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ABSTRACT: -* The kinematics of manipulators is studied. A model is
presented which allows for the systematic description
of new and existing manipulators.

Six degree-of-freedom manipule  ors are studied. Several
solutions to the problem of finding the manipulator
configuration leading to a specified position and orien-
tation are presented. Numerical as well as explicit
solutions are given. The problem of positioning a multi-
link digital arm is also discussed.

Given the solution to the position problem, a set of
heuristics is developed for moving a six degree-of-~
freedom manipulator from an initial position to a
final position through a space containing obstacles.
This results in a computer program shown to be able
to direct a manipulator around obstacles.

The research reported here was supported in part by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (SD-183).



THE KINEMATICS OF MANIPULATCRS UNDER COMPUTER CONTROL

ABSTRACT

This dissertation is concerned with the kinematic analysis of
computer controlled manipulators. Existing industrial and experimental
manipulators are cataloged according to a new model which allows for the
systematic description of both existing and new manipulators.

This work deals mainly with manipulators consisting of six degree-
of-freedom open c¢hains of articulated links with either turning (revolute)
or sliding (prismatic) joints. The last link called the '"hand'" is the
free end of the manipulator and has additional motion capabilities which
make it possible to grasp objects.

The following problem is discussed: given the desired hand position
and orientation along with the various link parameters defining the
structure, what are the values of the manipulator variables that place
the hand at the desired position with the desired orientation? Solutions
to this problem are presented for any six degree-of-freedom manipulator
with three revolute joints whose axes intersect at a point, provided the
remaining three joints are revolute or prismatic pairs. These results
can be expressed as a fourth degree polynomial in ~ne unknown, and closed
form expressions for the remaining unknowns.

It is shown that this is equivalent to the kinematic analysis of all
single loop five-bar mechanisms with one sphirical joint and four joinis
which are revolute or prismatic pairs. The extension to the case where
only one pair of axes intersect is discussed. A similar solution for

any manipulator with three prismatic joints is also given.
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A numerical procedure based on velocity methods is developed to
analyze manipulators which cannot be "solved' explicitly. This pro-
cedure is found to be superior to the widely used Newton-Raphson
techuique.

The problem of positioning a '"digital arm" (i.e., a multi-link
manipulator where each joint is only capable of several digital steps)
is discussed. A simple searching algorithm using a look-ahead scheme
is developed. A two-dimensional model and three-dimensional model are
studied.

Given the solution to the position problem, a set of heuristics is
developed for moving a six degree-of-freedom manipulator from an initial
position to a final position through a space containing obstacles. A
mathematical model of objects is developed so that possible conflict
between objects and any link of the manipulator can be detected and
avoided,

Some considerations in choosing a manipulator for use with a
computer are discussed. A set of computer programs - in FORTRAN IV -
are developed to perform the position analysis and trajectory generations

for any six degree-of-freedom .manipulator with turning joints.
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CHAPTER 1

INTRODUCTION

Remote manipulation involves having a machine perform tasks
requiring human dexterity. Originally, the purpose of a manipulator
was to protect man from the hazards of performing the work himself.

With the advance of technology, the variety of tasks performed in hostile
environments has increased. In addition the scope of the tasks performed
by machines has broadened, so that it is desirable for machines to extend
the capabilities of men and to replace men at tedious as well as dangerous
jobs. Although, today, many processes and machines are automatically
controlled, the problems of remote manipulation have yet to be fully
solved.

One approach to this problem is to use a digital computer to control
a manipulator. Then with information obtained from visual as well as
other sensory feedback, the computer would hopefully be able to direct
the manipulator to perform tasks requiring some intelligence as well as
dexterity.

This dissertation is concerned with the kinematic problems that
arise when a manipulator is subjected to computer control. These include
the problems of position analysis and trajectory generation.

In Chapter II, we discuss the classification and the description of
manipulators, including a catalog of most of the existing commercial and

special purpose manipulators.



The position problem is discussed in Chapter 11I. There we present
methods to find values for the manipulstor variables that will place the
terminal device at a given position.

In Chapter 1V, we present numerical methods that may be used to
analyze manipulators too complex for analytic solution as described in
Chapter III.

The problems of positioning a digital manipulator are discussed in
Chapter V.

Trajectory generation - the problem of moving a manipulator from a
given initial position to a specified final position - is studied in
Chapter VI.

In Chapter VII we briefly discuss some considerations in choosing
a manipulator for control by computer,

Chapter VIII presents the conclusions and some suggestions for

future work.

In the next section we present a brief history of remote manipulation.

This is followed by a summary of related work on intelligent automata.
Since much of the research related to the position problem has occurred

outside these fields, we discuss that work in Chapter III. 1In the last

section of this chapter, the contribution of this dissertation to current

research is presented.

1.1 History of Remote Manipulation

The development of remote manipulators followed closely the
development of atomic energy. As the radiation level of atomic energy
increased, so did the hazard to the operator. Thus, shielded environ-
ments and equipment to handle the material were needed. Early

-2-
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experiments were carried out using tongs in shielded caves. For more
complex experiments it was deemed necessary to develop remote controlled
manipulators. It was felt that general purpose manipulators could be
used to replace much special purpose equipment. Thus in 1947, the
Argonne National Laboratory began research into remote manipulators and
related equipment. The first manipulators built at Argonne had six
degrees-of-freedom controlled by mechanical drives plus a hydraulically
operated grip. Later versions were driven by electric motors. They
worked well for simple tasks. However, there was no force feedback,
making it difficult to perform experiments where articles came into
contact with one another [1].*

In 1948 the people at Argonne decided to develop manipulators
having force feedback with motion capability analogous to that of the
human hand. This led to master-slave manipulators in which the motion
of the master was mechanically coupled to the slave so that the forces
in the slave would be approximately reflected in the master. Several
versions of these were built at Argonne. One of these, the Model 8, has
been produced by several companies and is commercially available [1, 2,
3, 4J.

Although these mechanically coupled manipulators perform quite well,
they have several drawbacks. The main disadvantage is the mechanical
connection which requires the master and slave to be physically close

together. This also means that the shielding enclosure must bz designed

*Numbers in brackets designate references in the Bibliography (P. ).
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for the linkage. 1In addition the strength of the slave is limited by the
strength of the operator's hand. These disadvantages are offset in part
by the fact that the manipulators are fairly inexpensive and are able to
perform intricate operations [1, 2, 3, 4, 5}

Externally powered master-slave manipulatcrs using force reflecting
servos have been developed by both Argonne and the General Electric
Company. The Argonne machine is controlled with electromechanical servos
while General Electric's (''Handyman'") is hydro-mechanically controlled.
These manipulators have proved as effective as the mechanically connected
master-slaves. They have the advantage that the only connection between
master and slave is an electrical cable. 1In addition, they have a
variable force feedback ratio. However, their use is not as widespread
as the mechanical type. Perhaps this is due to their high cost and the
complexity of the force reflecting servo system [1, 6 1

Powered manipulators, not of the master-slave type have also been
successfully developed by General Mills, Inc., Programmed and Remote
Systems Corporation, AMF, General Electric, Westinghouse Electric Company,
FMC, among others. They are often used in radiation experiments along
with the more precise master-slaves. They are also used in an under-
water environment on submarines [/, § . Electric and hydraulic-powered
prosthetic arms have also been developed [, 10]. All these are generally
controlled by joy sticks, toggle switches, or similar devices.

All of the above mentioned manipulators require the presence of a
human operator. In their design much effort is made to have an inte-
grated man-machine system. This is reflected in the research of

Mosher [b, 11], Goertz [12), and Bradley [13]) whose emphasis is directed

A
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towards developing systems in which the operator does not feel his
remoteness but is made to feel as if he werr performing the task him-
self. This is accomplished with force reflecting servo-systems giving
kinesthetic feedback similar to what a human would feel. Such work will
have application in materials-handling, underwater work, and perhaps
earth-moving equipment. It also may be applicable to problems of remote
master-slave manipulators with time delay. Farrell [14] has indicated
the feasibility of such schemes.

There are some problems that the master-slave system does not
adequately solve. Since the master-slave system by definition requires

a master, it does not remove the tedium that is basic to most manipulati

ve

tasks. In addition, for exploratior of space, the time delay will become

excessive for anything further distant than the moon. Thus we have

motivation to develop manipulator systems with intelligence.

1.2 Intelligent Automata

Computer-manipulator systems such as AMF's Versatran and Unimation,

Inc.'s Unimate [16] are presently in use in industrial materials-handling

situations. These machines are programmed to move through a pre-determined

series of positions. They are used on assembly lines to unload punch

presses, conveyor beits and similar fixed cycle type operations. Working

three shifts a day, they can economically compete with human operators
However, they do not have any decision making ability, so that, if the
parts are not in the right position or if the cycle time varies, these
machines will not operate successfully. In addition they must be re-
programmed for slight changes in the process. It is thus desirable for
such systems to incorporate decision making capabilities.

-5
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Ernst [18) , using a manipulator equipped with sensory feedback,
developed a hand-computer system capable of stacking blocks. His system
was able to learn about its environment with information gained from
touch sensors. The work at MIT's Project MAC [19] has recently extended
the work of Ernst to include visual inputs and to develop a hand-eye
system capable of manipulating objects. The aim of Project MAC is to
develop an autonomous system with vision capable of performing manipulative
tasks requiring increasing levels of decision making ability.

Rosen, Nilsson, Raphael, {20, 21, 22], and others at Stanford
Research Institute have developed a mobile vehicle under computer control
that performs tasks in a real environment. The primary goal is to develop
a system receiving visual and other sensory information from the vehicle,
and then use this information to direct the vehicle towards the completion
of tasks requiring the abilities to plan ahead and learn from previous
experience.

Other research in manipulator-computer systems has been in using
small digital computers to assist rather than replace operators in manipu-
lative tasks. Beckett (23] at Case Institute, has developed such a system [
in which a typical use of the computer is to find minimum transit time
paths and direct the manipulator around predefined obstacles. 1In obstacle j
avoidance his routines keep the hand outside of effective boundaries
placed around obstacles. l-

The Supervisory Controlled Manipulator, is again a system with
limited intelligence intended to assist rather than replace an operator.
For this system Whitney 24) developed a state-space model of manipulative

tasks. He shows that tasks, such as pushing blocks on a table, or

-6~
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deciding how many and in what order blocks should be moved or pushed
aside in order to position a new block, may be expressed in terms of
discrete state spaces. A state is defined to be the configuration of
the task site.

The Hand-Eye Project, of the Stanford Artificial Intelligence
Project [25 , is oriented toward solution of computer supervised hand-
eye problems of increasing complexity. Current work is on basic problems
involving manipulation of simple cbjects and analysis of visual data.
Eventually it is hoped that the system will be developed to the point

of being able to assemble machines.

1.3 Contributions of this Dissertation

In Chapter 1I the description of manipulators is put on a systematic
basis. We present conditions leading to degeneracy in six degree-of-
freedom manipulator and conditions in which combinations of one degree-
of-freedom joints are kinematically equivalent to more complex joints.
Finally, a catalog of existing manipulators is presented.

The main analytical work is presented in Chapter III. Here solutions
to the position problem are discussed. Methods are given to solve any
six degree-of-freedom manipulator containing three revolute joints,
whose axes intersect at a point, provided the remaining three joints
are revolutes or sliders. The extension of the method to more difficult
arrangements is dealt with in the case where only one pair of revolute
axes intersect. A method of solution for a six degree-of-freedom
manipilator with three prismatic joints is also presented.

In Chapter IV a numerical procedure based on velocity methods is
developed to analyze manipulators whose solutions cannot be expressed

-7- o



as in Chapter I111. This procedure, along with the more conventional
Newton-Raphson method are programmed for a digital computer and the
results compared.

In Chapter V methods are developed to place the end of a new type of
digital manipulator at a specified position. A simple searching
algorithm is made more powerful by the addition of look-ahead. The three
dimensional problem is attacked with insight gained from studying a
planar model.

The trajectory generation problem is discussed in Chapter VI. A
set of heuristics is given for moving the manipulator from an initial
sosition to a final position through a space containing obstacles.
Possible conflict between all links of the manipulator and nearby
obstacles is detected, and hopefully avoided.

In Chapter VII some considerations in choosing a manipulator for use
with a digital computer are discussed. The desirability of being able to
arbitrarily locate the hand throughout the workspace brings up the problem
of zones. Some insight into this problem is presented.

Much of the above has been programmed and tested on a digital
computer. In particular the numerical solutions and the heuristics for
trajectory generation have been programmed to result in a fairly general
kinematic package. With only smallimodification these routines could

be used with any six degree-of-freedom ranipulator.
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CHAPTER II

CLASSIFICATION OF MANIPULATORS

2.1 The Basic Model

In order to analyze and compare manipulator configurations, it is
desirable to develop a mathematical model that can be used to describe
all manipulators. A manipulator is considered to be a group of rigid
bodies or links. These links are connected and powered in such a way
that they are forced to move relative to one another in order to posi-
tion a hand or other type of terminal device. The first link is assumed
connected to ground by the first joint while the last link is free and
contains the hand. In addition, each link is connected to at most two
others so that closed loops are not formed. For the purpose of this
work, the assumption is made that the connection between links (the
joints) have only one degree-of -freedom. With this restriction, two
types of joints are practical — revolute and prismatic.* A revolute
joint only permits rotation about an axis, while the prismatic joint
allows sliding along an axis with no rotation. A schematic representa-
tion of these joints is shown in Fig. 2.1. If a manipulator is considered
to be a combination of links and joints, with the first link connected
to ground and the last link containing the terminal device, it may
be classified by the type of joints and their order. For example, a

manipulator comprised of three revolute jointe, a prismatic joint,

*Although others might wish to include screw joints, we feel that the
difficulties encountered in building screw joints make them impractical.



and two revolute joints, in that order, would be designated 3R-P-2R,
where R is used tor a revolute and P for a prismatic joint.

Given a broad classification according to the joints, a sub-grouping
is made by looking at the links. Now, each joint has an axis associated
with it, and two adjacent axes are connected by a link. Thus a link
description ic just the description of the relation between two adjacent
axes. A link model, shown in Fig. 2.2, has the following parameters:

ay: The common normal between the axis of the ith joint and the

axis of the (i+1)EE joint.

sy: The distance between the lines a, and aj.) measured along

the positive direction of the axis of the ifh joint.

6,: The rotation of the line ay relative to the line aj.) about
the axis of the ith joint.

a,: The angle between the (i+1)£ﬂ axis and the ith axis. The
positive sense is determined according to the right-hand
screw rule with the screw taken along aj pointing from the
A+ to the 18R axis.

If the joint i 1is a revolute, then aj, sy and aj are constants
while 04 1is the variable associated with that joint. 1If joint 1 s
a prismatic joint, then a;» ay and 9i are constants while 84 is
the variable. The sub-classification is then made according to the
non-zero a; and 8y - For example, if all the aj and sy of a

4R manipulator were non-zero, it wouid have the sub-classification
sjaj)sjpajsjajs,a, or if a) =8, = Sq = 0 it would be of the type
sjajgajs,ay,. It may be noted that for the last link, 1 = n, ana and

s, are not well defined as axis n+l 1is non-existent. For this reason,

-10-
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if the last joint is a revolute, the parameters of the last link will
not be “‘ncluded in the description. 1If, however, the last joint is a
prismatic then 8, will be included. For the first link e; has an

arbitrary reference that will be considered zero so that 8y will be

included only if the joint is prismatic. An example of a %R, sjapsy

is shown in Fig. 2.3.

2.2 Special Cases: Degeneracy and Kinematic Equ’ alence

The most general manipulator has all non-zero link parameters.
However, in practical manipulators there are many zero parameters which
lead to special cases of interest. The first is degeneracy. This
exists when the number of degrees-of-freedom of the last link is less
than the number of joints. A manipulator with more thsen six joints
would be classified in this category, as a rigid body can have a maximum
of six degrees-of-freedom. The existence of four or more prismatic
joints leads to degeneracy, since motion from one jnint can in general
be obtained as a linear combination of the motion of the remaining
three. Also, if four or more revolute axes always intersect at a
point, then rotation about one axis can be expressed as a combination
of rotations about the other three. Special values of the parameter: o
can also lead to degeneracy. An example is given by those values of ¢
for which four revolute axes are always parallel, and hence normal to
the same plane.

In addition to degeneracy, non-zero parameters may make combina-

tions of revolute and prismatic joints kinematically.equivalent to

more complex joints. Thus if three revolute axes intersect at a point

-11-
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Figure 2.2. The Link Model.
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Figuie 2.3. Schematic of a 4R, sjajsq manipulator.
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they are equivalent to a spherical joint whicih we denote by the symbol
S. Also, if the axes of a revolute and a prismatic joint coincide, they
are equivalent to a cylindrical joint denoted by the symbol C.

A 4R manipulator may be used to illustrate these special cases.
The most general case is shown schematically in Fig. 2.4a. A sufficient
condition for two axes to intersect is that their common normal be
zero. For example 1if a, is zero, then axes 2 and 3 intersect
(Fig. 2.4b). For three axes to intersect at a point, the two common
normals, as well as the displacement along the intermediate axis must
be zero. For example, if a, = ay = $4 =0, the result is equivalent
to a spherical joint and the 4R manipulator is kinematically equivalent
to an S-R manipulator (Fig. 2.4c). For four axes to intersect at a
point (resulting in degeneracy), three adjacent common normals, and the
displacements along the two intermediate axes must be zero (Fig. 2.4d).
Degeneracy also occurs if the equivalent of two spherical joints exist.
In this case, it is possible for the link connecting the two sphere
centers to rotate about itself.

A cylindric joint results when the common normal and the angle
between a revolute and adjacent prismatic joint are both zero. An
example of an R-P-R being equivalent to an R-C manipulator is shown

in Fig. 2.5.

2.3 A catalog of Manipulators

With the above scheme we may classify most of the manipulators that
have been built in the last several years. Some manipulators since

they contain a very large number of links are omitted fram the table.
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Figure 2.4,

(a)
(b)
(c)
(d)

Sy

a,

(d)

A general 4R,a.s a,s,a, manipulator.

A 4R,a13283 wi%hzo%e3pair of intersectirg axes.

A 4R,a.s. “manipulator and spherical equivalent,

A degenérate 4R manipulator.
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Figure 2.5,

(a)

(a)

(b)

An R-P-R manipulator
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These generally have a snake-like structure, and even though these
manipulators may fit into the basic model they contain many joints
usually with limited freedom in each joint and similar link parameters
for all links. We call such manipulators "ORMS'* and consider them
separately in Chapter 5.

Tatle 2.1 contains a catalog of some recently built manipulators.

*ORM i{s the Norwegilan word for snake.
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CHAPTER III

SOLUTIONS

3.1 Statement of the Problem

In remote manipulation it is desirable to place a rigid body (the
hand) at a specified position in space with a specified orientation.
Thus, a manipulator needs to have at least six degrees-of-freedom. More
joints than six lead to a problem that is not deterministic with the
specification of hand position and orientation. We therefore limit this
work to manipulators with six degrees-of-freedom.

The problem we wish to solve may be stated as follows: given the
desired hand position and orientation, along with the various link
parameters, find the values of the manipulator variables that place the
hand at the desired position with the desired orientation. This problem
is related to the displacement analysis problem in three dimensional
kinematics.

The result of the displacement analysis of a mechanism is the
relationships between input and output. That is, if cne link is driven
in a prescribed manner, we wish to find the resulting position of the
rest of the mechanism.

The most general one degree-of-freedom, single loop mechanism is the

so-called "

seven-bar chain'. This mechanism is composed of seven one
degree-of-freedom joints connected to one another in a general manner to

form a single closed loop. Mechanisms comprised of spherical and

cyclindric joints may be derived from this seven bar by an appropriate

-19-



choice of link parameters leading to kinematic equivalence, as discussed
in Chapter 1I.

If one considers a seven bar mechanism wliere one link is considered
fixed, while an adjacent link is driven relative to it by motion in the
connecting joint, then the position and orientation of the driven link
are known. The problem of displacement analysis is to find the
resultant configuration of the mechanism, or equivalently the motion in
each of the remaining six joints. We then observe that the manipulator
problem resulting from specifying hand position and orientation is
analogous to the displacement analysis problem resulting from driving one

of the links.

3.2 Survey of Existing Solutions

Although displacement analysis of mechanisms has been of interest
to kinematicians for many years, no method has been developed that can
be applied to all cases. Dimentberg [40, 41) obtained solutions for
several four-link mechanisms using screw algebra and Dual numbers. He
also reduced the five-link RCRCR mechanism to the solution of a single
polynomial of degree eight. Yang (b2] using dual number matrices, was
able to express the input-output relation of this mechanism as a single
polynomial of degree four. Others have used (2x2) dual matrices, dual
quaternians, and vector methods to obtain solutions of four link
mechanisms W3, 44, 45}, The (4x4) matrix method developed by Denavit
and Hartenberg [ 46] has also been used to analyze four-link mechanisms
{47, 48). For more than four links, this method has been applied using
iterative numerical techniques (9], Urquardt |50) showed that solutions
were possible where the mechanisms had three or more prismatic pairs.

20- l



Earnest (51J has found geometric solutions to several special
manipulator configurations. We present his solution to the manipulator
shown in Figure 3.1:

Referring to Figure 3.1, it can be seen that the
point Q lies on a line formed by the intersection
of a plane perpendicular to axis 1 containing line
Jl , and the plene perpendicular to axis 6 containing
4, . In addition Q must lie on a sphere with P

as a diameter. The intersection of the line and the
sphere thus fix Q .

Sharpe [52] studies the problem of placing the end of a snake-like
chain (which could be used as a manipulator) at a specified target. An
"n-link snake" is composed of n links connected with revolute joints
to form a planar chain. The joints in general have continuously variable
angles. However, he does discuss the case where angles may take on

only two values. He presents an adaptive approach using a simple searching

procedure to handle this case.

AXIS 6 —=

Figure 3.1. Example manipulator used to demonstrate geometric solution.
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3.3 Method of Solution

In this work, we use (4x4) matrices to attack the manipulator
problem. Solutions for manipulators containing three intersecting
revolute axes are presented. The most complex of these requires the
solution of a single polynomial of degree four. This is equivalent to
the solvtions of all single loop five-bar mechanisms containing one
spherical joint and the rest either revolute or prismatic. Solut‘ons
for manipulators with any three joints prismatic are also presented. The
extension to more difficult problems is discussed witha 6R, a,a,

manipulator having adjacent axes orthogonal used as an example.

3.3.1 Notation

Throughout the text we use scalar, vector, and matrix quantities,

).

Matrices are denoted by capital letters and may have subscripts (e.g., A2
Vectors are denoted by underlined letters and may have subscripts and one
or more superscripts in front of the letter. Vectors are generally used
to locate points relative to a coordinate system. The subscripts are used
to differentiate between points, while the superscript indicates the coor-
dinate system to which the point is referenced (e.g., i+1§p , would repre-
sent a vector from Lhe origin of coordinate system i+l to a point n).

I1f no superscript appears it iy assumed to be 1 , or else no origin is
implied. At times we wish to express a vector in a coordinate system which
differs from the one in which the vector is formed (the so-called 'renfer-
ence system"). If the system used to express these coordinates is different
from the reference system, we enclose the vector in brackets and use an-

ot!'~iv saperscript to denote the svstem in which the conpouunnts are expressed

—
i| i+l
(e.g., l gﬂ] ). 1f£ the outer superscript is not used, it is assumed

-22-
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to be the same as the inner superscript. Scalar quantities are written
as lower case letters, with or without subscripts (e.g., a;s; ). If
they represent coordinates of points, then a superscript is sometimes
used to designate the coordinate system to which they refer. Where no
superscript is used, the number 1 1is implied. Angles are denoted by
lowver case Greek letters with or without subscripts (e.g., bl ay.
Points are occasionally given a name (e.g., "the point X, ") and
referred to by name.

The trigonometric functions sin, cos, and tan are abbreviated
s, ¢, and t respectively (e.g., sin 51 is written s*’1 , cosQ 1

as ca, , etc).

3.3.2 Mathematical Preliminaries

In order to analyze the kinematics of a manipulator, we first
establish the relation between two Cartesian coordinate systems as
shown in Figure 3.2, We define the following:

the length of the common normal between iz-axis

a;:

and 1+1z-axis o
i+1 i ]

ai: the angle between z and “z measured in the

right-handed sense from iz along a line from 1:
i+l

to z .

sy: distance from 0i to the common normal a1 o

%: angle the common normal makes with 1¢-axis.

Then there exists the transformation [46] to express the coordinates cf
a point in one system given its coordinates in the other. If we denote

the coordinates in system i by (ix, 1y, iZ) and in system i+l by

i+l

(i+1x , we define the vectors #& and X such that:

1+1y’ i+1§)

-23-



and

so that the transformation is:

i
X = &, 1

where

cﬁii -st)icc.i s()isc.i
sei cgicc.i -ceisc.i

0 s(:.i c(:.i

0 0 0

The inverse also exists and is defined by:

i -
+1§ % Ai 1 15
where

—

cg, 88, 0
-1 -sE!icc.i cbsa  sQ

i -
58150.i ceisc, cQ

-24-
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For n+l coordinate systems there are n transformations between
neighboring systems. These may be multiplied., in the following order,
to give the coordinates in the 1 system of any point fixed in the

n+l system:

r n+1x
o A

X =84, ...
Now to appropriately fix these coordinate systems in a manipulator, we
make Iz correspond to axis 1 , ix to common normal aj.; and
define iy in a right-handed sense. This is shown applied to a sample
maninulator in Figure 3.3. For a six degree-of-freedom manipulator we
write:

Ix = A1A)A48,454¢ X (3.3)
where 15 is a vector to any point, expressed in the ground system
and 75 is a vector to the same point expressed in a system fixed in
the terminal device. We define

Aeq = Ay ... A, . (3.4)

With this definition (3.3) becomes:

15 = Aeq 75 (3.5)
and the inverse yields:
’x = Aeq’! Xx (3.6)

Now, if we let P be a vector from the origin of system 1 to the
origin of system 7, and -{; , m, and n , be three unit vectors
aligned with the 7x, 7y, 7z axes respectively, then when 4£ y M, n,

and P are expressed in system 1, they may be used with equation

(3.5) to find Aeq . That is, using (3.5) we may write

-25-



’x

Figure 3.3. The relationship between coordinate systems fixed
in the manipulator.
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4, 1 m) 0 0 ! 0
_2,2 0 m, 1 ny 0 p2 0
,13 = Aeq| 0O m,| = Aeq} O nj| = Aeq| 1 P3| = Aeq 0
0 0}, 0 0l, 0 0}, 1 1

from which we may solve for the elements of Aeq to obtain:

4 mponyopy
L m n P

heq = |52 n2 o2 52 (3.7)
0 0 0 1

It is thus seen that position and orientation of the terminal device
can easily be found, knowing the manipulator variables, 91 or
Sy» i=l,.., 6 , by the matrix product equation (3.4).

However, for computer control of manipulators, the problem is to
find the manipulator variables, given the terminal position and
orientation (Aeq)

We shall first consider a six-revolute arm and the problem of
finding 91,..., 96 given ABq. Equation (3.4) represents twelve
scalar equations, nine dealing with orientation and three with position.
However, only three of the orientation equations are independent so that
there are six equations in 91,..., 66 . These equations have terms of
the form;

co cez c93 cb, CBS e » (3.8)
591 ch

ch sH4 sGS sbg » .-

2 3

These terms contain both sines and cosines, which we may define in terms

of the tangent of the half-angle.

2¢ é
c@ = s S 0
i e 5, ’ 8y T, (3.9)
2 2
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Then if we substitute (3.9) into the six equations, the typical term,
as shown in (3.8) becomes (letting ti = tan J%i , 1=1,..., 6 , and

removing the denominators which are common):

2 2 2 2 2 2
t:l t2 t3 t4 ts t6 + ...

Thus we see that these equations are quadratic in each of the unknowns
and the degree of the highest degree term is 12.

However, not all the equations contain all of the unknowns and by
judiciously choosing the three orientation equations, the unknowns 91
and 96 can be eliminated from some of the equations. We use the

six equations:

Fi (E)ye0es ts) =0 (3.10)
Fy (Eyeey tg) = 0 (3.11)
Fy (t)s-eey t5) =0 (3.12)
Fy (t25000s tg) =0 (3.13)
Fg (tys-vey tg) =0 (3.14)
Fg (Eg)-en) tg) =0 (3.15)

which are obtained respectively from the '14', '24', '13', '33', '34',
and '32', elements of the matrix of (3.4). We note that (3.10) - (3.14)
do not contain tg » and (3.13) - (3.15) do not contain tl . Of the
five equations in which the variables ty»-+s ts appear at most
quadratically, three equations are of degree 10, while, two are of
degree eight. If we eliminate tl between (3.10), (3.11), and (3.12),

the result is two equations of at most degree eight in the unknowns

ty,..., tg whose total degree is 32. These together with (3.14) and

| 899

(3.15) give us four equations for t,,..., tg . Proceeding in this

-28-




manner eliminating one variable at a time, we would finally obtain a
single polynomial of degree 524,288. Even though this method of
elimination introduces extraneous roots, we would still expect, according
to Bezouts' theorem¥, (10)3 X (8)2 or 64,000 common roots, a number much
too large to cope with. The general problem, attacked in this manner,
is insoluble. At this point we shall define a 'soluble case' to be one
in which the degree of the final eliminant is low enough to find all
ronts. In practice all the roots of an eighth degree polynomial can be
found within a few seconds using a digital computer and the roots of a
fourth degree within one-half second. A solution is said to be
"closed-form" if the unknowns can be solved for symbolically.

Even though the general problem is beyond reach, many practical
manipulator configurations are soluble. The existence of three revolute
axes intersecting at a point leads to a soluble class. In the next

sections we explore the possible combinations of three intersecting axes.

3.3.3. Last Three Axes Intersecting

If the last three joints are revolutes and their axes intersect
as in Figure 3.4, then their point of intersection, as designated by the
vector P3 is only a function of motion in the first three joints and

the constant link parameters. 23 is known by specifying the hand

position and orientation. We want to solve the three scalar equations
represented by:

0
By = A, 0 (3.16)
ja

*Bezouts' theorem gives an upper bound to the number of common solutions
for a set of equations. The upper bound is the product of the total
degrees of all the equations.
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B
Figure 3.4. The most general manipulator having the last three revolute

axes intersecting.
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for the variables associated with the first three joints. We now derive

an important result used in the solution of this problem. We define

the vector P 0

0
By=hA) - A 8 441 (3.17)

1

where Ay (1 =1,..., j) 1is defined in equation (3.1). It is seen
that Ej is a vector specifying the position of a point (0, O, 8j+1)
which is fixed in coordinate system j+l .

We may write (3.17) as

Bj = (AjA,)) Ay ... A

= A1A2 (3.18)
L q
f2(93, ’ j)
s 1 =
where
— — —_
fl 0
f2 0
= Anr ... A (3.19)
f 3 J 8
3 j+1
1 1
Then using (3.1) for A; and Ay (3.18) becomes
celgl + 39132
86)8) - cbg,
By = | fox1ls8(ay + £)) - cBy(-cayf, + sa,fq)] (3.20)
+ cal(sazfz + Ca2f3 + 82) + 51
S 1 —
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where

g, = cez(a2+fp + s92(-ca2f2 + sa2f3) + a)

89 -sﬁzcal(a2+f1) + cHyed (-cAyfy + s%yf4)
+ Sq1(5a2f2 + Ca2f3 + 52)
Denoting the components of fj by Xy s Yj o0 255 v define
- 2 z - 2
Ry = x§ + yj + (35°s))
With (3.20) for the components of (fj) y» (3.23) becomes
Rj = f12 + f22 + f32 + a12 + a22 + 522 + 2a2f1
+ 2s)(s0yf, + ca,fy) + 2a1[C°2(a2+f1)
+ 592(’Cazf2 + SQ.2f3)]

We note from (3.20) and (3.24), that we may write:

Rj = (Flcg2 + F2592)2a1 + F3
Zj = (FISGZ - cmgz)sal + FA
where,
Fl &3 82 + fl

2

2 2 . ¢2 2 2 +
f1 +f2 -rf3 +a1 + 8, +2a2f1 82

(o4
+ 282(8 252 + cq2f3)

F4 = cal(sazf2 + ca2f3+sz)

Equations (3.25) and (3.26) prove to be very useful as 61 has

been eliminated, and #p appears in a very simple form,.
Returning to the manipulator problem, the above equations

apply with j = 3. In which case by using (3.1) for A~ (3.19)

becomes :

32-
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- .. —_
f1 84893&13+83C93
f) = -sac93sa3+a3s93 (3.31)
£3 84m3+53 |

so that with (3.21), (3.22), and (3.31) equation (3.20) represents
three equations in three unknowns. If the first three joints

are prismatic, then (3.20) represents three linear equations and
is easily solved. The other possibilities are somewhat more

difficult, but may be solved as follows:

3 Revolute - 8;, 68,, 647 all variable

Substituting (3.31) in (3.27) - (3.30) yields respectively
F] = az+sase3sq3fa3c93 (3.32)
o2, 2 2, 2,2, 2
Fy = a;"+s,%+a) +857+a, +84 +25253ca2+25254a12a13
+ 253saou3+c93(28283-25254a12a13) + 593(28352a12
+ 28284&13) (3.34)
Now we note that the left hand side of (3.25) and (3.26) are
known and that if a; = 0, (3.25) reduces to
Ry = Fq (3.36)
When (3.34) is used in (3.36) it is simply a function of @3 .
Then making the additional substitution
1= tan? 85
2 (3.37)

1+ tan2 3

2

c93 =

-33-



2 tan 93
593 = 7
1 + tan 93
2

into (3.3%), yields a quadratic in tan 93 . Similar simplifi-
Z

cation results if sa1=0 , as (3.26) reduces to a quadratic. If
however s and a; are non-zero, we eliminate s@,; and c92
from (3.25) and (3.26) to obtain the polynomial

(R3 - F3)2+ (z- F4)2

2 2

= Fl +F,

231 S(Il

(3.38)

(3.39)

Upon making the tan 23 substitution and using (3.27) - (3.30) equation

(3.39) 1is of degree four in tan 83 . After getting 65, 6,
Z
may be obtained from (3.25) or (3.26) and 8; from (3.20).

S$1,_82, 83 _variable
Here we take the x and y components of Py as defined

in (3.20)

X c91g1 + 891g2
y = sGlgl - celg2

Solving for g; and g, we find

g] = xcOp + ysG1

-yc8; + xs91

82

so that g; and g; can be crmputed from 3.42) and (3.43).

Then examining (3.21) and (3.22) using (3.31) we note

8] = cO2h)(8;) + 8850, (83) + a)

L}

-3 -

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)




ry

where

h1 = 84593&13+a3c93 (3.46)
h, = 54(c93ca2sq3+sa2sa3) - a3se3cq2+s3sa2 (3.47)
h3 = 84(‘C93SG,29(13+C(12C(13) + 838938(12

+ s3ca, + 8; (3.48)

If cap =0 then (3.45) is easily solved for 65 . If

cay # 0 we eliminate 6, from (3.44) and (3.45) to get the
polynomial

hy" + hy," - (gl-al) - :
1
L
Expressing s8; and c¢6; in terms of tan 83 leads to a
Z
polynomjal of degree four. Upon obtaining the four roots of

(3.49) we substitute into (3.44) and (3.45) to get O, and

finally (3.20) for 8y -

81, 52, 83 _variable
Solve (3.26) for sy , using this in (3.25) results in a
fourth degree polynomial in tan 33 . Then proceed as in all

revolute case.

91, 95, sy _variable
Similar to 8,6,8, variable with the exception of 84
being the variable in the final polynomial which is of degree

four.

818,83 variable
The left-hand side of (3.44) may be computed from (3.42), then
(3.44) which is quadratfc may be solved for 8 . Finally s and

may be found from (3.20).
«35-
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5192§3 variable
It is possible to eliminate 6, as in the case of 816287

variable, resulting in a quadratic in Sq .

818385 _variable
Equation (3.25) is solved for s; and used in (3.26) resulting

in a quadratic in s3 , 8; 1is found as in the all revolute case,

Methods have been presented to find the first three variables.
At this time we leave the problem of finding the lest three angles to

be dealt with later in this work (see Section 3.3.6).

3.3.4 First Three Axes Intersecting

Next consider the three intersecting axes to be the first
three, as in Figure 3.5. The solution of these is analogous to
the previous exawrcle. We define a vector ?2 from the hand to
the point of intersection of the three axes, as shown in Figure 3.5.
We note that when ?g is expressed in a coordinate system fixed
in the hand, that it is just a function of the last three joints.

That 1is: 0

-1 -1 -1 -1 0

7p =

P = A6 A5 A4 A3 [ (3.50)

0
Usiag (3.2) for A3-1 and forming A3'1 8—| we get
1]

-1, - 1)

-83Cq
3%3
1

-1

7p =
_P‘A6A

5

- -1 -
If we use (3.2) to express Ag 1 » Ag , and Ay 1 then the

right-hand side of.(3.51) just contains the three variables associated
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with the last three joints. In addition, we compute the components

of 72 from

1| 8

72 = Aeq 0
1

where Aeq is the known matrix (3.7). We note that the rotation
-1

portion of Aegq is just the transpose of the rotation portion
of Aeq . In fact, if

a); 412 23 814—7
a a a a

21 “22
Aeq = e (3.52)
831 232 833 234

then
a a a a. "1
11 21 31 14
-1
a a a a

813 923 833 a3,

The elements denoted as aj, > a24'1 , a34'1 are determined by
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