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ABSTRACT

Let T, X(t), and C denote the time to failure, the accumulated

damage by time t. and Lhe "critical" damage. Let F be the distri-

bution function of T. Let "E" stand for the event of the component

undergoing damage and (t I denote the sequence of intervals of time
n

n
between successive occurrences of "E". Let T - E t and Y denote

n i ii-I

the amount of damage experienced at time T n Assume (t . T 1 Is a

sequence of independent, identically distributed variables with

distribution function H(t. y), so that It I and (Y i are renewal
fl n

processes. The 1 -quality F(t) < H(t, ®) is obtained with equality

if and only if 0 0. ior "E" a Potsson process, sufficient condi,

tiox,6 are gven for F to be IHR ind DKR. The classes of distributton

functions are cc-sidered with the topology of complete ccnve4gence.

Empirical estImates f z F from observing occurrences of "E" are given.



TABU~ OW CONThoTS

1.0 SU MARY ........... .................... . .................. 1

2.0 I TRODUCTION ............................................ 2

3.0 REEAL PROCESS DAMAE MODEl .................................. 4

4.0 EMPIRICAL ESTIMATION OF F .................. ............ q

5.0 CONDITIONS OR DR AND IRK ...............................- 13

b.0 ASTWTTIC PROPERTIES OF CUMULATIVE DAMACE X(t) ............... 20

7. FXTENSIONS TO ALTlCMOKKNr STRUCTtRF .............

.1SLOOR A F Y ' . .... 2

iv

2 2 2 i



1. 0 S"MIARY

Let T, X(t), and C denote the time of failure, the accumulated damage by time

t, and the "critical" damage the component can withstand, respectively. Let

"E" stand for the event of the component undergoing damage and (t ) denote
n

the sequence of intervals of tim between successive occurrences of "E". Let

T n -E t and let yn denote the amount of damage experienced at time Ta nn

Assume (tn, y) is a sequence of independent, identically distributed random

variables vith distribution function H(t, y), so that it n  and (yn} are

Nt
renewal processes with X(t) - n y where N is the number of events by time

n-l Yn t
t with respect to {t ). If G(t, x) is the distribution function of X(t), thenn

F, the distribution funcCion of T, can be expressed in terms of C and H. The

inequality F(t) < H(t, -) is obtained, with equality holding if and only if

C = 0. For "E" a Poisson process, sufficient conditions are given for F to be

IHR and DMR. The classes of distribution functions are considered with the

topology of complete convergence Empirical estimates for F from observed

occurrences of "E" are given. The asymptotic properties of F are examined.

Ceneralizations are made to several types of multicomponent structures.



2.0 INTRODUCTION

In what follows, the word "device" is used to denote the given piece of equip-

ment or hardware under consideration. At time t - 0, sa , the device is put

to use. As time passes by, the device steadily wears out until it fails or no

longer performs the functions it should. Let T denote the time to failure.

Let X(t) denote the accumulated wear out or damage the device has suffered by

time t. X(t) i a random function of the argument t while T is a random vari-

able. Ltt C denote the "critical" damage the device can stand. C is considered

to be a constant without loss of generality. The inequality

(2.1) X(t) > C

is now the event that by time t the accumulated damage the device Las suffered

I-- greater than the critical damage; in other words the device has

failed by time t. Thus, (2.1) is the same event as T s t.

Let

(1.2) P[X(t) 1 x] - G(t, x)

and

(2.3) P(T 5 t) a F(t).

Then

(2.4) F(t) - 1 - G(t, C)



Equation (2.4) expresses the fundamental relationship between the accumulated

damage X(t) and the time to failure T. Figure I illustrates these concepts.

X(O)

T

Figure 1
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3.0 RENEWAL PROCESS DAMAGE MODEL

Let 'E" stand for the event of the device undergoing damage. Let {ti

i - 1, 2, ..., denote the sequence of intervals of time between successive

occurrences of "E". Let

(3.1) Tn - tI + t2 + ... + tn, n - 1, 2, .,

be the actual time instants corresponding to the occurrence of "E". In other

words, T,, T2 , T3 , ..., are the successive instants of time when the device

suffers damage. Let yn denote the amount of damage the device experiences at

time Tn, n - 1, 2. ...... We will now assume that {tn, yn) n - 1, 2, ..., is

a sequence of independently, identically distributed random variables with

the same distribution function l(t,y). Clearly now (tn), n - 1, 2, ..., and

yn ) , n - 1, 2, ..., are both ordinary renewal processes. Under this set-up

the cumulative damage X(t) suffered by the device by time t is given by

Nt

(3.2) X(t) -i Yn
n=l

where Nt is the number of events up to the specified time t with respect to

the renewal process t n1. For the cumulative damage process X(t) given by

(3.2) the corresponding distribution is given by

G(t,x) - P[X(t) S x) - y xj = I - ll(t,<)

- t

(3.3) + f f G(t - ti t x - X1 d~itilx 1  1 I
-CO 0

4



because 1 - H(t, -) denotes the probability that there is no event in the

specified interval; that X(t)- 0 < x; in the remaining mutually exclusive

cases, there is some first event in the interval and the last term on the

right-hand side of (3.3) gives this probability.

If we use the fundamental relationship (2.4), the underlying law of failures

associated with the cumulative damage process (3.2) is given by

t

(3.4) F(t) - H(t,-) - f f G(t - t1, C - xI)dH t1. I(tit X1).

-M 0

Poisson Process for the Events "E"

We will now specialize (3.3) and (3.4) for the case of a Poisson process for

the events "E" and discover some basic properties of the exponential law of

failures. In this case

G(t, x) -P Yn S x

I m

(3.5) = j P(N t a n] P[Yl + Y2 + "' + Yn < xNt a n)
n-O

Since H(-, x) denote the distribution of a Y1 , we let If()(, x) denote the

n-fold convolution of H(-, x) with itself. Also,since Nt is the number of

5



events in the interval (0, t) according to a Poisson process, say, with

parameter

(3.6) P[N t( n] -

Hence

e -X t (t)n  (n)(3.7) G(t,x) - H X)
n-O

where

H(0X) -O for x < 0
(3.8)H , for x ? 0,

HI  (c, x) H(-, x),

and for n > I

H (n) (-, x) - -1) (-, x - z) d~I( , z)

Combining (3.7) and (3.8) we can write

(.)- At e-I ( t) n (n)G(t, x) - e + t H ( X

n-I

6



From (2.4) and (3.9) we discove.r that in this case

_ tl~~4 - At n ~n  =c

(3.10) F(t) - (1 - e At) - E e iH (-C-
n-l 

n

Equatior (3.10) is a special case of equation (3.4) when the events "F" form

a Poisson process. We will n. interpret the fundamental implications of equa-

tions (3.4) and (3.10).

Let D stand for the event that by time t the device has expevienred damage.

Now

(3.11) P(D) - 0 - K(t, )

Let A stand for the event thac the device failed by time t and A its

ComIpwent. Clearly

D - (DA) U(DA)

- AU (DA), since AcD.

Hence,

(3.12) P(D) - P(A) + P(DA)

but

(3.13) P(A) - F(,)

7



andi

t

(3 4) P(DA) - f G(t - tlf C - x ) dHt X (t 1 , x1 )

Thus equetion (3.4) is clearly Identical with equation (3.12).

We discover from (3.4) in the general case that

(3.15) F(t) <_ H(t, ,|

the equality sign holding if and only if

(3.16) C - 0.

The condition (3.16) that te critical damage C is zero is equivalent to

aaying that the cumulative damage process X(t) is a constant independent of

t, i.e., the device does not deteriorate due to damage or wear out. In this ca.Ise

the event "E" of the device undergo . - damage between t and t + dt is syno:-y-

mous with the event -f the devl. - failing between t and t + dt.

There hat been a popular misconception that the exponential law of failures is

characterized by the situation 1.hat the cumulative damage is independent of

time. Equations (3.10), (3.0 t), an 3.16) low establish tha-t when the cumula-

• :.ve damage process is constant in time, the underlying law of failures i1,

iLAntical with the distribution of the intervals between consecutive occur--

rences of "E" and is exponential only when the events "E" are Poisson.

8



4.0 EMPIRICAL ESTI.MTION OF F

Let, IV.,.) denote the two dimensional empirical distribution function for

H(.,,). That is, Hk (t,x) - 1/n {number of observations (Ti, XI ) with TI < t

and X i < x.

This will then produce an Fk where

.- t

F k (t)  k (t,-) - f f Gk  (t - t, C -x 1  dH k (tl, xlI
- 0

4.1 Theorem

Let G be a continuous function with respect to the usual product torology on

2. Then F k(t) 4 F(t) completely, or, in the sense of Feller, prop -,

Proof. One has

(4.1.1) Fk (t) -F(0)1 IH k(t, 11(- t ,~t -)l

+1 f / Gk(t - t
1

9 C - xI) dHk(tlX I

-f C(t - t1 C x 1) dH(t1,x I
-n 0

9



I
The first term in (4.1.1) tends to 0 sinceHktohemprcldsibin

function for H. For the second term one has

(4.1.2) f f Gk(t - t ls C- xi ) dHk(tl,xl)

-f f G(t - t 1 9 C- x1 dH(tlx 1 )

06 0
[ f  f  c~ t -  1 - )  dHk(tl xl)

G(t- tit¢ - x ) d(tlX
- 0

+0 t

/ f G(t - - %) dH(t,,x1 )

0$i t

+; /(tf " - t I PC - G (t z I PC -. x) dH, (t19x).

The first summand in (4.1.2) tends to 0 as k * by the two dimensional version

of the Helly-Bray theorem. The second term in k4.1.2) is bounded by

(4.1.3) G k - t1, - x,) -( - t 1  C - X,) dH , (t X ).

-0

10



To show this tends to 0 and k tends to we first consider

a t

k(a, t) -If f0 gk(t- ti, C- xI) d1ik(t1, x)
-a 0

where

gk(t - ti, C - X k) iGk(t - ti, C - xI) - G(t - tit C - xl)I1

ExpresFing the finite multiple integral as the limit of Riemann-Stieljies sums

and interchanging limits one obtains

k (a, t) - 0 as k - .

Iicnice,

Lim Lim 4k (a, t) - 0
a k +m

and since gK is inded and tK(. ,, is a distribution function, we obtain

Lim Lim Pk (a, ) - Lim 4;, ( " t) - 0.
k a k

In the particular case tor the Poisson process one defines ;k (t, X) by

kn
n-0

11



where Hk(.,.) is the two dimensional empirical distribution function.

4.2 Theorem

With Gk as in (4.1.4) and G as in (i.3), Gk(.,.) converges completely to

Proof. One first observes the following inequality

(42.)-t (n) Hn

(4,2.1) IG (t, x) - G(t, x)l < e (,t)n H ( (- - (, X)
lk E n1 -k~, -

n-0lninO

For the right-hand side we employ Lcu 2. p. 252 of [II which states that for

fik and as the respective operators of H and H, and u a continuous function

on F the inequality

k k

holds. If we let k + it follows that I k 1 by theoret, 1 p. 249

of [11. Now by letting k - in (4.2.1), since the limit can be hrotagh: inside

th. smmation sign, it can be seen that the ri-'R.t ;, it. ,tndst to f).

12



5.0 CONDITIONS FOR DHR AND IHR

In this section we assume it i } forms a Poissov process and derive sufficient

conditions for F, defined in (3.10), to be DM (decreasing mean residual life)

and IHR (increasing hazard rate). The section .s concluded with an example

whese derived F is IHR.

Set Pn - d (n ) (-, C). Then one has the following theorem.

5.1 Theoreo

'. sufficient condition for F to be DMR is for the fAlowing inequalities to

be satisfied for all N > M for some positive integer M.

k k /N

(5.1.1) 
( (N) P

J-0 L-k-J J-k-N+! i-k-/+l

for 0 < k < N-i.

N/N N-1

- - ( N,01(2 P) <) 2 )P N" I +

i-k-?-t2 \ikJ2J-k--N+l k,+

for N k < 2N-2.

-oof. The quantity w wish to c-.1ider to

(1 F(x))dx
t (tt I 3 -t) - ' -I .. ..-

tor t 0.

(13



To show this is non-IJncreascng in t, we evaluate (t) by substitutilg the

expression for F in (3.10) and obtain

Ii n _-At (t
4 1?

n-0
(5. 1.4) u(t) _

- .t _-_____
n

Without loss of generalitv we can assume k-1. Differenti.3nJng with respect

to t one ha " (t) 0 if an ! only if

(5.1.5) (\-.N J P N_  _t  X t

n-O nC, n-2 n- n-I -On

Now restrict the surrnatins to finite sumnaticns fcr N 2, Cne has

\ tj
n! j

N-I

n-0

,,(~. . - n ,. tr

.onsider in he Cef ici ,ts o P)e polyn mla s IS " !as for 1:-, le- - ',

14



N-2kN

(5.1.7) P1 P , I

2Nk-2 NtN

!J f I (k-" t tk.

k-N Jmk-N+2 (i-k-J+2

For the right-hand side one has

N-lkN

(5.1.8) PjlP / ~k
(k--j)-

k-O J-0 J k-j+l

2N-2 N /N
+ 4.Pjl ;;i tk

k-N J-k-N+l J -k-j+l

Substituting the expressions in (5.1.7) and (5.1.8) into (5.1.6) and comparing

coefficients one obtains (5.1.1) and (5.1.2).

5.2 Theorem

A sufficient condition for F to be IHR is for the following to hold for

N > M for some M > 1

k k
(521 ()J+I Pk-j+l > I ( i) PJ Pk-J+2

for 0 < k 5 N-I.

15



(5.2. 2) Lk pj~ ~j I (k)
(5.2.2) J+l Pk-j+l -  )P Pk-J+2

J-k-N+l J-k-N+2

for N - k < 2N--2.

Proof. We wish to show

F(t+) -F(t) is ondecreasing in t for x > 0.
1 - F(t)

Substituting for F one has

-e (,(t+,))n

(5.2.3) W (t) -1 -0

n
nnO

As in (5.1), we first can set 1 1 and then simplify by finding ex (I-0 (t))K

which is

(t+x)
ni Pn

(5.2)(t) (1- (t)) n
x x tn

3! Pn
n0O

lie wish to derive conditions on 1pnI so that the expression in (5.2.4)

will be nonintireasing. Differentiating x(t) with respect to t one has

x (t) z 0 if and only ifx

16



n - ! P+ n I P--
n Pt-

n=On O n? nn=O n1n "
tx-0n-n- 0

or, equivalently

n n
t (t+x)

n=0 0Pn I n
(5.2.5) 

-0

t13 (tx~
_ n= n1 ! n+l

Since we are considering this expression for any x > 0, (5.2.5) wiII hold if and

only if

n- t

tn

n- n! 'n+I

is nondecreasing In t. Differentiating p(t) one has V'(t) 0 if and

only if

n1 Pn+P n Pn+2)"

n=0 n= :n-7

17



Restricting to finite summations. say N, one has

(5.2.6) (-t Pn ~ t I n -. P+

\ n-0 n-0 n-0

The polynomial on the left-hand side of (5.2.6) is

N-I k

(5.2.7) J(k;-J)I I kk-J+l +

k-0 j-O

2N-2 N-1

I JI(k-J)! Pj+1 Pk-j+l

k-N J-k-N+l

and the polynomial on the right side of (5.2.6) is

(J2.8) N-1 
k• /- J I(k-J) p Pj Pk-J+2

J.0 I0

+2N-2 N ~kj k.Z-1 - J I(k-J) I Pj Pk-J+2

k-N J-k-N+2

Comparing respective coefficients in (5.2.7) and (5.2.8) one obtains the

statement of the theorem.

5.3 ,xa_ le

An example of a distribution function F .qatisfying (5.1.1), (5.1.2), (5.21),

and (5.2.2). Assume vy} are independent, ident ally distributed randoi

18



variables with common distribution function exponential withsay, parameter 1.

Thcn pn is given by

(531 p X) n P] Y --
nII i -- 4-0 J

That the expressions in the statements of the theorems 5.1 and 5.2 are satisfied

can be seen by direct substitution.

19



6.0 ASYKPTOTIC PROPERTIES OF CUMULATIVE DAMAGE X(t)

We hdve from (3.3) for the distribution tuncti n of cumulative damage
Nt

X(t) I ! Y, the following

'N jNt

(6.1) CG(t, x) - Pp(t) j xj P Y <
' n

00 tf r -i dtl$ Hl(t I ,
=1 H't, -) + j rG(t - t 1 , x -x 1 ) ,xH~~ xl)

-~ 0

For t.-e renewal process ft, Y),n I 1, 2, ... , with common distribution
n911(t, Y), ieti

0r .(r)

n ti

Def 'e the transform

(0.2) II (S,nt) =
M  

II t(t,y)if 1120

20



Applying L'e transform (6.2) to both sides of equation (6.1) we obtain

(6.3) G (s, e) - 1 - H (s, 0) + C (a, 8) H (s, 0)

Hence

* 1 - H (a, 0)
(b.4) G (s, 0) -

1 - H is, 0)

Noting that the left hand side of equation (6.4) is the characteristic function

of the, distribution function G (s, y) and that for the real part of s greater than

zero, the right hand side is differentiable with respect to 6, we obtain that

the first absolu~e moment of G (s, Y)is finite and

r * .A' -

0. 5) 1 ydG s (i H i, Y)I 2S,0)-.I) i is, )3

i R (a)

1 - (S (, 0)

wie the syribol prime denotes differentiation with respect to 9 and

" and are finite, we obtain from Murthy [21 that

21



(6.7) y d (,y) R )
-" I - 4 (sO)

v 1 W2 iI+ 8 -2 + 0(1), as s + 0

Since the left-hand si;'e of equation (6.7) is the Laplace-Stieltjes transform

(L-S.T) of E(X(t)), we obtain that

(6.8) E(X(t)) - t -I + 1 + 0(), as t

U1 21j2 ;

Similarly

y2 * ~ ~~H (s,u) 's )'",
2 0(6.9) - dG*(s, - ,+

I - '1 0) Li H (s, 0)]

A * 2
, + 2 () -,

- H *(, 0) [0 - H * O)]

whe e

Q (s) - - H (s, 0) is the L-S.T

22



of

Q(t) - f y2 dyH(t, y)

Hence

S* * 2
2 ( 22R (s)]

(6.10) v d G (s, y ) + .
1 - 14 (s, 0) [1 - H (s, 0]

If 4, 31 21 and L12 art; finite, we obtain after a straightforward calcula-

tion that

( 1 1 ) E ( X ( t ) 1 2 + V-1 4

(t-)) t + 7)
W11

1 3

3 4... i 1 I

22 12
+. . + ()(1), as t

23
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Combining (6.8) and (6.11) we finally discover that

(2 12 __v,

(6.12) Var MO~t) - t -- - + .1

2 2 22
5v 1 . 2v I 3 wl u 2 1

4 3~ - 3 +

2v~2  L 2 V _ __ 40(1), as t

274



7.0 EXTENSIONS TO MULTICOMPONENT STRUCTURES

In the previous section the damage 
Yn was considered a scalar. In the case of

a general structure consisting of 
m components, at each occurrence 

of E, say,

at time Tn w t1 + t2 ... + t n, the damage the structure 
suffers can be denoted

by an m dimensional random vector.

Yln

Y2n

yn=

\mn

The assumption in this case is 
that the sequence (tny Yn

, n - 1, 2, ... is

a renewal process with a common 
(=+l) dimensional distribution 

given by

(7.2) P(tn  
<  t, yn < 

y )  - H(t, Y1' Y2' . . m "

The corresponding m dimensional 
damage process is then

Nt

x 19 (t ln

Sn=1

X2(t) Nt 2n

(7.3) 
n= i

x (t) N y
m E-)

25



Now the m dimensional joint distribution of life lengths of the m componeat~i

is given by

=(7.4) F(tl, t 29 ... tm )  P(X 1(t ) C1, ... X m(tM )  > CMI,,

where Ci, i - 1, 2, ... m is the critical threshold for the I t h component of

the structure.

Using procedures similar to the single component situation, we can obtain

explicit], F(ti , t2 * ... * ti) in terms of H(t, y1 ' Y2' "''' Y.) and its con-

volutions evaluated at the critical threshold. Also, the mean vector and the

variance-covariance matrix of the m dimensional cumulative damage process

X(t ) can be easily evaluated.

26
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i ~t T, X(t), and C dewrKte the Liue to failure, the accumuziated damage by time t, and

the 'criticai' daige. Let F be the distribution fun~ction of T. Let 'tE" stand for
the event of the coinqamt undexgoing damage and (t4 denote tthe sequence of
intervals of time betwem successive occurrences of "P-t. Let T I ti WnLl yi
dft~ae the ampunt of daii""' experifted at time T . Assuer, It,9 Y~ I is a sequence

of iwudepmident, ixnentically distributed variable with distributioni funiction 1(t,y),
so that {t%1 and fY~ In ) r' rexemal processes. The inequiality iF(t)OH(t,-) is obtained

with equality if and only if CA., For "E", a Poisscei process, sufficient cuiditicris

are given for F, to be IMR and INW. the classes of distribution ftwtiawi are

ccrsidered with the tnipology of co~lete cativergr-ce. Empirical estimtes for F

frtu observing oairreMces of 'F3 are given.
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