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ABSTRACT

In this work an investigation is made of uniform approximations

to the solutions of linear differential equations with variable coefficients.

The ordinary differential :quations are replaced by an appropriate set of

partial differential equations that determine the unknown function in terms

of a set of independent '"time scales.'" The time scales are determined sa

as to obtain uniformly valid approximations. The partial differential

equations, in conjunction with the requirement of uniformity of the approximation
in a given interval, determine the time scales through a set of "clock functions"
ki » which may depend on the interval of interest. It is essential for the

success of the approximation that the clock functions be nonlinear functions of
time, in addition to being complex quantities. The constant coefficient case
arises as a natural limit, Thus the present approach generalizes earlier time
scale analyses. With this generalization we recover for second order systems
the Liouville-Green (or WKBJ) approximation. The difference between the
present approach and the PLK method in emphasized with examples,

Bounds on the errors committed are established for the second and
third order equations, The use of two time scales (with nonlinear clocks)
enables us to obtain approximations to the amplitude and phase of each
of the modes of nth order equations,.

The prototypes that are of interest are the linearized equations
governing the motion of VTOL aircraft. These equations constitute a
system of rather high order in the time derivative (third or fourth order for
motion in the plane of symmetry). The approximation method obtains the
aircraft variables in terms of simply calculable functions of the stability
derivatives, The frozen analysis of the aircraft equations suggests solutions

of the simple form

z A, eAit
i 1

with Ai and )'i slowly varying in ime. We introduce new independent
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variables (time scales) T and ‘r'1i to represent the amplitude and phase

of the modes and express the aircraft motion in the form

L a(r. ) et
7 i ol

Toi and Txi being determined appropriately, The results of the approximation
are compared with numerical integrals of the aircraft equations for the

third order hovering system and the complete fourth order equations which
allow for the transition from hover to forward flight, The approximation

is found to be very accurate (to within 10% error) for the third order system.
For the fourth order system comparable accuracy is obtained except near

the transition point, However, qualitative features of the exact solution are

not lost, A uniform description of the aircraft motion is thus obtained.
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CHAPTER I

INTRODUCTION

1.1 Origin of the Problem

This dissertation concerns the analysis of systems described by
linear differential equations with variable coefficients., This is a
classical problem, one that has attracted and occupied the interest of
mathematicians and physi~ists since about the middle of the seventeenth
century, The range of interest is vast, from esoteric fields of study such
as topology and the qualitative theory of differential equations to the very
practical task of analyzing actual systems arising in modern physics and
engineering. The fields of applied mathematics and physics are replete
with examples of linear differential equations with variable coefficients
embracing such diverse disciplines as celestial, quantum and classical
mechanics, wave motion in inhomogeneous media, rocket flight through the
atmosphere, and so on.

The importance of the study of such systems has increased in recent
years mainly because of three factors--~the attempt to comprehend the more
subtle phenomena in nature, and the advent of sophisticated dynamical
systems of modern engineering, and the need to stabilize and control such
systems. In the aerospace sciences, such problems arise for example
in the analysis of the dynamics of motion of a vertical take off and landing
(VTOL) type of aircraft from hover to forward flight, The aerodynamic
parameters, since they depend on the flight condition, change continuously
during the transition and the differential equations describing the motion
have nonconstant coefficients. Another example is the motion of a space
vehicle negotiating a flight from or reentry into the earth's atmosphere,
The variation of density with altitude gives rise to variable coefficients in
the differential equations,

Another way in which such equations arise is in the theory of

partial differential equations. In problems which admit of the separation




of variables, the ordinary differential equations thus obtained will often
contain variable coefficients, A well-krnown example is that of wave motion
ia inhornogeneous media. The wave equation yields, after separating the
variables, a function periodic in time and a s»>ace dependent function which
satisfies an ordinary differential equation with variable coefficients,

A similar problem also arises in dealing with nonlinear differential
equations. The variational equations corresponding to a particular known
solution of a nonlinear differential equation often turn out to be linear
equations with variable coefficients. The variational equations may be

useful in deducing stability information.

1.2 Historical Sketch and Review of Existing Work

In attempting to solve linear time-varying equations, the analyst is
beset with considerable difficulty., The history of formal methods of
integration practically ends in the latter half of the eighteenth century.

The first order linear differential equation (l.d.e.) can be solved

exactly by means of a quadrature. The second order l.d.e. with arbitrary
coefficients, however, is quite another story. It can be shown (Ref. 1),
though not without difficulty, that it cannot be solved in general by a finite
number of quadratures and elementary operations. For particular
variations of the coefficients, however, the various standard transcendental

differential equations are obtained. For example, in the l.d.e.
y'twi(t)y' +w (t)y =0 (1.2.1) )

(The primes denote differentiation with respect to the independent variable t)

3
if wy = tl- and w, =1 -—:g' , we obtain Bessel's equation cof order n;
if w, g, Wy T ot the Airy equation; if w, = 0, w, = {a - 2qcos2t)

(a, q constant) we have the familiar Mathieu equation, and so on. These
are well known equations and exact solutions ire available,
In all but the standard cases exact solutions are nct known and the

explicit forms of the asymptotic solutions cannot easily be written down.




One has to resort to approximations under these circumstances, and the
literature on this subject is very rich indeed. Many authors have contributed
to the state of the art and the theory is quite extensive.

The idea basic to2 most of the schemrs fcr approximation is to show
that under certain conditions the given equation may be represented by
another simpler equation which can be solved, such that the difference
or the error between the two solutions is small. The most direct approach
is that of perturbation theory introduced by Poincaré (Ref, 2) and this can
be applied when there is a small parameter which exists in the physical
system. Then direct perturbation theory yields approximations of better
and better accuracy. There are many cases where such a representation
becomes unsatisfactory over part of the domain of interest. This

phenomenon is termed nonuniformity and will be examined in detail later.

More sophisticated perturbation methods have been devised so0 as to
overcome this difficulty (but sometimes only partially).

The available methods of analysis and their application to time-varying
control systems have been examined in Ref., 3. There the methods are
categorized into classical theory of differential equations, matrix methods,
methods of integral transforms, etc. App-oximations such as the method
of collocation, Schellkunoff's wave perturbation method, etc., have been
discussed in detail and examples given,

Among the many apsroximations existing in the literature, one which
has enjoyed considerable fame is the so-called Liouville-Green (or WKBJ)
approximation, sometimes named with other permutations of the letters. This

name refers to the representation of the solution of the differential equation

y" +hPw(t)y=0; w> 0 [1.2:2)
in the form

vy = AwV* exp( ihjw’/' dt) + Bw exp(-thm"" dt) (1.2.3)

where A and B are arbitrary constants, The usefulness of such an

approximation will be examined later and the conaitions of validity established.




The naming of this scheme of approximation has had a diverse histnry,
Apparently the use of such approximate solutions may be traced to Carlini (1817)
(Ref, 4) who considered a specific equation of the Bessel type, Liouville (Ref.5)
and Green (Ref,6) (1837) derived the approximation for more general equations,
although their derivations lacked rigor and were only valid in restricted regions
of the complex plane. More recently the method has been referred to by
physicists as the WKB method, after Wentzel (1926) (Ref,7), Kramers (1926)
(Ref. 8), and Brillouin (1926) (Ref.9), though the letter J is often added to
acknowledge the contribution of H, Jeffreys (1923 )(Refl0) in connecting the
approximate solutions valid on either side of a transition point--a point on either
side of whizl, u (1) has opposite signs; and H. Jeffreys (Ref.1l) has recently
pointed out that he himself had been anticipated by Gans (Ref.12), Just to
complete the overwhelming list of the different names, Bailey (Ref.13) has
chosen to call it the "L, R, approximation', after lLiouville (Ref.5)(1837) and
Rayleigh (Ref, 14) (1912). In a recent reviev&: article by B.S, Jeffreys (Ref.15),
the name asymptotic approximation method is suggested. Perhaps among all
these various names, that of ''phase -integral method' as used by Heading (Ref. 16)
seems to be most appropriate as it does not refer either to its discoverer or to
its method of derivation. Taough the name WKBJ seems to be widely prevalent,
we sha.l follow Olver (Ref.28) ard use the name "L-G approximation' after
Liouville and Green who derived the approximation first,

It must be noted in passing that it is possible to raise some criticiams |
about the point of view adopted in the above method of approximation,
However, approximations quite often serve a useful purpose in mathematical
physics and engineering and have led to illuminating results in many cases. H
When valid the above approximation scheme shows, for example, the {
connection between classical and quantum mechanics by providing approximate

solutions to Schrodinger's equation. In response to such criticisms the

author cannot do better than to fall back on Heading (Ref.17), who says, ,
"For example, with no just foundation for such remarks, Smyth has

criticized a paper making use of the method by writing:'It should be




observed that the authors have used a solution which is a very poor
approximation to the given problem as an approximate solution to another
problem, It is certainly not to be expected that the results obtained in
this manner will have any connection with the original problem.'
Introducing a new approach that leads to a difference in applicability,
Hines has observed that his new method yields an approximate evaluation
of the exact solution, rather than an exact evaluation of an approximate
solution as is found in the WKBJ method!'" Perhaps the wise remarks of
Schellkunoff (Ref, 18) concerning the approximations should be recalled:
"There is something in human nature that makes one yearn for the exact
answer to a given problem. In particular it makes little difference whether
a given problem is solved approximately or replaced by an approximating

problem which is then solved exactly,"
1.3 The Liouville-Green ( or WKBJ ) Approximation

This approximation can be derived by first converting (1.2,2)

into the Ricatti equation

dz F -
—_— = ,3.1
rral (et

by the transformation

where a small parameter A has been introduced in (1.3.1). The equation
(1.3.1) can be formally solved by expanding z as follows
t

S dt T xkx“ (1.3.2)
k=0

> |-

N
i}

)

where to is a constant. Substituting this into (1.3 .1) and equating like

powers of A, we get a set of equations




(1.3.3)

from which the series T xklk can be determined. This is, for examplv,
k=0

the method used by H. Jeffreys (Ref. 10).
It is known that this series is, in general, not convergent, but is
only asymptotic, From the above we can get the LG approximation.
w3

t
yit) = (;’-, )V expl # i tj — at (1.3, 4)

o

if we neglect the other terms. Similar derivations of this approximation
are given in many books on quantum mechanics, but few give the precise
conditions of validity.
The parameter A was introduced only as a formal mathematical tool
for obtaining the desired expansion for y. It is seen that bot'. in the l.d.e.
(1.2.2) and the LG solution (1.3.4), the parameter A and the function
w(t) appear only in the combination %’5 , and so0 one can simply write w
instead of ;-3 « The definiteness of the sign of w¥® must be ensured by
branch cuts in the complex t plane radiating outwards from the zeros
of w, and the integration must take place along paths not crossing these cuts.
The above treatment is inadequate since neither estimates of the errors
of the approximation nor the regions of validity in the complex plane are
given. The solutions of equation (1.2.2) are single-valued in a domain
containing no singularities of @ (t); but because of the fractional powers of
w(t) the L@ solutions are not single -valued and so it is clear that the
solutions (1.3 .4) are valid only in restricted regions of the complex t plane,
One of the purposes of this work is to demonstrate a more general

method of approximation which yields the L G solution as a special case




as well as approximate solutions valid where the LG solution is not.

The study of asymptotic approximations to the solutions of l.d.e.
would be incomplete without at least a brief discussion of the Stokes
phenomenon. This name is given to the discontinuous changes in the
arbitrary constants that occur in the asymptotic solutions of certain
differential equations,

It is rather interesting to follow the beginnings of the observation of

this phenomenon. In a letter to a certain young lady, Sir George Gabriel Stokes

wrote in 1857 (Ref. 19) (and the present author wishes to beg the indulgence
of the reader), "When the cat's away the mice are at play. [ have been
doing what I guess you won't let me do when we are married; sitting up
till 3 o'clock in the morning fighting hard against a mathematical difficulty.
Some years ago I attacked an integral of Airy's, and after a severe trial
reduced it to a readily calculable form. But there was one difficulty about
it which, though I tried till I almost made myself ill, I cculd not get over,
and at last | had to give it up and profess myself unable to master it.
I took it up again a few days ago, and after two or three days hard fight,
I at last mastered it."

The phenomenon was first observed in connection with the Airy

equation:

f
(=]

Y" - zy

For small lzl , the general solution comprising of two independent power
series solutions, would involve two fixed arbitrary constants. It was
observed that if for a certain range of arg z, the general solution was
represented by a certain linear combination of the two asymptotic solutions,

then in a neighboring range of arg z it was by no means necessary for the

same linear combination to represent the same general solution. Stokes(Ref.

in fact showed that the arbitrary constants must be changed discontinuously
on crossing certain lines in order to provide an asymptotic representation

of a continuous function for both ranges of arg z. These lines are called

anti-Stokes lines.

20)




The Stokes phenomenon occurs because an asymptotic series is not

unique, For example, the two functions

_1{z)
by (z) T (z)
13 -
and lbz(z)=;o((zz)) te ”

have the same asymptotic expansion for|z| =~ = when Re [ 2] >0, Besides, the
asymptotic expansion for ¥, (z) will change drastically from Re ' 2]>0 to

Re. 2 <0, The asymptotic form of Y5 (z) as arg z changes would reveal a

%, 3{-’, etc. These discontinuities are only apparent,

however, and are essentially a result of the nonuniqueness of asymptotic

discontinuity at arg z =

expansions (Ref, 21i).
One may also consider that the Stokes phenomenon occurs because the
operations of analytic continuation and taking the asymptotic expansion do not
commute, 'n other words, let f(t) have the asymptotic expansion:
f(t) = fo(t) il gl fa () ko

Let fi(t) be now analytically continued into fi(z). On the other hand, let the function

f(t) be analytically continued into f(z). If we now obtain the asymptotic expansion
(@) = %2) + ct® @) +...

we will find that in general:
f.(z) # f(i)(z)

This is the Stokes phenomenon,

The Stokes phenomenon in LG theory arises as follows (Re‘, 22),

The approximations to the solutions of

y" +witly =0 (1.3.5)
are given by .
y, iy, 8)=8u ) con( | W artvy) (1.3.6)
a
when u is positive and ¢
y_(t;a.B)=(-w(t) )" a exp(] (-w)tdt) (1.3.7)
a

( 3
+Bexp(- [ (-w)¥at)
a

when u (t) is negative, a,B,y,8 are arbitrary constants,

8




When w > 0 (1.3.6) represents one solution of (1.3, 5) with specific
constants; and when w < 0 (1.3.7) also needs specific constants, If w(t)
changes sign in the interval of interest, then the requirement that (1.3, 6) and
(1.3.7) must represent the same solution in the entire interval thus correlates
the forms (1.3.6) and (1.3, 7) and the correlation is determined by the
association of the respective constants. As w(t) changes sign it is seen that both
the forms (1.3.6) and (1.3.7) break down for two reasons:

(i) both become infinite when w (t) vanishes

(ii) the equativn for which (1.3.6) or (1.3. 7) are exact solutions has

singularities at the zeros of u (t) and the functions (1.3, 6) and (1.3.7)
are multivaluea in general in the vicinity of these asingularities,
i,e. transition points, These points are also called 'turning points, "
The representation of single-valued functions by multiple-valued functions can
be expected to be valid only in a restricted region,
In fact, as Langer says (Ref.22), merely because the pair of solutions
yit)~y (tiy.,¢)
(1.3. 8
y(t) ~ y_(t;a,B)

valid respectively on either side of a transition point exist, it is a non sequitur

that the r,h., members of (1,3.8) represent one and the same solution of (1.3.5).
The contrary is the case, For every specified ¥,5 there correspond specific
a,B. Inorder to deduce one form of asymptotic representation from the other,
one depends on the so-called '"Connection Formulae,' These can be derived in
two ways., One is by representing the solution near the transition point by the
Airy function and connecting this to the asymptotic solutions on either side,

The other is by a study of the Stokes phenomenon and thus connecting the
asymptotic solutions on either side of a transition point. This will he diecussed

in a later section.
1.4 Objectives of the Investigation

From what has been said hitherto, it is evident that for the general

l.d.e. of order greater than two, the best general result that can be




obtained is to get a good approximation with a knowledge of the errors
committed in the use of such an approximation. Unless the coefficients have
certain special forms, it is, in general, impossible to solve the equations
exactly in terms of elementary functions and operations. Once this is
realized, the aim is to get approximations and error estimates. Mathematicians,
however, have been for the most part interested in areas which afford
general conclusions regarding the mathematical properties. There is an
extensive mathematical literature on the many aspects of linear differential
equations and one may refer to the works of Hartman (Ref, 23), Feschenko
et al (Ref, 24) etc. which contain extensive bibliographies: The engineer
and the physicist, on the other hand, have been interested in approximations,
insofar as they describe the physical system adequately, in order t» glean
some quantitative insight about the system.

The LG approximation seems to fill this gap satisfactorily for a
number of applications. Physicists have used the method to grcat advantage
particularly in the fields of quantum mechanics and radio wave propagation
in the ionosphere (Ref. 25), However, the control systems engineers have
generally stayed clear of this rather powerful method, except for some
researchers such as Pipes (Ref. 26), who applied it to analyze time-varying
networks., More recently Curtiss (Ref 27) has applied these ideas to the
analysis of VTOL transition dynamics where he has developed a modified
root -locus method to determine the "unsteady' roots, as deviations from
the ''quasi-steady' or the variable '""charac.eristic' roots of the system.
Using this technique one is able to draw sketches fairly quickly at a
number of points and obtain information about the instantaneous ''damping"
and ''frequency' of the modes of motion. These applications have broken
the ice in regard to engineering dynamics analysis of variable systems and
pointed the way to a more complete treatment of the problem, However,
with reference to the VTOL transition dynamics, it is desirable to have a
uniformly valid approximation throughout the transition from hover to

forward flight. This naturally leads to the study of transition points or

10
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turning points. Error bounds, of course, make the theory more complete.
In contrast to the LG approximation for the l.d.e. of second order, for
which there is a substantial body of work covering these areas, no such
complete theory exists for the third or higher order l.d.e. Since dynamic
systems of the vehicular type are generally of higher order than the second,
it is felt that the present work might fill in part this need.

In this thesis a scheme for approximations for 1.d, e. with variable
coefficients is developed. Explicit formulae for the approximate solutions
are derived and this is done by appropriate extension of the independent
variable, employing multiple time scales and proper 'clock' functions(which are
complex and nonlinear) The "frequency' and "amplitude"” variation of the
solution are extracted separately and are then combined to form a
composite solution. The advantage is that one is able to retain, to some
extent, the familiar ideas of stationary linear systems analysis,

Further, absolute error bounds are derived. It is clear that these
are more useful than the usual O symbols of asymptotic analysis, which are
necessarily somewhat vague. The question of transition points is then
examined and a technique is proposed to circumvent the accompanying

difficulties.

1.5 Arrangement of the Dissertation

The results presented in the dissertation are presented in the following
manner., Chapter II presents the theory of the method of extension
and multiple time scales which will form the basis of the results obtained in
the dissertation. The method is applied to simple examples, and
asymptotological principles are presented.

Chapter III contains the principal ideas of the thesis. Here the explicit
formulae for the approximate solutions of 1.d.e. with variable coefficients
are derived using the method ofextension. It is seen that for the second order
l.d.e. the Liouville-Green (or WKBJ) solution is one of the approximations
derived. The formulae for third and fourth order l.d.e. are derived and then

. . o th ;
the theory is generalized to then order equation,
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In Chapter IV absolute bounds on the errors of the approximations are
derived, For the second order equation.the error bounds for the WKBJ
approximation are derived in a new and direct way different from that
of Olver(Ref.28)and asymptoticity of the approximations is demonstrated.

Chapter V contains the application of the above approximation to
some analytical examples and the analysis of the dynamics of VTOL
aircraft during transition from hover to forward flight. First the hover
or two degree-of-freedom case is studied, and then the full three
degree -of-freedom system ic studied.

A brief sketch of the failure of the L.G approximation near transition
points is discussed in Chapter VI. An outline of some open problems is
presented, together with a method of shifting the transition point out of
the physical domain of interest,

In this work the word ''canonical' is used to denote an equation of

the nth order in which the term containing the (n-l)th derivative does not

appear.
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CHAPTER 1I

ASYMPTOTIC REPRESENTATION AND UNIFORM VALIDITY

2,1 Nonuniformity in Approximations

In this chapter, the failure of the conventional perturbation approach
in certain regions of interest and some well-known methods of dealing with
it are presented briefly. The purpose is to .provide a basis for the present
work within the general framework of the theocry of such approximations,
Formal proofs are not presented.

We shall begin by iliustrating what we mean by a uniformly valid
approximation. Given a function f(t) of quite an arbitrary shape (Fig. 1),
fo(t) is said to be a uniformly valid approximation of f(t) to order ¢

(where ¢ is a ''small" parameter, i.e., € << 1) if and only if for all t:
P

f=fo+ O(e); (or f=fo+o(l) ) (2.1.1)

That is, the error between the function and its approximation is uniformly
small within the domain of interest. A further discussion is given in
Appendix V.

Contributions to the theory of uniformization of asymptotic expansions
have come from many sources and it is difficult to do justice to all of them,
The work of some authors, however, has been highlighted for purposes of
orientation. In problems exhibiting the presence of a small parameter €,
approximations based on a direct perturbation expansion in powers of ¢
were first introduced by Poincaré (Ref. 2) in his researches on celestial
mechanics. Often such a scheme leads to a serious misrepresentation
of the true function and this phenomenon is called nonuniformity in the
expansion., For example, direct expansion about hover, of the solution to
the transition equations of motion of a VTOL aircraft fails to yield the
correct long time behavior. Also the expansion of the solution of the

Liouville equation of statistical mechanics, in powers of the strength of the
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two -body interaction, breaks down for times of the order of the relaxation
time to equilibrium; and so fails to give the crucial information on how a
gas approaches equilibrium (Ref. 29).

The precise nature of the nonuniformity enables one to classify in the
fashion of Sandri (Ref. 30) as follows,
(1)Singular type

Nonuniformity occurs for finite values of the independent variable,
(2) Matching type

Nonuniformity is manifest in that it is not possible to satisfy the
initial or boundary conditions. This is usually because the inherent
simplification of perturbation theory results in lowering the order of the
original equation.
(3) Secular type

Nonuniformity occurs for large values of the independent variable,

The classification is only pragmatic and it must be noted that
sometimes one type of problem can be transformed into the other.

The manner in which the nonuniformities arise is illustrated as

follows with simple examples without plunging into lengthy calculations.
1. Singular Perturbation

Since only linear system~ are of concern here, the linear analog of
Lighthill's well-known example (Ref. 31, 32) (Linear Lighthill Model)
suffices to illustrate the essential features of the phenomenon.

Consider the equation
df
—_—t =) A 2. .Z
(t + c)dt f 0 (2.1.2)

with the condition- f(1) -1 (2.1.3)

Direct perturbation theory yields:

f=1f +¢ef +.
o
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Pl g (2.1.4)

dt o
df. df
=) = - =D
tage th dt
Solving (2.1.4) we have:
co Co c
= —— = - —L ° zo .
fo : » fl Er + £ , etc (2.1.5)
Imposing the condition (2.1.3) :
1 L 1
== = —— - - tc. 2.1.
fo t'fl n ta,ec (2.1.6)
Thus the approximation
1 1 1
N o o e Z. .
fmt«w:(t t—:)+ (2.1.7)

breaks down severely as t approaches zero.
Further it is observed from (2.1.5) that it is impossible to impose
any arbitrary conditions at t = 0; Fig. 2 illustrates this. The exact

solution is given by

where ¢ 1is a constant,
2, Matching Type

Consider the constant coefficient equation

d? f df
. —— = 0 L L]
S I n + bf (2.1.8)
wiith:
floo=0, £(0)=c (2.1.9)
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Perturbation theory yields
af '+bf =0
o o
"4af, +bf, =0
having the solutions

f =k exp(-(b/alt), (a)
o o

(2.1.10)

fi =k exp(~(b/a)t) -k texp(-(b/a)t) (b)

where ko. % are arbitrary constants. Clearly conditions (2.1.9)

cannot be met. Furthermore, the '"correction'” «f; eventually becomes
larger than the lowest order term fo and therefore the expansion is not
uniform for large t.

Equation (2.1, 8) can, however, be solved exactly as

m t

f(t):coe SR c et (2.1.11)

where mo, m; are the roots of:

e s
€ €
mo=-iop(ip A2
€
4b %
m, =-—-b(<‘§)’ -2

¢ & can be chosen suitably; the solution is depicted in Fig. 3.
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3. Secular type

Given the equation

— +ecf=0 (2.1.12)
with f(0) = 1, a direct perturbation expansion yields:
f=1.£1=-t,f3=-2-.... (2.1.13)
The approximation f = fo + ¢ f; fails for t ~-} ; the exact solution

f =exp ( -ct)

reveals the slow decay (Fig. 4).

Some techniques have been developed in order to render the approximate
solutions uniformly valid. These methods of uniformization can be broadly
classified as follows.,

(1) The Poincare-Lighthill-Kuo or PLK Method

(2) Method of Matched Asymptotic Expansions (Inner and Outer Expansions)

(3) Method of Extension and Multiple Time Scales

The PLK Method (Ref., 32) is typically applied to singular perturbation
problems. The method consists of suitably stretching the independent
variable and moving the singularity out of the physical domain of interest.

This is done in equation (2.1.2), for example, by expanding the independent

variable t also in a series:
t=s+ety (s)+e(s)+ ... (2.1.2 a)

The functions t; (s}, tz (s), etc. are to be chosen so as to eliminate the
nonuniform terms, This technique yields the exact solution for the above
example. It is worth noting that even though in principle the PLK method
and the time scales approach are similar, they in fact differ considerably

in the mechanical detaile of the analysis. In Appendix IV we emphasize
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this point with a simple example. One can, however, obtain connection between
the stretching and clock functions, as was done, for example, by Sandri (Ref. 30),
Conceptually, ‘while the multiple time scales approach obtains the description
of a phenomenon by following the gross features on one scale and fine ones on
another, the main purpose of the PLK method is to move the singularities
outside the domain of interest.

The method of "inner" and "outer'' expansions consists in developing
separate expansions (Ref, 33), each valid within a region, and matching
them at the boundaries of these regions. This method has been typically
applied to problems of the boundary layer type. The boundary layer
approach and that of multiple scales have as a common feature the existence
of separate scales, on each of which the unknown function exhibits different
behaviors. However, in the former, the 'inner' and '"outer" solutions
have to be matched at the common boundary or in a region of overlap.
This usually calls for criteria based on intuition and seems to involve a
certain amount of art in the process. The method of multiple scaies, on the
other hand, while it recovers the different behaviors, doea not involve any
m#tching, but consists in an extension of the independent variable into a
space of more than one dimension. Further, it is a formal method and
may lead to a systematic method of studying problems of the boundary layer
type also,

In regard to (2.1, 8) it can be shown that the fast variation of the
solution for small values of t can be obtained in lowest order, by a

suitable extension of the variables, given by:

=> [N B ] [ ) -
t PO S £ rn} (2.1.14)

f = f + efl + oo
o
Ti (t) are defined by:

n
t

"
™

t
Tl =Zr T =t. 11 =€tp es e Tn




r——————

The lowest order equation describes the "inner' solution, To obtain the
behavior for values of t of order unity or greater, we do not have to
consider an additional, '"outer', expansion of the original equation.

The term of the next order in the expansion already made obtains the "outer"

solution. The time derivatives are now extended as:

d 1 3 ) 3
_— D - —— + -_— + =’ +ooo
dt € 3Ta 3T T
(2.1.15)
da l a2 1 aa aa aa
— — N + - ! + + eeo e
dt? e 3T € (2 3T a'ro) ( 3T 3T, 3T,
In lowest order we have
d°%f 3f
—; + 8 == = 0 2,1,
31’_13 3T (2.1.16)
with the solution:
£(T 4,7 )=-E°-('r T Jexp(=-aT, ) +k(r, T ) (2.1.17)
=1t .ol" = 0' 10 e o P -1 O' 1 000 ela
The equation in the next order is:
A YT A 2.1.18
3T 3T 3T, B (Elat8)

Substituting from (2.1.17) above:

2 ko exp ( ~aT_ ) - koexp (-aT ;) +aly

+b [ =52 exp(-ary)tiq] = 0
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Regrouping terms:
. b .
(k- :ko) exp(- aTy ) + (aky +bk )=0 (2.1.19)

We now equate the terms in each parenthesis to zero, which gives:

b
k =Ly (Ty,...)exp(+=7 ) (a)
(2.1.20)
b
ky =L2('r1,...)exp(-z-ro) (b)

Upon restricting along T, =‘_£ 0 1'°= t we have;
f = ¢ exp(-%z)exp(+;b—t)+c2 exp(-%t) (2.1.21)

This process can go on to obtain higher approximations. It can be seen that
(2.1.21) describes the correct behavior of the exact solution (2.1.11) to
leading order.

For purposes of the present study, the method of extension and multiple scales
is more pertinent; the primary interest here will be as it applies to multiple time
scales, though in its general concept (Ref. 29) the method includes the other schemes
also. A further discussion is given in the next section. An example of singular
perturbation will, however, be considered and it will be solved by the time scales
treatment,

The main aim is to show that the failure of the direct perturbation expansion

has as its raison d'étre an inappropriate scale on which the unknown function is

observed. The natural scales or ''clocks' which afford a uniform description of the
phenomenon are determined by knowing the precise nature of the breakdown of

the direct expansion,
2,2 The Concept of Extension

The method of extension was recently introduced as a mathematical technique
designcd to exploit as much as possible the presence of a small parameter if one is
available in a problem. The aim is to render approximations of the perturbation
type uniformly valid. The origin of the concept can be traced to the works of Bogoliubov,

Krylov, and Mitropolsky, who allowed all the constants of the lowest order perturbation
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theory to be slowly varying functions. The original ideas of Bogoliubov and
Krylov (Ref.34) were extended and modified in the recent work (translated into
English) of Bogoliubov and Mitropolky(Ref. 35), which provides a broad
theoretical framework for the method of averaging. The method of time scales
in its early form was applied to certain nonlinear differential equations by
Cole and Kevorkian (Ref.36); Frieman (Ref. 37) and Sandri (Ref.29) used it in
the theory of irreversibls nrocesses. Sandri (Ref. 38) has also discussed a
general technique of un!! rinization of asymptotic expansions and has shown
some of the well-known uniivurmization procedures to emerge as special cases
of such a general technique, by introducing a complete reparametrization of
the lowest order term of the perturbation expansion, The development of the
theory given in Ref. 38 is rather abstract and relies on the composition of
mappings. Precise conditions of validity of any special form of the method are
not established and it is here that the present work seeks to fill a gap.

The fundamental idea is to extend the domain of the independent variable
using suitable '"clocks' determined by knowing the precise nature of the
nonuniformities arising in direct perturbation theory. It should be noted that
the variables in general are not restricted to be real. The "clocks' are so
chosen that the new terms that arise due to extension, called '"counterterms',
eliminate the nonuniformities of direct perturbation theory so that in the
extended domain uniform approximations to the unknown function can be obtained,

The concept becomes more transparent by a re-examination of (2.1,12),
The solution f is represented as

eata €3t3

2t 31

f=l_€t + (2.2.1)

which is a convergent series and can be surmmed to the exact solution
f = exp(-ct). In general the perturbation series is not summable and one has to

th . .
resort to the k' order approximation:

k k
.2tQ k ¢t
fas 1 -¢ct+ —‘2! R S S (2.2.2)

Clearly this fails for t ~ l— , 8ince all terms will attain the same order of
magnitude, The fact is that in representing a function by a series, we want the
leading term to give maximum information and hence we look for an asymptotic
expansion rather than a convergent one. These have the property that successive

terms decrease in magnitude up to a point, beyond which they may start
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growing. The series is terminated at this point and provides a useful means of
computing the function (Ref. 39, 40). With this in mind we see that the first few
terms of the series (2.2.2) do not represent the true solution adequately for
long times,

A clearer physical picture comes into view when we consider the function

£(t) = exp( - —) (2.2.3)
2

from a different standpoint. t, is a fixed constant with dimensions of time, and
f represents a physically observable quantity such as displacement from a
reference position, or temperature difference between two insulated bodies.

An observer who measures f and records it using a clock whose unit of time is
t, will have to wait a long time (the longer for smaller ¢ ) before he can
observe a perceptible change in f. Instead, if our observer were to use the
slow variable T, =¢t, or a "super" clock which measures t in giant units of —:_*—,
the phenomenon is seen much better, for then (2.2,.3) is .

£(t) = exp (- )
¥

which is indeed the exact representation of f. Thus the method of extension
enables us to perform readings on appropriate scales by employing a sufficient
number of independent observers.

Consider a three-dimensional space (Fig.5) with orthogonal axes
‘ro. T, ,» and f. Readings on 'fast' and '"slow' clocks are represented
respectively by points along 1’0 and T, coordinates and f is defined to be
the function

£(r, . 74)=cexp(-r;) (2.2.4)

where c is a constant. Graphically, f_(‘ro » Ty ) is represented by a cylindrical
surface in Fig. 5 which is constant in ‘ro » but decays expuncntially in T, .

To relate f (‘I’o » T, ) to f(t) , let ‘l’=:—* .

From (2.2.3):

f{r] = expl -er]

Choosing c=1, (2.2.4) gives




= L
(T, €T)= exp(-er) (2.2.5)
i.e., ffrnen=1[1]

and f (1‘0, T, ) is said to be an extension of f(t).

Based on these considerations, Sandri (Ref., 29) defines extension
formally in the following manner.

Definition. Given a function f(t)where t is in general an n dimensional
vector, and a function f(T,, T, . . . 1’Nj of the N independent variables
To Bw o« & ‘rN (each of which is an n dimensional vector), f is said to

be an extension of f if and only if there exists a set of N x n equations

T =7 (t), n=12, ... N
n n

which when inserted into { give:

£ R mt) .. .7 (t))=1f(t]

The space of N-tuplets T={1, % ... ™~ } is called the
extension of the domain {7} and the equations Tn = fn(t) are called
the ' trajectories" in the extended domain. In dealing with differential
equations, the derivatives and indeed the 'ntire differential expression
itself can be treated as a function and can be suitably extended. Thus,
given

f
¢5::—t+ ¢cf=20

one extension of ® can be written as

2‘% +c-g-%-+ ¢f =0
1
o

where Qo @; e f ; t"’—'-""lfo,flj
with: T =t, Ty =€t
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In general T =T (e,t).
n n

It is evident that there are infinitely many extensions which correspond
to a given function, Two degrees of freedom are available: choice of the
trajectories and choice of the extension itself. This freedom is utilized
in obtaining an { with simpler and smoother dependence on the parameter
than that offered by f, and requiring the approximate solutions to be
uniformly valid in the domain of interest, Figures 6, 7, and 8 illustrate

the concept of extension,
2.3 Application to Simple Examples
(a) Equations with Constant Coefficients

The theory discussed in the last section will now be applied to
simple examples, First l.d.e. with constant coefficients are discussed,
beginning with the first order equation; and the method is then shown to work
for two special types of equations with variable coefficients., The aim is to
extract the leading behavior of the solutions and this is done by an extension
of the domain of the independent variable alone. Throughout the rest of
this work primes denote differentiation with respect to (w.r,.t) the indcpendent
variable.

(1) Slow Exponential Decay. Consider the first order l,d.e. (2.1,12)

which is:
%tl+€y=0;y(0)=l;0<e<<l (2.1.12)

The variable y and t are extended as follows

Yy == Y

t ‘=>. {TO, TI |T3 « s e Tn]

with 1'0=t. T, =et, 19573...57n5 0. Then:
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d A y dr, 3 dTe A dr 3 > 2 3
e SRR R e T G I — 4 3Rl
dt a‘ro ¥ 3T, dt 3Ty dt ¥ a‘rn dt L s ATy ( )

On applying (2.3.1) to (2.1.12) and equating like powers of ¢, we have:

X oo (2.3.2)
37

[0}
oy y -0 2.3.3
ar, L ( )

From {2.3.2) and (2.3.3)
Y (1'0. Ty) =A(Ty) = exp(-Ty)
which is the exact solution of (2.1.12) when y is restricted along 1’o=t;

T,.=€t. Fig. 9a shows a schematic of the root configuration.

(2) Second Order Equation. Consider the equation (Fig. 9 b)

y" +(a+¢)y'+eay=0 (2.3.4)

where a is a constant of order unity. Direct perturbation theory results

in secular nonuniformity as follows

y=yo+Wx+.o.

I|+ l:
Y, tay, 0

[}
yi' + ayy = -y +ay)

etc., giving c

= -2 exp( -at) + ¢
A P 1

C2
yis -t - = exp(-at) + c3, etc.
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where co. €y, €3, €3 are constants,

On the other hand, extension yields:
y(t) === yir_, Ty)

t === 1.7, bir =t, Ty =ct

3

LTINS Y (@)
(o] 3 0
3

2 8°Y .. 23Y L3y - 2.3.5
arary o oam Tary v =0 B

—-J'-,Az + 2L -9 (c)

Integration gives:

y(‘l’o. Ty) = -A (lal—)- exp( -a‘ro) + B(T, ) (2.3.6)

Substituting in (2.3.5 b):
A' exp( -a‘ro) +a(B'+B)=0

Since T and 7, are independent, A'=0 and B' + B=0. This gives

A = pure constant (2.3.7)

B = Cexp(-T, )

From (2.3.6) and (2.3.7) restricting y(‘ro. T, ) along the trajectories

TC t, T, =e¢t, we have the general solution of equation (2.3.4) as
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y(t) = <, exp(- at) + c; exp(- et) (2.3.8)

co, c, are constants, which is the exact solution,

Similarly in the second order oscillatory case of (i) low frequency,
large damping; and (ii) high frequency, low damping, the choice of
simple time scales separates the damped from the oscillatory motions.
One can then extract these separately and combine them to give the exact
answer.

(3) Third and Fourth Order Equations. Using the same approach as

above, third and fourth order 1.d.e. with constant coefficients can be solved
exactly by a judicious choice of time scales, For example, the following two
cases of the third order equation can be considered.
(i) oscillatory mode with low frequency and low damping;
heavily damped non-oscillatory mode (Fig. 9 cli))
(ii) oscillatory mode with high frequency and large damping;
lightly damped non-oscillatory mode (Fig. 9 c(ii) )

As an example of (i) consider the l.d.e.

y'" + (a +2¢)y" +2¢la te)y' + Zacay =0 (2.3.9)

where a, ¢ are constants; a~l, 0 < ¢ <<l].
Direct perturbation theory fails because of the appearance of secular
terms as shown below,

"t " -
yo + ayo 0
"e 4 = -2 "oy '
Y1 ay, ( Y, *ay, )
c
O mm] [o]
giving yo(t) =7 exp( - at) + c;t + c3
Y1 LI ay; = - 2ac1

Integration leads to secular terms,
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The choice of simple time scales as in (2.3.,1) yields, in a

s*raightforward manner

Y = ‘:#-1-)— exp(-a‘ro) + B(Ty) 1'0 +7(T) (2.3.10)

A' exp(-a‘ro) +2a(B'+B)=0

giving A = pure constant
B

C =Dy exp{(-1+i)7Ty) + D3 exp((-1-i)T7T,)

D, exp(-T,)

Upon restriction along 1’°=t, Ty = et, we can write
y(t) = C; exp(-at) + C; exp( (-1+i) ¢t) + Cexp( (-1-i) ¢t)

which is the exact general solution of (2. 3. 9).

The procedure is the same for fourth and higher order systems,
When the motion has well-separated modes a proper choice of time scales
yields the correc: answer in a straightforward way. A typical fourth order
example is that of the airplane longitudinal equations of motion which
exhibit two oscillatory modes, one of high frequency, heavy damping, and
the other of low frequency, low damping, being recognized respectively as
the short period and phugoid modes.

Independent work in this connection has been recently reported by
H. Ashley (Ref. 52). He considers the constant coefficient l.d. e,
describing the aircraft motion, and obtains approximate solutions, order
by order. He also achieves a rough separation of the performance and
dynamic response problems. For both these questions, he employs linear
time scales, in the fashion of Kevorkian (Ref. 36). Our approach differs
from Ashley's in that we are able to recover exact solutions of linear
equations with constant coefficients. This is done by choosing a proper

pever of the small parameter ¢ as the #xpansion parameter. Further remarks
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on the comparison of Ashley's work and ours are made in Chapter V,
Section 5.3,
The method is illustrated by the following example of the fourth

order system:

y"" 4+ 2(ate)y" + (b + 4ae + 2¢°)y" + 2¢(b + 2ae)y' + 2bePy = 0 (2.3.11)

where a,b are constants of order unity and 0 < ¢ << 1, Direct perturbation

theory obtains

yonn + Zayo'” + byo” =0 (2.3.12)
1"+ 2ay1 " +byy " = <2(y " + 2ay "' + by!) (2.3.13

etc. Integrating
y (1) = %:; expl( my t) + -2y explmat) = Cat + Ca (2.3.14)

where Co' Ci, C3, C3 are constants and my, myz are the roots of

m?’ +2am+b = 0 (2.3.15)

Substituting in (2,3.13):

ya'"'" + 2ay; " 4 by]' = constant

Integration clearly leads to secular terms,

Extencing t as in (2.3.1) yields:

Y(To.Tx) = A(n) emx To + B(Ty) emaTo + C(1y) ‘ro + D(7,) (2.3.16)

3
z—L,— SRy 0 +za—>'—,— 0 (2.3.17)
0

37 73T af I 3T 3T,

_g_, Y ° Ry
6 +.b
37 Tam 3T_aT; ar ar 3,y T8 3T 3"
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Y ay A
+ZC + 2b =< + 4a ‘_X + Zb" =0 2.3.18
o) A 371 8T ( )

(o] (o]

Substituting (2.3.16) in (2,3.17) and observing the linear independence of
the exponentials, A and B are deduced to be pure constants and

C = E exp(-T, ). Substituting this in (2. 3.18) and simplifying,
E=0and D=pye? ! +pye™ 3 (2.3.20)

where n, , n, are the roots of n* + 2n + 2 = 0. The solution therefore is:

3

Y(To.1’1 ) = ¢y e™ To 4 Ca e %o, Cqy e 4 c‘en{Lx (2.3.21)
where m, , my and n, , ny satisfy

m?® +2am+b =0 (a)
(2.3.22)
and

n® +2n+2=0 (b)

respectively (Fig. 9 d), The restriction‘fo= t,T, =¢t obtains the exact solution.

A similar approach can be used for higher order equations also. The
important point to note is the existence of separate time scales as evidenced by
the presence of a small parameter ¢ . The precise power of ¢ that appears
in a time scale can be obtained by applying Kruskal's principle of maximal
balance discussed in the last section of this chapter. Though l.d.e. with
constant coefficients are not difficult to solve, the examples above were
presented mainly for purposes of preserving some order in the development
of the method, rather than for pedantry. Furthermore, in high order systems
the extraction of the different behaviors individually is useful in providing a
different point of view and may obviate to some extent the labor of factoring

high order characteristic polynomials.
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(b) Equations with Variable Coefficients

(1) Singular Perturbation. The inethod will now be applied to a

problem of the singular perturbation type. The linear Lighthill model is

reconsidered in light of the theory of multiple time scales. The governing

equation is:

(t+€)£ +{=0; f(l) =1 (2.1.2)
dt
We have already seen that direct perturbation is singularly nonuniform.
The independent variable is extended as

t => ith =c+t or =1
[1'0,1-1} wi 1'0 c ‘r'o

71 = Ck(t)

where ¢ is a constant and k(t) is as yet an undetermined clock function.

Case (i) c =0(1)

The extended equations are,to order ¢:

d

f
(-ro -c) 'Z + 10-0 (2.3.23)
51, df . 3 f
T -C +f, =20 + k(T -c) =2 2,3,24
(O ) B—T; 1 a‘ro ( o ) 871 ( )
Integrating (2.3,23) :
¢ = AlTy)
o T -cC

. . . . . f
If fo + ¢f, is to be an approximation to f uniformly then the ratio ;1 must

be uniformly bounded. On integrating (2.3,24) this ratio can be writfen as:

f A 1 B
_Lz — - — f—
£ J(A k (To-c)a)dfo+ reSiial (&-84.25)

The counterterm k must be chosen 8o as to cancel the nonuniformity arising

in direct perturbation theory. Setting the integrand to zero is sufficient to
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ensure the boundedness of %‘ uniformly in T This proves to be convenient
as it enables us to determing ATy ) and k('ro). However, it must be noted
that this is only a particular choice and the freedom in the choice of the clock
function can be exploited in other ways also, We require uniformity of the
extended function along the trajectories 'ro(t) and Ty (¢ ,t). DBut one may
for example demand uniformity in the ‘ro, 7T, plane. In this case A(T, )
should not vanish at 7, = 0. The behavior of B(T, ) must be determined by
going to the next order,

Further, we may note that ifo_nlxthe independent variable in (2.1.2)
had been extended, the above condition would, of necessity, have to be
satisfied,

Thus we can write

AT, ) . '
kL (2.3.26)

(r =)
i. e,
il (r )=—l— = ¢, = constant (2.3.27)
A 3 k(T ~c) 1 *r
o
Hence: A =D exp(c, 7y )
ke & 1
< (1‘0- c )
After restricting ‘ro =t+c, T, = ek(t) we can write:
D .
f (1, T)| = = eelt (2.3.28) ‘
-0 o t
t
1
This is an improvement on direct perturbation theory in that f_o(t) a

is finite at the origin; however, it is not very useful as f_o(t) is forced to

go to zero at t=0,

We shall, therefore, consider the next case,

Case (ii) caO(c); c=¢a, a =0O(l1)
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The extended efuations now are;

r —L + f =0 (2.3.29)
O oT o
(o]
3 f Af e df
2.3 = - - —_—f k — 2.3.30
o 5T +6 == (1-a) TR ( )

As before:
f (7, T, ) = _AﬂL)
o o0

T
o

The uniformity ratio is given by:

{ A' a-1 B
L alE 2
3 J( k ﬁ’o ydr 4 L (Ty) (2.3.31)

The second term in the integrand gives rise to singular nonuniformity in
straight perturbation theory. In order to eliminate this we may put a=1
and k=0, Exact solvtion is now obtained and is given by:

D

{f (t)=— ; D = constant (2.3.32)
[o} t+¢

On the other hand, we may equate the integrand in (2.3,31) to zero and solve for k.

Then,
l-a) A(T H
Ll AN ) - kA
)
! -
and %—(T, ) = %—o;—) (‘ro) = ¢, = constant (2.3.33)
giving A =D exp(c, 7, )
sl
C, TO

After restriction along ‘ro= t+c, T, = ck(t):

D e(a-1), D e (a-1)
t’o(‘ro.‘rz)t —(H—C) exp( T e ) = (t+ca) exp(—t = ) (2.3.34)
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On substituting (2. 3.34) into (2.1.2) the value of a is fixed to be equal to 1
and the exact solution (2.3,32) is obtained (Fig. 2).

It seems desirable to develop a criterion of uniformity in terms of
conditions on the time scales that would enable one to proceed systematically.
One may therefore consider the following criterion:

Clock Uniformity Criterion (CUC). The time scales ‘ro(t)

and T, (t) must be chosen such that

Tt :
kT e ) °

i.e., the slope of the T, (To) curve must be C(¢ ) uniformiy in t
when the parameter ¢ is used to separate the time scales.
In the light of this criterion, we may note that the clock uniformity

ratio (CUR) fo- case (i) of this example is given by

Ty ()| _ €
T'(t) cy t3
o

and therefore the CUC cannot be satisfied for all t. However, for case (ii)

t the CUR is given by

T, (t)| _ efa-})
T(')(t) T (t+ea)?

If we now demand that CUC be satisfied for all t we must have a = 1.
This leads to the exact solution (2. 3.32) without having to substitute

(2.3.34) back into (2.1.2).

It has thus been demonstrated that a singular perturbation problem

can sometimes be solved by a proper choice of time scales,.
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(2) Simple Dynamic Model. The following example is given here

because it is the forerunner of a phenomenon of deep significance in the
approximation of solutions of higher order equations. For instance, in

second order l.d. e, the change of sign of the coefficient is associated with

the failure of the approximation and the related analysis of the Stokes
phenomenon. The present example exhibits the oreakdown of the 'frozen'

and the perturbation approximations. The example may be considered

as the simplest model of a flight vehicle of the VTOL type, being characterized
by initial apparent instability; the system is stable, however, for long

times, Again the equation is solved by the method of extension.

Consider the equation:

df 1 -et

— .: zon
dt ‘1+¢t)x 0 (2.3.35)

fl0)=1; 0< ¢ << 1

Fig. 10 illustrates the variation of the characteristic root and the solution.
The simple ''frozen' approximation is a growing exponential and does not
match the true solution anywhere except neart = 0 and gives incorrect
statility information. Another approximation, which is a slightly more
reiined scheme of 'freezing' the system,is to treat the coefficient
essentially as a constant 1s far as the solution is concerr .d, but to vary
on a slower «ttirne scale, and can be viewed as a simple application of

the time scales method. The approximation

l“t }

(t) =exp{( T }t

thus obtained gives the correct initial behavior and stability information, but is
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quite wrong in representing the true solution in other respects, For example,

the correct asymptotic behavior for large t is not described; besides, the

maximum value which occurs at t ~ 0.4/ ¢ for the approximation (t),

is

given as exp(0.17/¢ ) whereas the true maximum is exp(0.4/ ¢ ) and occurer

at t =1/¢ ; further, f /T ~ exp( 0.2/¢). Direct perturbation
max ' max

expansion on the other hand is secular and yields
t
ft)=e (1 -t +...)
) 1

and fails for t~ By

We shall now see that a proper choice of time scales results in a
uniformly valid solution.

The variables are extended as follows:

t => ‘ro.n}

with T =1; To =t + constant

Now:

(2.3.36)

(2.3.37)

1
This suggests that the constant in 1'0 in (2.3,36) is O(c_) . Therefore,

let T =t + = ; ¢ =0I(l). The extended equations are:
o =

<
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(el g—:jl =0 (a)
- a—L - y a—é o
(1-c) i (4e)r +7 k 2F =0 (b) (2.3.38)
2f B
SO AT (c)

The choice of ¢ =1 from (a) and f = A(T, )exp(-fo) from (c) yields in

equation (b)

Al
A—(T1 ) = = (‘ro) = ¢, = constant
o
. S s ( =] -:—
whence A =D exp(cy; T, ) k‘To) o= in 'ro

1
. . 1 1 .
Restricting f(‘ro. T, ) along To =t+— , T, =—k and f(0)=1, we obtain
= € €

f(t) = exp[ -t + 2— 4in (l+gt%= e-t (l+et)2/c

which '~ he exact solution., The asymptotic behavior of the function can be

wrolten o3

2

tt ot tZ/p

1
{t(-t.)m~ expl 2 (e Y357 - el
f(t) ——Pp=
f(t) 2 .4
-~ 2
t} t-0 exp(t- ¢t +3— e2t® - th TS i)

It has thus been demonstrated that in dealing with equations having variable
coefficients, the generality of a nonlinear clock function is mandatory. The

clock itself can be a highly nonlinear function even in simple problems,

2.4 Asymptotology

This chapter concludes with a brief look at one aspect of asymptotic
analysis which has hitherto been known as an art, at best as a quasi-science,
Most people who have worked with asymptotic pheinomena have acquired

implicit knowledge useful with different problems but not general enough to be
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explicitly formulated,

In a highly instructive lecture M. Kruskal enunciated seven principles
governing the philosophy of approach in asymptotic analysis (Ref. 41). This
section (beginning with the title which was first used by him) is a brief review
of these principles motivated by their usefulness in later sections.

Kruskal defines asymptotology as the art of dealing with applied
mathematical systems in limiting cases; alternatively it is the art of
descrioing the behavior of a specified solution (or family of solutions) of a
system in a limiting case, The principles are enumerated below; however,
the one most important for the present work is the sixth--the principle of

maximal balance ( or minimal simplification ).

1. Principle of Simplification,

Asymptotological analysis tends to simplify the system considered,
thus facilitating the generation of approximate solutions. Simplification
occurs for example in perturbation theory; another way this can occur is in
the separation of autonomous subsystems. The system f(x,y) = 0; g(x) =0

has the autonomous subsystem g(x) = 0,
2. Principle of Recursion.

The dominant terms only are retained and solved for and the other
terms are treated as known, Iteration enables one to obtain an asymptotic
representation of the unknown function irrespective of the forms of the terms
appearing. This principle is also useful in deducing general properties through

mathematical induction,
3. Principle of Interpretation.

This advises us to suitably formulate the problem so that the limiting
case is meaningful, Overdeterminism as occurring in matching problems
of the boundary layer type, results in simplification at the cost of losing

importart information.
4. Principle of Wild Behavior,

This states that apparent overdeterminism occurs if in the limit (at least)
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some solutions have peculiar (e.g. singular) behavior. For instance, if
f(t) = exp ( --:— ), fa-o when t vanishes faster than €. More general
forms must be used in the asymptotic representation (e.g. inverse powers
or logarithmic terms). Underdeterminism on the other hand results in

nonuniquene:ss of solutions.
5. Principle of Annihilation,

An annihilator is an operator which results in zero when applied to

a mathematical entity. It is used to eliminate such terms as may lead to under-

determinism in the limit,
6. Principle of Maximal Balance.

This dictates the choice of the terms to be neglected (leading to
simplification) from among the competing terms when a comparison of the
relative asymptotic magnitudesis made. This is based on sound sense because
neglecting the minimum number of terms retains maximum information.

When there is more than one maximal set of terms, each set describes one
asymptotic behavior. Simply stated, the principle requires that the ordering
be so chosen that the maximuin number of terms is retained. For example,

in the asymptotic analysis of the roots of the cubic equation

3¢3x® +x® -ex-4:=0 (2.4.1)
in the limit ¢ -0, one may choose a general representation x = ac” and
determine y. The terms can be ordered as:

3y +2 2 +1 o
L se Y :ev T e (2.4.2)

v is chosen such that the maximum number of terms (which are dominant) is

retained after neglecting the terms which are small. Among the different

choices of y, it is found that the maximal ordering is given by y=0or -2,
A graphical technique, which can be traced to Newton but used in this context
by Kruskal, can be exploited to determine the value of y for maximal

ordering (Fig. 11 a), Eachterm of (2.4.1)is represented as a point on a
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graph with the pcwer of x as the abscissa and th: power of ¢ as the ordinate,
The relation between the exponents of x and ¢ is given by a line and for
small ¢ the values of y for minimal simplification are given by the

lower convex support lines of the set of graphed points; i.e, lines passing
through at least two points such that there are no graphed points below them.,
The present example, shown in Fig., 11 a, is discussed in detail by Kruskal

in Ref, 41, For large ¢, onthe other hand, the upper convex support
describes maximal balance. These ideas are further discussed in the next

chapter,

7. Principle of Mathematical Nonsense

This is the simple idea that if during an asymptotological analysis
an absurd conclusion is reached, the analysis has not been done correctly

or carried far enough.

During the ensuing chapters, more than one of the above principles
will be invoked and this is the reason for their inclusion here, To be sure,
it is more desirable to arrive at condusions in a systematic and logical
manner after proper asymptotological analysis--as Kruskal says--''like

remarkable coincidences in a well-constructed mystery story,' (Ref, 41).

2,5 Summary of the Chapter

Nonuniformities of perturbation theory and some well-known uniformizing
methods are discussed, The difference between the PLK method and the
multiple time scales approach is emphasized.

The method of time scales is applied to simple examples., Constant
coefficient l.d.e. are solved exactly by this method, the fourth order equation
being representative of aircraft motion. A singular perturbation problem
and a simple dynamic model are also studied.

Asymptotological principles are enumerated.
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CHAPTER 1II
DEVELOPMENT OF THE APPROXIMATION SCHEME

This chapter seeks to obtain approximations to linear differential
equations with variable coefficients in various limiting cases. The
coefficients are assumed to be slowly varying and the precise definition of
slowness is discussed in the next chapter, The equations are parameterized
by introducing an « and the system is studied in the limits of small and
large €. In each case the choice of suitable ''clocks' results in the extraction
of the leading behavior of the solutions; composite solutions are obtained by
combining the behaviors on different time scales. One of the major tasks
of asymptotic analysis is the determination of the ''natural' variables in
which the given problem can be treated as a perturbation problem. The present
approach is intended to relax the requirements on knowledge given in advance

and ad hoc assaumptions and to provide a systematic way to deal with equations

as they are given, Throughout this chapter the domain of the independent
variable alone is extended into several dimensions and nonlinear clock functions
are employed., The coefficients of the differential equations can in general
depend on ¢ and t; however, in this analysis they are assumed to depend only
on t. The discussion begins with the first order equation and is continued to

higher order equations.
3.1 First Order Equation

Consider the equation:

v 4w (tly =05 y(0) =1 (3.1.1)

Direct perturbation e¢xpansion y = Yo + fyy + ... exhibits both secular ard

singular nonuniformity depending on wo(t). The nonuniformity ratio Lo often

. s \ o
indicates the nature of the breakdown. It is seen that

t
- -j w_ dt (3.1.2)
yo 0
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Clearly, for example, when

n : c
w t ; n> -1 perturbation theory is secular

o
=0 " " exact
n .
=t ;n< -1 i " singular
int 1] " 3 3
e ; nreal neither secular nor singular

In order to uniformize the perturbation expansion, the following
extension of the independent variable is made:

t—=>fr , 7] TS6 Ty =ekit) (3.1.3)

The coefficient is taken to vary on the 'l'o scale (to pick up the varying

nature of the coefficient) . Thus

d d 3 3

a = aT_ tekiry) 3T,

3Y -

oT

L )20

k(fo)an to (T Jy=0
giving

Y(foo Tl)"A(T;)
and .

1 -

k('ro)A (Ty) +w°(r°) A(r, )=0

i.e,

]
ﬁ—(fl ) = - -'Eﬂ (fo) = 8 = constant

the l.h.s. and r.h.s. being respectively functions of 7, and 1‘o only. Hence:
y(‘l’ .T;)=A(Tx)=cexp (8T1)
o
\ (3.1.4)
k("o) - T ;fwo(fo) d‘ro
Now restricting the solution along the trajectories Tot and 7, = rk(t) the
exact solution y(t) = c exp (-rfmo(t) dt) is recovered, Henceforth s can be
set equal to unity without loss of generality.

We may observe that in this extension the CUR is given as:

Ty (¢)
T (t)

cw(t)l

Clearly the CUC cannot be met as w(t) may have singularities in the domain
of interest. This, however, does not really matter as this difficulty can be

removecd by making fo(t) also a nonlinear function. For example,
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1 =
if w —> — and w is bounded for large t, we may choose ‘ro(t) =t+{nt

71
T!
o

€Ew

1 + 1/t

——0
4

The choice of 4 nonlinear ‘ro(t) thus enables us to enforce the clock
uniformity criterion.

It is interesting to consider a pictorial representation of the function
(Fig. 7,8). For small ¢, 1'0 represents the fast time scale and T, the
slow time scale. The extended function surface is essentially a constant
along 'ro, but decays exponentially on the T, axis and can therefore be
described naturally (and uniformly) as dependent on T, . The natural
clocks are depicted as trajectories along which the extended function is
restricted and are solely determined by the coefficient. For instance,
when w is unity the trajectory is a straight line through the origin at an
angle whose tangent is ¢ ; a linear wo(t) leads to a parabola for the
trajectory. In general the magnitude of the parameter governs the proximity

of the trajectories to the 1’0 or T, axis.
3.2 Second Order Equation

In the previous case it was evident that whatever the nature of the
coefficient wo(t) and the magnitude of the parameter ¢, one could always
determine a natural clock to describe the function uniformly. For the second
and higher order equations this is no longer possible, and one has to be
content with approximations valid in different regions of the domain of
interest, First the canonical form of the equation and then the noncanonical

form are discussed.
(a) Canonical Form

Consider the equation:

y" teuw(t)y =0 (3.2.1)
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Again direct perturbation can be shown to fail for various = (t), the nature
of nonuniformity depending on w(t) (TableI). "We wish to make use of the r
simplification afforded by perturbation theory and improve upon it. The

extension sought is:

t=>{r .71} iT = Ty=c " ky (t) (3.2.2)

The extended derivatives are given in Table LI. Equation (3.2.1) can be

written as:

a m o a . aay Zm <o aa
—%— B/E) — ___}'_5_ . =0 2.
+ ¢ (k15T1 + 2k, 81’037'1)+€ (ky 37 )+eu(1’°)y (3 3)

The terms containing k; are the counterterms introduced by extension;
we shall determine the clock functions in various limiting cases in the
following way.

The various terms can be written as:
o m 2m n
e ()+e ()+e ()+e()=0 (3.2.4)

n is a given constant and m is to be determined.

The quantities not containing ¢ are implied t> be of order unity, The
failure of the approximation is indicated when the above ordering breaks down.

In order to use the graphical technique the coefficient of m in the
exponent of ¢ in (3.2,14) is plotted along the abscissa and the constant term
in the exponent of ¢ along the ordinate. Thus each term in {3.2.4) denotes a
graphed point. In the fashion of Kruskal, for small ¢, the lower convex
support line of the set of graphed points gives m for maximal balance.

On the other hand the upper convex support line yields maximal balance for

large €. Inthe present context we consider ¢ to be small and thus m=0
for maximal balance, But this choice is rejected as it is not useful and
corresponds to straight perturbation theory; i.e. n> extansion has been made,
What is desired is a compromise between completeness and simplicity-- a

system as complete as possible and still simple enough to solve., With this in
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mind we pick m=1, which corresponds to '"'submaximal balance, ' i.e,
maximal balance in second rank of terms,

We may therefore venture to state below the principle of submaximal

balance. If the maximal balance of terms results in an equation that is either

—

too difficult to solve or yields too little information then submaximal balance
obtains maximum information consistent with simplification, Again this is
mere prudence; short of solving the complete system (which may be impossible)
we take the next best course of action and =~lve a system which is not the

most complete but one next to it in the order of importance. That is, the
system chosen contains more information than all the others-except the
maximally complicated one, i.e. a system maximal in secornd rank of terms.

It appears that it is precisely the method of extension which permits
uniformly valid approximations which would otherwise not be possible, In the
above exampie - t must be a time scale since « is a general function of t,
But since the parameter is present it is likely that there is another time
scale. Unless u (t) is a known function of t we cannot, in general,
transform ¢ out of the equation. Maximal balance is therefore not possible
without extension and hence submaximal balance is resorted to after a
suitable extension of the variables,

In terms of the graphical technique, submaximal balance for small
would correspond to the lower convex support line of the se. of graphed points
except for one point which may be beneath the support line (Fig. 11 b).

For large ¢ this corresponds to the upper convex support line except for
one point which may lie above the support line,

With reference to (3,2.3) we see that:

s small m = 0 obtains maximal balance
m = 1 obtains submaximal balance
€ large

=% obtains maximal balance
0 or 1 obtains submaximal balance
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(i) Short Time-Analysis. From the above, for small ¢ the choice

m = 1 leads to the following set of partial differential equations replacing

equation (3.2.1):

a3
P A (a)

3T,

3 - ok
-k 2L 42k X 4+ oyt =0 b) (3.2.5
€ . 37, k, 37 a7 w( O)Y (b) ( )

o aa
e k! =Xy =0 (c)
8T
Integrating (3.2.5 a) we have:
Y(To. Tl)=A(TI)T° + B(Tx) (3.2.6‘)
Now A(T, )‘ro and B(T, ) are linearly independent w.r.t ‘ro and can be

used to generate separately the corrections to the lowest order result,

giving rise to two clock functions. Substitution of (3.2.6 a) in (3.2.5b) leads to:

e ' z . ' -
kl‘ ATO + hl A ‘W(To) ATO (3.2.6 b)
The choice of A = e"'.1 solves this equation as:
skgy =- =3 | T 2wdr (a)
ky = - 'ro o = o A
(3.2.7)
_ 1 a
Olkyyl = T \Y T, wdr Jro wdT (b)

and similarly:

¥kyg = -wa(fo)drod-ro= -TOJ(wdTO + fwfo dTo (¢)

The parameter s can again be set equal to unity without loss of geaerality.
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On restriction the two-independent approximations are obtained as

')\{zqtexp[e(tl—ftawdt-thdt)} (a)
(3.2.8)

Fol= o exp(-e“wdtdz) (b)

In each case the equation (3.2.5 c) which is left unsatisfied, defines the error.

The approximation breaks down when the neglected term L‘a %a?y,

becomes of order l— . '
Higher order corrections are obtained by introducing more time scales.

These are oLiained as multiplicative corrections instead of additive ones as in

direct perturbation theory, and will therefore reflect improvernent in some

types of problems, Thus if t is extended as
te=>{T Ty Ta, .o T }

with T =t; T1= ¢k (t); -r,=e=k,(t);...;rn=e“kn(t)

d o) d 2. o n )
—_— = + — — + + k —
dt 57t teh a7, € ko AT, € % a7
o n
da 82 a . aa 0 a az 0 aa
o + — 2 I ky — ]
dt? aro’ ¢lk a7, k3T ar,) € (ka 3T, k‘araf “"ar, !
a [
n 3 . a‘ A2 n+l
+...+e¢e (k — +k 2 a +2T k. k J+e () + ... '
T =0 =
n a'rn 2 2 w2 il=n/2 i ne-i afiafn_i ]
|
1
. aa
The term kn/2= 3—7“/—; = 0 when n is odd, {

The extended equations can be solved order by order as follows:
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T

3%y
=L =00 yir T VS AL Ta, T )T 4 BTy, To, T ) (3.2.9)

K1 3m, tEk 3T 3% twlrgly =0

Again using A'rc> and B to generate two independent approximatious:

» 3A 21 3A
E it .9 Sun . _ cer,
11 TO TI + kﬂ<1 61'1 WTOA(Ti » Tn)
Now choose
- T
A(ft .T: ) 0 0 Tn) - Ax(Ta .73 )P 00 ey Tn) e (3.2.10)

Therefore:

it' T+ 2i = -
TG Sl wT

Integration givés the clock function obtained earlier (3,2, 7 b).

The slower clock k; is obtained from the equation of next order:

O AP - . .2y
kg, 37T, + 2k, a'roa'ra ky o 31'13

Substituting from (3,2,10) and (3.2.7 a) one obtains

o 1 .

ks 4 =-;r;=-f1'°°(k1;)a d‘l’o (a)
i.e.:

kg,.=%:(‘roa(i<,_1)° d'ro-f'ro(ic“)’ ar () (3.2.11)
with:

Ta

.A;(‘r;,...'t'n):A1 (=5 5 ae Tn)e71=A= (Ta, ....rn)e e“ (c)

The general result for n > 1 can be written re~ursively as follows,
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S

ae a}: Zo'B z = 3 z z i
S aT_ i MG 3T 3T 47 (3.2.12) |

where W is the operator defined by

N ) " b aa M - aa
R N L C LA W T
i~ n-i = n
2 =
2
subjecc co the following conditions: (3.2.13)

n odd

N=%:6(n)50 .

n even

Forn=1, k1=-w(‘ro) .

When y (‘ro, Thy 5.0 ok .‘l'n) is chosen to be either of the linearly independent
functiOnB (W. T, t. T O) A(T1 P e e o0y Tn) TO' and B(Ti poe 0y Tn )’ the ClOCk

functions are obtained respectively as

1
k =—J73Fd‘r - jT F dr
nl 'ro o o o o
and
- o 2
knz JJFdTQ
where:

N . . 3
F=2F (ig)k ,)+8(n)X k2 )
2

and is subject to the conditions (3.2.13), Thus clock functions can be

determined to define slowe. time scales and improve the accuracy of the

approximations,
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The domain of "t for which the short time approximation is valid can
be determined as follows. In obtaining Equation (3,2, 8) the third term of
Equation (3.2,3) was neglected in favor of the second and fourth terms.
Clearly failure of the approximation occurs when this condition is violated;

i. e, when:

‘s 3%y 1 1
{1l st ey M~ ¢

The condition for failure is given by

(k= =

m

substituting from (3.2.7) and simplifying, we obtain:
Ve (Itaw dt) = wit’

Differentiating

Ve ttow =% m"kfnta +2tmi

. e, _
fwdlzc.o + tz—m-é=fe
i.e,
:—t-(w-’k)- %-(w-é)=-/e

Using t™? as an integrating factor, the above condition becomes:

d w%)_ Ve
a (v ) = e

Integrating
1 - e
Jut? t
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e — G —

The approximation will fail when ,

wt? ~ l
€ (3.2.14)

The criterion can be derived in a different way also. The approximating
functions A(T, ) 'ro and B(T, ) are linearly independent w.r.t. 'ro .
Upon restriction along L t, T, = ck(t), this property may not be
satisfied throughout the domain., The approximations can therefore be
expected to fail in a region where the constancy of the Wronskian (Ref, 59)

is destroyed, From (3.2, 8) the Wronskian can be written as
= Mo 1 (.2 1( 3 )
Wn %) =( -l+e ()t wdt-thdt)]exp[e(t— t? wdt - | twdt -_Umdt- )}

i.e. to lowest order in ¢, W(y, ,ya ) is a constant. Hence failure is

indicated when either the exponent is of order unity or
I—Jtawdt -tjwdt o
t €

i, e.:

-Zejtjwdt dt ~ t

Differentiating:

-Zetjwdt ~ 1 or -chwdt £ tl

Differentiating again:

1

Thus the approximation (3.2, 8) fails near a value of t for which wt® ~ %
as obtained earlier. Substituting this shows that the exponent in the

exponential function of WG" ,¥a) is of order unity.
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For the Airy equation, for example, w=t, and the approxiniations
3

t
t exp( -CTZ- ) and exp( - %t-) obtained from (3,2.8) break down accorling
to the above criterion, when t~ ¢ -1/3 . Any attempt to improve upon the

approximation by going to higher order in ¢ is foiled as the ¢? approximation
also fails when tw¢ -}/ The reason for this is clear, The method then tells
us that it is not possible to effect any improvement by using slower clocks,

On considering the Airy equation

y" +ety =0

it is seen that whent~ ¢¥  the parameter € is completely. removed from
the equation thus indicating a region in which the equation must be solved
exactly.

However, for a different w(t) the criterion can be utilized to
advantage. For instance, if o(t) = ;15 » the above criterion says that the
approximation will fail when e~1. For small ¢ breakdown is not indicated
and imprcvements can be effected by going to higher order terms in ¢.

This is indeed the case, for the exact solution for ¢> -l- is oscillatory

4

1
but it is not so for ¢< 1

(ii) Long Time Analysis, The interest is now shifted to the long time

behavior of the solutions of Equation (3,2,1). It is shown that the LG
approximation can be derived easily by a proper choice of time scales. The
reason for deriving this well-known approximation is not merely pedagogical
but to provide a systematic method for higher order equations and to emphasize
a clear physical picture of the phenomenon. In reference to Equation (3.2.1)
the analysis is carried out in the limit of large ¢ . If w(t) is an unbounded
monotonic function for large t, the correspondance between ¢ and t is clear,
In any case, the growth of the magnitude of w(t) must be properly associated
with the limit of large ¢. It is seen that in this limit, the choice m =$
obtains maximal ordering for the terms in Equation (3.2.3),

The extension evolves as follows, with 2m =1 and denoting eb by A,

and leads to the following partial differential equations, which replace (3.2,1).
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2 ,

3 . .a a——‘-x \ -
A : K o tw(rly =0 (a)
® " . a '
X! 3 % AX. ek B ¥ - (b) (3.2.15) |
BT; 670371

o ., 9 _
A .-a—,r—}—() (c)

Equation (a) above can be trcated as a constant coefficient one w.r.t.

T, and the solution is given as

y(T 2Ty ) = (T )explt,) (3.2.16 a)

whence, the clock k satisfies the equation
(kP +w(r )=0 (3.2.16 b)

obtained by substituting (3.2.16 a) in (3.2,15 b), Substitution into (3.2.15 b)
yields

d

—— (Una

ar
o

1 d
)= o5 g (tm)
o

or

= ’1/‘
a(‘ro) W (‘I‘Q)
Restriction along 'ro =t, T, =Ak(t) yields the composite solution
';;(t) = ¢ w-i/4 exp(iA wédt) + ¢y w-A exp(-iA wbdt) (3,2.17)
which may be recognized as the Liouville-Green solution.

This approximation will, however, break down when the neglected

33
term, viz, F‘ becomes of order A. Substituting (3.2.16 a)in (3.2.15 ¢):
[
ST =ae b= (e th(r) e

53




Clearly the failure of the approximation (3.2.17) is indicated near th: zeros

of w(t).
(b) Second Order Equation; Noncanonical Form

The analysis proceeds in the same fashion as before and different
approxiinations can be obtained. In this case, however, we may slightly alter
the point of view and determine a class of equations which is maximally
informative with respect to a giver. extension. We consider therefore the

equation
m n
y'"te w,y' + ¢ n'oy=0

with the extension

fﬂ =t T, =€k(t)

and wonder what values of m and n would correspond to the maximal or
submaximal balance of the terms, together with simplification. This is

considered in the limits of small and large ¢. The extended equation is:

2y e A w2k 2Ly oo e By
o 1 1

3T 23T,
(1) (2) (3)
+ e (o, %)+cm+l(w1i.§—¥:)+en(wov)=° (3.2.18)
(4) (5) (6)
The terms are ordered as ¢° : ¢t :e® : e : €m+l ceTitl, 2,3, 4,5, 6.

Using the graphical technique (Fig. 11 c) the relations for maximal ordering
are (i)m =n and (ili)m + 1 = n. This is obtained by balancing the exponents
of ¢ taking two terms at a time. Each balancing defines a curve in the m,n
plane. The anumber of terms balanced for each (m, , n, ) is given by the
number of curves passing through (m, , n, ) plus 1. Maximum balance
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corresponds to the intersection of the maximum number of curves at a point,

(i) Short Time Approximation : (¢ small), Letm =n=1. The

equation is:

y” + wa y' + cmoy =0

The extended equations are:

3
eo : g_fz‘ =0 (a)
o]

SRR SIS o AR D

T R T T S TR (b) (3.2.19)
i ., 13 9° " 3y

€ : K _Lha‘l’;_ + wy k T > 0 (c)

As before, integration gives y(r o' T, ) =A(T, )’.‘o + B(T, ). Further, choice
of A=e'! and V1 =AT_ yields

i‘z = -T—l;a I T (wy +‘rowo) dTo (a)
and:
I =%_ Jfo(w‘+towo)dro- j(m; +".omo)d?o (7]
° (3.2.20)
ky = -Jjwod‘ro d'ro €)
Thus :
yi (t) =t exp{ el tl ft(w,, +tw°)dt -f(ml +two) dt}) (a)
(3.2.21)
e (t) = exp (¢ [[w at at) (b)

Failure of the approximation is indicated when:

2 30y d 1
(T (5~

€
o
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It may be noted that by means of the transformation
y(t) = z(t) exp (- éffk di) (3.2.22)
the noncanonical equation

y" + 51, (t)y! + ﬂo(t)y =0 (3.2,23)

can be transformed into the canonical form

" nia ﬂL - 3.2.2
z+(Qo-4 -—Z-)z =0 (3.2.24)

We may therefore choose to study approximations for the noncanonical
equation directly or the canonical form after the above transformation,
The clock functions given by (3.2.7) and (3.2,20) are different in the two
cases. However, the approximations (3.2,8) and (3.2.21) are
unaffected to leading order after taking into account the transformation
(3.2.22). The difference in the clock functions {3.2.7) and (3.2.20)

in the case when f; = cw, and .Q-°= e exactly corresponds to
the noncanonical-canonical transformation (3.2, 22),

(ii) Long Time Approximation: (¢ large). The alternative

balancing of m+1=n; m =1, n =2 leads to a different approximation

for large values of ¢. The equation now is:
(3.2.25)

" ! 3 =
y'"+tew,y +te woy 0

This ordering can be obtained in the following way also. Consider the

equation:

3
S o Lo+ o ary=o0 (3.2.26)
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The coefficients are slowly varying, f A << 1, With the trannformation |

AT =t, the equation can be written as:

-

j
d® dy 5 T f.
-a?g,— + ey (t) 3t + ¢ wo(t)y =0 ; ¢ = X >> 1
The extension L =t; T, =ck(t) leads to:
ey Gl BEE o R e v (a)
3T, 1® 3T, oY
1. T Ay . 2%y ay
. k +zk + - o b 3.2'2
- AT, 3T 3T, Y1 3T (B A 7

eo:-a—a-g—=0 (c}

The coefficients of (a) can be treated as constants w.r.t. 7y and the solution
can be written as
= Th

Y(Ton'r; ) = a (TO) e
where:

i3 +wy (i<)+wo=o (3.2.28)

The amplitude variation i obtained from (b) by substituting and
integrating as:

al(tr )= 'v(_‘ro) where ,"'.1_ (tnv) =(—.DL——
o' " (2k +w, )* ar ‘ (4K + 20, ) (3.2.27)

o
When w, is a constant, a(‘ro) =2k + w, )-&. Hcwever, even when «, is nota

constant, consider the function 3(7‘0) =(2i< +w, )-%‘ and the approximation:
YT 7o) =air )exp(ry ) (3.2.30)
This depends on whether 'y(‘ro) is a slowly varying function. In any case,
(3.2.22) can be used as an approximation if the error estimates are known. Such
an analysis is made in the next chapter. This approximation affords a method of

shifting the point at which the standard LG approximation breaks down, and

will be discussed in later chapters,
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3.3 "Third Order Equation

Consider the equation:
y"" twyy" +w, y'+woy=0 (3.3.1)
The transformation y = z exp(- -:1;- j‘wz dt) converts the above equation into the

canonical form:
z + K 2!+ Qz=0 (3.3.2 a)

Let us therefore consider the canonical equation

ylll + em w, Y' + en w“oy = 0 (3.3.2 b)

and the extension 'ro= t; 7, =ek(t). We determine a class of equations
for which this extension obtains maximal or submaximal balance of terms,
in the light of the discussion preceding (3.2.19). The choices are found to

be(i)m=nor(iijm+1=n. Let(iim=n=1and (ii)m =2, n =3,
(i) Short Time Approximation: (¢ <<1)

The equation is now ordered as:
y"'+ew;Y'+€w°Y=° (3.3.2 c)

Using the extension (3.1.3):

3
eO:Lz-a =0 (a)

37'0
el k%‘%; +3§%—1 £ %::'%_3-‘-’1 w:s% fooy 0 0 (3.3.3)
e2: 3kik 2 7 ' . gioar a ¥ m‘i‘g—% =0 K
SE :_if“ _, (@)

For small ¢ the pertinent equations are (a) and (b) above. Solving

them in this order:
=5 3
y(r . Ti)=AlT )7 +B(1'1)1'°+C('r,)
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Since terms on the r.h,s, are linearly independent w.r. t. 'ro (Wronskian # 0),
each can be used to generate a clock function. Substituting y=A(T, )ro’

in equation (3.3.3b):

1 o2 T ' i At = o Cw 3
k A T +6k,Aro+6k‘A A(Zw,rov oo )

Choosing A = exp(r, ) leads to the second order equation for the clock:

a &2 (k, ) d(k, ) SN
T Fo‘;"”"o;,l‘:— tbliky )= - 2oy T Yo 1 0) (3.3.4)

Though this is a variable -coefficient < quatiom, it can be readily solved
being recognized as the inhomogeneous equidimensional or Euler -Cauchy
equation. The transformation 1'o = e” reduces Equation (3.3.4) to a

constant coefficient equation in z. Alternatively it can be written as

d? o 6 dd 6
e Al T o)
o [o] (o] [0}

. 2
where & =k, and f=-(-1_11-+ w ) .
: o
The solutions of the corresponding homogeneous equation are obtained as
=1 ™ where
o
m(m=1)+6m + 6 =0

i.e. m; =-3; mg =-2

and: 31 =T _®; &, =71
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The particular solution is given by:

y T
=0, (r) J B 0)) 4, 43, () f . NONCT
W(al. 33) W($1’¥a)
=3 -3
i T
o o
W(31 .33) = = To-b
3 7t 27 3
° o

: -3 -2
¢=k1=1'o J“ro°(2w,. +w0‘l'0)d‘l’o-‘l'o J%a(zw1+"‘ofo)dTo

Integrating by parts and noting that 0 25it
1 (. 1 3 1
ky == |tPgadt -5p |t ggdt -5 th,dt (3.3.6 a)

where:
ga (t)=ZU.)1 +(.U°t

- -3
For example, when w, =0; w =t =% ga =t and Kk, = constant - {nt.
The approximate solution is given as:

(3-¢e/a)

y(t) = ct® exp(- %- int)=ct (3.3.6 b)

: . p m
The exact solution for this example can be obtained as y=t  where

m satisfies the equation

m(m-1)}m=-2)+e =0

3

i.e.: m® -3m°

+2m+ ¢ =0
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For small ¢, expanding m = m_ +em; +... and taking m = 2 the

correction to order ¢ is obtained as:

3m03m1 -bm m; +2m; +1=0 or m = -4
Hence, for small ¢, the approximate solution to order ¢ is

y=cilzmeh) (3.3.6 c)
which is indeed predicted by the approximation via time scales (3.3.5 b).

The clock functions corresponding to the other two solutions ot

(3.3.2 c) are similarly obtained.
Ko =m— | (0y +u t)?
T2t 2 o' dt+ 4 J(o;1 +u:ot)t dt - || (w, +wot) dt dt

and k= -J‘“‘J‘w dt®
(o]

Using these clocks, the approximations to order ¢ can be written as

¥a (t) = cgt? exp( = :—ft’ga dt -ﬁ: J t°gadt -8 ftgadt] ) (a)
Y1 (t) = ¢, texp( g— { -:-Jﬁ g, dt + thgt dt - H gy dt® } ) (3.3.7) (b)
Y (t) =c_ expl -¢ ijodt“ ) (c)
where gz = 2w, +wot; g1 = w, +w°t.
For the case when w, = 0, wo=t-3 ;
e LEICTL R B e [te), yo=cot(- ek )

That these are indeed the correct approximations to order ¢ can be seen by

making the expansion m = m_ +em +... and evaluating my; from the
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relation 3m02 m, - 6mom1 +2m; +1 =0 and then successively taking

mo =2, 1 and 0,
The failure of the approximation can be studied as before by comparing

terms from (¢) and (b) in the Equation (3.3.3); failure occurs when:

Taking k, = - wodt° , condition for breakdown is
w
€ — ~Jjw de? (3.3.8a)

When w, = G, it is better to obtain the criterion differently as
L] P a a
ek k =
(3¢ _L“ar, ) w_y

taking the terms from (3.3.3 b) and (3.3.3 c) respectively;
i.e.:

3¢ (”wodta ) ( Iwodt) ~ (3.3.8b)

The approximation breaks down near the value of t for which it is satisfied.
When w = é , we see from (3.3.b b) that the approximation fails when:

1 1 1 .
3e(3?)(2-t,—) ~ = i i.e. when |e}] ~ 1

For small ¢ the time scales approach gives,in this case,the correct
approximation to the leading order in ¢, and fails as ¢ increases in

2
magnitude towards unity. The value ¢ =3/ ™ay be verified to exactly

corresponc to the occurrence of multiple roots for m in looking for a solution

2
of the type y = t™. The solution is therefore oscillatory when c>m and




2
nonoscillatory when ¢~ < 373 ¢ Thus for small ¢, the method yields
useful approximations,
Higher order corrections can be obtained by employing slower clocks
as in the second order equation and the validity of the approximation scheme can be

stuaied as before.
(ii) Long Time Approximation ( ¢ large)

The alternative balancing in Equation (3,3.2 b) with m =2, n =3,

leads to the equation

y" +euy(tly' +ew (t)y =0 (3.3.9 a)
which will be studied for large values of €. Using the extension

t==>{r T} T =t Ty= k) (3.3.9b)

the extended equations for large «, are in the order

a3 ., 313 9 e =0
e” : k ETr—,L:’ +w1kah+w°y (a)
2 . 3,
2 L3k Y 43 2 Y Y - o
© ar,® arat, U ar (b
(3.3.10)
b a8 . a3
VLR L X 43k 8 =0
¢ 3Ty 3T 8™y ﬁgﬁ, &
3
e : g—,r%— =0 (d)
[o]

As before these can be solved as

yr . Ti)=alr )el? (3.3.11)

where:

K +wy (k) +w =0 (3.3.12)
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Substitution of this into (3.3.10 b) results in

'y('ro)
afr ) =———),
(3K® + uy )
where:
T on oy = 3 2 n 3R vy ) (3.3.13)
o 2031 + uy ) 3T,

restriction along ‘ro= t; T, = ek(t) leads to the approximation for vy.

The noncanonical third order equation can be similarly studied,

yielding
Y3 (‘ro)
a, (TO) = - ne n bR
nc r3l<3 +Z(.U3(k)+(l)1]
where

dr nc

d_ (4n v, )=%-:—1, (Ln(3i<a + 2wg (k) +wy ) )
(o] (o]

_ 205 (k) + o,
2(31@ + 2wg (k) + v, )

Again the extended function y(T o’ T, ), must be restricted along 7 = t;
T, = ek(t) to obtain the approximation.

The third order noncanonical equation is equivalent to the

canonical equation of the form
y" 4+ (e w, +O0(c) y'+ (e"’wo +Qe?))y=0
for large ¢. It canbe seen that to leading order, the frequency of the

solution is determined by w, , w i however, the amplitude is affected by

wy,w and also by the terms O(e ) with y' andO(¢? ) with y,
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3.4 The Linear Equation of Cvder n

The 1l.d, e. of fourth and higher orders can be aralyzed in a similar
manner, In each case, after choosing the two tirne scale extension, the proper
balance of terms for short or long time (or alternatively for small or large values
of the parameter ¢ ) can be determined by the principle of maximal or submaximal
balance. In the fourth order case (for short times) for example, the clock
functions are found to satisfy an inhomogeneous third order l.d.e. with variable
ccefficients, but again of a particular type, namely the Euler-Cauchy equation,
Without going into the details of this, however, in this section the method of time
scales will be applied to the general nth order 1.d. e. and some general results
obtained, The extension of the nth order derivative operator is derived in

Appendix I. Consider the equation

n ne-l
d z Q d =z g) _
i + net geAel k1 Lt o2 = 0 (3.4.1)

This can be transformed into the canonical form

n n=-3
dy d -
Jm + wn-n d—t-mx + ... +woy-0 (3.4.2)
- a2 (4
where: z = y exp( - J s dt) (3.4.3)

(i) Short Time Approximation: (small ¢)

L]
Consider the parameterized equation

dn n-3
d_xtn + c(wng Jin=2 Olod +woy)=0 (3.4.4)

in the limit as ¢~0, Direct perturbation theory can be shown to be nonuniform,
depending on the forms of the w i(t); i=0,1,...,n-2, The extension

t =1 ToTe }, ‘ro= t; T, = ck(t) leads to a set of {n+1) partial differential
equations, For small € only the lowest and first order equations are retained in
this analysis, Using the result derived in Appendix 1 the extended equations can

be written order by order as:
n

)
eo . b_‘an = 0 (a)
o
(m) 3 n-1 A ar+1 an-il (3.4.5)
: k + k B = - +ooo ;
2 3 D T T T e by ()
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plus higher order terms.

Integratjon gives:
(3.4.6)

1 n-~2
+ An_z('r, )ro +...+ A )1’0 + Ac('r1 )

- n-
yiT Ty =A (T

At this point we make use of the linear independence of Ai(‘r U 01 , izo,1,...,n-1

and generate n clock functions, each corresponding to one solution of

n-l

(3.4.4) starting with .ach A (T, )7 _*. Considering A__ (T )T _

substitution into (3.4.5 b) gives:

n (n-r)
d 'k n-1 d k r
n-1 n-1 n n-1 ?d n-1
T Al (T t () A ()Tt )
d1’o n-1 o =] T dTo(n r) n-1 a'ro o
an-Z
3> -(wn-Z E‘I—.XZ + 56 . on ) (3. 4. 7)

Choice of an exponential T dependence of An will result in the following

=1
equation for the clock:

n-1:
n-l d (k ) n n-z .
n-l 2 d kp, .
"o —— +(,)(n-1)r " ——n(—_iu-)
dro 1 o d'ro
n n-3 dn-3(i(n-1) .
- - 1
+ (2)(n 1}n &)To FOFT— +... + (n.)(kn_l)
= -(w T + v3 4 +o T n-1 )
- 2% T Ya-3 o SRR ko
This can be written as
- -2
n-l dn lan-l n=-2 dn ®n-1
T, ———ta T —mm— t...tap | =flT) (3.4.8)
d'ro d'ro

where o, = i(i . This is recognized as the inhomogeneous Euler-Cauchy or

equidimensional equation. The solution of the corresponding homogeneous
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m . -
equation can be expressed as el o where m satisfies the algebraic
equation

m(m-1)m-2) ... (m-n+2) + m(m=-1)(m=2) ... (m-n+3)( ?)(n-l)

+oan+n!=o

which can be written as

n-1 n-2
m +a m +...+alm+a°=o

n=2

solution is given by

My n-l
+... t¢ T

(o K)E(kn-l)= g n-1'o

"hom hom

which will be denoted respectively by @ ,» ®gs «.. © |
n-

solution can be written as (Ref, 67)

e Mt . 2
Ona1= “Kno1 =2 J w(r ) dr, - ®a J wird %

n vn-lf dTO
+oo- +("l) mn-l —WZ)_—

where WEW(:I 5 Eg 2o ';n-l

having (n-1) roots which will be assumed to be distinct. The homogeneous

. The particular

) is the Wronskian and Vi is the determinant of

t
the matrix obtained by replacing the i h column of the (n-1) square matrix

r -~ ~ -~ -

®1 M3 wn_l

01 9?2 )

o'

. ~ (n=2) ~ (n-2) ~(n=-2)

P Pa adl
it d
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by the column:

One more integration of P gives kn 1 Thus obtaining the proper time
scales and after restriction along -r°=t » T1=¢ kn 1(t), one approximate

solution of (3.4.4) to order ¢ can be written as:

n-l
y)=c__ "7 exp( Imn_l dt)

The other independent approximations are similarly obtained by determining

the clock functions ®p.2 terr 0100 and combining each with

=2 =
tn . tn 3. el nitn t® as in (3.4.6). Therefore, the approximate general

solution of (3.4.4) to order ¢ (for small ¢) can be written as

-1 -2
y(t)= cn-ltn exp(e Jr(pn_ldt) + cn_ztn expl¢c ~[cpn_zdt)

g torene +clt exp(e Jcp; dt)+c° exp(e Jcpod?\ (3.4.13)

where ci are constants and cpi (i=0, 1, ..., ;1-1) are clock functions.
For any given n, the breakdown cf this approximation may be
investigated as shown in the last section by studying when the terms which
are neglected, viz, of order ¢ 2, become of the same order as terms of order e.
Higher order corrections can again be obtained by employing slower

3

clocks, of order ¢?,¢2, etc.

(ii) Long Time Approximation: (¢ large).

The ordering of the parameterized l.d.e. of order n can be obtained
by requiring all the coefficients to be slowly varying. For example, the

equation

638




a” S d

L orw AT —L .t M) v At)y =0 (3.4.14)
n n-1 n=-1 dr o

ar dr

(A <<1)

can be transformed into

a" gt n-1 d n

X oo W)L .. te et L 1+ (t)y =0 (3.4.15)

dtn n-1 dtn-l dt o

1
wheret = AT and ¢= X >> 1. This equati>n can now be studied in the limit

of large ¢. To use time scales, the domain of the independent variable is

extended as before::
t=—-'>{-r°.-rl} P T =t Ty=ek(t) (3.1.3)

Equating powers of ¢ will lead to a v et of (n+l) partial differential
equations. For the limit of large ¢ only equations retaining terms of
order ¢ and en-l need be considered. Using the results derived in

Appendix I these equations can be written as:

n n=-1
)" 2L RlR ey ) 3Y _
(k) a,'.1:1'*'(x>n_1(1<) =, tee +w1(k)a_',1 +woy-0 (3.4.16)
3T,
! .nel an e ne=2 an-l e an-Z
n(k) —y-—n-a., + +n-lw (k)" S—Lr. Hn-2)u (k)T —Y
0T, n-1 3T 3N n-2 n-3
° ° 3130
vo. +2wg k B3y 8y
¥ MEE 3T 0T “1 3y
o o
L [ A e o_nl , (a=1)(n-2) yne3p 5 12
2 aT; -1 2 wn-l( 371 &4
tootwgk 220 (3.4.17)
AT,

Equation (3.4.16) has coefficients independent of T, and we seek solutions
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of the form y(1’o.'r1 )= a(To) B(ry)= a(‘ro) exp(T, ). The clock function

satisfies the equation

(k) + o K7 6. 4wy (k) + w =0 (3.4.18)
the roots of which are taken to be distinct for this analysis. When any of
the roots coalesce, the approximation (3.4.21) fails because the amplitude
factor becomes unbounded. In this case a nonelementary function such as the
Airy function is necessary in order to represent the true solutiou. To relate
the approximations via elementary functionson either side of a point where
the roots coalesce, one is faced with a nontrivial connection problem. For

distinct roots, the explicit amplitude variation is obtained from (3.4.17) as:

= « n=2 - -2 * n- 2
(n(l;l))(k)n 4 (_.n_l_;(.[_l_._)- wn-l (k)n3+... +(.l)3)(k)

(n (i()n-l + (n-1) wo_ (i()n-z +... +t2uwg (it) +twy )

d
S n a)
o

Op 7 " el
3 3 (e @™ e e (°

+... +wy)}k  (3.4.19)

o/

This can be written in compact form as follows. Given the 1,d.e. (3.4.15),

consider the corresponding ''characteristic expression'’:

n-=1

F(x,t)Exn-i-mn x +... +ulx+wo (3.4.20).

=1

F =0 is defined to be the ''characteristic equation.'" The explicit amplitude

variation can be determined from the relation:

d _ -1 3F , dx
dar (tna)= -3 ax to ax | dr
o o
Integration gives
7(T)
)= 3F ¥
()
ox
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where y('ro) satisfies the equation:

1

Iol

d = aF
ar (¢n y) = Ln(ax)

o

T
o o

Combining the L and T, behaviors and imposing the restrictions T°=t
and T, = € k(t) the result may be stated as follows.
Given an l.d.e. (3.4.15) the approximation via time scales for large

€ is obtained as

'ri(t)

n
y(t) = iz=;l [(—a—m ] exp(e indt) (a)
3 x.
1

where L is given by

:—t(Ln yi)=%(l,n (g—fi)é) (b) (3.4.21)

where F is given by (3.4,20) and x, are the roots of F = 0,
Clearly when the mi , (i=1,2,...,n-1) approach constants as t—=,
y approaches 2 constant. Also if w is the only varying coefficient ¥ is a

pure constant. In this case the approximation is given by

n

';(t) =2 ci ( L )-'t exp(e fxidt) (c)

i=1 axl

where c, are arbitrary constants. This can also be interpreted to mean that
we impose the condition that o, , wg . . . w_ _, vary more slowly than w .

It can easily be verified that the formula (3.4.21) recovers, for second
order equations the results cf the standard Liouville-Green (WKBJ) theory as

well as those obtained by Curtiss (Ref. 27).
3.5 Summary of the Chapter

The main theme in this chapter has been the demonstration that when
the direct perturbation theory breaks down, a natural time scale can be found

on which the solution can be described uniformly. The method of timme scales
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is shown to systematically lead to the determination of the natural "clocks"
of the problem.

Linear differential equations are studied in the light of multiple
time scales, beginning with the first order equation. Reparameterizing
the equations enables separation of the different behaviors and a clear
physical picture is shown to emerge. 1n each case failure of the classical
perturbation approach is examined and the time scales method is shown to
improve on the approximations,

After deriving the exact solution of the first order equation, the
second and higher order equations are studied in the two limits as a
parameter ¢ becomes small or large. The ordering in each case is justified by max-
imal or submaximal balance of the terms, Higher order corrections are
derived for the second order equation and a criterion of validity of the
approximation is derived. In the large ¢ limit the standard Liouville-Green
(WKBJ) approximation is derived via time scales. The noncanonical formulation
is shown to lead to a different approximation; the significance of this new
approximation becomes apparent in later chapters where it is shown to be
useful in the transition point analysis.

The theory is then generalized to the nth order equation. For the
small ¢ behavior the clock functions are shown to satisfy the Euler-Cauchy
equation and hence can be determined exactly. For the large ¢ limit, a
compact formula is derived which enables one to write down the approximation
by inspection, It is observed that the time scales are, in general,

nonlinear functions in addition to being.complex quantities,
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CHAPTER 1V
ERROR ANALYSIS

The aim of this chapter is to examine the validity of the approximations
derived in the last chapter and to obtain bounds on the errors incurred,
The first order equation presents no problem, since the solution obtained
from the proper choice of time scales is exact, For higher order equations
one has necessarily to resort to approximations and an estimate of the

errors is sine qua non for the analysis. Though there is an extensive

literature establishing precise conditions for the existence of asymptotic
solutions, strict upper bounds for the errors have not in general been
formulated. Blumenthal (given in Ref. 28) did obtain vuch bounds for the
second order equation as early as 1912, but his results have not been generally
known. More recently Olver (Ref, 28) showed that it is possible to deduce from
the existence proofs sharp upper bounds for the errors instead of
the O-symbols. He derived these error bounds for the Liouville-Green
approximations (or WKBJ functions) and their derivatives, and showed that
these are indeed both realistic and easy to evaluate. But it must be
remembered that these bounds are valid only in certain regions of the complex
plane which are free from transition points and hence allow the use of one
and the same form of asymptotic expansion.

In this section a few preliminary results are quoted and these are
used in subsequent sections, For the second order equation a new
approximation theorem is proved based on Olver's results, and this is seen
to deal with the noncanonical equation directly., This will be further exploited
in the next chapter for transition point analysis. Since the derivation of
Olver's results is quite involved, the extension of his technique to higher
order equations is not readily apparent., Error bounds of a similar type are
derived in this chapter using a direct approach starting with the exact solution
and this is extended to higher order equations., The discussion is made

considerably simpler than Olver's, at the cost of imposing restrictions on
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the coefficients of the &ifferential equations.
4.1 Some Basic Definitions and Useful Lemmas

Some useful results will now be stated in order that they may be

used later.

Nonoscillatory equations and oscillation criteria (Ref. 23),

A homogeneous second order l.d.e., with real coefficients defined
on an interval J is said to be oscillatory on J if one (and/ or every)
real solution (# 0) has infinitely many zeros on J. Conversely, when every
solution (#0) has at most a finite number of zeros on J, it is said to be
nonoscillatory on J. Further, if in addition every solution (# 0) has at most
one zero on J, the equation is said to be disconjugate on J.

The oscillation theorems o Sturm can be stated in many ways. For the
present purpose the comparison theorem can be stated as follows (Ref. 42).

Sturm's Comparison Theorem. Let f(x) and g(x) be nontrivial

, solutions of the l.d.e.
u" + p(xju =0 and v"' + q(x)v =0
respectively, where p(x)> q(x). Then f(x) vanishes at least once between
any two zeros of g(x), unless p(x) = q(x) and f is a constant multiple of g.
Corollary: If q(x) < 0, then no nontrivial solution of the 1.d. e.
' u'" + q(x)u = 0 can have more than one zero, i.e. "q(x) < 0O on J" is
' sufficient for the l.d.e. to be disconjugate on J.
{ The proof is by contradiction. By the Sturm comparison theorem, the
solution v = 1 of the l.d.e. V'= 0 would have to vanish at least once
between any two zeros of any nontrivial solution of the l.d.e.

u" + q(xju = 0.
One of the very useful results is a lemma essentially due to Gronwall (Re?. 46).

Gronwall's Lemma. Let A(t) be a real continuous function and |4 (t)

a non-negative continuous function on the interval (a,b). If a continuous

function y(t) has the property that
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.t
y(t) s A(t) + I U (8) y(s) ds
a

for a < t < b then on the same interval:

t t
yit) < A(t) + I A(8) u(s) exp(! u(r)dr) ds
a 8

In particular if A(t) = A, a constant:

t
y(t)< X exp( [ p(s)ds)
a

Next we state two results of F, W, J, Olver (Ref. 28) in connection with second

order l.d.e.

Theorem 1 (Olver). Let u be a positive parameter, and f(u,x) be a

continuous real or complex function of x in the interval a < x< b. Then in

this interval the differential equation
d®w
= f
p— v o+ f(u, x)}w
has solutions w, (u,x), wy (u,x), such that
wy (u,x) =e" (l+e; (u,x) ), wa (u,x) = e (l4eg (u,x) )
d ux d -ux
it (u,x) =ue (1+2n, (u,x)), — wp (u,x) = -ue (14215 (u, x) )

dx

where |51 (u,x)'. ‘fn (u.x)‘s exp { E%(u‘ﬁ)-] -1
|e,(u.x)|, \na(u,x)\s expf F—‘a%\:i)] -1

and F, (u.x)=j‘ lf(u.t)‘dt, Fa (u.x)=}) lf(u.t)ldt
a X

The interval (a,b) may be infinite provided that the integrals converge.
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Theorem 2 (Olver), With the conditions of Theorem 2 the

differential equation

d® w
dx?

= { -u® +f(u,x)]w

: N iux
has solutions wy (u,x), wj (u,x) such that w, (u,x) = e + €y (u, x),

Wa (u,x) = el\lx + eg (u, X), %"’ Wy (U,X) = iueiux + un, (u,x),
:'.il—x- wy (u, x) = iueiux + uny (u, x) where
ley x| 4 [an ] [ea (w,x)] . {na (u, )] = expl Hluxy,
and X
Flu, x) = l [ECRIES
c

c being an arbitrary point such that a < ¢ £ b, The interval (a,b) and the

value of ¢ may be infinite provided that the integral converges.
The following lemma on integral equations also provesuseful (Ref, 43).

The Fredholm integral equation is written as
b

o (x) = X f k(x,s) o(s) ds = £(x)
a

If the kernel k(x, s) is identically zero when 8> x (which is true of causal

dynamic systems), the integrand is zero when x < 8 £ b and the integral becomes

X
j‘ k(x,8) 9 (s) ds. This leads to the Volterra equation
a

p(x) - A k(x, 8) ¢ (s) ds = f(x)

[

Lemma. (Ref, 43), If the '"free term' f(x) in the Volterra equation is
absolutely integrable and the kernel is bounded, then successive approximations
for this equation converge for all values of A,

The sequence of successive approximations is given by
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X
o(x)=fx)+Xx [ kix,8) p(s)ds
a

X X X

+Z A7 [ k(x,s ) [ kisy,85) ... [Kls__ .8 _)ils_)ds ...dg

m=3 a a a

If [k(x, s)| = M, and|f(x)| < My , then it can be proved (Ref. 39)
by induction that the modulus of the general term in the series for ¢ (x)

does not exceed
M, T M (x-a)™ / (mt) s AT M T M, (bea)™ / (m!)

The series converges uniformly for all values of A.
4.2 Approximation Theorems for Second Order Equations

We will now prove approximation theorems for the second order
non-canonical 1.d. e. using the results obtained by Olver,

Consider the equation
y'tewyy'+efw y=0 (4.2.1)
o

valid in an interval (a < t < b). Inthe light of the time scales treatment

for large ¢, the characteristic equation is:
x2 +w, (t)x+u-o(t)=0 (4.2.2)

The time scales approximation fails when the independent variable, t, has
a value for which the roots coalesce, i.e, when the discriminant vanishes.
Excluding this we have two cases for distinct roots, viz. when the roots

are real or complex conjugates. Each case will be discussed separately.
(1) Case of Real and Distinct Roots; D(e,t) = wy? -4u >0

o

In this case the approximation via time scales is given as
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exp(j w, dt )
RE(t) = { D_VZ‘D } exp( - %Jun dt) exp ( % f D;" dt) (a)
and S . | (4.2.3)
W) = ca DwD } expl-§ fuy a0 exp(-5 fDPay @)

where ¢, ,c5; are arbitrary constants. Let us, however, consider the

following approximations which are valid when w, ~ 0 (Ref. Eq.(3.4.21 c) ).

';1 {t) =£1]/—‘ exp( --;— J‘“’l dt) exp( + ;;J‘D%dt) (a)
2 (4.2.4)
Yalt) = ;’ exp( - £ [u at) exp(- 5 [DEan) (®)

New variables § and W are introduced and defined by the relation:
¢ =Jn dt; y =mW

where m and n are as yet undetermined functions of t and ¢. We choose them
such that £ has a one-to-one correspondance with t. Let @ and 8
be the values of § corresponding respectively to a,b. The differential

equation (4.2.1) is now transformed into

3
mpd 3 W(e,£) e w, mn+m'n+(mn)')gzw(e.5)
de?

+(e°w°m+ewlm'+m")W(c,£)=0 (4.2.5)

The primes denote differentiation w. r.t. t. We now seek mapping functions
m and n such that in (4.2.5)

(i) the coefficient of the first derivative w.r.t. £ vanishes

(ii) the coefficient of the second derivative and that of the ¢?

term multiplying W(e¢ , £ ) are the same.
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The first condition above gives us the differential equation:
(mn)! + m'n+ ewy mn =0 (4.2.6)
This can be readily integrated, using the integrating factor m. Thus,

th— f1n (m®n)} = - cu,

and hence
m? n = ¢ exp( -F:fw1 dt) (4.2.7)

The second condition gives

m?n = ® _m + coefft of ¢ in (w, m') + coefft of ¢? in (m") (4.2.8)

H

(a) If m is independent of ¢, (4.2.8) gives n = w “. But from

(4.2.7) m? = wo-% exp( --ejw1 dt), which results in a contradiction unléss

wy ® 0, Inthis casem =w _’-1/‘ , D =W o% , and this leads to the standard
LY

LG result.

(b) If m is also allowed to depend on ¢, the choice of

exp( - %I“’i dt)

D¥*

m-=

leads to

_o*
=2
which satisfy both the conditions (4.2.7) and .(4. 2.8). The transformed

equation for W now is:

-3/

d"w[2

= 4
¢ +zc%1-4n (D""\"]w
de?

This can be written in the form

2
Y [ e?+fc.) ) W

a¢?




where:
2¢ - -
fle,t) = =35> - 4D T Sy (4.2.10)
We now suppose that f is a coatinuous function of £. This is true if
D is twice differentiable and does not vanish within the interval. Applying
Olver's first theorem a solution W, (¢, ) exists such that

W1(e,F)=e€€(1+E1), Wy (e, €)=¢ eeg(l+2n1)

d_
d¢
where

&
F
[Eq| .{m[ Sexp( 51)-1; Fy = {z ]f(e.x)ldx

-1/4 D%
In the original variables, y, = D W, and d§ = = dt, and similarly for
the second solution yjz.
The case when the characteristic roots are complex conjugates
{discriminant w, ? - 4v < 0) can be similarly treated using Olver's

second theorem. Therefore, the following two approximation theorems have

been established as extensions of Olver's results for the standard LG

approximation,
Theorem 3. The differential equation
y"'+ew, (e,thy'+e’w (e,tly =0 (4.2.1)

has solutions y, and y; such that

t
yile 1S Tylatiexp (5= [ |fe,t)far ) (a)
’ a

(4.2.11)

1

ya (e, t) s yale,t) exp (+ Ze

.4‘-§o-

{f(e,t)/dt (b)

where: ¢ is a positive parameter; 71 =(:—i‘)-§ exp( € J-xidt); i=1, 2

and x. are the distinct real roots of the characteristic equation F = 0, with

F = x% w (e t)x + wo(t,t) 16

——— e e




; 3 N
S S EED_uj -4p™" (D74 1;_ ) [c_uf -2p V4 pV* ]
D

D being the discriminant of F, is positive and is assumed to be twice
differentiable in the interval. The interval (a,b) may be infinite provided
that the integrals converge.

When the characteristic roots are complex, the following theorem
expresses the error of the time scales approximation.

Theorem 4. The differential equation (4.2.1) has conjugate solutions

y and y* such that

y=y +E (4.2.13)
where : _
¥ = (25 expe [ xat) (4.2.14)
cotffoan
|E|s . { exp i—lj; lf(e.t)ldt,) -1 (4.2.15)
a<c<b

D, F and f are as given in Theorem 1, D being understood to be the absolute
value of the discriminant; and x is the complédx root of the equation F = 0,

We see from theorems 3 and 4 that the error of the approximations
as stated is O(1)as ¢ -o. However, if we impose the condition that w,
varies more slowly than w then the error is o(l) as ¢ becomes

increasingly large. Thus as ¢ -,

t

wy =wy (-~

y =y (2

. _1

and g

In this case, for any fixed t, the error of the approximation becomes
vanishingly small as ¢—~o ,

Each of these theorems is valid on one side of a transition point
(where D = 0) since they are corollaries of Olver's results, Nevertheless

the difference in the form of the approximate solutions can be used to
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advantage when dealing with the case of multiple characteristic roots.
A brief lock at the two approximations may be in order here,

In regard to (4.2.1) the usual LG approximation is given as:

2

exp(-;—jw1 dt) 3
: I F S L 2

T T ey exptte flo, -5 - 3 e
€

o 4

ya (t) =

2 2l pl
+ ¢y exp(-iej(wo -w—:— - %t )’dt ) }

However, by treating the noncanonical form of the equation directly by

time scales, one obtains, under certain restrictions, the approximation:

exp( - 2.[“’1 dt)

o 2 ' 1y 3 ) 2
ya (t) = o i )1/‘ ¢, explie J(wo - &i— )%dt) + c; exp(-ie J(wo--ﬂi—)*dt}
o 4

The errors of the approximation have been given in each case. Yet aunother

approximation can be written as:

exp{$ "ﬁ—d‘t——s_; = % f“’x dt)

3
~y { c; exp (ie j(wo-%_ )édt)

2
+cg exp(-ief (o - ‘%—)i’dt) }

The error of this approximation cannot be readily written by application of
the Olver theorems. It can, however, be estimated by a different method,

which will be the subject of the next discussion.
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4,3 Derivation of Ertor Bounds

In order to assess the merits of the tinie scales approximation the
estimates of the errors will be examined using a well-known method
of successive approximations. This consists in treacing an initial
value problem and writing an integral equation which is satisfied by the
unknown function. Iteration then gives a sequence of successive approximations.
Bounds of the Olver type will be rederived, though they are not as sharp
and the conditions are more restrictive. The emphasis, however, is
on the directness and simplicity of the method and applicability to

equations of second and higher order.
Second Order Equation

(i) Self-Adjoint Form. Consider again the equation

y'+e?uy=0 (4.3.1)

in an interval (a,b). The approximation via extension is

= 4
7t) =0 Y explz iefw%dt) (4.3.2)
and is found to satisfy exactly the equation

YU +(ePw +£(t))y =0 (a)

(4.3.3)
4 d? 4

where: f(t) = - oVt (0 w'AD! (b)
Equation (4.3.1) is therefore written as

y"+(€aw +f)y:fv (4.3.4)

with f as given by (4.3.3 b).
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If f is smali when compared to ¢2uw, then (4.3.1) and (4.3.3 a)
will be nearly the same and ;7 can be expected to be a good approximation
to y. In order to estimate the difference y - 7, (4.3.4) is regarded as an
inhomogeneous equation with the r.h.s. as a known forcing function,

The method of variation of parameters enables one to write

t
y(t) = (1) + [ hit,s) £(s) y(s) ds (4.3.5)
3

where £ is some fixed point in the interval; V(t) is the inhomogeneous
solution and h(t, s) is the Green's function (or the time -varying impulse
response) respectively of (4.3.4). For a fixed s in (a,b), h(t,s)is a
function of t, and satisfies (4.3.3 a) together with the initial
conditions h(s,s) = 0, g—:‘(s, s) = W(;;a ,';1 })=1. In order to find
approximations to y characterized by conditions at an interior point of
(a,b), or by its behavior as t—~a o- t-b, we shall follow the argument
presented by Erdelyi (Ref.44) and thus £ is chosen to be the point in
question and ;(t) to be that solution of (4.3.3) which is characterized by
the same conditions as y(t).

(4.3.5) can be written as a Volterra integral equation
t
y&) =y + [ kit s) y(s) ds
¢

where k(t,s) = h{t,s) f(s).
From the theory of integral equations, the sequence of successive
approximations converges uniformly when;; and k(t,s) are bounded (Ref, 39, 43).

Let the equation (4.3.5) be rewritten as

t ~
y(t) = AY, () + BYa (1) + ¥, ®) yals) f(s) y(s) 4,

¢ W(ys.,¥: )
s
- "y, (s) f(8) y(8) d 4.3.6
Tialtth JE W({ya. Yy ) * 4e 20
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where ;71 ,73 are the two independent solutions of (4.3.3) and W(‘;;a ";"x )

is the Wronskian defined by:

(and is equalto 1); A,B are constants., Lety, (t) and y; (t) be defined
respectively by the pair of conditions A=1, B=0 and A=0, B=1l. Also let
the subscripts 1,2 respectively correspond to the + and - signsin

the exponent in (4,3.2). The definiteness of the fractional powers of

w(t) is assured by agreeing to consider positive quantities only,

Case (1) Nonoscillatory Case, w(t) £ 0 by Sturm's

comparison theorem and the characteristic roots are real. For distinct
roots we require w(t)< 0in (a,b). The conditions under which fy is of
constant sign in (a,b) can be determined by using Sturm's theorems (See
AppendixITI for a particular case).
The equation for y, can be written as:
t

t
yi® =, 05 1+ [ Fats)f(s)y, (s)dsl =Fa(t) | ¥y (8)£(s) n () ds
£ £

From the above discussion and observing that ;1 and y, are positive functions,

we can write the inequality

t
y, (1) s () [1+ j‘ Y, (s)f(s)y; (s)ds
3

and
Y1 =

1+) ya(8)f(s)y, (s)ds

mh’\ﬁ

since the integral is positive. Multiplying both sides by 7,f and

integrating between § and t:
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t t
fﬂi <1+ _f Ya(s)f(s)y, (s)ds < exp( f Y1 (8) Y3 (8) £(s) dl)
Y1 (t) £ 3

Thus we have proved the following lemma.
Lemma. If in the interval (a,b)
t

y < ¥+Y [ u(s) y(s) ds (4.3.8)
a

then on (a, b),

t
y(t) < ¥(&) exp( [ nYyds)
a

where y, y, and Yy are positive.

Substituting for ';1 , Ya, and f we get the final result:

t
nt) sy, @) exp{ [ oV ] (m""r'l ds ) (4.3.9 a)
3

The equation for yg (t) can be written as:

t t
ya ) =Fa ®) +¥1 (1) [ Fa(s)fls) ya(s)ds -F5 (t) [ F, (s) £(s) ya (s) ds
3 3

Considering 71 , ;, and fy as positive, we can then write the inequality:

3
yalt) = Fa® L 1+ [ ¥, (s) £(s) ya (s) ds ]
t

By an analysis similar to the case of y, we arrive at the result:

;
va®)<Va @) expl [ oV | (V)| as ) (4.3.9 b)
t

Equation (4.3.9) (a,b) with £ =a,b respectively are precisely those
obtaincd by Olver for ¢ =1. Sharper bounds are derived later. The various

cases can be discussed as follows,
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3 t t
y(t) =AY, +Bys +¥ () | Vafyds -Fa() [ ¥, fyds
¢ 3
when fy > 0,
(1) £f>0, y>0
t
yat)syy(thexp( | ¥,V fds) B=0; A=l
Yalt) s ya(t)exp ([ ¥, ¥s fds) A = 0; B=1

t

(ii) f< 0, y<0

. t
y, < 71 (A+ I Yys fy, ds)
3

t
Inl s In| LA+ IE [ ¥all £lly:] ds3

- l;JLl {;;1 'f' < l';x‘ l?ﬂ, If'
Av LBl vl e

t
Hence |y (t)] = |Fa(t)]  exnl I; |%1] |74l 1£] as)

3
and  |ya ()] < |Va @] exp( [ V173 ] do)
t

when fy < 0.

(iii) £> 0, y < 0. If w(t)is suchthat y, <0, y, <0, y, <0, the

conclusions on errors of case (ii) hold.

(iv) <0, y>0; f=-gand g> 0

5 t
3 3
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3
Y1 "";"1[1*'_)' Y2 gyy ds- - ¥, J';"x gy, ds
t t

Thus vy, 5;1 exp ( f 7173 g ds )
t

t
Similarly y; < y5 exp ( f ;;1 Y2 gds)
3

Hence we can write, under the restrictions given above, when > 0:

t

o @)V @] exp ([ [T2¥a]t ds) (a)
a
b
[va®)| < |¥a®)] exp( []7:17a £] ds) (b)
t (4.3.10)
when f<0 b
"y1 (t)!s l;;1 (t)l exp ( f l?,_ ;3 fl ds) (c)
t
t
[va 0] <|¥a@]exp( | |F.¥a ] ds) (d)
a
Uniform bounds can be obtained as:
b
| e <[ Fap @ Jexo [ ]7:75 1] as) (4.3.11)
a

t b b
Denoting F, =f ‘?1?9 fjds; Fy = f ]371}‘, flds; F=fl;;173 £] dt
a t a

and using the inequality (n+1)! > Zn, we can obtain bounds which are less

sharp: if Fi< 2
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e

~, 2F. ,
(na] sfyal & i=1,2

2-F,
i
~ 2F .
or [v1,3] s 1Y1’3 53 i F<2 (4.3.12)
Case (2) Oscillatory Case. w > 0 and characteristic roots

are imaginary, As before:
t
~ ~ r ~ ~ ~ ~ bl
yit) =AY, +Bys + [ [, 0Fa(s) - %) % (5) 7 (s} y(s) ds
£

Let us write y, andy, as y; =« ;1/‘ sin a@(t) and
';7, = w'l/‘ cos a(t) where af(t)=¢ f w%dt. And therefore:
13

t
% (t) =§;(t) + J [ sin a(t) cosa(s) - cos a(t) sin a(s)] w'll‘(t) w '1/‘(3) f(s) y(s) 43

3

t
=%+ [ sin(a(t) -a(s))w (1) w4 (s) f(sly, (s) ds
G

t
sy, o+ IE Lo @) o ¢ ()] | tta)) |yge)] as

Let w “¥* be brunded in (a,b) by M. Hence ]'\71’ < M

() 5[] + 20 fg o1y as

By Gronwall's lemma

t t
o @lsl¥a @]+ M® [ | Fite) f]exp( | M |f]|dr)ds
§ €

t t
| @fs[¥2 0] - M [ % Lexp( [ M | £]ar)] as
(3 8
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i.€.:

t s=t
[ ®)s|yy 0] - M7 exp( [ M [£]ar)]
8 s=§
t
i ®)]<|¥2 ©)+ ML exp( f ™ |e|ar)a) (a)
3 (4.3.13)
Similarly: t
lys ©)f<[¥s @)+ M exp( | M [£]dr) -1 (b)
'3
Sharpening of Bounds: Oscillatory Case., These bounds can be
sharpened as follows. Applying the Liouville transformation
y=uw 'll‘z, ¢ = le%dt, transforms (4.3.1) into
z" +(e? +£,)2z=0 (4.3.14)
where:
o L -
fi =w F(w' ) (4.3.15)

Solution of (4.3.14) can be written as
z(€) = AT, (£) + Bz, () + f (;, (€)% () -5 (£) T, (s) )fy (s)5(s) s
a
where Z,, %, are the solutions of:
z" +e?zx=0
With the same restrictions on initial conditions as before, and choosing

~ 1 ~
z, = cos ¢t, 1z, =sinet

so that the Wronskian w(;z-;z ) =1, we can write




za<£)=?a(5)+;—

(cos €€ sines - sin e cos e£) fy (s) z; (s) ds

=g 1
= { + —
z5{€) P

Ry v RS

(-sin (¢8 - ¢ &) ) f, (8) z5 (8) ds

1. e, E
= @)= 5 @) & (|6 0] [z )]s
«
Further: £
[= ®)] = |Za0)|+ L [ la @]l ] a

o
By Gronwall's lemma

3
|7 @< [Zat0)] + = [ |Ta(0)] [ (6)] exp f [ [ar) s
a 8

; :
o] = [Fawr|+ | -3 o [ ary]ar) as

since z,(s) is bounded and this property is used only in the integral.
Thus:

[= )] < |Za)[- texp 3 [ |4 (r),d'r)J:_

W &=y

\
. ~ 1 \‘
ieee: |22 (€)] s |Za(8) +exp = [ |am)ara l
¢ a
Now transforming back to the original variables, and noting that:

dé¢ = midt

(g

ly, (t)l < wV*{ 4in (cfwidt) +exp(:_— _[ ‘,,,-V‘(u,-ll‘)--’ dt) -1 )

a
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This can be written in the form

ya (1) = u;'l/‘(t){ sin ( ¢ fu'%dt) + E} (4.3.16)
where ;
1 - -
[E| s exp(= jc )u‘ VE e ar]) a1 '

and cis in {a,b). This is Olver's result for the envelope of the solutions,
The other solution can be studied in the same manner and similar bounds
can be obtained., This also embraces a theorem of Wintner {(Ref. 45)
which is derived for the case in which ¢ =1 and the interval is infinite,
Asymptoticity of the solution for ¢ —~® is thus demonstrated.

Sharpening of the Bounds: Nonoscillatory Case. We will now consider

the equation:
y" -e3yuy=0 (4.3.17)

As before the Liouville transformation leads to the equation

0 (4.3.18)

2" - (2 -f
(¢ 1)Z

with f; being given by (4.3.15). Again treating (4.3.18) as an inhomogeneous

equation, the solution is written as

z = Az, +Bzgy +2z, (£) S 7o fyzds -2z5(£) j zy (8) f; zds (4.3.19)
where ;1 and E'a are the solutions of the equation

z" - €2 z =0

chosen such that the Wronskian:

W(Zy , ) =1
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Thus 21 = e . ;, = (4.3.20)
From (4.3.19) we can write;

£ £
z, =2z, +2, J‘ Zy f, z, ds - Z, f z, f z, ds (4.3.20)

'Y
For the conditions under which
fyzy 20
we can write the inequality:

&
z, S 2z, +2, JF Z, fz, ds (4.3.21)
o

Now lemma (4. 3. 8) leads to the result

Iy

~

z, < 'zvl exp(J‘ zy z, fds)

R

for £> 0. On substituting from (4.3.20) and transforming back to the
original variables, the following result is obtair d.

3

yy (t) = w-¥* exp(-e!w dt) {1+ E, } (a)

(4.3.21)
1

t
where lEll < exp ( i j w "V (o WAy gs) -1 {b)
a

Similarly the following result is obtained for the other solution,
Ya (t) = w V4 exp( € jwédt)f 1 +E;} (a)

) (4.3.22)
where ‘E,I <  exp( é—e- Jr V(W) ds) -1 (b)
t

93

4
b
-




These bounds are precisely those obtained by Olver (Ref. 28);
here they have been obtained by a direct procedure, but under the conditions
f> 0and z> 0. For any given u(t) the sign of f(t) can be checked. The

sign of the solution must be determined using Sturmian theory.

(ii) Second Order Equation: Noncanonical Form. The equation

Y”+€'J.‘1 y|+€3woy:0 (3.2.19)

can be treated in a similar manner. The time scales app: sximations

o2

Vi2 =D Y exp( e |(-%2 3+ =)dt
Vet 2 2

are the exact solutions of the equations

Fotew, V' +(ePw +0Y =0
where f(g,t)=_"".2':°_L - DY4 (DV4)n

and D is the discriminant = «,?® - 4w°. The original equation is therefore

written in the form:
y"+ew,y'+ (e? w + f)y = fy

The general solution of this is given by:

o~ o~
- U fy ds = [y fyds
y(t) = Ay; +Byz +y, JJ,Q(% 7R BRAN RTTTANAN

The equation (3.2.19) is not in self-adjoint form and h~nce the Wronskian

W(Ys »¥, ) is not a constant. By Abel's formula (Ref. 60)




WYz » ¥y ) = exp(-c J’w1 dt);

and therefore

~ ~ ~ ~ ~ ~
y(t) = Ay, + By, +y, fVa gyds - Yafvx gyds

where gle,t) =£’(°';/J—‘),yv—) (4.3.23)
a1y

By a similar line of reasoning as in the selfsadjoint case we arrive at the

bounds (4.3.10, provided f is replaced by g( e€,t). It can be verified
that this leads to the results obtained by application of Olver's lemma and

stated in Theorems 1 and 2 (4.2.11; a,b).
4.4 Third Order Equation:

We now apply the ideas used in the last section to higher order
equations and derive error bounds for the approximation obtained by the
use of multiple time scales., The analysis is more difficult since
oscillation criteria such as the elegant theorems of Sturm are not readily
available for higher order equations. As Hartman says, '"The difficulty
arises from the fact that the theorems of Sturm do not have complete
analogues' in higher order systems (Ref. 23, p. 384). Nevertheless the
asymptotic solutions are oscillatory if the characteristic roots are
complex and monotonic (in the sense of having at most one zero) if the
roots are real (Ref. 46). Conditions on the coefficients can be determined
such that the solutions are disconjugate (Ref, 23, p. 384).

We shall start with the third order equation (3.3.9 a). i.e.:

yul+€3w1y'+€3u’oy:0 (3-3;93)
in the interval (a, b).

The approximation via the time scales method is obtained from (3.4.21 c) as

t
) = D(t) exple | xat) (a)
3

where § = a

| :




where D(t) = (3x° +_4‘1 ) € (b)

and x is a characteristic root. Now y satisfies exactly the equation

(4.4.1)
y"'+‘-2u1y'+(c34.o*f(€,t))y=0 (c)
= 3 t ] 1" (N
where fle,t) = <% iZL -e (x4 XDD * 31);D ) - g =
Equation (3.3.9 a) is written as
Y|I|+€2w1yl+(€3u’o+f)y:fy (4.4.2)

with { as given by (4.4.1 b). Again when {(¢,t) is small in comparison
with ¢>« , solutions of (3.3.9 a) and (4.4.1 ¢) will nearly be the same,

The integral equation corresponding to (4.4.2) is 7iven as

t
y(t) = Ay, + BYa + Cys + Y, j (Y'a¥s -¥'sya)fyds
3

t t
Fa [ §uFe =¥ T) fyds - Fs [ (FaF ¥4 Ta )ty ds
3 3
(4.4.3)
with =W(y, ,ya, ¥a ) = 1. The discussion follows the one for second order
equations and y(t) is chosen to be that solution of (4.4.1 c) which is
characterized by the same conditions as y(t) at any point £ in (a,b).
As before let the conditions A=1, B=C=0; B=1l. A=C=0 and C=1, A=B=0
correspond respectively to the subscripts 1, 2, 3, Further, we notice
that for the canonical equaiion the sum of the characteristic roots will

be zero.

Nonoscillatory Solutions. In this case the characteristic roots are real,

Case (1) fy > O, Let the roots be ordered such that:

Xy > X3 > Xa (4.4.4)
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Hence:

y o~

t
Yg(t)=§71-1+ f (9’2 3 ‘?'a%)f)ﬁdS?
3

t t
- Ve .f (§'1 ¥a -y's V1 ) fyy ds - ¥, J (Y'a V1 = ¥'1 ¥a ) fy, ds
3 £
Let us consider now that the conditions are such that y; > 0 in the
interval (a,b). Also in y which is the approximation for y the explicit
amplitude variation expressed by D is uanderstood to be positive.

Since y(t) = D(t) exp( ¢ JE x dt) where D(t) = 3x°* +w, )'5,

3
. D!
y'(t)'(—f)- £ ¢ %) ¥
- A = D! D! - =
and: Y'aVas =¥'ava = (=2 - =2 )+e (x-x3)) y27a

D, D,

D'y D' d d
T - _..3. = — o e
Now ( Da D, ) It in Dy It in D,

-‘%[g‘{-ln(3x32 +u}1)"3‘t-{,n(3)(33 +w1):

- ‘%- (3x22 +Jl )' - (3X2 + )'1
L(3x22 +w1) (3’(3 +u,1)‘

Now if x5 > x4 > x; and the roots do not coalesce trhe root variations
Dl Dl

may be assumed to be of the same order of magnitude. Thur (D—a - -53-)2 0;
2 3

and in any case, for large ¢, %'Vs - %' ¥a > O.
In the special case when

2, 2 (t)

—4»——— = constant,

«w °(t)

o

D(t) has a particulariy simple form given by D(t) = “‘1-% (t) = ub'l/a (t) (a)

t ~ ~ t
and y'2¥; =Y¥aV¥a =€(x =~ X3 )yays = €(x 'xg)wfl (t) exp( CJ‘ (x5 +x5 ) ds) (b)
'3
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~ ~ ~ o~
Similarly ¥, ¥ -V'4Vi = elx - %), ¥a (c) (4.4.5)
»~ ~ ~ ~ ~N A
y'a Yi = Y'y Ya = €(x3 = x )Yy Yz (d)

~
The exponentials in y have real argument and the following inequalities
can therefore be written, for large ¢.

~ o~

~ ~
y'2Ya=y'ays >0

Y9 -Ya% >0 (4.4.6)
N' ~

~ ~
y'ay¥1 -y'iya >0

t
Hence: y, (t) < ?’1 () L1+ I (= ¥ ")"I'a ¥a ) fy, ds]
3

By applying the lemma (4.3.8) this immediately leads to:

t
yi)s Fy W expl [ Fi (5T -F'5Fs) f ds) (4.4.7 a)
¢

3
[T}
But when —= = k = constant
w
5

~ o~ N
€(Xa = X3 ) ¥y YaVa

;1 (9"3 ga = ;'3 gz )

e (xg =X3 )Ds (t)

since x; + x5 + x5 = 0. Therefore

~ rl' ~

Y1 (72 Vs =¥'a¥a ) = cwy Y3 () (x5 = x5 )

since D= LI-%(t)
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The approximation can be written as

) -~
yi =y, (1 +E;) V1.4, T Db)

where:

t
IEIISexP{ € I “'1-:18 (S)(Xa-xs){f(e,s)}ds} -1
£

Now for A=C+0, B=1, from (4.4.3) we can write the inequality:

t
ya {t) ’)\"a(t)+;"1(t) j (% Vs ';ﬁ' ya ) fys ds
£

Applying Gronwall's lemma to the ratio yz (t)/ ;71 (t), we obtain:
(4.4.8 a)

t t
~ ~ ~ o~ ~L o~ ~ ~ A ~N o~ b
ya (t) S ya (t) +y, f ds Y3 (V3 ¥a = ¥4 V2 ) f exp[ f Y1 (¥a'ys = wys ) fdr
¢ 8
When ';1 ,’)73 ’_},3 are bounded by L, , M; , N, respectively, a simplified

bound can be obtained as

t
~ ~ M ~ Ny A ~Noo~
ya (t) < ya3 (t) + vy Ll-{exp( J Yy (Y3 Y3 = Y3 ¥a )fd3> F 1} (4.4.8b)
g

3

. 3 g .
w}nch,when wy" o~ wo can be written in the form

b

ya (t) = ¥3 (t) + Eg

where: :
PAE %11 n@fexa(e | T2 (x - x5) | e 0] ds) -1 (4.4.8 ¢c)

Similarly, choice of A=B=0, C=1 leads to the bound on y, (t):

t
Ya (t)S?"a (t)+')71 f (%‘Vw '%';a)f)’:s ds

t
ys (t) < ')"Js (t) + ;"1 (t) I (%'?;3 -3 ¥a )¥s £ exp( g ;1 (%' ¥ ‘%’ ‘73 ){dT ) ds
3 s
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A simplified bound is obtai ed as

t
~ N ~
ya (t) S yg (t) + _Ij Y1 (t){exp( j Yy (W' Y3 ~¥ays ) f ds) "1-} (b) {4.4.9)
g

or alternatively, when u_‘a =kuw?

o » kbeing a constant

ya {t) = ;”3 (t) + Ea
where: t
|Eals B 5@ Lexpie £ 0y V7 (xg = x0 ) | 110, 9)|d) < 1] ()

Case (2) fy < 0, With reference to (4.4.3) let the integrals

be denoted by I, ,I; ,I5 in that order. When fy is negative the signs of all
the integral terms are changed. Therefore, if these terms are to have the
same signs as in the previous case the ordering of the roots ha. to be

changed. In place of (4.4.5) the following inequalities are needed.

~ L~

Yo - % V2 < 0 Wi -%H <0 (4.4.10)
The roots are therefore ordered such that x3 > x; > x3 ; i.e. the roots
X5 , X5 are interchanged w.r.t, case (1).

The analysis is carried out in the same manner as for case (1) and
the results (4.4.7), (4.4.8), (4.4.9) and (4.4.10) the following approximation
theorem has been obtained.

Theorem 5. In a given interval (a,b) the differential equation

y" ety (e tly' +elu (e,t)y = 0 (4.4.11)
possesses the solutions y, ,y; ,y, such that

ys =V (1 +E; )i ya =y2 +Eg; y, =ys +Es (4.4.12)
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where v.(t)=D, e (¢%.) 5 i21,2,3 (4.4.13)

a
D.(t) = (3x2 + )'% (4.4.14)
and x (e ,t) are the roots cf the characteristic equation
1
x° 4w, (e,t)x+u~o(e,t)=0 (4.4.15)
~ t
|E, | < e (Fy) -1

\’J ~ t ~_1~ t
\Ez\s Y1 j ds y37" y2 Fy (E.S)es (Fy ) (4.4.16 a)

a
~N - ~
|Esls §i | ds ™ FaFy(eusde (Fy)
a

Fy (e,t) =y, (t) (3 Vs - %' ¥2 ) fle,t) (4.4.17)
ST
€ W'y 3xlDl 3XD” D'”

f(:‘.t)':_z“ - c(x" + B— + -5— -6—— (4.4.18)

3 8 v
and €, (v ) is an operator defined by e, (v )= exp( f y(A)dA) (4.4.19)

a

provided that the following conditions are met:

(i) the roots x are real and distinct (4.4.20)
(ii) fy is of constant sign in (a,b) (4.4.21)

and further the roots are ordered such that x; > x; > x5 if
fy > 0 and x3> x > x; when fy < 0.
The derivatives in f(e,t) are assumed to exist and the interval may
be infinite if the integrals in (4.4.16) converge.
The condition (4.4.20) is satisfied if the discriminant
q® +r? < 0 where q=%’~, r=-—%‘2 (4.4.22)

The validity of (4.4.21) must be ensured by examination of initial

conditions and-oscillation criteria.
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Uniform bounds can be obtained by replacing the upper limit of

integration by b in (4.4.16 a).

Simplified bounds can be obtained by noting that (n+l1)! 2 2", Thus:

® anﬂ

exp{la) -1 =L =,
0 (n+l1)!
e i a a

< T =a T(3)=
o 2° 0o ° 1-5
T2
)
Hence | E,| <= if a<2 (4.4.23)

where:

F, dA

R
i
N —

Similar bounds can be determined for the other two relations in (4.5.6).

If 7, »Ya ,;3 are bounded by L, , M, , N, respectively, the following

relations can be used in Theorem 3.

= M, ~ t

\Ea| < i h [e (Fy)-1]

(4.4.16 b)
~ N, ~ t
RACE S NCICXRRR
© 3
Further, in the case when ;15- = constant the bounds turn out to

be simple. °
D(t) =‘ﬁ;ﬁ' (e.t) (4.4.16 c)
Fy =eo Y3(x; - x5 ) f(e,t) (4.4.17 c)
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4.5 Oscillatory Case ~

In this case the characteristic rcots consist of one real root and
a pair of complex conjugate roots, symmetrically placed about the
origin of the complex root plane. Let x, be the real root. Equation (4.4.3)

can now be written as

t
y(t) = A}, + By + Cys + | h{t,s) fy ds (4.5.1)
3

where

h(t,8) = 32 (t) (Fy % - ¥s ') (8) + Vs (t)(¥2 %' - ¥1 % N8) 47, ()(B ¥ % ¥ Ns)

Now if ;"1 (t) and ;'; (t), 73 (t) (;", and ;3 are complex conjugates) are

bounded from above by L, and M; respectively, then
t t t
Init,s) fyds < [ |nt,s)fyas < [ Joy] )£l |y) ds (4.5.2)
£ £

where:

- ~y ~ ~

P, = Mg {Ivns ‘;si'l *,‘;a)i' '71;5', + %a!;a;a' 'Ya%',} (4.5.3)

Now choosing A=1, B=C=0; A=C=0, B=1 and A=B=0, C=1 in that order, the

following result is obtained by applying Gronwall's lemma:

t t
lyi‘s |7, + ‘gl?i(s) P, | exp( ! |P| l£{ dar) ds (4.5.4)"

i=1,2,3, where P, is given by (4.5.3).

Some simplification can be achieved as follows. Let an operator

t
e, (x) be defined such that:

3
t t
e (x)=exp(ej x dA) (a)
¢ :
Hence
E (- = b) (4.5.5
epl-x) = e (x) (b) (4.5.5)
and:
! E iy = e (c)
e£ (x) eg (x) es(x) Lo3




The approximation :
y(t) = D(t) exp( e | x dk)=Dit) e, (x) (a)
¢ £

and (4.5.6)

vt = (5 + exly (b)
Let us write h(t,s) in the form:
hit,s) = ¥2 () { ¥y 3 (s) = ¥a3a' (s) ) + V3 (t)(F2 %' (s) - Fy ¥5(s))
> o 50 a
ty, () {yays (s) =y3 v (s)) (4.5.7)
We use the above and recall that D(t) is understood to be the magnitude of

(3x? - W, )- and under certain conditions (derived in Appendix II), is

invariant w, r.t, the roots., In particular if

w,® (1)
— = constant
w 2 (t)
o]
then
Dit) =w1-%'(t) (a)
and: (4. 5. 8)
J.(t) = D(t) &' )= - t() (b)
y,(t) = D )eE(xi = w, (t)es X,

Using (4.4.5), (4. 5. 7)can now be written as:

h{t,s) = ¢ D(t) ete(xg ) (x:, (8) = x, (s)) D? (s) ez (%, + x5 )
+ € D(t)eta(x;,)(x1 (s) -x;(s))Da(s)ez (%, + %)
t
+

¢ D(t) e (5 ) (2 (8) - x5 (s) ) D? (o) € (x3 + x5 )
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Noting that xy (t) + x3 (t) + x5 (t) = 0 and (4.5.5; b, c) leat's to the simplification:
— - t /
h{t,s) = « D(t) « Dz,(s)es (x4 )\x3 (s) = x5 ( >+e xa)< (8) - x4 (s))

+ ets (X3 ) Xy (s) - X, (5)) - (4.5.9)

t
Now y(t) = Fit) j; (t,s) fy ds. If e;(xi), i=1,2,3 and D(t) are bounded
Sa

respectively by, y. [2sM,, and R, and defining

Pa(s)= e R { | ug! (o) Laey (+x )xg (s) = %2 ()]

IMIS“I‘ 5)€€ (=x3 M{x1 = x4 )l (Msu (S)es("‘a Hxy = xp )I} (a)

4.5,
we get the relation: ( =
t

ly) = Yo+ j& (Pa| [f] [y] ds (b)

Gronwall's lemma leads to (4.5.4) with P; replaced by P, .
The following theorem can therefore be stated.

Theorem 6. With the following modifications thecrem 3 will hold.

ly,] =iv,()] +E, R (4.5.11)

t
tj It,i(s)P,f ’e; ( Py f) ds

1
=
ey

(4.5.12)

I
L]

-Ma{l%%' ‘ngx'l *IV:%' ';1;'?

L? Cd i ~ -~
—\;2( Ya Vs - ¥Ya yJ}} (4.5.13)

provided that roots are distinct, a pair being complex conjugates. With

the above modifications, the relations (4.4,11) to (4.4.19) hold.

£ 1s any point in the interior of (a,b). L; M; are the upper bounds of

~ ~ ~ .
yy and y; ,y, respectively,
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(a) The characteristic roots are complex and distinct if the discriminant

Qe +r* > 0; q=%1,r=-i29- (4.4.22 b)
If g> + r® = 0 then the roots are all real and at least two of them are equal.

(b) Uniform bounds are obtained by having a,b asthe limits of
integration in (4.5.12).

(c) Simplified bounds can again be determined similar to the case of
theorem 3; i.e. similar to (4.4.23).

When

3

S W constant

wa
o

in (4.5.12) P, can be replaced by P;, which is given by (4.5.10 a).
4.6 Summary of Chapter and Conclusions

Error bounds for the second order equation are derived, first for
the noncanonical form and this is done using Olver's fundamental
approximation theorems. This reveals a difference in errors in comparison
with the standard LG error bounds. Next, Olver's approximation theorems for
the self-adjoint equation are rederived, though more restrictively, in a
direct way that is believed to be new. Further, bounds for the noncanonical
equation are also derived vsing this method and are shown to be equivalent
to the earlier result using Olver's theorems. Simplified bounds are obtained
and the conditions for these are stated.

The third order l.d. e. is studied next and two approximation theorems
are proved, using the familiar notions of variable characteristic roots. For

one class of equations for which
3

w
-—1,. = constant
w

o

the error bounds have a simple form. Simplified bounds of the type obtained

by Blumenthal for second order equations are also derived under appropriate

conditions.




Though the approximations obtained in Chapter III require that
wi(t) be independent of ¢, in the error analysis this limitation may be
overlooked and the more general wi(e ,t) can be considered. The assumed
condition that f(e ,t) is a continuous function of t is not essential. The
same proof applies if, for example, f(e¢ ,t) has a finite number of discontinuities
in (a,b). But then higher derivatives of y(t) may be discontinuous at
the points of discontinuities of f(e,t).

The conditions under which fy is of constant sign for theorem 3 must,
however, be determined from other considerations such as stability theory
and oscillation criteria (Ref. 61, 46, 23). The bounds for the oscillatory
case are not as simple in form as for the second order equation.

Besides, it may not always be possible to evaluate the bounds in a closed
form; but the theorems are still useful, as they essentially reduce the
problem of estimating the error in an approximate solution of a differential
equation to the much easier problem of evaluating a definite integral.

It is felt that a similar approach may lead to useful results in the

case of th.'d order noncanonical form, as well as for higher order equations.
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CHAPTER V
EXAMPLES AND APPLICATION

The scheme of approximation developed in Chapter [II wiil now be
applied to examples. The arrangement is as follows. The first part of
this chapter consists of examples with analytically known behaviors; the
examples are so chosen as to highlight the application of the method and to
afford an analytical treatment. Notice that even though the coefficients do
not always completely conform to the ordering assumed in our approximation,
considerable information is obtained. We also consider a special equation of
nth order, The equations are studied in the noncanonical form directly
without the necessity of transforming them into the canonical form which
would be amenable to the L G treatment,

The latter half of this chapter is devoted to an actual physical
problem, viz. the analysis of the dynamics of VTOL aircraft through the
transition from hove - to forward flight. The problem of aircraft dynamics
in unsteady flight has been treated in detail by Curtiss (Ref. 27)in a
recent work, Therefore, at present we will not go into the many aspects

of VTOL dynamics, but will emphasize the use of time scales to provide a

uniform description of the transition dynamics.
5.1 Examples with Known Solutions

1. The asymptotic behavior of the zeroth order Bessel function can be

recovered directly from the governing equation:

y'"+ —~y'+y =0 (5.1.1)

The characteristic roots are:

%

1 . 1
x= - il -gm)
From (3.4.21]1 c) the approximation is written as
t

Y)=(1 - —i—:,)"/‘ exp( - lnti-if(l - ;l-ta)édt )
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1
i.e. y(t) ~ t % exp( %it) (5.1.2)

which is the correct asymptotic behavior as t -« (Ref.50 ), The first
and third coefficients are the same, while the second coefficient steadily
decreases as t —=,

Consider the transformationt = e¢s. Now if s =0O(l), as t =%,

g —, Equation (5.1.1) is transformed into
" ' 2 _
sy"+y'+ € sy =0
with ¢ > > 1, The time scales formula describes the correct behavior of

the solutions.

2. We may now consider the confluent hypergeometric (or Kummer's)
equation, which has a number of engineering applications (Ref, 64). The
equation is given by

ty" + (b-t)y' -ay =0

where a,b are constants, The characteristic equation is:

R (NS
t t

Fort -=, the characteristic roots are asymptotically given by:
a-b

X1~1+—t——

XQ ~ s

From (4.3.21) .me approximations are given by:

= o (To) exp ( fx1 dt ) ~ ¢, & t(a-b)

~
-
[}

-a
=a, (TO) exp(fxl dt ) ~cg t

o
]
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These describe the correct asymptotic behavior of the solutions as
t * o , as can be verified from Ref. 50, 63. It is seen from the
characteristic equation that the second coefficient approaches a constant,
while the third approaches zero as t “»., Notwithstanding this, the correct
behavior is obtained from the approximation.

Kummer's equation can be transformed into the canonical form and
is known as Whittaker's normal form (Ref. 63). This allows the application

of the L G approximation.

3. We will now consider a simple third order equation containing a large
parameter €, viz,:
3
ylil +{€3_ y:O (5.103)
This is of a type which is fully amenable to our approximation. The
characteristic roots are:

1 V31
2 EREI (%il—z);

From (3.4.21 c):

~ 1
yi(t)- rexp(e indt)
i
et (14173 ARETAR
~ - 2
y(t) =t(c; t 4 gt +eat ) (5.1.4)
The exact solution of (5.1.3) can be obtained in the form y(t) = tm.
‘ It can be easily verified that (5.1.4) gives the correct asymptotic behavior

for large e.
th
The special n  order equation of this type can be studied similarly

and it is discussed at the end of this section.

4, 'Double Airy'' equation

q This is a third order equation which is satisfied by products of Airy

functions and is given by:
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y"-4ty' -2y =0
The characteristic equation is:
x2 -4tx -2 =0
In order to determine the asymptotic behavior of the roots as t ==, the
equation is written as
8 x® -4tx -2 =0
and is studied in the limit § —» 0,
In this case the principle of maximal balance says that the term

x®> must be balanced against -4tx for large t (Fig. 12 ii); i.e. :

x® -4tx =0 or «x (x" -4t) = 0

The three roots are:

H

X1 a=i zt

X3 =0

This can also be seen starting with the equation:

x2 -4tx -2 =0

(5.1.5)

For real coefficients the sum of the roots = 0, Hence if one pair of roots

goes as 1 A , the third root must remain at the origin, as shown in the

sketch below.

A
E
Y

Hence the approximations are
= -
= 3x 3 - 4 ’f
yi { xi t) exp { xi dt)

-2

~t exp(t-‘;—talz); Ya ~ t

i.e,: ;;1.3 -é
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Now (5.1.5) has the exact solutions Aiz(t), Biz(t) and Ai(t) Bi(t)
where Ai(t) and Bi(t) are Airy functions (Ref, 50). The coefficients of
(5.1.5) do not fully conform to the conditions of the approximation;
the second coefficient increases as t—=, but the third remains finite,
Nevertheless, (5.1.6) describes the correct asymptotic behavior of the

solutions as t—«,
&, Consider the equation
tynl + 3y|| + ty = 0 (5.1. 7)

The characteristic equation is given by
3
4+ =x"+1=0 (5.1.8)

The roots of this equation as t~= can be studied using the exact formula for

the cubic (Ref.50,p. 17). However, let us write (5.1.2) in the form
3
X +5t—x +1=0 (5.1.9)

and study the roots as §~0, Using the principle of maximal balance (Fig. 12 i)
we find that the equation

3

x" +1=0 (5.1.10)

(4
determines the leading behavior of the roots as t—=>, Hence we can treat

(5.1.9) as a perturbation problem and determine the correction by going to

the next order. Thus:

x=xo+6x1 4Rl (5.1.11)
3 ]
3x% x; + -0 =) (5.1.12)
o t
giving:
x; = ti (5.1.13)

This correction to the roots can be verified from the exact formula also.

The titne scales approximation is therefore wrinen as
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y.(t)=c, (x %+271) exp(indt) (5.1.14)

where c, are adjustable constants. On substituting from (5, 1.11) the

solutions are found to be

~ D.
. i,
Vs @) = - °Xp ( Jxoi dt ) (5.1.15)

where x, are roots of the equation (5.1.10); i. e. the solutions are:

I—t)"-— exp( (1+Zi/3)t) + D3 exp( (J—.Z——) t) (5.1.16)
t

0= exp () +

The transformation u =ty leads to the constant coefficient equation
u'"" +u =0

which can be solved exactly. The expression (5.1.16) given by the time

scales theory is the exact solution for this example.
6. Special equation of order n.

The equation chosen, again conforms tu the conditions of the

approximation. Consider the equatioa

a” n
at_%'_+(f_) y=0 (5.1.17)

in the limit of ¢—~=. The characteristic equation is: I

n 1 H
= + — =0 5.1.18 '
Fn X n (5.1.18)
l {
"he roots are given by: x = exp ( %i ) ( 7 ) (5.1.19)

The time scales approximation is;
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i (n-1)

exp (-1 2 ) (1) L 25 exp e j e™ (T)ar)

Simplifying:

) (5.1.20)

tl
[g]
-
-

Y5 (t)

The exact solution can be determined as follows, We look for a solution

y = tm. On substituticn, m is found to satisfy the equation
m(m-1)(m=-2) ... (m-n+l) +¢ =0 (5.1.21I)

which can be written in the roo. locus form:

n
€

m(m-1l) ... (m-n+l)

1+ G(m)=0 where G(m) = (5.1.22)
The locus of the roots of (5.1.21) on the complex m plane is plotted in

Fig. 13. For large ¢ the roots asymptotically approach the lines which

are at angles 180°/n i l.e. mag miln . Thus the exaci solution has the
asymptotic behavior for ¢ ~ » as predicted by the approximaiion

(5.1.20)

We will now go on to the study of che transition of VTOL aircraft

from hover to forward flight.




Transition Dynamics of VTOI® Aircraft

5.2, Preliminary Remarks

The problem considered in this section is the longitudinal dynamics
of a VTOL aircraft through its transition from hover to forward flight.

The method of multiple time scales and the formulae derived in Chapter III
are employed to obtain approximations to the solutions of the equations of
motion of a typical VTOL aircraft, The point of view adopted is to
linearize the nonlinear equations of motion, and treat the coefficients as
variable during the transition. This is, for example, the approach used
by Curtiss (Ref, 27).

The assumptions and rationale of the physical problem are based
on Re!, 27 and 47. The main contribution of the present effort is intended
to be & difference in approach and a more uniform description of the
phenomenon,

An independent effort in the application of multiple time scales
aircraft dynamics was reported by Ashley in a very recent paper (Ref. 52).
This deals with the linearized aircraft equations of motion with constant
coefficients. Approximations were obtained with 3iinple time scales
using linear clocks, the objective being ''a heightened rationality" in the
study of the subject,

The present approach differs from that of Ashley in the following
respects:

(i) in regard to constant coefficient equations, using linear clocks

exact solutions are obtained instead of approximations (Ref. Chapter II)

(ii) since linear clocks are inadequate for a large class of problems,

nonlinear clocks are introduced, particularly in the case of l.d.e.
with variaole coefficients. The nature of the clock functions

18 determined from the equations themselves and depends on the
domain of interest,

It is felt that this dissertation demonstrates the usefulness and

flexibility of a general nonlinear c.ock function.
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5.3. The System

The development of the aircraft equations of motion as related to
VTOL dynamics will be briefly traced, for the sake of completeness,

The motion of the aircraft is considered with reference to a system of
body axes fixed in the vehicle. Fig. 14 describes the axis system for a
tilt -wing VTOL vehicle,

The equations of motion are obtained by considering the equilibrium
of forces and moments in the various degrees of freedom. The earth is
assumed to be an inertial frame and the atmosphere is assurned to be
fixed w.r.t. the earth. The aircraft is assumed to have a constant mass,
Only rectilinear motion at relatively low speed in the vehicle's plane
of symmetry is considered and the effects of unsteady flow and elastic
deformation are assumed to be negligible, Under these assumptions the
longitudinal equations of motiorn can be written in conventional notation (Ref. 47)
as:

u+wq+t+gsinh = X(u, w,q, ¢

w'-uq-gcosG =Z(u, w,q, 8 i) (5.3.1)

q = M(u, W.Q.éT.éE.lw)

These equations are nonlinear and nonautonomous in general. The pri-
mary interest here will be ou the d 'namics of VTOL aircraft during transition

from hover to forward flight. In a tilt-wing vehicle, ¢ and iw

T ’ {\ E ’
represent the control parameters, denoting respectively propeller blade
pitch, pitching moment control and wing tilt angle. Instead of dealing with the
complete nonlinear nonautonomous equations, they are simplified in order to
allow an analytical treatment and enable qualitative conclusions to be drawn,
The equations of rnotion are linearized in the usual way by making the
tollowing assumptions, The motion is considered about a steady level flight

and the vehicle is fully trimmed, i.c. in a state of cquilibrium, with all

forces and moments balancea out, If the vehicle now encountors a
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disturbance such that the resultant motion is small in magnitude, the

motion is described by a sect of l.d.e. with constant coefficients. This is
done by expanding the aerodynamic forces and moments in a Taylor's series
about the prescribed flight conditions and retaining only the first order
terms. This is consistent with the assumption that the disturbed motion

is small in magnitude,.

Thus:
X+AX=X+(\:—X—Au+§)\ AW+§—X & +£(- Al
2u dw b} T 1 S ow
T w
el 52 A Y2
= - _— +— ] 02
Z+ 2 Z+au‘3u+awdw+ p brp 1 Al (5.3.2)
20} w
_ ) tM aM . a M cM 3M
M*AM-M‘*B Au+5w LweH— p§ + aGTART+a E66£+_31w

For steady level flight the flight path angle is nearly horizontal
and this permits further simplification., The lowest order terme are
balanced out, leaving the equations satisfied by the perturbed variables.
Let these be denoted by u, w, and 8 . The linearized homogenenus equations

are therefore given by:

u' -quoxww+g9 = 0

w' -2 w-Zu-Vé =0 (5.3.3)
w u

g " -Méb “Mu - MW+ M w =0
For a conventional airplane at cruising flight the stability derivatives
arc constants. The perturbed transient motion can be determined by
solving the coupled linear equations with constant coefficients. For a VTOL
vehicle executing a transition, the flight condition varies from instant to
instant; heuce the aerodynamic parameters of the vehicle, since they

depend on the flight condition, also vary through the transition. The
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vehicle is still assurned to be continuously trimmed throughout. Control
required to trim is not considered in this analysis and we shall only consider
transitions at level flight. The coefficients of the linearized equations are
therefore treated as variable if the time history of the trim conditions can be
predicted. Further, this change in the coefficients is assumed to arise
primarily from the change in flight velocity, although in general they depend
on the wing-tilt angle iw and power setting 6'1"
Qualitatively the following observations can be made. At forward
flight a VTOL vehicle behaves essentially like an airplane and at hover like
a helicopter in regard to dynamic motion. The forces and moments produced
by the propellers and the wing -slipstream interaction largely influence the
low speed characteristics of a VTOL vehicle. Near cruising speeds these
effects become less important. The stability derivatives have constant
values corresponding to hover and forward flight, but change continuously
from one to the other as the vehicle accelerates until it attains cruising
velocity. At hover the characteristic roots consist of a complex conjugate
pair with positive real part, and a pair of negative real roots. The motion
therefore exhibits oscillatory instability. In cruising flight the motion is
characterized by two pairs of complex conjugate roots, usually with negative
real parts. One of the modes is of high frequency ( the short period motion),
and the other is of low frequency (the phugoid motion). The transition is,
therefore, from a helicopter-like vehicle to an airplane-like one, with
accompanying difficulties in the analysis and control of the vehicle. For
example, at hover the vehicle needs forward stick for forward velocity
(stable trim gradient); but for cruising flight the trim curve is as shown in
Fig. 15, necessitating an adverse control position gradient at some time
during the transition making it somewhat difficult to fly.
We shall now consider a specific example, a tilt-wing vehicle.

Ref. 49 contains a comparative study of the longitudinal stability derivatives
of three tilt-wing VTOL aircraft. The vehicles considered are:

(1) The VZ 2 Research Aircraft

(2) Two Propeller Transport

(3) Four Propellsr Transport
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Based on experimental data and taking into account the scatter of data,
typical stability derivative variations through the transition are proposed.
Variation of the stability derivatives with velocity for a vehicle of this

type used in the present analysis were based on Ref. 49. Now the equations

of motion can be written as
u'+ayutagw+gd =0
w'+byw+bgu -V =0 (5.3.4)
0" +c;0'+cgutcgwtcgw=0

where the coefficients correspond to those in (5.3.3). The functional
dependence of the coefficients on velocity is given in Table 1II.Different
values for the coefficients of the equations of motion are possible due to a
different choice of the stability derivative variation. The values used in
this analysis are not meant to be represcntative of an optimal flight vehicle,
but are, rather, typical values based on existing aircraft.

The wing-tilt angle iW is in control of the pilot so that any variation
of iw(t) through the transition can be programmed. The dependence of
trim velocity V on wing angle is assumed to be linear and hence V(t) (Fig. 17)
can be chosen convenien.ly. The stability derivatives are now expressed as
functions of t and this leads to a set of time -variable coupled linear
differential equations. In the znalysis that follows the stability derivatives
X, and Mw » being respectively denoted by -ag and -c5 , are neglected
since the contribution of these terms to the dynamics of the vehicle is

considered to be small.
5.4 Two Degree of Freedom Case

Near hover, the two degree -of-freedom approximation is employed,
in which the vertical or plunging motion is suppressed. At hover (in which
state the vehicle can remain indefinitely), the damped vertical or plunging
mode is completely decoupled and has little effect on the other two modes.

The system (5.3.4) can be represented by the following set of
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equations at hover and low velocities, since the terms a3, by, ¢, are

very small, (Ref, 27):

u'+a1u+g9 =0

w'+bBy,w=0

6”+C19'+Cau=0

(a)

(b) (5.4.1)

(c}

The w mode is completely decoupled leaving the u and 8 equations still

coupled. On decoupling these by cross -differentiation we arrive at the

following equations for uand 6.

e'"" +(a; +cy Ju'+(aycy +2a; " Jut +(ay "+ a',, C; ~gcaju=0
c '
6" +(a; +c -f— 0" +(ayc, +¢' -c
2
On substituting the quantities from Tablelll the equations become

(140.1t)u'"+ (0,3 +0,081t)u" + (0,02 4 0,0122¢t)u' + 0.48u =0

)8 - gcg 6 =0
-]

(10+t)°6" +(4+0,81t)(10+1t)8'" + (8,1 +1.83t + 0.122¢t% )9

+4.8(10+t)8 =0

0.1 +0,07t¢t
1401t

w' + ( Jw=20

Equation (5.4.6) can be readily solved to give

0.1+0.07t
w(t) = c exp (= j(——l—m)dt)

(5.4.2)

(5.4.3)

(5.4.4)

(5.4.5)

(5.4.6)

(5.4.7)

The equations for u and 6, viz. (5.4.4) and (5.4.5) are solved approximately

using the formula (3.4.21 c). In ord:r to have a comparison with the exact

120




solution, the equations were integrated using the digital computer for the

conditions given below,

Initial Condition 1.(0) u'(0) u'(0;
6 (0) 6'(0) 6'(0)

1 0 0 1

2 0 1 0

3 1 0 0

The linear combination of the linearly independent approximate solutions
was plotted in each case corresponding to the above conditions. The locus
of the roots and the approxi mations were plotted in each case, together with
the exact solution,

This enables one to retain to some extent the tamiliar ideas of
the analysis of constant coefficient l.d.e, It is noticed that the root loci

corresponding to the variables u and 8 are different. This is because, as

a result of decoupling, the coefficients of the equations for u and 8 contain
additional terms involving the time derivatives of the stability derivatives.
A constant coefficient analysis of these decoupled equations obtains the
" frozen " approximations to the solutions of the variable equations.
Further, in the light of multiple time scaleg, the fast time scale shows
up as a quadrature over the root variation and describes the frequency of
the rapidly varying motion. The results are shown in Fig. 18-27,

The frozen amplitude approximation TI(T, )|t » Which varies on the
fast time scale, seems to represent the frequency of the exact solution quite
well, but the amplitude suffers from errors, The present approximation
seems to represent the true function well in both amplitude and frequency.
The agreement is seen even with the other set of initial couditions. From the
above figures it is seen that the approximation is insensitive to initial

conditions,
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5.5 The Three Degree-of-Freedom Case

The completc linearized equations of motion coupling three variables
u, wand @ are ¢iven by (5.3.4). Again treating a; and ¢y as being

unimportant, . quations are written as: |
u'+a,u+gh =0
w'+byw+bgu -VE'=0 (5.5.1)
6" +c;0'+cgu+tcow=0

In order that the time scales approximation be applied, equations descri-

bing each dependent variable must be obtained., Unlike the constant

coefficient case, the equations will not all be the same, as emphasized by

Curtiss, so that the time histories of u, w and 6 will be different. But

decoupling the equations is itself an involved task; a schematic of the

procedure can be seen in Fig. 16 . The equaiion for u is given by
cl
u'"" +(a; +b; +c¢; - ‘-:-’— Ju't!
4
]
+(agby +bycg +cyay + Ve, +c +3:-1'.l -::—:-*-(a,. +¢c) h"
4

1 ’
Ha, by +Vecga, -gecg - %:— 3¢ tach + Za; (by +c; = %:—)4- 33" '

+(g(bz cs -y 3 "’%Ca -c3') + 3 (o +Vey +¢; '%:' ¢ )
+a1|l (bx+c1 -E-—s-—) )u = 0 (5.5.2)
.

When c¢ =0 it is8 seen that this reduced to (5.2.2)(with a = conltant;)

and when all the coefficients are constant the <quation becomes
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u'"" o+ (a1 +by +cy)u" i (ayby +bycy +tcpa; +Vey)u”

+(ay by 7y +Vecgay, -gcau' +glbgcy =bycaglu=0 (5.5.3)

as can be verified directly from (5.5.1).
Now substitution of the assumed stability derivative variation from
Table TII leads,after a considerable amount of a2lgebra, to the following

equation for u.

(s) (a) ()

Pa u +psu +pu +p;u'+p°u=0 (a)
wheare ‘
Pe = (10 + 16t)(10 +t)° (-0.2 + 0.0175¢t)t (b)
Pas = (2~ 1.35t = 0,232 + 0,02643¢t> )(10 + 16t)(10 +t)? (c)
(5.5.4

pa = (60+413.7t -10,4875t% +4.19¢> -0, 9988t* +0, 058 ¢7)(10+ 16¢t) (d)
py =(4-100., 78t - 12,523t° +1.6994t° -0, 123t* 40,0107t )(10+16t)  (e)
p,=3.22(10 +£)(30.3+23, 07t - 15, 7¢? -1, 4573t° 40, 0034t* +0, 0095¢") (f)

This equation has regular singular points at t=0 and t~1l.42. Near t=0,
therefore, the fourth order equation is approximated by the third order
system which has only two degrees of freedom, as is usual in engineering
analysis,

The other singular point occurs in a region in which two of the
characteristic roots coalesce and hence the approximation via time scales
fails in such a region. We may recall that this corresponds to a transition
point, in the vicinity of which the short period mode changes from monotonic
solutions to oscillatory ones, Some problems associated with this are

discussed in the next chapter.
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We now examine the solution to the fourth order equation characterized
by various initial conditions, Figures are drawn to show the comparison oi
the time scales approximations with the exact solution obtained by numerical
integration. Different variations of the stability derivative MW with flight
velocity were studied in relation to vehicle dynamics., Figures 18-37
show the difference in the root loci and the corresponding responses. It is
seen that the nature of the aircraft motion is qualitatively the same, though
the root loci are quite different. A slight resonance seems to occur near

the transition point on the real axis. The agreement of the approximation

with the exact solution is seen to be good in each case, near hoth hover and

forward flight, and thus provides a uniform description of the motion of the
aircraft. The approximation suffers from errors in the vicinity of the
transition point as may be expected, but the qualitative nature of the solution
is preserved. In general the ability of the approximation to progress through
the transition point depends upon the choice of the initial conditions;

use of the digital computer on the other hand, for the approximation, is
likely to preclude any difficulty with the transition point.

Also appended are the figures depicting the approximations obtained

by "freezing' the coefficients., A comparison of these with exact solutions is
made for the third and fourth order systems (Fig. 20, 21, 36, 37). It is seen
that the ''frozen'" scheme of approximation is good only for short

| : times, and the error becomes large in less than a cycle of the oscillation,

The approximating function grows without bound and does not represent the

true nature of the solution anywhere after the first cycle.

5.6 Summary of the Chapter

Examples with analytically known solutions are discussed first,
They consist of several second and third order equations and a special nth
order equation, Correct asymptotic behavior of the solutions is obtained
using the theory developed in this thesis.
Transition dynamics of VTOL aircraft are studied in the longitudinal mode.
The two degree-of-freedom (hover) approximation and the three degree -of -

] freedom case are studied. The time scales approximations are compared
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with numerically obtained solutions for various initial conditions. Errois
are found to be less than 10% for the hover approximation. For the three
degree ~of-freedom case, a uniform qualitative description of the vehicle
motion is obtained, with good accuracy except at the transition point,

Different variations of Mw(V) were studied.
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CHAPTER VI

CRITIQUE AND EXTENSION

6.1 Extension of the Method

We shall first outline the advantages of the method over earlier
methods and then discuss possible extensions regarding open problems.

At the outset one may consider the novel point of view adopted in
the approximation. The method of extension as related to multiple time
scales has been used to obtain the approximations, both for short and long
times. This is done systematically, generating suitable clocks on which the
phenomenon is observed for both short and long times. Criteria of validity
are presented for each case, For the short time approximation this shows the
breakdown of the approximation and for the long time analysis, upper bounds
for the error are obtained. The formula (3.4.21) for the general case
enables one to write the approximation for a given equation by inspection,
and for each mode separately. Furthermore this affords a uniform description
of the phenomenon, in a region free of transition points. Also since the result
is obtained analytically, it is useful for further study and investigation of
related problems. In this connection, one may mention the problem of
obtaining approximations to the solutions of a system of coupled equations
without recourse to decoupling first, Simple "extensions' of coupled equations
seem to recover the 'frequency' of the solution but not the slow amplitude
modulation. However, different schemes of "extension' may lead to better
results, and thus help to simplify the analysis,

Further work, for example, may lead to the study of forced
responses of time-variable systems. Consider the equation:

(n)

sy =y™ oy e = 1) (6.1.1)

The particular solution can be written as

t
y(t) = [ nit,s) £(s) ds (6.1.2)
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|
where h(t, s) is the Green's function or the time-variable impulse -esponse, l
h(t,s) is expressed in terms of the indepeadent soluticne of the homogeneous 4
equation £(y) = 0. Approximations to h(t,s) can be obtained using the theory i
developed in this thesis and this cau. be used to study approximations to .orced

response., 1he choice of iorcing functions is dictated by '""resonant' and

"'non-resonant' cases; in this connection one may refer to the recent work by

Feshchenko et al (Ref. 24) for an asymptotic theory of forced linear systems. i
Another aspect of the approximation scheme becomes apparent as {

follows. In order to apply the formula (3.4.21) one needs to know the roots

of the characteristic equations as functions of t. For systems up to fourth

order, a closed form of expression is available for the rcots, though it 18 not .

simple for the third and fourth order equations. For higher order equations

in general, no such results exist. One may, howeer, consider the approxiination

for the roots developed by the author (Ref, 53) as a Taylor's series

starting at the instant t = 0. This technique is of necessity limited to the

region of validity of the root approximation, which has to be precisely

formulated. Nevertheless for smooth variaticn of the roots the result can be

used for small t. With regard to the VTOL example, the characteristic

equation is given by:
F(x,t) = x* +wy (t)x® +wy (£)x° +w, (t)x + w,(t) =0 (6.1.3)

If t=0 represents hover

x(t) = x(0) + x (0)t + %l (0% +... (6.1.4)
where:
)3
T \g't-)
SHE ST
oXx

Higher derivatives can be similarly calculated. For example with reference to e
the VTOL transition problems, two expansions for the root can be made, one '

near hover and the cother near forward flight condition. Substitution in the
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formula yields the approximations valid near the two flight conditions
respectively.

Parameter sensitivity can be studied in the manner discussed in
Ref. 53. The change in a characteristic root caused by changing a particular
parameter can be computed as a function of t. This change in the root is

reflected as a change in the dynamics of the system.

6.2 Transition Point Analyais

The next question to consider is the breakdown of the approximation
(3.4.21) in a region containing multiple characteristic roots, These points
are known as turning points or transition points, The probiem of obtaining
suitable approximations valid near such points has been ab initio difficult to
handle, There is an extensive mathematical literature on this subject,
which has been studied by, among others, Langer (Ref, 54), Wasow (Ref, 55),
Erdelyi (Ref, 44), etc. This section presents a brief sketch of the basic
ideas and some preliminary new results, The present objective is maiunly
to identify and outline the problem areas and emphasize the need for further
work leading to a more complete theory,

The simplest equation exhibiting a transition point is the Airy
equation:

Yll+ty=o (6.201)

For positive and negative values of t the nature of the solutions is quite
different, being oscillatory or monotonic (as used by Erdelyi, in the sense of
having at most one zerc) according as t is positive or negative. Thus t=0
is called a transition point, to describe the transition in the nature of the
solution on either side of t=0., This can also be seen by observing the
characteristic roots as t goes through zero. For t < 0, the roots are
x =+/#4 and for t> 0, they are x = tift) and the two roots coalesce for t = 0,

For a more general equation

y'+eluwitly =0 (6.2.2)

the asymptotic approximations for large ¢ ( LG solutions) are given by
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Cy w’v‘cos(ejw édt)+caw"1/" sin(ejw% dt) (6.2.3)

for w(t) > 0, and by

ca [ ~w(t)] Y exp«j[ )] T at) + ey [ o)) Y exp(-ejt cown ey (6.2.4)

for w(t)<0, ¢, c3, ¢3, C, are constants,

These approximations are valid when v (t) does not vanish., Clearly
when w (t) = 0 neither of these forms is valid and transition occurs from one
type of behavior to the other, Two problems are seen to emerge. One to
find the connection between the constants ¢y , ¢c;, and c3 , ¢, to represent

asymptotically the same solution of (6.2.2) for both positive and negative
values of t; and the other to determine the asymptotic form of the solution

of (6.2.2) near the transition point. It must be noted that a transition point
can occur also 1f the coefficient « (t) is singular at a point to , on either side
of which w (t) has opposite signs, Coalescing of the characteristic roots
therefore generally determines the transition point. The approximations
each valid on either side of the transition point break down near the point in
question and a different form of approximation is required., As Langer points
out (Ref. 56) this can be observed even in the case of an 1.d. e. with constant
coefficients; for the case of multiple characteristic roots a different form of the
solution must be used.

Two methods have been used to obtain the connection formulae,

The one used by Jeffreys replaces w(t) by a linear function ( t-to) sufficiently
near to and integrates the resulting Airy equation in terms of Bessel functions
of order £1/3 , with known asymptotic behaviors, Comparing these with
(6.2.3) and (6.2.4) above one obtains the connection formulae. The other
method used by Zwaan (Ref, 57) consists in integrating (6.2.2) on a complex
plane along the real axis up to the point to on either side, but making an
excursion into the complex plane along a semicircle to connect the two sides,
This avoids the transition point altogether and obtains the same connection
formulae as before. As discussed by Erdelyi (Ref. 40) both methods can be
extended to cases where w(t) has a zero of an arbitrary order.

The second problem is one of more mathematical interest and it is the

determination of the asymptotic forms of the solution near the transition point.
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The works of Langer, Olver, Cherry, and Erdelyi, referenced in Ref. 55,
are prominent in this respect. No simple elernentary function seems
adequate in representing the transition from oscillatory to monotonic behavior
and higher transcendental functions seem to be needed. The works of the
above authors deal with the uniform asymptotic representations in terms of
Bessel and Airy functions, etc, These are not limited to the vicinity o1 the
transition points alone but are valid uniformly in the domain of interest.

With reference to the hover, forward-flight transition of a VTOL
aircraft, the characteristic equation is seen to have a double root at one
instant during such a transition. Equation (5.%.4) shows that this occurs for
a value of t near 11.4. This shows that the roots which eventually correspond
to the short period mode change from real ones to a pair of complex conjugates
for a t in the neighborhood of t = 11.4. The solution, therefore, changes
from monotonic subsidence to oscillatory subsidence, with the accompanying
breakdown of the approximate solution, In order to use an approximation from
hover to forward flight, the Stokes phenomenon (se Chapter I) must be
investigated. For the aircraft problem, the precise phase of the solution is
relatively unimportant. Great precision in the knowledge of the frequency
and damping of the motion is seldom required,

The amplitude variation as given by the approximation grows
without bound as the transition point is approached., Hence proper connection
may be necessary in order to obtain usable solutions, as the amplitude

information may be required for feedback control purposes.

6.3 Shifting of the Transition Point

We shall first consider the second order l.d.e. and show that the
approximations derived in this thesis can be used to advantage in dealing

with the transition point problem.
In approximating the solutions to the noncanonical equation

v+ cw,y y'+€2woy:0 {6.3.1)

there are two methods of approach. One is to transform the noncanonical
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equation into the canonical form and then obtain the LG approximation.
The other is to treat the noncanorical equation directly. It is seen that
under certain conditions, the two approximations fail at different points.

Considering the first case, we convert (6.3.1) into the canonical form by

means of the transformation

y(t) = Z(t) exp ( -%J‘wl dt) (6.3.2)

giving
wi? W

Z"+ez(wo-zl—-ile)z=0 (6.3.3)
i.e. .

" o_ 3 wL 40.),, Wi =

Z e”( 1 + 5 yZ =0

\ 3 - K
For 9’—14—40)9 + —;‘36- > 0, the LG approximation yields:

V() = Ay (wy ? - 4w + 2—61)"" exp( - wa dt + I(wz - 4o, +2 1 at)

2 - .
+ Ag (wy ! -4w + —J ) 1/"exp(- %j

w1dt-—f(u,1 -4w +2 )idt) (6.3.4)

On the other hand, applying the time scales formula (3.4.21) to

equation (6.3,1) directly, anotaer approximation is obtained as

’)\;(t) = By (w, 2 . 4wo)-l/4 y(t)exp(-%J.wi dt + %J(wx a_ 4(1)0)é dt)

+ By (w, 3. 4w°)-1/‘7(t)e)‘-p(-§j v, dt - -;—f(wx S ‘lu)o)é dt ) (a)
(6.3.5)
where (t) = exp(_,_———“ﬁ#ﬂl ) (b)

Now ¥y is unbounded when

2
wy? - 4w, +—§i- =0
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and y is unbounded when:
Wy . 49 = 0

Therefore if @, # 0 and (w, ? -4w°) and L.u, (t) do not vanish simultaneously,
we have two approximations, each bounded when the other is not, The

transition pointsfor (6.3.1) and (6.3.3) are given by a value of t for which

and

Wy s o 4wo + _u‘e‘l =0
respectively, The occurence of the singularity at the transition point is
caused only by the use of the approximation and is not intrinsic to the original
differential equation which may have solutions well behaved throughout the
domain of interest, Thus we have obtained two approximations which have

different transition points, Therefore, in effect, the transition point has

been shifted from to to to' where

) -
wy? (L) - 4u (t) =0

and:

w,y ? (to') - 4wo(to') +_2:;.1_(th

If ¢ is very large the shift is small.

Siace the bounds on the error are known in each case, the idea can

be used to shift the transition point by a desired amount.

An alternative view is as follows, Consider the canonical second

order l.d.e.:
z" -¢3f)z = 0 (6.3.6)
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L G theory yields, for §2(t) > 0 (nonoscillatory case):
Z(t) = A, oA exp( -g—fﬂ%dt) + Ag -1/ exp( - ;—'Iﬂ%dt) (6.3.7)

Now consider the transformation (6.3.2), The equation (6.3.6) i~

transformed into (6.3.1) with:

2.
A i““’!a"*‘”o*% ) ; (6.3.8)
D =u,? -4w°=4(n-P) (6.3.9)
T
PF 2€

Using (6.3.5) ;r'(t) can be written as:
¥ (t) = B, (ﬂ-p)'u‘y(t)ex;,(-% Jw, dt + -;_-Ju(ﬂ-p)w édt )

+ By (1-p) Y y(t)exp(- -;-Jw, dt - %jt‘}(ﬂ -p)]%dt ) (a) (6.3.10)

where now v(t) = exp (-2%/3 ) (b)

Using (6.3.2):
Z(t) = B, @ -p)™'y (t)explef@p)f at) + B, @-p) Y it)expl-ef@-p) at) (6.3.11)

By Olver's theorem and its extension (Chapter IV) the errors can

be computed as follows (standard L G theory):

Z (1) = 2i(t)( 1 +Ei) i=1,2 where
S 1 ; | 43
lEll s exp(z—‘-J ?1-7‘ 3 (_()_1/*)' dt) -1, (6.3.12)
a

b
= 1 1 d? -
|Ezl < exp (=3 j; _(7__‘7“ red (ﬂl/‘) dt ) -1
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Also (for the alternative approximation, when ¥ = constant):

Zi(t) = Z; (t) (1 +f2i Yy i=1, 2 where
t .
~ 1 g
lEJS exp( e J; J %%% - 2D 1/4 (D'1/4 a) -1

£%% -2p S (D‘*/‘ )| dt) - 1

1
.’Eals exp ( E j;

t

We recall that the condition for ¥ to be a constant to this order is that

wy = O 21:-). In this case the shift in transition point is O( 13)

On substituting from (6.3.9) and simplifying, we obtain (for constant v );

Zi(t) = Z’i(t) (1 +Ei )

G 1
|E,| = expig —E,m (ﬂ-p)‘*/‘ <(ﬂ-p)1")[dt)-1

e

b a2
1
B < epl; |G Bme- @-p ™ T (@em ) [ar ) -
‘ (6.3.14)
Similarly for the gscillatory case consider the equation:
Z"+¢3{0Z =0; Q(t)> 0in (a,b) (6.3.15)
. 0 2 .2__]_.
Using (6.3.8), 43<= - (w, -4wo+ 2 )

As before, denoting the .L G and the time scales approximations by Zand?

respectively, we can write

z =2 +E QW (a)
1 1 1
= 1) 1 42 -
where IE*.QI < exp( % Z' L ?1—174 32 ( _(),1/‘) dt) ) -1 (b) (6.3.17)
and Z, =2 +E (Q4p) M (a) (6.3.18) .
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where, for constant y:

t
[~ - 1 ‘3 “/a da -
1B, 2= exp( - i [ | Gabws - @)™ @@ ™)

dt‘ ) -1 (b)
c

Thus in a given equation
y" - ey =0
suppose that {1(t) has a zero at t and L1(t)> 0 for ast<O0. In order to use
(6.3.14) a function p is chosen such that £fl. p> 0 for as< t<t°' and
ﬂ.(to') - p(to') = 0. We require that to' >to. Hence p(to) <0,
Similarly, given the equation
y'"+ eaﬂ y=0,
let .Q-(t) 20 for t >/‘to ; also let tos t < b be the region of interest,
A to is a transition point we choose a p suth that p(to) > 0 and we can use
(6.3.18) to estimate the errors of approximation. A schematic is illustrated

in Fig. 39 for £1(t) = t.

6.4 Choice of the p function.

The choice of the shifting function p is governed by the following
considerations. In a finite domain problem a proper p function must ensure
that a transition point does not occur in the domain of interest. Thus if

_().(to) =0 and ac< to < b thenf2+ p must not vanishin a s t £ b. If time
is the independent variable as is usually the case in dynamical systems, the
range of t is the semi-infinite domain 0 < t £ », The transition point is
then moved to the negative t axis. The function p must be chosen such
that 1+ p is essentially the same as fleverywhere except near the transition
point to where {1+ p is non zero. p is therefore a peaked function near to
and sharply decays to zero on either side of it. p need not be symmetrical
about the transition point; in fact an asymmetrical p may prove more useful,
for, on one side it must shift the turning point while on the othér it nust
decay sharply to have{l+ p~ (1.

Even in cases free of transition points the p function can be used
to advantage in reducing the error of approximation. For example,
censidering a finite domain problem, the error of the LG approximation

may be more than a specified value. Since the errors of approximation are known
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through Olver's results, a p function may be chosen to keep the errors
within specified limits, This might be approached as a variational problem.
Consider the equation

y'+e? (ly=0 (6.4.1)
in the interval:

astsb
We wish to choose a p(e,t) such that the error of approximation is minimum.
The approximation itself is in terms of elementary operations and functions
and reduces to the exact solutions only in special cases, From (6.3.18) it

is seen that the error is minimum when

t 2 3
€ - “1/4 d =1/
I ,C( Growe - @ S @) a (6.4.2)
is minimum. Thus
b
I oox ® j f(p, P, P t)dt (6.4.3)
a
where . .
R P 5 (Q+p) 1 (21+p)
f(p,PyPt) = m%qa " 16 (n+p)l2 g (ﬂ_*'l%: (6.4.4)

Application of the Euler-Poisson theory (Ref. 58) to the above leads to an
equation, the solution of which would yield the p function for minimum error

of approximation in the interval (a,b).

It is felt that a similar approach may prove useful for higher order

equations also,




SUMMARY AND CONCLUSIONS

The main results of this dissertation are summarized below.

Approximations are obtained to the sclutions of linear differential
equations by suitably extending the domain of the independent variable
using multiple time scales, For a large class of problems, linear
time scales are found to be inadequate and, therefore, nonlinear clocks are
employed, on which the solutions are observed. The clocks depend on the
coefficients of the original equations and are determined by a rational
procedure. The Liouville-Green (or WKBJ) approximation is obtained
using this method. For the noncanonical second order equation another
approximation is proposed, and under certain conditions, this remains
bounded where the WKBJ functions become unbounded.

In obtaining the approximations, only the domain of the independent
variable is extended, so that this would correspond to the lowest order,
in an expansion of the dependent variable, Specific criteria of thc uniformity
of the asymptotic expansion are not applied per se; however, they are
implicit in that ‘he ''counterterms', --i.e. clocks--are so chosen as
to cancel the nonuniform parts of direct p~rturbation theory. The extended
perturbation equations, therefore, are forced to be homogeneous equations.
A brief discussion of the criteria of uniformity is presented in Appendix Vv,
The method can be extended to obtain higher order approximations in a
straightforward way.

The validity of the approximaiion scheme in different intervals is
examined and criteria of the failure of the approximation are proposed.
Error bounds of the Olver type are derived for the second order equation
in a direct way, although under restrictive conditions. Similar approximation
theorems are proved for third order equations.

Applications of the approximation to the dynamics of VTOL aircraft
through the hover -forward flight transition shows good accuracy in

comparison with sclutions obtained by numerical integration. For the

decoupled equations which are of fourth order, one may expect the approximations
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to fail at a time which corresponds to multiple characteristic roots. The
phugoid mode itself is not subject to this difficulty and may be isolated

by proper choice of initial conditions. If the functions are computed

using a digital computer, again, the difficulty at the transition point may be
avoided. Further, different variations of MW(V) were investigated;
however, no appreciable difference in the nature of the responses was

found to occur.
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TABLE I

NONUNIFORMITY IN PERTURBATION THEORY

¥l By @ 0

RSN (&) Type
w yo yo
1 - of
~ -{-‘ﬂwt at® ~ -“w 2 Nonuniformity
1 _ﬁ_ i secular
3! 3!
" tn+2 tn+3 secular, n> -2
(n+2){(n+3) (n+2)(n+3)
1
2 i{nt -1 4nt secular, t—=
singular, t=0
1 1
t2 '%t— o singular
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TABLE I

EXTENDED DERIVATIVES

t -1*[1'0, Ty } 5T =t; 1y = ¢klt)

o]
d D ‘0
a; ar £ 3,
(o]
62 ;3 - a a? . aa
=== __ 4 k=— +2k S——) . 3 3=
T s el k33, a'roan) Foet (K 33-a)
d3 aa LTy a . aa . aa
= + k —— + 3k 3k
at 31 ° el dT, 3T AT, Ji ar’ari)
L (o] o} (o]
v ekl 2 s3ie 2 ) e 2
BT, ° 3T aT, ? € aTs
d4 a4 — a sose aa aa 4
= + k — +4k ——— + 6k NS
at = g telko 3, 3T 3T, 3T 73T, 3T
2 .};aaa * o aa o oe 3 6ka a‘
+ 3k® =— _, +4kk — . + 12kk -
RN ar, 2 ° ToT,? YAEY R
3¢ g1k 2° s 3° o, e 0
+ I 6k —— + 4
€ T, ° K 3708713) te (k 2T, )
dn n n-1, '‘n-13" n(n-1):pn.2
1 ] L] k -k.
g pge Te () Feeve nk SoaTmEl tTR
(o] (o}
n an
+ o
e | a.rin)
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TABLE III

STABILITY DERIVATIVE VARIATION FOR TYPICAL VTOL AIRCRAFT

a, = - =0.2

by = -2 =0.1+0,004V

ba -2, tifTy

€1 == M, =00+ 0.0034 V

ca = =M =0.015 (-1 + o)

Cq = - MW

Case cy (V) V(t)
1 (-0.02 + 0. 00025 V) 11’5-0 ig(’:t
2 0.02 ( ;’50)2l "
3 0.005 + 0,015 (&= "
4 0.005 + 0. 015 ( 1\20 3 %oTt{
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TABLE 1v

EXAMPLES OF SOME CLASSICAL EQUATIONS

Name

Equation

Asymptotic Behavior

l.

Bessel's Eg. of
Zeroth Order

y"'+ tlv' +y =0

-3

t

exp(t it); t-~=

2, Confluent " . _ t a-b .
Hypergeometric ty" + (b-tly' -ay = 0 e-a t ;v
t
e
£ i3
1 3 ml = 0 :
3. Euler's Equation | y"' + -y { “((1_3:2 )} (e ~w
t
t-% 1
4., '"Double Airy" y'"' - 4ty' -2y = 0 3v/) VAR e
(n) € \n _;_n-l ( ,mi/n)
5, Euler's Equation |y  +(-—) y =0 t €l e —o




APPENDIX I
EXTENSION OF THE nth ORDER DERIVATIVE

With the two time scale extension

te=>{7 , T2} T =t Ty =ekt) (1)

The derivative operator is extended as

d e} dar ) o) * 9
—_— et — —ad = B Sl
dt d>'a'r G 3T, XN ks AT, (2)
[o] [o}
a? Xs 3T, X; 37,
o [o]
82 3 o aa . . aa
= € R — 2k + € 3
T’ e X agan’ “?W‘) )
Similarly
n
d ) * 3 n
—_— —— Sm—
T Wi e ) (4)
n
oT
(o]
n
n'n 3
+ € k& S—
dT,." (5)

Clearly the r,h.s. contains terms due to the binomial expansion of the
operator and those due to successive derivatives of the clock function.
For purposes of the present approximation scheme, only terms of order

n=1 . ..
J)and € are needed in addition to the lowest order terms, The terms are
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R——_—

LT

o .n
¢ : (a)
n
31’0
r+l
€ : YU A T (%) kT gT"T 6) (b)
‘ 37y T rEl r (R LR
n n-l
n-1 + n=1 3 n(n 1) 2 3y
€ : n(k) W-l + (k) m-l (c)
e" ()" 2= n

(d)

That these are indeed the terms is proven by the principle of mathematical
induction as follows., We shall prove that if (6) is true for n then it
is true for n+l and show that it is indeed true for one n. Letting the

derivative operator (2) act again on (6),:

n r+l
d T ) 3 (n) 3 2=l n . (n-r) 3
— £ 4
o 7 “‘an’{w* Y A L T A1
n-l ' n=l an n(n -1) ne2! anl _)

G ( n(k) a,’;a.rln—-r + 3 (k) k AT
n

ye® (do® =) o
1

The various terms can be written as:

n=-1
Co e 2
' a7 T (a)
€ k k' e — + k T——pe
371 aToaT-‘ 670 B"x

(8)

n-1 2
+ T (n) k(n-r+1) Ie} il N k(n-r) e} T+
r=1 r Bfora‘n BTO I 61'1

14¢




i (ntl) 3 +§ (P aerel) Sk
- d7, r=l r a‘ror 3T, (b)
n « nel n an . an+1 - an+1
+ kR +
€ n(k) ST W n(k) BTOBTzn
+ n(n-=1) :.n-l i<' 3
2 (k) dr, n
n+l n
*n 2 (n+1)n > n=l " 3
= (n+1) (k)" S——, + =—"—(k) = Kk —
(n+l) (k) 570571n > (k) afxn (c)
n+i
+1 *.ntl 3
e 5 (k)" T (d)
SIS

On examining (6) and (8) it is seen that (8) is obtained from (6)
by replacing n by (n+l). Hence, if (6) is true for n then it is true for
(n+l). It is easily verified from (6) and (3) that it is true for n = ¢;

thus it is true for any n.
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APPENDIX I

CONDITION FOR THE INVARIANCE OF THE AMPLITUDE FUNCTION

W.R.T., THE CHARACTERISTIC ROOTS

Let the differential equation be written as :

y" o+ c3 3w, (t)y' - CSZwO(t)y =0 (1)

The characteristic equation is given by:
F=x* +3u,; (t)x - 2w _(t) =0 (2}

Let the functions s; and s; be defined as follows

5, :wo+(w13+“’:)1/' R =wo‘(“’13 + w°=)1/0 (3

and, therefore
81 85 = -w1

taking the real quantity. The roots of (2) are given by (Ref. 50, p. 17):

x; =(81 83); X, 3 ='(812+32) *i/g (8, =~ 83) (4)

The approximation to the solutions of (1) for large ¢ is given as

t

T(t) = CD(t) exp( € Sxi ds) (5)
3
where
D) =) 2 = (o 4wy ) (6)

where x, are the three roots of (2) given in (4).
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We wish to show that under certain conditions the dependence of
D on t is invariant w.r.t. the roots,

Since w, is a given function, it is sufficient to show that

2
'x—f - a constant in some limit,
f Wy,
Taking xq =8y +855:
,f, I S P
Wy 84 83 83 84
x2 s
Thus |~ | = constant if ,JI -~ constant
]ml 53
i.e.

w +(u)13+w03)%

o)
- constant
F)fE
o

3

w '(.W1 +w
(o]

o

- constant

%

2w2+w;3+2w (wla+(na)'}

[o} (o] -
Wy

3
Thus it is sufficient that u—lg-l - constant for
w

o
a constant, (7)

f— , to approach
W,

Similarly for the other two roots. In this case the function:

1 1 -
D(t) = = = (constant) w
(xz + 0)1 )v—a w1 é (? + 1)} L
1

(t)

Y

3
Thus when &5-—(-‘-) = constant, D(t) = v,

T (t) (8)
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APPENDIX Il

CONDITION FOR CONSTANCY OF SIGN OF fy

In equation

y"+efuwy =0 (1)
if % (t) s 0, the characteristic roots are real.
t
Now if (i) yy (t) = 0, as&sb 2)
or (i) yy (§) =y, (§) £ 0 (3)

and y, (§) E—; > 0

then by corollary to Sturm's theorem y, does not change sign in (a,b)

and is positive,

The condition for constancy of sign of f(t) is examined as follows,

f(t)=-wl"(w-“)"=l4[;:'--i—(%)a ] (4)

f(t) 20 if :—’2— (i—‘)’ 0 (5)

i.e. 4 (z+2%)%52%; where zsi—. (6)
i.e. 42 % 2z°. Thus z> O.

For example, if w(t) = tn, we see that f 2 0if -4< n< 0, For a

more general w(t), conditions must be similarly established.




APPENDIX 1V
PLK METHOD APPLIED TO A SECULAR PERTURBATION PROBLEM

Consider the equation :
yt+ey =0

The variables are extended a la Lighthill as follows.

y(t) ==y (s) +eyy (s) +...
t = s+ety(s)+...
e .
Therefore: b tey({l+et]+...)=0

Order by order the equations are

dy

o -
TR &
dyy _
= -y, (b)
d
sy 4y (e)

and so on, giving:

Y

= C = constant
o o

Y1 =-Cos+C;

Using the uniformity condition:

dty, _ Vi . _ 87
as = y =8 or tx -2 + Cg
o}
s?
From (2), ;=s+e(z—+C3) to order ¢.
Solving for s, we have 8 = -1 % (l-¢ (cge -t)) (a)
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r ' -

When the constant C; =0, s = -1+ (1 + Et)l/a (b)

The exact solution of (1) is obtained as:
y = A exp( -et)
We see from (5) that the realtion between s and t is an algebraic one
and cannot be expected to capture the exponential variation of y(t).
Alternatively, since the PLK method has been usually applied to
singular perturbation problems, one may be prompted to convert (1) to this
form and then apply the method.

L~fining t =i— , (l)becomes

d
2 L ey
X dx €y =0

This is a singular perturbation problem as can be seen by expanding

y=yo+ey1 +...; whence:

VaE A = Constant

x|

Now applying the PLK method, we expand:

Y=>yo(z)+eh (z) +...

X = z +exy(z)+...

Substituting (8) into (7), the resulting equations are written as follows:

z°g§°-=o (a)
d dy,
o EREE ®

adya _ _ dy; 2 d ., ., 44
2% 5, [lezdz + (xy +Z.v:¢z)dz oY, a2 ) (c)
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Therefore, ¥ E Co = constant

c0
n=---1%1t+0G

Setting the r.h.s. of (9c) for uniformity:

dx,_ dy
=l L = i =
):), iz 2x; 2 p +y, 0

dx, 2 1
= .= = (= =
dz z 2 ( z G)
Integrating:
1
X, =-E+(C3+l)z+C3z3 (10)
Now from (8) : x =z + €xy ; again, this being an algebraic relation,

it cannot be expected to describe the exponential behavior of the exact
solution;

y(x) = C exp (-;c(-)

It is felt that this simple example demonstrates the difference between

the PLK and the multiple time scales approaches,
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APPENDIX V
UNIFORM VALIDITY
The criterion for uniform validity of the approximation can be
stated in many ways. The following two ways are usually considered.
1. Ratio Criterion.
Suppose that the function f(t) has an expansion

f=f +efy +efy +...

lue. f N fl
e 1+ef teee fo#o
o o
Therefore,
f - 3 &
., f “hiter 0
o) o
: {
i.e,: ra =1+ O(e)
o

fo(t) is therefore a uniformly valid approximation to f(t) in a region J if
and only if

f

i 1 + O(e)

o
for all t in J. The ratio of f to fo approaches unity as € = 0. This form

of the criterion is used, for example, by Erdelyi (Ref, 40).
2, Difference Criterion.

From the above expansion for f:
f-fo=ef1 i Teas o
This requires that the difference between { and fo approach zero as ¢ —~ 0,
The difference criterion can be misleading when dealing with very
small or very large quantities, as can be seen by the following example.
Consider the equation

y'=(1 +e)y=0
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with the condition: y(0) =1
The exact solution is written as y =exp ( -(1+¢ ) t). A perturbation

expansion yields, in lowest order:
Y' +y =0 or y°=Cexp(-t)

The difference
y -y, = exp( =(1+4c )t) - exp(-t)

approaches zero for large t and hence according to the difference
critericn one would conclude Yis to be a uniformly valid approximation of
y(t) for larget, to order €. This is severely in error beczuse, although
the difference approaches zero, the functions themselves are vanishingly
small, ’

However, the ratio test shows that 5 = exp(=-€t) Lo 0 and does

o
not tend to 1.

For the equation y' - (1+e )y = 0; y(0) =1, a similar analysis shows:

y = exp( (1+¢ Jt); y_ = exp(t)

and

R= % =exp(et); D=y -yo=exp((1+e Jt) - exp(t)
o

We require R~1 and D+0 as t—~«., The actual values are given below.

t R D
0 1 0 '
-:;- e el/3 (e-1) s 1.7e1/€
3 3
::_3 &3/ e1/62 (e} ® -1) n r\1/5

Thus for large t the difference error is much larger than the ratio error,
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