AD 680008

L4

1948 20 Years of Research Progress

-~

-,

ARL 68-0180
OCTOBER 1¥68

Aerospuce Research Laborateries

ON CUMULATIVE DAMAGE AND
RELIABILITY OF COMPONENTS

V. K. MURTHY

B. P. LENTZ

SYSTEMS DEVELCPMENT CQORPORATION
SANTA MONICA, CALIFORNIA

Contract No. F33615-47-C-1865
Project No. 7071

This document has been approved for public release and sale; »!
its distribution is uniimited.

OFFICE OF AEROSPACE RESEARCH
United States Alr Force




NOTICES

Wi Sovernment drawings, specifications, or other Jdata are used for any purpose other than

«

connection with a definitely related Government precnreme * operation, the United States Government
thereby incurs no responsibility nor any obhigation whatsoever, and the fact that the Government may
have formulated, turnished, or i any way supplied the said drawings, specifications. or other data, s
not to ve regarded by implication or otherwise as 1 any manner licensing the holder or any other
person or corporation, or conveying any rights or pormission to mannfacture, use, or sell wny patented
invention that mayv in anv way be related thereto.

Agencies of the Department of Defense, qualified cuntractors and other
government agencies may obtain copies from the

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

This documen* has been released to the

ACESG B CLEARINGHOUSE

- | /
] < o F O . S
e AL U. ¢ E Dﬁepa rtmt,nt,o% C emmerce
R Springfield, Virginia 22151
WARONERE

0
AWHmBH: sale to e pablic,
Lo A
ML | Al mwo BloA

/

Copres ob ARL Techmedd Documentary: Repotts shondd nat be vctned to Aerospace Research
Laboratoncs aless veturmcis required by seenrity: considerations contiactual obligations or notices on
Lspeattied decunsent,

500 - November 1968 - CO55 - do-13l4




A% 68-9180

ON CUMULATI'S DAMAGE AND
RELIABILITY OF COMPONENTS

V. K. MURT
B. P, LIENT.

SYSTEMS DEVELOPMENT CORPORATION
SANTA MONICA, CALIFORNIA

OCTOBER 1968

Contract No. F33615 47.C.1865
Prsject No. 7071

This document has been approved for public release and sale;
its Jdistribution is unlimited.

AEROSPACE RESEARCH LABORATORIES
QFFICE OF AEROSPACE RESEARCH
UNITED STATES A ™ FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO




J— "3

FOREWCORD

This re~ort was prepared for The Applied Mathematics
Research Laboratory, Aevospace Research Leboratories,
Wright-Patterson Air Porce Base, by Dr. V. K. Muythy
and Dr. B. P. Lientz, System Development Corporation,
inder Controet F33-615-67-C-1865. In this report Che
suthors develop the concepts of cumslative damage for
general reliadiiity and renewal wodels.
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ABSTRACT

Let T, X{t}), and C denote the time to failure, the accumulated

damage by time t, and the "eritical” damage. Let F be the distri-
bution function of T. Let "E" stand for the event of the component
undergoing damage and (tn} denote the sequence of intervals of time
butween successive occurrences of "EF, Let T = g t, and Y, denote

{=l i i
the amount of damage experienced at time Tn' Assume {tp. Y} is a

Ta
saquence of independent, identically distributed variables with
distribution function H{t. ¥), so that {tﬁ} and {Yn% are renewal
processes. The { ~qualicy F(t) < H(t, ») {s obtained with equality
1f and only 1f C © 0. +#or "E' a Poisson process, sufficient condi
tions sre glven for F to be IHX ond DMR., The classes of distribution

functions are ccnsidered with the topology of complete conveigence.

Empirical estimates {ur F from observing occuyrrences of "B are ziven.
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1.0 SUMMARY
Let T, X(t), and C denote the time of failure, the accumulated damage by time
t, and the "critical" dsmage the component can withstand, respectively. Let
"E’ stand for the event of the component undergoing damage and (tn} denote
the sequence of intervals of time between successive occurrences of “E". Let
'l'n = g—l t1 and let Y denote the amount of damage experienced at time Tn.
Asgume {tn, yn} is a sequence of independent, identically distributed random
 variables with distribution function A(t, y), so that {tn} and (yn} are
renewal processes with X(t) = 3:1 b vhere Nt is the number of events by time
t with respect to {tn}. If G(t, x) is the distribution function of X(t), then
F, the distribution function of T, can be expressed in terms of C and H. The
inequality P(e) < H(t, =) is obtained, with equality holding if and only if

C = 0. For "E" a Poisson process, sufficient conditions are given for F to be
IHR and DMR. The classes of distribution functions are considered with the
topology of complete convergence. Empirical estimates for F from observed

occurrences of "E" are given. The asymptotic properties of F are examined.

Generalizations a1e made to several types of multicomponent structures.



2.0 INTRODUCTION

In what foliows, the word “device” {s used to denote the given piece of equip-
ment or hardware under consideration. At time t = O, say, the device is put

to use. As time passes by, the device steadily wears out until it fails or no
‘longet petformo thg functions it should. Let T denote the time to failure.

Let X(t) denote the sccumulated wear out or damage the device lias suffered by
time t. X(t) i3 a random function of the argument t while T i{s a random vari-
able. L2t C denote the '"critical" damage the device can stand. C is considered

to be a constant without loss of generality. The inequality
(2.1) . X(¢) > C

is now the event that by time t the accumulated damage the device tFas suffered
is greater than the critical damage; in other words the device has

failed by time t. Thus, (2.1) is the same event as T < t.

Let
2.2) P{X(t) < x] = G(t, x)

and

(2.3) P(T < t] = F(t).

Then

(2.4) F(t) =1 - G(t, C)



Equation (2.4) expresses the fundamental rélationship between the accumulated

damage X(t) and the time to failure T. Figure I illustrates these concepts.

X(t)

|
|
|
|
|
|
:
|
|
n
\'

Figure 1



3.0 RENEWAL PROCESS DAMAGE MODEL

Let 'E" gtand for the event of the device undergoing damage. Let {ti)

i=1, 2, ..., denote the requence of intervals of time between successive

occurrences of "E". Let

(3.1) Tn-t1+t2+...+tn,n-1. 2, ...,

be the actual time instants corresponding to the occurrence of "E". In other
worde, Tl’ TZ’ T3, ..., are the successive instants of time when the device
suffers damage. Let Y denote the amount of damage the device experiences at
time T , n = 1, 2, ...... We will now assume that {tn, yn}An -1, 2, oo is
a sequence of independently, identically distributed random variables with
the same distribution function H(t,y). Clearly now {tn}, n=1, 2, ..., and
{yn), n=1,2, ..., are both ordinary renewal processes. Under this set-up

the cumulative damage X(t) suffered by the device by time t is given by

Ne

(3.2) X(e) =Xy

n=]1 n

where Nt is the number of events up to the specified time t with respect to
the renewal process (tn). For the cumulative damage process X(t) given by

(3.2) the corresponding distribution is given by

N
t
G(t,x) = P[X(t) < x]) =Pl y < x| =1 - ti(t,)
nel °
o t
3.3) + f f G(t - £, x - x)) dutl'xl(tl’x )
-0 0



because 1 -~ H(t, =) denotes the probability that there is no event in the
specified interval; that X(t) = 0 < x; in the remaining mutually exclusive

caseg, there is some first event in the interval and the last term on the

right-hand side of (3.3) gives this probability.

If we use the fundamental relationship (2.4), the underlying law of failures

\associated with the cumulative damage process (3.2) is given by

» ot
(3.4) F(t) = H(t,=) - f f G(t - t,, C - x;)dH | (e, x)).

-0 0

1’5

Poisson Process for the Events "E"

We will now specialize (3.3) and {(3.4) for the case of a Poisson process for

the events "E" and discover some basic properties of the exponential law of

failures. In this case

N

t
G(tp x) =P z Ynsx
n=]1
(3.5) - 310 P(Nt = n] P[yl ty, .4+ Yo xINt = n)

Since H(», x) denote the distribution of a Yi, we let H(")(w, x) denote the

n-fold convolution of H(», x) with itself. Also,since N' is the number of



events in the interval {0, t) according to a Poisson process, say, with

parameter A

(3.6)

Hence

vhere

(3.8)

and for n > 1

-At . o
P{N - n] - S___S.Z‘.El_,
t n!

© ~At n
Gle,m) » £ S 4 oy
n={
(0) . (O for x < 0

H (®, x) = ¢
71 for x > 0,

Hm (=, x) = H(=, x),

D o [ A e e o

Combining (3.7) and (3.8) we can write

(3.9)

G(t, x) = e Mty b3

= etan®
n!

H(n)

n=}

(=, x)




From (2.4) and (3.9) we discover that in this case

. » -At 3!
(3.10) F(&) » (1 -e Y - % E—-rl,il-‘-)— '™ (w0 )

n=l

Equatior (3.10) is 3 special case of equation (3,4) when the events "F" form

a Poisson process. We will nut interpret the fundamental implicarions of equa-

tions {(3.4) and (3.10).

Let D stand for the event that by time t the device has experienced damage.

Now

(5.11) P(D) = U t) = H(t, =).

Let A stand for the event tha: the device failed by time ¢t and A its

complement, Clearly

D = {DA) U(DA)
= AU (DA), since 4cD.
Hence,
(3.12) P(D) = P(A} + P(DA)
but
(3.13) P(A) = F(1)




JUR-Y

and

© t
2 ] - - 1 s
G 8 P(DA) jf ‘/' G(E = £, C - x)) dhtl, xlxcl, x))
—CD 4] :

Thus equation (3.4) is clearly identical with equation (3.12).

We discover from {3.4) in the general case that
(3.15) F(t) < H(t, =),

the equality sgign holding 4f and only 1f

(3.16) C = (.

The condition (3.16) that t.e critical damage C i{s zero i{s equivalent to

aaying that the cumulative damage process X(t) is a constant independent of

t, 1.e., the device does not deteriorate due to damage or wear out. 1In this case
the event "'E' of the device undergoi. - damage between t and t + dt {s synony-

mous with the event ‘f the dev. = failing between t and t + dt.

There har been a popular misconception that the exponential law of fallures is
characterized by the situation rhat the cumuiative damage 1is independent of
time. FEquations (3.10), (3.:15), ana 13.16) now establish that when the cumula-
tive damage process is constant in time, the underlyinp law of fajlures is
icanticel with the distribution of the intervals between consecutive occur-

rences of "E' and {8 exponential only when the events "E" are Poisson.




4.0 EMPIRLICAL ESTIMATION OF F

Let Hk("') dencte the two dimensional empirical distribution function for

H{.,.). That is, Hw(t,x) = 1/n inumber of observations (T Xi) with T1 <t

i’

and X, < x}.

1
This will than produce an Fk where
+= ¢
Fk(t) = Hk(t,w) - f f Gk (t - tl, C —xl‘ de (tl, Xy
-= 0

4.1 Theorem

Let G be a continucous function with respect to the usual product tonology on

Ez. Then Fk(t) + F(t) completely, or, in the sense of Feller, prop -1

e

Proof. One has

(4.1.1) F (e} - F(O | < B (r, =) - H(t, =)

| 7
+l f f G (e - €, C-x) de(tl,xl)
e 0

R

t
- Jf C(t - tl,C - xl) dH(tl,xl)

—C




The first term in (4.1.1) tends to O since Hk is the empirical distribution

function for H. For the second term one has

o t
(4.1.2) f f G (t - £, C= x) dB (€),x))
= 0
o t i
- f [ sy, C- x,) dH(E,,x))
- 0 I
|-
' - - Y
< ! VN IR AR NCRY
= 0
e t
- f f c{t - cl,C - xl) dH(tl,)&)
- 0
4o t
+ f f Gk(: - tl,c - ,-.-1) - G(t - ;l,c - xl) d“i (tl.xl)‘n
— 0

The first summand in (4.1.2) tends to O as k + = by the two dimensional version

of the Helly~Bray theorem. The second term {n {4.1.2) {s bounded by

(4.1.3) Vf' vjﬁ
0

Gk(c - tl.c - xl)—C(t - :1,

foun

C .. x,)! dH,’(tl, x.).
|

10




To show this tends to 0 and k tends to = we first consider
a t
\ - - C .
b (a, ©) [' fgk(c £y, Cmoxp) al (£, %))
-a 0

where

X C - xl)l-

gk(t -ty C - xl) - ]Gk(t =ty c - xl) - G6(t - t

kxpressing the finite multiple integral as the limit of Riemann-Stieljies sums

and interchanging limitas one obtains
¥ (a, t) * U as k + =,

Hence,

Lim Lim 20 (a, t) = (

a =+ x K *+ =

and since gK is anded and Hk(.,,) is a distribution function, we cbtain

Lim Lim v, (a, ) = Lim ¢, (o t) = (.
X K

Lk +w» g + @ k *» =

In the particular case ror the Poisson process one defines Gk(t, x) by

. n
. . ~it (At {n)
Gl st - . UETI oL
(4.1.4) Gleux) = 2 ¢ o t (=, %)
n=()

11




where Hk(.,.} is the two dimensional empirical distribution function.

4.2 Theorem

With Gk as in (4.1.4) and G as irn (3.3), Ck("') converges completely to

G(.,.).

Proof. Ome first observes the following inequality

(4.2.1) |6, (£, x) - 6(t, 0| i}: e tan" nk(“) (=) - 2™ (=, 0
:
n=0 n

For the right-hand aide we employ Lemma 2, p. 252 of |1} which states that for
fi, and # as the respective operators of H and H. and u a continuous function

on E] the inequality
liwk(n) w - ™ O AN O O

{(n) n)

holds. Tf we let k + o= {t follows that H - N by theorem 1, p. 249

k
of [1}. Now by letting k + = {n (4.2.1), since the limit can be brough: {nside

the summation gign. it can be seen that the rig't hand side tends to 0.




5.0 CONDITIONS FOR DMR AND IHR

In this section we assume {Li) forms a Poisson process and derive sufficient
conditions for ¥, defimed in (3.10), to be DMR (decreasing mear residual life)
and IHR (increasing hazard rate). The section is concluded with an example

whose derived F is IHK.

Ss\A -
d( ) (=, C). Then one has the foliowing theorem.

Set Py *

5.1 Theorem

5 gufficient condition for F to be DMR is for the f.llowing inequalities to

be satisfied for all N > M for some positive integer H.

k N k /N
- k — QS‘ k \
5.1. - ) ) )
SHUIEED NI T IR RS G ral 2 P,
j=0 {=k-§42 ¢ Jo=k-Nt {=k-j+l
for 0 < k < N-1.
N N N-1 /N
» < f
5.1.2 ) S < ")
SHIEED SN DI R S L
Imk-N+2 imi-1+2 Jek-N+1 fmk- 14l
for N - k <« ZN-2.
“-oof. Thne quantity we wish to conrsider {g
ForF(x) ) dx
5.1.0) { . e em
( ' i) I - Fiv)
tor t > 0.
13




To show this is non-jacreac.ng in t, we evaluate y(t) by substitutiug the

expression for F {n (3.10) and obtain

[l n
‘: P ~)t . (,\r.)J
L.;O T e ;S_ 4
(5.1.4) p(t) = 22 =0
e gt
g et

Without loss of generalitv we can asgume i=l. Differentialing v with respect

to t one has y~ (t) < O if and only if

» ) n-2 £ RE ®
/5 - AN SRV
, n - 4
{3.1.5) p < - P e < o] = N\ n s
— n - n e 3! s 0 b — "+l
n=0  n! / \n=2 =0 \ n=1 i=C \ el
Now restrict the summaticns teo finite gumwaticns fer N > 2. One has
N [n\ /N n-2 1\ / N n-1 ‘
ol - N .
; N n £t g -
{>.1.63 N 5 i: P ‘5 T }i' N A X
— n! pa | AR \~~_ n e i
ne( 7 \nel =0 / \nwl j=u !
N-1
"\‘ n
oo ¢
— A+l
N n:
ne=y

considering the coefticlents of tue polynomlais one nas for tae left-nand wide

&




N-1 k

(5.1.7) z z ] z _?:—f-ﬁ-!- ek

ke0 j=0 1mk-]+2

(98 L-u

2N-2 N " N »
' i | i ]k
SDIED) 71 > =Y AR
k=N J=k-N+2 i=k-j+2
For the right-hand side one has
N-1 k p N p
j+1 i X
(5.1.8) z 31 Z = t
ke 3§=0 j=k-j+1
2N-2 N p N p
j+1 i k
M Z Z 30 5_ -7 ) ¢
k=N J=k-N+1 J=k-3+1

Substituting the expressions in (5.1.7) and (5.1.8) into (5.1.6) and comparing

coefficients one obtains (5.1.1) and (5.1.2).

5.2 Theorem

A sufficient condition for F to be IHR is for the following to hold for

N > M for some M>1

k
- k k
(5.2.1) Z (j) Py4l Pi-y+l Zz (J) Py Px—y+2
3=0 3=0

for 0 < k < N-1.

15



M-1 ¥
o k k,
{5.2.2) 2 (.1) pj+1 Pk»-j'PI 2 2 (J) Pj pkmj+2
jak-—ﬂ-}l j-k—!H»Z

for N - k < 2N-2Z.

Proof. W¥e wish to show

F{t+x) - F{t)
1 - F(t)

is aondacreasiag in t for x > 0.

Subscituting for F one has

ax 3 Ofean”®
- nl n
(5.2.3) o (0 =1 - — B0
COM
3:0 nt Pn

As in {5.1), we first can set A=l and then simplify by finding e (1-¢x(t))

which is
; (tx)"
n! r
(5.24) ’x(t) = ex(l—w (L)) = 259,___ .
* y 0
a=0 al pn

We wish to derive conditions on {pn} so that the expression in (5.2.4)
will be nonintreasing. Differentiating ¢x(t) with respect to t one has

¢“x(t) + 0 if and only if

16




S oo (Y et AN G N
L ot Fal 4 ot Porl ] T nt P j; T Post
n=0 n=0 /  n=0 - T,

* nwd

or, equlvalently

U s (o)
;;0 nt Py i n! L
(5.2.5) - s =
o ¥ (t+x)8
:io n! ol MPSEEY o+l

Since we are cousidering this expression for any x > 0, {5.2.5) will hold if and

only if

Ll n

> Lo,

a=0 n! 1]
u(e) = -

. R

D

=0 n! nt+l

is nondecreasing in t. Differentiating u{t) one has p'(t) > 0 1f and

only 1if

™ 2 e =
S« AN e L)S e
nt Potl Ty L nt Pn 1 Pae2
n=0 n=0 n=(
17




Regtricting to finite summations, 84y N, one has

N-1 a \2‘ / N n /N-2 n N\
: Tt £ z L
(5.2.6) (2_, ol Panr; S Z al  Pa ( al Pot2 )
b n=0 / nw ’ el
The polynomial on the left-hand side of (5.2,6) is
N~1 k
n , 1 k
(5.‘.7) z 2 j!(k"j)’ pj+l pk’j"’l L +
ke §=0
2N-2 N-1
) L
7Tk Pyvl Pregar ¢

kel jmk-N+1

and the polynomial on the right side of (5.2.0) is

N-1 k
(5.2.8) z E Hﬁ%}*ﬁ Py Prgu2 5
w=0 L §=0
N-2 [N K
S DI 3

k-1 Py Preg2
keN L jmk-N42

Comparing respective coefficients in (5.2.7) and (5.2.8) one obtains the

gtatement of the theorem.
5.3 Lxample

An example of a distribution function F satisfying (5.1.1), (5.1.2), (5.2.1),

amd (9.2.2). Assume ayj} are indepeadent, i1dent .ally distributed randoq

18




variables with common distribution functiion exponentisl with, say, parameter 1.

Then Py is given by

=
!
ot

n

{5.3.1) pn(x) ~ p ji 9 < % 1-e ¥
i=1

i}
ke

That the expressions in the statements of the theorems 5.1 and 5.2 are satisfied

can be seen by direct substitution.

19




6.0 ASYMPTOTIC PROPERTIES OF CUMULATIVE DAMAGE X{t)

We have from (3.3) for the distribution tuncti n of cumulative damage
N
t

X(t) = I Y , the following
pel 0

rt

{(6.1) G(t, x) = PE(t) s xj -~ P 2 Yn < x

ns]

)

H(tl, Xy

o t
- - " an £ (‘ 3 - ¢ -
1 - H'tv, =) f | G{t tl, X xl) dtl,x
—00 ‘b 1
For t+e renewal process ‘.'tn, Yn}, uw=1l, 2, ..., with common distribution

“((, y), et

Define the transform

L w

* 2l -
(6.2) H {s,t) = I
0

“SUHiny
i Hie,
e d ¢ (t,y)

20




T

Applying (“e transform (6.2 te both sides of equation (6.1) we obtain

* * ) » %
(6.3) G(s, 8) =1 -~-H (s, 0) +#G (s, 8) H (8, 8)
Hence
* 1-H (s, 0)
(6.4) G (s, 6) = ——:“'—;'3’——
1 -H (s, 8)

Noting that the left hand side of equation (6.4) is the characteristic function

*
of the distribution function G (s, y) and that for the real part of s greater than
zero, the right hand side is differentiable with respect to 8, we obtain that

*
the first absolu.e moment of G (s, ¥)is finfte and

L
A L
* - 1
(b.5) { [ ydy(} (5, y) - ,S_LA H .8—;‘__9_»“ (Sje)

*
o LR(8)

*
1 -8 (s, O)

v

where the symbol prime denctes differentiation with respect to 9 and

] 1 X'
(6. 0) R (9) - { H (sv O) -
¥ and Wy are tinite, we obtain from Murthy [2] that

21




® *
6.7) f‘ y dyc (s,y) = R (8)
. *
o I -4 (8,0
v V, U M
oL » 12 1 + 0(1), as 8 ~+ 0
u, 8 5 2 U,
1 2y i

Since the left-hand sile of equation (6.7) {8 the Laplace-Stieltjes transform

(L-S.T) of E{X(t)), we obtain that

1Y
(6.8) E(X(e)) » ¢t = 4+ ——% . 22 4 0(1), as t » =,
u 2
1 2u 1
1
Similarly
ot ™ % 5 2
o Ht(s U)i ];;*‘ 8)’ 1
2 * RS LS i8, T o= 0
(6.9 - Jny dG (s, y) = o +?“W“*T*~—_j
v Y 1 -4 (s, 0) {1 -H (s, 0)}
LI * 2
- . ._M...Mg-«(_s._i____—’ + 2 liR (s)l
* © * 2
! - H (8, 0) [ - H (s, 0)]
wheve
» b
¢ (s8) » - H (8, 8) is the L-§.T
o= ()

~
r




of

(e) =

f

2
H{t, .
y dy {(t, y)

Hence
- 9 * (*( ZiR*f )]2
(6.10) f vS A6 (s, y) = ..,._L;S_L_-_A + (s .
/ y 1 -H (s, 0) (1 -H (s, 0]
If Vys Bas koy and by, are finite, we cobtain after a straightforward calcula-
tion that
, 2
v, 24 Y1 4y u v
2 2 ‘ 2
(6,11} E (X‘(t)) = -l;~t' +t 23 SRR
W l‘. ul U]" Ul
o g 2 2 2
SV SV, U i viu,,
+ l ._;.‘,,, - " ,_!_N_.J_ + ’} e ,,___._l_m),:_‘
")"'i 3”1 by b
AARS Moy Moy )
l {l e e + (1), as t » =
3 \ < Vi
I -Lul s

23




Combining (6.8) and (6.11) we finally discover

\Y \Y u

(6.12) Var (X(t)) = t .1‘,2' + A 3_?_ .
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7.0 EXTENSIONS TO MULTICOMPONENT STRUCTURES

In the previous section the damage Ya was considered a scalar. In the case¢ of
a general structure consisting of m components, at each occurrence of E, say,

at time Tn -t + ty «o- + tn’ the damage the structure guffers can be denoted

by an m dimensional random vector.

The assumption in this case is that the sequence (tn, yn). n=1, 2, ... 1s

a renewal process with a common (m+1) dimensional distribution given by

(ZfZ) ‘ ?{tn <t,y, < y} = (e, y,. yz, ...,ym).

The corresponding m dimensional damage process is then

X, (€) L Yin
Xz(t) Ne
(7.3) _ L

xm(t) I b
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Now the m dimensional joint distribution of life lenpths of the m componentu

is given by

(7.4) F(tl, tyy oeo :m) - P[Xl(tl) > Cl’ Xm(tm) > Cm]”

where‘Ci, 1i=1,2, ... mis the critical threshold for the ith component of

the structure.

Using procedures similar to the single component situation, we can obtain
explicitl: F(tl’_tZ' ceey tm) in terms of H(t, Yyo Yoo cees ym) and its con-
volutions evaluated at the critical threshold. Also, the mean vector and the

variance-covariance matrix of the m dimensional cumulative damage process

X(tm) can be easily evaluated.
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