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Abstract of An Experimental Investigation of the
Dynamic Tangent Moduli of Polyethylene

The research presented in this thesis is on the study of

the behavior of the dynamic tangent moduli of polyethylene under

large quasi-static deformations. This involved both the determina-

tion of the complex shear modulus G* and the complex Youngs modu-

lus E* as a function of longitudinal and torsional strains.

Tubular specimens were subjected to longitudinal strains

of up to 150% or torsional strains of up to 30% by applying con-

stant loads and allowing the sample to creep. At various levels

of these static strains, as the sample is undergoing creep, small

oscillatory strains are superimposed on the specimen through a

coil and magnet system. These small dynamic strains may be im-

posed in either a lateral, longitudinal, or torsional mode depend-

ing on the moduli being investigated. From the decay curve of

the vibrations or the resonant frequency and half-breadth of the

frequency-amplitude curve, the value of the relevant storage and

loss moduli are obtained.

Upon removal of the static load, the specimen will start

to recover and the moduli can be determined during the recovery

cycle. In addition, the variation of the different moduli under

stress relaxation were also obtained for both fixed torsional and

longitudinal strains.

Both the shear modulus G* and Youngs modulus E* were ob-

tained in this manner, the Youngs modulus being determined from

either longitudinal or lateral vibrations of the specimen, and

the shear modulus by torsional vibrations.



I. Introduction

The research work presented herein is an effort to increase

our understanding of the behavior of a class of materials referred

to as high polymers. Specifically, this research is concerned

with the behavior of a low density polyethylene with a specific

gravity of 0.92.

High polymers are materials which differ greatly in their

mechanical behavior from crystalline solids as a result of their

being composed of long chain molecules. The bonds within these

molecules are usually single pairs of covalent electrons and such

molecules possess strong intramolecular forces. The forces between

neighboring molecules are usually much weaker, depending to a great

extent on the size and shape of the polymer chain. Due to these

weak intermolecular forces, these chains may act rather indepen-

dently of one another and are randomly oriented and may be in a

highly coiled form.

Many high polymers, however, are partly crystalline, and in

such polymers there are regions of different degrees of order, from

the completely amorphous to the ordered crystalline. In the crys-

talline region, the crystallization has resulted in a tying together

of random chain ends and an increase in order, and in these regions

the forces between neighboring molecules are higher. The low



2

density polyethylene that has been used in this investigation is

partly crystalline, of the order of 40 to 50%, and hence consists

of regions of different degrees of order. In such a partly crys-

talline polymer a valid molecular interpretation of the observed

macroscopic behavior under applied forces is made even more diffi-

cult. This is especially true since the growth and decay of crys-

talline regions must be considered, since under the action of

forces which tend to orient the molecular chains, such changes are

apt to take place.

However, in such polymers some of the observed macroscopic

behavior can be explained on a molecular basis. These materials

often show both retarded elastic behavior and viscous flow. For

small deformations the "instantaneous" elastic behavior can be ex-

plained as due to the small changes in valence angles and valence

distances, while the retarded elasticity is due to the coiling and

uncoiling of the molecular chains. Such behavior is time-dependent

but recoverable. Viscous flow is also time-dependent but such de-

formations are not recoverable and this is due to the slippage of

the molecular chains past one another.

There has been a vast amount of research carried out on the

study of high polymers in order to determine their viscoelastic

behavior. The primary purpose of these investigations has been to

predict the stresses or deformations resulting from prescribed dis-

placements or forces applied to the material and to gain some knowl-

edge of the relations between the observed mechanical behavior and

the molecular arrangement in order better to understand the mechani-

cal behavior resulting from different molecular mechanisms. Hither-

to more success has been achieved in the first aim than in the
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latter, and this is especially true for crystalline polymers.

Under applied forces, the response of polyethylene as ex-

pected for a viscoelastic material is both time and temperature

dependent. The usual viscoelastic phenomena of creep, stress re-

laxation, delayed recovery, permanent deformation and viscous flow

are all observable, their relative importance depending on the

temperature and the experimental time scale.

This time and temperature dependence has led quite naturally

to the use of a large number of experimental techniques,.since to

predict the general behavior of a viscoelastic material its response

over a wide time and temperature range must be known. For instance,

the applied forces might be impact forces whose time of application

is in the microsecond range whereas the study of creep may encom-

pass many years.

The most common experimental methods are stress relaxation,

creep, and dynamic loading. In stress relaxation an initial strain

is imparted to the material, and the stress relaxation fuction p(t)

is measured. In creep, a constant stress is suddenly applied and the

observation of the resulting deformation enables one to find the

creep function c(t). There are experimental difficulties involved

in both of these procedures and usually the first readings cannot

be taken until about 0.1 seconds after loading because of inertia

effects in the apparatus. Dynamic experimental techniques include

wave propagation and vibrational methods. In wave propagation

methods the velocity and attenuation of the wave are measured and

these can then be related to the viscoelastic constants. Vibration-

al methods can be classified as forced oscillation, resonance, and

free vibrations.



14

In these vibrational methods, a time dependent sinusoidal

deformation is applied and for small deformations where linear

viscoelasticity applies the resulting stress response will also be

sinusoidal though not in phase with the strain. Thus if

then E:(t) = s 0 cos(pt)

C(t) = a 0 cos(pt-6)

or in complex notation

s(t) = c eipt
0

then

a(t) = a e i(pt+6) = E*s(t)

where we have the following relations

=-1 2' = -cos6 , E2 C-sin6 , and tan6
0 01

In a similar manner if the stress is given as

a(t) = aeeipt

then for a linear viscoelastic material

s(t) = soe i(pt-) = J*a(t)

where

J*= j- -is-=
11 2 E

The relevant modulus used will depend on the method of

applying the imposed forces, and in this report it will be either

Youngs modulus E* or the shear modules G*. In this notation E

is usually referred to as the storage modulus and gives the

stress which is in phase with the applied strain, whereas E2 is

referred to as the loss modulus and it gives the stress which is

90 out of phase with the strain. That is E 1 gives the elastic

response of the material and E 2 gives the viscous response which

is a measure of the internal loss.



In forced oscillation techniques the sample is deformed

mechanically, the values of ao, co, and the phase angle 6 be-

tween stress and strain have to be measured. From these observed

quantities the complex modulus can be determined by employing the

relationships previously discussed. This method is used-at fre-

quencies where the inertia of the specimen and apparatus can be

neglected, i.e., for frequencies which are very low compared to

the resonant frequency.

At higher frequencies which approach the natural fre-

quency of the specimen and its apparatus, the inertia forces can-

not be neglected and either free vibration or resonance methods

are used. In the experimental investigations discussed in this

report both of these methods were used. Neither the stress

amplitude ao, strain amplitude cos or phase angle 6 between

stress and strain are measured directly. In the resonance method

a variable frequency oscillator with a constant amplitude is

needed to drive the specimen and the resulting pickup is ob-

served on an oscilloscope. By observing the frequency-amplitude

curve, the frequency at which the amplitude is a maximum is

found, this being the resonant frequency, and from this value E1

can be calculated. In addition, the frequencies on either side of

the resonant frequency at which the amplitude is half of the

resonant amplitude are found. From the ratio of the resonant

frequency to the difference of the half amplitude frequencies, a

value of the relevant loss modulus can be obtained. There are some

experimental difficulties involved in this method, due to the

electro-mechanical coupling. This can be accounted for by running

a series of tests at different field currents and extrapolating

the results to a zero field current. Another difficulty is
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the fact that the response of the material is being determined

over the frequency range encompassing the half-amplitude fre-

quencies rather than at one frequency. That is, E 1 is determined

at the resonant frequency but E 2 is not. However, for most poly-

mers the change in E2 over such a small frequency range is neg-

ligible, especially if E2 <<E 1

In the method of free vibrations, the specimen and its

associated mass is set into free vibration and the decay of the

vibrations is recorded. The frequency of the vibrations is used

to determine the storage modulus and the decay of the vibrations

gives a value of the loss modulus. One difficulty presented by

this method is that the damped vibrations contain not one, but a

whole spectrum of frequencies. However, it can be shown that for

small damping where tanS<<l, it can be treated as a vibration at

the natural frequency. In the case of polyethylene, tan6 is

comparatively small and both of the above methods give reasonably

good results.

In both the resonance method and free vibrations niether E

nor E2 is measured directly, but both are related to the quanti-

ties measured through the stress-strain relations of the material.

The geometry and mass of the specimen and the attached vibrating

system must also be considered. In the dynamic tests that have

been run, the specimen itself is tubular shaped and a center mass

M is attached to it. Depending on the way in which the vibrations

are applied, either the shear modulus G* or Youngs modulus E* can

be determined.

Figures 1 and 2 show the polyethylene specimen and the

center mass M, together with the driving and pickup coils which
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were used in this investigation. The details of the experimental

techniques will be discussed later but a brief introduction is

needed here. By using an oscillator, a sinusoidal current whose

frequency can be varied is applied to the driving coils and the

specimen is set into vibration. By using the pickup coils, the

frequency amplitude curve or the decay curve of the vibrations

can be observed on an oscilloscope.

By applying small torsional strains to the sample the

relevant modulus will be the shear modulus G*=GI+1 G2, G, being a

measure of the elastic response, G2 being a measure of the viscous

losses and tan6 = G2/G1 then being an indication of the relative

importance of the viscous losses or internal friction.

For the determination of the shear modulus G*, the ex-

perimental system will consist of the tubular shaped polyethylene

specimen which is clamped at both ends to prevent rotational move-

ment, and with a mass M mounted at the midlength of the sample.

I - mass moment of inertia of the center mass M with respect

to the axis of rotation.

Ix - mass moment of inertia of the polyethylene specimen with

respect to the longitudinal axis.

Ip - area moment of inertia of the polyethylene specimen with

respect to its longitudinal axis.

S- overall free length of the polyethylene specimen between

the clamped ends.

The equation of motion for the specimen itself will be

l2 e_ &T
wxh 2 isx

where T is the torque, and from strength of materials, for the
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elastic case

T- GI -x
pax

which then gives

12a = GIa2e
;t2

or for a tubular specimena2e _G a (e0- G(1)
~t 2 p ax•

where p is the density of the material. This can be generalized

*to the viscoelastic case by assuming a proper stress-strain law.

If T = Gy + G'y

then by replacing G by G + G'. in equation (1), we haveat

a2 0e G a2 e G' a3 e
t-2 _P a,x2  P at ax 2  (2)

Try a solution by using separation of variables

e(x,t) = g(x)f(t)

and after substituting in equation (2), the following relation

is obtained

gF"(x) - pf"(t) =k2

9g-x Gf(t)+G'f'(t)

Wqhere k is a constant and this gives us two equations, a space

.equation in x and a time equation

g"?(x) + k 2g(x) = 0 (3a)

f"(t) + af'(t) + bf(t) = 0 (3b)

where

a = G'k
2  b Gk2

p , p
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The solution of the space equation is the same as that of the

elastic case

g(x) = A cos kx + B sin kx

and k is found from the boundary conditions.

For the case of free vibrations, assume f(t) has a solu-

tion of the following form

f(t) = Re-t(Y-ip)

By substituting this into equation (3b) we have

y 2-p 2-2ypi-ya+pai+b = 0

By equating the real and imaginary parts to zero, the following

two relations are obtained.
a

Y = 2-

p 2 = b• 2

which then gives us y and p, where y is related to the decay of

the vibrations and p is the angular frequency.

By taking the derivative of f(t) with respect to t and

setting it equal to zero, we have the time period for successive

maxima or minima and this is found to be

2w
AT 2 -T

p

The amplitude is reduced by e-Yt in time t and hence in one 2wy

period of the oscillations it will be reduced by the factor e P

By defining A' to be the natural logarithm of the ratio of suc-

cessive maxima or minima, we have

A' = -n = ry
e n+l P
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The value of k must be determined from the boundary conditions

which are as follows, at the clamped end x = 0, there is no

rotation

e(0,t) = 0 , for all t

and at the midlength of the specimen, x = , the torque is due

to the mass moment of inertia of the center mass M, giving the

re lation

p(G + t ý at _x I. D2 ,I

and these result in the following frequency equation

I
Z tan Z-x

I
kk

where Z - 2 and when the ratio of the mass moment of inertia of

the specimen to that of the center mass is known k can then be

found. In order to agree with the notation used for the complex

moduli, i.e., G* = G + iG 2 , let G = G, and G' - L2

The following relations have been obtained previously

2 a2
p b - a/4 (4a)

y = a/2 (4b)

_ 2Try (4c)

G G2 k 2  G1 k 2  P

where a - b -

By substitution these can be written as

STr2p29.X(l•)2

1 2Z2p

tan6 - G l-A'/ )
GI (l+A,2/4n2)



11

or for small damping

G1 .. (5)

G 2 1A'

tan6 2 - (6)

Now in this solution, it was assumed that the time

function was of the form f(t) = Re -t(Y-ip) where there is only

one frequency component p. In reality there would be a whole

spectrum of frequencies p but as mentioned earlier, for small

values of A' the assumption of a single frequency will not re-

sult in serious errors.

For the case of resonance, assume that the applied torque

at the center mass M is of the form

T = ToeiWt

and that f(t) has a solution of the following form

f(t) = T0f(w)ei(wt-a)

substitute this into

f"1(t) + af'(t) + bf(t) = T eiWt

By equating the real and imaginary parts, we find

awtan a - w
bw

and

f(W)1

(b-w 2) 2+a 2W2

The value of w at resonance will be that value of w for which f(w)

is a maximum and this can be found by taking the derivative of

[(b-w 2) 2 +a22] with respect to w and setting it equal to zero.
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This then gives us for the value of the resonant frequency wr

2 = b a2  (7)
r 2

and

maximum f(w) - 1
ap

In order to find the values of W for which the amplitude is half

the resonant amplitude, set

f(W) _ 12ap

hence

'(b-w 2) 2+a2 W 2 2ap

2
which gives us a quadratic equation in w

( 2)2 + (a2_2b) 2 + b2 _ 4a2p2 0

2 2
The two roots, which will be denoted by v,2 and w 2  are

2
2 2a
2 ".2 = (b-a+) ±/ ap

and

4l2 w2 2=2 ap (8)

Now the half-breadth of the resonance peak is defined as

AW 43 1 W2AO. 1i 2

W W
r r

and for the case of small damping, this can be written as

Sp 2AW 1l,2 1l 2_22

r 2p

and from equations (4) and (8) we have
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A w. A= r3 tan6
(W T

r

In addition, for small damping, by using equations (4), equation

(7) can be written as
2ir2w Ix

G W2r 2IxG1 - 2ip

where Z is determined from the frequency equation

I
Z tan Z x

By applying small longitudinal vibrations to the specimen,

the relevant modulus will be Youngs modulus E* = El + iE 2 , where

El is a measure of the elastic response and E2 is a measure of

the viscous losses. The governing equation for longitudinal vi-

brations will be of the same form as for torsional vibrations,

i.e.,

a2u _ E 2u E+ 3u
at2 a x• + atax2

and the solution for either resonance or free vibration will

also be of a similar form. For free vibration with small damping

we have

tanS E2 A'
E1

2 2
E - rp k

1 Z2 A

where m is the mass of the specimen, and A is the cross-sectional

area. The value of Z is found from the following frequency equa-

tion

Z tanZ= m

wpM
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For resonance we have the following,

E2 _1 Atan 6 - = A-
E1  1 Cr

and ¶T2 wr 2 £.mE = r
1 - 2

In order to determine the complex Youngs modulus from

flexural vibrations, the experimental setup can be classified as

a fixed-fixed beam with an attached mass M at the middle of the

specimen. Assuming a stress-strain law of the form a = Ec + E's

the equation of motion for the lateral vibration of a bean is

EI -4- + E'Iz- +m j2 0
ax ~ at

where Iz is the area moment of inertia of the cross section. By

assuming a solution by separation of variables of the form

y(x,t) = g(x)f(t)

the following relation is obtained

gfll (x) 4 -mf"(t) -k

g(x) EI z2f(t)+E'Izkf' (t)

which gives us two equations, a space equation in x and a time

equation

g (x)-k 4g(x) = 0

f t"(t) + af(t) + bf(t) = 0

where

a z b Z
m m
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The solution for the space equation will be the same as for the

elastic case

g(x) = A(cos kx + cosh kx) + B(cos kx - cosh kx)

+ C(sin kx + sinh kx) + D(sin kx - sinh kx)

where k is determined from the boundary conditions.

For free vibrations, assume a solution of the following form

f(t) = Re-t(Y-ip)

which is the same as that used in the previous cases, and in a

similar manner leads to

2 A,

A'

E m E2 --+-f 2

tanS - - 2
E 1 1+A,2

147T

The boundary conditions are as follows, at x = 0, both y and 3-ax

are zero, which gives us A = C and hence

g(x) = B(cos kx - cosh kx) + D(sin kx - sinh kx)

At x = -,the slope ý-- = 0 which gives

cos - cosh --

D sin 1 + sinh k_
2 sin

the second condition at x = k is that the shearing force results*2

from the inertia of the center mass M,

El 3 + E'I -4 M~
a xzt atx 3  at 2

This gives another relation for By equating the two equationsD.B qaigth w qain
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the following frequency equation is determined

sin Z cosh Z + cos Z sinh Z = MZ
1 - cos Z coshZ m

where

Z = k-

By substituting for k, and assuming small damping, the follow-

ing relations are obtained

= - 2 mp2,3 (9a)I 4Z4i1
z

E2 A'

tan6 = - (9b)

where, as before, it is assumed that due to the damping being

small the use of only one frequency component instead of a

spectrum of such frequencies will not be greatly in error. For

resonance, the derivation is similar to the previous cases and

with the assumption of small damping leads to

72 2M 3

E1 4 r (10)4zI
z

E 2 1 Aw
tan6 =- = l

E1 wr

However, in obtaining the relation between the complex Youngs

modulus E* and the observed quantities, any longitudinal tension

present in the beam must be taken into consideration. For the

elastic beam with axial tension T the equation of motion is

EI a 4 T- y - -m a

ax ax 2l- at

and by substituting a solution of the form
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y(x,t) = g(x)f(t)

the following two relations are obtained

f"?(t) + pf(t) = 0

EI g""(x) - Tg"(x) = p 2m_g(x) (11)

The solution for g(x) is

g(x) = A cosh 2yx + B sinh 2yx + C sin 26x + D cos 26x

where

4y2 = 772 +

/.46 2 
- a•2 _

2

2 T 4 mp
2EIz EIz9

The only end conditions which will give us an analytic solution

is a simply supported beam. For a fixed-fixed beam an approxi-

mate solution can be obtained if we assume that the tension is

the more important restoring force, i.e., assuming T >> 4w2 EI z

but this is not true for our case even if we had these end condi-

tions. For the end conditions which we have, the resulting fre-

quency equation is much more complicated and it is doubtful

whether any approximation could be made.

However, if we multiply both sides of equation (11) by

g(x) and integrate twice by parts between x = 0 and x =we have
2

2 m .J g"(x)2dx + . g'(x)2 dx (2P2 = k 0,, (12)

IJ g(x) 2 dx + 'M g(!)

0f 0 o

where the boundary conditions discussed previously have been used.
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Rayleighs principle states that if we put in an assumed value

for g(x) the resulting frequency will be too high. Let us put

into equation (12) the solution of the beam equation when there
2

is no tension present and denote the frequency obtained by p1  and

this is found to be

2 4 EIzZ4 + 0.102 TZ 2

w2m3 w2m
1 T 2md 7Tm2 M

If only flexural rigidity were present we would have

2 4EI zZ
'r2mZ3

and if we considered a string of mass m with a concentrated mass

M at the midlength, the relation would be

2 Q2T
Pt 2

where Q is found from the frequency equation

m
Q tan Q=

Let g(x) be the correct solution for equation (12). If we put

this solution into the energy relation for the beam without an

-2axial load and denote the frequency obtained by p by

Rayleighs principle we have

2 -2PS -< PS

and if we put g(x) into the energy equation for the vibrating

2
string and denote this frequency by pt we again have

pt2 -- 2
t Pt
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Now equation (12) can be written as

EIz£ k2 k
z f2 g"?(x) 2 dx -!- 0g'(x)2dx

2.. m m. M. . 2 -2
+. ks Pt

2 M M 2 2 IMg(x) dx+ -g(-) Tg(x) dx+-g(-)

Hence we have

2 +Pt 2 < p2 2< Pl

or

2E Z4p2 4EI Z4TZ
+ Q2T <2 < + 0.102 TZ2 (13)72 Y3 7 2 t- 7T2m T2M9wm2 3  ir2m2. 72m2.3  irmZ

and this together with experimental observations of the change in

frequency due to applying a tension load will enable us to make

reasonable corrections on the observed values of E* obtained

from flexural vibration in the presence of a tension load.
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II. Experimental Equipment

In this section the equipment used in the experimental

investigation will be described.

(A) The material and its preparation.

The polyethylene that was used in this investigation was

obtained from the Monsanto Chemical Company, which kindly supplied

us with 30 feet of the material. It was a tubular shaped, low

density polyethylene with a specific gravity of 0.92. The nominal

O.D. was 1/2 inch and the nominal I.D. was 3/8 inch. All of the

polyethylene that was used in this test program came from the same

mix in order to avoid as much as possible any variation in the

material properties from one test specimen to another, due to the

manufacturing process.

In order to remove any residual strains and leave the

sample in a stress free state, the specimen had to be annealed.

Since the polyethylene was supplied in a coiled form it was found

that an annealing temperature of 100 Centigrade was necessary.

1The individual specimens which were approximately 9- inches in

length were thus put in an oven at 1000 Centigrade for 24 hours

and were then found to be quite straight.

The trueness of a specimen was determined by measuring the

inside and outside diameters at a number of points along its length.

The variation in the inside diameter was found to be within two

thousandths, e.g., from 0.374 to 0.376 inches for a typical speci-

men. The variation in the outside diameter was found to be much

.greater, some specimens showing a variation of over ten thousand-

ths. However, in all the specimens actually used in the test pro-

gram, the variation of the outside diameter was kept to within two
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thousandths, e.g., for a typical specimen from 0.494 to 0. 49 6

inches. Since the material supplied to us was a commercial prod-

uct for general customer use this variation was unavoidable and

no attempt at remolding was made.

(B) Description of the testing machine.

In order to carry out the series of tests that was con-

templated it was decided to design and construct a test machine

on which the tubular specimen together with its center mass could

be mounted and the desired loading program carried out without re-

moving the specimen or the center mass. That is, a machine where

the specimen could be mounted, together with the center mass M,

and a combination of creep in torsion or tension, followed by

either stress relaxation or recovery.

The machine so constructed is shown in Figure 1 and an ex-

planation of the various parts follows. The ends of the specimen

are mounted as shown at A and B with U shaped clamps. The position

of A is fixed with respect to its vertical position while the

other end of the specimen at B is attached to the movable testing

head. The movable testing head can move in the vertical direction

along the guide rods shown. Through a pulley and cable system

loads can be transmitted to the movable testing head, via the brake

rod C, in order to run a creep test in tension. At any stage of

the creep test the strain can be kept constant by applying the

brake, shown at D, and the decay of stress with time can then be

measured with the load cell shown at E. Alternatively, as a cer-

tain strain in creep is reached the tension load can be removed

and the specimen allowed to recover under zero load, since the
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weight of the testing head and load cell has been counterbalanced.

The initial length of the specimen is about 9
- inches, with 11

2

inches being clamped at both ends. This leaves the initial free

length to be about 6 inches and a maximum longitudinal strain of

150% can be achieved with this arrangement.

While the lower end of the sample which is clamped at A

is prevented from moving in a vertical direction, it can rotate

about its center on a shaft which is connected to the lower pulley

marked F. Torsional creep tests can then be run by applying loads

to this pulley and with a brake arrangement similar to the one

previously described the torsional strain can be kept constant for

relaxation tests, or the load can be removed and torsional recov-

ery allowed. This allows unlimited torsional strain, i.e., up to

the point at which the specimen buckles.

At G is shown the movable magnet holder which can move

along the guide rods as the specimen is stretched in tension and

thus keep the magnets in alignment with the coils of the center

mass. This part actually consists of two rings, the outer one

which can move along the guide rods as just explained and the inner

ring which can rotate and keep the magnets and coils aligned

during torsional creep.

In order to reduce frictional forces to as small a value

as possible, high quality bearings were used where needed such

as on the movable head B, on the torsional pulley F, as well as on

the other pulleys through which the loads were applied. The fric-

tional forces were thus kept to less than 1% of the loads actually

used in the experiment.

Except for the guide rods and bearings the machine was made
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from a high grade of structural aluminium. This was done mainly

in order to keep spurious magnetic effects at a minimum.

The machine was constructed in such a manner as to be used

in either a vertical or horizontal position, but for the tests

discussed in this report, it was used only in the vertical posi-

tion. Due to the added weight of the center mass which was much

greater than that of the sample, the specimen would bend during

the recovery tests if the horizontal position was used, and for

this reason it was used only in the vertical position.

(C) Added center mass M.

As discussed earlier, the small oscillatory strains from

which the relevant dynamic data is gathered are applied to the

sample through the center mass M with the four coils as shown in

Figure 2. In order to avoid any difficulties due to slippage

between the center mass M and the polyethylene specimen the bond

between the two would have to be reasonably constant and this

proved to be a problem due to the large changes in the geometry of

the sample during the loading program. During the longitudinal

creep test, the outside diameter would change from about 0.500 inch

to 0.320 inch at 145% strain. However, by inserting an aluminum

core at the midlength of the specimen, the overall change in the

outside diameter at this point could be kept to about 40 thousand-

ths and this variation could more easily be dealt with.

For this reason, the circular center mass M which was made

from aluminum was bored out to a diameter of 0.475 inches and then

cut in two lengthwise. Two coiled extension springs of 1 inch

O.D., length of 17 inches, and wire diameter of 0.016 inches were
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then used to keep the mass M fixed to the sample and it is be-

lieved that this worked very well as there was no indication of

any slippage between the specimen and center mass. The outside

diameter of the aluminum mass was 1 inch and its length was 1 inch.

The four coils are positioned on the center mass at ninety

degree intervals. Two of the coils are the driving coils, which

were made by winding seven layers of #28 gage wire on an aluminum

1core, 7 inch in diameter and 1 inch in length. The other two coils

are the pickup coils which were also made on an aluminum core by

winding on nine layers of #38 gage wire. Both driving coils were

collinear as well as both pickup coils. The lead wires from all

four coils to the power and recording equipment were made of #38

gage wire. In order to apply longitudinal vibrations to the speci-

men, iron cores were substituted for the aluminum ones. This

created some problems due to the four coils being so close to-

gether and attempts to shield the coils were not very successful.

(D) Recording the changing geometry of the specimen.

The relevant geometrical data that had to be recorded for

the determination of the dynamic moduli included the strain, over-

all length of the sample, and the diameter. These had to be

determined at each strain level with a high degree of accuracy.

At first, the direct reading of these measurements with a Garret

microscope and micrometer was tried. This, however, necessitated

stopping the test for a matter of minutes, while the data was being

taken. For this reason, it was decided to try to take a photo-

graph of the sample, and then take the measurements off the photo-

graph after the test had been run. For this purpose, an Exacter
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camera was tried. After experimenting with the camera, it was

found that the most reliable measurements could be obtained by

using a telephoto lens and taking measurements off the negative.

In Figure 3a is shown a picture of the specimen at zero

strain and in Figure 3b the same specimen after it had been

strained to 143.5% in the longitudinal direction. The marker

shown in the photograph was used as a reference length. In order

to measure the longitudinal strain, two ink dots were applied to

the specimen between the center mass M and the clamped end.

These dots were initially about 1 inch apart. The strain was then

determined from the change in distance between these dots. The

distance between the dots and the outside diameter of the specimen

were then measured from the negative by the use of the Garret mi-

croscope and micrometer. Though these measurements were not quite

as accurate as the direct measurements, the saving in time more

than offset this. The degree of accuracy was found by taking

direct measurements of a sample with the microscope, and comparing

these to values taken off of a negative of the same sample. It

was found, that the strain and the outside diameter were within

1%, using the direct readings as the true readings.

Before the specimen was mounted, the diameter and distance

between the dots were measured. After the specimen was mounted,

the initial negative that was taken should give us the same read-

ings unless the specimen was deformed while mounting the specimen

on the test machine. It was found that very little distortion

occured except very near to the clamp. In addition, the overall

length of the specimen was recorded when needed from a rule which

is shown at H in Figure 1. These readings were taken to within
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1 of an inch. During torsional creep, the angle through which one

end of the test specimen was rotated was found by reading the

vernier dial shown at I in Figure 1. This could be read to a

tenth of a degree which was more than accurate enough for our

purposes.

(E) Constant temperature chamber.

As is well known, the dynamic moduli of polymers are tem-

perature dependent and during each test the temperature would have

to be kept reasonably constant. For this reason, the tests were

carried out with the testing machine in a constant temperature

chamber. This consisted of a small storage room in a corner of the

laboratory which was then thermally insulated. It was found that

the temperature in the room could be kept to within 1/20 Centigrade

in the range from 24 to 74 degrees. For most of the tests reported

on is this report, the test temperature was 25 Centigrade. The

temperature was brought up to this level by using a rheostat con-

nected to light bulbs placed in the room. For higher temperatures,

heating coils were used and connected to a 220 volt Variac and

with this arrangement a maximum temperature of 740 Centigrade could

be achieved. The temperature was checked by having a number of

thermocouples placed in different positions around the chamber and

reading them on a potentiometer. A small window was made in one

wall through which pictures of the sample could be taken as the

camera was outside. However, the light source for the camera was

in the chamber and since this was triggered each time a picture was

taken, led to an increase of temperature. This was, however, kept

to a minimum and for the duration of a test a temperature increase
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of no more than one half of a degree Centigrade usually occured.

(F) Electrical circuit and equipment.

A schematic diagram of the electrical circuit is shown in

Figure 4. The function generator puts out a sinusoidal wave, the

frequency of which can be varied. This was sent on to a 30 watt

amplifier and then on to the two driving coils which are connected

to the center mass. Depending upon the type and position of the

magnets, the sample will then be forced into either lateral, longi-

tudinal or torsional oscillations. The other two magnets and

coils constitute the pickup network which feeds the signal to the

oscilloscope where the decay curve of the vibrations or the reso-

nant frequency and half-breadth of the frequency-amplitude curve

can be observed. The triggering circuit shown is to trigger the

oscilloscope in order to pick up the decay curve with a polaroid

camera. Also shown is the decade counter which was used to deter-

mine the frequency of the oscillatory strain.
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III. Discussion of the Experimental Results and Conclusions.

In this section, the experimental results on the behavior

of the dynamic tangent moduli in. shear G* and E* in both flexure

and extension will be discussed. The values of the moduli are

obtained as a function of large quasi-static strains in either the

longitudinal or torsional direction.

All of these tests have been carried out at a standard

temperature of 250 Centigrade. However, the temperature depen-

dence of both the shear modulus G* and Youngs modulus E* have been

investigated for specimens under conditions of zero strain. In

addition, the effect of the amplitude of the imposed sinusoidal

oscillations on the moduli has been determined. These effects

will be discussed in more detail in subsequent sections.

(A) Determination of the dynamic shear modulus G*.

In this series of tests the observed behavior of both the

storage and loss moduli in shear are obtained by superimposing

small torsional oscillations on the specimen. The shear modulus

G* is determined in this way under longitudinal creep followed by

recovery or relaxation, and in addition under torsional creep

followed by recovery or relaxation. The effect of a static tor-

sional strain upon the behavior of G* in longitudinal creep, and

the effect of a static longitudinal strain on G* in torsional

creep are also determined.

The effect on the shear modulus of the amplitude of the

sinusoidal oscillations was determined by observing the variation

in the natural frequency or resonant frequency with change in

amplitude. It was found that the frequency showed a slight de-
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crease with increasing amplitude and since G is proportional to

the square of the frequency, this led to a decrease in G with in-

creasing amplitude. By observing the decay curve of the vibra-

tions or the half-breadth of the frequency-amplitude curve it was

found that tan 6 showed a small increase with increasing amplitude.

These effects were very small and since the amplitude of the

sinusoidal vibrations was kept constant during the tests, these

effects did not have to be considered.

The temperature dependence of the shear modulus was also

determined, and as expected the temperature effects were much more

significant. The dependence of the shear modulus on temperature

is shown in Figure 5 for a specimen in the unstrained state. The

value of tan 6 as may be seen from Figure 5 shows a gradual in-

crease in magnitude over the temperature range used. The ob-

served points were determined from the decay curve of the vibra-

tions by the relation

tan 6 - At

7TT

and the value of tan 6 was found to increase from 0.1020 at 240

to 0.1630 at 740 Centigrade. The values of the natural frequency

p were also obtained from the decay curve of the vibrations. The

equation for the determination of GI is

w2 p 2 u1

Tr p
G1 - Z21 x

where in these tests p is the only variable, and the values of G1

determined by this relation are also shown in Figure 5. The value

of G shows a continuous decrease from 2.69x10 9 to 0.45xlO9

dynes/cm2 over the range of 240 to 740 Centigrade.
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Longitudinal creep and re ciovery.

The first series of tests that will be discussed is the

behavior of the dynamic shear modulus G* of the polyethylene speci-

men as it undergoes creep in the longitudinal direction under the

influence of an applied tension load, followed by recovery upon

removal of the load.

When a load is applied to the specimen via the pulley ar-

rangement, which was discussed previously, the specimen is strained

in the longitudinal direction, the strain increasing with time.

At various intervals of creep, small torsional oscillations are

superimposed on the specimen and either the natural frequency p

or the resonant frequency wr together with the loss modulus are

obtained. In addition, at each of these intervals the overall

length of the specimen is recorded and a photograph of the sample

is taken.

After a certain. strain is reached, the creep test is ter-

minated and the tension load on the specimen is removed. This

allows the specimen to recover in the longitudinal direction. At

various intervals of the recovery strain, the torsional oscilla-

tions are again superimposed on the sample, the value of the over-

all length is recorded and a photograph taken and this gives us

similar information to that obtained during the creep phase of the

test.

The maximum strain that is reached during creep depends

upon the tension load that is applied. For the specimens discussed

in this sectiorn the tension load varied from 2.7x107 to 4.6x×0 7

dynes, giving an initial engineering stress of 5.2x10 7 to 8.8x10 7
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2dynes/cm2. In Figure 6, are shown the variations of the creep

strain e in the longitudinal direction versus the time of creep

for three specimens. The creep test is terminated when the

change of strain with time becomes small as there is no appreciable

viscous flow at this stage. After removal of the tension load, due

to the large strains which had been achieved, the specimens did

not show complete recovery. The amount of permanent strain remain-

ing in the specimen was dependent upon the maximum creep that the

specimen was subjected to. In Figure 7, are shown the recovery

curves for the three specimens that were tested. When the rate of

recovery became very small, the temperature in the test chamber was

increased and this resulted in significant additional recovery for

some specimens. The temperature was increased from the test tem-

0perature of 25 to a maximum of 740 Centigrade. No data were

taken at the higher temperatures but as additional recovery oc-

curred the temperature was reduced back down to the test tempera-

ture and the data were then taken. One additional remark about

these creep and recovery curves is needed at this time. At the

various intervals of strain at which the data were recorded, the

creep or recovery was stopped for the period of time needed to

collect this data. This time interval was usually of' the order

of one minute.

The equation for the determination of G1 is given by

IT2 2 ZI x
G=G1 - Z21

p

where
IZ tan Z- x
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and the value of Z will change with longitudinal strain. For

values of I << I, the frequency equation can be written asx

I

Z tan Z !-Z2  _x

and by substituting this into the equation for G we have

p

For the specimens and center mass that are used in this experi-
I

mental investigation, -'is about 0.007. From the negatives of

the photographs taken at the various strain intervals, the out-

side diameter and strain of the specimen are determined, as ex-

plained in the previous section. In order to determine GI, the

storage component of the complex shear modulus G*, the following

variables must be known as a function of the longitudinal strain,

the value of 2 which is the overall length of the specimen, the

value of I which is the area moment of inertia of the specimen,

and the value of either the natural frequency p or the resonant

frequency wr" The value of Ip for a tubular specimen is given as

I -E(do4_di dI4Ip 32( 0 )

d being the outside diameter and di being the inside diameter.

By expressing the inside diameter as di -d , where the bar
0do

means the values at zero strain, I can then be expressed in termsP

of the outside diameter.

For the discrete strain intervals at which the data were

recorded, the values of 2, do, and either p or wr are then known.

These values can then be plotted versus the strain and continuous
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curves which best fit these observed quantities are then drawn

on the graphs.

The values of the natural frequency p raised to the second

power for specimen No. 3 are shown in Figure 8 for both creep and

recovery together with a best fit curve, this curve being deter-

mined visually. The dashed portion of the recovery curve is for

the values of p which were determined after the temperature had

been increased to facilitate recovery and the values seem to be

questionable. In Figure 8 are also shown the values of the natural

frequency p that were calculated by assuming the storage modulus

G1 remained constant with respect to strain, and this will be dis-

cussed later. The curves of the natural frequency p for the other

specimens are similar. In order to determine the variation of the

storage component of the shear modulus G*, values for k, do, and

p are determined from the best fit curves on the appropriate

graphs. These values are taken at certain intervals of strain,

i.e., every 10% and are then used in the relation

1 I

p

and the values of G1 obtained in this manner are shown in Figures

9, 10, and 11 for specimens No. 1, 2, and 3.

The reason for using the "smoothed values" of Z, Ip, and

p in the equation for G1 instead of the observed values, was to

reduce the amount of scatter that would have occurred in plotting

the value of G1 . The overall change in the value of G is very

small compared to the overall changes in k, Ip, and p. Since G,

is proportional to the product of k and p2, let us take a look
p

at how they change with longitudinal strain. For specimen No. 3
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which had a maximum creep strain of 143.5%, the ratio of' in-
p

creased by a factor of about 14 while at the same time the value

of p 2 was decreasing by almost the same amount. Since the two

quantities, I- and p2, are experimentally measured, the error in
p

the product of the two will be much greater than their separate

errors, especially since the values of the two factors are chang-

ing in opposite directions, i.e., one increasing, and one decreas-

ing with strain.

In Figure 12 are shown the values of p2 during the creep

phase of the tests for specimens No. 1, 2, and 3, and in Figure 13

are the smoothed values of - for the same specimens. Though the
I

P 2 tdifference among the values of p or - between the different
p 2 2specimens are small compared to the overall changes in p or

p
the values of G1 for the three specimens show significant differ-

ences, these differences being as large as the overall changes in

G1 for any one specimen during creep.

At this time all that can be said about the variation of

G1 with respect to longitudinal strain is that for all three speci-

mens the value of G1 shows an initial decrease with increasing

strain up to a value of 20 to 30%, and then tends to level off be-

fore starting to increase slowly in value with larger strains. For

specimen No. 3, the value of G1 seems to remain constant for about

an interval of 80% strain before starting to increase while the

other two specimens seem to show an increase starting much sooner.

That there is definitely a decrease in the value of G as

the specimens are strained in the longitudinal direction can be

seen from Figure 8. In addition to the experimentally observed

values of the natural frequency p for specimen No. 3, are the
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values of the frequency calculated by assuming that G1 remains

constant. The value of G1 at zero strain is 2.68 x 109 dynes/cm2

and if we write

2 2.68x10.9p -

7T

the variation in the value of p can then be found. From Figure 8

it can be seen that there is an initial decrease in G1 and that at

larger longitudinal strains G1 starts to increase, approaching its

value at zero strain.

The behavior of G1 during recovery for all three specimens

show similar behavior. Upon removal of the tension load the value

of G1 tends to decrease at first, this decrease being larger for

the specimens which had been strained more, and then upon greater

recovery it starts to increase. This led to a larger value of

G1 compared to the corresponding creep value when recovery was

completed at the test temperature. As mentioned earlier, the tem-

perature was then raised in order to achieve more recovery, and

though these values are questionable it appears that G1 is approach-

ing its initial stress free value. At the maximum recovery that

was achieved for the three specimens, the final value of G1 for

both specimen No. 2 and 3 was higher while that of specimen No. 1

was lower than the corresponding creep value.

For the three specimens used in this phase of the test

program, there does not appear to be any correlation between the

values of G1 and the tension load used, nor to the rate of strain-

ing. The values of GI, depend only upon the value of the strain in

the specimen, though this dependence is different for creep then
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for recovery. The difference between the value of G. during re-

covery compared to its value in creep seems to be dependent upon

the maximum strain achieved. The initial decrease in G1 on re-

covery being greater for specimen No. 3 than for the other two

specimens.

The values of tan 6 were obtained from the decay curve of

the vibrations by the following relation

tan 6 - A,

and for all three specimens showed similar behavior. The values

of tan 6 for specimen No. 3 are shown in Figure 14 for both creep

and recovery. The value of tan 6 showed an initial increase with

longitudinal strain though the rate of increase becomes smaller

with increasing strain and then appears to be approaching a con-

stant value. During the recovery, the value of tan 6 shows an

initial increase but then tends to decrease and at the end of re-

covery the value is lower than the corresponding creep value. The

values of tan 6 obtained after the test temperature was increased

in order to induce greater recovery also fall below the correspond-

ing creep values of tan 6. The initial increase in tan 6 at the

start of recovery appears to be greater for the specimens which

had been strained more during creep.

By using the resonance method, comparable values of tan 6

and G1 were also obtained, the value of G1 being slightly higher.2

However, in plotting w versus e there was more scatter about the

best fit curve and for this reason the moduli discussed herein were

found by using the free vibration data.
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For specimens No. 4 and 5, quasi-static torsional strains of 8 and

14% respectively were applied to the specimens and a suitable

time was allowed to elapse before longitudinal creep tests were

started. These tests were run in order to determine if a static

torsional strain had any effect on the behavior of G* during longi-

tudinal creep. Both of these specimens showed similar behavior

and it was found that the torsional prestrain had very little ef-

fect on G*. As in the previous tests, the values of tan 6 showed

an initial increase and then appeared to approach a constant value.

This increase in tan 6 was smaller than that experienced by the

specimens which had not been prestrained in the torsional direc-

tion, though the difference was not large. The values of G de-

creased at first with longitudinal strain but then started to in-

crease again with increasing strain. Both of these specimens

showed a greater increase in G1 then the specimens which had not

been prestrained but again this difference was small.

Relaxation at fixed longitudinal strains.

In addition to the longitudinal creep and recovery tests,

a number of specimens were allowed to undergo longitudinal defor-

mation up to a certain strain, and at this point the strain was

kept constant and the behavior of the dynamic shear modulus G*

during stress relaxation was observed.

The specimens were strained in the longitudinal direction

by applying constant loads as explained in the previous section,

and as a certain strain was reached, the brake shown at D in

Figure 1 was applied and this ensured that the specimen was held

at a fixed deformation. By applying small torsional oscillations,
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the decay curve of the vibrations was observed and the value of

the natural frequency p and logarithmic decrement A' were thus ob-

tained. The decay curve of the vibrations was obtained at various

intervals of time, t = 0 being the time at which the brake was ap-

plied. The moduli, are given by the following relations

A'
tan 6 = - l

G = 2I:2 2
G1 (l)p2

p

where the quantity in brackets for G is a constant during the
1

relaxation tests, and this value was determined from a photograph

of the specimen. Thus by multiplying the square of the observed

natural frequency p by the appropriate constant the values of G1

were then known with respect to time. The values of G1 and tan 6

for three specimens No. 6, 7, and 8 were obtained during stress re-

laxation at the fixed longitudinal strains of 8, 22, and 115% re-

spectively. The behavior of G1 and tan 6 during stress relaxation

at strains of 8 and 22% were similar and in Figure 15 the results

for specimen No. 7 with ex = 22% are shown. In Figure 16, are

shown the behavior of G1 and tan 6 for specimen No. 8 during stress

relaxation at a longitudinal strain of 115%.

The behavior of tan 6 and G1 for specimens No. 6 and 7 are

quite similar, the behavior of specimen No. 8 showing slightly

larger changes with respect to time. For specimens No. 6 and 7

the values of G1 remain fairly constant up until a value of t = 10

minutes, there is then a gradual increase up until t = 400 minutes,

and for longer times the value of G1 seems to be approaching a con-

stant value. For specimens No. 6 and 7, the values of G increased
1
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from 2.48 to 2.78 and from 2..46 to 2.75x!09 dynes/cm2 respectively.

For specimen No. 8 with a longitudinal strain of 115%, the change

in G1 was from 2.56 to 2.94xi09 dynes/cm2 and this increase oc-

curred in the interval t = 5 to t = 40 minutes.

These results appear to indicate that the relaxation be-

havior of the storage modulus G at fixed longitudinal strains is

dependent on the value of the strain, though this dependence ap-

pears to be slight. In addition, the time interval over which G1

shows its greatest change appears to be shifted to shorter times

for larger strains.

The values of tan 6 for all three specimens showed similar

behavior although the change in tan 6 for specimen No. 8 was

slightly larger. For all three specimens, the values of tan 6

appear to remain reasonably constant for about 10 minutes, after

which there is a decrease in their value. After a time of about

100 minutes, the values of tan 6 appear to be approaching constant

values. Unlike the behavior of GI, this change appears to occur in

the same time interval for all three specimens. For specimens

No. 6 and 7 the decrease in tan 6 is 0.0090 while the change of

tan 6 for specimen No. 8 is 0.0120. This would seem to indicate

a larger overall change in tan 6 during stress relaxation with in-

creasing fixed longitudinal strain.

Torsional creep and recovery.

In this series of tests, the behavior of the dynamic

shear modulus G* of the polyethylene specimen as it undergoes creep

in the torsional direction is discussed. For some of the specimens

the torsional creep is allowed to continue until buckling of the
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tubular specimen occurs, while for other specimens, the creep test

is terminated and upon removal of the load the sample is allowed

to recover in the torsional direction. In addition, some of the

specimens were prestrained in the longitudinal direction, to

determine what effect a static torsional strain would have on the

dynamic shear modulus G* during torsional creep.

By applying a load to the pulley system shown at F in

Figure 1, the specimen will be strained in the torsional direction

since the end of the specimen at B is clamped against rotation

while the other end shown at A will rotate as the pulley turns.

At certain intervals of the torsional creep strain, the small tor-

sional oscillations are applied to the specimen, and by observing

the decay curve of the vibrations both the natural frequency p and

the logarithmic decrement A' can be found. As in the longitudinal

creep tests, the torsional creep test is stopped for the interval

of time needed to obtain the decay curve of the vibrations. At

each of the intervals at which the decay curve is obtained, the

torsional strain is recorded by reading the rotating dial disc and

the vernier scale shown at I in Figure 1. For those specimens

which were not allowed to buckle, at a certain torsional strain

the load is removed and this will then allow the specimen to re-

cover in the torsional direction. During the .recovery cycle, the

recovery creep is stopped at various intervals of strain, the decay

curve of the vibrations is obtained and the vernier dial is read.

The maximum strain that is attained during torsional creep

will depend upon the stress that has been applied, and this varied

7 7 2from 3.5x107 to 5.9x107 dynes/cm2. For those tests in which the

creep test was terminated and either recovery or relaxation al-
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lowed, the torsional creep was stopped when the change of strain

became small. However, for the larger stresses used, the specimen

was found to buckle before the creep rate had appreciably slowed

down. For those specimens which were allowed to recover in the

torsional direction, the amount of recovery was dependent upon the

creep strain that had been reached. For these tests, additional

recovery was attained by raising the temperature in the test cham-

ber from 25 to 7 40 Centigrade. In Figure 17 are shown some ini-

tial creep curves under different stresses, and in Figure 1P are

the recovery curves for the same specimens.

In order to obtain the storage and loss modului of G* we

have as before the following relations

A'
tan 6= i

22

G1=
I

p

where both the logarithmic decrement A' and the natural frequency

p are determined from the decay curve of the torsional vibrations.

For this series of tests, the only variable in the determination

of G1 is the natural frequency p since geometry changes are neg-

ligible until the specimen starts to buckle. Hence, for each

interval of creep or recovery, the only data that must be recorded

are the decay curve of the vibrations and the reading of the

vernier dial. The vernier dial is graduated in degrees and the

torsional strain is then given by

doeS - _ 35

where d is the outside diameter of the specimen.
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Three specimens, No. 9, 10, and 11 were tested in creep

and recovery with stresses of 3.5, 4.7, and 5.9x107 dynes/cm2 and

these specimens were allowed to undergo torsional creep up to 12.1,

13.7 and 16.9% strain respectively, before the torsional loads were

removed and the specimens allowed to recover. Since the only

variable in the equation for G1 is the natural frequency p raised

to the second power we can write

G = (-T -)p2

P

where the quantity in brackets is a constant for each specimen
throughout the test. In order to plot the value of G as a func-

1
tion of the torsional strain during both creep and recovery, the

experimentally observed values of the natural frequency p raised to

the second power are multiplied by the appropriate constants and in

Figures 19, 20, and 21 are shown the values of G1 for the three

specimens. The values of G1 for all three specimens show a con-

tinuous decrease with increasing torsional strain, though at a

decreasing rate. The curves of G for all three specimens are
1

quite similar as opposed to the curves of G1 for different speci-

mens obtained during longitudinal creep. The closer agreement be-

tween the curves of G1 versus torsional strains is due to the fact

that no geometry changes and their attendent errors had to be con-

sidered. It is seen that there is no effect due to the different

stresses used nor to the rate of straining, and hence G during
1

torsional creep is a function only of the static strain.

All three specimens also showed similar behavior during

recovery, the value of G1 at first decreasing and then starting to

increase. It seems that the greater the initial creep strain, the
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greater is the difference in G1 between creep and recovery. For

all three specimens, the value of G1 started to increase with fur-

ther recovery and the dashed lines on the graphs are for those

portions of recovery which were achieved by increasing the tempera-

ture. However, in none of the specimens did G on recovery become

greater than its corresponding creep value as occurred in the longi-

tudinal recovery tests. In addition, it can be seen that the

values of G are approaching their initial stress free values.

In Figure 22 is shown the creep and recovery curves of

tan 6 for specimen No. 11, the values of tan 6 being determined

from the decay curve of the vibrations. The behavior of tan 6 for

all three specimens was similar, showing a very small increase in

the value of tan 6 with increasing creep, and upon recovery

showing another increase and then decreasing below the correspond-

ing creep values. Though the recovery curves of G1 did not cross

the initial creep curves, the curves of tan 6 do, all three speci-

mens showing a smaller value of tan 6 at maximum recovery as com-

pared to its corresponding creep value. As in the case for G1 the

values of tan 6 appear to be a function of the strain alone.

In addition, the values of tan 6 and G1 were obtained for

specimen No. 12 which was allowed to creep until buckling occurred.

The curves were similar to those of the previous specimens until

a strain of 19% was reached, where G1 then started to decrease and

the value of tan 6 started to increase, thus indicating the start

of buckling. By observing photographs of the specimen under tor-

sional creep, it was found that changes in the outside diameter

started to occur at about 18% strain.

The effect of a longitudinal prestrain on the behavior of
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G in torsional creep was also investigated. A number of speci-

mens were strained in the longitudinal direction and a suitable

time was allowed for relaxation effects to cease before torsional

creep tests were started. Three specimens with longitudinal pre-

strain of E = 3, 22, and 112% were tested in this manner. TheX

only apparent effect on the behavior of G1 in torsional creep was

an overall smaller change in G1 with increasing longitudinal pre-

strain, though this difference was slight. The values of tan 6

showed a greater increase as compared to the specimens which had

not been prestrained, but again this difference was small.

Relaxation at fixed torsional strains.

In addition to the torsional creep and recovery tests, two

specimens were subjected to torsional creep and at the torsional

quasi-static strains of 8 and 16% respectively, the strains were

kept constant and the behavior of the dynamic moduli in shear were

observed during stress relaxation.

The specimens were subjected to the torsional creep as

explained previously and when the desired strain was reached, a

brake was applied to the pulley shown at F in Figure 1, thus keep-

ing the strain constant. Since the value of G1 is given by the re-

lation

(Ir )
p

and the quantity in brackets is a constant, the only relevant data

that needs to be recorded for the relaxation tests were the natural

frequency p and the value of the logarithmic decrement A'. These

give us the values of tan 6 and G1 , and these can both be obtained
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from the decay curve of the torsional vibrations. The decay curve

was obtained at various intervals of time, t = 0 corresponding to

the time that the brake was applied.

The values of tan 6 and G are shown in Figure 23 for

specimen No. 14 with a torsional static strain of 16%. There did

not appear to be any difference in the relaxation behavior of the

two specimens. The values of G1 for specimen No. 14 shows a grad-

ual increase in value from 2.41 to 2.74x109 dynes/cm2 and then ap-

pears to remain constant with increasing time. The value of tan 6

over the same period shows a gradual decrease in value from 0.1125

to 0.1070 and then appears to be approaching a constant value. The

values of G1 and tan 6 for specimen No. 13 show similar changes.

Since there are no apparent differences in the relaxation behavior

of the two specimens, this would seem to indicate that the relaxa-

tion behavior of G*, is independent of the static torsional strain

at least in the region of large strains to which the twospecimens

were subjected. Both the variation in G1 and tan 6 observed from

these tests are similar to the behavior observed in relaxation at

fixed longitudinal strains, and this would seem to indicate that

the same molecular mechanisms are involved in both cases.

(B) Determination of the dynamic Youngs modulus E* from longitu-

dinal vibrations.

In this section of the report, the observed behavior of

the dynamic Youngs modulus, obtained by imposing longitudinal vi-

brations on the specimen was observed. This behavior was observed

under longitudinal creep and recovery, and in addition the behavior

in relaxation at various longitudinal strains was obtained.
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The data gathered in this phase of the investigation was

not as complete as that obtained by using flexural vibrations and

which will be discussed in a later section. This was due to two

reasons, the first being the experimental difficulties involved in

obtaining the decay curve or the resonant frequency and half-

breadth, and secondly this data was desired mainly in order to check

on the results obtained from flexural vibrations where the effect

of the tension load on the values of E* were corrected by approxi-

mate methods. The experimental difficulties were due to the fact

that the amplitude of vibrations in the longitudinal direction were

very small even though coils with iron cores were used and, the de-

cay curve of the vibrations was then badly distorted because of the

available equipment. The values of the natural frequency p and

logarithmic decrement that were obtained were rather inaccurate and

the resonance method was used for this phase of the experimental

program. The resonant frequencies were more reliable and these

were the values used in determining the value of E1 versus longitu-

dinal strain in creep and recovery, as well as the time variation

during relaxation behavior. The values of tan 6 could not be ob-

tained from the resonance method due to the interaction of the four

iron cores and attempts at shielding them proved to be unsuccessful.

However, in order to serve as a check on the results ob-

tained from the flexural vibrations, the values of E1 under longi-

tudinal creep and recovery, and under relaxation will be sufficient

and these results are presented in this section.

In addition, the behavior of E with respect to temperature

was determined for an undeformed specimen, and this could also be
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compared to the value of E1 obtained from flexural vibrations over

the same temperature range. The temperature range that was used

was from 24 to 740 Centigrade and these results will be discussed

later. No attempt was made to determine the amplitude effects on

El, but the amplitude of the oscillations at resonance were kept

constant throughout the tests.

Longitudinal creep and recovery.

The specimens were subjected to longitudinal creep by ap-

plying constant loads, these being applied in the manner described

in a previous section. At various intervals of strain, the creep

test was stopped for a period of time sufficient to enable the

resonance frequency to be obtained, and to record the relevant geo-

metric data. As in the previous tests, this consisted of obtaining

the overall length of the specimen from reading a rule and taking

a photograph of the specimen from which the strain and diameter

could be obtained. When the creep test was terminated the specimen

was allowed to recover and the same information was recorded during

the recovery phase. The creep and recovery curves with respect to

time are similar to those shown in Figures 6 and 7 for comparable

loads. The specimens in this section had applied tension loads of

from 2.7xi07 to 4.6xi0 7 dynes, giving an initial stress of 5.2x,0 7

to 8.8x10 7 dynes/cm2 . In addition, as in previous tests the temper-

ature in the test chamber was increased in order to obtain addition-

al recovery for one specimen.

For longitudinal vibrations the equation for E is given as
1

E 1 z2A
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where Z is determined from the frequency equation

Z tan Z=•

m being the mass of the polyethylene specimen, M the center mass,

A the cross sectional area of the polethylene specimen, k the over-

all length, and wr the resonant frequency. The value of Z ob-

tained from the frequency equation is a constant throughout the

test. The area A is determined from the photographs and the over-

all length X of the specimen is obtained by reading the rule. The

relation for E1 can be written as

12 = l 2m9. 2

E z2

the quantity in brackets being a constant for each specimen. Hence

2 k.to determine El, the values of wr and i must be known. The values
2

of W r that are obtained at discrete strain levels are plotted

against the longitudinal strain c and a smooth continuous curve
x

which best fits the data was drawn through the points. The values

of A and k were also plotted in the same manner and a continuous

curve drawn through the points. Then at various intervals of both

the creep and recovery strain, say at 10% intervals, values of Z,

A, and wr 2 are obtained from the best fit curve and these are then

used in the relation for E 1 .

The values of E1 so determined are shown in Figure 24 for

specimen No. 15 in both creep and recovery. The value of E1 for

this specimen showed a slight decrease in value with the onset of

creep, but then started to increase again at about 10% strain. The

overall change in E1 was from an initial value of 4.92xl09 to
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ll.51xl09 dynes/cm2 at a strain of e -- 140%.. The recovery curve

showed an initial decrease when recovery started and then started

to level off, remaining below the creep curve of El until ex = 30%

where it crosses and then gives a higher value of E for recovery

as compared to the corresponding creep value. The maximum amount

of recovery at the test temperature was at e = 38% and at this

point the temperature was increased to 740 Centigrade in order to

achieve additional recovery. These values of E are shown by the

dashed lines and it appears that E1 is approaching its initial

stress free value. The creep and recovery curves for the other

specimens that were tested showed similar behavior, the only dif-

ference being that the specimens which had been strained more in

creep showed a greater decrease in E1 at the start of recovery.

For the different specimens used, the curves of E1 versus longitu-

dinal creep were in better agreement than those of G and this was

probably due to the fact that the two factors in El. Wr2 and k

were not changing as rapidly as were the corresponding factors of

p2 and - in G1.
p
There was no indication that the value of E1 was dependent

on the tension load used nor to the rate of straining and hence

the value of E1 during longitudinal creep and recovery is then a

function of the strains alone.

Relaxation at fixed longitudinal strains.

During the relaxation tests at fixed longitudinal strains,

there are no geometry changes and the equation for determining E1

from longitudinal vibrations can be written as

E 72mk. 2
= 2• )rZ2A r
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where at fixed longitudinal strains the quantity in brackets is a

constant and E1 is proportional to the square of the resonant fre-

quency. By observing the resonant frequency with respect to time,

t = 0 starting at the time the deformation is held constant, the

values of E can be plotted by multiplying the square of the ob-

served frequencies by the appropriate constant and these values are

shown in Figure 25 for various values of static longitudinal strain.

It appears that there is little if any change in the value of E

during relaxation.

The results obtained in this phase of the testing program

will be discussed in more detail in the following section, where a

comparison between this data and the values of E1 obtained by flex-

ural vibrations is made.

(C) Determination of the dynamic Youngs modulus E* from lateral

vibrations.

In this section of the report, the observed behavior of

both the dynamic storage and loss moduli of E* are obtained by

superimposing small oscillatory strains on the specimen in the

lateral direction. The dynamic Youngs modulus E* is determined in

this way under longitudinal creep followed by recovery or relaxa-

tion, and in addition under torsional creep followed by recovery

or relaxation. The effect of a static torsional strain upon the

behavior of E* in longitudinal creep and the effect of a static

longitudinal strain on E* in torsional creep are also determined.

The effect on Youngs modulus E* of the amplitude of the

sinusoidal oscillations was determined by observing the variation

of the natural frequency p and the logarithmic decrement
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A' with change in amplitude. It was found that E 1 slowly decreases

in an apparently linear manner with increasing amplitude while tan

6 increases, though not linearly. As in the previous tests, the

amplitude was kept constant during each test and these small effects

were ignored.

The temperature dependence of Youngs modulus E* for an unde-

formed specimen is shown in Figure 26 for the temperature range of

24 to 740 Centigrade. These results were obtained from the decay

curve of the lateral vibrations and the values of p and A' were

then used in equations 9. The value of E1 shows a continuous de-

crease from 5.2x109 to 0.9x109 dynes/cm2 over this temperature

range. The value of tan 6 showed an increase from 0.1280 to 0.1910

over the same temperature range. The value of E1 obtained from

longitudinal vibrations is also shown on the graph and both curves

of E1 are similar.

Longitudinal creep and recovery.

In this series of tests, the behavior of E* of the poly-

ethylene specimen as it undergoes creep in the longitudinal direc-

tion under an applied tension load followed by recovery upon re-

movai of the lead will be discussed.

The specimen is subjected to longitudinal strains by ap-

plying loads as described previously, and allowing the specimen to

creep. At various intervals of strain the creep test is stopped

long enough to obtain the relevant data which includes a photograph

of the specimen, the decay curve of the vibrations, rule reading,

and in addition readings taken from the load cell. After a certain

strain is reached the creep test is terminated and the specimen is
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allowed to recover. At various intervals of the recovery strain

the relevant data is again recorded.

The maximum strain reached during the recovery tests was

different for the specimens used and depended on the tension load

that was applied. The strain versus time curves for the three

specimens tested are similar to those shown in Figures 6 and 7.

The amount of recovery was dependent upon the maximum strain and as

in the previous tests, additional recovery was achieved by increas-

ing the temperature in the test chamber.

In the introduction the following relation (equation 13)

was derived,

'4EI z 24 1E1z 2
z + Q2T _p 2 < + 0.102 Z2T

1T2 mZ3  w2 m•. - 'r2m,3  wm

It was hoped that this would enable us to make corrections for the

effect of the tension load on the values of E1 obtained by super-

imposing flexural vibrations on the specimen. In this phase of the

testing program, three specimens were tested under tension loads of

2.7, 3.6, and 4.6x×o 7 dynes and the initial stresses were 5.2,

7.0, and 8.8x10 7 dynes/cm2 . The specimens with increasing load

were subjected to a larger longitudinal strain. However, before

these tests were run, an estimation of the effect of tension on

each of the specimens was made. This was done in the following

manner, the decay curve of the vibrations was obtained for the un-

derformed specimen and then a tension load of 0.4xl0 7 dynes, giving

an initial stress of 0.76x10 7 dynes/cm2 was applied and the decay

curve of the vibrations was again obtained. The change in the

geometry of the specimens due to this tension load was small and
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was not considered. By finding the increase in the frequency after

the load was applied we were able to obtain an approximation of the

effect on the frequency due to the load. For each separate speci-

men at zero strain equation 13 can be written as
2

CE 1 + C2 T _S p _< CIE 1 + C3 T

where the values of C will then be known constants, though differ-

ent for each specimen. The value of the two frequencies found for

each specimen before and after a small load was applied are given

by

1 4 2
2 4El1 1Z4

Pl - 2mC CE1

2 4E 1 i zZ4 C4 TZ2
P2+ - ClE 1 + C4 T= 2mr 3 m2m3

and C 4 can then be found, i.e.,

P2 2

T

and this value of C04 will tend to be on the low side since the

frequency will decrease with strain, no matter how small the strain

is. Hence we would expect C04 to be less than C3 though not neces-

sarily greater than C2 . The values of C2, C3 , and C04 are as

follows for the three specimens.

c2 C3

specimen No. 16 0.094 0.107 0.088

specimen No. 17 0.094 0.108 0.090

specimen No. 18 0.095 0.109 0.090

and we see that the values of C04 are less than the corresponding
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values of C which they should be. Now from our derivation of

equation (13) we know the true value C, should be between C2 and

C and from the experiments we know that C is greater than C4 but
34

this did not give us a lower bound. If we used the value of C3

this would make the correction too large and this could even give

us a negative value of E1 . For this reason it was decided to use

the values of C2 for the corrections, hence we have from equation

(13)
E4

p 4lzz + Q 2T
1 7- i2MO, ir mP.

or E Tr2mk3Pp 2  Q 2Tk.2

1 4IzZ 41zz4

which can be written

= '2 mZ3  2 Q2 (2E1 -'T Pl T (14)
14z z4z4z

the quantities in brackets being constants, though different for

each specimen.

At certain intervals of strain during either creep or re-

covery the test was stopped long enough to obtain the decay curve

of the vibrations and the needed geometric data. This was then

plotted on a graph versus the longitudinal strain x and a curve

which best fitted the data was then drawn. Then at certain strain

intervals, say every 10%, the values of k and Iz were taken from

the best fit curves and together with the value of the frequency

obtained from the decay curve, the value of El was calculated from

equation 14. The values of El are shown in Figures 27, 28, and

29 for the three specimens. Since a constant load was used the
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value of T in equation 14 was considered a constant during the

creep phase after a strain of about 5% was reached. This was due

to the fact that the brake was not completely released until this

strain was reached. At each interval of strain at which the test

was stopped, the tension load would start to relax but since the

decay curve of the vibrations was obtained quickly the change in

T was not significant. The recording of the tension load T during

recovery was more difficult. During the first one or two readings

made after the sample started to recover, the tension on the speci-

men would increase quite rapidly and for this reason the decay

curve was not obtained until about 1 minute had passed, at which

time the tension was not changing as fast and the load cell could

then be read. For subsequent recovery stops the decay curve was

obtained as soon as the brake was applied and the load cell could

then be read without much difficulty. The dashed lines on the

graphs are for those values of E1 which were obtained after the

temperature was increased in order to achieve greater recovery.

From the graphs of E1 versus longitudinal strain for the

three different specimens, it can be seen that the values of E1 are

quite similar. The value of E1 showing a slight decrease at first

and then starting to increase with increasing longitudinal strain.

For specimen No. 18 which was strained to ex = 140%, the value of

E1 increased from 4.98x109 to 12.61xi0 9 dynes/cm2 . These values

of E1 can be compared to the values of E1 obtained by applying

longitudinal oscillations. While the values do not agree exactly

they are in reasonably good agreement, the values of E from flex-

ural vibrations being slightly higher during creep then those ob-

tained from longitudinal vibrations.
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The values of tan 6 which were obtained from the decay

curve of the vibrations by the relation

A
tan 6-

are shown in Figure 30 for specimen No. 18 during both creep and

recovery. The values of tan 6 for the other specimens show similar

behavior. As can be seen from the graph, there is a large decrease

in tan 6 with increasing longitudinal strain. For specimen No. 18

the value of tan 6 at zero strain was 0.1350 and it then decreased

to 0.03 at ex = 140% strain. The value of tan 6 upon recovery is

higher than its corresponding creep value, but the values obtained

at later stages of recovery seem to indicate that tan 6 is starting

to approach its initial stress free value.

In addition to these specimens, one other specimen with a

torsional prestrain of := 12% was also tested in longitudinal

creep and there were no apparent differences in the values of E1 or

tan 6, and hence the effect of a torsional prestrain on E* during

longitudinal creep would appear to be negligible.

Relaxation at fixed longitudinal strains.

A number of specimens were allowed to creep in a longitu-

dinal direction and at a certain strain the deformation was held

constant and the relaxation behavior of the specimens was observed.

Since there were no geometry changes during relaxation, equation

14 can be written as

72m23 2 QZ 22E= (-~--1-- )P 1  - --- T

Sz Z

where the quantities in brackets are constants. By obtaining the
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values of the natural frequency from the decay curve of the vi-

brations and recording the tension T from the load cell at various

intervals of time the value of E1 can then be calculated. These

values of E1 can then be compared to those obtained from longitu-

dinal vibrations which showed a constant value of E1 with respect

to time. This will give us another indication of the correctness

of our approximation on the effects due to the tension.

In Figure 31 are shown the values of E and tan 6 obtained

in this manner for a specimen in relaxation at a longitudinal

strain of ex = 142%. The value of E1 showed an initial decrease in

value during the first few minutes of relaxation, but at longer

times seemed to remain constant. There was no apparent variation

in tan 6 over the time range observed. A number of specimens were

tested in relaxation at other values of fixed longitudinal strain

and the above behavior was observed in all cases. These values of

E1 can be compared to the values of E1 obtained from longitudinal

vibrations and it seems that the behavior of E1 in both cases is

similar. The only difference is that the values of E1 from lateral

vibrations show a slight decrease in value during the first few

minutes and this difference could be due to errors involved in

reading the load cell.

Torsional creep and recovery.

In this series of tests the behavior of the complex Youngs

modulus E* of the polyethylene specimen as it undergoes creep and

recovery in the torsional direction is discussed. For some of the

specimens the torsional creep is allowed to continue until buckling

occurs while for other specimens the creep test is terminated and
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upon removal of the load, the specimen is allowed to recover in

the torsional direction. In addition some of the specimens were

prestrained in the longitudinal direction to see what effect this

would have on the moduli.

The specimen is strained in the torsional direction by

applying a constant load to the specimen via the pulley shown at F

in Figure 1. The angle through which one end of the specimen is

twisted is determined by reading the vernier dial shown at I in

Figure 1, and the torsional strain e is then determined. Since

the geometry changes are negligible until buckling starts to occur,

the data that must be recorded are the strain and the decay curve

of the flexural vibrations. At each interval of strain for which

the data is recorded, the creep test is stopped long enough to read

the dial and obtain the decay curve of the vibrations. This time

was usually about one minute. For those tests in which the speci-

men was allowed to recover, the load was removed from the specimen

and at various intervals of the recovery strain the needed data was

again recorded. As in the previous tests the amount of recovery

was dependent upon the maximum creep strain that had been reached.

In order to achieve greater recovery the test temperature was in-

creased from 25 to 740 Centigrade. The creep and recovery curves

are similar to those shown in Figure 17 and 18.

In order to obtain the storage and loss moduli of E* we

have the following relations

tan 6 -
IT

= (T 2 mt 3 )p2 Q2
z 4Z 4 z
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where the quantities in brackets are constants for each specimen

throughout the test. For those specimens which had not been pre-

strained in the longitudinal direction, no correction for E1 was

needed and the second term is zero. For those specimens which had

been prestrained in the longitudinal direction, the tension present

must be corrected for, and this is taken care of in the second

term.

For those specimens which were prestrained in the longitu-

dinal direction, a suitable time was allowed to elapse in order

for the tensile stress to approach a constant value, before a tor-

sional creep test was started and the tension T could then be taken

as a constant. By taking readings of the load cell during torsion-

al creep and recovery, the change in T was in fact very small and

the above assumption is then certainly reasonable. Since we are

concerned here with the behavior of E1 with respect to the torsion-

al strain e the correction term for E1 will in effect only move
the E versus e curve along the E axis and the overall change in

E will not be effected.

Three different specimens with stresses of 3.5, 4.7, and

5.9x107 dynes/cm2 were tested in torsional creep and then allowed

to recover. These specimens had not been prestrained in the longi-

tudinal direction. In Figure 32 is shown the variation of E1 with

torsional strain P_ for specimen No. 19 during both creep and re-

covery. For the other specimens tested the behavior of E1 was

similar. The value of E1 shows a continuous decrease from 4. 9 4xlO9

to 4.7x109 dynes/cm2 at a strain of = 18%. During recovery the

value of E1 decreases at first then starts to increase, and it ap-
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pears that the value of E1 is approaching its stress free value.

The dashed portion of the recovery curve is for the values of E1

obtained after the temperature was increased in order to achieve

further recovery. In Figure 33 the value of tan 6 for this speci-

men is shown during creep and recovery. The values of tan 6 for

the other specimens also show similar behavior. The value of tan

6 during creep appears to be constant or decreasing at a very small

rate with increasing torsional strain. Upon recovery the value of

tan 6 at first increases and then starts to decrease with further

recovery. The dashed portions of the recovery curve are for those

values of tan 6 obtained after the temperature had been increased.

For all three specimens, the final value of tan 6 when recovery

was completed was lower than the corresponding creep value. The

values of E1 and tan 6 do not appear to depend on the stress nor

the rate of straining, and are dependent upon the static strain

alone.

In addition, a number of specimens were tested in torsion-

al creep after they had been prestrained in the longitudinal direc-

tion. The value of tan 6 for all of these specimens showed a

constant value during torsional creep. However, the longitudinal

prestrain did effect the values of E 1 . It was found that with in-

creasing longitudinal prestrain, the decrease in E1 with torsional

creep became smaller, and with a prestrain of ex = 14o%, E 1 re-

mained constant during torsional creep. This behavior is probably

due to the long chain molecules becoming more oriented with longi-

tudinal prestrain and hence less opportunity for any additional

movement of these chains during torsional creep.
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Relaxation at fixed torsional strains.

In this series of tests, the specimens were subjected to

torsional creep and at a certain strain the deformation was kept

constant and the behavior of E* observed during stress relaxation.

In Figure 34 are shown the values of E1 and tan 6 during stress

relaxation at a torsional strain of 14%. The value of tan 6 re-

mains constant but the value of E1 shows an increase. It appears

that E1 is constant at first, and then gradually increases in the

interval t = 10 to 200 minutes, and then approaches a constant

value for longer times. The increase in E was from 4.69x10 9

to 4.90x109 dynes/cm2 . Two other specimens which were strained to

6 and 10% respectively showed similar behavior although the in-

crease in E1 was not as large.
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IV. Conclusions.

From the wealth of experimental data that has been obtained

during this investigation, some conclusions on the behavior of one

high polymer, specifically a low density polyethylene, will be

presented.

As described in the introduction, the mechanical behavior

of high polymers are highly dependent on temperature and time

effects. For the tests which were carried out in this investiga-

tion, temperature effects were generally avoided by using a constant

temperature chamber and keeping the specimen at one temperature

throughout the test. In those tests where the temperature was in-

creased to facilitate additional recovery, the temperature was

lowered back down to the test temperature before additional read-

ings were taken. What effect this temperature cycle had on subse-

quent recovery behavior is, however, not known for sure. Since

the high polymer we are using is partly crystalline, with a melting

temperature of around 1120 Centigrade and the temperature was

raised to as high a value as 740 Centigrade, certain molecular

changes with respect to the amount of crystallization undoubtedly

occurred at the higher temperature, thus contributing to additional

recovery. Thus by lowering the temperature back to the test tem-

perature and stating that the observed behavior is the true recovery

behavior, could easily be debated. The results obtained after the

temperature increase, are shown by dashed lines on the appropriate

graphs for the above reasons. However, we did obtain some data on

the variation of E* and G* with temperature from 240 to 740 Centi-

grade for undeformed specimens. This in general showed the values
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of the storage moduli, both G and E decreasing with increasing

temperature as expected. The values of tan S both showed an in-

crease in value with increasing temperature but no peaks were ob-

served in the temperature range that was used.

Of the two experimental techniques that were used in this

investigation, resonance and free vibrations, there are certain

disadvantages in using either. In determining the values of G*

in torsional oscillations and E* in flexural oscillations, the data

obtained from free vibrations was used. It was found that the

values of the frequency and logarithmic decrement were more reli-

able and the amount of scatter with respect to the best fit curves

was less than if the resonance method was used. The free vibra-

tion method also had the advantage that the decay curve of the vi-

brations could be obtained more quickly then the corresponding

data for resonance. For those tests in which the value of E* was

determined by longitudinal vibrations, the free vibration method

was not used. This was due to not being able to get sufficient

amplitude of vibration, and at these low amplitudes the decay curve

was visibly distorted due to the equipment available. The use of

iron cores did not overcome this problem. Hence, for these tests,

the resonance frequency was used to obtain value of E 1 . Due to the

inability to shield the coils and lead wires, a value of tan 5

from the resonance method was also found to be unreliable.

The experimental determination of the dynamic Youngs modu-

lus was obtained by using lateral vibrations and making a correc-

tion for the tension present in the specimen. Though this correc-

tion was an approximation, the corrected values of E1 were found to
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be in good agreement with the limited results obtained by using

longitudinal vibrations. Values of E1 from both methods were ob-

tained as a function of the static longitudinal strain ex, and in

addition as a function of time during relaxation at fixed longitu-

dinal strains. These results usually showed a difference of less

than 8% in value. It would thus' seem to indicate that the correc-

tion that was made was a reasonable one. The difference in the

value of E1 obtained by the two methods may be due in part 'to the

way in which the specimen is strained. During flexural vibrations

the molecular chains near the surface of the specimen will undergo

a greater strain than those chains closer to the center. In longi-

tudinal vibrations, each chain will be subjected to the same strain.

What we are observing from longitudinal vibrations is an average

E1 over the whole cross section, but in flexural vibrations it is

a weighted average.

The values of E 1 during longitudinal creep showed an initial

decrease in value between a strain of 0 to 10% but then started to

increase with increasing strain. The initial decrease in the value

of E1 during the beginning of creep could possibly be attributed

to changes in the crystalline region. The increase in the value of

E1 was due mainly to the orientation of the long chain molecules in

the longitudinal direction.

The value of tan 6 showed a rapid decrease in value from

0.1350 at ex = 0 to a value of 0.03 at ex = 140%. This is undoubt-

edly due to the orientation of the polymer chains, which results in

greater forces of attraction between the polymer molecules and re-

duces the chances of any additional movement of the molecules.
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During recovery the values of E1 were generally lower and

the values of tan 6 higher and this was probably due to the move-

ment of some of the polymer chains back to a more coiled configura-

tion. However, when additional recovery was achieved by raising

the temperature the values of E1 were then higher than the corres-

ponding creep values and this would seem to indicate that some

orientation effects due to stretching remained.

The values of E and tan 6 during torsional creep showed

only small changes, E1 decreasing with strain while tan 6 in-

creased. From the recovery data it appears that both E and tan 6

are approaching their initial stress free values.

There were no apparent changes in the values of either E

or tan 6 during relaxation at fixed longitudinal strains but during

relaxation at fixed torsional strains there was an increase in E13

though tan 6 remained constant. This increase in E was about

equal to the decrease of E1 during the torsional creep.

The values of G1 that were obtained during longitudinal

creep and recovery for different specimens did appear to show some

differences, but as was mentioned before this was probably due

mainly to the way the two factors I and p2 were changing. A slight

p
error in either factor would produce a much greater error in GI.

However, there is definitely an initial decrease in the value of G1

and with increasing strain it tends to increase again. The value

of tan 6 showed an initial increase and then appeared to approach

a constant value. During recovery G1 was initially lower while

tan 6 was higher as compared to their creep values, but on further

recovery they both crossed their respective creep curves. Again

this may be due to molecular changes brought about by an increase
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in temperature.

The value of G during torsional creep also showed an

initial decrease in value but then remained constant up until buck-

ling occurred. The values of tan 6 showed a small increase and

then approached a constant value. Both G and tan 6 showed relaxa-

tion effects at fixed longitudinal and torsional strains, these time

effects being similar. The values of G1 and tan 6 were constant for

the first few minutes of relaxation and then G1 showed a gradual

increase while tan 6 showed a decrease in value. At longer times

both G1 and tan 6 appeared to become constant again.

In this investigation, there did not appear to be any ef-

fects due to the rate of straining, nor did it appear that the value

of the stresses used during creep had any effect on the different

moduli.
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