
AD

CR-0484-1©

SOME STRONG WAVE PROBLEMS IN AN ELASTIC
MATERIAL WITH MICROSTRUCTURE

by

C. W. Bert
B. E. Cummings

June 1968

'i 'ii

GENERAL
RESEARCH CORPORATION
P.O. BOX 3587, SANTA BARBARA, CALIFORNIA 93105

This documpnt has been pproved for public releas;
and sale: its distributlon is unlimited.

Reproduced by the
CLEAR INGHOUSE

for Federil Scionlific & Technical
Information Springfield Va 22131

L0(



DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT

.REPRODUCE LEGIBLY.



ACKNOWLEDGMENT

This analysis presented here was obtained in the course

of research carried out on Contract DAAD 05-67-C-0484 under

the technical supervision of Dr. C. M. Glass of the Ballistic

Research Laboratories, Aberdeen Proving Ground, Maryland.

This document has been approved for public release
and rale; its distribution is unlimited.



ABSTRACT

The historical development of the foundations of thermomechanics is

reviewed, with emphasis placed upon the critical contribution of each in-

vestigator. The theories are discussed in terms of their relevance to

real materials in the important high-velocity regime which- lies between

the low and intermediate velocity regime (which involves essentially iso-

thermal elastic and plastic wave propagation) on one hand and the ultrahigh-

velocity regime (in which a hydrodynamic description of the material be-

havior is adequate) on the other. Various facets of high-velocity wave

propagation in various materials involve elastic, plastic, viscous, and

thermal effects on a macroscopic scale and perhaps on a microscopic scale.

Evaluations are made from the standpoint of thermodynamics as well as

classical mechanics.

Using fundamental principles of thermodynamics and mechanics, thermo-

mechanically coupled linear energy and constitutive equations are derived

for the elastic solid with microunit cells discussed by Mindlin.

Equations of motion for the microstructure are found for the large

amplitude case where Eulerian and Lagrangian formulations are not

identicai.
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I. REVIEW OF PREVIOUS WORK

A. INTRODUCTION

In the past decade, a very large body of experimental data on the i
behavior of various solids under strong shock loading has been obtained

by means of a variety of high-pressure dynamic loading techniques.
1'2'3

Since most of the original experimental work was conducted at very high

pressures (say, three or more orders of magnitude above the ultimate

strength) at which it has been recognized that strength effects are not

important, the analyses developed to describe this work mathematically

were based on hydrodynamics of dense, inviscid fluids. More recent effort

I has been devoted to hypervelocity impact (HVI), i.e., the impact of a small

body with a massive body at re]tive velocities exceeding the acoustic

velocities cf both. Since HVI involves creation of craters of finite size,

it must depend upon the strength properties of the materials involved.

Most of the attempts to analyze HVI have involved either minor modification

of hydrodynamic theory or correlation of highly simplified phenomenological

models with experimental results.

An example of the inadequacy of the hydrodynamic approach for the
4

high-velocity regime has been reported by Curran. The results of his

plate-slap experiments on 2024 aluminum-alloy plates at an impact velocity

of 1.9 mm/ps indicated that attenuation begins approximately 80-percent

sooner and is approximately twice as severe as predicted by hydrodynamic

theory. An analysis able to predict this greater attenuation accurately

is highly desired.

Until very recently, thermodynamic aspects of high-velocity waie

propagation have been highly ne.- .ected. Although the theory of linear

elastic materials with thermomechanical coupling (through the energy

equation) dates back to 1837 with Duhamel's work,5 there have been few

new major accomplishments in thermomechanics until about ten years ago.

Since the topic of linear thernoelasticity without thermomechanical• 6
coupling has been treated extensively in Boley and Weiner's textbook,

it is omitted here.

!i! 1



B. THERMOELASTICITY

Although the energy equation and constitutive equations for a

classical linear elastic solid with thermomechanical coupling were

originated by Duhammel in 1837, surprisingly little work has been done

in this area. Here the term "classical" means one without microstructural

effacts and with elastic properties independent of temperature. Most of

the analyses reported in the literature are concerned with the response

(thermal and mechanical) due to sudden or cyclic heating but no mechanical

loading. It appears that more analysis should be devoted to problems

involving purely mechanical loading, with particular emphasis on determin-

ing the loading rate at which the thermomechanical coupling effects

become important. On a strictly intuitive basis, it is believed that in

the regime in which thermomechanical coupling effects become important,

the use of a finite description of strain, rather than the linear

infinitesimal one, is necessary.

One of the most interesting anomalies in the behavior of a classical,

linear elastic solid with thermomechanical coupling has been discussed by
7Deresiewicz: His analysis predicted that the phase velocity of plane

elastic waves approach the adiabatic value at low frequencies and the iso-

thermal value at high frequencies. Deresiewicz pointed out that this is

in disagreement with the Laplace-Rayleigh thermomechanical theory of

gases, which Deresiewicz claimed is erroneous.

lasiciy,8-10
Although various theories of elasticity, aking into considera-

tion doublet stresses (doublet forces/area) in addition to classical

stresses (forces/area), have been proposed to explain such phenomena as

size effects in materials and crystal-lattice-type wave dispersion; only

recently has attention been given to the thermodynamic aspects of such

solids.
1 1 1 5

In all of the theories of thermoelasticity known to the authors,

the temperature dependence of the elastic. cons ants is neglected, even

though a recent thermomechanical theory of elastoplastic waves in solids

2
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considers an effect of the same order of magnitude: the eff-ct of tempera-
15 16

ture on the yield strength. Rosenfield and Averbach, in an analysis

which is on a rather weak mathematical and thermodynamic basis, indicated

that the temperature dependence of the elastic coefficients is related to

the stress dependence of the thermal-expansion coefficient a as follows:

a + a a (1)

where

a -E- 2 dE/dT (2)

where a is the coefficient of thermal (linear) expansion at zero stress,

a1  is the change in this coefficient per unit of normal stress, a is

the normal stress applied in the direction in which a is measured, E

is Young's modulus, and T is temperature. Rosenfield and Averbach con-

ducted experiments which confirmed the linear dependence of a with

S"stress, as predicted by Eq. 1. However, the discrepancy between tne value

of the proportionality constant a1  predicted by their theory, Eq. 2, and

that measured varied from 6 to 100 percent. An analysis which is on a

more sound thermodynamic and mathematical basis than that of Ref. 16 is

given in the appendix. Unfortunately the new theory requires additional

experimental data which are not normally available, namely the variation

of a1 with temperature.16 17

Following a procedure suggested in Boley and Weiner's, 
rillon

formulated a theory of thermoelasticity for physically nonlinear elastic

solids. He considered the strains as independent thermodynamic variables

("fluxes") and the stresses as dependent thermodynamic variables ("forces");

thus, he utilized the Helmholtz free energy function (also called the

* Gibbs work function). It appears that he might just as well have

considered the stresses as independent variables and the strains as
, 18

dependent variables, and then utilized the Gibbs thermodynamic potential.

S 3



Vakulenko1 9 has considered stress as the independent thermodynamic variable

in his work in tbermoplasticity, and Burridge and Knopoff 2 0 have introduced

a formulation of mechanical energy, using stress as the independent

variable, which is valid for prestressed and inelastic media as well as

nonprestressed elastic media. This approach is uied in the appendix to

considerably simplify the derivation of the stress dependency of the

thermal-expansion coefficient.

Another type of nonlinearity, namely geometric nonlinearity (i.e.,S 21
finite deformations), has been discussed very ably by Lee and Liu, and

some of the underlying thermodynamics aspects have been put on a sound

mathematical basis by Coleman and Noll22 and Wang and Bowen. 2 3

C. THERMOPLASTI CITY

The quantitative experiemnts of Farren and Taylor in 1925 form the

basis for thermoplasticity. They found that approximately 90 percent of

the work done in plastic deformation is dissipated in the form of heat and

the remaining 10 percent is irreversibly stored due to permanent distortion

of the crystal lattice.

Some of the work in thermoplasticity has been largely of a philoso-

phical nature.2 5 2 7  The first attempts to put the subject on a quantitative2829 Zige,30

basis were made independently by Freudenthal,2 8 Prager, Ziegler, and
31,19 Nahi 32

Vakulenko 3  Their work has been discussed critically by Naghdi,

who considered their work strictly exploratory in nature. His primary

objection was that their theories are uncoupled, i.e., they do not con-

tain a heat conduction term. He also questioned their choice of state

variables and generalization of Onsager's principle to nonlinear

phenomena.

33
Grigorian took the viewpoint that, although thermodynamic concepts

are of limited usefulness in constructing the mechan-cal parts of consti-

tutive equations, one 3hould check the thermodynamic consequences of a

tentative constitutive relation in order to make the mathematical model

4
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thermodynamically complete. (This poitit is illustrated in the consideration

in the appendix.) It is interesting to note that Grigorian recognized

that some of the plastic work goes into increasing the internal energy due

to changes in structure of the material.

Foster 34 devoted attention to relaxation-spectrum effects. In

particular, he noted that there are different relaxation spectra for

loading (increasing load) Pnd unloading (decreasing load).

Assuming that all of the plastic wor. is dissipated in the form of

heat, Dillon3 5 formulated a theory of thermoplasticity with thermomechanical

coupling for small strains and Backman 36 foir-ulated an analogouLs theory

for finite strains. However, the latter work has been criticized and
21

improved upon by Lee and Liu.

To date the most complete mathematical models for dynamic thermo-

plasticity analyses are those of Grigorian3 7 (with emphasis on soils) and

Lee and Wierzbicki 1 5 (with particular reference to metals).

As mentioned previously, Lee and Wierzbicki 1 5 included the effect

of temperature on the yield strength, but neglected the thermodynamically

related effect of stress on the thermal-expansion coefficient, a . In
16

their experiments, Rosenfield and Averbach measured this effect for

stresses well into the plastic range. They found that as soon as the

elastic limit is exceeded, a increases with stress at a greater slope

- an in the elastic range. However, the slope decreases with increasing

stress, eventually becoming zero, and finally negative. When they

removed the stress after each successive loading, they found that the

permanent changes in a also increased, then leveled off, and finally

decreased at higher applied-stress levels. This appears to be closely

related to the observations of Farren and Taylor 24 that the percentages

ol the total plastic work which goes into permanent distortion of the

l[tice varies with applied strain. In view of these considerations, it

5



is conjectured that the effect of the stress dependency of the thermal-

expansion coefficient would be greatest for short-duration pulses in

which the loading is removed before there is sufficient time for very

large plastic strains to be reached. However, as in the case of the same

effect in the elastic range, quantitative inclusion of this effect in a

theory must await experimental measurements of it over a range of

temperatures ranging upward from room temperature.

D. THERMOVISCOELASTICITY

The theory of thermoviscoelasticity has strong thermodynamic bases,Blt38-40 4-243-45

thanks to extensive research by Biot, Chu, 4 1 - 4 2 Schapery, and

Coleman.4 6- 4 8 Other research on the formulation of constitutive equations49 50
for thermoviscoelasticity has been carried out 

by Eringen, Cowin,

Chudnovskii, 51 and Leigh.
5 2

Various aspects of the nonlinear theory of viscoelasticity have53 54 55
been treated in recent work by Koh and Eringen, 

Kline, and Valanis.

Recently Eringen has formulated a theory of microstructural viscoelasticity

including thermodynamic considerations.

The literature which has appeared in the past decade on dynamic

thermoviscoelastic (DTVE) problems is too voluminous to mention in detail

here. For a basic treatment of the subject, reference is made to Boley
6

and Weiner's book. Most of the DTVE analyses found in the literature

neglect thermomechanical coupling. An example of one of the few DTVE

analyses in which this coupling is considered is found in Ref. 57.

It appears that the possibility cf the type of thermomechanical

instability discussed by Berg5
8 should be investigated further, especially

for high-intensity waves. He pointed out that the softening of a body

due to heating allows external loads to deliver more power to the body at

an increasing rate.

6 1



E. WAVE PROPAGATION

There are two fundamentally different types of waves:

1. Simple, continuous waves, which can be mathematically described

by a Fourier series of harmonic waves. These waves are of

small amplitude and are often called acoustic waves.

2. Discontinuous waves which involve a discontinuous jump in

some physical quantity. The order, n , of a discontinuous

wave is the order of the time derivative of the displacement

which is discontinuous. Thus, a shock wave, which involves

a jump in velocity, is a first-order wave and is usually the

most severe. Higher order waves involve jumps in accelera-

tion (acceleration waves) and in higher time derivatives.

59
4r The classical treatment, as used by Rayleigh, is adequate for

handling acoustic waves. The literature on the propagation of such waves

in elastic and viscoelastic solids is too voluminous to mention here
60,61except to refer to two texts and three review papers devoted to this

'2-64
topic.

The common metallic alloys used in load-carrying applications,

namely steel, aluminum and most titanium alloys, behave macroscopically

as isotropic materials at least in the elastic range. However, since

they are really aggregates of many highly anisotropic crystals, they behave

anisotropically on a microscale. This has been the motivation for various

theoretical65- 6 8 and experimental studies6 9 of acoustic-wave propagation

in single crystals. A few metals and alloys of increasing engineering

importance, namely beryllium, certain titanium alloys, zirconium, and

uranium, are anisotropiz even on a macroscale. Furthermore, filamentary

composites behave anisotropically on a macroscale.

An alternative, but equivalent, definition of the order n of a discon-
tinuity is one plus the order of the space detivative of the strain which
is iscontinuous. Thus, a shock wave, which involves a jump in strain,
i. i first-order wave.

7



The development of theories of solids with microstructure
1 0,1 3, 4

now permits a mathemacical treatment of solids which are isotropic on a

macroscale and yet anisotropic on a microscale. This opens a new avenue

of improved correlation between theory and experimental studies of

acoustic wave propagation. However, to date, studies along this line

have been limited to theoretical studies of relatively simple systems.
1 0 '70-72

The method of characteristics, which is based on the concept of a

characteristic surface or discontinuity surface appears to have been

developed at the turn of the century by Hadamard 7 3 for the study of the

propagation of discontinuities in hydrodynamics. The method has found

wide use in fluid mechanics, including gas dynamics and magnetofluidmech-

anics as well as hydrodynamics.

Apparently the first application of the method of characteristics

to solids behaving nonhydrodynamically is due to Thomas. He was originally

concerned with plastic solids but later generalized his compatibility

conditions. 75-76 Hill 77 discussed stability and uniqueness of acceleration

waves in general media with emphasis on incompressible and elastoplastic

media. Acceleration waves in anisotropic elastic solids were analyzed by

Howard,7 8 who was concerned with transversely isotropic media and Nariboli
79

who treated general anisotropic elastic media. Nariboli's approach is

interesting in that he combined the singular surface concept of Thomas

with the ray theory of Courant and Hilbert to obtain an equation which up-

on integration predicts the growth or decay of the discontinuities. Very

recently Lur'e80 has analyzed the propagation of discontinuities in

continuation with microstructure.

:: 81-85

Recently a number of investigators have investigated nonlinear

aspects of acceleration waves and higher-order waves in nonlinear elastic

materials. Some of the general results of these studies are:

1. When the strain has a discontinuity, the derivative of the
82

strain also must have a discontinuity. Thus, shock waves

8
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(to be discussed later) are accompanied by acceleration waves

although the converse situation does not necessarily hold.

2. Varley and Dunwoody 8 3 found that the linear theory of irrational

waves has an error which increases with time. Their nonlinear

theory predicts that either a shock forms or the material

"forgets" the details of the disturbance in a finite time.
84

Green's theory predicts that acceleration waves either

become infinite in finite time (i.e., a shock forms) or decay

to zero in infinite time, with the exception of transverse

waves normal to a shock.

3. Discontinuities of higher order than the second propagate

with constant strength8 4 and at the same velocity as the
85

acceleration wave.

• 86
In their book, Truesdell and Noll presented a review of accelera-

tion waves in generalized elastic media. Recently considerable attention
* 87-93

has been devoted to acceleration waves in viscoelastic media. Of

these, the work of Varley is especially important because the material may

be generally anisotropic and nonhomogeneous.

The problem of the propagation of discontinuities into a prestressed

medium is important in connection with propagation of unloading waves (if

the duration of loading is sufficiently long compared to the transit time

of the reflected wave), since then the medium is essentially prestressed

by the loading wave. For small deformations (i.e., acoustic waves), this

problem was treated by Biot.9 4 The case of acoustic waves but large

deformation due to the prestress have been considered in Ref. 95-97.

Finally, the propagation of finite discontinuities in prestressed media

has been treated by Green.
9 8

Although the foregoing analyses employ thermodynamics in the

formulation of the constitutive relations, they do not consider thermo-

mecharical coupling. This has been treated in two recent papers by

K 9



Chadwick and Powdrill99 for the linear thermoelastic case and by Fine
1 0 0

for the thermoelastoplastic case.

In the hydrodynamic formulation of the shock wave problem, the

major physical effect considered in the constitutive equation is

compressibility, i.e., dilatational (volumetric) waves. Thus, shear waves,

in fact any shear effects whatsoever, are not considered at ll. As has
101

been pointed out by Fyfe et al, this does not mean that the hydrodynamic

theory cannot predict some physical aspects of a shock wave even at high

velocities (as opposed to hypervelocities). An example of an early attempt

to combine shear effects with dilatational effects is contained in Ref. 102.

It should be pointed out that shock waves are not limited to

compressible media. In fact, recent analyses by Chu10 3-10 4 and by

Collins1 0 5 have been concerned with the propagation of shock waves in

incompressible isotropic elastic media. In such media, only nondilatational

shock waves can occur.

Recently Bland, 06-107 Green,8 4 and Coleman, Gurtin, and Herrera,88

considered plane shock waves in compressible isotropic elastic media.

Although these investigators considered certain thermodynamic aspects,

they did not consider them to the depth considered by Dewey1 0 8 and by
15

Lee and Wierzbicki. The case of plane shock waves in compressible

isotropic thermoelastic media was recently treated by Chadwick and
109

Powdrill. Their analysis is interesting !in that they claim that their

analysis leads to an infinite family of shock wave solutions which range

thermodynamically from isothermal to adiabatic. They claim that they know

of no thermodynamic or mechanical principle which enables selection of

the "correct" solution, although they suggest the possibility of using

the theory of nonlinear hyperbolic partial differential equations or

the irreversibility principle of thermodynamics (second law). The

present writers suggest that a stability investigation might be in order

here, i.e., it is unlikely that all of the possible solutions are stable.

For an isotropic linearly elastic solid, incompressibility requires
that Poisson's ratio be equal to 1/2. This value is closely approached
in certain rubber-type materials, but not in metallic materials.

10 L~~._________



In Ref. 106, Bland found that two kinds of shock waves, dilatational

and nondilatational, are possible in a compressible isotropic elastic

solid. However, it is interesting to note that he concluded that nondilata-

tional shock waves cannot propagate into a compressible hyperelastic solid

at rest in its reference state. To the present writers, this implies that

nondilatational shock waves can occur only during unloading, since then

the material, being already loaded, is not at its reference state. In

Ref. 107, Bland showed that in many solids (including simple elastic mate-

rials), the only kind of shock waves which are stable and admissible

thermodynamically are tensile dilatational shock waves (in contrast to

compressive dilatational shock waves in fluids). Although plane compres-

sive shock waves in elastoplastic media have been studied extensively,

Bland claimed that they are possible only in media in which the stress-

strain curve is concave upward in the plastic range.

To study the shock structure (i.e. the shape of the shock wave

front), it is necessary to include viscous dissipative effects. Recently
110Bland has performed such an analysis for plane waves in a simple

viscoelastic solid. He showed that all monotonic wave profiles ultimately

adopt the same constant wave profile, and he calculated the profile width

and the time formation of the profile.

In this brief review, a number of related special topics should at

least be mentioned:

1. Disintegration or pulverization of material behind a shock
111

front, applicable to certain soils.

112
2. Chaaiges of phase such as melting due to shock wave heating,

113
shock-induced metallurgical transformations, and shock

hardening of metals.
1 14

115
3. Interactions between acoustic waves and shock waves,

reflection and refraction of shock waves at free surfaces and

Interfaces, and spallation fracture criteria.
11 6 "11 7

4. Experimental techniques for generating shock waves and measur-
1-3

ing various characteristics of them.

o11



II. COUPLED THEI MOELASTICITY THEORY FOR A LINEAR SOLID WITH

MICROSTRUCTURE

A. INTRODUCTION

The use of high-pressure dynamic loading techniques in studying the

behavior of solids under strong shock loading has produced a very large
3

body of experimental data in recent years. Most of the original

experimental work was associated with very high pressures (three or more

orders of magnitude above the ultimate strength of the material) at which

it has been recognized that strength effects are not important. Thus,

the theory developed to accompany this work was based on hydrodynamics

of dense fluids. Later interest turned to hypervelocity impact of a suall

body on a massive body. This problem involved creation of craters of

finite size and consequently involved high-pressure waves that must

necessarily depend on the strength properties of the materials involved.

The natural extension of hydrodynamic theory to this problem has been

by the most expedient addition of special effects to existing computer

codes (programs) and in correlation of simple phenomenological models

with experimental results.

There is a well recognized need for an attack on the problem of

propagation of high-pressure waves form a fundamental thermomechanical

point of view. 1 5 This effort is underway in several areas. The effort

reported here is concerned with developing an applicable coupled

thermoelastic theory that will take into consideration the microstructure

of an elastic solid.

The use of "theory" here is in its most general sense, since most of

what has been done in the past is in the nature of computer solutions

to very involved nonlinear flow problems and might properly be called
computer experiments on mathematical simulations.

12



The coupled thermomechanical theory (thermal and mechanical effects

coupled in energy and constitutive equations) is well established for the

macroscopic description of solid media. The elastic case is due to

Duhammel5 in 1837, the viscoelastic case to Biot4 0 in 1955, and the
35

viscoplastic case to Dillon in 1963.

Experimental observation of such mechanical phenomena as size

effects and crystal-lattice type wave dispersion effects has led to various

micromechanical theories. Of these, perhaps the most notable is the

couple-stress theory, which in addition to ordinary stresses (forces per

unit area) also considers couples per unit area. This theory was

originated by Voigt8 in 1887 and was considerably developed by the

Cosserat brothers9 approximately sixty years ago. In the past ten years,

this theory has been developed further by various investigators too

numerous to mention here.

Mindlin I 0 noted that couple stresses are actually only the antisymet-

tic part of a more general tensor which he called the double stress tensor;

thus, he originate a theory which he called linear elasticity with micro-

structure. He also pointed out that hic theory is mathematically

equivalent to a linearized version of Ericksen and Truesdell's theory of
118

deformable directors. In the latter theory, the mechanical behavior

of a body at a given point is assumed to depend upon not only the deforma-

tion of the point but also the deformaticn of an oriented "director"

located at the poirt. If the director is assumed to be rigid, the

equations reduce to those of the Voigt-Cosserat couple-stress theory.

Upon completion of the present work, the work of Green, Rivltn, and

Naghdi1 1 9 - 1 2 1 came to the attention of the authors. In Refs. 119 and 121

they derived an energy equation for a simple multipolar material, but

they did not deal with constitutive equations. In Ref. 120 they extended

their previous work to include multipolar deformation fields. Their work

differs from ours in that they started with an entirely different set of

13



hypotheses in their theory. We believe that our derivation on the basis

of a microelement is more satisfactory from a physical viewpoint. Also,

they did not include initial stresses nor anisotropic beha-ior in their

constitutive equation.

In the work reported here, the usual material constitutive equations

are replaced by equations derived for the specific case of shock wave

loading. This is consistent with the current interest in constitutive

equations that have been experimentally determined from plate slap and

other strong shock wave techniques.

B. CONSERVATION OF ENERGY

Using Mindlin's expression I0 for the kinetic energy density, the

kinetic energy T of a macrovolume V can be rewritten as follows,

T =f Pu j dV+ f ' d+ 2Lk 1k dV (3a)

V V

where P PM + p '  (3b)

d =2 d d 69.k + 62 +6k6 £23. P (3c)
2j p qpl ql ljl + 6p2 q2Z 2 j2 + 6p3q3 3)

where u = displacement components

d = semilengths of edges of microelement

ij = microdeformation

PM = mass of macromaterial per unit macrovolume

P = mass of micromaterial per unit macrovolume

61j = Kronecker delta

ki2j = direction cosines of edges of microelement with respect

to fixed spatial coordinates

14



and a dot denotes differentiation with respect to time. The first term

on the right-hand side of Eq. (3a) is the classical kinetic energy

expression and the second term represents the contribution of the micro-

element.

Mindlin's10 expression for the rate of work W done on the macro-

volume V by the external forces (surface and body types) is equivalent

to the form:

W f ft 1  dA + ffji dV + P jk~jk dA + P jk~jk dV (4)

A V A V

where ti = surface force per unit area

= body force per unit macrovolume

T = surface force doublet per unit area with moment arm

normal to axis X. and acting in the Xk  directionJ

F k = body force doublet per unit volume with same subscript

notation as for Tjk

A = area

The terms on the right-hand side represent the work done by the respective

macro and micro surface and body forces.

The internal energy U contained in both macroelem.-nts and micro-

elements can be expressed as

U = P U dV + fp = total energy - kinetic energy

V V
(5)

where UM , U' are the internal energies per unit mass for the

macroelement and microelement, respectively.

15
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Considering a closed system consisting of both macroelements and

microelements, thermal energy is transferred out of the system at the

rate

= q dA (6)

A

where q is the outward heat flux. Conservation of mechani al energy

requires

14 Q d (T + U*) (7)

dt

The traction conditions at the boundary of the macroelement are:

t.3 = ni(iJj + °ij) (8a)

Tjk = ni(Pijk + 'ijk)  (8b)

where n = direction cosines of the outer normal to the surface

a14,a14 = components of the respective symmetric and antisym-

metric parts of the ordinary stress vector (force/

area)

Ijijk"'~ijk = components of the respective symmetric and antisym-

metric parts of the doublet stress vector (force

doublet/area) acting normal to direction Xi

Application of the divergence theorem and Eqs. (8) yields the

following result from Eq. (4):

W=~a, + oiJ)dj] , dV + f [(lijk + lijk)'Piz],i dV

V V

6ff dV + f d

16



where [ =a i

The heat transfer can be rewritten in terms of a heat flux vector

as follows:

Q fq n dA= fq dV (10)

A V

The differentiation on the right-hand side of Eq. (5) can be brought

under the integl signs appearing in Eqs. (1) and (3) with the following

results:

dt (T + U*) = dV + f d~40Pkjk dV

V V

+ f(PMM + p'6') dV
V

This interchange of the order of differentiation and integration can be

justified by assuming small displacements.6 However, it can also be

justified for arbitrary displacements by considering conservation of
122

mass. Consistent with the assumptions of linear elastodynamics the

dtnsities are treated as constants.

The quantity uji may be written in terms of its symmetric and

antisymmetric parts as follows:
uj - (12a)

j,i 2 111 (u ) 2 i'j i ij ij

where c i and wij are the macrostrain and macrorotation, respectively,

given by the following relations:

e u + uj i - uj (12b)
ij +u j ,i mij = (ui1j 7,i
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The relative deformation yij is defined as the difference between

the macrodisplacement gradient and the microdeformation, i.e.

Yij= j,i - ij (13a)

From Eqs. (10a) and (11), the following relationship is obtained:

uji i = +ij + Yij (13b)

Then the first term in the expression for W, Eq. (7), can be

rewritten as follows:

A ii +  i )U + a i i(ij + i dV (14)

V -j iijiiij 'j i j

where the integrand term -a ij Wj has been omitted because it is a product

(of a symmetric tensor and an antisymmetric tensor) which must be zero.

Incorporating relations (9-11, 12) into (7) and rearranging terms

and subscripts yields:

a + f u )u d
f°iji + 0 iji + f 3 - JdV
V

+ f [ijk,i + ijki + jk + Fjk - 3 dkkjkd

V

+ ij'ij + 0jk jk + (ijk + "ijk*jk,i - qjj - P dV = 0

V

(15)

18



The first two integrals appearing in Eq. (15) vanish by virtue of

the following translational and rotational equations of motion:

aiji + aiji + fj = puj (16)

1 2S+ +F - , d d(
ijk,i + Pijk,i jk + Fjk = 3 k£ k£

Thus, the only integral remaining in Eq. (15) is the last one, which

then must be equal to the right-hand side, namely zero. Furthermore, for

this integral to be zero for arbitrarily small regions, its integrand

must be zero. Thus,

aijij + ajk~jk + (Pijk + Pijk) jk,i qj =~ p(

where

PU = UM + p'U'

The microstrain gradient K ijk is defined as follows:

K k jk,i (19)Kijk j~

Then Eq. (18) can be rewritten in the following form:

aijij jkyjk + PijkKijk + Pijk'ijk qj,j =U (20)

Equation (18) is the general energy equation for an elastic

medium with microstructure. When microstructura. effects are absent

= ijk = k 0) , Eq. (17) requires that the antisymmettic part

of the ordinary stress tensor also vanish (ajk - 0) and Eq. (20) reducesjk 5
to the well-known energy equation of a classical elastic solid.

19



It is of interest to note that when all of the stress (a and ji)

strain (e,y) and striin gradient (K) components have the same sign,

the presence of the antisymmetric ordinary stresses and both the symmetric

and antisymmetric parts of the doublet stresses represent energy sinks

in the system.

It is especially important to note that even though Eq. (20) is

coupled in the sense that it involves terms containing aiJ' ijk' 9

and U , there are no cross-energy terms such as ijK ijk or 1 ijkij

This considerably reduces the number of coefficients which are required

in the constitutive equations.

C. DERIVATION OF CONSTITUTIVE EQUATIONS

Using Caratheodory's statement of the second law of thermodynamics,

Boley and Weiner 6 derived the following relations for a locally reversible

thermodynamic process:

A c + pTr = U (21a)
4s s

B t t - qj'j =pT; (21b)

where cs, at = nondissipative and dissipative deformation variables

As Bt = state functions

p = density

T = absolute temperature

n = entropy density function

Here we neglect viscous effects because it is believed that shock wave

deformation occurs so rapidly that there is insufficient time for viscous

forces to develop; thus, Bt6 t = 0 . Then Eq. (21b) yields:

q = -pT (22)qj,j

* 123
According to Coleman and Mizel the assumption of microscopic
reversibility is unnecessary.
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Taking ci' Yjk' Y ijk as state variables, we must consider OW,

a jk' ijk as staite functions:

aij ij(ij' jk' iJk'T)

°J j (ij Yjk' 'ijk'T)(3

a, Cy (C y Y K ,T) (23)
ik jkij' j ' ijk'

ajiij + aijyi j + Iijk Kijk + pTh = pU

A free-energy function 4 is defined by the following equation:

(Cij' Yjk' Kijk' T) = U(eij , Yjk' Kilk' T) - Tn(eij , Yjk' T)

(24)

Then

4) = U-T; - in (25)

But since

=(C ij' Yjk K ijk' T)

e _ _ + Y -- + -! (26)
3Ei ij ay jk al k  ijk + 3

= j jk ijk k ar (26

Equating from Eqs. (25) and (26):

T;a jki yik +3K k+a (27)

Thus, since it has been assumed that the other quantities are

independent of T , comparison of Eqs. (26) and (27) shows that

_-_n _ (28)
DT
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I

and

;T + + - 2 (29)
oC iij a jk jk + 3 jk ijk

Putting Eq. (29) into Eq. (23) gives

aikik= c - i +  " ++ (30)
0 ij 14 jk ik + lijk ijk = \ j DY jk+ 3 Kik jk(

Since it has been assumed that is independent of ij, Yij'

and ijk ' the following additional. equations must be satisfied:

jk ijk =" (31a) (31b) (31c)' ij 3 jk 3K ijk

Equation (31a) has often been used as the thermodynamic basis for

the symmetry of the elastic coefficients in the geneialized Hooke's law

for a general anisotropic elastic solid. In analogous fashion, Eq. (31b)

can now be used to establish the symmetry of the microstructural elastic

coefficients in general (anisotropic). It is of fundamental importance

to note that Eqs. (31) show that thermodynamically there can be no

coupling of macrostrains and microstrains in the constitutive equations.

Needless to say, this simplifies the constitutive equations considerably.

To establish the form of the macro and micro constitutive equations

more specifically, the free-energy function can be assumed to be a poly-

nomial in the macrostrain components ,ij , the relative strain components

Yij , the macrostrain-gradient components Kijk , and the temperature T .

For a linear material, defined as one having linear constitutive relations,

the highest degree polynont-al required is of second degree. Thus,

p a + b ij Eij + dijkt'ij'kk + gijijT

+bjkYjk + d jkY jkY m + g jkyjk T

+Biji ij + DijkkmnK4 jk K mn + Gijk Kijk T  (32)

22



In view of Eqs. (31) and (32), the following constitutive equations

can be written:

ij =b +d d + dik k + T;k ij (33)

0 = b + + d Y + g T; # jk (34)
ij jk dkikYik Uk2~m g.t;

Pijk = Bijk + DijkijkK ijk + Dijkmn K mn + G ijkT; kmn # ijk

(35)

There is a total of forty independent parameters involved in a

general three-dimensional thermoelastic problem involving microstructure.

These are temperature plus thirty-nine mechanical deformation parameters:

Six Eij (since cji = Eij)

Six Yjk (since ykj = -Yjk)

Twenty-seven Kijk

(Mindlin8 stated that there are forty-two mechanical deformation parameters,

but he had not determined that Ykj = -Yjk ")

The arrays of coefficients have the following sizes:

(a) Total No. of No. of Independent

Coefficient Array Type Non-Zero Coefficients Coefficients

b IM 6 6

d AM 36 21

g T 3(b) 3(b)

b* IM 6 3

d* AM 36 15

g* T 6 3

B IM 27 27

D AM 729 729

G T 27 27

Total IM 39 36

Total AM 801 765

Total T 36 33

Grand Total 876 834

(a) IM = initial mechanical, AM I active mechanical, T thermal expansion

(b) This relies on the well-established fact that there are no thermal

shear strains in linear theory.
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The total number of independent active mechanical coefficients

listed in the above tabulation (765) is considerably smaller than the

1764 claimed by Mindlin, although it is still a formidable number.

The advantage of including anisotropic behavior both on a macroscopic

and on a microscopic scale is that it permits handling of any material.

However, many metals and alloys of engineering importance (steel, aluminum,

some titanium) are macroscopically isotropic and microscopically

anisotropic depending upon the crystalline structure.

Recently Gurtin] 2 4 ,1 25 proved a theorem stating that the Clausius-

Duhem inequality requires that every elastic material be "simple," i.e.,

have stress, free energy, and entropy at a material point dependent at

most on deformation gradient and temperature at that point. However,

Gurtin did not include the possibility of any doublet stress effects in

his work. Thus, the present work is not inconsistent with his theorem;

rather it is beyond the scope of his theorem.

D. RELATION TO OTHER THEORIES

It may be possible to relate the present theory to the solid-state
126-128 128

theory of the Grineisen parameter. For example, Gilgarry has

argued that the Dugdale-MacDonrld corrections12 7 for finite strain are

not valid; yet many experiments indicate better agreement with the

Dugdale-MacDonald predictions.

It has been shown that there is a direct correspondence between

doublet stresses and a continuous distribution of 
dislocations.

129 l1 30

This may provide a basis for relating the present work to various theories

of dislocational damping.
13 1,1 2

The present theory has no provisions for phase and state transforma-

tions, which sometimes take place in certain crystalline materials under

strong shock conditions.
3
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III. DILATION WAVES INCLUDING THE EFFECTS OF MICROSTRUCTURE

A. INTRODUCTION

The accumulation of a number of years of experimental work with

shock waves in solids is reported in Ref. 133. That work has led to

the conclusion that any proper explanation of shock wave phenomena in

solids must include the effects of a rotation and deformation of microscopic

regions even when the input loading is a longitudinal pulse. These

conclusions provide sufficient reason for the investigation of a theory

of "microstructural" deformation in shock wave processes. A necessary

requirement for such an investigation is the development of appropriate

constitutive equations as done above.

These constitutive equations are used here with the equations of

motion for plane waves.

B. DEFINITION OF AN IDEAL ELASTIC SOLID WITH MICROSTRUCTURE FOR SHOCK

WAVE STUDIES

The definition of an "ideal" continuum involves the assumption that

a state variable (vector) exists and that a reversible path exists between

any two possible conditions of the state vector. The state vector for an

ideal elastic solid with microstructure must include the temperature, T

and information about either the state of stress or strain in both

conventional macrostructure and the additional microstructure. Constitutive

equations have been developed which involve the state variabl-s c j

Sjk , and Kijk (macrostrain, relative deformation between matro and micro

media, and the microstrain gradient), and the state functions:

aij (ij' Yjk' K ijk, T) = symmetric macrostress (36)

aik(cij' Yjk' Kijk' T) = unsymmetric macrostress (37)
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and

Pijk (ij' Yjk' Kijk' T) = doublet stress. (38)

This development is valid whenever the kinematics of the physical problem

make Eulerian and Lagrangian coordinates interchangeable. In particular,

the assumption is made that

au. au._I = __1 (39)
aa. ax.

1 1

where u. = x.j - a.j is the displacement of the particle, x is the

Eulerian coordinate and a. is the Lagrangian coordinate. And c similar
J

assumption applies to derivatives in the microstructure. In the problems

where the absolute value of displacement gradients is small, i.e., where

I << 1(40)
1

this is a valid approximation. However, we wish to deal with shock waves

in the macrostructure where this approximation could be considered invalid.

The validity of the assumption in reference to the microstructure also

needs to be considered. The size of the microstructure elements has been

related to the spacing (f dislocations in Ref. 133. In Ref. 134, a

typical value for the density of dislocations in a crystalline structure
9 2 11 2is suggested as 10 /cm before shock wave loading and 10 1/cm after

loading.

This would lead to typical sell sizes of 3.10-  cm/sell edge before

and 3.10- 6 cm/sell edge after shock wave loading. The same reference also

suggests that the shock front thickness would typically be of the order

of a phonon mean free path or from 10- 5 cm to 10- 7 cm, which is comparable

to the sell size. This leaves the speculation that the gradient is not

small in the microstructure with some support. Consequently it will be

necessary to reexamine the formulation of the microstructural

representation.
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The Eulerian equations of motion for an elastic solid with
10

microstructure are

(Oij + GiJ) + pfj pu (41a)

a - ^ (1 ""
("iJk + "ijk) + 0 k+ pFjk 3' d£kk (41b)

These equations are converted to Lagrangian form by substitution of the

Lagrangian variables.

a--(3L) + ( Oo(L) o
ai \ a) +ij + f (42a)

ai  (Q) + i(k + + p - p ' ( L) (42b)
3a;j i 'ijk 1 ijk + ajk + ?0Fjk 3 odk Zkk(2b

The Eulerian symmetric stress tensor aij gives rise to a non-

symmetric Lagrangian stress tensor a(). In order to recapture a
symmetric stress tensor, the Langrangian tensor may be transformed to

the Kirchhoff stress tensor, and Eq. (7a) becomes

-(K)- ']+ Pof(L) = uo
ai  ik ioj oj

In crder to simplify the notation, we let f(L) f and define

a(K) S

so that the macro material equation of motion in Lagrangian coordinates

becomes

S + + = (43a)
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Use may be made of the definition of Pijk as a gradient of the scalar

potential energy of an elastic solid10 to obtain an equivalent "Kirchhoff"

doublet stress in the following form

(K) ai aa

_( Px ax'
ijk \p Iax 'x x D y6c

While the relation between the "Kirchhoff" and "Lagrangian" forms of the

doublet stress is

axi ax'
(K) -m (L)

1itm aja 3a iJk

The desired form of the micro material equation of motion is obtained as

F, m\ x '.x 1 ^ -j

_ + + P6F ' (dk) 2 -k (43b)
aa. I + Mi 3a am Sjk 3k jk 3 O

with the simplifying notation P(K) = M, d(L) = d and F(L) _F

Equations (43a) and (43b) are the equations of motion for use with

plane wave phenomena.

C. PLANAR WAVE IN MICROMEDIA

In a macromedia the planar wave is defined by requiring all spacial

derivatives to be zero except for those in the direction of the wave

propagatio~n, i.e. -- ( ) # 0, a. ( ) 0, i = 2,3 . The same idea
1a aa

r::ay be extended to the micromedia, in which case ( ) # 0, al (

0, i = 2,3 When this is done, Eqs. (43a) and (43b) take the form

. - [(S + S) x  'f " (44a)
+ )-La + P of = Pou  4a

aa + Po F  3 (44b)
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107
If we introduce the notion that 3u/9a is a measure of the wave strength

(or shock strength), then we may gixe a meaning to ax/aa in the following

way: Let X = au/aa and recall that u = x - a , so that aa . ,

then Eqs. (44a) and (44b) become (for f = F 0)

-. [(S + S)( + A)] pu(45a)

2d 2
2

(la 2+ ) (45b)
( + s[M(l +

107
Again following Bland, the stresses are replaced by derivatives of the

potential energy function, which we will call W. So that

2 (and E:= X +1X2

M 
=

-

3K

In addition, note that

aw _aw ac aw4

and

a 2 ] x a2  a 2  a2

, aA

then Eq. (10a) becomes

a2 W a 2  aaW u + - [(1 + X)S] =p u (46a)
S2 3a2 a

In order to make a similar elimination of M , one needs to differentiate

the last term in Eq. (45b).

For the present we will not alter S.
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Equation (45b) with M replaced by - and carrying out the

differentiation gives

p d2  (  2
0i 2 D) 14 -- K- q+- (i1 + 2-)
3 o 2 a aw 2 3

But

Da

so that

3K a- T
3aa 2

Then
2
0d2 32 2 3 Y2 T 21

(1 + Y 2 + T)) _ + 2T a
-2  a2 2 2 3a1KI

3K 3a L3a aK
(46b)

It is clear that if Eq. (46b) is introduced into Eq. (46a) a very

complicated partial differential equation results. In order to find any

acceptable simplification of these equations, we wish to know what

physical facts can be used to simplify the mathematics of the problem at

this point?

Up to the end of the elastic regime, the wave equation (obtained

by s = 0 in Eq. (46a)) gives a very good approximation to the experimental

obser 4tions. This seems to be true even when a large number of

dislocations are present (i.e., when a microstructure is present).
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We will appeal to these observations as an argument for setting

= 0 and see if its consequence gives any meaningful results. To do

this we must study the simultaneous equations:

o u X a 24 u = 0 (47a)

p o 0d -  3 2 W a 2 TW Y3 T 1 1
3 dK 2 2 a 2  2 a

(47b)

and the constitutive equation

W = A + B). + C 2 + DXT + FK + GK2 + HKT (47c)*

with proper boundary and initial conditions. For now we take D = H = A = 0.

Then the behavior of Eq. (47a) is well known and Eq. (47b) becomes the

equation of interest. Substituting W into Eq. (47b) leads to:

p d 2  2 T - T
3 - 2G 2- 2(F) -L = 2G ka2

+ 2(2 + T)Y 2 G + 2T a (F+ 2G a) (48a)
Da 2

The right hand of Eq. (48a) is highly nonlinear. In order to see if

anything can be done simply, we will arbitrarily set all nonlinear terms

to zero (the validity of this step must be evaluated). So doing gives

Eq. (48b)

0 2G - 2Fa 3= 0 (48b)

3 aa 2 3a

2

Equation (32).
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In order to make the study of Eq. (48b) easier, nondimensional variables

are introduced in the form:

S
2

1
2F

G
a

t

F 60

with the result

-ET - =0 (49)

Equation (49) has the form of the telegraph equation with space and

time variables having their roles transposed. A substitution of the form

= e - ' 2  transforms Eq. (49) into

1 + (50)

and a formal solution with initial conditions of p( ,0) = P(;), ( ,0)

- 0 yields

p(,,T) = e-/2 J ()Q(po) dp (51a)

0

where

Q(PT) [P(P + T) + P(p - T)] (51b)

But P(P + T) corresponds to T < 0 and does not exist. And since the

initial velocity P(c) is applied only at the surface = 0 , it can be

represented as a delta function P(C) = 6(C) so that Eqs. (51) give

=(,T e /2 If.0 2~ 177 )6(P T ) dp (52)
0
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The solution for t > 4 > 0 is

= e ( i) (53)

and for T < the signal has not yet arrived at C , so = 0 . Return-

ing Eq. (53) to dimensional notation yields

2 2
a- - -  2F7 e °pd2 t- a 2 (4

a 0G -F2 a 0  6F 2 ~ ,(4

for an initial microstrain velocity

at a' _ 1 13C1(55)

it aa' 2p 0Fd

corresponding to T = 1.

This result corresponds to an oscillating decay of microstrain as

a function of position along the space axis.

If F = 0 in the constitutive equation (Eq. (47c)), then Eq. (48b)

becomes

d2
pd - 2G 32 = 0

33a a

This is a standard wave equation and the microstrain may take any form

that is a solution to a wave equation. Now if either of these cases

obtains, then a space oscillation of microstrain is a possible elastic

solution. Since there has been experimental evidence of a space

oscillation in strain hardness after shock loading,1 33 it is tempting to

speculate on whether or not these oscillating solutions can be related
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to the strain hardness observations. If the loading takes place so rapidly

that the deformation extends its elastic range on loading, there may be

some correlation between these results and those for which oscillation of

the strain hardening has been observed.
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APPENDIX

THERMODYNAMICALLY VALID THERMOELASTIC CONSTITUTIVE RELATIONS CONSIDERING

TEMPERATURE DEPENDENCY OF THE ELASTIC COEFFICIENTS AND STRESS DEPENDENCY

OF THE THERMAL-EXPANSION COEFFICIENT

There are two ways ti formulate the thermodynamics of solids.

Traditionally, it has been assumed that deformation gradients (strains)

and temperature are the thermodynamic fluxes (i.e., the independent

variables, also called state variables), while stress was considered as

the thermodynamic force (i.e., the dependent variable, also called the state

function). However, in some instances19 ,1 35 stress and temperature were

considered as the independent variables and strain as the dependent

variable. In his recent paper on thermodynamics of strained solids,

Kestin2 7 stated explicitly that either strain or stress could be used as

the independent variable. The latter formulation is believed to be mcre

desirable for the following reasons:

1. Prestress (i.e., initial stress) is included in a much more

natural fashion, as discussed by Burridge and Knopoff.
20

Prestress must be considered in problems involving unloading

waves.

2. The definitions of the elastic and thermal-expansion coeffi-

cients permit a much simpler derivation of the interrelationship

between temperature dependency of the elastic coefficients and

stress dependency of the thermal-expansion coefficient.

3. As shown by Westergaard, it is easier to deal with nonlinear

stress-strain relations by complementary energy as a function

of stress rather than strain energy as a function of strain.

4. The yield criterion (or plastic potential) in plasticity theory

is a function of stress not strain.
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In view of these considerations, especially the, sec-ond one, the

formulation having stress and temperature as the independ-ent variables

will be used here.

The energy equation is as follows:

Cijij + T; = U (Al)

where ci.. is the strain tensor, o.. is the stress tensor, T is

absolute temperature, n is the entropy per unit-reference-state volume,

U is the internal energy per unit-reference-state volume, and a dot

denotes a derivative with respect to time.

The free-energy function is now defined as follows:

¢(oij, T) = U(oij, T) -- Tn(ai, T) (A2)

Putting Eq. (A2) into Eq. (Al) gives

(cij - 4/o ij ); ij - (n + 34/3T)i = 0 (A3)

Since thermodynamically6'1 24'12 5  , , and e.. are independent

of . and i,

= a/'ij , n = -34/ T (A4) (A5)

Onsager's reciprocal relation implies sufficient continuity of

that the order of partial differentiation can be interchanged. Thus, the

following equality must be satisfied:

Since the Lagrangian formulation is used, this unit-reference-state

volume basis is equivalent to using a unit-mass basis, but it has the
advantage of eliminating the symbol for refere-'ce-state density in
numerous subsequent equations.
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Doi 3Taij 
a ij

or

(A6)aT 3T 3ai

ij aT i 0 ij

To obtain constitutive equations which are linear in s-ress, the

free-energy function is assumed to have the following form:

= BI(T)J + B2 (T)J2 + C1 (JIT)(J1)(T - 1 0) + F(T) (A)

where T is the temperature at the relaxation state (i.e., the tempera-0

ture at which the material is free of strain), B1  and B2  are

temperature-dependent elastic coefficients, C1  is the usual thermal-

expansion coefficient, F is an arbitrary function of temperature only

(detailed form selected to represent the nonlinear dependence of specific

heat at constant volume on temperature) and J and J are stress
1 2

invariants defined as follows:

3 a j (1/2)6'Jo a (81 0 ii' 2 km ik jm

where i, J, k, m = 1, 2, 3 and 6 is the generalized Kronecker delta
m

given by:

+1 if i,j form an even permutation of Z,m

6ij = -1 if i,j form an odd permutation of k,m

0 if i,j do not form a permutation of k,m

The form of the C1 term in Eq. (A7) implies the existence of a
25

relaxation state, a point which has been questioned by Eckart, who

offered no specific alternative to use in constructing constitutive

relations.
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In view of Eq. (A4)

ij = l)(Ji/30ij + (2/3J2 )(OJ 2/30ij (A9)

Differentiation of Eq. (A8) yields

aJl/30 ij = 6 ij, 6J 2 /ao ij = 6 ijJ I - oij (AI0)

where 6.. is the simple Kronecker delta (takes values of unity for
1J

i = j , zero for i # j).

Inserting Eqs. (A7) and (Al0) into Eq. (A9), one obtained

Cij = 2B1 (T)J1 6ij + B2 (T)(6 ijJ - j)

+ 6 ij(T - T )3(C J1)/J 1  (All)

or

e11 = 2B1(T)o11 + [2B1(T) + B2 (T)](a 2 2 + 033)

+ (T -- T o)a (C 1 1 )/a 1 1  (A12)

(Similar relations for C 2 2  and -33).

and

e12 = -B2 (T) 1 2  (A13)

(similar relations for e23 and 31) .

Comparing Eqs. (A12) and (A13) with those of classical elasticity

theory, we find
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2B - E , where E is Young's modulus

2B + B2  -v/E , where v is Poisson's ratio

3(C1 1 )/DJ-i a , lineal coefficient of thermal expansion

To check whether the Onsager requirement, represented by Eq. (A6)

is satisifed, the mixed partial derivatives are taken as follows:

a _ d B d B2  - + a
ao ji 2 T 6, F. 2i 6 a2 [(T T)(i TTj d T 6  + 6 j(ij i 3T - To0 MC1J1)/3Jl]

a -(A14)
= T P\ ai)

Equation (A14) shows that Eq. (A6) is satisfied without placing any

restrictions whatsoever on the form of the constitutive functions

B1 (T), B2 (T), C1 (J 1 ,T) , and F(T).

The specific entropy is computed from Eqs. (A5) and (A7) with the

following result:

22j d B/d T - J d B2/d T - J 3[(T - To)C ]/3T - d F/d T (A15)
1 1 2 B2 d 31  01

Since there can be no entropy production during continuous deformation

of a perfectly elastic material, the specific entropy must be independent

of the stresses. Thus, from Eq. (A15):

d B2/d T = 0 (A16)

J d B2/d T + 3[(T - T o)C 1 ]/3T = 0 (A17)

It can be shown that B2  is the reciprocal of the shear modulus

G = E/2(l + v) ; thus, Eq. (A16) implies that the shear modulus should be

independent of temperature. However, it is an experimentally observed
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fact that the shear modulus is temperature dependent. This can be accom-

modaLed quite easily by adding a term of the following form to the free-

energy function ¢ in Eq. (A7).

C2(J29,T)(J 2)(T - To )

In the stress-strain equation, Eq. (All), this adds a term of the form

(6iJ - a ij)(T - T )M(C2J2)/aJ 2

which is analogous to the deviatoric-thermal-expansion effect considered
17

theoretically and experimentally by Dillon. Addition of this term does

not prevent satisfaction of Eq. (A6).

To obtain some useful information from Eq. (A17), use is made uf the

following relation observ d in experiments by 
Rosenfield and Averbach:

16

Cl(akk, T) = C10 (T) + CilT)okk

Rosenfield and Averbach used only uniaxal loading and measured C' only

in the direction of that loadirg. However, it seems intuitively apparent

that a stress in direction 1 could affect the thermal expansion in direc-

tion 1 only, i.e., since the loading is directional, its effect on C1

should also be directional. This probably could be proved by functional

analysis. However, the present theory is an isotropic one; thus, the

preceding equation must be rewritten as its isotropic equivalent:

C1(Jit) = C10(t) + C11(t)J1  (A18)

Then Equation (A17) leads to

J1 dB1 /dT Td[(T - To)C 10 ]/dT

+J1 d[(T - 0o)CI/dT = 0 (A19)
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Again invoking independence of stress, Eq. (A19) implies:

d[(T - T )C10 /dT = 0 (A20)

and

dB1/dT + d[(T - T o)C 1]/dT = 0 (A21)

Integration of Eq. (A20) yields:

(T - T )C10 (T) = Const. (A22)

Equation (A22) does not appear to be realistic; this suggests that further

work on this topic is required.

Equation (A21) expresses an interrelationship between B and Cll

Since the experiments of Rosenfield and Averbach were conducted at room

temperature only, the validity of Eq. (A21) cannot be checked with

experimental data at present. Table 1 lists some sets of specific forms

for C and B1 which satisfy Eq. (A21).

-lSince B1 = (2E) , Eq. (2) in the body of the report can be put

in the following form:

C1 1 = 2 dB1/dT (A23)

Thus, Eq. (A23) corresponds to a g value of 2, where g is

defined as follows:

g = C11/(dB 1/dt) (A24)

It is noted that the form of Eq. (A23) is identical to Cases 2-4 in

Table 1, even though the coefficient g differs considerably. It is
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TABLE 1

SOME SETS OF SPECIFIC FORIS OF COEFFICIENTS B AND C WHICH SATISFL

EQUATION (A21)

Set No. BI C g(T) = C1 1 /(dB 1 /dT)

1 K1 K2 /(T - T )

2 K4 -K3T K3  -1

3 K5ek/T -[l + (T - T)k/T2]-i35

4 K6T P  -[I1 + (T - T)p/T]-i

Ki , k, p are constants

noted that for temperatures near to the strain-free temperature (t 0

Cases 2-4 predict g = -1 . However, Rosenfield and Averbach's experiments

for five metals gave a value of g within 3% of 2 (although individual

variations for specific metals differed from 2 by 6% to 100%).

Apparently Rosenfield and Averbach made a mathematical error in

applying Eq. (A6), and in doing so, they obtained the interrelationship

Eq. (2). This is contrary to current thinking in thermodynamics that

Onsager's relation should not place numerical restrictions on the

constitutive equation coefficients, but rather should be used only in

determining the general form of the constiLutive equations. Nevertheless,

it is puzzling that Eq. (A23) agrees with experimental results better than

with the values ,f Cases 2-4 in Table 1.
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