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ABSTRACT 

In this work an investigation is made of uniform approximations 

to the solutions of linear differential equations with variable coefficients. 

The ordinary differential equations are replaced by an appropriate set of 

partial differential equations that determine the unknown function in terms 

of a set of independent "time stales. "   The time scales are determined so 

as to obtain uniformly valid approximations.    The partial differential 

equations, in conjunction with the requirement of uniformity of the approximation 

in a given interval, determine    the time scales through a set of "clock functions" 

k. , which may depend on the interval of interest.    It is essential for the 

success of the approximation that the clock functions be nonlinear functions of 

time,  in addition to being complex quantities.    The constant coefficient case 

arises as a natural limit.    ThuS the present approach generalizes earlier time 

scale analyses.    With this generalization we recover for second order systems 

the Liouville-Green (or WKBJ) approximation.  The difference between the 

present approach and the PLK method itt emphasized with examples. 

Bounds on the errors committed are established for the second and 

third order equations.    The use of two time scales (with nonlinear clocks) 

enables us to obtain approximations to the amplitude and phase of each 

of the modes of n     order equations. 

The prototypes that are of interest are the linearized equations 

governing the motion of VTOL aircraft.    These equations constitute a 

system of rather high order in the time derivative (third or fourth order for 

motion in the plane of symmetry). The approximation method obtains the 

aircraft variables in terms of simply calculable functions of the stability 

derivatives.    The frozen analysis of the aircraft equations suggests solutions 

of the simple form 

E        A. e^1 

i l 

with A.   and  X .   slowly varying in Ume.    We introduce new independent 
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variables (time scales)   T .     and   T.     to represent the amplitude and phase 
ox 11 ^ r r 

of the modes and express the aircraft motion in the form 

T . 
E     a. (T . )   e   ll 

; i     01 

T .   and   T  .   being determined appropriately.   The results of the approximation 

are compared with numerical integrals of the aircraft equations for the 

third order hovering system and the complete fourth order equations which 

allow for the transition from hover to forward flight.    The approximation 

is found to be very accurate (to within 10% error) for the third order system. 

For the fourth order system comparable accuracy is obtained except near 

the transition point.    However, qualitative features of the exact solution are 

not lost.    A uniform description of the aircraft motion is thus obtained. 
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CHAPTER I 

INTRODUCTION 

1. 1     Origin of the Problem 

This dissertation concerns the analysis of systems described by 

linear differential equations with variable coefficients.      This is a 

classical problem,  one that has attracted and occupied the interest of 

mathematicians and physi-ists since about the middle of the seventeenth 

century.    The range of interest is vast,  from esoteric fields of study such 

as topology   and the qualitative theory of differential equations to the very 

practical task of analyzing  actual systems arising in modern physics and 

engineering.      The fields of applied mathematics and physics are replete 

with examples of linear differential equations with variable coefficients 

embracing such diverse disciplines as celestial, quantum and classical 

mechanics,  wave motion in inhomogeneous media,  rocket flight through the 

atmosphere,  and so on. 

The importance of the study of such systems has increased in recent 

years mainly because of three factors--the attempt to comprehend the more 

subtle phenomena in nature,  and the advent of sophisticated dynamical 

systems of modern engineering,  and the need to stabilize and control  such 

systems.    In the aerospace sciences,   such problems arise for example 

in the analysis of the dynamics of motion of a vertical take off and  landing 

(VTOL) type of aircraft from hover to forward flight.    The aerodynamic 

parameters,   since they depend on the flight condition,  change continuously 

during the transition and the differential equations describing the motion 

have nonconstant coefficients.      Another example is the motion of a space 

vehicle negotiating a flight from or reentry into the earth's atmosphere. 

The variation of density with altitude gives rise to variable coefficients in 

the differential equations. 

Another way in which such equations arise is   in the theory of 

partial differential equations.    In problems which admit of the separation 

1 
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of variables,   the ordinary differential equations thus obtained will often 

contain variable coefficients.    A well-known example is that of wave motion 

in inhornogeneous media.    The wave equation yields,  after separating the 

variables,  a function periodic in time and a space dependent function which 

satisfies an ordinary differential equation with variable coefficients. 

A similar problem also arises in dealing with nonlinear differential 

equations.    The variational equations corresponding to a particular known 

solution of a nonlinear differential equation often turn out to be linear 

equations with variable coefficients.    The variational equations may be 

useful in deducing stability information. 

1.2     Historical Sketch and Review of Existing Work 

In attempting to solve linear time-varying equations,  the analyst is 

beset with considerable difficulty.      The history of formal methods of 

integration practically ends in the latter half of the eighteenth century. 

The first order linear differential equation (l.d.e. ) can be solved 

exactly b^   means of a quadrature.      The second order l.d.e.  with arbitrary 

coefficients,  however,   is quite another story.    It can be shown (Ref.   1), 

though not without difficulty,   that it cannot be solved in general by a finite 

number of quadratures and elementary operations.    For particular 

variations of the coefficients,  however,  the various standard transcendental 

differential equations are obtained.    For example,   in the l.d.e. 

y" + Wjlt) y' + uo(t) y   =   0 (1.2.1) 

(The primes denote differentiation with respect to the independent variable    t) 
I n3 

if   u»!   = —   and     u     -  1   —g- ,     we obtain Bessel's equation cf order    n; 

if   u!   s 0,    u     =  -t,   the Airy equation;    if   u; x   =  0,    w     = (a - 2qcos2t) 

(a,  q constant) we have the familiar Mathieu equation,   and so on.    These 

are well known equations and exact solutions   ire available. 

In all bat the standard cases exact solutions are not known and the 

explicit forms of the asymptotic solutions cannot easily be written down. 
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One has to resort to approximations under these circumstances,  and the 

literature on this subject is very rich indeed.    Many authors have contributed 

to the state of the art and the theory is quite extensive. 

The idea basic to most of the schemrs for approximation is to show 

that under certain conditions the given equation may be represented by 

another simpler equation which can be solved,   such that the difference 

or the error between the two solutions is small.    The most direct approach 

is that of perturbation theory introduced by Poincare (Ref.  2) and this can 

be applied when there is a small parameter which exists in the physical 

system.    Then direct perturbation theory yields approximations of better 

and better accuracy.    There are many cases where such a representation 

becomes unsatisfactory over part of the domain of interest.      This 

phenomenon is termed nonuniformity and will be examined in detail later. 

More sophisticated perturbation methods have been devised so as to 

overcome this difficulty (but sometimes only partially). 

The available methods of analysis and their application to time-varying 

control systems have been examined in Ref.  3,    There the methods are 

categorized into classical theory of differential equations,  matrix methods, 

methods of integral transforms,  etc.    Approximations such as the method 

of collocation, Schellkunoff's wave perturbation method,  etc.,  have been 

discussed in detail and examples given. 

Among the many aporoximations existing in the literature,  one which 

has enjoyed considerable fame is the so-called Liouville-Green (or WKBJ) 

approximation,  sometimes named with other permutations of the letters.  This 

name refers to the representation of the solution of the differential equation 

y"   + ha w(t)y = 0 I       w  >   0 (1.2.2) 

in the form 

y*=    AuT17*  exp( ih L1/*  dt )  +   BuT1'*   exp (-ih (a)l/a dt) (1.2.3) 

where A and B are arbitrary constants.      The usefulness of such an 

approximation will be examined later and the conditions of validity established, 



The naming of this scheme of approximation has had a diverse history. 

Apparently the use of such approximate solutions may be traced to Carlini (1817) 

(Ref. 4) who considered a specific equation of the Bessel type.    Liouville (Ref. 5) 

and Green (Ref. 6) (1837) derived the approximation for more general equationt», 

although their derivations lacked rigor and were only valid in restricted regions 

of the complex plane.    More recently the method has been referred to by 

physicists as the WKB method,  after Wentzel (1926) (Ref. 7),   Kramers (1926) 

(Ref. 8),  and Brillouin (1926) (Ref. 9),  though the letter J is often added to 

acknowledge the contribution of H,  Jeffreys (1923 )(Ref J 0) in connecting the 

approximate solutions valid on either side of a transition point--a point on either 

side of wMc'..   «.(t) has opposite signs; and H.   Jeffreys (Ref. 11) has recently 

pointed out that he himself had been anticipated by Gans (Ref. 12).    Just to 

complete the overwhelming list of the different names,   Bailey (Ref. 13) has 

chosen to call it the "L. R.  approximation",   after Liouville (Ref. 5)(1 837) and 

Rayleigh (Ref.   14) (1912).    In a recent review article by B.S.  Jeffreys (Ref. 15), 

the name asymptotic approximation method is suggested.    Perhaps smong all 

these various names,  that of "phase-integral method" as used by Heading (Ref. 16) 

seems to be most appropriate as it does not refer either to its discoverer or to 

its method of derivation.   Though the name WKBJ seems to be widely prevalent, 

we sha-1 follow Olver (Ref. 28) ard use the name "L-G approximation" after 

Liouville and Green who derived the approximation first. 

It must be noted in passing that it is possible to raise some criticisms 

about the point of view adopted in the above method of approximation. 

However, approximations quite often serve a useful purpose in mathematical 

physics and engineering and have led to illuminating results in many cases. 

When valid the above approximation scheme shows,  for example,  the 

connection between classical and quantum mechanics by providing approximate 

solutions to Schrö dinger's equation.    In response to such criticisms the 

author cannot do better than to fall back on Heading (Ref. 17),  who says, 

"For example,  with no just foundation for such remarks, Smyth has 

criticized a paper making use of the method by writingi'It should be 



observed that the authors have used a solution which is a very poor 

approximation to the given problem as an approximate solution to another 

problem.    It is certainly not to be expected that the results obtained in I 
this manner will have any connection with the original problem. ' 

Introducing a new approach that leads to a difference in applicability, 
t 

Hines has observed that his new method yields an approximate evaluation 

of the exact solution,  rather than an exact evaluation of an approximate 

solution as is found in the WKBJ method!"     Perhaps the wise remarks of 
I 

Schellkunoff (Ref. 18) concerning the approximations should be recalled: 

"There is something in human nature that makes one yearn for the exact 

answer to a given problem.    In particular it makes little difference whether 

a given problem is solved approximately or replaced by an approximating 

problem which is then solved exactly. " 

1.3     The Liouville-Green { or WKBJ) Approximation 

This approximation can be derived by first converting (1.2.2) 

into the Ricatti equation 

by the transformation 
dr + z = x^ (1-3-1) 

y Z'   y "  dt   '   A     h 

where a small parameter   X  has been introduced in (1.3.1 ).    The equation 

(1.3 .1 ) can be formally solved by expanding   z   as follows 

t 

z = i       f   dt   I      x, Xk (1.3.2) 
A     J      k=( k=0     k 

'o 

where t    is a constant.    Substituting this into (1.3 .1 ) and equating like 

powers of   X, we get a set of equations 



x   = ± i/u) 
o 

(1.3.3) 

E      x.x,   . k=l,2, 3, 
dt j=0      j k-j 

k 
from which the series   E       x  X     can be determined.    This is, for example, 

k=0     k 

the method used by H, Jeffreys (Ref.   10). 

It is known that this series is,  in general, not convergent, but is 

only asymptotic.    From the above we can get the LG approximation. 

&    -I/A        r        r     u)Va       _ 
y(t) = ( p ) V4   expr ± i   J     -j—   dt] (1.3.4) 

'o 

if we neglect the other terms. Similar derivations of this approximation 

are given in many books on quantum mechanics, but few give the precise 

conditions of validity. 

The parameter X was introduced only as a formal mathematical tool 

for obtaining the desired expansion for   y.   It is seen that bot', in the 1.d.e. 

(1.2.2) and the LG solution (1.3.4), the parameter X and the function 
U) 

u) (t) appear only in the combination r^ , and so one can simply write u) 

instead of   r^.     The definiteness of the sign of  ov     must be ensured by 

branch cuts in the complex t plane radiating outwards from the zeros 

of u), and the integration must take place along paths not crossing these cuts. 

The above treatment is inadequate since neither estimates of the errors 

of the approximation nor the regions of validity in the complex plane are 

given.    The solutions of equation (1.2.2) are single-valued in a domain 

containing no singularities of c(t); but because of the fractional powers of 

u)(t) the     JLCJ     solutions are not single-valued and so it is clear that the 

solutions (1.3 .4) are valid only in restricted regions of the complex t plane. 

One of the purposes of this work is to demonstrate a more general 

method of approximation which yields the LG solution as a special case 



AS well as approximate solutions valid where the     LG     solution is not. 

The study of asymptotic approximations to the solutions of l.d.e. 

would  be incomplete without at least a brief discussion of the Stokes 

phenomenon.    This name is given to the discontinuous changes in the 

arbitrary constants that occur in the asymptotic solutions of certain 

differential equations. 

It is rather interesting to follow the beginnings of the observation of 

this phenomenon.    In a letter to a certain young lady.  Sir George Gabriel Stokes 

wrote in 1857 (Ref.   19) (and the present author wishes to beg the indulgence 

of the reader),   "When the cat's away the mice are at play.    I have been 

doing what  I guess you won't let me do when we are married; sitting up 

till 3 o'clock in the morning fighting hard against a mathematical difficulty. 

Some years ago I attacked an integral of Airy's,   and after a severe trial 

reduced it to a readily calculable form.    But there was one difficulty about 

it which,  though I tried till I almost made myself ill,  1 cculd not get over, 

and at last I had to give it up and profess myself unable to master it. 

I took it up again a few days ago,  and after two or three days hard fight, 

I at last mastered it. " 

The phenomenon was first observed in connection with the Airy 

equation: 

y"    -   zy    =    0 

For small  |zl .    the general solution comprising of two independent power 

series solutions, would involve two fixed arbitrary constants.    It was 

observed that if for a certain range of arg z,  the general solution was 

represented by a certain linear combination of the two asymptotic solutions, 

then in a neighboring range of arg z it was by no means necessary for the 

same linear combination to represent the same general solution.    Stokes (Ref.   20) 

in fact showed that the arbitrary constants must be changed discontinuously 

on crossing certain lines in order to provide an   asymptotic representation 

of a continuous function for both ranges of arg z.    These lines are called 

anti-Stokea lines. 



The Stokes phenomenon occurs because an asymptotic series is not 

unique.    For example,  the two functions 

,    ,  .    Hz) 

and l/)a (z) = f-i-^   + e f(z)     ,  .-z 
cp(z) 

have the same asymptotic expansion for / z ( -• o° when Re C z ] > 0.    Besides, the 

asymptotic expansion for ^ 2 (z) will change drastically from Re r z ]> 0 to 

Re" z^ < 0.    The asymptotic form of 0a (z) as arg z changes would reveal a 
j. .     . TT    3fr _, ,. ... , 
discontinuity at arg z = — ,  — ,   etc.    These discontinuities are only apparent, 

however,   and are essentially a result of the nonuniqueness of asymptotic 

expansions  (Ref,   21). 

One may also consider that the Stokes phenomenon occurs because the 

operations of analytic continuation and taking the asymptotic expansion do not 

commute.     Tn other words,   let f(t) have the asymptotic expansion: 

f(t) = £ (t) + efj (t) + ... 
o 

Let f.(t) be now analytically continued into f.(z).    On the other hand,  let the function 
i i 

f(t) be analytically continued into f(z).    If we now obtain the asymptotic expansion 

f(z) = f(0)(z)   +   cf(l)(z) + ... 

we will find that in general: 

f.(2)    /   f(i)(z) 

This is the Stokes phenomenon. 

The Stokes phenomenon in LG theory arises as follows (Ref.  22). 

The approximations to the solutions of 

y" + a)(t)y = 0 (1.3.5) 

are given by 

y+ (t; y,« ) = 6u'-l/4 (t) cos( j    o-^dt+y) (1.3.6) 
a 

when a   is positive and f 

^ -u)x 

a 
t , 

+ ßexp(-    j    (-ou^dt ] 

y_ (t; ü,ß) = (-^(t) )-1/i f a exp (J     (-uO^dt) (1.3.7) 

when m (t) is negative.    oi,ß,y,b  are arbitrary constants. 



When   üU   >   0 (1. 3. 6) represents one solution of (1. 3. 5) with specific 

constants;   and when   w  <  0 (1.3.7) also needs specific constants.    If   a)(t) 

changes sign in the interval of interest,   then the requirement  that (1.3.6) and 

(1.3. 7) must represent the same solution in the entire interval thus correlates 

the forms (1. 3.6 ) and (1. 3. 7) and the correlation is determined by the 

association of the respective constants.    As w (t) changes sign it is seen that both 

the forms (1. 3. 6) and (1. 3. 7) break down for two reasons: 

(i) both become infinite when a- (t) vanishes 

(ii) the equation for which (1. 3. 6) or (1.3. 7) are exact solutions has 

singularities at the zeros of u (t) and the functions (1. 3. b) and (1.3.7) 

are multivaluea in general in the vicinity of these singularities, 

i.e.  transition points.    These points are also called "turning points." 

The representation of single-valued functions by multiple-valued functions can 

be expected to be valid only in a restricted region. 

In fact,   as  Langer says (Ref. 22), merely because the pair of solutions 

y(t)~ y+ (t;y,f ) 

(1.3. 8) 
y(t)   - y_ (t'.a.ß) 

valid respectively on either side of a transition point exist,   it is a non sequitur 

that the r. h.  members of (1.3.8) represent one and the same solution of (1.3.5). 

The contrary is the case.    For every specified   y,6    there correspond specific 

a,ß.    In order to deduce one form of asymptotic representation from the other, 

one depends on the so-called "Connection Formulae. "   These can be derived in 

two ways.    One is by representing the solution near the transition point by the 

Airy function and connecting this to the asymptotic solutions on either side. 

The other is by a study of the Stokes phenomenon and thus connecting     the 

asymptotic solutions on either side of a transition point.  This will he discussed 

in a later section. 

1.4  Objectives of the Investigation 

From what has been said hitherto,   it is evident that for the general 

l.d. e.  of order greater than two, the best general result that can be 



obtained is to get a good approximation with a knowledge of the errors 

committed in the use of such an approximation.    Unless the coefficients have 

certain special forms,  it is,  in general,  impossible to solve the equations 

exactly in terms of elementary functions and operations.    Once this is 

realized, the aim is to get approximations and error estimates.    Mathematicians, 

however, have been for the most part interested in areas which afford 

general conclusions regarding the mathematical properties.     There is an 

extensive mathematical literature on the many aspects of linear differential 

equations and one may refer to the works of Hartman (Ref.  23),  Feschenko 

et al    (Ref.  24) etc .   which contain extensive bibliographies.-   The engineer 

and the phyuicist,  on the other hand,  have been interested in approximations, 

insofar as they describe the physical system adequately,  in order to glean 

some quantitative insight about the system. 

The LG approximation  seems to fill this gap satisfactorily for a 

number of applications.    Physicists have used the method to great advantage 

particularly in the fields of quantum mechanics and radio wave propagation 

in the ionosphere (Ref.  25).    However,  the control systems engineers have 

generally stayed clear of this rather powerful method,  except for some 

researchers such as Pipes (Ref. 26), who applied it to analyse time-varying 

networks.    More recently Curtiss (Ref 27) has applied these ideas to the 

analysis of VTOL transition dynamics where he has developed a modified 

root-locus method to determine the "unsteady" roots,  as deviations from 

the "quasi-steady" or the variable "charac.eristic" roots of the system. 

Using this technique one is able to draw sketches fairly quickly at a 

number of points and obtain information about the instantaneous "damping" 

and "frequency" of the modes of motion.    These applications have broken 

the ice in regard to engineering dynamics analysis of variable systems and 

pointed the way to a more complete treatment of the problem.    However, 

with reference to the VTOL transition dynamics,  it is desirable to have a 

uniformly valid approximation throughout the transition from hover to 

forward flight.    This naturally leads to the study of transition points or 
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turning points.    Error bounds, of course,  make the theory more complete. 

In contrast to the LG approximation for the   l.d.e. of second order, for 

which there is a substantial body of work covering these areas, no such 

complete theory exists for the third or higher order l.d.e.      Since dynamic 

systems of the vehicular type are generally of higher order than the second, 

it is felt that the present work might fill in part this need. 

In this thesis a scheme for approximations for l.d.e. with variable 

coefficients is developed.   Explicit formulae for the approximate solutions 

are derived and this is done by appropriate extension of the independent 

variable,  employing multiple time scales and proper "clock,, function«(which are 

complex and nonlinearji The "frequency" and "amplitude" variation of the 

solution are extracted separately and are then combined to form a 

composite solution.    The advantage is that one is able to retain, to some 

extent, the familiar ideas of stationary linear systems analysis. 

Further, absolute error bounds are derived.    It is clear that these 

are more useful than the usual O symbols of asymptotic analysis, which are 

necessarily somewhat vague.    The question of transition points is then 

examined and a technique is proposed to circumvent the accompanying 

difficulties. 

1.5 Arrangement of the Dissertation 

The results presented in the dissertation are presented in the following 

manner.    Chapter II presents the theory of the method of extension 

and multiple time scales which will form the basis of the results obtained in 

the dissertation.    The method is applied to simple examples,  a.id 

asymptotological principles are presented. 

Chapter III contains the principal ideas of the thesis.    Here the explicit 

formulae for the approximate solutions of l.d.e. with variable coefficients 

are derived using the method of extension.    It is seen that for the second order 

l.d.e. the Liouville-Green (or WKBJ) solution is one of the approximations 

derived.    The formulae for third and fourth order l.d.e. are derived and then 

the theory is generalized to the n     order equation. 
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In Chapter IV absolute bounds on the errors of the approximations are 

derived.    For the second order equation the error bounds for the WKBJ 

approximation are derived in a new and direct way different from that 

of Olver (Ref, 28) and asymptoticity of the approximations is demonstrated. 

Chapter V contains the application of the above approximation to 

some analytical examples and the analysis of the dynamics of VTOL 

aircraft during transition from hover to forward flight.    First the hover 

or two  degree-of-freedom case is studied,  and then the full three 

degree-of-freedom system it  studied. 

A brief sketch of the failure of the LG approximation near transition 

points is discussed in Chapter VI.    An outline of some ©pen problems is 

presented, together with a method of shifting the transition point out of 

the physical domain of interest. 

In this work the word "canonical" is used to denote an equation of 

the n     order in which the term containing the (n-1)       derivative does not 

appear. 
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CHAPTER   II 

ASYMPTOTIC REPRESENTATION AND UNIFOBM VALIDITY 

2. 1   Nonuniformity in Approximations 

In this chapter,  the failure of the conventional perturbation approach 

in certain regions of interest and  some well-known methods of dealing with 

it are presented briefly.    The purpose is to provide a basis for the present 

work within the general framework of the theory of such approximations. 

Formal proofs are not   presented. 

We shall begin by illustrating what we mean by a uniformly valid 

approximation.    Given a function f(t) of quite an arbitrary shape (Fig,   1), 

f  (t) is said to be a uniformly valid approximation of f(t) to order c 

(where   e is a   "small" parameter,   i.e.,    e << 1)   if and only if for all   t: 

f = f    + O(e);   (or f=f   + o(l)   ) (2. 1, 1) 
o o 

That is,  the error between the function and its approximation is uniformly 

small within the domain of interest.      A further discussion is given in 

Appendix   V. 

Contributions to the theory of uniformization of asymptotic expansions 

have come from many sources and it is difficult to do justice to all of them. 

The work of some authors,   however,   has been highlighted for purposes of 

orientation.     In problems exhibiting the presence of a small parameter  G, 

approximations based on    a direct perturbation expansion in powers of € 

were first introduced by Poincare  (Ref.   2) in his researches on celestial 

mechanics.    Often such a scheme  leads to a serious misrepresentation 

of the true function and this phenomenon is called nonuniformity in the 

expansion.    For example,  direct expansion about hover,   of the  solution to 

the transition equations of motion of a VTOL aircraft fails to yield the 

correct long time behavior.    Also the expansion of the solution of the 

Liouville equation of statistical mechanics,  in powers of the strength of the 

13 



two-body interaction,  breaks down for times of the order of the relaxation 

time to equilibrium; and so fails to give the crucial information on how a 

gas approaches equilibrium (Ref.  29). 

The precise nature of the nonuniformity enables one to classify in the 

fashion of Sandri   (Ref.   30) as follows. 

(1 )Singular type 

Nonuniformity occurs for finite values of the independent variable. 

(2) Matching type 

Nonuniformity is manifest in that it is not possible to satisfy the 

initial or boundary conditions.    This is usually because the inherent 

simplification of perturbation theory results in lowering the order of the 

original equation. 

(3) Secular type 

Nonuniformity occurs for large values of the independent variable. 

The classification is only pragmatic and it must be noted that 

sometimes one type of problem can be transformed into the other. 

The manner in which the nonuniformities arise is illustrated as 

follows with simple examples without plunging into lengthy calculations. 

1.   Singular Perturbation 

Since only linear systerm are of concern here,   the linear analog of 

Lighthill's well-known example (Ref.   31,   32) (Linear Lighthill Model) 

suffices to illustrate the essential features of the phenomenon. 

Consider the equation 

(t + €)^-   +   f  =   0    . (2.1.2) 

with the condition- f(l)   -   1 (2.1.3) 

Direct perturbation theory yields : 

f   =   f     +  Cfi    +   . 
o 
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t-^ + fo = 0 (2.1.4) 

dt 1 dt 

Solving (2. 1.4) we have: 

c 
fo=t—  .    ^    = -^  +   ^-  ,    etc. (2.1.5) 

c c 
o . o c. 

Imposing the condition (2. 1.3) 

fo =P    {l   = ^~   ~   ?   '    etC* (2.1.6) 

Thus the approximation 

f w~ + c   ( --p ) + ... (2.1.7) 

breaks down severely as   t   approaches zero. 

Further   it is observed from (2. 1.5) that it is impossible to impose 

any arbitrary conditions at   t = 0;   Fig. 2 illustrates this.    The exact 

solution is given by 

f=       C 

t + e 

where   c    is a constant. 

2.    Matching Type 

Consider the constant coefficient equation 

da f df 
G "^3-   '    a—   +   bf = 0 (2.1.8) 

with: 

f(0) = 0 ,      f(0) = c (2.1.9) 
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Perturbation theory yields 

af  ' + bf    = 0 
o o 

f  " + af,   + bf. 
o * l 

having the solutions 

f    = k    exp ( - (b/a.)t ) , 
o        o (a) 

(2.1.10) 

fj    = kx   exp ( -(b/a )t ) - k t exp ( -(b/a )t ) (b) 

where k   ,   ^   are arbitrary constants.    Clearly conditions (2. 1.9) 

cannot be met.    Furthermore,  the "correction"   p fl      eventually becomes 

larger than the lowest order term   f     and therefore the expansion is not 

uniform for large   t. 

Equation (2. 1.8) can, however,   be solved exactly as 

m t 
,. . o m, t f(t) = c   e +   Cx   e    l 

o (2.1.11) 

where m  , m,    are the roots of: 
o 

a        a b ^ m     +—   m+-   =    0 
c e 

a i   ,   , a .a       4b    i 

m. i    .   J,   (    (i)»      .4±^ 

c   ,  c1      can be chosen suitably;   the solution is depicted in Fig.   3. 
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3. Secular type 

Given the equation 

^- + rf = 0 (2.1.12) 
at 

with f(0) - i, a. direct perturbation expansion yields: 

f   = 1 ,    fi   = -t ,    fa   = ^  .    ... (2.1.13) 
o c 

The approximation f = f    + *• fi    fails for   t ~ —    ;   the exact solution 

f = exp ( -et) 

reveals the slow decay   (Fig.  4). 

Some techniques have been developed in order to render the approximate 

solutions uniformly valid.    These methods of uniformization can be broadly 

classified as follows, 

(1) The Poincare-Lighthill-Kuo or PLK Method 

(2) Method of Matched Asymptotic Expansions (Inner and Outer Expansions) 

(3) Method of Extension and Multiple Time Scales 

The PLK Method (Ref.   32) is typically applied to singular perturbation 

problems.    The method consists of suitably stretching the independent 

variable and moving the singularity out of the physical domain of interest. 

This is done in equation (2, 1,2),   for example,  by expanding the independent 

variable   t   also in a series: 

t = s + rti (s) + eat3 (s) +   ... (2.1.2 a) 

The functions t1 (s) ,  ta (s) ,    etc.  are to be chosen so as to eliminate the 

nonuniform terms.    This technique yields the exact solution for the above 

example.    It is worth noting that even though in principle the PLK method 

and the time scales approach are similar,  they in fact differ considerably 

in the mechanical details of the analysis.    In Appendix   IV we emphasize 
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this point with a simple example. One can,  however,  obtain connection between 

the stretching and clock functions,  as was done,  for example,   by Sandri (Ref.   30). 

Conceptually,  while the multiple time scales approach obtains the description 

of a phenomenon by following the gross features on one scale and fine    ones on 

another, the main purpose of the PLK method is to move the singularities 

outside the domain of interest. 

The method of "inner" and "outer" expansions consists in developing 

separate expansions (Ref.  33),  each valid within a region,  and matching 

them at the boundaries of these regions.    This method has been typically 

applied to problems of the boundary layer type.     The boundary layer 

approach and that of multiple scales have as a common feature the existence 

of separate scales,  on each of which the unknown function exhibits different 

behaviors.    However,  in the former, the "inner" and "outer" solutions 

have to be matched at the common boundary or in a region of overlap. 

This usually calls for criteria based on intuition and seems to involve a 

certain amount of art in the process.    The method of multiple scales,  on the 

other hand, while it recovers the different behaviors,  does not involve any 

matching, but consists in an extension of the independent variable into a 

space of more than one dimension.    Further,  it is a formal method and 

may lead to a systematic method of studying problems of the boundary layer 

type also. 

In regard to (2.1.8) it can be shown that the fast variation of the 

solution for small values of  t   can be obtained in lowest order,  by a 

suitable extension of the variables,  given by: 

tI=>fT.1,To,    Ti     ...    Tn} (2.1.14) 

f   =   f    + ef,   + o        1 

T. (t)   are defined   by: 

t n 
Ti=—  ,T        =t,     T1=et,...    T     =€t 

c o n 
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The lowest order equation describes the "inner" solution.     To obtain the 

behavior for values of   t   of order un.^y or greater,    we do not have to 

consider an additional,   "outer",  expansion of the original equation. 

The term of the next order in the expansion already made obtains the "outer" 

solution.   The time derivatives are now extended as: 

dt e    öT_i öT       e  öTi 
0 (2.1.15) 

r  ) + ( äF3 
o o 

-ps       73 r"-a    +  r ( 2 ———   )  +  (        a   + 2 x——--     )  +  ... 
at €      d T.i e o T.i d T d T o T,  8 T j 

In lowest order we have 

TT-*    +    a |I        =0 (2.1.16) 

with the solution: 

f (T .i.T ,..) = --2-  ( T  , Tx,..) exp ( -aT.x )  + ^ (T , Ti ,.. )       (2.1.17) 
O CL O O 

The equation in the next order is: 

o o 

Substituting from (2. 1. 17)   above: 

2 k   exp ( -ar ,  ) - k   exp (-ar   ,) + ak. 
o o - 

+ b  [   - ^O-   exp( -aTn) + ^-]      =0 
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W   •■"■ 

Regrouping terms: 

(k    .   -Lk  ) exp(- aT,  )    +   (ak.    + b k. ) = 0 (2. 1. 19) 
o        a     0 

We now equate the terms in each parenthesis to zero, which gives: 

b 
k    = 1^    (Ti .... ) exp( + - T    ) (a) 

o a     o 

k^   = I^ (Tj ,...) exp( -   -   To) (b) 

(2.1.20) 

Upon restricting along   T^   =— ,    T   = t we have: 

f = c: exp( - — ) exp( + - t) + c2 exp( - | t) (2. 1.21) 

This process can go on to obtain higher approximations.    It can be seen that 

(2. 1.21) describes the correct behavior of the exact solution (2. 1. 11) to 

leading order. 

For purposes of the present study,  the method of extension and multiple scales 

is more pertinent; the primary interest here will be as it applies to multiple time 

scales, though in its general concept (Ref.  29) the method includes the other schemes 

also.    A further discussion is given in the next section.    An example of singular 

perturbation will, however, be considered and it will be solved by the time scales 

treatment. 

The main aim is to show that the failure of the direct perturbation expansion 

has as its raison d'etre an inappropriate scale on which the unknown function is 

observed.    The natural scales or "clocks" which afford a uniform description of the 

phenomenon are determined by knowing the precise nature of the breakdown of 

the direct expansion. 

2.2 The Concept of Extension 

The method of extension was recently introduced as a mathematical technique 

designed to exploit as much as possible the presence of a small parameter if one is 

available in a problem.    The aim is to render approximations of the perturbation 

type uniformly valid.  The origin of the concept can be traced to the works of Bogoliubov, 

Krylov, and Mitropolsky, who allowed all the constants of the lowest order perturbation 
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theory to be slowly varying functions.    The original ideas of Bogoliubov and 

Krylov (Ref. 34) were extended and modified in the recent work (translated into 

English) of Bogoliubov and Mitropold«y(Ref. 35),  which provides a broad 

theoretical framework for the method of averaging.    The method of time scales 

in its early form was applied to certain nonlinear differential equations by 

Cole and Kevorkian (Ref. 36); Frieman (Ref. 37) and Sandri (Ref. 29) used it in 

the theory of irreversible   processes.  Sandri (Ref.   38) has also discussed a 

general technique of un'1   rmization of asymptotic expansions and has shown 

some of the well-known unu'ormization procedures to emerge as special cases 

of such a general technique, by introducing a complete reparametrization of 

the lowest order term of the perturbation expansion.    The development of the 

theory given in Ref.   38 is rather abstract and relies on the composition of 

mappings.  Precise conditions of validity of any special form of the method are 

not established and it is here that the present work seeks to fill a gap. 

The fundamental idea is to extend the domain of the independent variable 

using suitable "clocks" determined by knowing the precise nature of the 

nonuniformities arising in direct perturbation theory.    It should be noted that 

the variables in general are not restricted to be real.  The "clocks" are so 

chosen that the new terms that arise due to extension, called "counterterms", 

eliminate the nonuniformities of direct perturbation theory so that in the 

extended domain uniform approximations to the unknown function can be obtained. 

The concept becomes more transparent by a re-examination of (2. 1. 12). 

The solution   f   is represented as 

G 2 ta e 3 t3 

f = 1   -Ct    +    ^y-      -       ^y- (2.2.1) 

which is a convergent series and can be summed to the exact solution 

f = exp(-et).  In general the perturbation series is not aummable and one has to 

resort to the k      order approximation: 
2  »2 k k 

f  ^    1  - et +   ^yp    -     ...      + (-l)k   —- (2.2.2) 

Clearly this fails for   t ~ — ,   since all terms will attain the same order of 
C 

magnitude.    The fact is that in representing a function by a series,  we want the 

leading term to give maximum information and hence we look 'or an asymptotic 

expansion rather than a convergent one.    These have the property that successive 

terms decrease in magnitude up to a point, beyond which they may start 
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growing.    The series is terminated at this point and provides a useful means of 

computing the function (Ref. 39,40). With this in mind we see that the first few 

terms of the series (2.2.2) do not represent the true solution adequately for 

long times. 

A clearer physical picture comes into view when we consider the function 

f(t) = exp( --|1) (2.2.3) 
* 

from a different standpoint,    t   is a fixed constant with dimensions of time,  and 

f   represents a physically observable quantity such as displacement from a 

reference position,  or temperature difference between two insulated bodies. 

An observer who measures   f   and records it using a clock w'hose unit of time is 

t       will      have to wait a long time (the longer for smaller c ) before he can 

observe a perceptible change in   f.    Instead, if our observer were to use the 

slow variable Tj =et,  or a "super" clock which measures t in giant units of -*-, 
e. 

the phenomenon is seen much better, for then (2.2.3) is 

f(t) = exp(-   p- ) 
* 

which is indeed the exact representation of f.  Thus the method of extension 

enables us to perform readings on appropriate scales by employing a sufficient 

number of independent observers. 

Consider a three-dimensional space (Fig. 5) with orthogonal axes 

T i Tj ,  and f.  Readings on "fast" and "slow" clocks  are represented 

respectively by points along T   and Tj   coordinates and f is defined to be 

the function 

Mro ,  T! ) = c exp(-T1 ) (2.2.4) 

where c is a constant.    Graphically, fjT   ,  T^ ) ia represented oy a cylindrical 

surface in Fig.  5 which is constant in T   ,  but decays exponentially in Tj . 

To relate   f   ( T   ,  T,  ) to f(t) ,  let T= -  , 
-      o t# 

From (2.2.3): 

fC r ] =  exp C -ef] 

Choosing c = l,  (2.2.4) gives 
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f_( T.   eT) =     exp(-£T) (2.2.5) 

i.e., f(T,  eT) = f fr] 

and   f  (r ,  Ti ) is said to be an extension of  f(t). 
—    o 

Based on these considerations, Sandri (Ref. 29) defines extension 

formally in the following manner. 

Definition.   Given a function f(t )vriiere t is in general an   n   dimensional 

vector,  and a function   {JT^ , Ta ,   ...  T)   of the N independent variables 

T, , Z. ,   .  .   . T   (each of which is an   n   dimensional vector),  f    is said to A N — 
be an extension of   f   if and only if there exists a set of    N x n equations 

T   = T   (t) .    n = 1,  2,  ...    N 
n       n 

which when inserted into   f    give: 

LCitt).   Ta(t),   .   .   .  TN(t) )=fCt] 

The space of   N-tuplets   T = ( ^ ,  T8   .  .  . TN )       i« called the 

extension of the domain   ITJ   and the equations   T    = T  (t)   are called 
n        n 

the     " trajectories"     in the extended domain.    In dealing with differential 

equations,  the derivatives and indeed the   *ntire differential expression 

itself can be treated as a function and can be suitably extended.    Thus, 

given 

9sdr+ cf = 0 

one extension of qp can be written as 

^    at ar,       - 

where qp -*-  £ :     f *=*• _£   ;        t   «==->'  I T ,  Tj   J 

with: T   = t,    7* = ct 
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In general T     = T   (r.t). 
n       n 

It is evident that there are infinitely many extensions which correspond 

to a given function.    Two degrees of freedom are available: choice of the 

trajectories and choice of the extension itself.    This freedom is utilized 

in obtaining an f with simpler and smoother dependence on the parameter 

than that offered by f, and requiring the approximate solutions to be 

uniformly valid in the domain of interest.    Figures 6,   7, and 8 illustrate 

the concept of extension. 

2.3 Application   to Simple Examples 

(a) Equations with Constant Coefficients 

The theory discussed in the last section will now be applied to 

simple examples.    First l.d.e.  with constant coefficients are discussed, 

beginning with the first order equation; and the method is then shown to work 

for two special types of equations with variable coefficients.    The aim is to 

extract the leading behavior of the solutions and this is done by an extension 

of the domain of the independent variable alone.    Throughout the rest of 

this work primes denote differentiation with respect to (w.r.t) the independent 

variable. 

(1) Slow Exponential Decay.   Consider the first order 1. d. e.  (2.1.12) 

which is: 

^-+ cy = 0 ; y(0) = 1 ;   0<C<<1 (2.1.12) 

The variable y and t are extended as follows 

{T   ,  TX   ,Ta   ... T   ] o n 

with   T   = t,    T, =et ,    Tn^Ta , . .= T     =0,     Then: 
o n 
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dt 3T 3Ti   dt     + 3Ta dt       + *   *   '   ?T     dt       " ST    + e atr ^^    • 
o no 

On applying (2. 3. 1) to (2. 1, 12) and equating like powers of    c, we have: 

^f   = 0 (2-3.2) 
o 

^   + L   = 0 (2.3.3) 

From (2.3.2) and (2.3.3) 

Y_(To,  Ti ) =A(Tj ) - exp(-r1 ) 

which is the exact solution of (2.1. 12) when v   is restricted along   T =t; 

Tl=et.    Fig.   9 a   shows a schematic of the root configuration. 

(2)  Second Order Equation.      Consider the equation   (Fig.   9 b) 

y"  + (a + e) y' + eay = 0 (2. 3.4) 

where   a    is a constant of order unity.    Direct perturbation theory results 

in secular nonuniformity as follows 

Y = yo 
+ eyi  + 

y " + ay  '  - 0 
o o 

Yi "  + ayl   = - (y^ + ayo) 

etc. ,  giving 
c 

y = exp( -at) + Ci 
o       a 

y^.^t exp(-at) + C3,    etc, 
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where c   ,  Cj ,  c3 ,  C3    are constants. 

On the other hand,  extension yields; 

y(t)   «=> y(To,  Tl ) 

f T   ,  T,  } ; T    =t,   Tx =et 
0*0 

4  +   a   ^L   =0 (a) 

JL-      +aUL    + 3L_ + 
a^STj 3T "    + ^f- + ay = 0 

1 ärn 
(b) (2.3.5) 

*1^    + 11.    = 0 
at. at (c) 

Integration gives: 

y(To, T! )   =   -A ^-    exp( -aTo) + B{Tl ) (2.3.6) 

Subetituting in (2.3.6 b): 

A' exp( -aT   ) + a^' + B) = 0 

Since   T    and   r^   are independent, A^O and B' + B=0.    This gives 

A = pure constant 

B = Cexp(-T1 ) 

(2.3.7) 

From (2.3.6) and (2.3.7) restricting   y(T   , T1 ) along the trajectories 

T   =t,    Ti =et, we have the general solution of equation (2.3.4) as 
o * 
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y(t) = c   exp(- at) + Ci exp(- et) (2.3.8) 

c ,   Ci    are constants,    which is the exact solution. 
o 

Similarly in the second order oscillatory case of (i) low frequency, 

large damping;     and (ii) high frequency,  low damping,    the choice of 

simple time scales separates the damped from the oscillatory motions. 

One can then extract these separately and combine them to give the exact 

answer. 

(3) Third and Fourth Order Equations .      Using the same approach as 

above,  third and fourth order l.d.e. with constant coefficients can be solved 

exactly by a judicious choice of time scales.    For example,  the following two 

cases of the third order equation can be considered. 

(i) oscillatory mode with low frequency and low damping; 

heavily damped non-oscillatory mode   (Fig.   9 c(i) ) 

(ii) oscillatory mode with high frequency and large damping; 

lightly damped non-oscillatory mode   (Fig.   9 c(ii)   ) 

As an example of (i) consider the l.d.e. 

y'"  + (a + Zety" + Z^a + eJy' + 2aeay = 0 (2. 3. 9) 

where   a,  e   are constants;   a^l,   0 < c «1. 

Direct perturbation theory fails because of the appearance of secular 

terms as shown below. 

y '" + ay " = 0 
o o 

y  "• + ay   = - 2( y " +ay ') 
o o o 

c 
giving y (t) = -y   exp( - at) + ^ t + Ca 

v/ a. 

Yi '"  + ayx  = - 2ac1 

Integration leads to secular terms. 
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The choice of simple time scales as in (2. 3. 1) yields,  in a 

sfrttight£orward manner 

AiTl)     exp(-aT ) + B(Tl)T   + Tdi ) (2.3.10) y      a 

A' exp(-aT ) + 2a(B, + B) = 0 o 

giving A = pure constant 

C = Da exp( (-1 + i) ^ ) + Da exp( (-1 - i) ^ ) 

Upon restriction along   T =t,    T^ = ct,  we can write 

y(t) =  Cj   exp(-at) + Ca exp( (-1+i) ct) + Caexpi (-1-i) ct) 

which is the exact   general solution of (2. 3. 9). 

The procedure is the same for fourth and higher order systems. 

When the motion has well-separated modes a proper choice of time scales 

yields the correct answer in a straightforward    way.    A typical fourth order 

example is that of   the airplane longitudinal equations of motion which 

exhibit two oscillatory modes,  one of high frequency,  heavy damping,   and 

the other of low frequency,   low damping,  being recognized respectively as 

the short period and phugoid modes. 

Independent work in this connection has been recently reported by 

H.  Ashley (Ref.   52).    He considers the constant coefficient l.d.e, 

describing the aircraft motion ,   and obtains approximate solutions,   order 

by order.    He also achieves a rough separation of the performance and 

dynamic response problems.    For both these questions,  he employs linear 

time scales,   in the fashion of Kevorkian (Ref.   36).    Our approach differs 

from Ashley's in that we are able to recover exact solutions of linear 

equations with constant coefficients.    This is done by choosing a proper 

pr-ver of the small parameter eas the expanaion parameter.    Further remarks 

28 



on the comparison of Ashley's work and ours are made in Chapter V, 

Section 5.3. 

The method is illustrated by the following example of the fourth 

order system: 

y"" + Z(a+c)y"' + (b + 4a£ + Ze*3 )y" + 2e(b + Zaety' + 2b€8y = 0 (2. 3. 11) 

where   a.b   are constants of order unity and 0 < c « 1.    Direct perturbation 

theory obtains 

y "•, + 2      ... + by .. = o (2.3.12) 
'o o 'o 

Yi "" + 2ay1 '" + byx " = -2(y ,,, + 2ay " + by') (2. 3.1 3) 

etc.     Integrating 

Co y (t) = —a exp( m, t) +—^-b exp(mat)  =  Cat + Ca 
o mj TTig 

(2.3.14) 

where C ,  Ci ,  Ca •  C3   are constants and mx ,  ma    are the roots of 

m    +2 am + b  =   0 (2.3.15) 

Substituting in (2.3.13): 

yj "" + 2ayi '" + byi  = constant 

Integration clearly leads to secular terms. 

Extending   t   as in (2. 3. 1) yields: 

y^.Ti) = A(T1)e
miTo+ BfT:) emaTo + CfTx)^   +   D^ )       (2.3.16) 

2l^+^l^+l^+fe+2^ + b^=''   <2-3-'" 

6^ ST- h 
o 

v+^lhtr^lhir^* &■***& ^Tx 
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+ 2^a    +2b|^      t-4a^    +2by = 0 (2.3.18) 
o i o 

Substituting (2, 3. 16) in (2, 3. 17) and observing the linear independence of 

the exponentials,  A and B are deduced to be pure constants and 

C = E expl-Tx ).    Substituting this in (2.3. 18) and simplifying, 

E H  0   and   D = Di e1^ Tl   + pa e"3 Tl (2.3.20) 

where n^ ,  rig   are the roots of n*   + 2n + 2 = 0.    The solution therefore is: 

y(To.T1 ) = c1 emi To + ca e"1» To + C3 e"1^  + c^^ (2.3.2J) 

where rrij , ma   and n^ , ng   satisfy 

ma   + 2am + b = 0 (a) 
, (2.3.22) 

and 

na   + 2n + 2 = 0 (b) 

respectively (Fig.   9 d). The restrictiont* = t.Tj = «t obtains the exact solution. 

A similar approach can be used for higher order equations also.    The 

important point to note is the existence of separate time scales as evidenced by 

the presence of a small parameter e   •    The precise power of   e  that appears 

in a time scale can be obtained by applying Kruskal's principle of maximal 

balance discussed in the last section of this chapter.    Though l.d.e. with 

constant coefficients are not difficult to solve, the examples above were 

presented mainly for purposes of preserving some order in the development 

of the method,   rather than for pedantry.    Furthermore,   in high order systems 

the extraction of the different behaviors individually is useful in providing a 

different point of view and may obviate to some extent the labor of factoring 

high order characteristic polynomials. 
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(b) Equations   vith Variable Coefficients 

(1) Singular Perturbation.  The method will now be applied to a 

problem of the singular perturbation type.      The linear Lighthill model is 

reconsidered in light of the theory of multiple time scales.    The governing 

equation is: 

(t+e)~  + f = 0 ; f(l) = 1 (2.1.2) 

We have already seen that direct perturbation is singularly nonuniform. 

The independent variable is extended as 

t «=>f T . Ti   } with   T    =c+t    or    T=l 
o     1 o o 

rl   = ek(t) 

where   c   is a constant and   k(t)   is as yet an undetermined clock function. 

Case     (i)        c =0(1) 

The extended equations are, to order c : 

(T0-c)^    +4 = 0 (2.3.23) 
o 

(T -c)   i^L    +/,    =  -Ik  +k(T  -c)  |^ (2.3.24) 
0       ^ aT0 

0        9T1 

Integrating (2.3.23) 

f   =*iLÜ 
T o 

If   f    + c fj   is to be an approximation to   f   uniformly then the ratio    r*    must 

be uniformly bounded.    On integrating (2.3.24) this ratio    can be written as: 

o o 

The counterterm   k   must be chosen so as to cancel the nonuniformity arising 

in direct perturbation theory.    Setting the integrand to zero is sufficient to 
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ensure the boundedness of   —    uniformly in   T .    This proves to be convenient 
f o r 

as it enables us to determine   A{Ti )       and k(T ).    However,  it must be noted 
o 

that this is only a particular choice and the freedom in the choice of the clock 

function can be exploited in other ways also.     We require uniformity of the 

extended function along the trajectories    T (t)   and Tj (e ,t) .    But one may 

for example demand uniformity in the T ,  Tj   plane.    In this case   A(Ti ) 

should not vanish at   Tl = 0.    The behavior of B(Tl ) must be determined by 

going   to the next order. 

Further,  we may note that if only the independent variable in (2.1.2) 

had been extended,  the above condition would,  of necessity,  have to be 

satisfied. 

Thus we can write 

Alii)      =  kA' 
(T  -c)3 (2.3.26) 

i. e. 

A' 
A     (Tl ) =k(T  -c)a     ~   ^ 

=  c,    = constant (2.3.27) 

Hence: A - D exp(c1 T1 ) 

k=   i 1 
Cj    (T   - c    ) 

o 

After restricting   T   = t+c ,    Tl    = € k(t) we can write: 

f     (T ,  Tl  ) 
-o    o       * 

D      . 
=   —   e 

t 
:/t (2.3.28) 

This is an improvement on direct perturbation theory in that   f   (t) 

is finite at the origin; however,   it is not very useful a«    f   (t) is forced to 

go to zero at   t = 0. 

We shall,  therefore,  consider the next case. 

Case      (ii)    c» 0(c );   c = e a,    a=0(l) 
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The extended equations now are: 

T    iio   +   f    = o (2.3.29) 
o   o T o 

o 

T    r£    + 'i    =  - d-a)  ^   +   T k   ^o (2.3.30) 
o o l 

As before: 

o   o T 

The uniformity ratio is given by: 

o       ^ o 

The second term in the integrand gives rise to singular nonuniformity in 

straight perturbation theory. In order to eliminate this we may put a = l 

and k=0.    Exact solvtion is now obtained and is given by: 

f (t) =     ;    D = constant (2.3.32) 
O t + f 

On the other hand,  we may equate the integrand in (2.3.31) to zero  and solve for k. 

Then, 

o 

A' (I-a) 
and 7—(T,   ) = i—g-   (T ) = c. = constant (2.3.33) 

A kT o 
o 

giving A = D exp(c1 Tx  ) 

C^To 

After restriction along   T = t+c,    Tj = ^k(t) : 

33 



On substituting (2.3.34) into (2. 1.2) the value of    a   is fixed to be equal to 1 

and the exact solution (2,3.32) is obtained (Fig.   2). 

It seems desirable to develop a criterion of uniformity in terms of 

conditions on the time scales that would enable one to proceed systematically. 

One may therefore consider the following criterion: 

Clock Uniformity Criterion   (CUC).    The time scales   T   (t) 
 '  o 

and   T1 (t)   must be chosen such that 

Tj    (t) 
T'  (t) 

o | 
■*~o 
I 

i.e.,  the slope of the   T 1 (T    )   curve must be  Q(f ) uniformly in   t 

when the parameter    G     is used to separate the time scales. 

In the light of this criterion,  we may note that the clock uniformity 

ratio    (CUR) fo"   case (i) of this example is given by 

T,'   (t) 
T'(t) 

o 
cl f 

and therefore the CUC cannot be satisfied for all   t.    However, for case (ii) 

the CUR is given by 

1U1L\ 
T'   (0   I 

o 

e(a-)) 
(T+TTj3 

If we now demand that CUC be  satisfied for all   t   we must have   a = 1. 

This leads to the exact solution (2. 3. 32) without having to substitute 

(2.3. 34) back into (2. 1. 2). 

It has thus been demonstrated that a singular perturbation problem 

can sometimes be solved by a proper cho>ce of time scales. 
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(2) Simple Dynamic Model.        The following example  is given here 

because it is the forerunner of a phenomenon of deep significance  in the 

approximation of solutions of higher order equations.     For  instance,   in 

second order l.d. e.  the change of sign of the coefficient is associated with 

the failure of the approximation and the related analysis of the Stokes 

phenomenon.    The present example  exhibits the breakdown of the  "frozen" 

and the perturbation approximations.    The example may be considered 

as the simplest model of a flight vehicle of the VTOL type,   being characterized 

by initial apparent instability; the system is stable,  however,   for long 

times.    Again the equation is solved by the method of extension. 

Consider the equation: 

4f     -   ! !  I C!  ) f = 0 (2.3.35) at 1 + e t 

f(0) = 1;   0 <   e   <<   1 

Fig.   10 illustrates the variation of the characteristic root and the solution. 

The simple  "frozen" approximation is a growing exponential and does not 

match the true solution anywhere except near t = 0 and gives  incorrect 

stability iniormation.    Another approximation,  which is a slightly more 

reiined scheme of "freezing" the system^s to treat the coefficient 

essentially as a constant  is far as the solution is concert   d,   but to vary 

on a slower    rt time scale,     and can be viewed as a simple application of 

the time scales method.    The approximation 

HO - exp [( f—-) t ] 
1 +r t 

thus obtained gives the correct initial behavior and stability  information,  but is 

35 



quite wrong in representing the true solution in other respects.    For example, 

the correct asymptotic behavior for large   t   is not described;   besides, the 

maximum value which occurs at   t » 0.4/c    for the approximation r(t) ,  is 

given as exp(0. 17/ e ) whereas the true maximum is   exp(0. 4/ c ) and occurp 

at   t = l/f   ;   further,    f IT =a exp( 0.2/c) .    Direct perturbation 
max       max 

expansion on the other hand is secular and yields 

f(t) = e   ( 1  - et + ... ) 

1 
and fails for   t ~ —   . 

f 
We shall now see that a proper choice of time scales results in a 

uniformly valid solution. 

The variables are extended as follows: 

t VT> 1 

with T   =1;   T    = t + constant o o 

Ti   =-   k(t) (2.3.36) 

Now: 

e 

dt        at c       ar, 
o * 

Equation (2.3.35) can be written as: 

(-  +t)~-    -   ( i   -t)f   =   0 (2.3.37) 
G dt e 

This sugßests that the constant   in    T   in (2.}. 36)   is   0( — ).    Therefore, 00 o c c 
let     T   = t + — ;   c = O(l).    The extended equations are: 

o £ 
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(r-c) k -^=   = o 
5T: 

(1-c)  ^    -   (l+c)f    +T   k   |4" 

V If tf ' o     a T      — 
o 

= 0 

(a) 

(b) (2.3.38) 

(c) 

The choice of   c 

equation   (b) 

1    from   (a)   and    f = A(T1 ) exp(-T ) from    (c)   yields in 
o 

A' 2 
V-(T i  ) =  y   (T ) = c,    = constant 
A        * T   K      o 1 

whence: = D expCc, T,   ); k(T ) = —  /n T 11 o      • c. < O       •   Cj o 

Restricting   f (T ,  Ti )   along   T   =t+—    ,    Ti    = — k   and   f(0) = 1,    we obtain 
—  o o G e 

f(t) = exp{ -t + - -tn (l+ct)]= e"1 (1+et) 
2/, 

which .■->   he exact solution.    The asymptotic behavior of the function can be 

wruten c i: 

f(t) 

tl 

i(t) 
t-oo 

f(t) 
t-0 

-t   2/r        f 2   ,   1 1    ,       1 o 
t       exp[ - ( — -      a a  +     3t3  -...)} 

p       ct      ^ct ir    t 

3 »3 exp{ t- cf   + 7  c" t 
G9  t* 

+  ...) 

It has thus been demonstrated that in dealing with equations having variable 

coefficients,   the generality of a nonlinear clock function is mandatory.    The 

clock itself can be a highly nonlinear function even in simple problems, 

2.4  Asymptotology 

This chapter concludes with a brief look at one aspect of asymptotic 

analysis which has hitherto been known as an art,   at best as a quasi-science. 

Most people who have worked with asymptotic phenomena have acquired 

implicit knowledge useful with different problems but not general enough to be 
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explicitly formulated. 

In a highly instructive lecture   M.   Kruskal enunciated seven principles 

governing the philosophy of approach in asymptotic analysis (Ref.  41).    This 

section (beginning with the title which was   first used by him) is a brief review 

of these principles motivated by their usefulness in later sections. 

Kruskal defines asymptotology as the art of dealing with applied 

mathematical systems in limiting cases;   alternatively it is the art of 

describing the behavior of a specified solution (or family of solutions) of a 

system in a limiting case.    The principles are enumerated below;    however, 

the one most important for the present work is the sixth--the principle of 

maximal balance ( or minimal simplification ). 

1. Principle of Simplification. 

Asymptotological analysis tends to simplify the system considered, 

thus facilitating the generation of approximate solutions.    Simplification 

occurs for example in perturbation theory; another way this can occur is in 

the separation of autonomous subsystems.    The system f(x,y) = 0;   g(x) = 0 

has the autonomous subsystem g(x) = 0. 

2. Principle of Recursion. 

The dominant terms only are retained and solved for and the other 

terms are treated as known.    Iteration enables   one to obtain an asymptotic 

representation of the unknown function irrespective of the forms of the terms 

appearing.    This principle is also useful in deducing general properties through 

mathematical induction. 

3. Principle of Interpretation. 

This advises us to suitably formulate the problem so that the limiting 

case is meaningful.    Overdeterminism as occurring in matching problems 

of the boundary layer type,   results in simplification at the cost of losing 

important information. 

4. Principle of Wild Behavior. 

This states that apparent overdeterminism occurs if in the limit (at least) 
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p"r"^ 

some solutions have peculiar (e.g.   singular) behavior.    For instance,   if 

f{t) = exp ( — ) ,    f -»-»   when t      vanishes faster than  c.    More general 
e 

forms must be used in the asymptotic representation (e.g.  inverse powers 

or logarithmic terms).    Underdeterminism on the other hand results in 

nonuniqueness of solutions. 

5. Principle of Annihilation. 

An annihilator is an operator which results in zero when applied to 

a mathematical entity.    It is used to eliminate such terms as may lead to under- 

determinism in the limit. 

6. Principle of Maximal Balance. 

This dictates the choice of the terms to be neglected (leading to 

simplification) from among the competing terms when a comparison of the 

relative asymptotic magnitudes is made.    This is based on sound sense because 

neglecting the minimum number of terms retains maximum information. 

When there is more than one maximal set of termsc  each set describes one 

asymptotic behavior.    Simply stated,  the principle requires that the ordering 

be so chosen that the maximum number of terms is retained.    For example, 

in the asymptotic analysis of the roots of the cubic equation 

3ca x3   + x3    - ex - 4 = 0 (2.4. 1) 

in the limit   e -'0,  one may choose a general representation x = ae      and 

determine   v»    The terms can be ordered as: 

3v+2        2V         v+i        o ,7  A   7* 
t            : e        : e          : c {2.4.2) 

V is chosen such that the maximum number of terms (which are dominant) is 

retained        after neglecting the terms which are small.    Among the different 

choices of v f   it is found that  the maximal ordering is given by   v=0 or    -2. 

A graphical technique, which can be traced to Newton but used in this context 

by Kruskal,   can be exploited to determine the value of   v    for maximal 

ordering (Fig.   11 a).    Each term    of (2.4.1) is represented as  A point on a 
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graph with the power of   x   as the abscissa and tho power of   f    as the ordinate. 

The relation between the  exponents of   x   and    e    is given by a line and for 

small   G    the values of   v    for minimal simplification are given by the 

lower convex support lines of the set of graphed points; i.e.  lines passing 

through at least two points such that there are no graphed points below them. 

The present example,   shown in Fig.   11a,  is discussed in detail by Kruskal 

in Ref.  41.    For large    G ,  on the other hand,  the upper convex support 

describes maximal balance.    These ideas are further discussed in the next 

chapter. 

7.    Principle of Mathematical Nonsense 

This is the simple idea that if during an asymptotological analysis 

an absurd conclusion is reached, the analysis has not been done correctly 

or carried far enough. 

During the ensuing chapters,   more than one of the above principles 

will be invoked and this is the reason for their inclusion here.    To be sure, 

it is more desirable to arrive at conclusions in a systematic and logical 

manner after proper asymptotological analysis--as Kruskal says--"like 

remarkable coincidences in a well-constructed mystery story, " (Ref.   41). 

2. 5 Summary of the Chapter 

Nonuniformities of perturbation theory and some well-known uniformizing 

methods are discussed.    The difference between the PLK method and ^he 

multiple time scales approach is emphasized. 

The method of time scales is applied to simple examples.    Constant 

coefficient l.d.e.  are solved exactly by this method,  the fourth order equation 

being representative of aircraft motion.    A singular perturbation problem 

and a simple dynamic model are also studied. 

Asymptotological principles are enumerated. 
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CHAPTER   III 

DEVELOPMENT OF THE APPROXIMATION SCHEME 

This chapter seeks to obtain approximations to linear differential 

equations with variable coefficients in various limiting cases.    The 

coefficients are assumed to be slowly varying and the precise definition of 

slowness is discussed in the next chapter.    The equations are parameterized 

by introducing an   e.    and the  system is studied in the limits of small and 

large    e .    In each case the choice  of suitable "clocks" results in the extraction 

of the leading behavior of the solutions; composite solutions are obtained by 

combining the behaviors on different time scales.    One of the major tasks 

of asymptotic analysis is the determination of the "natural" variables in 

which the given problem can be treated as a perturbation problem.      The present 

approach is intended to relax the requirements on knowledge given in advance 

and ad hoc assumptions and to provide a systematic way to deal with equations 

as they are given.    Throughout this chapter the domain of the independent 

variable alone is extended into several dimensions and nonlinear clock functions 

are employed.    The coefficients of the differential equations can in general 

depend on  r    and   t;   however,   in this analysis they are assumed to depend only 

on   t.    The discussion begins with the first order equation and is continued to 

higher order equations. 

3. 1   First Order Equation 

Consider the equation: 

v' + euo(t)y = 0 ;      y(0) = 1 (3.1.1) 

Direct perturbation expansion   y = y   + ry\   + ...   exhibits both secular ard 

singular nonuniformity depending on x  (t).    The nonuniiormity ratio -"■ often 

indicates the nature of the breakdown.    It is seen that 

t 

^=    -J    %dt (3.1.2) 
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Clearly,  for example,, when 

u)     = t     ;   n >  -1   perturbation theory is secular 

= 0 ti ii exact 

= t  ; n <  -1 " " singular 

= e      ; n real " " neither secular nor singular 

In order to uniformize the perturbation expansion,  the following 

extension of the independent variable is made: 

t—>fT   , T, } T   = t;        T.=ek(t) (3.1.3) 
o o * 

The coefficient is taken to vary on the   T     scale (to pick up the varying 

nature of the coefficient) . Thus 

O 

** =o 

giving 

y(T„,  Ti ) =A{rx ) 

and 

i.e. 

k(Trt)A
,(Tx )+wjT)A{rl ) 

A' w 
■r-(T1)=--j^l(r   ) = 8= constant A   '   l ' k   '   o' 

the 1. h. s.  and r.h.s. being respectively functions of Tl   and r     only. Hence: 

y(T    ,TX ) = Afrx ) = c exp (sT1 ) o 
1   r (3.1.4) 

k(T    ) =  -   - f u)   (T    ) dT 
o s J    o    o        o 

Now restricting the solution along the trajectories   r   = t and Tj = f k(t) the 

exact solution y(t) = c exp (-r \w    (t) dt) is recovered.    Henceforth   s   can be 

set equal to unity without loss of generality. 

We may observe that in this extension the CUR is given as: 

Tj    (t) 
T'   (t) 

cu)(t) 
iv J 1 o 

Clearly the CUC cannot be met as u)(t) may have singularities in the domain 

of interest.    This, however, does not really matter as this difficulty can be 

removed by making   T   (t) also a nonlinear function.    For example, 
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if     U)  • •r« anc 1    u>  is boui ided ior 

and 

T' o 
1   + 1/t 

s 

n1 *~o 

The choice of a nonlinear   T   (t) thus enables us to enforce the clock 
o 

uniformity criterion. 

It is interesting to consider a pictorial representation of the function 

(Fig.  7,8).    For small e . T     represents the fast time scale and   Tl    the 

slow time scale.    The extended function surface is essentially a constant 

along T , but decays exponentially on the Tj    axis and can therefore be 

described naturally (and uniformly) as dependent on Tl .    The natural 

clocks are depicted as trajectories along which the extended function is 

restricted and are solely determined by the coefficient.    For instance, 

when   u)    is unity the trajectory is a straight line through the origin at an 

angle whose tangent is    c ; a linear   w   (t) leads to a parabola for the 

trajectory.    In general the magnitude of the parameter governs the proximity 

of the trajectories to the T    or T,   axis. 
o * 

3.2 Second Order Equation 

In the previous case it was evident that whatever the nature of the 

coefficient   w   (t) and the magnitude of the parameter c , one could always 

determine a natural clock to describe the function uniformly.    For the second 

and higher order equations this is no longer possible, and one has to be 

content with approximations valid in different regions of the domain of 

interest.    First the canonical form of the equation and then the noncanonical 

form are discussed. 

(a)  Canonical Form 

Consider the equation: 

y" + eu)(t) y = 0 (3.2.1) 
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Again direct perturbation can be shown to fail for various   •x (t),  the nature 

of nonuniformity depending on Uü (t)   (Table I).   "We wish to make use of the 

simplification afforded by perturbation theory and improve upon it.    The 

extension sought is: 

[To,T1 }   ;   To= t;   Ti = c      k, (t) (3.2.2) 

The extended derivatives are given in Table   U. Equation (3. ?. 1) can be 

written as: 

^«mr^^lHv + =2m^l^> + ^o'v = « (3-2-3) i!x * , m , V. ÜL- * zL ^J—  w ,2m ,i_»ifx 

The terms containing kj   are the counterterms introduced by extension; 

we shall determine the clock functions in various limiting cases in the 

following way. 

The various terms can be written as: 

o ,   . TI ,   . 2m ,   , n.   .       „ ,,   ^   .. c     (  ) + e      () + €        (  ) + e   ( ) = 0 (3.2.4) 

n   is a given constant and   m  is to be determined. 

The quantities not containing    e  are implied t J be of order unity.      The 

failure of the approximation is indicated when the above ordering breaks down. 

In order to use the graphical technique the coefficient of   m   in the 

exponent of   e   in (3.2. 1) is plotted along the abscissa and the constant term 

in the exponent of c  along the ordinate.    Thus each term    in (3.2.4) denotes a 

graphed point.    In the fashion of Kruskal,  for small c ,   the lower convex 

support line of the set of graphed points gives   m   for maximal balance. 

On the other hand the upper convex support line yields maximal balance for 

large    e .     In the present context we consider   e    to be small and fhus   m=0 

for maximal balance.      But this choice is rejected as it is not useful and 

corresponds to straight perturbation theory; i.e.   no extjnsion has been made. 

What is desired is a compromise between completeness and simplicity--     a 

system as complete as possible and still simple enough to solve.    With this in 
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mind we pick m = l,  which corresponds to "submaximal balance, " i.e. 

maximal balance in second rank of terms. 

We may therefore venture to state below the principle of submaximal 

balance.    If the maximal balance of terms results in an equation that is either 

too difficult to solve or yields too little information then submaximal balance 

obtains maximurr information consistent with simplification.    Again this is 

mere prudence;  short of solving the complete system (which may be impossible) 

we take the next best course of action and eolve a system which is not the 

most complete but one next to it in the order of importance.    That is, the 

system chosen contains more information than all the others except the 

maximally complicated one,  i.e.   a system maximal in second rank of term«. 

It appears that it is precisely the method of extension which permits 

uniformly valid approximations which would otherwise not be possible.    In the 

above example   T = t must be a time scale since   a'    is a general function of  t. 

But since the parameter is present it is likely that there is another time 

scale.    Unless    u (t)   is a known function of   t   we cannot,   in general, 

transform   c    out of the equation.    Maximal balance is therefore not possible 

without extension and hence submaximal balance is resorted to after a 

suitable extension of the variables. 

In terms of the graphical technique,   submaximal balance for small   r 

would correspond to the lower convex support line of the sei of graphed  points 

except for one point which may be beneath the support line (Fig.   11 b). 

For large   g    this corresponds to the upper convex support line except for 

one   point which may lie above the support line. 

With reference to (3.2, 3) we see that: 

small 

large 

m = 0    obtains maximal balance 
m = 1     obtains submaximal balance 

m-if       obtains maximal balance 
m= 0 or 1   obtains submAximal balance 
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(i) Short Time-Analysis.   From the above,   for small   e    the choice 

m = 1 leads to the following set of partial differential equations replacing 

equation (3.2. 1): 

o Ö 2 

e hT 
o 
V    =   0 (a) 

:       k       ^-     +   2k!    |—^-      +   u)(T   )y = 0 (b) (3.2.5) 
i      ÖTx ÖToaTi 

€ 
a .       v a 

a 111 :       k,»      f-H   = 0 (c) 

Integrating (3.2.5 a) we have: 

y(To.    T1)=A(T1)To   +    BiTi) (3.2.6 a) 

Now   A(T1 ) T      and BITi )   are linearly independent w.r.t   T      and can be 

uaed  to generate separately the corrections to the lowest order result, 

giving rise to two clock functions.    Substitution of (3.2.6 a) in (3.2.5 b) leads to: 

k, .    A'T    +   2 k..   A'    =    -u)(T ) AT (3.2.6 b) 1 * o o o 

■ T 
The choice of   A = e    l     solves this equation as: 

o      J 

■■hi 

dT (a) 
o 

(3.2.7) 

•*n   =   -      1    V   *<% a 
O 

J 

T     u)dT (b) 
o o 

and similarly: 

(t) 

The parameter s can again be set equal to unity without loss of generality. 

k.a     =    - u)(T   ) dT     dT     = -T   I mdT     +     LuT   dT ^a JJ0 0       0 0/ 0 J0< 
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On restriction the two independent approximations are obtained as 

% « Ci t exp C   e (   -   ft2 uidt  -      tuidt) } (a) 

(3.2.8) 

Y 2 as c2   exp (   c    | adt dt ) (b) 

In each case  the equation (3.2.5 c^ which is left unsatisfied,  defines the error. 
- a 

The approximation breaks down when the neglected term   k^3    ^a 
1 9 T l 

becomes of order   — . 
e 

Higher order corrections are obtained by introducing more time scales. 

These are obtained as multiplicative corrections instead of additive ones as in 

direct perturbation theory,  and will therefore reflect improvement in some 

types of problems.      Thus if   t   is extended as 

(T    ,  Tl , T ,  T    ) 
o n 

with       T   = t;   T^ cki (t);   Ta = ea ko (t); . . . ; T   = e     k  (t) o n n 

dt ST aT1 &Ta nöT 
n ;       3 _ 

T 
n 

-T^ ~-r    + € ( 'k,   —      + 2k.     -^      ) + c 3 ( ka   I—    +2»^ ^—      + k, ^—5, ) 
o o o * 

+ ...  + en( k    I-   +k0
a   ^—3   + 2? ic. k     .   i!       ) + €n+1(     ) +  ... v    n 3T        n/2   at   ,3 i = 0 i    n-i   ÖT.aT    , l     ' 

n n'2 i = n/2 i      n-i 

a a 
The term   k  /0

a     a      =   0 when n  is odd. 
0/2       3Tn/2 

The extended equations can be solved order by order as follows: 
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a3 v r-r-4  ^ 0:   yCr  . ...T  ) = A(T1 . Ta .....r  ) r^ + B(T1 ,T8 r   )     (3.2.9) o T0 on no n 

^ R ^^ Irir, +-(T0)yo ar STi 

Again using   Ar      and   B   to generate two independent approximations: 

i i 'ow^^lrr WT    A^j ,   ....  T    ) 
o * n 

Now choose 

A(T1 ,Ta ,  .... T   ) = A(Ta .Tg ,  .... T   ) e   1 

n * n 
(3.2.10) 

Therefore: 

k. ,   T     + 2k. ,    = - UJT 1 l      o        ^ * o 

Integration giväs the clock function obtained earlier (3.2. 7 b). 

The slower clock   kg   is obtained from the equation of next order: 

31  ara       ^
äl   ^ aTo^ 

3 
k. a a—I 

Substituting from (3.2. 10) and (3. 2. 7 a)   one obtains 

p  fro
a (Icll)

a ciro (a) 

i. e.: 

kai    =   ^   |To
a   (l^,)3   dTo-    |To(klx)-   dTo (b) (3.2.11) 

with: 

A(T1 .•••Tn) = Aj (Ta,   ..., Tn) e   1 = Aa (Ta ,   •••»'''„) eTl «   "   (c) 

The general result for n > 1 can be written recursively as follows. 
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n on 
(3.2.12) 

where   ^   is the operator defined by 

N 
^ = - 2 .E,   k, k    . 

i=l     i   n-i    ÖT.aT    , 
i     n-i 

Mn)ka    I-T 
n      at 

subjerc co the following conditions: 

n odd 

N = —- ;   6 (n) s 0 

(3.2.13) 

n even 

N = ^- ;   6 (n) H 1   and   i ^   £ 

For n = 1,    k. = - u)(T )  . * o 

When y (T   , TJ ,... ,T )    is chosen to be either of the linearly independent 

functions (w. r.t. T   )    A(T1 ,. .. , T ) T  ,  and   B(r1,...,T   ),    the clock 

functions are obtained respectively as 

nl T 
T a   F dT    - T   F dT i 

and 

n2 fl FdTa 

o 

where : 

FH2.EJ     (^ )( k^) + 5 (n)( ^ )s 

2 

and is subject to the conditions (3.2. 13).    Thus clock functions can be 

determined to define slower time scales and improve the accuracy of the 

approximations. 
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The domain of *t   for which the short time approximation is valid can 

be determined as follows.   In obtaining Equation (3.2. 8) the third term of 

Equation (3.2. 3) was neglected in favor of the second and fourth terms. 

Clearly failure of the approximation occurs when this condition is violated; 

i. e. when: 

1 '* hf*"i7>~i 
The condition for failure is given by 

(k)a  =  52- 
e 

substituting   from (3.2.?) and simplifying, we obtain: 

/e  ( ft8«) dt) =   cu^t3 

Differentiating 

/e ta u) = i  » "* it3   + 2t U) 

i.e. 
-3/2 .2      4       , 

£U) 0)    +    --tt)=/( 

i.e. 

^(u,4)-   f («,"*)=-/( 

Using t~a  as an integrating factor, the above condition becomes: 

aw       , / € 

Integrating 

1       _/c 
/a»ta   ~   t 
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a        1 i. e.        uit"   a; — 
e 

The approximation will fail when 

(3.2.14) 
3 l 

out3  

The criterion can be derived in a different way also.    The approximating 

functions   A(Ti )T      and     BIT! )   are linearly independent w. r.t.   T    . 

Upon restriction along  T     = t,    Tj = ek(t),    this property may not be 

satisfied throughout the domain.    The approximations can therefore be 

expected to fail in a region where the constancy of the Wronskian (Ref. 59) 

is destroyed.    From (3.2. 8) the Wronskian can be written as 

W(% ,%) =[-l+e(^|t3u)dt-tjoüdt)]exp{e(^|tau)dt -jtuidt -Jjudf'')} 

i.e.  to lowest order in   c, Wfyj /ya )   is a constant.    Hence failure is 

indicated when either the exponent is of order unity or 

- j tau)dt - tfoudt  ~   - 

-2ejt jiudt dt  ~   t 

Differentiating: 

-Zetlwdt -w   1   or   -2c ju»dt ~   — 

Differentiating again: 

? 1 

Thus the approximation (3.2. 8) fails near a value of  t   for which   wt8 ~ — 
€ 

as obtained earlier.   Substituting this shows that the exponent in the 

exponential function of W(yx , ya )   is of order unity. 
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T^or the Airy equation,  for example,  a)=t,  and the approximations 
»3 .3 

€ t G t 
t exp( --j-T" ) and   exP(  - T—)   obtained f-om (3.2, 8) break down accoi- I5ng 

to the above criterion,  when   t ~ c 'l'3 .    Any attempt to improve upon the 

approximation by going to higher order in   e    is foiled as the ca   approximation 

also fails when   t^c _x/        The reason for this ;s clear.    The method then tells 

us that it is not possiblt to effect any improvement by using slower clocks. 

On considering the Airy equation 

y" + ety = 0 

it is seen that when t ~ e-1^3      the parameter   c    is completely, removed from 

the equation thus indicating a region in which the equation must be solved 

exactly. 

However, for a different   u)(t) the criterion can be utilized to 

advantage.    For instance, if   u)(t) = -^   , the above criterion says that the 

approximation will fail when c~l.    For small   e breakdown is not indicated 

and improvements can be effected by going to higher order terms in   c . 

This is indeed the case,  for the exact solution for   e > T  is oscillatory 
1 4 

but it is not so for   e ^  T • 
4 

(ii)   Long Time Analysis.   The interest is now shifted to the long time 

behavior of the solutions of Equation (3.2. 1).    It is shown that the LG 

approximation can be derived easily by a proper choice of time scales.    The 

reason for deriving this well-known approximation is not merely pedagogical 

but to provide a systematic method for higher order equations and to emphasize 

a clear physical picture of the phenomenon.    In reference to Equation (3.2. 1) 

the analysis is carried out in the limit of large   e   .    If ou(t) is an unbounded 

monotonic function for large   t, the correspondance between c  and t is clear. 

In any case,  the growth of the magnitude of uj(t) must be properly associated 

with the limit of large   e .    It is seen that in this limit, the choice   m =^ 

obtains maximal ordering for the terms in Equation (3.2.3). 

The extension evolves as follows,  witK 2m = 1   and denoting c     by X , 

and leads to the following partial differential equations, which replace (3.2.1). 
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X8      :    ka     ~^a   +u)(T )y = 0 (a) 
o Tj o 

X1      :     k    P-   + 2k    ^    y =0 (b) (3.Z.15) 
ati aroa

Ti 

Equation (a) above   can be treated as a constant coefficient one w. r.t. 

Tx   and the solution is given as 

y(To ,TX ) =or(To) exp^x ) (3.2.16 a) 

whence,  the clock   k   satisfies the equation 

(k)a   + (i)(r   ) = 0 (3.2.16 b) 

obtained by substituting   (3. 2. 16 a) in (3. 2,15 b).    Substitution into (3. 2. 15 b) 

yields 

d      , . 1     d      ^        % _ ana)=.r   —  (tno,) 
o o 

or 

a(T ) =UJ-1/' (T   ) 
O Q 

Restriction along   T    = t,    Ti   =Xk(t)    yields the composite solution "     o 

y(t) = Cx u)"1/4 exp(iXru)^dt) + Cad)-1/*  exp(-iX Jtw *dt) (3.2.17) 

which may be recognized as the Liouville-Green solution. 

This approximation will,  however, break down when the neglected 

term, viz.   ——v   becomes of order   X.    Substituting (3.2.16 a) in (3.2.15 c): 

l^äe^Mw-^Vre^ 
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Clearly the failure of the approximation (3.2. 17) is indicated near ths zero« 

of wit). 

(b) Second Order Equation; Noncanonical Form 

The analysis proceeds in the same fashion as before and different 

approximations can be obtained.   In thi'j case, however, we may slightly alter 

the point of view and determine a class of equation« which is maximally 

informative with respect to a given extension«   We consider therefore the 

equation 

y   + e    a1 y"  +   s   ir  y = 0 

with the extension 

To=t:    T1 = ek(t) 

and wonder what values of  m   and   n   would correspond to the maximal or 

submaximal balance of the terms, together with simplification.    This is 

considered in the limits of small and large   e •    The extended equation is: 

(1) (2) (3) 

+ e" K  U-) + em+1(«1k iLjLj+cV   v)=0 (3.2.18) 

(4) (5) (6) 

The terms are ordered as   e    : e1   : e*   : e      :  e : e.     :: I, 2, 3, 4, 5, 6. 

Using the graphical technique (Fig.   lie) the relations for maximal ordering 

are   (i) m = n   and   (ii) m + 1 = n.    This is obtained by balancing the exponents 

of  c taking two terms at a time.    Each balancing defines a curve in the m, n 

plane.    The number of terms balanced for    each (mj , nj ) is given by the 

number of curves passing through {mx ,  a^ ) plus 1.   Maximum balance 
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corresponds to the intersection of the maximum number of curves at a point. 

(i) Short Time Approximation ; (e   small).     Let m = n = 1.    The 

equation is: 

y" + CiBj y' + eoi   y = 0 

The extended equations are: 

ei    .     k|l_   f2k   I*?        =    -K  M-    +u,oy> (b) (3.2.19) 
1 o      * o 

ca    :     k3   l^a    +   u^k^-* 0 (c) 

As before, integration gives y(r   • Tx ) =A(T1 )*•'    + BfTj ).     Further, choice 

of A = e   1    and y! =AT    yields 

* ='ra JTo(u,l +Toü,o)dTo (4) 

and: 

ki   =r-       T   (u)j + T   o)   )dT    -   I (aoi   +T    w   ) dT ^      T      Jo*      o    o        o       I o    o 

Thus : 

(3.2.20) 

k,  =-JJ«.0dTodTo ^ 

yx (t) = t exp[ e {  f j  t^j + t(i)o)dt -f («i   + to)o) dt) ] (a) 

(3.2.21) 

y8{t) = exp (-cjjo^dt dt ) (b) 

Failure of the approximation is indicated when: 

aTi       v       e 
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It may be noted that by means of the transformation 

y(t) = z(t) exp (-^ fi^dt) (3.2.22) 

the noncanonical equation 

y"+^i(t)y' + no(t)y = 0 (3.2.23) 

can be transformed into the canonical form 

n a       & z" + (   -O    -   -f-     -^~)z   =   0 (3.2.24) 
O 4 C 

We may therefore choose to study approximations for the noncanonical 

equation directly or the canonical form after the above transformation. 

The clock functions given by (3,2. 7) and (3,2.20) are different in the two 

cases.    However, the approximations (3.2.8) and (3.2.21) are 

unaffected to leading order after taking into account the transformation 

(3.2.22).    The difference in the clock functions (3.2.7) and (3.2.20) 

in the case when ilj = c uu j, and      il = c u; exactly corresponds to 
o o 

the noncanonical-canonical transformation (3.2.22). 

(ii) Long Time Approximation: (e  large).        The alternative 

balancing of    m + 1 = a;   m = l, n = 2 leads to a different approximation 

for large values of   e •    The equation now is: 

y" + €u)I y1 + P3 u)   y = 0 (3.2.25) 

This ordering can be obtained in the following way also.    Consider the 

equation: 

■^jf    +  u)i(XT)   ^    +  ooo(XT)y = 0 (3.2.26) 
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The coefficients are slowly varying,   A  \  << 1. With the transformation 

Xr  = t,    the equation can be written as: 

•^r     +  cui (t)  ■&   +   e' u'o(t) y = 0   ;   e  =  i >>  1 

The extension   T    -V,   T^   =€k{t)  leads to: 

€a   :     ka |-—^     +    u), k ^-     +  u)   y = 0 (a) 

e1 *    B,   +2"   IffiTI    +^    If;   =   0 (b) 0.2.27) 

€ 
3 
^   =   0 (c) 

aTo 

The coefficients of (a) can be treated as constants w. r.t. T1   and the solution 

can be written as 

y(To,Tx )   = a (To) eTl 

where: 

ka   + u)X (k) + u)    =0 (3.2.28) 

The amplitude variation it obtained from (b) by substituting and 

integrating as: 

a 'V ~$^777»   »h"%7 c^i-^r (41c + 2u)1 ) (3.2.27) 

Whenuij   is a constant, or(T   ) = (2k   +   u^ )     .   However,   even -vhen a-j   is not a o , 
constant,  consider the function a{r  ) =(2k + u)l )      and the approximation: 

y(To.T1 ) = a(To)exp(r1 ) (3.2.30) 

This depends on whether y(T   ) is a slowly varying function.    In any case, 

(3.2.22) can be used as an approximation if the error estimates are known. Such 

an analysis is made in the next chapter.  This approximation affords a method of 

shifting the point at which the standard LG approximation breaks down, and 

will be discussed in later chapters. 
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3.3'Third Order Equation 

Consider the equation: 

y"1 + u)a y" + u»! y'+ u)  y = 0 (3.3.1) 

The transformation y = z exp(- T J (»a ^t) converts the above equation into the 

canonical form: 

z"' +    -ft, z« +      .0. z = 0 (3.3.2 a) 
o 

Let us therefore consider the canonical equation 

,,,        m .        n _ 
y"' + e     u»! y' + e    u>"  y   =   0 (3.3.2 b) 

and the extension  r   = t;   Ti = e M*)«     We determine a class of equations 

for which this extension obtains maximal or submaximal balance of terms, 

in the light of the discussion preceding (3.2.19).    The choices are found to 

be (i) m = n or (ii) m + 1 = n.    Let (i) m = n = 1 and (ii) m = 2, n = 3. 

(i) Short Time Approximation :  (« <<1) 

The equation is now ordered as : 

y"1 +eu)ly, + ca)  y = 0 (3.3.2 c) 

Using the extension (3.1.3): 

o a 
: —^    =0 ar (a) 

.. a» 
i-k^X.   +3k|-^—    +3kM~       +  „,, |JL +cl,y = o   (b) 

o      * o 

3 

(3.3.3) 

»:   3kk   |^   +  3^  1-^-3    i*^   =0 
aT1 at aTj atx 

(c) 

a. U i!y   - k3 

ar, 
= o (d) 

For small  e   the pertinent equations are (a) and (b) above.   Solving 

them in this order: 

Y(TO. Tx)* A(rl)r o
a  + B^! )To + C(Tl ) 
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Since terms on the r.h. s. are linearly independent w. r.t. T     (Wronskian t 0), 
o 

each can be used to generate a clock function.   Substituting y=A(T i )T  a 

in equation (3.33b): 

*kj A' T a    + 6k. A'T    + 6k. A' = - A(2a)1 T    + *   T   a ) ^o lo* looo 

Choosing A = exp^j ) leads to the second order equation for the clock: 

a    * * 

T a  j* ^ ) + 6r    ^^-   + 6(14 ) = - (2u,1 T    +a,T3) (3.3.4) o    dT o dT ' "i ' *    o        o   o     . 
o o 

Though this is a variable-coefficient equation^  it can be readily solved 

being recognized as the inhomogeneous equidimensional or Euler-Cauchy 

equation.   The transformation r    = e    reduces Equation (3.3.4) to a 
o 

constant coefficient equation in   z.   Alternatively it can be written as 

da$        6    d$ 6 

o o        o o 

where  * = kj   and   f = - ( —^ +   (u   )   . 
o 

The solutions of the corresponding homogeneous equation axe obtained as 

$ = T where 
o 

m(m-l) + 6m +6 = 0 

i.e.       rrij   = --3 ;   IDQ   = -2 

and:      *.   = T   "* ;   *a   = T * o B o 
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The particular solution is given by: 

* = -* 1 (T ) 
'0  g^sHs)  d8+$a(T) r0 h ism   dg 

w^. $a ) I W(^1, *a ) 

W(?x,^a )   = 

-3T •2T 

=     T 

* = k- = T 
-3 

| To" {2* I ,+017)07     -T lTa(2uü.+'r   T   )dT 
ooo        o       I  o *        coo 

Integrating by parts and noting that   T   = t 

ki   'fjt^dt -1,   Jt3gadt -1  jtga dt (3.3.6 a) 

where: 

ga (t) = 2u)1   + uJot 

-3 -a 
For example, when uu1 = 0; u)   =t      . ga = t       and   kj = constant -f ■t» t. 

The approximate solution is given as : 

y (t) = cta    exp(- T- tn t) = c t 
(a-e/a) 

(3.3.6 b) 

m 
The exact solution for this example can be obtained as   y= t      where 

m satisfies the equation 

m(m-l)(m-2) + e   = 0 

L. e. :     m3   - 3ma   + 2m + €   = 0 
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For small fe ,  expanding m = m    + e m1   + . .. and taking m  = 2   the 

correction to order   e    is obtained as: 

3m 3 m,    - 6m m,   + 2m,   +1=0      or      m,    = -i 
o       * o    1 * * 

Hence,  for small   e ,  the approximate solution to order   c    is 

y = c t {2 -e/a ) (3.3.6 c) 

which is indeed predicted by the approximation via time scales (3. 3. S b). 

The clock functions corresponding to the other two solutions ot 

(3.3.2 c) are similarly obtained. 

and        k 

+ *   t )ta ,,        , 
o       dt + ^ (oi! +u;   t)t 

d,-»l {^l   + u)   t) dt dt 

u   dt3 

o 

Using these clocks,  the approximations to order   e    can be written as 

ya(t) =cat
aexp(   ;{ l.jtagadt -gp   J   ^ggdt -i Jtgadt)  ) (a) 

yx (t) = c1 texp( |- {   -fjt'g^t + Jtg^t - JJg^t3 }   ) (3.3.7)(b) 

yo(t) = co exp( - f dtJ) 

where ga   =2(i)1   +uu   t;    gj   = m^   + w   t. 
-3 

For the case when UJ. s 0, «u   =t      , 
o 

^    A* ' e/a ). „   f(i+e) A- eM  ) ya   = c,   t I /i = C! t ; yo=Cot 

That these are indeed the correct approximations to order   c    can be seen by 

making the expansion   m = m    + c ml   + . . .   and evaluating m1   from the 
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relation   3m z n\l    - 6m  mi   + 2m1   +1=0   and then successively taking 

m    = 2,   1 and 0. 
o 

The failure of the approximation can be studied as before by comparing 

terms from (c) and (b) in the Equation (3.3.3); failure occurs when: 

{Woy)    ("  ' SJL      ) ~   ^ 

Taking   k,   = -      uu   dta ,   condition for breakdown is 

When   UJ1 =  C,  it is better to obtain the criterion differently as 

a 
( 3ckk    |—^    )   ~   u)   y 

taking the terms from (3. 3. 3 b) and (3. 3.3 c) respectively; 

i. e. : 

3c([fu)odta   )(    Ldt ) ~   u> {3.3.8b) 

The approximation breaks down near the value of   t   for which it is satisfied. 

When w    = -3   •    we see from (3.3.b b) that the approximation fails when: 
o     t 

3c  ("2^(2?^   ~   P   '   i'e'     when     lel    ~    1 

For small   c    the time scales approach gives.in this case,the correct 

approximation to the leading order in   c .  and fails as e  increases in 
2 

magnitude towards unity.    The value   c = 77*    may be verified to exactly 

corresponc to the occurrence of multiple roots for   m   in looking for a •olution 
m 2 

of the type   y = t    ,    The solution is therefore oscillatory when   Oxyr:   and 
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2 
nonoscillatory when   e    ^ —T--   .    Thus for small   e ,  the method yields 

useful approximations. 

Higher order corrections can be obtained by employing slower clocks 

as in the second order equation and the validity of the approximation scheme can be 

stuoied as before. 

(ii) Long Time Approximation    ( e   large ) 

The alternative balancing in Equation (3.3.2 b) with   m = 2,  n = 3, 

leads to the equation 

y'" + c3 en (Oy' + c3üüo(t)y = 0 (3.3.9 a) 

which v/ill be studied for large values of   c .    Using the extension 

IT   , Ti )   ;   r     = t;   rI = €k(t) (3.3.9b) 

the extended equations for large   c ,  are in the order 

C3    :  k3  |i^    +   u)l k   |X.   +U)   y = 0 (a) 

-> a „ .      ^3 

t*    : skKi-lj,    +  3k3   ^-*—3    +  ^   iX. =   o (b) 
o      * o 

i    : k- Ü-   + 3k pL-    + 3k  i^—    =   0 (c) 

(3.3.10) 

o 

As before these can be solved as 

y(To.  Ti ) = tt(To) eTl (3.3.11) 

where: 

k3   + uu, (k) +u)    =0 (3.3.12) o 
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Substitution of this into (3.3. 10 b) results in 

V(To) 
or(r   )=— ^ 

(3k3 + *x f 

where: 

j-    (In   y)=-^       =   ^ ±-_ (^(ak3   +„,, ) ) (3.3.13) 
dTo 2(3k? + ^) 3To 

restriction along   T   = t;   T1 = € k(t)   leads to the approximation for   y. 

The noncanonical third order equation can be similarly studied, 

yielding 

a,    (T   ) = nc 
Va     (T„) o 

3     (T     )   = . — .  

nc      u      r ak3  + 2u)a (k) +u)1 ] 

where 

—-   (M   Va   )=*|-    Un(i\f   + Zu,, (kl+u)! ) ) 
dTo nc d o 

Zva (k)   + u^  

2(3^   + 2(Da (k) + -uj) 

Again the extended function   y(T   , Tj ),  must be restricted along T   = t; 

Tj   = € k(t) to obtain the approximation. 

The third order noncanonical equation is equivalent to the 

canonical equation of the form 

y'" + (ea Uü!   +0(e) )y, + (e3^0 + Qc8 ) )y = 0 

for large   c •    It can be seen that to leading order, the frequency of the 

solution is determined by ui1 ,  u)   ; however, the amplitude is affected by 

IT. , u?    and also by the terms 0(c ) with y' andO(€a ) with y. 
*      o 
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3.4  The Linear Equation of O'der n 

The l.d.e.  of .fourth and higher orders can be analyzed in a similar 

manner.  In each case,  after choosing the two time scale extension, the proper 

balance of terms for short or long time (or alternatively for small or large values 

of the parameter e ) can be determined by the principle of maximal or submaximal 

balance.    In the fourth order case (for short times) for example, the clock 

functions are found to satisfy an inhomogeneous third order l.d.e. with variable 

coefficients, but again of a particular type,  namely the Euler-Cauchy equation. 

Without going into the details of this, however,  in this section the method of time 

scales will be applied to the general n     order l.d.e.  and some general results 

obtained.    The extension of the n     order derivative operator is derived in 

Appendix  I.    Consider the equation 

^   +   H ^z +    ft   z   =   o (3.4.!, 
dtn n-i   dtn^ o 

This can be transformed into the canonical form 

h^^n-ih^      +...^oy = 0 (3.4.2) 

where:   z = y exp{ - 1-   I -* *■ dt) (3.4.3) 
n   J       n-i 

(i) Short Time Approximation: (small c ) 

Consider the parameterized equation 

in the limit as e.-0.   Direct perturbation theory can be shown to be nonuniform, 

depending on the forms of the   UJ .(t); i = 0, 1,, . . , n-2.    The extension 

t «=>-f T   .TiJ.r   = t;   T1 = pk(t)   leads to a set of (n+l) partial differential 
o o 

equations.   For small   e    only the lowest and first order equations arc retained in 

this analysis.  Using the result derived in Appendix I the extended equations can 

be written order by order as: 

Jn)    5y_   j. r    i n\ i, n"r   ä L - £ iL x      t i^\ ei        • Tr-a /r1 öT^TT;- "U,n-a-FTf=s»+-*-+V (b) 1      r=l " o      * o 
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plus higher order terms. 

Integration gives : 

(3.4.6) 

y(VT^ = An-l(Tl ^o""1    + An-2(T^ )Ton'2 + • ' ' + Ai <Ti )To + Ao^ ) 

At this point we make use of the linear independence of A^Tj^ )T      ,   i=o, 1,. .. , n-1 

and generate n clock functions,  each corresponding to one solution of 

(3.4.4) starting with . ich A.(Tx )T     .    Considering A     , (t x )T , 

substitution into (3.4.5 b) gives: 

d  k 

dT 

i     n-1 G K     i ^ - i 

■)      An-l(Tl)Fr!,(To       ' 
o 

n-i     ..      ,      ,    n-i   . _      ,n, n- 

> r   * dT 

i-2 

•(%.2|7TÄ + -" +'»0y ) (3-4-7) 

Choice of an exponential  T    dependence of A       will result in the following 

equation for the clock: 

n-1   dn"1(k    ,) -2... 
n-1 ,     . ,      , ,     n-2    d       (kn_i 
1—     +(1)(n-l)To dT   n-i1   1 

dT 

dn'3(k       ) 
+ (2)(n-l)(n.2)To

n-3   dT   n^'1     + ... + (n! Mk^j) 
o 

= -(u;      -T   + tt)      , T a   + . ..   + u;     T   n'    ) 
n-2 o        n-3   o o    o 

This can be written as 

,n-l 
n-1 

dT 

n-2 
^n-l n-2d      mn-l 
 ■   +   a     - 7  5— n-1 n-t   o ,     n-t 

dT 
+ .. .  + a cp     , = f(T )    (3.4.8) 

o  n-1 o 

where   CD. 
= k. . This is recognized as the inhomogeneous Euler-Cauchy or 

equidimensional equation.    The solution of the corresponding homogeneous 
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m 
equation can be expressed as cp   ; r where m satisfies the algebraic 

equation 

m(m-l){m-2) ... (m-n+2) + m(m-l )(m-2) ...  (m-n+3)( " )(n-l) 

+ ...   + n!  =0 (3.4.9) 

which can be written as 

n-1 n-2 
m        +a     ,ni        +...+a, m + a    =o n-2 l o 

(3.4.10) 

having (n-1) roots which will be assumed to be distinct.    The homogeneous 

solution is given by 

m 

n-i       fi-r      4   o n-1 o 
nom    horn 

(3.4.11) 

which will be denoted respectively by   cpx  ,  »■•   . • • co     ,•    The particular 
n-1 

solution can be written as (Ref. 1)0) 

~        V, f 
-VlE   -kn.l^J  W1^)   dTo    '   ^J  WC 

Va f 
(To)       o 

+ ...   +  (-1)     CD 
n-1 

r V     .fdT 
n-1        o 

W(Trt) 
o 

where WsWIroj , cp8 ,..., en        )    is the Wronskian and V. is the determinant of 
n" th l 

the matrix obtained by replacing the i     column of the   (n-1) square matrix 

epi 

cp i 

CP    1 

~   (n-2) 

rpa 

CP s 

-   (n-2) 
cpa 

9 n-1 

CP n-1 

^n.2) 
Va-1 
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by the column: 

0 

0 

One more integration of   cp gives     k       .    Thus obtaining the proper time 

scales and after restriction along   T   =t,    Ti = ek       (t),   one approximate 
o n-1 

solution of (3.4.4) to order   c  can be written as: 

, . n-1 
y(t) = c        t        ex 

n-i 
P(€  j^n-l dt) 

The other independent approximations are similarly obtained by determining 

the clock functions   cp     •> coi.co   .  and combining each with 
n-2      n-3 n 0 

t       , t       ,  ..., t, t0   as in (3.4.6).     Therefore, the approximate general 

solution of (3.4.4) to order   e    (for small c )    can be written as 

y(t)=c      tn" exp(c   [cp      1dt) + c      tn" exp(c   fcp     ,dt) 
n-i jn-i n-t jn-^- 

+ ...  + c  t exp(c   I cpi dt) + c    exp(e   | rp   d^ (3.4.13) 

where c. are constants and   m. (i = 0,   1,  ...,   n-1) are clock functions, 
i i 

For any given   n, the breakdown of this approximation may be 

investigated as shown in the last section by studying when the terms which 

are neglected,  viz.  of order ca ,  become of the same order as terms of order    c 

Higher order corrections can again be obtained by employing slower 

clocks,   of order   ea.e3.  etc. 

(ii) Long Time Approximation: (e   large). 

The ordering of the parameterized l.d.e.  of order   n   can be obtained 

by requiring all the coefficients to be slowly varying.    For example, the 

equation 
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,n ,n-l 
^   +u)      .(XT) ^   +...   +wl(\T)p-+w   (Xt)y = 0 (3.4.14) 
dTn n'1 dT11"1 dT 0 

(X <<1) 

can be transformed into 

dn d""1 1 d 
—^+ew     .(t) f + ... + €n    u)(t)Tf  + enu)   (t)y = 0 (3.4.15) , n n-1      j^n-l dt o 
at at 

where t = XT and e * — >> I. This equation can now be studied in the limit 

of large e > To use time scales, the domain of the independent variable is 

extended as before«' 

t-=^CT   .Tx ]  ;  T   =t,   Tl = ek(t) (3.1.3) o o 

Equating powers of   c    will lead to a t. et of (n+1) partial differential 

equations.    For the  limit of large   e  only equations retaining terms of 

order e    and   c need be considered.    Using the results derived in 

Appendix    I   these equations can be written as: 

3Ti 

,       n _      n-1 ,     n-2 
n(k) *        n-1    +(n-l)u)        (k) —;    j n.a   +(n-2)^        (k)         i—- 

ar^T, n-1 hT^T, n-2 iTjT^* 

+ ...  +2a)ak   l^y +   Uü,   ^- 
ST dTi 1 ar 

o i 

,   "(n-D il\n'2U on' V       .  (n-l)(n-2) /i^'^C hl^V 

+ ...   +   mg k   |X.       =   0 (3.4.17) 

Equation (3.4. 16) has coefficients independent of Tx   and we seek solutions 
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of the form   y(T , T,  ) = o(T ) /* (T,  ) = a{T ) exp(Ti ).    The clock function o o o 
satisfies the equation 

(k)n+a)       (k)1"1   + ...  + u)! (k)+ .Ü     ^0 (3.4.18) 
n-l o 

the roots of which are taken to be distinct for this analysis.    When any of 

the roots coalesce, the approximation (3.4.21) fails because the amplitude 

factor becomes unbounded.    In this case a nonelementary function such as the 

Airy function is necessary in order to represent the true solutiou.    To relate 

the approximations via elementary functionxon either side of a point where 

the roots coalesce, one is faced with a nontrivial connection problem.    For 

distinct roots, the explicit amplitude variation is obtained from (3.4.17) as: 

n(n-l). ,: .n-2        (n-l)(n-2) iLin-3   . . \ iv\ 
( —2 ' ^k' +    2    "n-l *   ' + ...  + (»a ) (k) 

— {In or) = : 5 :  
o (nCk)11*1 + (n-l)u) (k)n"    + ...  + 2uia (k) + CPJ   ) 

= "^alK)   f^11^^^'1 +<n-1)U)
n.i <^n"2 + ••• +a)i,jK      (3.4.19) 

This can be written in compact form as follows. Given the 1.d.e. (3.4.15), 

consider the corresponding "characteristic expression": 

F(x,t) sx11 + u)       x11"     +...  + U4 x + u) (3.4.20). 
n-i o 

F    = 0 is defined to be the "characteristic equation. "   The explicit amplitude 

variation can be determined from the relation: 

d   .      ,     i a        , a F . dx -Rna) = -i^   tn(   —)   ^ 
o o 

Integration gives 

y(t0) 

1 ax 
ar(T ) = 
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where   y(T   )   satisfies the equation: 

o o 

Combining the   T    and   Tj   behaviors and imposing the restrictions   T   =t 

and   Tj = e k(t) the result may be stated as follows. 

Given an 1. d. e.  (3.4.15) the approximation via time scales for large 

e is obtained as 

1        ax. 

where   y. is given by 

i-ttny.^UAll^) (b) (3.4.31) 

where   F   is given by (3.4.20) and x. are the roots of F = 0. 

Clearly when the   ID . ,    (1=1,2,..., n-l)   approach constants as   t-*«, 

y approaches a constant.    Also if u)    is the only varying coefficient   y is a 

pure constant.    In this case the approximation is given by 

y(t)=   £     c   (-1^)'* exp(e   fxdt) (c) 

where c. are arbitrary constants.     This can also be interpreted to mean that 

we impose the condition that  uu , ui*   .   .  . u) vary more slowly than ou  . 4 n-l ' o 
It can easily be verified that the formula (3.4.21) recovers,  for second 

order equations the results cf the standard Liouville-Green (WKBJ) theory as 

well as those obtained by Curtiss (Ref.  27). 

3.5 Summary of the Chapter 

The main theme in this chapter has been the demonstration that when 

the direct perturbation theory breaks down,  a natural time scale can be found 

on which the solution can be described uniformly.    The method of time scales 
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is shown to systematically lead to the determination of the natural "clocks" 

of the problem. 

Linear differential equations are studied in the light of multiple 

time  scales,  beginning with the first order  equation.    Reparameterizing 

the equations enables separation of the different behaviors and a clear 

physical picture is shown to emerge,    in each case failure of the classical 

perturbation approach is examined and the time scales method is shown to 

improve on the approximations. 

After deriving the exact solution of the first order equation,  the 

second and higher order equations are studied in the two limits as a 

parameter   e   becomes small or large. The ordering in each case is justified by max- 

imal or submaximal  balance of the terms.    Higher order corrections are 

derived for the second order equation and a criterion of validity of the 

approximation is derived.    In the large G  limit the standard Liouville-Green 

(WKBJ) approximation is derived via time scales.    The noncanonical formulation 

is shown to lead to a different approximation; the significance of this new 

approximation becomes apparent in later chapters where it is shown to be 

useful in the transition point analysis. 

The theory is then generalized to the n     order equation.    For the 

small e   behavior the clock functions are shown to satisfy the Euler-Cauchy 

equation and hence can be determined exactly.    For the large c   limit,  a 

compact formula is derived which enables one to write down the approximation 

by inspection.    It is observed that the time scales are,  in general, 

nonlinear functions in addition to being.complex quantities. 
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CHAPTER    IV 

ERROR ANALYSIS 

The aim of this chapter is to examine the validity of the approximations 

derived in the last chapter and to obtain bounds on the errors incurred. 

The first order equation presents no problem,   since the solution obtained 

from the proper choice of time scales is exact.    For higher order equations 

one has necessarily to resort to approximations and an estimate of the 

errors is sine qua non  for the analysis.    Though there is an extensive 

literature establishing precise conditions for the existence of asymptotic 

solutions,   strict upper bounds for the errors have not in general been 

formulated.    Blumenthal (given in Ref.   28) did obtain ^uch bounds for the 

second order equation as early as 1912, but his results have not been generally 

known.    More recently Olver (Ref.  28) showed that it is possible to deduce from 

the        existence    proofs sharp upper bounds (or the errors instead of 

the O-symbols.    He derived these error bounds  for     the Liouville-Green 

approximations (or WKBJ functions) and their derivatives,  and showed that 

these are indeed both realistic and easy to evaluate.    But it must be 

remembered that these bounds are valid only in certain regions of the complex 

plane which are free from transition points and hence allow the use of one 

and the same form of asymptotic expansion. 

In this section a few preliminary results are quoted and these are 

used in subsequent sections.    For the second order equation a new 

approximation theorem is proved based on Olver's results,  and this is seen 

to deal with the noncanonical equation directly.    This will be further  exploited 

in the next chapter for transition point analysis.    Since the derivation of 

Olver's results is quite involved,  the extension of his technique to higher 

order equations is not readily apparent.    Error bounds of a similar type are 

derived in this chapter using a direct approach starting with the exact solution 

and this is extended to higher order equations.    The discussion is made 

considerably simpler than Olver's,  at the cost of imposing restrictions on 
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the coefficients of the differential equations. 

4.1  Some Basic Definitions and Useful Lemmas 

Some useful results will now be stated in order that they may be 

used later. 

Nonoscillatory equations and oscillation criteria (Ref. 23). 

A homogeneous second order 1. d.e. f with real coefficients defined 

on an interval   J   is said to be oscillatory on   J   if one (and/ or every) 

real solution (^0) has infinitely many zeros on J.    Conversely, when every 

solution   {4 0) has at most a finite number of zeros on J,  it is said to be 

nonoscillatory on   J.    Further, if in addition every solution (#0) has at most 

one zero on   J, the equation is said to be disconjugate on   J. 

The oscillation theorems of Sturm can be stated in many ways.    For the 

present purpose the comparison theorem can be stated as follows (Ref. 42). 

Sturm's  Comparison Theorem.   Let   f(x) and g(x) be nontrivial 

solutions of the 1. d. e. 

u" + p(x)u = 0 and        v" + q(x)v  = 0 

respectively, where   p(x) > q(x).   Then f(x) vanishes at least once between 

any two zeros of g(x), unless p(x) = q(x) and   f  is a constant multiple of  g. 

Corollary;  If q(x) £  0, then no nontrivial solution of the 1. d. e. 

u" + q(x)u = 0   can have more than one zero, i. e.  "q(x) £ 0 on J" is 

sufficient for the 1.d.e. to be disconjugate on J. 

The proof is by contradiction.    By the Sturm comparison theorem, the 

solution   v =  1 of the 1. d. e.     v "= 0 would have to vanish at least once 

between any two zeros of any nontrivial solution of the 1.d.e. 

u" + q(x)u = 0. 

One of the very useful results is a lemma essentially due to Gronwall (Ref. 46). 

Gronwall's Lemma.     Let   X (t) be a real continuous function and p (t) 

a non-negative continuous function on the interval (a, b).    If a continuous 

function y(t) has the property that 
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y{t)i   X(t)+     J     U(8)y(8)d8 
a 

for   a ^ t ^ b then on the same interval: 

t t 
y(t)iX(t)+   J     X(8)u{8)   exp( J*   u(T)dT)d8 

a s 

In particular if  X(t) s X,  a constant: 

t 
y(t)i X exp( J   u{8)d8) 

a 

Next we state two results of F. W. J.  Olver (Ref. 28) in connection with second 

order 1. d. e. 

Theorem 1 (Olver).   Let   u be a positive parameter,  and f(u(x) be a 

continuous real or complex function of   x   in the interval   a £ x £ b.    Then in 

this interval the differential equation 

-^p- =   f  u3   + f(ufx)}w 

has solutions   w^fu.x),   wa(u(x)t    suchthat 

ux -ux 
w1 (u.x) = e     (1+^ (u,x) ),        wa (u.x) - e       (1 + ca (u,x) ) 

— Wi (u.x) =u e^l+Z^j (u.x) ),       — w8 (u.x) = -u e'^l+Zr,, (u.x) ) 

where |Cl(u.x)|.   ^i (u.x)| <:  exp {   F^'x) }   -1 

|ra(u.x)|.  j^u.x)^ exp{   ^i-^J     -1 

X I b 

and F1(u,x)=J      |f(u,t)|dt, Fa(u.x)=J     |f(u.t)|dt 
a x 

The interval (a. b) may be infinite provided that the integrals converge. 
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Theorem 2 (Olver).     With the conditions of   Theorem   2   the 

differential equation 

da w 
dx2 =    {    -ua   + f(u,x) } w 

1UX 
has solutions Wj (u,x),    wa (u, x) suchthat   Wj (u,x) = e       + ei (u,x), 

dx 
Wg (u.x) = e        + ea (u,x),    ~ Wj (u,x) = lue        + ur^ (u,x), 

-— wa (u, x) = iue        + UTia (u,x)      where 

Ic^u.x)      ,   I'n (u.x)    ,     jea(u,x)    ,   La (u, x)U exp{   —HiiL} _i 

x 
J     |f(u.t)|dt 

and x 
F(u,x) = 

c being an arbitrary point such that     a ä  c i b.    The interval (a,b) and the 

value of   c   may be infinite provided that the integral converges. 

The following lemma on integral equations also proveiuseful (Ref.  43). 

The Fredholm integral equation is written as 

n (x) -X k(x, s) cp(s) ds = f(x) 

If the kernel k(x, s) is identically zero whfni 8>x (which is true of causal 

dynamic systems),  the integrand is zero when x < s i  b and the integral becomes 
x 
J     k(x, s) cp (s) ds.    This leads to the Volterra equation 
a 

x 
cp (x) - X     I      k(x, s) c? (s) ds = f(x) 

a 

Lemma. (Ref.   43).    If the "free term" f(x) in the Volterra equation is 

absolutely integrable and the kernel is bounded,  then successive approximations 

for this equation converge for all values of   X. 

The sequence of successive approximations is given by 
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CD (x) = f(x) + >:      f     k(x, a) cp(8) ds 

+ E     X I    k(x, s,  ) kls, , 8a ) . . .     I  k(s ,8    ) f(8    ) ds    . . . di J *       «J *      •> Jm-lmmm 
m=8 a a a 

If    ^(x.s)    ^    Mj     andjf(x)|   s  Ma   ,    then it can be proved (Ref.  39) 

by induction that the modulus of the general term in the series for   fp{x) 

does not exceed 

IXf^V m Ma (x-a)m   /    (m!)    <:    iX(m M,, m Ma (b-a)"1    /    (m!) 

The series converges uniformly for all values of   X. 

4.2   Approximation Theorema for Second Order Equations 

We will now prove approximation theorems for the second order 

non-canonical l.d.e.  using the results obtained by Olver. 

Consider the equation 

y" + COü! y1 + €? u)   y = 0 (4.2. 1) 
o 

valid in an interval   (a i  t i b).    In the light of the time scales treatment 

for large   e , the characteristic equation is : 

xa   + a)! (t)x + a    (t) = 0 (4.2.2) 

The time scales approximation fails when the independent variable,    t,    has 

a value for which the roots coalesce,  i.e. when the discriminant vanishes. 

Excluding this we have two cases for distinct roots,  viz, when the roots 

are real or complex conjugates.    Each case will be discussed separately. 

(1)  Case of Real and Distinct Roots;   D(e ,t) s  uu, 3    - 4a'     >  0 1 o 

In this case the approximation via time   scales is given as 
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/ r widt x 
'xp J ~T~ 

>i*(t) = c1{     ^^  }    exp( - |-Ju)ldt)exp( |-   J   D^ dt)      (a) 

r dt (4•2•3, 
exp( i f-iVL , 

»*(t) = ca    f   ^    }    exp(-|-     u^dt)   exp( -r-jD^dt) (b) 

where c1 , ca   are arbitrary constants.    Let us, however,  consider the 

following approximations which are valid when   ij  » 0 (Ref. Eq.(3„4.2l c) ). 

Yi (0 =-£V    exp( - f-  f u,! dt) exp( + f-jo^dt) (a) 

(4.2.4) 

ya(t)=-^-     exp(-|-|u,   dt)exp(-|-],D*dt) (b) 

New variables   ^ an^ ^ are introduced and defined by the relation: 

^  = fn dt; y = mW 

where m and n are as yet undetermined functions of  t   and   e .   We choose them 

such that   £    has a one-to-one correspondance with   t.    Let a and /3 

be the values of ( corresponding respectively to a,b.    The differential 

equation (4.2. 1) is now transformed into 

mna    d   W<c'^   + (e „,    mn + m.n + (mn). ) L. W(e t f ) 
dea dK 

+ (€3u)   m + eui, m' + m") W(c.O = 0 (4.2.5) o 

The primes denote differentiation w. r.t.    t.    We now seek mapping functions 

ir.   and   n   such that in (4.2.5) 

(i) the coefficient of the first derivative w.r.t.  ^ vanishes 

(ii) the coefficient of the second derivative and that of the ea 

term multiplying W(e . £ ) are the same. 
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The first condition above gives us the differential equation: 

(mn)' + m'n + ewi mn = 0 (4.2.6) 

This can be readily integrated,  using the integrating factor   m.  ThuB> 

— f/n (ma n)}   = - eü-j. 

and hence 

^ n = c exp( - p J ouj dt) (4. 2. 7) m 

The second condition gives 

m3 n = u)   m   + coefft of G  in (a^ m') + coefft of c     in (m") (4.2.8) 
o , 

(a) If   m   is independent of   c ,  (4.2. 8) gives n = u;      .    But from 
4 r 0 

(4.2. 7)   ma = ID exp( -e 1 a^ dt), which results in a contradiction unless 
0 J    -V* * 

(JU, ■ 0,      In this case m=w      '    ,    n = uu       , and this leads to the standard 
o o 

LG resulU 

(b) If   m   is also allowed to depend on c ,  the choice of 

exp( - f Jui dt) 
m =  

leads to 

which satisfy both the conditions (4.2.7) and (4.2.8).    The transformed 

equation for   W   now is: 

d3 W 
= f    c3    +2ei^ -AD"** (D-lA V }  W 

a D 

This can be written in the form 

—    =     (    €a + f(c.t)}   W 
H' 
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where: 

f(e.t) = ^      - 4D"V4  (D "^ )" (4.2.10) 

We now suppose that   f   is a coitinuous function of   |.    This is true if 

D is twice differentiable and does not vanish within the interval.    Applying 

Olver's first   theorem a solution  Wj (e , £■ )   exists such that 

Wi (e.n = ee^(l +E! ),     -jj   W! (e.n = e  e€f (1 + ZT]! ) 

where 

| Ex |  . [ in! )   ^ exp (   |i ) - 1;    F1   =   J    j f(e . X ) j dX 

-i/4 D* 
In the original variables,  y1 = D Wj    and   d£  = —=— dt,     and similarly for 

the second solution   ya . 

The case when the characteristic roots are complex conjugates 

(discriminant   u)l 
3   - 41'    <  0) can be similarly treated using Olver's 

second theorem.    Therefore,   the following two approximation theorems have 

been established as extensions of Olver's results for the standard LG 

approximation. 

Theorem 3.        The differential equation 

y"+*a)1   (c,t)y' + cauJo(c.t)y = 0 (4.2.1) 

has solutions y1   and ya   such that 

j t 

yj (e.t) $ yj (r,t) exp (   j^    J    |f(e.t)|dt   ) (a) 
a

K (4.2.11) 
1 

ya (r.t) i 7, (e.t) exp ( + —    J   |f(e,t)^dt (b) 

~       ^ F   -i C 
where:     r   is a positive parameter;   y\ =(r—)       exp( e        x.dt);   i = l,  I 

and x. are the distinct  real roots of the characteristic equation   F = 0, with 

F =   x3+ a)i (G.t)x + ^0C«.t>   8o 



and f(e,t)   = C -~i     - 4D' -3/4 (D-V^.J §! =[141 .2D-V4(D-1/4r] 

D being the discriminant of F,  is positive and is assumed to be twice 

differentiable in the interval.    The interval (a,b) may be infinite provided 

that the integrals converge. 

When the characteristic roots are complex, the following theorem 

expresses the error of the time scales approximation. 

Theorem 4.     The differential equation (4.2. 1) has conjugate solutions 

y and y* such that 

y = y + E (4.2.13) 

where ; 
-^ a T      _i r 

(4.2.14) y = (rr-) "^ exp(e Jxdt) 

E| = 

ax 

exp^lJu)! dt) t 
[exp(   -jj |f(€,t)|dtj) -1      (4.2.15) 

a < c < b 

D, F and f are as given in Theorenn 1,  D being understood to be the absolute 

value of the discriminant; and x is the complex root of the equation F = 0. 

We see from theorems 3 and 4 that the error of the approximations 

as stated is O(l) as     c -ay.    However,   if we impose the condition that u)l 

varies more slowly than   ua    ,  then the error is o(l) as   e becomes 
o 

increasingly large.    Thus as     e  -,«,, 

a'- = "1(7) 

and u), 7 ^ 

In this case,   for any fixed   t, the error of the approximation becomes 

vanishingly small as     r-»»  . 

Each of these theorems is valid on one side of a transition point 

(where D = 0) since they are corollaries of Olver's results.    Nevertheless 

the difference in the form of the approximate solutions can be used to 

81 



advantage when dealing with the case of multiple characteristic roots. 

A brief lock at the two approximations    may be in order here. 

In regard to (4.Z. 1) the usual LG approximation is given as: 

exp(-|-J u»! dt) f uu   a (i-      i 

^(t) = ;—^--^i/*fCl exp(ieJ(u,o'^ " ^■) dt) 
(u,o-4 Zt* 

+ ca   ex ■"--K-^ -i^ )*-">) 
However,  by treating the noncanonical form of the equation directly by 

time scales,  one obtains,   under certain restrictions,  the approximation: 

axP(  -   J j ^idt)    ^ r ax r „   a   i     ") 
Y» (t) = ^4 K exp(ie J («i)0 - ^ )?dt) + cs exP(-ic J^-ü^—)*dt C 

(u,
0 " ^   > l " J 

The errors of the approximation have been given in each case.    Yet another 

approximation can be written as: 

-^J^kii -^d" 
r* 
^(t) = 

(«)       -—4 ) ■ r 
0       4     [  c. exp (ie J (u,o- ^f- fdi) 

o      4 

J3   1 

The error of this approximation cannot be readily written by application of 

the Olver theorems. It can, however, be estimated by a different method, 

which will be the subject of the next discussion. 
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4.3   Derivation of Erf or Bounds 

In order to assess the merits of the time scales approximation the 

estimates of the errors will be examined using a well-known method 

of successive approximations.    This consists in treacing an initial 

value problem and writing an    integral equation which is satisfied by the 

unknown function.    Iteration then gives a sequence of successive approxinrmtions. 

Bounds of the Olver type will be rederived,  though they are not as sharp 

and the conditions are more restrictive .    The emphasis,  however,   is 

on the directness and simplicity of the method and applicability to 

equations of second and higher order. 

Second Order Equation 

(i) Self-Adjoint Form.      Consider again the equation 

y" + €a<ty = 0 (4.3.1) 

in an interval (a,b}.    The approximation via extension is 

y{t) =U)"l/ilexp(± icjuj^dt) (4.3.2) 

and is found to satisfy exactly the equation 

y" +(c3u) +f(t) )y  = 0 (a) 

where: f(t) = -aa/4   ^   (u) "^) (b) 

(4.3.3) 

Equation (4.3. 1) is therefore written as 

y" + (€aa' + f)y = fv (4.3.4) 

with   f   as given by (4.3.3 b). 
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If   f   is small when compared to   e 3 IT ,  then (4.3. 1) and (4. 3.3 a) 

will be nearly the same and   y   can be expected to be a good approximation 

to   y.     In order to estimate the difference y - y ,   (4. 3. 4) is regarded as an 

inhomogeneous equation with the r.h. s.  as a known forcing function. 

The method of variation of parameters enables one to write 

y(t) = y(t) +  |   h(t.s)f(s)y(8)di (4.3.5) 

where ^ is some fixed point in the interval; y(t) is the inhomogeneous 

solution and h(t,s) is the Green's function (or the time-varying impulse 

response) respectively of (4.3.4). For a fixed s in (a,b), h(t,8) is a 

function of   t,    and satisfies (4. 3. 3 a) together with the initial 

conditions h(s, s) = 0; — (s,s) = W(ya .yj ) = 1.      Inorderto find 
o t 

approximations to   y   characterized by conditions at an interior point of 

(a,b),  or by its behavior ab   t-a o- t-'b, we shall follow the argument 

presented by Erdelyi (Ref. 44) and thus   ^    is chosen to be the point in 

question and y (t) to be that solution of (4.3.3) which is characterized by 

the same conditions as y(t). 

(4. 3. 5) can be written as a Volterra integral equation 

y(t) = y(t) +   J       k(t.s) y(8) ds 

where   k(t, s) = h(t, s) f(s). 

From the theory of integral equations,  the sequence of successive 

approxinnations converges uniformly when y  and k(t,s) are bounded   (Ref.   39,43). 

Let the equation (4. 3. 5) be rewritten as 

y(t) = Ay, (t) + B7a (t) + y, (t)   j        H^V^    d- W(ya .Vi ) 

t     ~ -'" i ^^r" (4.3.6) 
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where   y ^ , y 2     are the two independent solutions of (4.3.3) and W(y a , y j ) 

is the Wronskian defined by: 

Ya 

1 

Yi 

Yi 

(and is equal to    1); A,B are constants.     Let y1 (t) and y3 (t) be defined 

respectively by the pair of conditions A = l,   B = 0   and   A = 0,   B = l.    Also let 

the subscripts  1,2   respectively correspond to   the     +     and      -     signs in 

the exponent in (4.3,2).    The definiteness of the fractional powers of 

aj(t) is assured by agreeing to consider positive quantities only. 

Case (1)    Nonoscillatory Case.    u)(t)i  0 by Sturm's 

comparison theorem and the characteristic roots are real.    For distinct 

roots we require   a)(t) <  0 in (a,b).    The conditions under which fy is of 

constant sign in (a,b) can be determined by using Sturm's theorems  (See 

AppendixITI for a particular case). 

The equation for y1   can be written as; 

t t 
Yi (t) = Yx (t) £   1+1   ya (s) f(s) yl (s) ds]   - ya (t)  J   yl (s) f(8) Ä (s) ds 

i £ 

From the above discussion and observing that y^   and ya   are positive functions, 

we can write the inequality 

Yi (t) ^  X(t)   ^ 1 +   f   ^   (s) f(s) y1 {s) da 1 

and 

JL. 

1 +1   Ya (a) H*) Yi (s) ds 

S    Yi it) 

since the integral is positive.    Multiplying both sides by   y^a f and 

integrating between    £ and t: 
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^-^-   ^1 + 1    78(8)^(8)7! (s) ds   ^    exp/j    7i(«)ya (•)«»)<».) 
Yi (t) £ V   f / 

Thus we have proved the following lemma. 

Lemma.       If in the interval (a,b) 

t 
y * y+y J u(») y(8) ds (4.3.8) 

a 

then on (a,b), 
t 

y(t)^ y(t) exp(    J   u7d8) 
a 

where y, u ,  and y are positive. 

Substituting for yx , ya , and   f  we get the final result: 

yi (t) *: yx (t)   exp (     J     u, "^    I    {»-^vlds) (4.3.9 a) 

The equation for   ya (t) can be written as: 

t t 
ya (t) = ya (t) + yx (t)   J    y8 (s) f(s) ya (s) ds - ya (t) f   yj (a) f(s) ya (•) di 

£ t 

Considering y j # y a    and f^ as positive9   we can then write the inequality: 

ya(t) ^  ya(t)C  i + /   71(s)f(8)ya(8)ds J 
t 

By an analysis similar to the case of yl   we arrive at the result: 

ya(t)^ya(t)   exp(   J      a>-^4   [(a)"17*)"!  ds   ) (4.3.9b) 

Equation (4. 3. 9) (a, b) with    ^  =a,b   respectively are precisely those 

obtained by Olvcr for   c =1*   Sharper bounds are derived later.    The various 

cases can be discussed as follows. 
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I^^RHMM 

y(t) = A71   + B7a   +yi(t)    J    yafyd8-ya(t)    J    Yx   fy ds (4.3.6 a) 

i 

when   fy > 0. 

(i) f> 0.    y>0 
; '. 

t 
yi (t) s ^ (t) exp (   J     y, 7a  f ds ) B=0; A=l 

4 
ya (t) i ya (t) exp ( /     y1 7a   f ds ) A = 0; B=l 

t 

(ii)   f < 0 , y<0 

t 
yi   ^ yi   ^A +   J    y8   fY1   ds] 

N ^|yi|  LA+ J   ly./Mlya/   ds3 

 1    l^
1 ^1  lfl       -  |7x|  |y,|  Ifl 

A + J   |y a| |f| |yx|   ds 

t 
Hence    |y1 (t)|  i   |yi(t)|       cxp(    |     [7^   |7a|   |f|  ds) 

and |ya(t)|i|ya(t)|exp(   J     |y1ya)|f|ds) 

when fy < 0. 

(iii)   f > 0, y < 0.    If    w{t) is such that    y1 < 0,  yl <0, ya<0, the 

conclusions on errors of case (ii) hold. 

(iv)    f<0, y>0;   f = -g and g > 0 

t t 
y = Ay1+Bya-y1     /       ya   g y ds + ya    f      % g y ds 
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Yi   = Yi    L    ! +   J       Ys   g Yi   ds-     -   Ya     J   Yx   g Yi   d» 

Thus      Y!   ^ 7i   exP (    J    Yi Ys   g ds ) 

Similarly   ya   s  ya   exp (    J     y^s   g ds) 

"^ 

Hence we can write,  under the restrictions given above, wher\ f> 0: 

(YI  (t)^!^ (t)|eXp(  J jyjyajf ds) 

b 
|ya(t)|^|ya(t)|    exp(   J   \y^a   f I  ds) 

when   f< 0 

JYi (t)j* |yx (t)|    exp(   J  | yjya    f| ds) 

b 

J 
t 

|Ya (t)|* JYa (t)| exp (    J    | 7i Ya    ^ | ds) 

Uniform bounds can be obtained as; 

(a) 

(b) 

(c) 

(d) 

(4.3.10) 

I Yl^Ol ^ j'Yi.a (t) j exp (   J | Yi y 3   f | ds ) 

t b                                           b 

Denoting   Fi   =J    | y! ya   f) ds ; Fa   =  J   | y! Ya   f | ds;   F = J | y^a   f ) 
a t                                            a 

and using the inequality   (n+1)! > 2 ,  we can obtain bounds which are less 

sharp:   if    F. < 2 
i 

(4.3.11) 

dt 
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2F4 
[yil^jyi/   —11       i = i. 

2-F. 

2F or     |yi.a| ^ I vi,*I zrF    a   F<^ (4.3.12) 

Case (2)       Oscillatory Case,     uu >  0 and characteristic roots 

are imaginary.    As before: 

t 
y(t) = Ay1   + B^a   +   J    ^  y! (t)ya (s) - %(t) ^ (s) 3 f(8^ y(8) ds 

i 

Let us write   y1   and y2      as     y^ = J "1/4   sin a(t)     and 

ya = w cos a{t)  where   ^(t) = e   J      uu    dt.    And therefore: 
c 

t 
y   (t) =yi(t) +   J     i   sin «(t) cosa(s) - cos o(t) sin «(s)]  uj"^4(t) u) "^(s) f(s) y(8)''^ 

e 
t 

=  ^ (t) +   J      sin( a(t) -a(s) jo,"1/4 (t)^-374 (8)f(s)y1{s)ds 

t 
yi ^ yi   +1   lu'-V4^)!^-^4 (s)| 1^)1^(8)1 ds 

-V* Let   uj "v    be bounded in   (a,b)by   M.    Hence  I y1 I   s     M 

(yij^yx| + M3   /    |f||yj  ds 

By Gronwall's lemma 

t t 
|yi (OHyx (t)l+ Ma     1171(8)    f I exp(    J     M3   |f|dT)d8 

t t 
| yi (t)h|yi (t)| - Ma J     ^ [ exp(  J    Ma   |  f | dT )J   ds 
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1. e.: 

(4.3.13) 

|yx<t)^|yi{t)l-   Itf""  exp(   f   M3   |f |dT)J 
' a 8=4 

t 
JYi (t^lyj (tjl+I^r  exp(  J    M3   |f| dT) -1 ] (a) 

f 

Similarly: 

lyaCt)!^!?^!^^!"   exp(   j     Ma    | f | dT ) -P (b) 
e 

Sharpening of Bounds; Oscillatory Case.    These bounds can be 

sharpened as follows.    Applying the Liouville   transformation 

Y = w'1**z,    4   =  I«5   dt,    transforms (4.3.1) into 

z" + (f:3   + ^ )z = 0 (4.3.14) 

where: 

Solution of (4. 3.14) can be written as 

Mi) = A«! (£) + Bza(C)+    J   ^(O'aC») -«»(€)«! (•)^f1(8)z(s)ds 

where     Zj .    za    are the solutions of: 

z" + e3 z = 0 

With the same restrictions on initial conditions as before, and choosing 

~ 1 > ~ -        *• Zj   = —   cos c C »        za   = 8in c s 

so that the Wronskian   W^.z'a )   = 1, we can write 

90 



1   £ 

sa (C) = za(C) +   -    j1    (cos 11 Bin e s - Bin e t coa e $) U (a) zT {m) da 
a ' 

1      f 

= 2a(C)+-      /      (-Sin{r8    -f^)   )fx   (8)za{8)d8 

i.e.: 

aU)^    «aU)+    -       (      |f1(s)j|za(s)|d8 

Further: 

|^(i)/ ^ |*a{€)|+ ^  r |fx(«)||^(.)| da 

By Gronwall's lemma 

'.(£)|s (^(«)| + i- I  (sr.oJiM.,! .^ / |ÄJtI/dT) d. 

i.e.: 

^(0|^ )za(|)|+  J    .|_exp(i|    |f1(r)|dr)d. 

za (s)     is bounded and this property is used only in the integral. 

(^(€)(  ^   |za(€)(-   [exp(   i    J-   |fl(T)| dr)]]^ 

since 

Thus: 

i.e.:     |zaU)| ^   |za(€)|  +erp (   i-     j     |f1(T)|dT)-l 
a 

Now transforming back to the original variables, and noting that: 

df  = o)*dt 

ya(t)|  i     «,-V* {    8in(eJ«*dt)     + exp( i   J   ( »^(„.-V*)" j dt) ^  J 
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This can be written in the form 

Ys (t)   =x-1/4(t)r    sin ( e Ju-    dt)     +   E] (4.3.16) 

where 

E     £ exp(i)j     | a-^4   (.t^V| dt|) -1 

and c is   in (a, b).     This is Olver's result for the envelope of the solutions. 

The other solution can be studied in the same manner and similar bounds 

can be obtained.    This also embraces a theorem of Wintner (Ref.  45) 

which is derived for the case in which   e   = 1 and the interval is infinite. 

Asymptoticity of the solution for    G ^ ao    is thus demonstrated. 

Sharpening of the Bounds: Nonoscillatory Case.    We will now consider 

the equation ; 

y"  . ea ay = 0 (4.3.17) 

As before the Liouville transformation leads to the equation 

z"  - (^ - f)z = 0 (4.3. 18) 

with fj   being given by (4.3. 15).    Again treating (4.3. 18) as an inhomogeneous 

equation,   the solution is written as 

z = Az-!   + Bza   + z1 (^ )    f    sTj, fj z ds    - za (^ )   f    zx (s) fx z ds     (4.3. 19) 

where    z1   and z3    are the solutions of the equation 

z" - es z = 0 

chosen such that the Wronskian; 

W ( z 1 .  z a ) = 1 
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-,, ~ -e f       ^        e 
Thus      z,    = e ,      za   = —— 3        2r 

e£ 
(4,3.20) 

From (4.3.19) we can write: 

z.    = z. za f, z,    ds    -   zQ     j     z, f, z,   ds +  Zl       J ^2   H   -1     "=•      -     ^3       |        ^j   H   *i (4.3.20) 

For the conditions under which 

fj z1    i   0 

we can write the inequality: 

Sj   S  Zj   + Zj     J*    zs f z1   ds 

Now lemma (4. 3. 8) leads to the result 

(4.3.21) 

4    s   Zj    exp(   f   Zj zs   f ds) 

for   f >  0.    On substituting from (4. 3.20) and transforming back to the 

original variables,  the following result is obtai'   d. 

where   /E 

y1 (t) = a) -V4    exp ( - F  fu^dt) f 1 + E: ) 

, t 
<.    exp (   —     j      u.-"1/4  (a-1/4)"dS)   - 

(a) 

(b) 

(4.3.21) 

Similarly the following result is obtained for the other solution. 

Ya (t) = uu '^  exp( e J uj*dt) {   1  -t- Ea } 

, b 

P(   ^    /     o;-^  (oT^rds)    -1 where   f E0 I £    ex 

(a) 

(b) 

(4.3.22) 
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These bounds are precisely those obtained by Olver (Ref.   ^8); 

here they have been obtained by a direct procedure,  but under the conditions 

f >  0 and   z >  0.    For any given   a' (t) the sign of f(t) can be checked.    The 

sign of the solution must be determined using Sturmian theory. 

(ii)     Second Order Equation: Noncanonical Form.    The equation 

y" + ex«! y' + G2 w y = 0 (3.2. 19) 

can be treated in a similar manner.    The time scales appi jxipnations 

\i2   --   D-V* exp(    c     H -   |L ±   D_)dt 

are the exact solutions of the equations 

y '' + e u-'i y' + (c3 u)    + f) y     = 0 o 

where f(€,t)=-^A-     -   D1/4  (D^4)" 

and D is the discriminant = a-j     - 4u)   .    The original equation is therefore 

written in the form: 

y" + GO)! y' + (e3 tu    + f)y = fy 
o 

The general solution of this is given by: 

y(t) = A^   + Bya   + yx 
f ya fy ds ~    f yi ty ds 
Jw(ya.7l)     "ya JwfäTr; ) 

The equation (3.2. 19) is not in self-adjoint form and h.^nce the Wronskian 

■W(ya , y^^ ) is not a constant.    By Abel's formula (Ref.  60) 
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VÄYz .  Y: ) = exp(-c J (L^ dt); 

and therefore 

y(t) = Ay^ + Bya   + yj   j Ya   g Y ds    -   ya j yx   g y ds 

where   g(r.t) *§U%,   : (4.3a23) 

By   a similar line of reasoning as in the self-adjoint case we arrive at the 

bounds (4. 3. 1 0> provided   f   is replaced by   g(e,t).    It can be verified 

that this leads to the results obtained by   application of Olver's lemma and 

stated in Theorems 1 and 2    (4,2. 11; a,b). 

4.4  Third Order Equation: 

We now apply the ideas used in the last section to higher order 

equations and derive error bounds for the approximation obtained by the 

use of multiple time scales.    The analysis is more difficult since 

oscillation criteria such as the elegant theorems of Sturm are not readily 

available for higher order equations.    As Hartman says,   "The difficulty 

arises from the fact that the theorems of Sturm do not have complete 

analogues" in higher order systems (Ref.   23,   p.  384).    Nevertheless the 

asymptotic solutions are oscillatory if the characteristic »-oots are 

complex and  monotonic (in the sense of having at most one zero) if the 

roots are real (Ref,  46).    Conditions on the coefficients can be determined 

such that the solutions are disconjugate (Ref.  23,  p.   384). 

We shall start with the third order equation (3.3.9 a),  i. e. : 

y'" + ra u), y' + f 3u.   y = 0 (3.3.9 a) 
o 

in the interval (a,b). 

The approximation via the time scales method is obtained from (3.4.21 c) a« 

t 
y(t) = D(t) exp(e   J     x dt) (a) 

where   ^   = a 
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where       D{t) - {i\z   + a-1 ) (b) 

and   x   is a characteristic root.     Xow   y    satisfies exactly the equation 

y"1 + r2 a-,  y' + (r3 x     + £(c,t) ) y = 0 
a 

(4.4.1) 

(c) 

where f/       . 2   x, ,   n      3x,D,       3xD" .       D' 
(d) 

Equation (3. 3. 9 a) is written as 

y'" + c2 u;, y' + (e    x     + f)y = fy 
o 

(4.4.2) 

with   f   as given by (4.4. 1 b).    Again when {(r ,t) is small in comparison 

with    e 3 x    .   solutions of (3.3.9 a) and (4. 4.1c) will nearly be the same. 
o 

The integral equation corresponding to (4.4.2) is ^iven as 

t 

y(t) = Ayx    + Bya   + Cya   + ^     J     (y'aVa    - 7*3 Ya ) ^Y d» 

t t 

- Ya   J    (Y'I Ya    " Ya  Yi )    fy ds  - y3    j    (y', ^    -y'l Ya ) ^Y ds 

(4.4.3) 

with  -W(y1 , ya ,  ya ) = 1.    The discussion follows the one for second order 

equations and   y(t) is chosen to be that solution of (4.4. 1 c) which is 

characterized by the  same conditions as y(t) at any point    ^   in (a,b). 

As before let the conditions A-l,   B = OÜ; B=l.  A = C = o and C = l.  A = B = 0 

correspond respectively to the subscripts 1,   2,   3.    Further,  we notice 

that for the canonical equanon the sum of the characteristic roots will 

be zero. 

Nonosrillatory Solutions.    In this case the characteristic roots ara real, 

Case  (1)       fy >   0.       Let the roots be ordered suchthat: 

X3    >    Xj     >    X3 (4.4.4) 
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1 

Hence: 

V! (t) = yx ^ 1 +   |     (y'a y^    - y'3 y3 ) fy1 ds^ 

e 
t t 

" Ys    f    (V'l Ya  -Y'a Yi  ) fyi ds   - 73     j   (y^ y1   - y\ y3 ) {yl    ds 

Let us consider now that the conditions are such that   y1   >  0 in the 

interval (a,b).    Also in y which is the approximation for   y   the explicit 

amplitude variation expressed by D is understood to be positive. 

Since   y(t) = D(t) exp( e    r    x dt) where D(t) = (Sx2   + ^ 1 )'^ , 

t 
;;■ D1 

V^t) = (  3-    +cx)y 

and: y a ya  - y 3 ys f ( 
D2 

D'- 
) + e   (xg - X3 )}   ys y3 

Xow        ( 
D', d 
D dt 

in Do    - -—   ^n  D 
dt 

J J 

(3x%   + a )' 
(3x^2   +^l) (3xa3   + *J ) 

2   +x^)' 

Xow if   xs   > xl   > x3    and the roots do not coalesce the root variations 

D'       D' 
may be assumed to be of the same order of magnitude.      Thur (— ^-)^  0; 

and in any case,   for large   e,  ya'ys    - ya'  ya   >  0. 

In the special case when 

(t) 
u;   2(t) 

o 
=   constant, 

D(t) has a particular!/ simple form given by D(t) = s l      (t) = UQ "1^3 (t) (a) 

and y's Ya   - YsYa   = e ("a - *3 )Ya Ya   = e (xs  -X3 ) uuf1 (t) exp( c J     (xg +X3 ) ds)     (b) 
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/V,       /-V rst ,       ^v/ 
Similarly y'i Ya    - y'a Yi   = € (-^ - X3 )y1 Y3 (c) (4.4.5) 

y a Yi  - Y 1 Ys   = e (xa " xi )Yi YS (d) 

The exponentials in   y   have real argument and the following inequalities 

can therefore be written,  for large   e. 

Y 2 Y3 " Y 3 Ys   >   0 

y x Y3 - y 3 Yi > 0 (4.4.6) 

y a Yl - Yi Ys   >  0 

Hence: y^ (t) s  y^ (t) Cl +  J     (y'g ya - y^ ya ) fYl ds] 

By applying the lemma (4.3.8) this immediately leads to: 

t 

Yx (t) s 9^ (t) exp( J      y: (y'g y3 - y'3 y'a ) i ds) 

I 

But when —*-*-   = k = constant 

(4.4.7 a) 

***       .■^J,       rtj ■** t 

Yi (y'a Ya - y'a Ya ) = e (xa - X3 ) yi Ya Ya 

=  r (xa -X3 ) D3 (t) 

lince x1 + Xg + X3  =   0 .    Therefore 

Yi (Y a Ya " Y 3 Ya ) = e ^1 ^   (w (^  - x3 ) 

Since    : D = x1   ' (t) 
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The approximation can be written as 

Yl   = Yi   (1 + Ei ) v..4,7 b) 

where: 

/Ejäexpf    c     J    -i -V3  (s)(xa -X3 ) | f(P.8)|  d8 }   - 1 

Now for A=C:i=0,   B = l,  from (4. 4, 3) we can write the inequality: 

Ys (t) ^  ya (t) + 7i (t)    f ( %'  Ya   " A'  Ya ) f-Ya ds 

Applying Gronwall's lemma to the ratio   ya (t)/y^ (t),  we obtain: 
(4.4.8 a] 

1 1 

Y3 (t) ^   Ys (t) + y 1    f   ds y3 (^ ya - ^ y2 ) f expf    f    ^ (£,' ^3 - %' y8 ) fdT J 
f s 

When y1 , ya ,73   are bounded by Lj ,   M1 ,   N,   respectively,   a simplified 

bound can be obtained as 

y2(t)^  ya (O + y, -^Mexp( j   7: (Ä Ya - Ya'Ys ) f ds) - l] (4.4.8 b) 

w hich.when UJ,     ~ x 3   , can be written in the form 
' 1 o    ' 

Ya (t) = ya (t) + Ea 

where; 

E3|^   ^  >i (t)|exp(f-   j    u^-^^xa -X3) |f(e.8)|d8)  -l| (4.4.8 c) 

Similarly,   choice of A=B = 0,   C = l    leads to the bound on yg (t): 

t 

Ya(t)^  Y3(t) + Yi    [   (ä'Y,    -Ya'Ys ) fYa   ds 

t t 
Ya (t)i  ya(t) + y1 (t) J   (v&'ya -Vi'ya )yaf exp( j y, (fc'ya -^y', )fdT)d«        (a) 
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^K^m^^^^^^m ' 

A simplified bound is obtained as 

y3 (t) ^  va (t) + ^ ^ (t Jexp(  j    Y! (M/yg -ya'ya )f dsj   -ij   (b) (4.4.9) 

or alternatively,  when   aj3   = k Uü0
3
  ,  k being a constant 

Ya (t) = Ya (t) + E, 

where: 

jEal*   Y1"  ^ (t) ^exp( e 
^ 

f   u.^2^ a -X3 ) I f(p.s)jds) - \]   (c) 

Case  (2)       fy <  0.     With reference to (4.4.3) let the integrals 

be denoted by ^ , I2 , I3   in that order.    When fy is negative the signs of all 

the integral terms are changed.    Therefore,   if these terms are to have the 

same signs as in the previous case the ordering of the roots ha^ to be 

changed.    In place of (4.4.5) the following inequalities are needed. 

Vfe Ya  - Ya Ys   <   0;   % Y3 " Ya Yi   <   0 (4.4.10) 

The roots are therefore ordered such that   X3 >  Xj > Xg ; i. e.  the roots 

xs , X3   are interchanged w.r.t.    case (1). 

The analysis is carried out in the  same manner as for case (1) and 

the results (4.4.7),   (4.4.8),   (4.4.9) and (4. 4. 1 0) the following approximation 

theorenn has been obtained. 

Theo-ornS.       In a given interval (a,b) the differential equation 

y'" + r? u-i (e ,1^' + c3 a   (c .Oy = 0 (4.4.11) 

possesses the solutions y1 , ya , y3   such that 

Yi   = Y! (1  + E1 );       Ya   = Ya   + Ea :     Ya   = Ya   + E; (4.4.12; 
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where y.(t) - D.    e      (f x.) ;   1 = 1.2,3 

D.(t) = (3x2   + üu.   ) 
i i * 

-I 

and x.{e,t)   are the roots cf the characteristic equation 
i 

xJ   + UL>,  (e ,t)x + a-   (c.t) = 0 
o 

I -^  i        t IEJS  e    (Fi ) - 1 

t 
JEsU^    J    ds y^1 ^Fi (e.s) e^ (Fi ) 

a 

lEa^y,    j 
a 

Fl (e.t) = yi (t) (y^'ya - Vb'y2 ) f(c. t) 

a 
t 

^  Yl     |     ds yj-1   y3 Fa (c.s) e^ {Fl  ) 

,*, -j       M, 

€    as 

ß 

.      .      ., ,   ..      3x'D' 3x0"    .      D'" 

H PC and e     (v ) Is an operator defined by e     (v )= exp(   I    v (X ) dX ) 

(4.4.13) 

(4.4.14) 

(4.4.15) 

(4.4.16 a) 

(4.4.17) 

(4.4.18) 

(4.4.19) 

provided that the following conditions are met: 

(1) the roots x. are real and distinct (4.4.20) 

(ii)fyisofconstantsignin(a,b) (4.4.21) 

and further the roots are ordered such that   x3 >  x1   >  \3   if 

fy >  0 and Xg >  x1 >  x2   when fy <   0. 

The derivatives in f(e ,t) are assumed to exist and the interval may 

be infinite if the integrals in (4.4. 16) converge. 

The condition (4. 4. 20) is  satisfied if the discriminant 

q3   + ra   <   0   where   q = 
3      ' 

(4.4.22) 

The validity of (4.4.21) must be ensured by examination of initial 

conditions and oscillation criteria. 
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Uniform bounds can be obtained by replacing the upper limit of 

integration by   b   in (4.4.16 a). 

Simplified bounds can be obtained by noting that (n+1)! 2 2.    Thus: 

•» n+i 
exp(ar) - i =   E 

o     (n+1)! 

oo       n+i «» 
^    r    a ~    -r   i   a \n        a 
i.   E    -J5-   =   or   E (   =-)   = 

2n -    ~  l   2 ' a 
0 0 1-2 

Hence | Ej|i-2        if  a < 2 (4.4.23) 
l"2 

where: 

a  = J   TXA\ 
a 

Similar bounds can be determined for the other two relations in (4. 5.6). 

If y 1 ,ya .ya   are bounded oy L^ , M^ ,1^   respectively,  the following 

relations can be used in Theorem 3. 

lEa|^   y.   Ce^   (F,)-!] 
(4.4.16 b) 

(E,l^   y» (t)Ce*(Fx ) - 1 ] 

Further,  in the case when   —^g- = constant the bounds turn out to 
is o 

be simple. 

D(t) =»l"*  (e,t) (4.4.16c) 

Fx   = e<ß"^3(xa -X3 )f(e,t) (4.4.17 c) 

102 



4.5 Oscillatory Case 

la this case the characteristic roots consist of one real root and 

a pair of complex conjugate roots,  symmetrically placed about the 

origin of the complex root plane.    Let x1   be the real root. Equation (4.4.3) 

can now be written as 

t 
y(t) = A71   + B^a   + Cy3   +   $    h(t,s)fyds (4.5.1) 

where 

h(t. s) = y'a (t) (^ fe'   - ya £') (s) + y3 (t)(fa % - ^ % )(«) .+^ (t)^*' -% % )(s) 

Now if   yj (t) and y3 (t),  yg (t)   (ya  and Y3   are complex conjugates) are 

bounded from above by Lg   and Mg   respectively, then 

t t t 
Jh(t,s)fyds i   J  |h(t,8)fyld8i    f  IpJlfMyl  ds (4.5.2) 
i C K 

where: 

Pi = 1^  i\Yi%   -Ys^l   +1^%'   -YIä')  +   T^lva*'   -ysÄ'l}    (*.5.3) 

Now choosing A=l,  B=C=0; A=C=0,  B=l and A=B=0,  C=l   in that order, the 

following result is obtained by applying Gronwall's lemma: 

^ t t 
|yiMyi(t)|+ Jly.fs^f |exp(   J   |P1||f|dT)d. (4.5.4)' 

i= 1,2,3,     where Pj   is given by (4.5. 3). 

Some simplification can be achieved as follows.    Let an operator 

e   (x) be defined such that: 

I 
(a) 

(b) (4.5.5) 

(c) 
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e   (x) = exp( c   J xdX) 

Hence 

et
€(-x) = et

€(x) 

and: 

' ,„. A.^- J , ~\ e?(x) e;(x) = e8(x) 



The approximation 

y{t) = D(t) exp( e    (     x dX) = D(t) e^lx) (a) 

and 

y'(t)  =(^- + ex)y (b) 

(4.5.6) 

Let us write h(t, s) in the form: 

h(t.s) = y2 (t)( y: yg1 (s)  -y3*'(s) ) + y3 (t)(y2 ^ (s) - yx y^a)) 

+ Yi (t) ( YaYa'(s>  - y'a vi(s) ) (4.5.7) 

We use the above and recall that D(t) is understood to be the magnitude of 

(3xa    h UJ j  ) and under certain conditions   (derived in Appendix II),   is 

invariant w, r.t.  the roots.    In particular if 

a,3 (t) —* = constant 

o 
3   ,t) 

then 

D;t) = x^ (t) (a) 

and: (4.5.8) 

yAt) = D(t) e^x.) = 0)^(1) e1 (x.) (b) 

Using (4.4.5),   (4.5.7)can now be written as: 

h(t, s) = e  D(t) e^ (xg ) ^3 (s) - x1 (s)^) D3 (s) e*   (xj + X3 ) 

+ c   D(t) e1 (X3 ) ( xj (s)  - xa (s)^ D3 (s) e*   (xa + Xa ) 

+ c   D(t) e    (x,  ) (xa (s)  - xa («)^   D3 (B) e*   (xg + X3 ) 
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Noting that Xj (t) + xs (t) + X3 (t) = 0   and (4.5.5; b,c) leai's to the  simplification: 

h(t,s) = c   D(t) I   D3 (s) e^ (x: ) /xg (s) - xs (s)^ + e^ {x3 ) (x3 (s) - x^ (a)} 

+ es  (X3 ) ^xj (s) - x^ (s)^ (4.5.9) 

\row y(t) = y(t) +  J    h(tf s) fy ds.     If   e   (x.),  i =  1,2, 3   and D(t) are bounded 

respectively by,   say,   LQ,M3 ,   and R,   and defining 

Pa (s) = rR   f j aj1 (s) L3 e^   {-^  ){K3 (S)  -Xg (s) )| 

+ IM3 a",1 (s) e^   (-x2 )(X3 - X!  )     +  I M3 a•-] (s) e^ (-x3 )(x1  - Xa ) 1 }       (a) 

(4.5. iO) 
we get the relation 

|y(t)|5   |y(t)(+   J      (Pa|   (f| |y(   ds (b) 

Gronwall's lemma leads to (4,5,4) with Pj    replaced by P3 , 

The following theorem can therefore be stated. 

Theorem 6,    With the following modifications theorem 3 will hold. 

jy.] =iy.(t)|    +E. 1 = 1.2.3 

where 

K J  1 y^s) Pi * e     (  P, f) ds 
s        * 

(4.5. 11) 

(4.5. 12) 

Pi    = Ma ( ( yi A"   - Va h' I   + I y2 VI'    " Vi y'M +  ]T I Vs Va " ^ &)}   (4. 5. 13) 

provided that roots are distinct,   a pair being complex conjugates.     With 

the above modifications,   the relations (4.4. 11) to (4.4.19) hold. 

^   is any point in the  interior of (a,b),    1^ Ma   are the upper bounds of 

Yj    and y3 , y3   respectively. 
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(a) The characteristic roots are complex and distinct if the discriminant 

q3   + r3   >  0 ;       9=-^.    r = - -^ (4.4.22 b) 

If q* + r2   =0 then the roots are all real and at least two of them are equal. 

(b) Uniform bounds are obtained by having   a,b   as the limits of 

integration in (4.5. 12). 

(c) Simplified bounds can again be determined similar to the case of 

theorem 3; i.e.  similar to (4.4.23). 

When 
3 

ID« —*- =   constant 
u) a 

o 

in (4. 5. 12)   Px   can be replaced by   Pa , which is given by (4. 5.10 a). 

4.6  Summary of Chapter and Conclusions 

Error bounds for the second order equation are derived, first foi 

the noncanonical form and this is done using Olver's fundamental 

approximation theorems.    This reveals a difference in errors in comparison 

with the standard LG error bounds.    Next, Olver's approximation theorems for 

the self-adjoint equation are rederived, though more restrictively,  in a 

direct way that is believed to be new.    Further, bounds for the noncanonical 

equation are also derived using this method and are shown to be equivalent 

to the earlier result using Olver's theorems.    Simplified bounds are obtained 

and the conditions for these are stated. 

The third order 1. d. e.  is studied next and two approximation theorems 

are proved,  using the familiar notions of variable characteristic  roots .  For 

one class of equations for which 
3 

Oil —K- = constant 
u) o 

the error bounds have a simple form. Simplified bounds of the type obtained 

by Blumenthal for second order equations are also derived under appropriate 

conditions. 
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Though the approximations obtained in Chapter III require that 

u).(t) be independent of c ,  in the error analysis this limitation may be 

overlooked and the more general u>.(e , t) can be considered.    The assumed 

condition that f(€ , t) is a continuous function of   t   is not essential.    The 

same proof applies if,  for example,  f(e , t) has a finite number of discontinuitiei 

in (a,b).    But then higher derivatives of y(t) may be discontinuous at 

the points of discontinuities of f(e ,t). 

The conditions under which fy is of constant sign for theorem 3 must, 

however,  be determined from other considerations such as stability theory 

and oscillation criteria (Ref.  61,  46,  23).    The bounds for the oscillatory 

case are not as simple in form as for the second order equation. 

Besides,  it may not always be possible to evaluate the bounds in a closed 

form;   but the theorems are still useful,  as they essentially reduce the 

problem of estimating the error in an approximate solution of a differential 

equation to the much easier problem of evaluating a definite integral. 

It is felt that a similar approach may lead to useful results in the 

case of thx fl arder noncanonical form, as well as for higher order equations. 

107 



CHAPTER V 

EXAMPLES AND APPLICATION 

The scheme of approximation developed in Chapter III will now be 

applied to examples.    The arrangement is as follows.    The first part of 

this chapter consists of examples with analytically known behaviors; the 

examples are so chosen as to highlight the application of the method and to 

afford an analytical treatment.    Notice that even though the coefficients do 

not always completely conform to the ordering assumed in our approximation, 

considerable information is obtained.    We also consider a special equation of 
th 

n      order.     The equations are studied in the noncanonical form directly 

without the necessity of transforming them into the canonical form which 

would be amenable to the    L G     treatment. 

The latter half of this chapter is devoted to an actual physical 

problem,  viz. the analysis of the dynamics of VTOL aircraft through the 

transition from hove • to forward flight.    The problem of aircraft dynamics 

in unsteady flight has been treated in detail by Curiiss (Ref. 27) in a 

recent work.    Therefore,  at present we will not go into the many aspects 

of VTOL dynamics, but will emphasize the use of time scales to provide a 

uniform description of the transition dynamics. 

5. 1     Examples with Known Solutions 

1.   The asymptotic behavior of the zeroth order Bessel function can be 

recovered directly from the governing equation: 

y"   +  -y1   +  y   =   0 (5. 1. 1) 

The characteristic roots are: 

x = - ^ ±i( l -4nr ) 2t 4t3 ' 

From (3.4.21 c) the approximation is written as 

y(t) = ( 1  - j?)"V*exp( 4 ^t±ij(l - J-t 
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_1 

i.e. y (t)~ t"?exp( ±it) (5.1.2) 

which is the correct asymptotic behavior as   t -"^  (Ref. 50 ).      The first 

and third coefficients are the same,  while the second coefficient steadily 

decreases as   t -«, 

Consider the transformation t = p s.    Now if   s = 0(1),  as   t -*00, 

G   ~,00.       Equation (5.1.1) is transformed into 

sy" + y' + e   sy = 0 

with   ^   >  >   1.      The time scales formula describes the correct behavior of 

the solutions. 

2.     We may now consider the confluent hypergeometric (or Kummer's) 

equation,  which has a number of engineering applications (Ref.  64).     The 

equation is given by 

t y" + (b-Oy"  - ay = 0 

where   a, b   ar« constants.    The characteristic equation is : 

x»  +(fc   - 1)X .1=0 xt '        t 

For t -»oo, the characteristic roots are asymptotically given by: 

,      a-b 
x,   ~  1 +   

t 

x3   — 

From (4.3.21) ^e approximations are given by: 

Ci e   t n - Q\ (T0) exP ( j xi dt ) ~ 

^s = aa ^o^   exP ( J xi   dt )   ~ Ca  t"a 

t   (a-b) 
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These describe the correct asymptotic behavior of the solutions as 

t -, a»   ,    as can be verified from Ref.   5 0,   63.      It is  seen from the 

characteristic equation that the second coefficient approaches a constant, 

while the third approaches zero as   t -,a>.    Notwithstanding this, the correct 

behavior is obtained from the approximation. 

Kummer's equation can be transformed into the canonical form and 

is known as Whittaker's normal form (Ref.  63),    This allows the application 

of the    L G    approximation. 

3.     We will now consider a simple third order equation containing a large 

parameter e , viz. : 
e
3 

y'" + ^r- y = 0 (5.1.3) 

This is of a type which is fully amenable to our approximation.    The 

characteristic roots are: 

1 , i     V3 x   1 

From (3.4.21 c): 
Ci r y. (t) =   j- exp ( e  J x. dt ) 

1*e,: ' Ui/3' . l-i/3 . e( —5 ) f ( —2 ) 
7(t) = t( Ci t"e f  q,t " + cat '" ) (5.1.4) 

The exact solution of (5. 1.3) can be obtained in the form y(t) = t . 

It can be easily verified that (5. 1.4) gives the correct asymptotic behavior 

for large   c . 

The special n order equation of this type can be studied similarly 

and it is discussed at the end of this section. 

4.   "Double Airy" equation 

This is a third order equation which is satisfied by products of Airy 

functions and is given by: 
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y"<- 4 ty"   - 2y = 0 

The characteristic equation is: 

x3   - 4tx - 2 = 0 

In order to determine the asyrrptotic behavior of the roots as t -*co, the 

equation is written as 

fix3   - 4tx - 26   =0 

and is studied in the limit 6 ""O. 

In this case the principle of maximal balance says that the term 

x     must be balanced against    -4tx   for large   t (Fig.   12 ii);   i.e.  : 

(5.1.5) 

x3   -4tx = 0     or     x (x    -4t) = 0 

The three roots are: 

xi a = ±  2t- 

X3 

This can also be seen starting with the equation: 

x3   -4tx -2=0 

For real coefficients the sum of the roots = 0.    Hence if one pair of roots 

goes as ± ZA , the third root must remain at the origin,  as shown in the 

sketch below. 

.2/t 2/t 

Henct. the approximations are 

y. = ( 3x.a - 4t)"*  exp (Jx. dt) 

i. e. : Vi.a-*       exp (± jt ^ ) ;      ya  ~ t "* (5.1.6) 
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2 Z 
Now (5.1.5) has the exact solutions    Ai  (t),    Bi   (t)   and   Ai(t) Bi(t) 

where Ai(t) and Bi(t) are Airy functions (Ref.  50).    The coefficients of 

(5.1.5) do not fully conform to the conditions of the approximation; 

the second coefficient increases as   t-400 ,   but the third remains finite. 

Nevertheless,   (5. 1.6) describes the correct asymptotic behavior of the 

solutions as t-00. 

5.   Consider the equation 

ty'" + 3y" + ty = 0 (5.1. 7) 

The characteristic equation is given by 

x3   + -x*+ 1  ^ 0 (5.1.8) 
t 

The roots of this equation as t-00  can be studied using the exact formula for 

the  cubic (Ref.i'ö.p.   17),     However,   let us write (5.1.2) in the form 

x3   +  5 - x3   +1=0 (5.1.9) 

and study the roots as   fi-0.     Using the principle of maximal balance (Fig.   12 i) 

we find that the equation 

x3   + 1 = 0 (5.1.10) o 

determines the leading behavior of the roots as   t-*00.    Hence we can treat 

(5, l.Jl as a perturbation problem and determine the correction by going to 

the next order.    Thus: 

x = x+£x1+... (5.1.11) 
o 

3x3   x:    +15?    =0 (5.1.12) 
o * 

giving: 

X!    =  -i (5.1.13) 

This correction to the roots can be verified from the exact formula also. 

The time scales approximation is therefore wriuen as 
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~ - 2x-        — f 
V.{t) -- c. ( K.

2
 + —L)    2    exp (     x. dt) (5.1.14) 

where c. are adjustable constants.     On substituting from (5. 1.11) the 

solutions are found to be 

D. r 
y.    (t)   =  -p1    exp ( Jxoidt ) (5.1.15) 

where     x .     are roots of the equation (5.1.10); i.e.  the solutions are: 

y(t) =5;   exp (-t) +Sä.   eXp(   (^-3)t )   +   D3   exp(   ^-^ )   t) (5.1.161 
t 

The transformation   u = ty leads to the constant coefficient equation 

u"1 + u = 0 

which can be solved exactly.    The expression (5. 1.1b) given by the time 

scales theory is the exact solution for this example. 

6. Special equation of order   n. 

The equation chosen,   agair; conforms to the conditions of the 

approximation.    Consider the equation 

dn 

7J- + (f )ny = 0 (5.1.17) 

in the limit of   c-*00»    The characteristic equation is: 

F    =   x" +   ^   = 0 (5.1.18) 
n t" 

The roots aregivenby:x = exp(—i)(— ) (5.1.19) 
n t 

The time scales approximation is: 
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Y. (t) = c. ( x       )        exp (e       x. 
11 J     i 

dt) 

171 

.   iri  (n-1)   ,   ,  1  ,         n-1 .       f       n   , 1  .   ,    . 
exp (-—   '-j-!-   )   ij) 2~   exp (c e       ( ^ ) dt ) 

Simplifying: 

n-1 
tri/ n, 

~   .M       „2 (€    e     '     ) (5.1.20) 
y. (t)  ~ c

i
t t 

The exact solution can be determined as follows.    We look for a solution 

y = t    .    On substitution,    m is found to satisfy the equation 

m(m-l)(m-2) ...   {m-n+l) + cn = 0 (5.1.21) 

which can be written in the roc. locus form: 

n 
1+G(m) = 0      where       G(m) = C  (5.1.22) 

m(m-l) ...  (m-n+1) 

The locus of the roots of (5. l.il ) on the complex   m plane    is plotted in 

Fig.   13.    For large   5    the roots asymptotically approach the lines which 

are at angles    180  /n ;   i.e.    m--e .     Thus the exact solution has the 

asymptotic behavior for   e   -• « as predicted by the approximation 

(S.l.iO) 

We will now go on to the study of the transition of VTOL aircraft 

from hover to forward flight. 
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Transition D/namics of VTOli Aircraft 

5.2.   Preliminary Remarks 

The problem considered in this section is the longitudinal dynamics 

of a VTOL aircraft through its transition from hover to forward flight. 

The method of multiple time scales and the formulae derived in Chapter III 

are employed to obtain approximations to the solutions of the equations of 

motion of a typical VTOL aircraft.    The point of view adopted is to 

linearize the nonlinear equations of motion,   and treat the coefficients as 

variable during the transition.    This is,   for example,  the approach used 

by Curtiss (Ref.  27). 

The assumptions and rationale of the physical problem are based 

on   Re^:.  27 and 47.    The main contribution of the present effort is intended 

to be a difference in approach and a more uniform description of the 

phenomenon. 

An independent effort in the application of multiple time scales 

aircraft dynamics was reported by Ashley in a very recent (taper (Ref.   52). 

This deals with the linearized aircraft equations of motion with constant 

coefficients.    Approximations were obtained with limple time scales 

using linear clocks,   the objective being "a heightened rationality" in the 

itudy of the subject. 

The present approach differs from that of Ashley in the following 

respects: 

(i) in regard to constant coefficient equations,  using linear clocks 

exact solutions are obtained instead of approximations (Ref.  Chapter II) 

(ii)  since linear clocks are inadequate for a large class of problems, 

nonlinear clocks are introduced,   particularly in the case of l.d.e. 

with variaole coefficients.    The nature of the clock functions 

is determined from the equations themselves and depends on the 

domain of interest. 

It is felt that this dissertation demonstrates the usefulness and 

flexibility of a general nonlinear cock function. 
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5.3.   The System 

The development of the aircraft equations of motion as related to 

VTOL dynamics will be briefly traced,  for the sake of completeness. 

The motion of the aircraft is considered with reference to a system of 

body axes fixed in the vehicle.    Fig.   14 describes the axis system for a 

tilt-wing VTOL vehicle. 

The equations of motion are obtained by considering the equilibrium 

of forces and moments in the various degrees of freedom.    The earth is 

assumed to be an inertial frame and the atmosphere is assumed to be 

fixed w.r.t,  the earth.    The aircraft is assumed to have a constant mass. 

Only rectilinear motion at relatively low speed in the vehicle's plane 

of symmetry is considered and the effects of unsteady flow and elastic 

deformation are assumed to be negligible.    Under these assumptions the 

longitudinal equations of motion can be written in conventional notation (Ref.  47) 

as -. 

u + wq + g sin 6   =   X{u,  w, q ,   A      ,   ^ E »  i   ) 

w'- uq - g cos©    = Z{u,   w, q ,   J T ,   6 E .   iw) (5. 3. 1) 

q = M(u,  w, q ,  j      ,  f       .   i    ) 
T E        w 

e =   q 

These equations are nonlinear and nonautonomous in general.    The pri- 

mary interest here will be on the d 'nam.cs of VTOL aircraft during transition 

from hover to forward flight.     In a tilt-wing vehicle,     {       ,    f p >    an^ * 

represent the control parameters,   denoting respectively propeller blade 

pitch,   pitching moment control and wing tilt angle.    Instead of dealing with the 

complete nonlinear nonautonomous equations,  they are simplified in order to 

allow an analytical treatment and enable qualitative conclusions to be drawn. 

The equations of motion are linearized in the usual way by making the 

following assumptions.    The motion is considered about a steady level flight 

and thv- vehicle is fully trimmed,   i.e.   in a state of equilibrium,  with all 

forces and moments balanced out.    If the vehicle now encounters a 
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dibturbance  such that the resultant motion is  small in magnitude,   the 

motion is described by a   set of l.d.e.   with constant coefficients.     This is 

done by expanding the aerodynamic forces and moments in a Taylor's series 

about the prescribed flight conditions and retaining only the first order 

terms.    Thia is consistent with the assumption that the disturbed motion 

is small in magnitude. 

Thus: 
,,       ,,-       c X 5 X 5 X o X 

X +   ^ X   =   X   +  :   A  u + ^    A w   +   ^—      6       + -r-      ^ i 
cuu Jw oTT       31        c w 

pZ ~ Z -Z ^z 
Z +   \Z = Z +——  ^u +  -— A w   + -r—      f)^   + r-r-    ^ i (5.3.2) au J       aw " a^ „ 0T     si     -  w 

T w 

WWWSM aM a M    .      aM CM a M     . 
M+AM = M + _   AU  +   _,  W+__   Ae    +I-..T   +a-A6E^— A  ^ 

For steady level flight the flight path angle is nearly horizontal 

and this permits further simplification.    The lowest order terms are 

balanced out,   leaving the equations satisfied by the perturbed variables. 

Let these be denoted by   u, w,  and 0   .    The linearized homogeneous equations 

are therefore given by: 

u' -Xu-Xw+gQ    =0 
u w 

w'  -Zw-Zu-Ve     =0 (5.3.3) 
w u 

• . 
ft "   - M • ft    -Mu-M'W      +Mw = 0 

9 u w w 

For a conventional airplane at cruising flight  the stability derivatives 

are constants.    The perturbed transient motion can be determined by 

solving the coupled linear equations with constant coefficients.    For a VTOL 

vehicle executing a transition,  the flight condition varies from instant to 

instant; heuce the aerodynamic parameters of the vehicle,  since they 

depend on the flight condition,  also vary through the transition.    The 
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vehicle is still assumed to be continuously trimmed throughout. Control 

required to trim is not considered in this analysis and we shall only consider 

transitions at level flight.   The coefficients of the linearised equations are 

therefore treated as variable if the time history of the trim conditions can be 

predicted.   Further, this change in the coefficients is assumed to arise 

primarily from the change in flight velocity, although in general they depend 

on the wing-tilt angle   i    and power setting   6   . 

Qualitatively the following observations can be made.   At forward 

flight a VTOL vehicle behaves essentially like an airplane and at hover like 

a helicopter in regard to dynamic motion.    The forces and moments produced 

by the propellers and the wing-slipstream interaction largely influence the 

low speed characteristics of a VTOL vehicle.    Near cruising speeds these 

effects become less important.   The stability derivatives have constant 

values corresponding to hover and forward flight, but change continuously 

from one to the other as the vehicle accelerates until it attains cruising 

velocity.   At hover the characteristic roots consist of a complex conjugate 

pair with positive real part, and a pair of negative real roots.    The motion 

therefore exhibits oscillatory instability.    In cruising flight the motion is 

characterized by two pairs of complex conjugate roots, usually with negative 

real parts.   One of the modes is of high frequency (the short period motion), 

and the other is of low frequency (the phugoid motion).   The transition is, 

therefore, from a helicopter-like vehicle to an airplane-like one, with 

accompanying difficulties in the analysis and control of the vehicle.    For 

example, at hover the vehicle needs forward stick for forward velocity 

(stable trim gradient); but for cruising flight the trim curve is as shown in 

Fig. 15, necessitating an adverse control position gradient at some time 

during the transition making it somewhat difficult to fly. 

We shall now consider a specific example, a tilt-wing vehicle. 

Ref. 45 contains a comparative study of the longitudinal stability derivatives 

of three tilt-wing VTOL aircraft.   The vehicles considered are: 

(1) The VZ 2 Research Aircraft 

(2) Two Propeller Transport 

(3) Four Propeller Transport 
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Based on experimental data and taking into account the scatter of data, 

typical stability derivative variations through the transition are proposed. 

Variation of the stability derivatives with velocity for a vehicle of thi» 

type used in the present analysis were based on Ref. 49.   Now the equations 

of motion can be written as 

u" +alu + aaw+gfl =0 

w' +!>! w +1)3 u - VO = 0 (5.3.4) 

6" +c1e
i + cau + C3W + C4W = 0 

where the coefficients correspond to those in (5.3.3).    The functional 

dependence of the coefficients on velocity is given in Table III. Different 

values for the coefficients of the equations of motion are possible due to a 

different choice of the stability derivative variation.     The values used in 

this analysis are not meant to be representative of an optimal flight vehicle, 

but are,  rather, typical values based on existing aircraft. 

The wing-tilt angle   i      is in control of the pilot so that any variation 

of i   (t) through the transition can be programmed.    The dependence of 

trim velocity   V   on wing angle is assumed to be linear and hence   V(t) (Fig.  17) 

can be chosen conveniently.    The stability derivatives are now expressed as 

functions of  t  and this leads to a set of time-variable coupled linear 

differential equations.    In the analysis that follows the stability derivatives 

X    and M     , being respectively denoted by -BQ   and -C3   , are neglected 

since the contribution of these terms to the dynamics of the vehicle is 

considered to be small. 

5.4 Two Degree of Freedom Case 

Near hover, the two degree-of-freedom approximation is employed, 

in which the vertical or plunging motion is suppressed.    At hover (in which 

state the vehicle can remain indefinitely), the damped vertical or plunging 

mode is completely decoupled and has little effect on the other two modes. 

The system (5.3.4) can be   represented by the following set of 
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equations at hover and low velocities,  since the terms   aa , ba ,  C4   are 

very small.   (Ref.  27): 

u' + al u + go   =0 

w1 + bi w = 0 

(a) 

(b)   (5.4.1) 

9M+c1P
,+cau = 0 (c) 

Ihr   w   mode is completely decoupled leaving the   u   and   6    equations still 

coupled.    On decoupling these by cross-differentiation we arrive at the 

following equations for   u and 6 . 

u'" + (a!   +c1)u" + (a1c:   + 2a! ' )ul + (a1 " + ai C!    - gca )u = 0       (5.4.2) 

e1" + (a1   H-Cj   - ^.1 )e " + (al Cj   + c^ -Ci   ^J)«' - gca 6  =0      (5.4.3) 
ca ca 

On substituting the quantities from TablelDfthe equations become 

(l+(Ut)u,M+ (0.3 +0.08^^" + (0. 02 + 0.0l22t)ul + 0.48u =0        (5.4.4) 

(10 + t)a 6'" + (4 + 0.81t)(10 + t)© " + (8.1 +1.83t + 0. I22ta )© ' 

+ 4.8 (10 + t)9  = 0 (5.4.5) 

, ^ . 0.1 + 0.07 t , . 
W   +(    l+0.1t     )w = 0 (5.4.6) 

Equation (5.4.6) can be readily solved to give 

/       f / 0. 1 + 0. 07 t .   ,    . 
w(t) = cexP(-   J ( ! + 0. ! t ) dt ) (5.4.7) 

The equations for   u   and   6, viz.  (5.4.4) and (5.4.5) are solved approximately 

using the formula (3.4.21 c).    In ord^r to have a comparison with the exact 
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solution, the equations were integrated using the digital computer for the 

conditions given below. 

Initial Condition MO) u^O) u"(o; 
6(0) B'{0) e"(0) 

1 0 0 i 

2 0 1 0 

3 1 0 0 

The linear combination of the linearly independent approximate solutions 

was plotted in each case corresponding to the above conditions.    The locus 

of the roots and the approximations were plotted in each case, together with 

the exact solution. 

This enables one to retain to some extent the familiar ideas of 

the analysis of constant coefficient 1.d.e.    It is noticed that the root loci 

corresponding to the variables   u   and   6    are different.    This is because,  as 

a result of decoupling, the coefficients of the equations for   u   and   6    contain 

additional terms involving the time derivatives of the stability derivatives. 

A constant coefficient analysis of these decoupled equations obtains the 

"     frozen      "   approximations to the solutions of the variable equations. 

Further, in the light of multiple time scale^, the   fast time scale shows 

up as a quadrature over the root variation and describes the frequency of 

the rapidly varying motion.     The results are shown in Fig.  18-27. 

The frozen amplitude approximation u (T^ )|    , which varies on the 

fast time scale,  seems to represent the frequency of the exact solution quite 

well, but the amplitude suffers from errors.    The present approximation 

seems to represent the true function well in both amplitude and frequency. 

The agreement is seen even with the other set of initial conditions.    From the 

above figures it is seen that the approximation is insensitive to initial 

conditions. 
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5.5    The Three Degree>of-Freedom Case 

The complete linearized equations of motion coupling three variables 

u, w and 6 are iri-cn by (5.3.4).    Again treating a^  and ca   as being 

unimportant,   .        quations are written as: 

u' + ax u + g9  =0 

w1 fbx w +bau ^-Ve1 = 0 (5.5.1) 

6 " + Cj 6 ' + ca u + c* w = 0 

In order that the time scales approximation be applied, equations descri- 

bing each   dependent variable    must be obtained.    Unlike the constant 

coefficient case, the equations will not all be the same, as emphasized by 

Curtiss,   so that the time histories of u, w and 6 will be different.   But 

decoupling the equations is itself an involved task; a schematic of the 

procedure can be seen in Fig. 16 .    The equation for   u   is given by 

u"" + (ax   +bx   + ex   -S±«.)UHI 
C4 

»       c' 
+ (ax bx   + bj Cx    + Cj ax   + Vc4 + c'x   + 3ax 1 (ax   + Cx )   Ju" 

+(a1 bx Cx   + Ye* ax   - gCa   —^ ai ci   + »i c'l   + ^ax  (bj+Cx   --4-)+^^''hi' 

/ / 
+(g(ba C4 -bx ca +^- ca -ca •) + a^   (bx Cx   + Vc4 + Cx ' - ^- Cx ) 

i 

+ ax"(bx + Cx   -^—)   )u    =0 (5.5.2) c4 

When C4 =0 it is seen that this reduced to (5.2.2)(with ax = constant;) 

and when all the coefficients are constant the equation becomes 
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u"" + (a!   + bj   + Ci ) u1" -i (ax bj   + ^ ex   + ^ ^   + Vc* ) u" 

+ (aj b: Cj   + Vc4 ax    - gca )ul + g(ba c*   - bx ca )u = 0 (5.5.3) 

as can be verified directly from (5.5.1). 

Now substitution oi thf assumed stability derivative variation from 

Table Til leadatafter a considerable amount of algebra, to the following 

equation for u. 

P4 u(* ) + pa u( 3 )  + ft, u(a) + px u' + pou = 0 (a) 

where 

P4 = (10 + I6t)(10 +t)3(-0.2 + 0.0175t)t (b) 

Pa = (2- 1.35t - 0.232ta   + 0. 02643 t3 )(10 + l6t)(10 + t)a (c) 

(5.5.4 

pa = (60+13. 7t -10.487513   +4.19t3 -0. 9988t4 + 0. 058t?)(10+l6t)   (d) 

px =(4-100. 78t - l2.523ta+1.6994t3 -0.123t*+0. 0107t5)(10+l6t)        (e) 

p =3.22(l0+t)(30.3 + 23.07t -15.7ta-1.4573t3+0.0034t* +0. 0095t5)   (f) 

This equation has regular singular points at   t=0 and  U*ll. 42.    Near t=0, 

therefore, the fourth order equation is approximated by the third order 

system which has only two degrees of freedom,  as is usual in engineering 

analysis. 

The other singular point occurs in a region in which two of the 

characteristic roots coalesce and hence the approximation via time scales 

fails in such a region.    We may recall that this corresponds to a transition 

point, in the vicinity of which the short period mode changes from monotonic 

solutions to oscillatory ones.   Some problems associated with this are 

discussed in the next chapter. 
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We now examine the solution to the fourth order equation characterized 

by various initial conditions.    Figures are drawn to show the comparison Oi 

the time scales approximations with the exact solution obtained by numerical 

integration.   Different variations of the stability derivative   M    with flight 

velocity were studied in relation to vehicle dynamics.    Figures    18-37 

show the difference in the root loci and the corresponding responses.    It is 

seen that the nature of the aircraft motion is qualitatively the same, though 

the root loci are quite different.    A slight resonance seems to occur near 

the transition point on the real axis.   The agreement of the approximation 

with the exact solution is seen to be good in each case, near both hover and 

forward flight, and thus provides a uniform description of the motion of the 

aircraft.    The approximation suffers from errors in the vicinity of the 

transition point as may be expected, but the qualitative nature of the solution 

is preserved.   In general the ability of the approximation to progress through 

the transition point depends upon the choice of the initial conditions; 

use of the digital computer on the other hand, for the approximation, is 

likely to preclude any difficulty with the transition point. 

Also appended are the figures depicting the approximations obtained 

by "freezing" the coefficients.    A comparison of these with exact solutions is 

made for the third and fourth order systems (Fig. iO, 11, 36, 37).     It is seen 

that the "frozen"     scheme      of approximation   is     good only for short 

times,  and the error becomes large in less than a cycle of the oscillation. 

The approximating function grows without bound and does not represent the 

true nature of the solution anywhere after the first cycle. 

5.6 Summary of the Chapter 

Examples with analytically known solutions are discussed first. 

They consist of several second and third order equations and a special n 

order equation.    Correct asymptotic behavior of the solutions is obtained 

using the theory developed in this thesis. 

Transition dynamics of VTOL aircraft are studied in the longitudinal mode. 

The two degree-of-freedom (hover) approximation and the three degree-of- 

freedom case    are studied.    The time scales approximations are compared 

124 



with numerically obtained solutions for various initial conditions.    Error» 

are found to be less than 10% for the hover approximation.  For the three 

degree-of-freedom case, a uniform qualitative description of the vehicle 

motion is obtained, with good accuracy except at the transition point. 

Different variations of M   (V) were studied. w 
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CHAPTER   VI 

CRITIQUE AND EXTENSION 

6. 1  Extension of the Method 

We shall first outline the advantages of the method over earlier 

methods and then discuss possible extensions regarding open problems. 

At the outset one may consider the novel point of view adopted in 

the approximation.    The method of extension as related to multiple time 

scales has been used to obtain the approximations,  both for short and long 

times.    This is done systematically,  generating suitable clocks on which the 

phenomenon is observed for both short and long times.    Criteria of validity 

are presented for each case.   For the short time approximation this shows the 

breakdown of the approximation and for the long time analysis,  upper bounds 

for the error are obtained.     The formula (3.4.21) for the general case 

enables one to write the approximation for a given equation by inspection, 

and for each mode separately.     Furthermore this affords a uniform description 

of the phenomenon,  in a region free of transition points.   Aldo since the result 

is obtained analytically, it is useful for further study and investigation of 

related problems.    In this connection,  one may mention the problem of 

obtaining approximations to the solutions of a system of coupled equations 

without recourse to decoupling first.   Simple "extensions" of coupled equations 

seem to recover the "frequency" of the solution but not the slow amplitude 

modulation.    However, different schemes of "extension" may lead to better 

results, and thus help to simplify the analysis. 

Further work,  for example, may lead to the study of forced 

responses of time-variable systems.    Consider the equation: 

X(y) = y(n)+u)     ,(t)y(n"1)+ ... + w  (t) = f(t) 
n-i o 

(6.1.1) 

The particular solution can be written as 

t 
y(t) =   J h(t.8)f(8)d« (6.1.2) 
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where   h(t, s)   is the Green's function or tht time-variable impulse -esponse. 

h(t, s) is expressed in terms of the independent solutiom: of the homogeneous 

equation   X(y) = 0.     Approximations to   h{t, s) can be obtained using the theory 

developed in this thesis and this cau be used to study approximations to lOrced 

response.     The choice of xorcing functions is dictated by "resonant" and 

"non-resonant" cases; in this connection one may refer to the recent work by 

Feshchenko et al (Ref, 24) for an asymptotic theory of forced linear systems. 

Another aspect of the approximation scheme becomes apparent as 

follows.    In order to apply the formula (3.4.21) one needs to know the roots 

of the characteristic equations as functions of  t.    For systems up to fourth 

order,  a closed form of expression is available for the roots, though it is not 

simple for the third and fourth order equations.    For higher order equations 

in general,  no such results exist.    One may, however,  consider the approximation 

for the roots developed by the author (Ref.  53) as a Taylor's series 

starting at the instant   t = 0.     This technique is of necessity limited to the 

region of validity of the root approximation, which has to be precisely 

formulated.    Nevertheless for smooth variation of the roots the result can be 

used for small   t.     With regard to the VTOL   example, the characteristic 

equation is given by: 

F(x,t) = x* +u)a (t)x3   +a)a(t)xa   + (Wj {t)x + tu  (t) = 0 (6.1.3) 

If t=0 represents hover 

where 

x(t) = x(0) + x (0)t +   I, (0)t3   +... (6.1.4) 

x(t) = 

'If' 
Higher derivatives can be similarly calculated.   For example with reference to 

the VTOL transition problems, two expansions for the root can be made, one 

near hover and the ether near forward flight condition.   Substitution in the 
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formula yields the approximations valid near the two flight conditions 

respectively. 

Parameter sensitivity can be studied in the manner discussed in 

Ref. 53.   The change in a characteristic root caused by changing a particular 

parameter can be computed as a function of  t.    This change in the root is 

reflected as a change in the dynamics of the system. 

6.2 Transition Point Analysis 

The next question to consider is the breakdown of the approximation 

(3.4.21) in a region containing multiple characteristic roots.   These points 

are known as turning points or transition points.     The problem of obtaining 

suitable approximations valid near such points has been abinitio difficult to 

handle.      There is an extensive mathematical literature on this subject, 

which has been studied by, among others.  Langer (Ref. 54), Wasow (Ref. 55), 

Erdelyi (Ref. 44),  etc.    This section presents a brief sketch of the basic 

ideas and some preliminary new results.     The present   objective is mainly 

to identify and outline the problem areas and emphasize the need for further 

work leading to a more complete theory. 

The simplest equation exhibiting a transition point is the Airy 

equation: 

y" +ty = 0 (6.2.1) 

For positive and negative values of   t   the nature of the solutions is quite 

different, being oscillatory or monotonic (as used by Erdelyi,  in the sense of 

having at most one zero) according as   t   is positive or negative.    Thus   t=0 

is called a transition point, to describe the transition in the nature of the 

solution on either side of  t=0.   This can also be seen by observing the 

characteristic roots as   t   goes through zero.    For   t < 0, the roots are 

x = ±Ä    and for t >  0, they are   x = ±\A> and the two roots coalesce for t = 0. 

For a more general equation 

y" + eauü(t)y = 0 (6.2.2) 

the asymptotic approximations for large   e   (   LG     solutions) are given by 
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Cx u)-1/* cos (c L   *dt) + cao)-^* sin (e feu* dt) (6.2.3) 

for   u) (t) > 0,    and by 

ca [   -u)(t)l-1/4exp(e[[ -cud)] +^dt) + c4 [ -UJ (t)] "V* exp{-e [[ -a,(t)^dt)      (6.2.4) 

for   ID (t) < 0.    Cj , ca , c3 , c4    are constants. 

These approximations are valid when u> (t) does not vanish.    Clearly 

when u) (t) = 0 neither   of these forms is valid and transition occurs from one 

type of behavior to the other.    Two problems are seen to emerge.   One to 

find the connection between the constants Cj , Cg , and C3 ,  c4   to represent 

asymptotically the same solution of (6.2.2) for both positive and negative 

values of   t;   and the other to determine the asymptotic form of the solution 

of (6.2. 2) near the transition point.     It must be noted that a transition point 

can occur also if the coefficient u<(t) is singular at a point t   , on either side 

of which u)(t) has opposite signs.    Coalescing   of the characteristic roots 

therefore generally determines the transition point.    The approximations 

each valid on either side of the transition point break down near the point in 

question and a different form of approximation is required.    As Langer points 

out (Ref.  56) this can be observed even in the case of an 1. d. e. with constant 

coefficients; for the case of multiple characteristic roots a different form of the 

solution must be used. 

Two methods have been used to obtain the connection formulae. 

The one used by Jeffreys replaces uu(t) by a linear function ( t-t ) sufficiently 

near t     and integrates the resulting Airy equation in terms of Bessel functions 

of order ± 1/3 , with known asymptotic behaviors.    Comparing these with 

(6.2.3) and (6.2.4) above one obtains the connection formulae.    The other 

method used by Zwaan (Ref.  57) consists in integrating (6.2.2) on a complex 

plane along the real axis up to the point t   on either side,  but making an 

excursion into the complex plane along a semicircle to connect the two sides. 

This avoids the transition point altogether and obtains the same connection 

formulae as before.    As discussed by Erdelyi (Ref.  40) both methods can be 

extended to cases where u) (t) has a zero of an arbitrary order. 

The second problem is one of more mathematical interest and it is the 

determination of the asymptotic forms of the solution near the transition point. 
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The works of Langer, "Olver, Cherry,  and Erdelyi,  referenced in Ref.  56, 

are prominent in this respect.     No simple elementary function seems 

adequate in representing the transition from oscillatory to monotonic behavior 

and higher transcendental functions seem to be needed.    The works of the 

above authors deal with the uniform asymptotic representations in terms of 

Bessel and Airy functions,  etc.    These are not limited to the vicinity 01.' the 

transition points alone but are valid uniformly in the domain of interest. 

With reference to the hover,  forward-flight transition of a VTOL 

aircraft, the characteristic equation is seen to have a double root at one 

instant during such a transition.   Equation (5.5.4) shows that this occurs for 

a value of   t   near 11.4.    This shows that the roots which eventually correspond 

to the short period mode change from real ones to a pair of complex conjugates 

for   a   t in the neighborhood of   t = 11.4.    The solution, therefore, changes 

from monotonic subsidence to oscillatory subsidence, with the accompanying 

breakdown of the approximate solution.    In order to use an approximation from 

hover to forward flight, the Stokes phenomenon (se Chapter I) must be 

investigated.     For the aircraft problem, the precise phase of the solution is 

relatively unimportant.    Great precision in the knowledge of the frequency 

and damping of the motion is seldom required. 

The amplitude variation as given by the approximation grows 

without bound as the transition point is approached.    Hence proper connection 

may be necessary in order to obtain usable solutions, as the amplitude 

information may be required for feedback control purposes. 

6.3 Shifting of the Transition Point 

We shall first consider the second order 1.d.e. and show that the 

approximations   derived in this thesis can be used to advantage in dealing 

with the transition point problem. 

In approximating the solutions to the noncanonical equation 

y" + eu)l y' + e8 u) y = 0 (6.3. 1) 

there are two methods of approach.    One is to transform the noncanonical 
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equation into the canonical form and then obtain the     LG   approximation. 

The other is to treat the noncanonical equation directly.    It is seen that 

under certain conditions,  the two approximations fail at different points. 

Considering the first case,  we convert (6.3. 1) into the canonical form by 

means of the transformation 

y(t) = Z(t) exp ( -f-JuJi dt) (6.3.2) 

giving 

a 
2   . UUi UU 

Z"+e2(uu    -^ ^)Z = 0 (6.3.3) 
O       4 Cc 

i. e.: 

z„.ca(^
3-4u)n   +_^_)Z = 0 

4 2c 

a      , 
For   —^—j ^     +   -gi-     >     0 ,    the     LG     approximation yields: 

y(t) = A! (UJ,
3

   -4u;  +^)"V4exp( - er- f^i dt + %■ ((UJJ 
a - 4tt) +2-^dt) 

+ Aa (UJ! 
1 -4^+ ^ )"l/4exp(-   Ijtüidt-   | [(a^ a -4a)o + ^ )^dt)     (6.3.4) 

On the other hand,  applying the time scales formula (3.4.21) to 

equation (6.3. 1) directly,  another approximation is obtained as 

y(t) = B^cuj a -4a)o)"l/* V(t)exp( - ^ J üJJ dt +|-J(u)1 
a - 4^)^ dt) 

+ Ba (a-! a - 4u)or
l/4y(t)exp{-|-f o^ dt -   f" J(*i 8 - 4^)* dt ) 

where   V (t) = exp( ^^ J^)1/3 ) 

Now y"  is unbounded when 

(a) 

(6.3.5) 

(b) 

2i a - 4 u)^   +  ^i  = 0 
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~~1 

and   y   xs unbounded when: 

O) ■ 4(ju    = 0 
o 

Therefore if   d^   ^    0   and   (ouj a   - 4UJ  )   and   IUJ (t)   do not vanish  simultaneously, 

we have two approximations,  each bounded when the other is not.    The 

transition pointifor (6,3.1) and (6.3.3) are given by a value of   t   for which 

a;,  a  - 4(Jü     = 0 1 o 

and 

uj. 4U,    +
2-^ 

o       e 
0 

respectively.    The occurence of the singularity at the transition point is 

caused only by the use of the approximation and is not intrinsic to the original 

differential equation which may have solutions well behaved throughout the 

domain of interest.    Thus we have obtained two approximations which have 

different transition points.    Therefore,  in effect, the transition point has 

been shifted from t   to  t '    where 
o o 

and: 

u) l 
a (t ) - 40, (t ) = 0 1       o o o 

Ui ^(0-4*  (t')+lii<ii   = 
o o 

If   €    is very large the shift is small. 

Since the bounds on the error are known in each case, the idea can 

be used to shift the transition point by a desired amount. 

An alternative view is as follows.    Consider the canonical second 

order 1. d. e.: 

Z" - ca-n(t)Z = 0 (6.3.6) 
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L G     theory yields,  for fl(t) > 0 (nonoscillatory case): 

Z(t) = A, n-lA exp( f-J-H-^dt) + As il"
1/4 exp( -   |- Jil^dt) 

Now consider the transformation (6. 3. 2).    The equation (6.3.6)    i^ 

transformed into (6.3.1)    with: 

4 O c 

D   s  o^ s   - 40)    = 4 (^-p) 

(6.3.7) 

(6.3.8) 

(6.3.9) 

Using (6.3.5)   y (t)     can be written as: 

V(t) = Bl (/2-p)"^4y(t)exp(-^ ju),   dt +   |-j [ 4(/I-p)l *dt ) 

+ Ba   (/l.p)"1/V(t)exp(-|Ja'1dt -   l|[4(n.p)]^dt ) 

where now   y(t) = exp (  j?       _     Va  ) 

Using (6.3.2): 

Z(t) = B: (■ß-prX/V(t)exp(cJ(iJ-p)^dt) + Ba (/2-p)"1/y(t)exp(-ej(r2.p)*dt) 

(a)  (6.3.10) 

(b) 

(6.3.11) 

By Diver's theorem and its extension (Chapter IV) the errors can 

be computed as follows (standard  L G     theory): 

Z.(t)  =  Z.(t) ( 1 +E ) 
ii i 

i  =   1.  2 

E       *     exp (  2< J     7^7* n h ^ 

where 

dt )     - 1 . 

JE  |  £ exp ,1-     f       ' ^ < XlV* ) dt    )   - 1 

(6.3.12) 
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Also (for the alternative approximation, when   y = constant); 

Z.(t) = Z'.   (t) ( 1 + E.  )      1 = 1,2 where 

t 

a ' 

{Sahexp(   ^1   [^   ^D-V^   (D^) 

dt )     -1 

dt) - 1 

We recall that the condition for   y    to be a constant to this order is that 

ij =0{ —).    In this case the shift in transition point is 0( —a ). 

On substituting from (6.3.9) and simplifying, we obtain (for constant y): 

Z.(t) = 2f (t) ( 1 +E.  ) 
ii i 

A 

(6.3.14) 

Similarly for the oscillatory case consider the equation: 

Z" + canz = 0;   ^(t) >  0 in (a,b) (6.3.15) 

Using (6.3.8),    4*2= - ( u^2 -4u)    + -^ ) 

i.e.:   4(11+0)^01      where   D,    = -(UJ, a   - 4u)   ) " * * o 
(6.3.16) 

As before,  denoting the  ,L G    and the time scales approximations by Z and Z 

respectively, y/e can write 

(a) 

where 

z. = z. + E. n 
ill 

iA 

^   a I  s exP( * - 
»    I € J   TTV* S» ' ^' dt 

and Z. ='2. +11. (A+p)'1^ 

) - 1 (b)   (6,3.17) 

(a)    (6.3.18) 
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where ,  for constant y : 
I ~        i 1 [Ei   a   «i  exp( - e3P 

(^P)"^   ^5({^+P)"l/4) dt 
dt ) -1 (b) 

Thus in a given equation 

y" - p3ily = 0 

suppose that ii{t)   has a zero at t    and n(t) >  0   for   ast<0.    in order to use 
o 

(6.3. 14) a function   p   is chosen such that i*-- p >  0   for   aSt<t '     and 

Xl(t ') - p(t ') = 0.    We require   that   t ' >t .    Hence p(t ) <0. 
o o o       o o 

Similarly,  given the equation 

y" +e2ny = 0 . 

let -^-(t) ^.0      for     t \\.   ;   also   let   t ^ t ^ b   be the region of interest. 

A . t    is a transition point we choose a   p   such that   p(t ) >  0   and we can use 

(6.3. 18) to estimate the errors of approximation.    A schematic is illustrated 

in Fig.  39   for ^(t) = t. 

6.4   Choice of the   p   function. 

The choice of the shifting function   p   is governed by the following 

considerations.    In a finite domain problem a proper   p   function must ensure 

that a transition point does not occur in the domain of interest.    Thus if 

il (t ) = 0    and   a < t   < b   then.ß+ p   must not vanish in   a £  t £  b.    If time 
o o 

is the independent variable as is usually the case in dynamical systems,  the 

range of  t   is the semi-infinite domain   0 s t ^  <».     The transition point is 

then moved to the negative   t   axis.    The function   p   must be chosen such 

that^-+ p   is essentially the same as fl.everywhere except near the transition 

point   t    where -ßf p is non zero,    p   is therefore a peaked function near t 
o o 

and sharply decays to zero on either side of it.    p   need not be symmetrical 

about the transition point; in fact an asymmetrical   p   may prove more useful, 

for,  on one side it must shift the turning point while on the other it must 

decay sharply to have 17+ p sa iTI , 

Even in cases free of transition points the   p   function can be used 

to advantage in reducing the error of approximation.    For example, 

ccnsidering a finite domain problem, the error of the     LG     approximation 

may be more than a specified value.    Since the errors of approximation are known 
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through Olver's results,  a   p   function may be chosen to keep the errors 

within specified limits.    This might be approached as a variational problem. 

Consider the equation 

y" + ea n.(t)y = 0 (6.4.1) 

in the interval: 

a £ t ä b 

We wish to choose a   p(c ,t) such that the error of approximation is minimum. 

The approximation itself is in terms of elementary operations and functions 

and reduces to the exact solutions only in special cases.    From (6.3. 18) it 

is seen that the error is minimum   when 

I s ^2^ -(rHp)"1/*  4( (r2+p)-V* (7HTJV
S 

is minimum.    Thus 

'max^i     «P. P.P-» dt 

dt* 
dt (6.4.2) 

(6.4.3) 

where 

f(p. P.P.t) 
e P _5_ (A + p)3      . i   (/i + V) 

TF3 "  i6 JnTpj*?2    4  (n+p)^3 (6.4.4) 

Application of the Euler-Poisson theory (Ref.  5 8) to the above leads to an 

equation, the solution of which would yield the   p   function for minimum error 

of approximation in the interval (a,b). 

It is felt that a similar approach may prove useful for higher order 

equations also. 
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SUMMARY AND CONCLUSIONS 

The main results of this dissertation are summarized below. 

Approximations are obtained to the solutions of linear differential 

equations by suitably extending the domain of the independent variable 

using multiple time scales.    For a large class of problems,  linear 

time scales are found to be inadequate and, therefore, nonlinear clocks are 

employed,  on which the solutions are observed.    The clocks depend on the 

coefficients of the original equations and are determined by a rational 

procedure.    The Liouville-Green (or WKBJ) approximation is obtained 

using this method.    For the noncanonical second order equation another 

approximation is proposed, and under certain conditions, this remains 

bounded where the WKBJ functions become unbounded. 

In obtaining the approximations,   only the domain of the independent 

variable is extended,  so that this would correspond to the lowest order, 

in an expansion of the dependent variable.    Specific criteria of the uniformity 

of the asymptotic expansion are not applied perse; however,  they are 

implicit    in that *ne "counterterms",   --i.e.  clocks--aro so chosen as 

to cancel the nonuniform parts of direct perturbation theory.    The extended 

perturbation equations,  therefore,  are forced to be homogeneous equations. 

A brief discussion of the criteria of uniformity is presented in Appendix V. 

The method can be extended to obtain higher order approximations in a 

straightforward way. 

The validity of the approximation scheme in different intervals is 

examined and criteria of the failure of the approximation are proposed. 

Error bounds of the Olver type are derived for the second order equation 

in a direct way, although under restrictive conditions.    Similar approximation 

theorems axe proved for third order equations. 

Applications of the approximation to the dynamics of VTOL aircraft 

through the hover-forward flight transition shows good accuracy in 

comparison with solutions obtained by numerical integration.    For the 

decoupled equations which are of fourth order,  one may expect the approximations 
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to fail at a time which corresponds to multiple characteristic roots.    The 

phugoid mode itself is not subject   to this difficulty and may be isolated 

by proper choice of initial conditions.    If the functions are computed 

using a digital computer, again, the difficulty at the transition point may be 

avoided.    Further, different variations of M   (V) were investigated; 

however, no appreciable difference in the nature of the responses was 

found to occur. 
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TABLE  I 

NONUNIFORMITY IN PERTURBATION THEORY 

y" + e  UJ y ^ 0 

(t) '^ 
Type 

of 
~ -if^t dt- ~ -jju) dta 

Nommiforznity 

1 ta 

3! 
t3 

3! 
secular 

tn n+2 tn+3 
secular, n>-2 

(n+2){n+3) (n+2){n+3) 

1 
■tnt - 1 /,nt secular, t-»» 

singular, t-*0 

1 
? 

t 

1 
I3" singular 
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TABLE    Ii 

EXTENDED DERIVATIVES 

[T   ,  Ti  }   ; T    = t ;   Tx   = ek(t) 
o o 

dt     ' at    c    aii 
o * 

A3 i3 "^ l^ »^3 

"d? 3To at! öToaT1 
+ 3k :   a 

iTTTrJ 

+  ca (3k k 
ÖT. 

+ 3^ 
ar^Tx )   + e' { ka 

ar:: 

d4 

d? 
2_^   + e( k 1.    +4k   i— 
BT at! atari 

+ 6"k r   s ,;  a* 
a, 5 .T    + 4k   ■>- 3 a,     ) 0 T     0 T j dT     dTi 

•     ^ 2 /,*a 3 -i —,  n * *■*     A • • • 
+  f:3 ( 31^ ~_       + 4kk   -2— a   + I2kk 

BT ax. aToaT1 
+ 6^11, 

ft T 8 a t-x o A 
■a ) 

+ e3f 6k?k    -^-   3    +4k3    54 

aToaT1 
■a)   +e

4(k*  ^1 ar. 

dn 

d? 
n ■.n au , , n-i, ;n-i a1 

äT^ +c ( ) + •'• +e     (nk     iTTF^1 +"2 
o o     * 

nJn-Uj^.  ll^^ j 
at. 

^"'^TT») 
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TABLE   III 

STABILITY DERIVATIVE VARIATION FOR TYPICAL   VTOL  AIRCRAFT 

a1   = - X   = 0.2 

h^   =  - Z     = 0. 1 + 0. 004 V 
w 

bP   = - Z 
0.25 V 

u       10 + V 

cl   = - M^ = 0. 1  + 0. 0034 V 

ca   .. Mu = 0.015 (-1 + 1L_) 

M 
w 

Case c«(V) V(t) 

1 

2 

3 

4 

(-0.02 + 0.00025 V)  ~0 

0-02<iV50)3 

0.005 + 0.015 (-JJo-)3 

0.005 + 0.015 (^ö~)a 

150 t 
10 + t 

ii 

ii 

150 t 
20 + t 
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TABLE   IV 

EXAMPLES OF SOME CLASSICAL EQUATIONS 

Name Equation Asymptotic Behavior 

1.   Bessel's Eq.  of 
Zeroth Order 

y"+ -y1 + y =0 t"*exp(±it); t-» 

2.   Confluent 
Hypergeometric 

ty" + (b-Oy1  -ay = 0 
t      a-b    1 
et               .   t   - oo • > 

/ 

3.   Euler's Equation y"'+tVy = 0 

4.   "Double Airy" y'"  - ^y'   - 2y = 0 
• 

5. Euler's Equation y        + (-p)   y =  0 
n-1         ,        . #    . 

t-r-  te( etri/n)        e_ 
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APPENDIX   I 
tVi 

EXTENSION OF THE n      ORDER DERIVATIVE 

With the two time scale extension 

tc=>fTo. TX};     To=t.    Tx   = e k(t) (1) 

The derivative operator is extended as 

dt f   "   ar    + dt     at!   " ax    + e      at! (2) 

^c=>( L.    + Ck i-  )   ( L   + ek^-   ) 
d? öT0 äTx '     ^  aTo BTj ' 

lla    +   e   (   kJL      + zy  A^.     ,     +    c^^lL.,)    (3) 

Similarly 

dr 

dF"^ (f^   + ek aTI 
c^    _.    ,   Ö .     .•    3       jn {4) 

an i 
= ~-n    +   e(  ) + ca( ) + ...   + en'l{ ) 

o 

^ n 
+ e 

n kn   *  +      k    ar1
n (5) 

Clearly the r.h.s. contains terms due to the binomial expansion   of the 

operator and those due to successive derivatives of the clock function. 

For purposes of the present approximation scheme,  only terms of order 

C and c are needed in addition to the lowest order terms.     The terms are 
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n 

> T n (a) 

r + 1 

'(n) 1—    +  i'
1    ln)      k(n-r)     Ir^r (6) (b) 

n-1 ,t\»-l     ?         ,   n(n-l)   ,, ;n-2 ^   3  
n(k) sr^T,"-1  + -2— (k)      k   F?^-1    (c) 

^^ k ^ (d) 

That these are indeed the terms is proven by the principle of mathematical 

induction as follows.   We shall prove that if   (6)   is true for   n   then it 

is true for n+1 and show that it is indeed true for   one   n.    Letting the 

derivative operator   (2 )   act again on (6), : 

; a 
n 

3T +   ek ^    ^ +   e k 

(n)  a n-1     nx  Jn.r)ar+1 

u +£i<r>k ir an 

n-l ,       „\n-l   5 
n 

+ • • • + €      (   n(k)      WTFT^r +   — 
n<n-1)  (kr

2k s 
n-l 

-n (<k>n-h-)} (7) 

The various terms can be written as; 

o (a) 

(n+1)   o 1 , (n)   9 
ar- + kx 

ar^r, + k 
n+1 

o ro" a r, 

n-l 
n. 

+ S     (r) 
r = l      r 

(n-r+1)   a 
r + 1 

k 
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o i 
+ k (n-r)   a r+2 

Fr^nräT, 

(8) 



k(n+l)   a    +J n+1      k(n-r+l)   ^_  
atj       r = l    v      r    ' 3T r bT1 (b) 

^ n ^ n+1 . n+1 
n(k)       k  r^,   +   kn   ^ ^   +   n(k)     j^^^ n 

n 

2'    %~'     ~   arTn 
+  njn-l)    (^n-l j.     9 

«     , . „* vn   Sn' (n+l)n   ,' n-1 "5 ,  . 
= (n+1)(k)  IFITT- + —2—^     ^a—n (c) 

^ n+1 * n+1   5 ... e : (k) . ,    n+1 (d) 
0 " i 

On examining (6) and (8) ii is seen that (8) is obtained from (6) 

by replacing   n   by   (n+l).    Hence,  if (6) is true for   n   then it is true for 

(n+1).    It is easily verified from (6) and (3) that it is true for n = 2; 

thus it is true for any   n. 
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APPENDIX   II 

CONDITION FOR THE INVARIANCE OF THE AMPLITUDE FUNCTION 

W.R.T.   THE CHARACTERISTIC ROOTS 

Let the differential equation be written as : 

y'"  + e3   3u)1 (t)y'  - e32uUo(t)y  =  0 (1) 

The characteristic equation is given by: 

F = x3    + 3U)! (t)x - Ziu   (t)  =  0 (2) 

Let the functions a^   and  s2   be defined as follows 

+ (U)I3 + UJ   a)1^-   ;       sa
3   ="»     - (üu, 3   + u)   9)^ (3\ 3 

S, = U) 
O " o   ' o      '   * o 

and, therefore 

»i »a   = -u,i 

taking the real quantity.    The roots of (2) are given by (Ref.  50, p.  17): 

xj    = (8X   : sa) ;   X8f3   = - (-1-2—2-)  ±1 -2~ <8i   " *» > <4^ 

The approximation to the solutions of (1) for large   e    is given as 

t 
y{t) = C D(t) exp( e     ( x. ds) 

where 

where x. are the three roots of (2) given in (4). 

(5) 

D(t)=*|f)"l/3   =(xa   +UÜX ^ (6) 
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We wish to show that under certain conditions the dependence of 

D   on   t   is invariant w.r.t. the roots. 

Since   uui   is a given function,  it is sufficient to show that 

l x2 ( t— I    -*   a constant in some limit. 

Taking     x1   = 8l + sa : 

x2 (S!   +   S3   f 

Si Sa 
=   *->   + 2 + I

2 

Thus 
!D1 

-•   constant if      ^1    - 
s2 1 

-    constant 

i.e. 

w    +(Oü1
3+U)3)* o * o 

o " o 

-•       constant 

i. e. 

iU) a. SJ.^       /        3.       a\* 

—     constant 

Thus it is sufficient that      —*-<r     -•     constant for    — I to approach 

a constant. 

Similarly for the other two roots.    In this case the function: 

(7) 

D(t) = 7?    .,    vl/i»     =  T"? 1    = <Constant) ^'l     (*) 

U'l      (t) 
Thus when —*g ~;    = constant,    D(t) =  u, 

O)        (t) * 
(t) (8) 
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APPENDIX   III 

CONDITION FOR CONSTANCY OF SIGN OF   fy 

In equation 

y" + e2 uüy = 0 

^ (t) ^   0,  the characteristic roots are real. 

Now if (i)   yi (t)     -    0 ,    a ^  C s b 

(1) 

(2) 

or (ü) Yi (O  * Y,  (l )    £ m 

and yx (| )   .-   >   0 

then by corollary to Sturm's theorem   y1     does not change sign in (a,b) 

and is positive. 

The condition for constancy of sign of f(t) is examined as follows. 

f(t) =-u1 *(* ■'♦)" = 14 [^-.|.(-)a   1 ID        4     tu (4) 

f(t)*o if - -i (ü)a   o 
uü       4       u) 

(5) 

i.e. 
JL) 

4 { z + z" ) \ 5 z" ;   where   z = -   . uu (6) 

i.e. 4z  \ za .       Thus   z >  0. 

For example,  if   uu(t) = t   , we see that   f i   0 if -4 s  n <  0.    For a 

more general   ^(t),  conditions must be similarly established. 
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APPENDIX    IV 

PLK METHOD APPLIED TO A SECULAR PERTURBATION PROBLEM 

Consider the equation  : 

y' + py = 0 

The variables are extended a la Lighthill as follows. 

y(t) c^yo(s) fey! (s) + ... 

t    =    s + etx (s) + ... 

(1) 

(2) 

Therefore: d-^ + e y ( 1 + e ^ + ... ) = 0 (3) 

Order by order the equations are 

ds 
=   0 

ds 

jfr-'ivt +y0h>) 

(a) 

(b)       (4) 

(c) 

and so on,  giving : 

y   = C   = constant 'o       o 

Yi - C s + Ci 
o * 

Using the uniformity condition: 

Ü1   =    . IL   = 
ds y 

s      or     t, = r-   +  Ca 

From (2),      > = s + c ( ,"■   +   Ca )      to ordel*   e . 
2 i 

Solving for   s,    we have   • = -1 ±   (1-c   (ca <•   - t) )' (a)       (5) 
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When the constant   Ci   = 0,  s = -1 ±  (1 + et)1/3 (b)    (5) 

The exact solution of (1) is obtained as: 

y = A exp( -e t) (6) 

We see from (6) that the realtion between   s   and   t   is an algebraic one 

and cannot be expected to capture the exponential variation of y(t). 

Alternatively,  since the PLK method has been usually applied to 

singular perturbation problems,  one may be prompted to convert (1) to this 

form and then apply the method. 

D fining   t = —   ,    (1) becomes 

xa  ^   -ey = 0 (7) 
dx 

This is a singular perturbation problem as can be seen by expanding 

y = y   + e yx   + ... ;   whence: 

y   = A = Constant 
o 

A     f yi = -   —    etc. 
x 

Now applying the PLK method, we expand: 

y   (z) + eyi (z)  + ... o 
(8) 

x     =    z  + c x1 (z) + .. . 

Substituting (8) into (7), the resulting equations are written as follows: 

za  ga-   = 0 (a) 
dz 

•'^-'-«^•^"V ""'" 

•' £-' -c ^ 4? + ">' + *" "5? - ^ - ^o df ]   <" 
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Therefore,    y   = c   = constant 
o       o 

C 

Setting the  r.h. s.  of (9c) for uniformity:' 

dz       z 

Integrating: 

"2 

y   r-1  - 2 Xi z -il- + y,    = 0 
b, dz *      dz 7l 

"'   ^   ^i-ci) 

Xi   = - 5-  +   (Ca   + 1) z   + C3 z3 (10) 

Now from (8) :        x = z + e xx ;   again,  this being an algebraic relation, 

it cannot be expected to describe the exponential behavior of the exact 

solution* 

y(x) = C exp (-- ) 

It is felt that this simple example demonstrates the difference between 

the PLK and the multiple time scales approaches. 
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APPENDIX   V 

UNIFORM VALIDITY 

The criterion for uniform validity of the approximation can be 

stated in many ways.    The following two ways are usually considered. 

1.   Ratio Criterion . 

Suppose that the function   f(t) has an expansion 

f = f   + C f,    +eafa   +... o 

i-6-: * i + e*i   +...     .       f   ^   o 
f f o 
o o 

Therefore, 

*-    -1   if   ef^-r 0 
f f    ei 
o o    * 

i.e.: 7   " 1 + ^C ' 
o 

f (t)   is therefore a uniformly valid approximation to   f(t) in a region   J   if 
o 

and only if 

f  = 1 +  0(c) 
o 

for all  t   in   J.    The ratio of   f   to   f   approaches unity as   C -♦ 0.     This form 
o 

of the criterion is used,  for example, by Erdelyi (Ref. 40), 

2.   Difference Criterion. 

From the above expansion for   f : 

f - f   = e f,   + ... 
o 

Th's requires that the difference between f and f   approach zero as e -• 0. 
o 

The difference criterion can be misleading when dealing with very 

small or very large quantities, as can be seen by the following example. 

Consider the equation 

y' = (1 + e)y = 0 
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with the condition: y(0) = 1 

The exact solution is written as     y = exp (  -(1+e ) t).    A perturbation 

expan&ion yields,  in lowest order: 

Vl+y=0        or        y=C exp(-t) 
o o o 

The difference 

y - y    = exp(  -(1+p )t) - exp(-t) 

approaches zero for large   t   and hence according to the difference 

criterion one would conclude   y    to be a uniformly valid approximation of 

y(t) for large t,    to order c .    This is severely in error bect.use, although 

the difference approaches zero,  the functions themselves are vanishingly 

small. 
y 11 However, the ratio test shows that *-   = exp(-ct) """*♦' 0      and does 

not tend to   1. 

For the equation y' - (1+e )y = 0 ;   y(0) = 1,  a similar analysis shows: 

y = exp{ (l+e )t);   y    = exp(t) 

and 

!3   I    = 
r 
o 

R3   *-    = exp(et);   D = y - y   = exp( (1+e )t) - exp(t) 

We require   R"*! andD-'O as   t-»».    The actual values are given below. 

t R D 

0 

!_ 
e 

1 
7a 

t 

1 

e 

e>/e 

0 

e^^e-l)« 1.7el/C 

e^e-.U-o^3 

Thus for large   t   the difference error is much larger than the ratio error. 
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