ^  , de33(T) 
C12(t-T)  dx + C22(t-T)  dx + C23(t-T)  dx 

dx , 
(18) 

a23(t) - 

.      de  (x)   A      de ?(x)    Ä      de-.(x) 
C12(t-T> -57- + C23(t-T) -IT" + C22<t-T) -17- dx , 

(19) 

ö12(t) = 2 
i A      dE  (x) 

C44(t-T) -Tf— dT • (20) 

o13(t) = 2 
*      dE  (x) 

C44(t-T) -d7— dT • 
(21) 

ft r 
ä23(t) 

o ■- 
C22(t-x) - C23(t-x) 

de23(x) 

dx 
dx . (22) 

We can write similar relations for expressions of strains in terms of 
stresses.  Thus, for example, the analogue of (17) would be 

^(t) 
*      do .(x)    .      d599(x)   A      dö-.(x) 

sii(t"T) 47- + Si2(t-T) "IT- + Si2,t-T> 47- dx , 
(23) 

etc. 

The relations of strains  in terms of stresses involve  the five effective 
creep compliances S....,   S..»,  S-»,  S2_,  S.,, which are related to the 

five relaxation moduli. 

The above choice of effective relaxation moduli and creep com- 
pliances  is not very advantageous  from a physical point of view.    To 
bring out physically significant quantities,  it is necessary to use 
special states of average strain and average stress.     The  simplest sit- 
uations are presented by   (20),   (21),  and  (22),  which all correspond  to 
pure shears.    We adopt  the notation 



C44(t)  = Ga(t)   . (24) 

C*2(t)  - C*3(t)   =  2G*(t)   . (25) 

It  is then seen  that   (20)   and  (21)  are  the stress histories produced by 
shearing strain histories,  where the shears are in planes parallel to 
the fibers.     Thus,  G!,(t)   is  the effective axial  relaxation shear 
modulus. 

By similar reasoning, Gx(t)   is  the effective transverse  relax- 
ation shear modulus,   for  shear in planes normal to  the fibers. 

The  creep  compliances ga(t)  and gx(t)  correspond to  (24)  and 
(25).    The meaning  of  these  is brought  out by  the  stress-strain  rela- 
tions 

e12(t)  = y 8a(t-T) -M—dT   ' (26) 

lu{t)  =2 
* do     (T) 

*a(t-T) -ir-dT ' (27) 

e23(t)   =2 
;o 

A do9_(T) 
(28) 

Note that the Laplace transforms of  (20)   through  (22),   (24),   (25),  and 
(26)  through  (28)  yield the relations 

poakp; 

P g>) 

PG*(P) 
P 

1 

gT(p) 

(29) 

(30) 

We now turn to the more complicated relations, (17) through 
(19), between normal average stresses and strains. First, assume the 
average state of strain to be 

E22(t) = £33(0 = E(t) , 

e11(t) = e12(t) = ^(t) - ^23(0 = 0 . (31) 



This is an isotropic plane strain system, in planes normal to the fibers, 
Introducing (31) into (17) through (19), we have 

o22(t) = ö33(t) = ö(t) , (32) 

ä(t) = 2 <(t.T) 4^ dT, (33) 

2KT(t) = C22(t) + C23(t) . (34) 

Consequently, ^(t)  is called the effective plane strain relaxation bulk 
modulus. 

If we assume  the average state of stress  to be 

ö22(t)   = o33(t) = o(t)   , 

ö13(t)  - o12(t) = a73(t)  = 0  , 

(35) 

(36) 

and retain the plane strain condition 

e11(t) = 0  , (37) 

then it is easily shown that 

c22(t) = e33(t) = e(t) , 

tit)   = y kT(t-T) ~d7~ dT • 

(38) 

(39) 

where ^(t)  is the effective plane strain bulk creep  compliance.     It  is 
related to Kj by 

P^(P) 
pkT(p) 

(40) 

Now assume the mixed state of average stress and strain to be 

(41) 

(42) 

e11(t) = ?(t) , 

ö22(t) = ö33(t) = 0 , 

and all other average shear stresses and strains vanish. This situation 
corresponds to uniaxial straining in the fiber direction of a cylinder 



with free lateral surface.  Under these circumstances, the relation be- 
tween uniaxial average stresses and strains ö  (t) and L     (t)   is given 
by ii        ii 

ft Ä     
d~ii(T) 

Ea(t-T)-^— dT ' (43) 

o 
5ll(t) " 

where Ea(t) is the effective axial Young's relaxation modulus.  The in- 
version of the relation (43) is 

enit)   = 
t ^ dH  (T) 

e (t-T) -~  dx , (44) 
a di 

o 

where e (t) is the effective axial Young's creep compliance. The func- 
tions of Efl and e-, are related in the Lapla a transform domain by 

pE*(p) - -r;  • (45) 
pea(p) 

For discussion concerning the Poisson's effect associated with 
uniaxial stressing, see Reference [3]. 

We shall now proceed to discuss some explicit results obtained 
in Reference [3] for effective relaxation moduli and creep functions of 
viscoelastic fiber reinforced materials.  It is again recalled that all 
results are based on the composite cylinder assemblage model. 

It is assumed that the fibers are Isotropie elastic.  The fi- 
ber elastic moduli are given the subscript f. Various moduli to be used 
are 

xf 
Lam^ modulus, 

Gf 
Shear modulus, 

vf 
Poisson's ratio, 

Ef 
Young's modulus. 

f = Af ̂ f 
Plane strain bulk modulus. 

It is assumed that the matrix is Isotropie viscoelastic. In 
order to write the matrix stress-strain relations, let the stresses and 
strains first be split into Isotropie and deviatorie parts.  Thus, 

Gij = 06ij + Slj  ' 0 = 1/3 0kk ' (46) 



(ij= E6ij+ eij • L = 1/3 rkk 
(47) 

The most general vlscoelastlc stress-strain relations at any 
point in the matrix have the form 

o(t) = 1 
m      di 

(48) 

SlJ<
t> ■ 2 

ft de^(T) 

Gn\t~r)  --iJ  dr , 
m      dT 

o 
(49) 

e(t) = 1/3 I.(t-T) ^ill dT , 
m 

(50) 

eij(t) = 1/2 
/■t       d8^(T) 

J (t-t) —^  di . 
m       dr 

o 
(51) 

Here, ^(t) and Gm(t) are the matrix bulk and shear relaxation 
moduli, respectively, and Im(t) and Jm(t) are the matrix bulk and shear 
creep compliances, respectively.  The relaxation moduli and creep com- 
pliances are connected through their Laplace transforms, as in previous 
examples, by the relations 

pKm(p) 
plm(p) 

(52) 

pGm(p) 
pJm(p) 

(53) 

The matrix properties  as expressed by  the  functions ^(t), 
Gm(.t) >  Im(t),   and Jm(t)  may be regarded as  experimentally measured  informa- 
tion.     It is  also customary to approximate viscoelastic stress-strain 
relations by time differential operator relations which may be described 
by spring-dashpot models.     Although these operator  relations are  a  less 
satisfactory description  than the general relations   (48)   through  (51), 
they are used  for reasons  of mathematical convenience.     It should be 
noted  that (48)   through  (51)  include spring-dashpot model relations  as 
special cases. 

After Reference   [3],  we  introduce  for  reasons of convenience 
the  following notation: 

<m(p)   - PKm(p) (54) 



m(p)   =  pGjp)   . (55) 

The  Laplace  transform of  kT(t)   is  then given by  the  following 
expression: 

PVP) - <m(p) + i rm(p) + - + 1 - c 

. (p) - T r (p) <mW  +  3 ^ 

-1 
v c 

(56) 

where c is the fiber volume fraction. 

Frequently it is permissible to assume that a viscoelastlc 
material behaves elastically for Isotropie stress and that the visco- 
elastlc effect is confined to shear.  Then <m(p) in (56) is replaced by 
an elastic bulk modulus of the matrix, K|j.  Also, in practice, the fi- 
bers are usually very much stiffer than the matrix.  In such cases, the 
fibers may be assumed to be rigid.  This last simplification when used in 
(56) yields the simple result 

K^Cp) - ^(p) + i Gm(p) + [KJp) + | Gm(p)] ^ ,      (57) 

which may be directly inverted to the time domain and then becomes 

* 
Ot) = K (t) + ~ G(t)  + [K (t) + 4 GJ^l T T      m     Jm      m     Jml (58) 

The Laplace transform of G (t) is, according to Reference [3], 

G*(p) 
Gf(l + c) + pGm(p)(l - c) 

Gf(l - c) + pGm(p)(l + c) 
G (P) (59) 

If the fibers are assumed to be rigid relative to the matrix, 
(59) simplifies to 

GI(P) " Hi Gm(P) ' (60) 

which can be directly inverted  to  the  time domain to read 

* L + c 
G  (t)   = ~-^ G   (t) a 1 -  c    m (61) 

The Laplace transform of Ea(t) is given approximately, but 
with a high degree of accuracy, by 

10 



E*(p) = (1 - c) E (p) + - tLe   , (62) 
a in     p  r 

which, when inverted to the time domain, reads 

E*(t) = (1 - c) E (t) + c E. H(t) , (63) 
a m        t 

where II(t) is the Heaviside unit step function. 

Results for the viscoelastic Poisson's effect and the shear 
relaxation modulus G'p(t) are more complicated and will not be discussed 
here. For discussion, see Reference [3] and subsequent developments in 
this report. 

11 



3.  VIBRATIONS AND COMPLEX MODULI OF HOMOGENEOUS. 
ANISÜTROPIC VISCOELASTIC BODIES 

We shall begin with a discussion of the concept of complex 
moduli for anisotropic and homogeneous viscoelastic materials.  The dy- 
namic equations of such materials in the absence of body forces may be 
written in the following form: 

aii,i  ~-  P 
A. 
at 

(64) 

o1 (x,t) = 
9 £

k£(2i.
T) 

^jk^-0  Tx  dT (65) 

iJ ^i.J^J.^ 
(66) 

Here o^4, UJ_, and E^J are the local s 
strains, respectively; p is the densi 
moduli.  It is seen that there are 6 
strains (15 quantities in all).  Now 
equations (65) , and 6 equations (66) 
and strains can be easily eliminated 
tion of (66) into (65) and the result 
one obtains 3 equations for the three 
since the resulting equations are ver 
needed here. 

tresses, displacements, and small 
ty; and C^-i^ are the relaxation 
stresses, J displacements, and 6 
there are 3 equations (64), 6 
(15 equations in all) .  The stresses 
from (64) through (66) by substitu- 
ing expressions into (64).  Thus, 
u^.  This will not be done here 

y complicated and will not be 

With Equations (64) through (66) there must be associated 
boundary and initial conditions.  A general kind of such conditions for 
a body of volume V and surface S is given by 

ui(S,t) = ui on S (67) 

^(5,0 = T^ on Sn (68) 

ui(x,o) = f^x) , 

3ui 
—(x,o) = gi(x) . 

(69) 

(70) 

He re, T are tractions expressed by 

Ti = alJnJ * 
(71) 



and  on  the  surface  S,  n^ are  the  components  of  the  outward  unit  normal. 
The  displacements  are prescribed by   (67)   as   functions  of   time  and   surface 
coordinates on  the  part Su of  the  surface.     Similarly,   the   tractions  are 
prescribed  on  the  part  S^ of  the  surface;   of  course,   Su + S'j- =  S.     Con- 
ditions   (69)   and   (70)   express  the  fact   that   the displacements  u-^  and   the 

velocities -r— are  given at  initial  time  zero. 

We do not wish to look into the dynamic problem in such gener- 
ality. Instead, we consider the problem of steady-state vibrations. In 
this  case  the  displacements  have   the  form 

ui(x,t)   = u^x)   eUot  . (72) 

Here,  u^(x)   are   three  space-variable  functions,   i  =   y~l,   and w  is   the 
circular  frequency.     Insertion of   (72)   into   (66^ yields 

fij(x)   =  c^Cx)   e"1   , (73) 

where 

■IJ-I^.J^J.K' • <74) 

If we insert (73) into (65), we find that 

n  (x,t) = ck(, (x) IU 

o  ■J 

However, it should be noted that a physical approximation is 
involved in this substitution, for (65) is based on the Boltzmann su- 
perposition principle in time and is therefore limited to gentle time 
variations.  This leads us to the conclusion that (75) is valid for 
vibrations which are not too rapid.  Since 

oj = 2Tin , (76) 

where n  is  the  number of cycles  per unit   time,   the validity of   (75)  must 
be  limited to small frequency. 

It  is  convenient   to perform  the  change of  variable 

T»    -   t   -   T (7/) 

in   (75).     Then  the  equation  transforms  into 

lUit Oj. (x.O   =  Ej^Cx)   luj  e / W)r,"'I'd''•        (78) ;
 o        J 
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The time dependence on the right side of (78) is not a sinusoidal vibra- 
tion, for besides the e,wt factor the integral is dependent on t because 
of the upper limit of the integral. The assumptions are now made that t 
is so large that it can bo given infinite value in the upper limit of 
the integral and that thus integral then converges. Note that elli)t is 
not affected by making t large, because it is purely oscillatory for all 
times.     Then we find  that 

c^.Cx.t) = r
k£(x) iw e 

-IWT ' 

O 

cWT,)e     dx' •      (79) 

We introduce the notation 

iw /uk*^ e""T ^ ■ v^ • (80) 

Then (79) can be written in the form 

a  (x.t) = 5 (x) elwt , (81) 

It is seen that now the stress time variation is of the nature of a 
sinusoidal oscillation and that this happens only after a very long time 
has elapsed.  This is physically reasonable since a steady state of 
vibrations can be achieved only after sufficient time has elapsed for 
transient effects to die out. 

Because of the formal resemblance of (82) to an elasticity 
stress-strain relation, the quantities DijkÄ, ar-e called the complex mod- 
uli.     They may also be written in the form 

W1^= DiWw) + IDWW) • (83) 

R I where D    U(|   and D    ,      and  the real  and imaginary parts,   respectively,  of 
D 
ijkr 

If (81) and (72) are substituted into (6A), the exponential 
cancels out and we find that 

o    + pw2 ui = 0 . (84) 

It is now seen that the space-dependent parts of the stresses, displace- 
ments, and strains enter into Equations (7A), (82), and (84).  These are 
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precisely the equations governing the space-dependent parts of these 
quantities In the problem of elastic vibrations, with elastic moduli 
^Hk2, replaced by complex moduli Dijkß. 

We still have to discuss boundary and initial conditions for 
the space-dependent parts. For this purpose, (67) and (68) have to be 
taken In the oscillatory form 

u (S,t) - ::° (S) elwt   on S^  , (85) 

T^S.t) = T° (S) elü,t   on ST . (86) 

In view of (71), (72), and (73), the boundary conditions (85) and (86) 
assume the form 

üi(S) = u° , (87) 

T^S) = T° . (88) 

With these boundary conditions, the analogy with the elastic vibration 
problem is complete. Equations (74), (82), and (84) together with (87) 
and (88) define a unique solution to the problem. No initial conditions 
can be prescribed.  This is logical, for the assumed oscillatory nature 
of all variables prescribes the time variation. Furthermore, this time 
variation is steady state; it has, so to speak, "neither a beginning nor 
an end", and therefore initial conditions cannot be Imposed. 

In practice, boundary conditions of type (85) and (86) will be 
given either In the form 

u,(S,t) = u°(S) cos cot   on S  , (89) 
11 u 

Ti(S,t) = T°(S) cos ut   on S  , (90) 

or in the form 

u, (S,t) = u°(S) sin uit   on S  , (91) 
11 u 

T^S.t) = T°(S) sin ut   on ST . (92) 

It is recalled that 

cos wt = Re(e  ) , 

sin cot = Im(elwt) . (93) 
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Since the coefficients D^i^ in (92) are complex, the solution for u^ 
and 0^.1 will also be complex.  If the boundary conditions are of type 
(89) and (90), the real part of the solution is taken.  If the boundary 
conditions are of type (91) and (92), the imaginary part of the solution 
is taken. 

In view of the similarity to the elastic vibration problem, we 
can now formulate an analogy:  To solve a viscoelastic vibration prob- 
lem, take the solution, for the corresponding elastic vibration problem. 
In this solution replace the elastic moduli by the complex moduli.  The 
resulting solution has a real part which corresponds to boundary condi- 
ticns of type (89) and (90) and an imaginary part which corresponds to 
boundary conditions of type (91) and (92). 

In view of further developments, it is important to point out 
an interesting relation between the relaxation moduli and the complex 
moduli. Let the Laplace transforms of the relaxation moduli Cj-jk^t) be 
defined, as in Section 2, by 

CijU(P) = W0 ^^ dt- m) 
o      J 

Furthermore, the LT of (65) is by the convolution theorem 

^jQi.P) " P ^ijk£
(p) ck£(-,p) " (95) 

In analogy with the definition (6) for effective TD moduli, we define 
here the local TD moduli 

Bija
(P) = P aiju

(P) • (96) 

If we now compare (96) in terms of (94) with (80) , we note the very 
important relationship 

W^ = W^ • (97) 

That  is:    If the TD moduli are  known as functions of the LT variable p, 
then the aomplex moduli are given by replacement of p by IU. 
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4. EFFECTIVE COMPLEX MODULI OF 
UNIAXIALLY FIBER REINFORCED MATERIALS 

The extension of the theory which has been developed In Sec- 
tion 3, to composite bodies such as fiber reinforced materials is not a 
simple matter. To try to find a detailed solution of the dynamic equa- 
tions in fibers and matrix is an absolutely hopeless task, and any treat- 
ment must be limited to utilization of effective physical properties. 
The questions which arise now are:  is It permissible to use effective 
physical properties in the equations developed In Section 3, and will 
the results of the calculation yield the macroscopic dynamic behavior of 
viscoelastic fiber reinforced specimens? The answer to these questions 
is:  theoretically no but practically yes, if the frequencies of vibra- 
tion are not high. 

To discuss this statement, it should be remembered that calcu- 
lation of static effective properties such as effective relaxation 
moduli is based on statistically homogeneous states of stress and strain 
[3,4].  Such states of stress and strain occur in fiber reinforced mate- 
rials in static equilibrium for certain boundary conditions, which are 
called homogeneous boundary conditions [3].  However, in dynamic prob- 
lems, statistically homogeneous states of stress and strain apparently 
can not occur, because even for homogeneous bodies there does not exist 
a single case of a dynamic solution in which the states of stress or 
strain do not vary in space. 

On the other hand, experience teaches us that if continuum 
theory with effective properties is applied to dynamic problems, for 
moderate frequencies, the rerults predicted approximate quite well glob- 
al quantities such as beam deflections and resonant frequencies. The 
investigation of the limitations of this approximation is extremely 
difficult, and to date these limitations have not been explored. There- 
fore, it will be assumed in the present work that continuum theory with 
effective properties is meaningful for fiber reinforced composites. 

Sore justification for this may be provided by the following 
argument.  It may be imagined that a fiber reinforced specimen is di- 
vided into many representative volume elements (RVE).  Each RVE is a 
small part of the specimen, yet its cross section contains many fibers. 
The stresses and strains in such an element may be thought to be locally 
statistically homogeneous.  Then the relation between the average stress 
and strain in any element is given by (1) and (2), although, in contrast 
to the static case, the averages vary from one RVE to another. The 
equations of motion of an element then assume a form similar to (6A) 
through (66) with partial space derivatives replaced by increments of 
quantities over space increments, i.e., sides of cubic RVE.  The result- 
ing difference equations are approximated by the differential equations 
(64) through (66). 
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Adoption  of   the  fundamental assumptions discussed  above,   in 
conjunction with  the  results given  In  Section  2   for effective  relaxation 
moduli,   leads  directly  to  calculation of  the  effective complex moduli. 
The  transverse  Isotropy of a unlaxlally  fiber  reinforced material,  with 
respect  to  the x^  axis  In  fiber direction,   simplifies   (82)   in  the  same 
way  that   (8)   simplifies  to  the  form   (10)   through   (15),  as a  consequence 
of  the same  symmetry.     We  can therefore write  out   (82)   in  the  following 
form 

°11  = Dll Kl + D12  ^22 + Un  '33   ' (98) 

-a22 =  D*2  ~cn + D*2  e22 + D^  e^   , (99) 

533 = D12 ^11 + D23 '22 + D22 ^33   ' (100) 

512 =  2 D44 h2   • (101) 

ö13 =  2 D*4 c13   . (102) 

"23 '   (D22 - D23)   ^23   ' (103) 

Here, ö  and e  are the space-dependent parts of the local averages 

ö  and e.., which are of the oscillatory form 

5ij = ^ij^  elWt   ' (10A) 

lu = 'ij^ ela,t • (105) 

The Ü coefficients in (98) through (103) are the effective complex 
moduli.  In the D^j^ notation appearing in (82), they have the follow- 
ing meaning: 

Dll = Dllll ' (106) 

D12 ' D1122 = Dn33 '                 (107) 

Dn -  D2222 " D3333 '                 (108) 

D23 = D2233 ' (109) 
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D*4 = hlU "  D1313 ' (110) 

Denoting the left sides of (106) through (110) by Umn  and using the 
result (97), we have 

* 
D  (iw) - B  (ito) . (Ill) mn      mn 

The meaning of (111) is as follows:  To find the effective complex 
moduli D* , it is necessary to replace the variable p in the TD moduli 

jL     inn iHr 
B  by the variable iw. The Bran(p) are known on the basis of the com- 
posite cylinder assemblage model and have been discussed in Section 2. 
Thus, we have a straightforward method to give expressions for the 
effective complex moduli. 

It is also quite obvious that we can define physically mean- 
ingful complex moduli, such as axial and transverse complex shear moduli, 
axial and transverse complex Young's moduli, and a plane strain complex 
bulk modulus, in analogy to similar moduli defined in Section 2. We 
shall give tl.ese moduli the same notation as the static relaxation 
moduli with an added v above them. Thus, in analogy with (24), (25), 
and (34), 

G*(iui) = D*4(iui) , (112) 

2GT(iü)) = D22(iu)) - D23(iu)) , (113) 

2k£(iu) = D*2(iu)) + D23(ico) . (114) 

The complex axial Young's modulus is defined for states of 
stress and strain analogous to (41) and (42). We take a cylinder and 
apply average uniaxial oscillatory stress 

11 = ail e       ' (115) 

producing uniaxial oscillatory average strain 

£11 = £11 e ' (116) 

then 

o.^ =  E   (iw)   L        . (117) 
v* 

The explicit expressions of the effective complex moduli of 
the fiber reinforced mateiial will involve the complex moduli of the 
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fibers and the matrix.  Therefore, the meaning of these will be briefly 
discussed.  The fibers being assumed perfectly elastic and Isotropie, 
their complex moduli are simply their Isotropie elastic moduli.  The 
stress-strain relation for fiber material is 

"a - Vkk^ij + 2Gf 'ij • ^118) 

If o  and e.  have the oscillatory forms 

hi ■ hi e'"t • <12(» 

then insertion of   (119)   and   (120)   into   (118)   gives  simply 

0ij = Vkk6ij + 2Gf ^ij • (121) 

We see  that  the  elastic moduli  \f and Gf  are  trivially  the complex mod- 
uli.     The physical meaning of this is  that  in a perfectly elastic body 
oscillatory  stresses  and  strains  are  in phase. 

For  the viscoelastic matrix  the  situation is of  course differ- 
ent.     It has been described  in detail  for a general viscoelastic  aniso- 
tropic material  in Section 3,  and  the present   Isotropie material  is  a 
special  ease.     Going   through  the  same arguments which  lead  to  (82),  we 
find for  the present   Isotropie viscoelastic matrix a relation of  the 
form 

^ij   =\M  \^ii +  2^M   Cij   * (122) 

Here, O-JJ and eij are the time-independent parts of (119) and (120). 
Am(iLü) and fi^jduj) are the complex moduli of the matrix, and, since they 
are functions of iw, the stresses and strains are out of phase.  The 
complex moduli of the matrix must be determined by a vibration experi- 
ment, in which a specimen is subjected to oscillatory stresses and 
strains with various frequencies u.  Note that O-H and E^J are the 
amplitudes of the stress and strain variations.  The relation between 
these yields the complex moduli. 

In analogy to elasticity, various other related complex 
moduli can be defined; e.g., 

v    v      v 
G  (3A  + 2G ) 

E (lu) = — 7  (123) 
A  + G 
m   m 
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v v     2 w 

K (iu) = A  + ^r G 
m       m  J m 

(124) 

k (iw) = X + G m       mm 
(125) 

where (123) is the complex Young's modulus, (124) is the complex three- 
dimensional bulk modulus, and (125) is the complex plane strain bulk 
modulus. Generally, the complex Young's modulus is the easiest to mea- 
sure, and the complex shear modulus can also be determined experimen- 
tally. All the other related complex moduli can then be computed. 

We now proceed to construct detailed expressions for some of 
the effective complex moduli of a uniaxially fiber reinforced material 
by use of the method outlined. We start with the effective plane strain 
bulk modulus as given by (50) , and according to what has been said 
before, the transform variable p is replaced by iw everywhere.  We then 
have 

K!(IU)) = K du) + \  r (^) 
T      m      J m 

+ - 
k, - K (iw) - -r r (\UJ) 

m      im 

1 - c 

K du) + -r r (iw) m      J m 

-1 
c .(126) 

The  left side of   (56)   is  the  effective TD plane  strain bulk modulus. 
Therefore,  according  to   (96)   and  (97),   the  left  side  of   (126)   is  the 
effective plane strain complex modulus K^(IüJ).     Also,  ^(p)  and  rm(p)   in 
(56)  are TD bulk and  shear moduli,   respectively,  of  the matrix.     There- 
fore,  <m(iu))  and  rm(iu))   are  the complex bulk  and  shear moduli,   respec- 
tively,  of  the matrix;   i.e., 

K     (la))     -   K.    (lU)) (127) 

r (\w) = G du) 
m m 

(128) 

So   (126)  assumes  the  form 

KOuO  - K  (lui)  + \ G   (iw) 
1 m J    m 

+ • 1  -  c 

k    - K  (lü))   - \ G   üu))       K   Oco)  + 4 G(xu) 
r m J    m iu J    m 

-1 
c   .(129) 
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When the fibers are assumed to be rigid in comparison to the matrix, 
which is a very good approximation for a fiber reinforced material, we 
multiply (57) by p on both sides.  Taking into account (5A) and (55), 
we then have 

K!(IU)) = < du)) + \ r (ICü) + [K (IU)) + I r (ico)] T-^— .  (130) 
i       m      Jm       m      Jm     1-c 

Again the left side is K^(iw), and in view of (127) and (128), we can 
rewrite (130) in the form 

k!(iu) = K (iu) +^0 (iW) + (K (iw) +|G (ICü)] T-^— .   (131) 
T       m      Jm        m      Jm     1-c 

It is often convenient to split a complex modulus into its 
real and imaginary parts. Thus, we may write 

K.jdu) = K^Cu)) + i K^w) , (132) 

K (lui) = KR(w) + t K1^.)) , (133) 
m       m        m 

G (iu) = GR(a)) + i GI(u)) . (134) 
mm       m 

It is seen that (131) separates very simply into real and imaginary 
parts. Thus, 

K*R = KR + 4 GR + [KR + T GRJ r-2— . (135) T m       3m m       3ml-c 

*T TIT I4T r 
KT    = K+1GL+ [Ki + T GJ T^T • <136) T mJm m       Jml-c 

On the other hand, the separation of (129) into real and imaginary parts 
is quite complicated.  It is seen that KjR and K^p will be functions of 
all of the real and imaginary parts of K^iu) and Gm(\cü). 

VA We now turn to the effective axial shear modulus Ga(iw).  We 
multiply (59) on both sides by p.  Taking into account (55), the follow- 
ing expression is obtained: 

Gf(1+ C) + rm(p)(1 - C) 

P Ga(P) " G(l-c) + r (P)(l + c) 'm^ " <13^ 
f m 

Now p is again replaced by iu.  Then the left side of (137) becomes 
S*(IüJ), and in view of (128), (137) is rewritten as 
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G   (1 + c)  + G   (loOd  -   c) 
G   (luO   = -i 2  G   (ico)   . (138) 

a Gc(l - c)  + G   (IUJXI  + c)     In 

r m 

If  the  fibers  are assumed  to be  rigid,   then on  the basis  of 
(60), 

G*(ia))  = ~-£ G   do.)   . (139) a i  -  c    m 

This simple expression separates easily into real and imaginary parts. 
Writing 

6*(ia)) = G*R(W) + x   G*l(u)   , (140) 
a      a        a 

and using (134) , expression (139) can be rewritten as 

S*R = fJl^ G
R . (141) 

a   1 - c m 

v*I = l±_c GI . (1A2) 
a   1 - c m 

The shear loss angle 6 of the matrix is defined by 
m 

G1 

tan 6 = -rr . (143) 
m  GR 

m 

Similarly, an axial shear loss angle 5  can be defined for the composite 
by 

tan 6a ~ • (144) 
G 
a 

Inserting (141) and (142) into (144) and comparing with (143), we obtain 
the significant result 

* 
tan 6 = tan 6  . (145) am 

Thus,  the presence of rigid fibers does not affeat the loss angle. 

Discussion  of   the effective complex  axial Young's modulus  is 
in all respects  similar.     Multiplication of both  sides of   (62)   by p 
gives 

p  E*(p)   =  (1 - c)   p E   (p)  + c  E (146) 
a ID L 
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which  yields   for  the  complex modulus 

E   (iw)   =   (1  -  c)   E   (iui)  + c  Er   . (1A7) 
a m r 

Separation into real and imaginary parts is straightforward; i.e., 

E*R = (1 - c) ER + c E£ , (148) 
a m     r 

E*1 = (1 - c) E1 . (149) 
a m 
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5. LW' :iTUDINAL VIBRATIONS OF VISCOELASTIC 
FIBER REINFORCED ROD 

We consider now a typical vibration problem of a rod which is 
built in at one end and is subjected to sinusoidal time-variable force 
at the other end (Figure 2) .  The fibirs are in the direction of the 
axis of the rod. 

The appropriate end conditions are 

u (o,t) = 0 , (150) 

oa.t).E*|s lUt /iciN = o e   , (151) 
x=£ 

where u  (o,t)   is  the longitudinal displacement,  w is  the  frequency,  and 

ao  = /   , (152) 

where A is  the  cross-sectional area.     In accordance with  the  general 
discussion  in  Sections  3 and  4,  we  consider  first  the  associated  elastic 
problem.     The  governing differential equation is  the one-dimensional 
wave  equation 

2 2 

— = —— (153) 
2 2,2' u:>j; 

9x c     9t 

where * 

c     = ^  . (154) 

in which Ea is the effective axial Young's modulus, and p is the average 
density of the material.  We set 

u (x,t) = U(x) ela,t . (155) 

Substitution of   (155)   into   (153)   gives  the  ordinary  differen- 
tial  equation 

2 2 
^ + ~\1 = 0   . (156) 
dx c 

Substitution of   (155)   into   (150)   and   (151)   gives  the  end  conditions 

U(o)  = 0   , (157) 
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i Cüt 

Figure 2.    Longitudinal Vibrations of Viscoelastic Fiber 
Reinforced Rod. 

du(0     ^o 
dx     a „* (158) 

The solution of (156) with end conditions (157) and (158) is 

o c sin ( —) 
n/- \ o V. c/ U(x) ^ 

wE  cos 
a (11' 

(159) 

The  resonant  frequencies w     are  found by  letting 

cos n)' (160) 

so that U becomes unbounded.  Equation (160) in conjunction with (154) 
yields 

* 
(2n + l)n   a 

n     28      p  ' 

and  the  first resonant  frequency  is accordingly 

Wo " 2M 

(161) 

(162) 

According to the theory in Sections 3 and A, the modulus E in 
v* 

(159)   must  now be replaced  by  the  effective  complex modulus  E  (iw)  as 
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&(l6) given by (147), (148), and (149).  It is convenient to represent Ea 
in the usual form 

EVOO  =   |E*|   e16*  , (163) 
3 cl 

where 

|E*|   -  .   I   (E*R)2 + (E*1)2   , (164) 1   a v        a a 

E*1 

tan 6* - -fs- • (165) 
E R 

a 

In view of (148)  and  (149), 

rEai ■ J^A+ vfEf)2 + (v
m

E^2 • (166) 

vE1 

tan 6 rS-2  , (167) 
v E    + v.E. mm        f f 

where v and v^ are the volume fractions ot fibers and matrix, respec- 
tively. 

A typical example of a viscoelastic fiber reinforced material 
is an epoxy reinforced by glass or boron fibers. For such materials it 
is generally true that 

E E1 

~ > 25      -—    <    0.1 . (168) 
Em ER m 

The Enj in the left part of (168) is the atatia  Young's mod- 
ulus, which may be interpreted as E5(w) at zero frequency.  Experiments 
described in Reference [5] have shown that for an epoxy, E^ is a very 
slowly increasing function of w, it being necessary to increase the 
frequency from 10 to 105 in order to produce a 50% increase in E^. 
Therefore, the relative magnitude of Ef to EJJj may be taken as about the 
sa^e as that of Ef to Em. 

In view of (168) and the subsequent remarks, we can approx- 
imate (166) with great accuracy by 
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IE I = v ER + vrE, = E (w) . (169) 
'a'   mmff   a 

The expression (169) Is the effective elastic axial Young's 
modulus of a uniaxially fiber reinforced material with the matrix 
Young's modulus E^  replaced by E^(üü).  In the following it will be 
denoted by Ea(u)) .  It should be noted that because of (168) and the 
subsequent remarks, Ea(u) is very nearly equal to the static effective 
axial Young's modulus. 

It also follows from (167) and (168) that 

therefore 

In view of (163) and (169), 

tan 6* << 1 ; (170) 

tan 6* = 6* . (171) 

/ 

  * v*        * 1/2 ifi /2 
E (iw) - (E r' e  '  . (172) 
a       a 

Define c by 

From (154) and (172), 

|E*(iuO 
c =  —  . (173) 

i 6 / 2 /1 -, / \ c - c e     . (1/4) 

Now replacement of Ea by Ea(ia)) in (159) leads to 

o c   sin ( —r 1 u(x> = -£ hti • a75) 
uE (iw)  cos I —r ) 

We use the approximations (172) and (174) in (175) to obtain 

o c     *,_ sin — e      I 
- ,   x    o   -i(5 /2    V c / M?^ u(x)   —j  e       * ^ 7- , (176) 

E (w) (uiZ     -\6   /2\ 
a cos I— e      I 
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where ü(x) is the space-dependent part of u(x,t) in the viscoelastic 
vibration problem. 

By Euler's formula, 

*        *        * 
-16 II 6        5 IMI\ e      = cos — - \   sin —j , (1//; 

and since by (170) and (171) (5* is a very small angle, 

cos 6*/2 - 1 , (178) 

sin 6*/2 - 6*/2 . (179) 

Thus, 

e"16 /2 = 1 - l6*/2 , (180) 

Sin(^e-
l6*/2) =8in(^- ^) , (181) 

i*L^n\ = ccs(^_ ^1 (182) 
\ c       '     \ c    2c / 

Using the usual expression for the sin and cos of a complex 
number, we obtain 

, / OJX -16 /2\    .  /(JJX\   . /(ij6x\        r^xA  . , f oxS x\ /100N sin^— e   ' ) = sin ^—) cosh (-^-) - i cos ^—) sinh ^-^-), (183) 

\~l* ) = cos ^—J cosh (-^j + t sin ^—) sinh ^—/,(184) cos 

where  cosh and sinh  are  the  usual hyperbolic  functions.     It would  now be 

very desirable to show  that     jr     is a very small expression,  so that we 

could  use small argument  approximations  for  the hyperbolic  functions. 
Consider a typical glass  fiber reinforced epoxy.     Typical material prop- 
erties  are 

ER - 0.5 x 106 psi(*) m 

E    =  10 x 106 psi. 

(*)As stated before E^ is really a very slowly increasing function of 
frequency. The present constant value is merely an order of 
magnitude. 
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We  choose a  large matrix  loss angle,   tan  6     =0.1.     Then 
m 

E1 = 0.05 x 106 psi . 

We take as volume fractions 

v = 0.4       vr = 0.6 . 
m f 

Then from (148) and (167), 

E* = 6.2 x 106 psi 
a r 

tan 6  =0.005 

Take as typical density 

p = 3.0 (relative to water) 

Then it follows that 

c = 12,770 tt/sec. 

Let the length of the rod be 

I  = 10.0 ft. 

Then 

—=—- " 2.5 x 10  co . 
2c 

If 

2" 

we have with great accuracy 

^    _    0.05   , 

^[4r)^4t' (185) 

* 
cost *[~~)  =  1   • (186) 

Tnis corresponds  to 

w <  20,000   . 
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Since 

üJ = 2Tin   , 

the  frequency n satisfies 

n  <  3180 cycles/sec. 

This  is  a high  frequency  for which  the present  theory may not 
be valid anymore.     Thus,  it   is seen that   (185)   and   (186)  may be  safely 
assumed. 

Since o £ x <   i,  we have with better accuracy  than   (185)  and  (186) 

* * 
S x\      0)6  > 
2c   ' "     2c     ' 

. / iij6x\      CJ6  x /to-i\ sinh\-T—) = -^— , (187) 

cosh(^)= 1   . (188) 

Introducing  (185)   through   (188)  into  (183)   and   (18A) ,   then introducing 
the  resulting approximations and  (186)   into   (176), we  find  the  first 

order of magnitude  in —z— and —=— . 0 2c 2c 

o  c      sin [—) Ä 

Ü(x)   = -^ —|- (l-i6/2)   . (189) 
o)E     (o))  cos ( — ) 

a '   c ' 

Since 

u(x,t) = ü(x)  eT;Jt   , (190) 

we have from (189)  and  (190) 

o c sin (~) j, t 
u (x,t)  = —j —-  [cos  o)t + 6  /2  sin wt +  i(sin ut - 6  /2  cos  cot)] 

o)E    cos ( — ) /,„,x 
a v    c ' (191) 

Now if  the  forcing stress  (151)   has a cosine variation,   i.e., 

oU.t)  =  a     cos o)t = Re   (o     e1Wt)   , (192) 

then the displacement is the real part of (191); thus. 
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■M^r) 'i c  si., j   , 
o       v c ' * 

uc (x,t) = — —- (cos uit  + 6 /2 sin wt) .    (193) 
LOE  (ui) cos I — ) 

If 

o(e,t) =o sin ut = I (o elwt) , (194) 
o mo 

then the displacement is  the imaginary part of (191). Thus, 

a c  sin (-—] Ä 

us (x,t) = —— -—- (sin uit - 6 /2 cos wt) .    (195) 
CJE  (u) cos [ — i 

a       V c ' 

From the elastic analysis at the beginning of this section, 
it is seen that the elastic solutions corresponding to (192), (193), 
and (194), (195) are, respectively, 

Ml) 
E  (w) cos — 
a       v c / 

o c  s:  ^ 
Uc  (X,t) = ——-   ;■■ ..\  ens   t  , (V-X.) 

o c  sin ^ — ] 
u  (x,t) 5p -f- sin out . (197) 

wE  (w) COS  — a       \   c  i 

It is thus seen that in the viscoelaetia vibration problem, 
there are out-of-phase aomponents which are proportional to 6*. 

It is instructive to represent (193) and (195) in different 
forms.  It is seen that these expressions may be rewritten as 

ooc ll + 6*
2/4 sin(^ 

cos (cot - C) ,      (198) 
*  ,  , | UJX, \ 

E  (to)    cos \ — 1 
a \   c  I 

s 
CO 

o c 1 + 6^/4 sin f —\ 
u  (x,t) = 0 N . ^—f- sin (cot - $) ,      (199) 

Ea (co)    cos^) 
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where 

tan I  = ~  . (200) 

Comparison of (198) and (199) with the elastic results (196) 
and (197) shows that the amplitude of the vlscoelastic vibrations is 

increased by the factor /l + 6  /A and that there is a phase lag 4- whose 
magnitude is given by (200),  Since, as has been shown before, 6  is 
very small for a typical fiber reinforced material, the amplitudes are 
practically the same as in elastic vibrations, and also the phase lag 
can be safely ignored.  It is also seen that because of the occurrence 
of cos (uJ/c) in the denominators in (198) and (199), the resonant 
frequencies are the same as for the elastic vibrations and are thus 
given by (161) and (162) . 

The very important aonolusion is that for all practical pur- 
poses,   the viscoelastic effect can be  ignored in  the problem of longi- 
tudinal vibrations of filer reinforced rods made of typical fiber 
reinforced materials. 

It should be noted that this phenomenon is due to the fact 
that the fibers are very much stiffer than the matrix and that the 
matrix loss angle is small.  In cases where these conditionp aro not 
fulfilled, the foregoing conclusions may become invalid, and it may be 
necessary to carry through the analysis without the approximations 
which were introduced here.  However, such cases do not seem to be of 
interest for fiber ri inforced materials. 
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6. TQRSIQNAL VIBRATIONS OF VISCOELASTIC 
FIBER REINFORCED CYLINDER 

As a second typical problem, we consider a fiber reinforced 
cylinder which Is built In at one end and is subjected to a sinusoidal 
torque, in time, at the other end.  Again we consider first the associ- 
ated elastic problem. 

The basic variable is the angle of twist 6(x,t).  The govern- 
ing differential equition for 0 is 

i_2i 
dx
2 

2 
_i jre 
2 ^2 ' c  dt 

(201) 

where 

„  G C 
2   a 

c = 
P I ' 

(202) 

(see, e.g.. Reference [6]). Ga is the effective axial shear modulus, 
and C is a number which depends upon the geometry of the cross section. 
In terms of the Saint Venant torsion function ^(yiZ)» C is given by 

(y + z  + y H - z |^) dydz . 
(A) 

the integral being taken over the cross section, which is referred to a 
y,z coordinate system with origin at the centrold (see, e.g., [7]). 
Note that G0 C is the torsional rigidity of the cylinder. a 

Furthermore, p is the density of the material and I is the 
polar moment of inertia of the section. 

The torque M(x,t) is given by 

M(x,t) = G C 1^- . 
'     a  9x 

(203) 

The end conditions  are 

e(o,t)  = 0   , (204) 

*        39 MU.t).Gac|f 
x=£ 

= M    e 
o 

loot (205) 
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In (205), M0 is the amplitude of the sinusoidal forcing torque and u is 
the frequency. 

We seek a solution of the form 

i(x,t) =r>(x) e iwt (206) 

Introduction of (206) into (201), (204), and (205) yields the ordinary 
differential equation 

^-f -H^= 0 
dx    c 

(207) 

and  the end conditions 

dtf 
dx 

^(o)   = 0   , 

M 

(208) 

(209) 
x-£ G    C 

a 

The solution of (207), subject to (208) and (209), is 

^ (x) 
cMo sin(^ 

.G*Cc0s(^ ' a      s c ' 

(210) 

therefore, the complete solution is 

cM sin ( ^] 
e(x,t) =—J L^i.^t 

u G cos 
a (11 

(211) 

The condition of resonance is obtained from 

cos (^ -». (212) 

then 

ui      2n + 1 
c 2 (213) 

and from  (202)   and  (213), 
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"n S 2       e    J   p  I  ' 
(214) 

with  first  resonant  frequency 

O 2 k 

* 
G     L 

a 

i   I 
(215) 

We now consider the case when the nutrix is viscoelastic. 
Then the space-dependent part of the angle 0(x,t) is denoted by 0(x) and 
is found by replacement of G in (210) by the effective complex axial 
shear modulus Qa.    An expression for Ga has been given before for elas- -  ua. An expression for G  , ,_,  .. .,,• 
tic fibers and viscoelastic matrix (138).  We shall here use the simpli- 
fied form (139) for rigid fibers in order to simplify the analysis. 
Since in a typical fiber reinforced material with epoxy matrix the ratio 
of fiber to matrix stiffness is about 25, at least, this is in general 
an excellent approximation.  In order to avoid confusion with propaga- 
tion velocity c, we shall denote the fiber volume fraction by Vf.  Then 
we have 

1 + Vf v 
G (lu) = T  G (iw) 
a      1 - v^ m 

(216) 

v R      I 
G (iw) = G  + i G  , m       mm (217) 

* m 
tan 6 = tan 6  = tan 6 = —— . 

GR 
m 

(218) 

Expression (217) can be rewritten with the help of (218) in 
the form 

£ (loj) = G 
16 

m 
(219) 

where 

G =  l(GR)2 + (G1)2  = fc1  1 + tan2 6 
^i  m      m     J m 

Hence, from (216) to (220), 

(220) 
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1 + v. 
G   (iw)  = -,  G     J 1 +  tan  6 e       . (221) 

a 1 - vf    m 

We  recall  that  the elastic  effective axial  shear modulus  Ga  is 
given,   in  the  case  of  the  rigid   fibers,   by 

*       1 + vf 
G     = •: ~ G (222) 

a       1  - v       m 

(see References [1 and 3]), where Gm is the elastic shear modulus of the 
matrix. 

We adopt the notation 

1 + vf     R * v  GK  ((.)   =  G     (u)   , (223) 
1  - v      m a 

in an analogy  to   the  notation used  in   (169).     Then  from   (221)   and   (223), 

v*       *      /      2  16 
G (iw) = G  (üJ)  Jl + tan 6 e (224) 
a       a 

v * 
Denoting c as a function of Ga(ia)) by c, we have from (202) and (22A) , 

* 
T  G  (w) C  | *-  x 

c    =  ;— Jl + tan 6 e  . (225) 
P I 

Therefore, from (202) and (225), 

c = c(l + tan
2 6)1/4 el6/2 . (226) 

Replacing c by (226) and G* by (224) in (210), we obtain 

c M        -i6/2     sin[— (1 + tan 6)   e    x] 
o       e c 

8 (x) = ~TT7T T7Z     2 77174      TTT 2J,-i/4 -i6/2n1 • (227) 
u) G  (to) C (1 + tan 6)   cos[- (1 + tan 6)   e    i] 

a c 

Since for the usual viscoelastic materials in general 

tan 6 < 0.1 , 

2 
it is seen that tan ö can be safely ignored in comparison to 1.  Thus, 
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8(x) 
c M . .. sin   (— e x) 

o           -i6/2             c _  e   

u)  G      (oj)   C 
a 

,cu    -i6/2.v cos   (— e O 
c 

(228) 

There is  no difficulty in  finding  the  real and  imaginary parts 
of   (228).     The results,   however, are very clumsy,   and we  shall  therefore 
continue   the calculation  for x = 9.. 

We have  from  (228), 

c M 
6(0   - (cos  6/2  -   i   sin  6/2) 

sin[— (cos 6/2 -  \   sin 6/2)] 

u G  (w) C 
a 

cos[— (cos 6/2 - i sin 6/2)] 

(229) 

•We use the notation 

— cos 6/2 = a , 
c 

(ßi 
sin 6/2 = ß 

(a) 

(b) 

(230) 

Using the usual expressions for the sine and cosine of complex quanti- 
ties (see, e.g.. Reference [8]), we find 

c M 
0(2) = (cos 6/2 - i sin 6/2) 

w G  (Cü) C 
a 

sin(2a) - i slnh(2ß) 
cos(2c() + cosh(2ß) 

(231) 

Thus, the angle of twist at x = £ is given by 

i(£,t) = 6(0 e 
iwt 

c M 
o sin(2a) - i sinh(2ß)   i((Jjt-6/2) 

*  -r co^(2a) + cosh(2ß) 
a 

(232) 

T.f (205) has the form 

H(li,t)   = M cos wt , (233) 

then 

(£,t) = Re e(£) e 
lUlt (234) 
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If (205) has the form 

M(£,t) = M  sin wt , (235) 

then 

ö U,t) - Im 
s 

6(£) 
lut (236) 

It follows from (234) and (232) that 

c M 
U.t) 

uG ((JJ)C 
a 

o sin(2a) cos (ait - 6/2) +  sinh(2ß) sln(cot 
cos(2a) + cosh(2ß) 

6/2) 
(237) 

From (236) and (232), 

c M 
„ .„  v      o  sin(2a) sin (cot - 5/2) - slnh(23) C08(uit - 6/2)  /01QX 6 (^»t) = —T ; z  r 7 , /-„xr .(/JO; 
s        „*/ N„ cos(2oO + cosh(2ß) 

üJG (w)C 
a 

It is convenient to represent (237) and (238) in different forms.  It 
is easily seen that (237) can be rearranged as 

P (c   M   C Mo   isin2(2a) + Sinh
2(2ß) 

cU,W    *, sr      cos(2a) + cosh(2e) 
wG (a))C 

a 

cos (wt - 6/2-1/;) ,  (239) 

where 

tan IJJ = 
sinh(2ß) 
sin(2a)  ' 

(240) 

It is thus seen that (239) is a cosine vibration with a phase leg rela- 
tive to moment input (233).  When (234) is written in the form 

.U.t) = Amp [Gc] cos(u)t - w ) , (241) 

it  is  seen  that  the amplitude  is  given by 

c M          I         2 2 
m  i               o      j  sin  (2a) ± sinh   (23) Amp   [ej   = —j   —  -^_- 

wG (ok))C 
a 

cos(2a) + cosh(2ß) 
(242) 

and that the phase lag is given by 
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tan 
slnh(2t-) 
sin(2a) 

+ 6/2 . (243) 

Similarly, (238) can be written in the form 

ü u 
s 

c M    I 2 2 
e\      o   ysin (2a) + sinh (23)    ,     .    .   .   . 
'^  "77^7   cos(2a) + cosh(2ß)   

Sin(u)t " 6/2 " ^ ' (244) 

where i|) is again given by (240). Thus, we can also here use the 
representation 

Ö U,t) = Amp [6 ] sin(a)t -vi) , 
s s 

where Amp [6 ] is given by (242) and' is given by (243). 

Figure 3 shows a plot of Amp [ec] as a function of input fre- 
quency for a viscoelastic fiber reinforced circular cylinder. Also 
shown is the amplitude variation with w for the elastic vibrations, with 
Gjn(e) taken as the matrix elastic shear modulus. 

The data used are as follows: 

i  = 5.0 ft.        length of cylinder 

d = 4.0 in.        diameter of section 

p = 3.0 density relative to water 

GR (w) = GR(0) [1 + T login u], 1 < w < 104 sec"1 
m      m       A   it) - 

GR (0) = 0.5 x 106 psi 
n 

tan 6 =0.1 
m 

v = 0.4     vr = 0.6. m f 

It is seen that in the neighborhood of the first elastic resonant fre- 
quency, the viscoelastic amplitude has a peak which is about five times 
that of the Initial amplitude. The next peak which comes behind the 
second elastic resonant frequency is already very damped out.  The damp- 
ing increases further in the neighborhood of higher elastic resonant 
frequencies. 

It is thus seen that the viscoelastic nature of the matrix has 
a very beneficial effect on torsional vibrations. 
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7. TRANSVERSE VIBRATIONS OF UNIAXIALLY FIBER REINFORCED BEAM 

We now consider the problem of the forced vibrations of a beam 
of constant cross section. Let x be measured along the beam axis, which 
is also the direction of fiber reinforcement. The equation of motion of 
an elastic fiber reinforced beam is 

A    2 
2 9 w  3 w   1  ,  - /O/CN 

a —r +  r = — p(x,t) , (246) 
:)x      at  CA 

* 
2  El 

a = ^ . (247) 

where w is the transverse deflection, p is the average density, p is the 
load per unit length on the beam as a function of position and time, I 
is the moment of inertia ly, and A is the cross-sectional area. 

We consider the important case of a simply supported beam 
which is loaded at x = f. by the concentrated force P0e

lw , Figure 4. 
For this case the boundary conditions are 

2 2 
w(o,t) = ^—  (o,t) = w(£,t) = ~  (£,t) = 0 ,        (248) 

9x ?x 

and the loading function p(x,t) assumes the form 

p(x,t) = Po6 (x-O ela)t , (249) 

where 6 is the delta function. 

The solution to the problem described by (246) through (249) 
is well known and is given by 

2P e    <*> sin(a O sin(a x) 
wE(x,t)=-2  I     ^ 5-2-, (250) 

E K  n=l a 

where 

-TI 
Un = l~  ' 

(251) 
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poe iu,t 

-*~    X 

A rW 
i 

Figure 4.    Lateral Vibrations of Viscoelastic Fiber 
Reinforced Beam. 

9   / E ! 
U) = ct —-— . 
n   n pA 

We rewrite the solution (250) in the form 

(252) 

w (x,t) = e    2, w (x) » 
n=l 

(253) 

where 

_,     2P  sin(a O   sin(a x) 
WE(X) .  o n ^n 

E*U kl,       J\ 
(254) 

In view of (252), Equation (254) can be written as 

_,     2P sin(a O  sin(a x) E, .    o     n       n wn(x) =~~7^—r— E la  - a) pA an 
(255) 

The complex viscoelastic solution then has tre form 

VI: iwt w (x) = e    2, w (x) , 
n=l 

(256) 

43 



where 

_.   sln(a O  sln(a x) 
Ä (x)  . 1L S S_ WnW       £      v* 4        2 

E   (i(ij)Ia     - cj p 
an 

(257) 

In view of (147)  through  (149), 

v*- *R T 
a mm ft mm (258) 

We rewrite (258) In the form 

E  (\a))  - E  (u))(l + i  tan 6  )   , (259) 

where Ea Is given by (169)  and also by (148), and tan 6* Is given by 
(167).    Substitution of (259)  into (257) and rearrangement yields 

Vx) - —. * 
2P        E*(a))Ia4 -(A   -  \E*(u))IaA tan ö'  o       a  n an 

(E (a))IaA - (D2p)2 +  (E*(ü))Ia4 tan 6") 
an an 

T—r- sin  (a O sin (a x)   . 
"x ^ n n 

(260) 

We shall adopt the notation 

n 
4 V^1 

11
     J— n     pA (261) 

which is analogous to (252) . Note that the right side of (261) is a 
function of u because of the presence of Ea(co). However, because of  the 
very slow variation of E*(u) with u (see Section 5), (261) is numerical- 
ly quite close to the value of (252). With the notation (261), Equation 
(260) can be rewritten in the form 

2P 
wn(x) - 

a    a 
n 

1    ^       .. i 1 - —r - \ tan 6 

 n  

1 - 4^ + tan2 6* 

sln(a x) sin(a C) .  (262) 
n      n 

It follows that 
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lUt  -   /  X e   wn(x) 
*     4 

E (uOK a 
a     n 

2P 
 c^ 

fl - 412 + tan2 6* 
ön/ 

U) (1 jl cos ait + tan 6 sin wt + 1 

ni 

(1 rl sin (ut - tan 6 cos wt .11 

• sin (a x) sin (a O   .     (263) 
n       n 

This completely defines the dynamic vlacoelastlc solution (236). Thus, 
If the applied force Is P0 cos ul, 

VE,    tv w^  (x,t) - -y 

1 r I cos tot + tan 6    sin ait 
2P »    I        i 

I   -J ^ =  8ln(a O  8ln(a x). — • y i —• n n 
E  (u))I£ n-1 

a fl -^W tan2 6* 

(264) 

If the applied force Is P    sin ait, we have 

ws  (x,t) 
2P 

'1 j' - tan 6    sin cot 

E  (w)H n-1 
a 

n/ 

2    * 
tan    6 

sln(a O  sln(a x). 
n n 

(265) 

Defining 

u 
(1 2    8ln(a

nO  8ln(anx) 

A"    I 
n-1        4 a n [1  - ^1   f- can2 6* 

u 

(266) 
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• 

00    tan 6    sln(a O  sln(u x) 
B -   y    n    n 

n-1  4 
a 
n 

Equations (264) and (265) may be written In the form 

VE 
w (x,t) - Amp wc I cos (ut - v? ) , 

(267) 

(268) 

w8 (x,t) - Amp 
VE 

sin (wt - ^) , (269) 

where 

.   r VE]   .   r VEI   .   r VEI 
Amp w   "  Amp w   ■ Amp w 

2P 

E*(a))K 
a 

[A2 + B2]1/2  (270) 

and 

v, - tan"1 | . (271) 

Since Ö Is a very small angle, It Is reasonable to neglect 
tan2 6* In the denominator of (271), unless a) Is almost equal to ün. 
Barring this eventuality. If one remembers that Ea(a)) Is a very slowly 
Increasing function of w. It appears that the amplitude Is very nearly 
that of elastic vibrations with Young's modulus £^(0). Also, if u Is 
not close to d)n, the phase lag defined by (271) is very small and can be 
neglected. 

It is seen that the denominator in (270) cannot vanish, and 
thus there Is  no resonance in theory. Yet the denominator can still 
become very »mall. Consider the case 

uk * 
(272) 

Since ün as defined by (261) Involves E*(u)), it is seen that (272) is an 
equation for u which must be solved. Let a solution of (272) be denoted 
by uP. Then (266) and (267) assume the form 
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A- I 
n-1 

|l 2 I 8in(onC) flln(anx) 

o\2 

1 —j  + tan 6 

» tan 6 sin (»C) sin (a x)  8in(o, O 8ln(a.x) 

n-1 i 

n^k a 

ov2 
2 * 

+ tan « 

4    * 
a, tan 6 
k 

(a) 

(b) (273) 

It Is seen that for small k, i.e., the first solutions of (272), the 
last term in (273b) will become very large; thus, we have a pseudo- 
resonance condition. 

gives 
It is also seen that when (272) Is fulfilled. Equation (267) 

tan ^ -*■ oo, \f m - t (274) 

• 

which implies a phase reversal of the vibration, since then 

cos (ut -w) - sin wt 

sin (ut - y») - - cos ut . (275) 

In order to obtain an idea of the comparison of elastic and 
viscoelastic vibrations,  the deflection at the center of a beam loaded 
at its center has been calculated numerically.    In that case. 

^ - x - Y ; (276) 

therefore. 

sln(anO sinCo^x) - sin2 (f)    -    | 1    n    odd 
o    n   even (277) 

Thus for that case. 

47 



A - 

2 

u 
n 

n-1,3,5 4 
a 
n 

(278) 

B - tan 6 x 
n-1,3,5 4 

n 

(279) 

The amplitude (279) has been calculated numerically as a func- 
tion of in  for a beam of length £ ■ 50 ft and section 2 in. x 4 in. The 
material characteristics chosen were as follows: 

p - 3.0 density relative to water 

tan 6 - 0.1 
m 

J - 27 x 10° psi 

Em <U)) " Em (o) [1 + i ^«lO"1, ! ^ ^ < lo4 <8ec"1> 

ER (o) - 1.35 x 106 psi 

v - 0.4 
m 

0.6. 

The variation of the amplitude with w is shown in Figure 5 for 
elastic vibrations using E (o) as elastic modulus and for vlscoelastic 
vibrations. Elastic analysis is shown by a full curve, and vlscoelastic 
analysis is shown by circles. It is seen that for the first elastic 
resonant frequency resonance is attained for the vlscoelastic vibration 
also. At second elastic resonant frequency, there is already a small 
deviation between the two, but still the vlscoelastic amplitude is very 

large. 
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8. SAMPLE CALCULATIONS OF VISCOELASTIC PROPERTIES 

Results for static vlscoelastlc properties of uniaxlally fiber 
reinforced materials have been given In Section 2. It has been seen 
that considerable simplification Is achieved when It Is assumed that the 
fibers are perfectly rigid relative to the matrix. However, this as- 
sumption Is not permissible In the calculation of Ea(t); but fortunately, 
the assumption Is not needed here, since (63) Is an explicit, simple 
expression Incorporating finite elastic stiffness of fibers. 

In order to obtain an Idea of the approximation Involved In 
the assumption of rigid fibers, we perform a sample calculation of the 
axial shear relaxation modulus Gq(t) for the case of elastic fibers. 
The Laplace transform of G*(t) Is given by (59). To be specific. It Is 
assumed that the matrix behaves according to tha simple Maxwell model. 
Thus, the deviation matrix stress-strain relation has the form 

;   .fii + lU. 
11  2G   2n  ' J    m    m 

(280) 

wheie Gm Is the elastic (Initial) shear modulus, nm Is a viscosity coef- 
ficient, and a dot Indicates time derivative.  The theory given in Ref- 
erence [3]  includes the use of time differential operator stress-strain 
relations of phases, such as (280), for computation of effective vlsco- 
elastlc properties. It is also possible *-o tic in (280) directly with a 
more general stress-strain relation of type (49). To see this, take the 
LT of (49), which is 

81:)(P) - 2p Gm(p) elj(p) . (281) 

Now the LT of (280) is 

P 8</P)  
8^0)  sn<P) 

pe1J(p) - e^o) - -^H ■£ + -^  • 2G m 2G m 2n 
(282) 

Evidently 

8  (O) 
eiJ (0) ' iG u 

(283) 

which expresses the initial elastic response.  Taking into account (283) 
and (282) in (281) and rearranging yields 

2pn m 
V^'l + Tp-ij e,4(p) . (284) 

m* 
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where 

T --S 
m  G 

m 

is the relaxation time of the Maxwell matrix. 
(281) shows that 

PGm(P) " TTTT ' 
mr 

Now (286) is substituted into (59), yielding 

(285) 

Comparison of  (284) with 

(286) 

Ga  (p) 
m Gf(l+c) (1+Tmp) + nm(l-c)p 

G-(l-c)   (1+T p) + n  (l-c)p  *   1 + T p  • r or. in 
(287) 

Equation (287)  is easily inverted into the time domain by the method of 
partial fractions.    The final result is 

G*(t)           * 4c 
1+c r    *(i-c) 

G            (Kl-c)  + 1+c  """  \     *(l-c) + 1+c m                                             *• 

where 

y+i^-p[-f] • (288) 

m 
(289) 

When the fibers are rigid,  ^ 

G!(t) a 

and then (288)  reduces to 

i+c     r 11 (290) 

Since Gm exp |- ^—| is the relaxation modulus of the Maxwell matrix, 

(290) is in accordance with the general result (60). 
["ti 

In order to assess the numerical importance of ^,   (288)  has 
been plotted in Figure 6 as a function of t/Tm for several values of 
$,  assuming that c - 0.5.    It is seen that for $ ^ 25, which is a 
typical value for fiber reinforced materials,  the rigid fiber assumption 
gives a good approximation.    Therefore,  this  Idealization is considered 
to be justified. 

I 
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Sample calculations of viscoelastic properties of fiber rein- 
forced material» have been performed for a polyisobutylene matrix. The 
matrix properties have been taken from Tobolsky and Castifl [10]. Ini- 
tial elastic moduli are 

K (o) - 2.32 x 105 pai, G (o) - 1.85 x 105 psl. 

It is assumed that the matrix is elastic in dilatation. Plots of the 
shear relaxation modulus Gm(t) and the shear creep compliance g^t) are 
shown in Figures 7 and 8. With the assumption of rigid fibers, the 
axial shear relaxation modulus G£(t) is given by (61). Plots of Ga(t) 
for various c are shown in Figure 9. The axial shear creep compliance 
is simply given by 

*>> " £ 8m(t> ' (291) 

For derivation of (291), see Reference [3]. Equation (291) is plotted 
for various c in Figure 10. 

The plane strain bulk relaxation modulus is given by (58).  In 
the present case, it is assumed that the matrix is elastic in dilata- 
tion. 

Therefore, 

K (t) - K H(t) , 
m      m (292) 

where H(t) is the Heaviside unit step function. Then (58) assumes the 
form 

K 
Vt)  - i^ H(t) + i^ Gn(t) 

A plot of (293)  for various c is shown in i'lgure 11. 

(293) 

The situation with respect to the plane strain bulk compliance 
kT(t)  is, however, not so simple.    The relationship between K| and kf is 
expressed in terms of their Laplace transforms by (40).    Wien this 
expression is written in the form 

^(p) k^p) - ij , 
P 

(29A) 

inversion by use of the convolution theorem for Laplace transforms leads 
to 
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K^t-T)    kT(T)   dT    -    t (295) 

Equation  (295)  is a Volterra integral equation with kernel Kj(t-T) and 
unknown  function k$.     Introduction of  (293)   into  (295)  yields 

rt 
m 

1-c H(t-T)    k*(T)    dT   + \±^ Gm(t-T)    kT(T)    dT    -   t (296) 

Now 

H(t-T)  -  1 

H(t-T)   -   o 

t>T 

t>T 

(a) 

(b) (297,> 

It is seen that  (297b)  is  impossible  since o<T<t.     Therefore,  H(t-T)   in 
(296)   is  simply replaced by unity.     Then (296)   takes the  form 

ft  rK i   .   o 
J!L+ l±JcG  (t.T) 

^1-c      3(l-c)    m kT(,)  dx - t   . (298) 

The  integral equation  (298)  has been solved numerically by  the 
method of Lee and Rogers  [11] and by the use of the given experimental 
information 1^ and Gm(t) 
in Figure  12. 

Plots of kj for various values of c are shown 

The Young's  relaxation modulus Ea(t)  is given by  the simple 
expression  (63).    Here it  is not permissible  to assume rigid  fibers, 
since  the  (63) would become  infinite.    While   (63)   is easily evaluated, 
there is  little point  in doing this;   for it has been shown  in  (63)  that 
for the usual stiff  fibers which are encountered  in practice,  the time 
dependence of  (63) is negligible.    A very good approximation for (63)   is 
simply 

* % 
E    - cE, - constant,   t>o  . 

a f (299) 

Similarly,   the Young's creep compliance ea(f)   -'.s very well approximated 
by the  inverse of (299).    Thus, 

* %    1 
''a " cE, 

constant,   t>o   . (300) 

Another Important vlscoelastlc modulus which has not been dis- 
cussed in detail, so far, is Gj(t) .  The definition of this modulus is 
given by (23) and (25). Unfortunately, the composite cylinder assemblage 
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analysis performed In Reference [1] has not yielded a closed result for 
the corresponding Gj** in the elastic case. Only lower and upper bounds 
have been obtained.  The lower bound for Gj    Is given by 

' 

G*E  = GE GT(-) " Gm 
1 + 

m kE + 2GE 
____ ^  m m_ 

GE - GE  2(kE + GE) f   m     mm 
m (301) 

where superscripts E denote elastic moduli; see Reference [2], page 19. 
The upper bound for Gj is very complicated and will not be reproduced 
here.  In the event that the bounds are close, the elastic-viscoelastlc 
correspondence principle for effective properties, as expounded in Ref- 
erence [3], may be used to convert (301) into the approximate Laplace 
transform, GjCp) of G^(t) for the viscoelastic fiber reinforced mate- 
rial.  (Strictly speaking, this is not legal).  Considerable simplifi- 
cation is achieved if the fibers are taken to be rigid and the matrix 
is taken to be incompressible.  Then it is easily shown that (301) in 
transform domain reduces to (60) . We thus obtain the approximation 

G*(t) ^"TTG (t) - G*(t) 
T     1-c m      a 

(302) 

It is to be expected that for rigid fibers and a nearly Incompressible 
matrix such as a polymer, (302) will provide a fair approximation. 

We now turn to the computation of effective complex moduli. 
Again, a polylsobutylene matrix is chosen, and the fibers are assumed to 
be rigid. The matrix is again assumed to be elastic in dilatation. 
This implies that the complex bulk modulus (133) of the matrix satisfies 
the conditions 

ro 
K constant,  (a) 

K  ^ m 
(b) (303) 

The complex shear modulus Gm (iu) values have again been taken 
from Reference [10].  A plot of G{* (U;) is shown in Figure 15  (curve c » 

o), and a plot of G^(co) is g-1 'en in Figure 16  (curve c - o), both plots 
being vs. log u. 

KjR, K^1, G*R, G*1, EjR, and E*1 have been computed on the 
basis of Equations (135), (136), (1A1), (142), (1A8), and (149), 
respectively.  The results for various c are shown in Figures 13 through 
18. 
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9. LATERAL VIBRATIONS OF FIBER REINFORCED VISCOELASTIC PLATES 

It has been shown in previous sections that the solution of 
viscoelastic problems for fiber reinforced materials may be reduced to 
the solution of associated elastic problems in a manner Identical to 
viscoelastic analysis of homogeneous materials. This is done either by 
application of the elastic-viscoelastic correspondence principle (Ref- 
erences [12] and [13]) or, for steady-state vibrations, by the use of 
suitably defined complex moduli (Reference [14]).  In this section we 
consider the lateral vibrations of fiber reinforced viscoelastic plates, 
for which the associated elastic problems are those of lateral vibra- 
tion of anisotropic plates. 

DERIVATION OF GOVERNING EQUATIONS 

The governing equations for anisotropic plates, based on the 
Kirchhoff hypothesis, are easily developed by integration of the equa- 
tions of linear elasticity across the plate thickness.  It will be 
remembered that the displacements are of the form 

Ua  = X3Ya ^xl»x2^ a = 1'2   (a) 

u3 = w = w (x1,x2) ,        (b) (304) 

and that the neglect of transverse shear deformation leads to the 
relations 

\  = - w.a , (305) 

where 

••a-IT • "06) 
a 

The equilibrium equations for an element of plate are easily obtained, 
with the result 

m 
^ - Qa = 0 , (307) 

9x 
1 + p = phw , (308) 

a 

where dots denote partial derivatives with respect to time.     It should 
be noted  that the rotatory inertia has been neglected  in Equation (307). 
This  is consistent with the neglect of transverse shear deformation and 
will limit  the present theory to frequencies which cannot approach the 
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frequency of the first thickness shear mode.  This limitation is, how- 
ever, not severe for thin plates. 

The stress-strain relation for anisotropic plates may be 
written as 

M      = B*        K .   , (309) 
aß afiyX    yX 

where 

\e -1 (V6 
+ "M' • <310) 

The plate stiffness tensor B . , is defined as 

CvA " KtyX  H ' (311) 

where A g , are the components of the elasticity tensor for plane stress 
theory for the material referred to the plate axes.  It should be noted 
that Bag  could also be interpreted as a linear integral time operator 
or as complex moduli for either formulation of the vlscoelastic problem. 

Substitution of Equation (310) into Equation (309) gives 

M  - - B fl . w, . . (312) 
aß     aftyX     JyX 

The governing equation for anisotropic plates is then obtained 
from Equations (307), (308), and (312); the result is 

BaßYA W'YAaß + phW = P^l'V0 ' (313) 

where p is the transverse load per unit area. 

The appropriate boundary conditions are that on each edge we 
must prescribe either w or the effective shear Va and either the slope 
or the bending moment. It will be remembered that due to the neglect of 
transverse shear deformation, the problem is of the fourth order and 
does not allow us to prescribe the shear resultant and twisting moment 
independently; we are therefore led to defining the effective shear Va 
as 

3M 
V = Q + -_2£   (no sum on ß) > (3^ 
a^a3x„ 
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Expanding Equation (313), we obtain the governing equation in the form 

4 4 
Bllll TU  + (B1211 + B2111 + B1112 + B1121) -if" + (B2211 + BI212 

* * * * a  w * * * 
+ B1221 + B1122 + B2112 + B2121) TTTT +  (B2212 + B2221 + B1222 

9X.3X 

+B2122) 7~-3 + B2222 H + ph ~l ^ ^l' V  '>   " (315) 
9x.9x_ 3x„ 8t 

We recall that the stiffness  tensor BggyA niust  satisfy the sjnnmetry 
relations B012YX " ^öayA " ^aßXy m ^Xyaßt  an^ the above equation there- 
fore reduces  to 

4 , A 4 ^9v ^ 9w ^ ^ 9w 
Bllll ~4 + 4B1112 7~T +  (2B1122 + 4B1212) TTTT 

9X. 9X.9X« 9X.9X« 

4 4 2 
+ AB2221 773 + B2222 TT + ph 71 ' ?<*V *2. *   • W) 

9x19x-        9x-     9t 

It will be recalled that the stiffness components Bag . appearing in all 
previoi s equations are referred to plate coordinates. When the plate 
material is fiber reinforced with unidirectionally oriented fibers, the 
material is orthotropic with respect to axes, which are respectively 
along the fiber direction and perpendicular to the fiber direction (Ref- 
erence [1]).  It is clear that plate stiffnesses can be defined with 
respect to material-oriented axes as 

h3 
D ö . - Ä ft . Y5- , (317) 
aßyA   aßyX  12 

where Ä^yX are the components of the elasticity tensor referred to 
material axes.  Clearly, then, the stiffness tensor B^.^ (or B^y^) 
obeys the transformation law for a surface tensor of rank 4 which is 

B Q  - a  aQ a  a.r B  . , (318) aQyX av BTT yn X[,     vrrnC 

where aaü are the direction cosines of the plate axes with respect to 
the material axes.  If we consider a rectangular plate with fibers 
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oriented at an angle 6 to the x^ direction, it is easily shown that the 
stiffness tensor referred to the plate axes is obtained from that re- 
ferred to the material axes by the matrix equation 

1111 

2222 

1122 

1212 

1112 

1222 

[ A ] 

i—* 

Bllll 
_* 
B2222 

B1212 
_* 
B1122 

(319) 

Elements of the matrix [A] are given as follows: 

&,-, =  A22 ■ cos 6 

4 
^12 = ^21 " s^n  8 

2    2 A1. = A„„ = 4 sin 6 cos E 

2    2 A,. = An/ = 2 sin 6 cos 6 14   24 
2    2 A„1 = A-_ = sin 9 cos 6 

A  = - A 
33     13 

4      4 A.. = sin 6 + cos 6 34 

A41 = A42 = A31 
2      2  2 A,- = (sin 6 - cos 6) 43 

v44 l14 

A  = - A A51    A62 sine cos 6 

A-j = ~ Afil = - sin 6 cose 

2     2 A52 ■ - A,.- = 2 (sin 6 - cos 6) sine cose 

2     2 A,.. = - A,, = (sin 6 - cos 6) sine cose 

(320) 
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It is clear from Equation  (319)   that  the  fiber reinforced plate will,   in 
general,  be anisotropic for 0^0.     This special type of anisotropy is 
often denoted by the term related-orthotropic  [15]. 

VIBRATIONS OF 0RTH0TR0PIC FIBER REINFORCED PLATES 

We  first  consider the simplified case of fibers oriented along 
the x^ axis.     The plate is then orthotropic,  and Equation  (316)   then 
reduces  to the  form 

4 
Diiii r!+ 2Dii22 

3x, 

,4 
d   W 

.  2^ 2 9x18x 
+ D 

2222   .   4 
9x_ 

4                  4 
9 w   .     ,    9  w 

+ ph  r 
9t 

p(x1,  x2,   t)   , (321) 

where 

mi = Biiii (a) 

*   *    * 

1122 S B1122 + 2B1212 (b) 

*     * 

2222 = B2222 * (c) (322) 

The stress-strain relations  (309)   reduce for  this case to 

M 
11 

2 2 
R*         

3 w *         9_w 
1111  ,  2 1122  ^  2 

9x1 9x2 

(a) 

M 
22 

2 2 
*   9 w .  *   9 w 
2211 . 2 2222 . 2 

9x1 9x1 
(b) 

M 
12 

*    9 w 
M21 = " 2B1212 T~ 

9x19x„ 
(c) (323) 

It will be of interest to consider the case of a rectangular 
plate of length "a" and width "b" simply supported along all edges and 
subjected to a sinusoidally varying concentrated load at a point 

u1, c2). 

72 



For a plate simply supported along all edges, the boundary conditions 
are 

w = M. =0      at x. - 0, a ,   (a) 

w = M22 •= 0      at x2 = 0, b ,   (b)       (324) 

and we note that, since w diminishes along these edges, the moment 
boundary condition, by virtue of equations (323), reduces to 

92w —f = 0 ,        at x- = 0, a ,   (a) 
9x^ 

a2 
^-| = 0 ,        at x2 - 0, b .   (b)       (325) 
3x2 

If we consider a sinusoidally time-varying concentrated load of magni- 
tude P applied at the point (^t ^2^ 0^ t^e plate» the loading function 
p(x1, x„, t) may be expressed as 

p(x1, x2, t) = P6(x1-C1) 6 (x2-C2) elwt . (326) 

It is clear from the boundary conditions,   (324)   and  (325),   that  the  solu- 
tion to the present problem may be obtained as a Fourier series  in  the 

mx^ nx2 
functions sin -g— and  sin ~%~ .    We therefore expand p(x1,  x„,  t)   in 
such a Fourier series and obtain 

AD    " C0 m7r^i mTTX. nTiC2 nnx 
p(x1, x„, t) = —r y   I (sin   sin   sin —r— sin —r—) e i      l ab'','-,     a      a      b      b m-1 n-l (327) 

We now seek a solution for w(x1, x , t) in the form 

OO     CO imrx,    mrx. 
w(x1, x2, t)  »    I      I    qmn(t) sin -—■ sin-g-^- •      (328) 

m=l n=l 

Substituting Equations (327) and (328) into Equation (321) and equaling 
coefficients of like terms in the Fourier series yields one ordinary 
differential equation for the functions qmn(t); the result is 
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Tnn Ph 
(«1/ D*        + 2  (HI)2   (HI)2 D*        + (HI)4 D* 
^a  '       1111 ^a ;     '•b ;     U1122       Kh '      2222 ■mn 

4P     iWt   ,   m^i   ,   n7rC: 
e sin   sin 

phab a (329) 

This equation may be written in the  form 

q_    + w      q_ 
uin        mn   Tnn 

vut 
P       e » rmn ' (330) 

where 

mn " k ^ ° A       + 2 (HI)2   (M)2D*        + (HI)4 D*       | 
1111      ^a  ;     S  ;      1122      ^b ;    U2222j (331) 

and 

m    4P 
mn      phab 

mirf;. mrC, 
sin sin (332) 

It will be of particular interest  to consider only the steady-state 
solution of  Equation  (330),  since in  the viscoelastic case  transients 
will be damped out.    Thus, we consider a solution of the  form 

Tnn mn 
xut 

and substitute  this expression into Equation  (330) 
steady-state  solution as 

We then obtain the 

V*^ 
mn iwt e 

2 2 
mn 

(333) 

Thus,  the elastic  solution to the problem may be written in the  form 

w(x1,  x?,   t)  -    [      I 
00 QO ft £ 

rmn 
lOJt 

2 2 
m"l n"l a)       -  oj 

mn 

m7Tx1 nnx« 
sin   sin —r— 

a b 
(334) 

As was clear in the case of the beam solution of Section 7, this solu- 
tion may be written in the form 

OD      00 

iwt  r   r .JE 
w(x1, x2, t) = e u  I      I    ^ (x1, x2) . 

m»l n-1 
(335) 
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where 

Wmn (xr X2) 
,_  sin   
4P    a 

phab 

nv(,j mvx. nirx- 
sln —r— sin sin —r— 
 b a b__ 

2    2 
mn 

(336) 

The passage to the viscoelastlc solution may now be accomplished in a 
manner entirely analogous to that of Section 7. Thus, for the visco- 
elastlc case, we introduce into Equation (331) appropriate complex stiff- 

nesses for Djjll» D2222» an<* D1122• These complex stiffnesses are com- 
pletely defined by Equation (331) if the components of the elasticity 
tensor are replaced by the corresponding complex moduli. They can be 
written explicitly in terms of complex moduli as 

1111 

L3 
V* 

E 
h a 
12 V* 

ET ~*2 1 V 
V* a E 

(a) 

1122 
h^ 
12 

.*   v* 
VaET 

I* 
*2 1 

E 
a 

a 

+ 2G 
a 

(b) 

2222 
h^ 
12 

V* 

ET 

1 - T-T 

v* 
ET ~*2 

?'* 

(c) (337) 

expression 
Under these conditions, Equation (331) is then replaced by the 

-2 
mn 

1     ["(El)*  D* 
ph  [.a 1 

,   _   -mir.2  /mT.2   ~* /muA  ~* 
1111 + 2   ^     ^    D1122 +  ^     D2222 

u       [1 + i   tan 6    ]   . mn mn (338) 
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It should be noted that Zmn  and 6mn  are both functions of frequency w, 
since the complex moduli and stiffnesses are frequency dependent. Thus, 
the viscoelastic solutions to the problem can now be written In the form 

QO     ao 

\wt  r   v  ,,VE wCx^ x2, t) - e    I      I   Wmn (xr x2) 
m»l n^l 

(339) 

where 

imrf nirCj m-rrx mrx. 

4P   sin ~T~ sin T" sin ~r~8in T" 
<l *x> x2> - ä —a——r: .2 a   , •     ^0> 

a)      - u)    +ia)       tan  o 
mn mn mn 

Equation (340) may be written as 

Wmn (xr X2) = 

-2 2        -2 
,„       u      - 0)    -  icü      tan  6 nnrf mr^™ mTrx, mrx,, 4P   mn mn mn   .  _1 ,    2  .  1  .    2 

, , ~—^ z~~z ,    0  sin   sin —r— sin   sin —r— . phab -2    2.2 ,-42.       a      b       a      b ^uj  - a) ; +a)  tan  6 
mn mn      mn /-WIN (341) 

Following the development previously presented in Equations   (260)  through 
(263), we can obtain the dynamic viscoelastic solution to the problsm. 

To illustrate the dynamic viscoelastic solution  (339), we con- 
sider a rectangular plate of length  "a" and width  "b" simply supported 
along all edges and subjected to a sinusoidally varying concentrated 

load at  the center [r, yj.     See Figure 19.    The dimensions of  the plate 
are 

a - 60 in.,  b » 30 in., h = 0.375  in. 

The matrix material of the plate is taken to be polyisobutylene, whose 
properties are given in Section 8.  It is assumed that the matrix is 
elastic in dilatation.  The material properties of the fiber and the 
density of the plate are as follows: 

K = 5.83 x 10 psi 

G = 4.375 x 106 pai 
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Figure 19. Lateral Vibrations of Rectangular Plate. 
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p = 3.0 (density relative to water) 

c = 0.5 (volume fraction of fiber). 

From (339) and (340), the deflection of the plate at 
is found to be 

a b 
2' 2 

a b 
2» 2' 

lü)t 4P 

m-1,3,5 n-1,3,5 phab w2 (l+i tan 6  ) -UJ
2 

ran mn 

(342) 

where 

ü  (l+i tan 6  ) ■ . . 
mn mn   phab 

■ 4 

r Dllll + 2m " 51122 + 4n Ö2222 .  (343) 

Using (337) j the deflection at the center of the plate can 
be computed from (342).  The variations of the amplitude with u are 
plotted in Figure 20. As in the case of beams, it is seen that there is 
no true resonance.  However, for forcing frequencies close to the first 
natural frequency of the plate, large response amplitude is encountered 
and resonance is attained. 

Finally, we note that the algebraic and numerical calculations 
for this case are at least one order of magnitude more complex than 
those for the case of beams, which was treated previously.  This is due 
to the appearance of four distinct moduli in Equation (331), each of 
which has different frequency dependent real and imaginary parts; this 
causes the "loss tangent", tan 6inn, to depend on the mode under con- 
sideration.  Some simplifications may, however, be possible for 
particular materials. 
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Figure 20.   Amplitude of Lateral Deflection of Plate. 
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10. ELEMENTARY THEORY OF BENDING AND SHEARING 
OF VISCOELASTIC FIBER REINFORCED BEÄW? 

We consider a beam of constant cross section.  The system of 
axes to which the beam is referred is shown in Figure 21.  It is assumed 
for the sake of simplicity that the y-axis is an axis of symmetry of the 
cross section.  The beam is uniaxially reinforced by fibers in the x- 
direction. 

It will be our purpose to develop a theory of such beams which 
is analogous to the Euler-Bernoulli theory of homogeneous beams. We 
note in this respect that for homogeneous elastic and vlscoelastic beams 
in pure bending, the Euler-Bernoulli theory is rigorous, provided that 
the bending moments on the terminal beam sections are .pplied through a 
normal stress distribution which varies linearly over the section.  Sup- 
pose that such a stress distribution is applied on the terminal sections 
of a uniaxially fiber reinforced beam. The beam may be thought of as 
being represented by the composite cylinder assemblage model. Since 
there are a very large number of composite cylinders passing through the 
section, the normal stress axx on any composite cylinder end section is 
uniform.  Then it is known that in such a composite cylinder, the axial 
strain GXX will be uniform throughout fiber and matrix (see Reference 
[1]), except for some local perturbation at the end regions. Since the 
strain exx is proportional to the stress öXX, it follows that EXX is 
very nearly linearly distributed over the section of the cylinder.  We 
therefore conclude that in pure bending, the Euler-Bernoulli theory 
should be applicable with high accuracy for a fiber reinforced beam. 

Because of the assumption that plane sections remain plane and 
since y is an axis of symmetry of the section, we write, as in the usual 
strength of materials development, 

Sex ^'^ = iToTTÖ (344) 

where R(x,t) is the radius of curvature of the deformed beam, which here 
depends also on time because of the time dependence of the material. 
The average stress oxX on the section of a composite cylinder is then 
given by 

ä  (x,y,t) 
xx 

t  *      3 Evv(x'y'T:) 

E (t-i)  ^r  di . (345) 
a ox 

o 

Note that the y-coordinate represents positions of central axes of com- 
posite cylinders only.  Since there are very many of these, y may be 
approximated by the continuous variable y. 

Introducing (344) into (345), we have 
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-»• z 

where 

Figure 21.    Beam Coordinate System. 

öxx(x,y,t)   -  y  B(x,t)   , 

B(x,t)   - E*   (t-T)  f-       ,., 
a 3T   L R(X»T)_ 

dx   . 

(346) 

(347) 

In the absence of axial forces on the beam, equilibrium demands that 

(A) 
ö  (x,y,t) dA = 0 . xx (348) 

Introducing (346) into (348) , it follows that 

(A) 
ydA - 0 . (349) 

This implies that the linear distribution (346) must pass through the 
centroid of the section and that the stress and strain vanish at the 
centroid. 

From moment equilibrium at any section, we have 

M (x,t) = M(x,t) = 
'     J(A)  KX 

oxy(x,y,t) ydA 

Introducing (346) into (350), we find that 

(350) 

81 



M(x,t)  - B(x,t)   I   , (351) 

where 

I -  i zz y2dA (352) 

is the moment  of inertia with respect  to the  z-axls.     Combining   (351) 
with  (346), we have 

öxx(x.y,t)  - ^^- y   , (353) 

which is the exact analogue of the strength of materials stress for an 
elaetio  beam.  It is thus seen that the stress äXx is independent of the 
vlscoelastic nature of the material.  It should be noted that in accor- 
dance with the present development, the moment M is reckoned to be 
positive if it produces tension below the neutral axis and compression 
above the neutral axis of the section. 

In order to analyze the deflection of the center line w(x,t), 
we assume this deflection to be small in comparison to section dimen- 
sion. Then 

2 
R(x,t) 1 -  3 *<*■*' . (354) 

3x 

The negative sign in (354) stems from the choice of positive y downward 
and bending moment sign convention.  It follows from (354) and (347) 
that 

B(x,t) - -'S 
3x 

E* (t-T) SÄÜLOi dT . (355) 
a       OT o 

Introducing (355) into (351), we have 

32 
M(x,t) - - I -S-r 

3x 

rt 
E* (t-i) SSJkall dT . (356) 
a       OT o 

Equation (356) is the governing equation for the beam deflection.  End 
conditions for w have, of course, to be specified. 

The present form of (356) is somewhat Inconvenient. We shall 
now proceed to transform it into a different form.  For this purpose let 
us take the time Laplace transform of both sides.  Then 
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M(x,p) - - I ^ fp E* (p) w (x.p) j , (357) 

where we have used the notation (3) for Laplace transforms.  Let us con- 
sider the very Important case where the load Is applied to the beam at 
time t - 0 and Is then held constant. 

In that case, 

M(x,t) - M(x) H(t) , (358) 

where H(t)   Is the Heavlslde unit  step function defined as 

rO t <0 

It follows that 

H(t) - 
'^1    t ^0 

M(xfp) - 
1M(x) . (359) 
P 

From (45), 

pea(p) 

where ea(p) Is the transform of the Young's creep compliance ea(t) which 
enters Into the relation 

e  (t) 
xx 

ft ^     3ö  (T) 
e (t-T) —^  di . (360) 
a      3T 

o 

Thus, e (t) is the longitudinal strain produced in a fiber reinforced 
material by constant unit average stress öxx. 

Introducing (359) and (45) into (357), we find that 

,2- 

3x* 

which can be directly inverted into  the tine domain to give 

3 W(*.P)  . . MM e*  (p)   . (361) 

^%^ . . i&i e*  (t)   . (362) 
3x2 I       a 
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Equation (362) is the analogue of the well-known differential equation 
for an elastic beam.  As is usually done for elastic beams we shall now 
make the assumption that, although derived for the case of pure bending, 
Equation (362) is also applicable when shear forces are present.  Then 
(362) represents the differential equation of viscoelastic fiber rein- 
forced beams in bending. 

We now consider end conditions for w. Typical end conditions 
are 

simple support at x w(x ,t) - 0     (a) 

built-in support at x       -^ (x ,t) - 0 .  (b)     (363) 

Set 

w(x,t) - W(x) e* (t) . (364) 

Then Equation (362) reduces to 

dx 

Also, introduction of (364) into (363) gives 

W(xo) - 0 (a) 

diixl . _ Mxl # (365) 

dW(x ) 
0- - 0 .      (b) (366) 

dx 

It is seen that (365) together with (366) represents an elas- 
tic deflection problem with unit Young's modulus. The viscoelastic 
solution is then obtained from (364).  Since In any elastic beam deflec- 
tion problem El occurs in the deflection denominator, we can now formu- 
late the following simple rule: In order to find the deflection of a 
viaooelaatio becant  simply take the elaetia deflection and replace the 
reciprocal of the Young's modulus by the viscoelastic Young's compli- 
ance. 

As an application, consider a simply supported beam, of length 
i, which is loaded uniformly by p0 per unit length. The elastic deflec- 
tion is 

wE(x) - ——-  (£3-2£x2+x3) . (367) 
24E I 

a 
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The viscoelastic deflection is 

wVE(x.t)  -    02^ (£3-2ilX
2
+x3)   . (368) 

The maximum deflection  Is  at the center  x =  £/2 

wVEU/2,t)  = 3841 e   (t) 
a 

(369) 

It has been shown in Reference [3] that the viscoelastic effect 
in uniaxlal stress is negligible for conventional fiber reinforced mate- 
rials in which the fibers are very stiff in comparison to the matrix. 
In other words, if the creep compliance ea(t) is replaced by the initial 
compliance ea(o), the error produced is insignificant; but according to 
the development given in Reference [3], 

* 
e (o) 
a *   ♦ 

E (o) a 

(370) 

where from (63) 

E (o) = (1-c) E (o) + cE. m t^o (371) 

(It should be recalled that c is the volume fraction of fibers and that 
Em(o) is the initial (elastic) Young's modulus of the matrix.)  Thus, 
(368) assumes the form 

VE/  ^ w  (x,r) = 
PoX a3-2£x3+x3) (372) 

24E (o)I 
a 

Equation (372) is no longer time dependent and is precisely 
the elastic solution (367) with Ea(o) used as an elastic Young's mod- 
ulus. It is also quite clear that similar conclusions would hold for 
bending deflection analysis for any loading, and we may thus state the 
following important conclusion: Under time-aonstant load,  the bending 
deflections of uniaxially fiber reinforced visaoelastia beamst  in uhiah 
the fibers are very muah stiffer than the matrix,  may be approximated 
with high aaauraay by the time-independent deflection of elastic beams 
with Young's modulus taken as the initial  E*(o). 

We now turn to the effect of shearing forces on the deflection 
of fiber reinforced beams, and we shall adopt the usual strength of 
materials approach.  It will first be recalled that bending stresses are 
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given by (353).  In the event of constant load for tio, the moment is 
given by (358); consequently, the bending stresses are given by 

"xx(x,y) = ^-y. t>o . (373) 

It will be recalled that the shear stress äXv follows accord- 
ing to strength of materials simply from equilibrium considerations with 
the use of the bending stresses only.  Since (373) is the exact analogue 
of the strength of materials bending stress, it follows immediately that 
the shear stress oXy is also given by the strength of materials expres- 
sion.  Thus, 

V'*-' - W ■ 
where 

S(x) = Shear force at x-section, 

Q(y) = First area moment with respect to the neutral 
axis of the part of the section above y, 

b(y) ■ Width of the section at height y, 

I = Moment of inertia I 
zz 

The overbar in (374) denotes local averages.  The maximum shear 
stress always occurs at y = 0.  It may be conveniently written in the 
form 

ä =5  (x,o) = k ^- ,  t>o . (375) 
xy max   xy A 

where A is the area of the section and k is a geometrical section shape 
factor given by 

AjÜoi (376) 
K  Ib(o) • U/b; 

3 A 
For a rectangular section, k = —;   for a circular section, k = — . 

The shear strain produced on the neutral axis by the stress 
(375) is given by 

"  (x,o) = 7 g*(t) B     (x,o) . (377) 
xy       2 a    xy 

This expression needs some explanation.  Since the stress (375) is con- 
stant in time for t;o, the strain produced is directly proportional to 
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the appropriate creep compliance.  This creep compliance is ga(t) since 
the shearing action proceeds in places parallel and transverse to the 
fibers. 

On the basis of the treatment given in Section 9, the creep 
compliance for stiff fibers can be very well approximated by the creep 
compliance for rigid fibers. Accordingly, we use 

«>>=i^*m(t> • (378> 
According to strength of materials theory, there is an addi- 

tional shear deflection ws which is superposed on the usual Euler- 
Bernoulli bending deflection w^.  Since w^ produces no shear, we have 

Scy(x'o) =2^- (379) 

Substituting  (375)   into   (377) and substituting the resulting expression 
into (379), we find that 

3^-|s(x)  g*(t)   . (380) 

Now from equilibrium 

^--P(x) . (381) 

where p(x) is the load per unit lengt'i of the beam, taken as positive in 
the y (downward) direction. Differentiating both sides of (380) and 
using (381), we obtain 

a2 
k      * 

—— " ÄP(x)8a(t) * (382) 

3x 

This is the governing equation for the shear deflection of the beam. 

Equation (382) is similar to (362) and can be solved by analo- 
gous methods.  We set 

w (x,t) = W (x) g*(t) . (383) 
o S3 

Introducing   (363)   into  (382), we obtain for W    the differential equation 
s M 

d2w 

-T = - | POO   • (384) 
dx 
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As an example, we consider again the case of a simply sup- 
ported uniformly loaded beam with p0 per unit length for t>o. The bend- 
ing moment is then given by 

P x 
M(x) = -j-  U-x) . (385) 

Introducing (385) into (365) and integrating, we have 

Vx)--M¥-ll]+ClX + C2 • (386) 

From (364) and (386), 

p e*(t) /  3   4\ 
wb(x,t) - - -^f— [tf- - Tz]* £[%(*)  *  + ^ea(t) .  (387) 

Integration of (384) for constant p yields 

kp  . 
w (x) = - TT x + c?x + co • (388) S ZA 1     Z 

Consequently, from (383), 

* 
kp g (t)  ,      . Ä 

w8(x,t) = - —^  xZ + C^ ga(t)x + C^ ga(t) .     (389) 

The  total deflection  is  then given by 

w(x,t)   = w. (x,t) + w  (x,t) 
D S 

j*(t) /    3        4\ 
a £x        x   \ 

JI        \ 6     "  12 j 
Va^Vu3      x4\     kPo8a(t)    2 

21        \ 6 12 / 2A 1 

where 

x    + CAt)  x + C0(t)   ,    (390) 

Clit)  = Cl eI(t)   '   Cl 8a(t:)   ' (a) 

C9(t)  = Cb
0 e*(t)  + d g*(t)   . (b) (391) 2 z     a /a 

The end  conditions of simple support  are 
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w(o,t)  = w(£,t)  = o  . (392) 

Insertion of   (390)  into  (392)  yields 

C2(t)  = o   , (393) 

3 
p   £        . P  kJi     * 

hM • äfr %<'>+ ir *a(t> ■ (394) 

Hence, finally, 

P.x  i     9   -^  *    P^kx o 3  .„2   3,  * s . Ko  ,„  N  *, 
w(x,t) • 241 (Ä " 21*    + xJ) ea(t) + -^- (£-x) ga(t) .(395) 

The first part of (395) Is recognized as the bending deflec- 
tion Wfe (368), while the second part is the shear deflection ws. 

Inspection of the expressions obtained for w^ and ws shows a 
fundamental difference.  According to previous discussion the time de- 
pendence of w^j is negligible, and for all practical purposes this is an 
elastic deflection which does not vary in time.  However, ga(t) in w 
has a considerable time variation.  Indeed, the rigid fiber approximation 
(378) shows that ga(t) is directly proportional to the shear compliance 
of the matrix gm(t), and this compliance can assume very large values, 
and, theoretically speaking, can even become unbounded.  We thus arrive 
at the conclusion that a vieaoelastia fiber reinforced beam can become 
unserviceable due to excessive shear deflection. 

As an example, consider the deflection (395) at the center of 
the beam, where it attains its maximum.  We have 

5p £    kp Ä 
w(£/2,t) 2-^ + -Sr-Ti7gTT,(t) , (396) 

384E I   8A  1+C m 

a 

where we have neglected the time dependence of ea(t) in accordance with 
previous discussion and have replaced it by 1/Ea.  Also, the rigid fiber 
approximation (378) has been used for g (t). Denoting the first term 
on the right side of (396) by 6e, we rearrange (396) in the form 

2 * 

u 5«, 

where  ■)  is the radius of gyration of  the section;   i.e., 
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(397) 



=rr (398) 

A plot of (397) is shown In Figure 22 for a beam of rectangu- 
lar section.  The dimensions of the beam are 

b = 2.0 in. 

h = 4.0 in. 

I =  60.0 in. 

The material characteristics chosen are as follows: 

E^ = 27.0 x 106 psi 

E (o) = 3.62 x 105 psi 
m 

vf - .5. 

The matrix is taken to be polymethyl methacrylate (Reference [9]), 
whose shear creep compliance is shown in Figure 23. 

The deflection is plotted against logarithmic time starting 
out at 1 sec, when the shear deflection is negligible in comparison to 
the bending deflection.  The initial deflection doubles (assuming con- 
tinued linearity in log t) after lO-*-  hrs. The enormous amount of time 
required to double the deflection shows that there is no danger of 

failure within a reasonable lifetime of the beam. 
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11. TORSION OF FIBER REINFORCED CYLINDER 

The theory of torsion of uniaxially reinforced cylinders when 
the fibers are in the direction of the generators fortunately proves to 
be very simple. Consider a cylinder whose x^-axis is in the generator 
and fiber direction, while X2, X3 are the transverse axes in the plane 
of the transverse section A. We make an Isotropie elastic torsion-type 
assumption 

u^^ = a(t) <t>   (x2, x3) ,    (a) 

u2 = - a(t) x3, x1   , (b) 

u3 = a(t) x2, x1 ,       (c) (399) 

where ot(t) is the time-variable angle of twist per unit length of cylin- 
der and (f) is the torsion function. The only nonvanishing strains are 
then 

e12 = I a^ 3x2  
X3 

(a) 

E13 = 1 a^ 
ii_ + 
dXn 

(b) (400) 

Because of (20), (21), and (24), the only nonvanishing stresses are then 

•t 

•'o 

ft 

o12 = 2 
*     3c  (T) 

Ga(t-T)-17~dT ' (a) 

013 = 2 
*     9c  (T) 

Ga(t-T) -17- dT ' (b> (401) 

Inserting (400) into (401) we find 

rt 

'12 
M-. 
dX, 

Ga(t-T) ^ dT   '        ^ 

'13 
iiL.+ 
3x JL G*(t.T) isiii dT .     (b) (402) 
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Noting that 

L(t) G (t-x) -.-vI  di 
a      dt 

(403) 

where L(t) is a known function of time, the only surviving equilibrium 
equation is 

äo 
12 

3a 
13 

3x, 9x, 
= o. (40A) 

*2    3 

Substitution of (402) into (404) yields the equation 

72(|) 
2     2 

3j$   9 » 
o . (405) 

9x, 3x„ 

Satisfaction of  the zero traction boundary conditions on the 
curved surface of  the cylinder,  for the whole time range,  leads 
precisely as in the elastic torsion problem (see,  e.g.,  Sokolnikoff   [7]) 
to  the $ boundary condition 

dn x-  cos   (x™, n) - x- cos   (x^,  n)   , (406) 

on the contour C of the section A, where n is the normal  to the contour. 
Equations  (405)  and   (406)  define ^ uniquely except for an immaterial 
arbitrary constant.    We conclude that the present function $ is the same 
as that in the isotropia elastic torsion problem. 

The torque on the cylinder is given by 

"T 
x-a,„ - x„a 

(A) 
2 13        3 12''   ^2    ~3 )  dx« dx^   . (407) 

Substituting (402) with (403) Into (407), we find that 

r r 

*r-L(t) JJ (A) 
2 j  2 .L  ii_   Ü_ 

2    3   X2 3x„   3 3x^ dx2 dx3 .   (408) 

We note  that the initial elastic torsional rigidity of  the cylinder is 
given by 

DeU  = Ga(o) 
2 2 3£_ _a^ 

X2 X3 X2  3x-  ' X3   8x0 
dx2 dx3.(409) 
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Therefore (408) may be rewritten as 

Vt) - i|Ü-D.. . 
G*(o) '^ 
a 

(410) 

Furthermore,  the stresses   (402)   In the cylinder can be written as 

htel iJL. 
12 * iZ      a(o)Ga(o) a 

3x2      "3 
a(o)G  (o)   ,       (a) 

JL&L 
13      a(o)G*(o) a 

34     . 

c3 
a(o)G  (o)   .        (b) (411) 

It  Is seen that If "elastic" stresses are defined by 

el. 
12 8x2       X3 

a(o)GQ(o)   ,       (a) 

an 
el. 

3x3       X2 
a(o)G  (o)   .        (b) (412) 

then (411) assumes the form 

12 
ki£2     eU 

* - - 012 (a) 
a(o)G (o) 

a 

Mil el. 
13    , . *. . "13 

a(o)G_(o) 
(b) (413) 

As an application let us consider the case when a vlscoelastlc 
fiber reinforced cylinder Is subjected to a constant torque Mj" for 
t > o.  In that event 

^(t) - Hj,0 H(t) (414) 

where H(t) Is the Heavlslde unit step function. How take the Laplace 
transforms of (403), (410), and (414), and combine the results. This 
gives 
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o       * V M0> 
P Ga(p)De£4 

If  (29)  is  recalled,   it is seen that   (415)  assumes the form 

H/  G*(o)     Ä 

o(p) - -^-5-^  8a(p)   • (*16) 
e£. 

This  result can be directly inverted into the time domain,  obtaining 

V  Ga(o)     * 
a(t) - -~-ä  g  (t)   . (417) 

e£. 

To find the stresses, take the Laplace transform of (413), 
using (403).  The result is 

Gi2 =  ; .r* : ai2    •   (a) 

a(o)Go(o) a 

A JL A 

p G  (p)a(p) 
013 " -7^7- 013 *       (b) (A18) 

a(o)G  (o) 
a 

Introduce   (415)   into   (418)  to obtain 

MT0 

S12 = a12e'' p cx(o)  DeJU   '       (a) 

^13 = 013e£• T^TD— *       (b) (A19) 

Because of   (417), 

^r" Ga(o)    * „(o) = _i__2  ga(o)   | (420) 
e£. 
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but 

Therefore, 

*       1 
8a(o) = -T- 

Ga(o) 

a(o) = 
V 
D e£. 

(421) 

(422) 

Introducing Into (419) and inverting, it follows that 

el. 
a12 = ö12 

H(t) .   (a) 

al3 = al3ei"  H(t) '   (b) (423) 

Using (412), (423) can be rewritten in the form 

O 
V Ga(0) 

12 D e£. 9x, 3 J 
H(t)  (a) 

V Ga(0) 
13 

e£. 
3x3 ^ 

X2 H(t).  (b) (424) 

Equations (424) imply that if the torque is kept constant in time, the 
stresses also are constant in time and are those obtained for the elas- 
tic problem. 

To give an example of the preceding theory, wo consider the 
torsion (414) of a circular cylinder of radius a, in which the fibers 
are rigid. In this case, the torsional shear stress a  is simply given 
, rö by 

"4 r' 
a 
T 

2^° 

're       = ~~T ' 
max       Tra 

(425) 

In order  to compute the angle of   twist  from (417), we note   that 
for a circular cylinder 

\u - Vo> ^r • (426) 
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Furthermore,   it  has  been shown  in  Reference   [3]   that 

*>> " £: «m
(t) • (427) 

where gm(t) is the shear creep compliance of the matrix.  Inserting 
(426) and (427) into (417), we find that 

M ° 

a 

It is seen that if gm(t) becomes unbounded, which is quite often the 
case, then i(t) becomes unbounded. 
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12, QUASI-STATIC DEFORMATION OF VISCQELASTIC FIBER REINFORCED PLATES 

We consider here the case of quasi-static bending by trans- 
verse loads of a thin, rectangular fiber reinforced plate.  The rein- 
forcement direction is taken as x^.  The middle surface of the plate of 
thickness h is referred to the plane Cartesian system of axes x^, X2. 
The X3-axls is chosen normal to the middle plane, pointing dovmwaid 
(see Figure 19). 

The deflection of the middle surface is 

u3(x1, x2, o, t) = v(x1,  x2, t) , (429) 

where t is the time.  We use the usual Kirchhoff hypotheses of thin 
plate bending, according to which the deformations are given by 

8w 
u1(x1, x2, x3, t) = - x3 — , (430) 

u2^xif  'V x3'   t) = - x3 ä^- • (431) 

The strains in Xj^ - X2 planes associated with (429), (430), 
and (431) are then given by 

£11 = " X3 TT ' ^ 
3x1 

a2w 
^22 = " X3 —^2 ' (433) 

3x2 

a2 
ei2= - x3 j^r2 ' <434> 

It will be  convenient  to  continue  the  analysis  in Laplace 
transform domain.     The  Laplace  transforms  of   (432)   through   (434)   are 
written compactly as 

d  w(x1,  x2,  p) 
^(V  x2,   x3, P)  = - x3 -      ^  3x  . (435) 

i.j  = 1,2 

99 



The  Laplace  transformed viscoelastic stress-strain  law of  the 
uniaxially reinforced  plate material  may be written  in   rhe  form 

(436) 
^ °11    ^(P)  - 
Lll - -*      -*        J22 ' 

pEa(p)   PEa(P) 

VP*  "     a22 
^22 " 

pEa(p)      PET(P) 

°12 
L12 " 

2pG*(p) 

(437) 

(438) 

Here Ea(p) is the LT of the axial Young's relaxation modulus, 
E^(p) is the LT of the transverse (normal to fibers) Young's relaxation 
modulus, Gg(p) is the LT ot the axial shear relaxation modulus, and 
va(p) is a transform domain "Poisson's ratio" which will be discussed 
later.  It has been assumed in (436) through (438) that 033 can be 
neglected, as is usually donr in theory of plates.  The form of (436) 
through (438) follows directly from the discussion given in Section 2, 
according to which a Laplace transformed viscoelpstic stress-strain law 
Is completely analogous to an elastic stress-strain law with p- 
multiplied transforms of relaxation moduli replacing elastic moduli; 
hence, the form of (436) through (438). 

-* -    ^* -* , 
E £,, + v E-, e 
a 11   a 1  22 n ■ia\ a11  = p  1 , (439) 

1 " * v 

* '      -* 
Et (C22 + Ua f n) 

a„ = P -* ^■—-2—^-  , (440) 
E„ A2 

1 - -j; v* 
E* a 

a 

o., = 2pG E10 . (441) 
'12  ^ a 12 ' 
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The  LT of  the bending  and  twisting moments  in  the plate  are 
given by 

t h/2 

^  = 1   h/2  °V  ^   ' (442) 7
 i,J = 1,2 

Substituting (435) into (439) through (441) and substituting the result- 
ing expressions into (442), we find that 

h3 K  W'll + VÜ ET W'22 ..... M11 = - p ^r— (443) 

.   T ~* 1 - — v 
E* a 

a 

h3 ET^a W'll + W'22) ..... 
M22 = - P 12 ^~—    • (4^) 

1 - —T V 
E* a 

a 

h3   '* ' 
Ml/ = - 12 2 Ga W'12 ' (445) 

Here, w,^^, w,22 and W»12 denote the second partial derivatives of w 
with respect to x^ and X2. 

The quasi-static equilibrium equation of a plate in terms of 
bending moments is given by 

32M11     92M12   a2M22 
—r+ 2 ^rir + 7-^ + ^v x2' ^ =■0 •        (446> 
3x 1       2       9x„ 

where q is the transverse load per unit area of plate, positive downward. 
See, e.g., Timoshenko and Woinowsky-Kreiger [16]. Taking the LT of (446) 
and  substituting M      from  (443)   thrrugh   (445), we  find  that 

4- 4- 4- 
Öllll ~4 + 2 Ö1122 ~27T + 62222 ^4 =  ^l'  X2'  P)   '   (447) 

3x 3x     3x 3x 

where 
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1111 12 

P E 

1 - -r 

(AA8) 

1122 
h 
12 

.*.* 

a l 
+ 2G 

1 - 
'T ~* 

(4A9) 

6«    .hi   PET 
2222  12    ~* 

E^  .2 
l - •—r v 

(450) 

Equation (449) is the governing differential equation of the LT of the 
deflection of the plate. 

We now consider a typical boundary condition.  For a freely 
supported rectangular plate, 0<x<a, 0<x<b. 

w(0, x2, t) - w(a, x2, t) = w^, 0, t) = w(x1, b, t) = 0 , (451) 

w,1l(0, x2, t) » w,11(a, x2, t) = w,22(x1, 0, t)  = w,22(x1, b, t) = 0 . 

(452) 

For a built-in plate, (452) is replaced by 

w,1(0, x2, t) = w,1(a, x2, t) = w,2(x1, 0, t) = w,2(w1, 0, t) = 0 

(453) 

Since our governing equation is for tiie LT w of w, the bound- 
ary conditions (451) through (453) have to be Laplace transformed. 
They obviously remain in the same   form after Laplace transformation. 
For a simply supported plate, wt thus have 

w(0, x , p) = w(a, x , p) = w(x , 0, p) = w(x , b, p) ^ 0 ,      (A54) 

«.,1(0, x , p) = w, .(a, x  p) = w,  (x , 0, p) = w, „(x , b, p) = 0 . 
11' '  2 ,11v-, "2 22' 1' '22' 1! 

(455) 

102 



Suppose now that the load on the plate has the form 

q(x, , x , t) = q (x,, x ) ^(t) , (456) 
x    / O   i    ^ 

where ^(t)  is any function of time. Then the Laplace transform of (456) 
is given by 

q(x1, x2, p) = qo ^(p) , (457) 

and this expression now has to be used on the right side of (447). 

Let q in (456) be expanded into the double Fourier series 

00     00 

qo(V  X2) ■    ^     ^   Vi  Sin Vl 8ln  enX2   ' (A58) 

m=l n=l 

where 

a    = f . (459) 
m       a 

n      b 

Tnn      ab 
4     fa b 

q   (x,,   x„)  sin a x.   sin ß x„  dx,dx- 
oiz ml n  z       1     z 

(460) 

(461) 
o 'a 

.   a solution of  (447)   in the form 

00 00 

w(x1,  x  , p)  -    I       y    w      sin a x.  sin ß x„   . (462) 12'r ^.^.mn ml n2 
m=l n«! 

It is seen that (462) satisfies all the boundary conditions 
(454) and (^55) of the simply supported plate. Now substitute (458) 
into (457), and then substitute the resulting expression and (462) into 
(447).  Equate coefficient of sin a x.. sin 0 x„ on both sides.  This 
procedure yields 

qmn *^ 
w
mn 

(P) " ^ 4 ^ Tl :* 4 '       (463) 
D    a + 2D    a 0 + D9„-_ ß 
1111 m    1122 m n   2222 n 
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Equdtion (463) must be inverted into the time domain to yield 

w  (t) = LT-1 [w  (p)] . (464) 
mn mn 

It follows from (462) and (464) that 

w(x1,  x0,   t)  =     y       y    w     (t)   sin a  x.   sin  ß x0   . (465) 12 '-..'-.     mn ml n2 m=l n=l 

This completes the formal  solution of the problem of the sim- 
ply supported rectangular viscoelastic plate. 

The numerical exploitation of the solution which has been 
given here unfortunately involves immense difficulties.  The quanti- 

ties D^mi Dll22» an^ ^2222 ^ri t^e clenominator of (^63) are defined in 
terms of transforms of viscoelastic relaxation moduli, (448) through 
(450), which are themselves complicated functions of transforms of 
viscoelastic relaxation moduli of matrix and of elastic moduli of fi- 
bers. Analytical inversion is, in general, out of the question, and 
the inversion should be carried our numerically by the use of compu- 
ters. Here no attempt will be made to carry out numerical inversion by 
computer.  Instead, we shall approximate the viscoelastic effective 
properties of the fiber reinforced material with the aim of making an 
analytical inversion possible. The purpose is thus not to solve one 
case precisely from a numerical point of vi^w but, rather, to obtain an 
estimate of the viscoelastic behavior of .   r reinforced plates In 
bending. We shall assume, whenever convenient, that the matrix is 
incompressible.  This is generally a fair approximation for polymeric 
viscoelastic materials. 

The first quantity to be discussed is va(p).  Its interpreta- 
tion is as follows:  suppose that the fiber reinforced material is sub- 
jected to a uniaxial stress constant in time for t>o, o^Ct) = o,^ H(t), 
In fiber direction. This produces an axial average strain e]i(t} with 
transform £;u(p) an^J a transverse average strain E22(t) = E33U) with 
transform e22^P) = ^33(p)•  The transform domain Poisson's ratio va(p) 
is defined by 

~*      ^22(p) 
v (p) = - -r^  . (466) 

^(p) 

A physical time-dependent Poisson's ratio may be defined by 
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*       c22(t) At) - - -r—r . (467) 

>* *■ 

Note that v (p) is not   the transform of v (t). 
a a 

It has been shown in Reference [3] that for incompressible 
viscoelastic matrix and stiff elastic fibers, va(t) is time 
independent and is given by 

* ~   I * 
v (t) = — v + v,v, = v    (" < t < °°).        (468) 
a  '   / m   f f   a - 

Here, vm and v^ are the volume fractions of matrix and fibers, respec- 
tively, and vr is the elastic fibers' Poisson's ratio.  The middle 
quantity in (468) is henceforth denoted va. 

It follows from (467) and (468) that 

t22(p) = - v* ^(p) . (469) 

Comparison of (469) with (466) then shows that 

0*(p) = v* . (470) 
a      a 

Next, we consider Ea(p), which is the transform of the axial 
Young's relaxation modulus.  It has been shown in Reference [3] that 
E*(t) is practically time independent and is given by 

E*(t) = (E v + Efvf) H(t) = E* H(t) , (471) 
a       m m   f £        a 

where Em and Er are respectively matrix and iber elastic Young's moduli, 
and Ea without time argument henceforth denotes the middle quantity in 
(471).  Hence, we have from (471), 

* 

E*(p)  = f . (472) 

JL 

Now the  transverse Young's modulus  ET  of  a uniaxially  fiber 
reinforced material  is much smaller  than the  axial modulus Ea;   see 
Hashin and Rosen  [1].     The same  is  true to a  larger  extent  for a visco- 
elastic  fiber reinforced material;   i.e., 
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E*(t) 
a E*(t) (473) 

Equation (473) is physically obvious, since for axial loads the stiff 
elastic fibers take the major part of the load, while for transverse 
loads the weak viscoelastic matrix takes the major part of the load. 
Since 

E*(P) = E*(t) e pt dt 
a 

(474) 

ET(p) - E*(t) e"pt dt , (475) 

It follows from (473) through (475) that 

E (p) » E (p) , (476) 

A typical value of   (468)   is given by 

v.  = v 
f m 

0.5,   vt 0.2 

Then 

0.35 (477) 

Using (476) and (477) in (448) through (450), it is seen that the quan- 

tity v* ET/Ea can be safely neglected in comparison to unity.  Further- 
more, we introduce (470) and (472) into (448) through (450). We then 
obtain the approximations 

-^ 1111  12 
(478) 

1122 
h     * -*   -* 
12 P (Va ET + 2Ga) ' 

(479) 

2222 XJ P ET (480) 
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We now have to consider the quantity Ej, which is the trans- 
forra of the transverse Young's relaxation modulus (normal to fibers). 
The elastic  E^ can be expressed in terms of other moduli in the follow- 
ing way (see Reference [2], p. 16): 

ET * *    * *2 * • (A81) 

1 + G^ + 4GTva /Ea 

If the matrix is incompressible or even nearly incompressible, then Kj 
becomes very much larger then Gj, and, consequently, the ratio GJ/KJ can 
be neglected in the denominator of (481).  In addition, for stiff fibers 
Ea is generally very much larger than Gj and va is a small quantity. 
So the third term in the denominator of (481) car also be neglected. We 
thus obtain the approximation 

E* - 4G* , (482) 

valid for incompressible matrix and stiff fibers. 

In transform domain, the relation (482) becomes 

E* - 4G* . (483) 

According to the discussion given in Section 8 for Incompressible ma- 
trix and stiff fibers,   the transverse relaxation modulus G*(t)  is 
approximately given by   (302).     Taking the  transform of  this equation and 
introducing it into  (483), we obtain 

S - < " A Hi 6m(P)   ' (A8A> 
where c is the volume fraction of fibers.  Consequently, we can now 
further approximate (478) through (480), obtaining 

51111 " 12 EI ' (485) 

3 
5il22 " 12 2PGa (1 + 2va) ' (486) 

0*222 " IJ ^1 • <487) 
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We now assume that the load on the plate is constant in time 
for t>o.  This means that Ht)   in (456) is given by 

(t) = H(t) . (488) 

Consequently, 

*(P) -; (489) 

Introducing  (484)   through (488)   into   (463), we obtain 

hi '     ,  .       1  
12 wmn^p;  " „*    4   .   ,   1 + c 

am 1 - c    m a      m    n        n 

(-) 
i      r   >.   4  r---~ G   (p)   [(1 + 2v*)  a2 ß2 + 34]    P 

(490) 

Equation (490) cannot be inverted without specification of the func- 
tional form of Gm(p).  We make the simple assumption that the visco- 
elastic matrix is characterized by a simple Maxwell model.  In that 
event, p Gm(p) is given by (286).  Introducing this result into (490), 
we have, after rearrangement. 

12 "mn^ 
mn 1 + T 

TA       *  4 
mn p (E a  /TA  + p) K  a mn  mn  r 

(491) 

where 

(no sum on ra,n) 

mn 
*4     1 + c       *22   4 

E a + 4G j-^~±  [1 + 2v ) a ß + ß ] am   ml-c      amn   n 
(492) 

Equation (491) is easily inverted after separation of the right side 
into partial fractions. The result is 

mn     , J 
mn 

h /12 

,  1    1      ,  a m 
tl TT exP (" ~l  
mn E a 

a m 
mn E a a m 

H(t) \   . (493) 

Equations (465) and (493) specify the deflection of the plate. It is of 
interest to compute the initial deflection of the plate wtx.., x., o) and 
the final deflection w(x , x , »).  From (493), we have 
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w  (o) = -r—210  , (494) 
mn     h3 A /12 

mn 

Wmn (<X,) = 3 X   ' (495) 
mn
     hi E a    12 

a m 

It is seen that in spite of the fact that the Maxwell matrix by itself 
has unbounded creep deformations, the plate deformation has a 
finite limit.  This phenomenon is due to the effect of the fibers. 

Figure 24 shows the variation with nondimensional time t/T 
of the deflection at the center of a square, simply supported, visco- 
elastic fiber reinforced plate.  The plate and material data are as 
folJows: 

E = 5.0 x 105 psi m r 

Ef = 10.5 x 10
6 psi 

vf = 0.2 

G = 1.7 x 10 psi 
IB 

c = 0.5 
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13. AXISYMMETRICALLY LOADED VISCOELASTIC 
FIBER RTTraCEb CIRCULAR CVLINDRtCAL ShlÜL 

The  shell   is  shown in Figure  25 with  its coordinate system. 
Axisymmetry under axisynunetric loading  requires  that material properties 
also be axisynunetric.     For uniaxial reinforcement,   this  is possible only 
for two cases:    when the fibers are in generator direction or when the 
fibers are  in circumferential direction,  normal  to generators.     In view 
of previous notation for material properties where x^ always was  in 
fiber direction, we can here make the  following identification: 

Longitudinal  reinforcement (496) 

Circumferential reinforcement (497) 

We consider a static  shell whose only  load per unit shell area 
is  in z-direction,  normal  to  the shell  surface, 

q =  q(x) (498) 

In the axisynunetric case the shear membrane force NXQ, the twisting mo- 
ment Mxe, and the shear force QQ all vanish.  Furthermore there is no 6 
dependence in any quantity. Simplifying the shell equilibrium equations 
accordingly  (see, e.g.. Reference [17]), we obtain 

dN 
 > 

dx (499) 

dQx  N6 
(500) 

dM 

-rr- Q - o , 
dx   ^x    ' (501) 

where Nx, Ne are normal membrane forces, Mx is normal bending moment, 
and Qx is the shear force. Elimination of Qx from (500) and (501) yields 

1^ d^l   N, 

—f - ~ + q(x) " o , 
dx 

R (502) 

while (499) implies that 

N = N 
x   o 

const. (503) 
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Figure 25. Cylindrical Shell Coordinate System. 

In order to simplify the discussion, we shall derive the 
equations of an elastic fiber reinforced shell, and we shall then proceed 
to the viscoelastic case via the correspondence principle. On the basis 
of the Kirchhoff assumption, axisymmetry, and the thin shell approxi- 
mation h/R << 1, the only surviving strains in the shell are 

xx 

'66 

du 
dx 

z 
,2 

d w 

dx2 

w 
R  * 

(504) 

(505) 

Here, z is measured from the shell middle surface, normal to 
it and positive outward, u and w are displacements in x- and 
z-directions, respectively. 

Let it now be assumed that the reinforcement is longitudinal. 
Then (496) applies, and the stress-strain law is given by 

xx 
xx 
* (506) 

■66 xx 
66 

(507) 
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* * where E     is the axial Young's modulus, va is the axial Poisson's ratio, 
and E* is the transverse Young's modulus.  Solving (506) and (507) for 
the stresses yields 

where 

a  =A  c  + A Q e  , 
XX     XX  XX     Ati       XÜ 

0ee " Axe cxx + Aee cee • 

(508) 

(509) 

xx 

1 - 

(510) 

a T 
xe (511) 

1 - 7Va 

(512) 

1 - 

The shell membrane forces and bending moments are given by 

N  = 
x 

M = 
x 

h/2 

-h/2 

h/2 

-h/2 

o  dz 
XX 

o  z dz 
XX 

M ■ 
e J 

h/2 

-h/2 

h/2 

-h/2 

0eö dz • 

oee z dz . 

(513) 

(514) 

We now introduce (504) and (505) into (508) and (509), and we introduce 
the resulting expressions into (513) and (514).  Thus, shell membrane 
forces and bending moments are obtained in terms of u and w.  These are 
in turn introduced into the equilibrium Equations (502) and (503). This 
procedure leads to 
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h__ dja   .  h  ,.       du  .   »      Wv 
12   xx . A     R ^ xo dx    Aee R; 

dx 
q . (515) 

h(A    :r + A 0 if) - N xx dx        xö R o 

du Elimination of -r- yields the equation 

d4w ^ 12q        12 Axe 
—r + YW -    rs *    - 
dx h3A 

XX XX 

(516) 

(517) 

where 

12   AxxAee " Axe 
2 2 R h xx 

(518) 

The membrane force N0 In (517) Is equal to the constant pre- 
scribed membrane force In x-dlrectlons at the end sections x > 0, L of 
the cylinder.    If there is no membrane force prescribed, N0 vanishes. 

Usual boundary conditions at x = 0,  L prescribe any two of the 
dw quantities w, -^t Mx,  and Q^. 

For a viscoelastic fiber reinforced shell cylinder, Ea,  Ej, 
and v* have to be replaced by p&£(p), pEj(p), and v£(p) in an analogy to 
the treatment given in Section 12.    The load q is now q(x,t), a func- 
tion of time also, and has to be replaced by its transform q(x,p). 

Let it be assumed for simplicity that the cylinder is not sub- 
jected to longitudinal membrane load at the ends.    Then (517), written 
for the Laplace transform of w(x,t) which is denoted by w,  becomes 

d w  .   -,  v* 
—r + Y(p)w 
dx 

JifL 
3  - ' 

ti    A    (p) xx r 

(519) 

where 

-(  , 12    Axx(p)  Aee(P) - Axe(p) 
Y(P) - -5-0 ^  

RV AZ (p) xx r 

(520) 
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and 

■ . .       . ■ ■  ■ 

V<"» 

A* 

1 

a 

^e*' 

-* S* 
pVaET 

1 1*. 

h^> 
PET 

1 

** 

-  —T-   V r a 

(521) 

(522) 

(523) 

I 

For very stiff fibers and nearly Incompressible vlscoelastlc 
matrix, the approximations used In Section 12 apply In a completely 
analogous way. These are contained In Equations (A«.*) through (487) for 
the approximate TD plate stiffnesses. In the present case, Equations 
(521) through (523) become 

(524) Axx<'» 
m Ea' 

*„.<»> •» * 
4vap 

A* 

Ga' 

^9<■,, - 4pG* • 

Introduction of  (524) and  (526)  into  (520) yields 

48p e 
Y(p) 2 2* 

a 

(525) 

(526) 

(527) 

In the elastic case, Equation (517) Is easily solved In gen- 
eral, and the solution Is then fitted to the boundary conditions.  It 
should, however, be borne In ml.id that the homogeneous solution of (517) 
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1/4 
contains ihe^terms exp[(-Y)       ]•    In the vlscoelastlc case, y has to be 
replaced by Y(P) as given by  (527),    Thus the Laplace  transform w will 
be obtained in a very complicated form,  ind the Inversion will prove to 
be extremely difficult.    Indeed, analytical Inversion is out of the 
question.    It is therefore more convenient to use a Fourier method for 
the solution of  (519), since this results in a much simpler form of w. 

Let 

q(x,t)  -    I   qn(t)  sin ax  , 
n-1 

(528) 

mi 
(529) 

Then 

q(XfP)  ■    I   qn(p)  »In anx . 
n-1 

(530) 

Assume that a solution of  (519)  is the form 

w ■    y    w (p) sin ax, L
1    n r n n-1 

(531) 

Introduce (530) and (531) Into (519), also taking into account (524). 
Equating terms of identical sine functions, we have 

12 qn 
w (p) - __ "_ ( 

h3E*lY(p) + **] 
(532) 

where Y(p) is given by (527). The solution in form (531) satisfies 
boundary conditions of simple support at x > 0, L; i.e.. 

w(x,t) - o 

d w(x.t) 

dx2 

-*■        w(x,p) - o 

dx2 

■ x - 0, L. (533) 

Let 
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w (t) - LT"1 W (p). n n 
(534) 

Then the solution to the problem of the simply supported shell is given 
by 

w(x,t) - I   wn(t) sin anx . 
n-1 

(535) 

Suppose now that the loading is uniform and does not vary in time. Then 

q(x,t) - qn  H(t) , 

q(x.p) - q0p • 

The Fourier expansion of 1 in o ^ x < L is given by 

00 

1 ■ —    y — sin a x . 
ir       ^ r. n 

n-1,3,5 

Hence, in the present case, 

A    ^o 
q ■  nn  Trnp n - 1, 3, 5 ~ 

(536) 

(537) 

(538) 

Suppose again that the matrix is represented by a simple Maxwell model. 
Then as in Section 12, 

*  1 + c nmp pG„ - a  1 - c 1 + Tp ' (539) 

Introducing (539) into (527) and introducing the resulting expression to- 
gether with (538) into (532), we obtain 

where 

12 
n ^   * 3  r        2 2   4        2 

E hJ p^Tp + m V    + a  (1 + Tpr) 

12 4 (1 + c)  m 

R2h2 1 " c   E* ' 
a 

(540) 

(541) 
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e - i - 4v 
*2 i       G 

a    1 - c E*  • 
a 

(542) 

Here, Gm Is  the  Initial matrix shear modulus.    Equation  (540)   can be 
written In  the  form 

w  (p) 12    4qo    1 4- 2Tp + T2p2 

h    ima       /.   ,   2cp   .   p_ I 
u 2 

0) 

(543) 

where 

a 
n 

(544) 

2+^ 
. = ^ (b) 

4 a 
n 

The Laplace Inverse transform of (543)  Is 

* 3        4 
E h    Tina 

a n 

w_(t)  - -#7 —^T    I   1 +        1 [(1 + 21^,   - T2a)2 + 2T2c2u)
2)2 

A7 

+ a,2   (1 - C2)   (2T^)2]1/2  e"Ca)t  sin  (a^Jl - ^2 t + *) 

where 

(545) 

ip -  tan 
-1       2Tai/l - ;2  (1 - T^Cü) 

T2ü)2   (2C2 - 1)  + 1 -  2TCU) 
- tan "I fl " 2 .       (546) 

- C 
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