
CORD COt 

Technical Note 1968-24 

Numerical Simulation 
of the Attitude Equations 
of a Satellite Containing 

Damping Rotors 

and a Reaction Wheel 

R. W. Brock* 
N. M. Brody 

15 November 1968 

Lincoln Laboratory 



a center fo 
ii/ith   tha  ell 

document 
•arch operated 

t h a   I !    Q     A . r 



MASSACHUSETTS  INSTITUTE  OF  TECHNOLOGY 

LINCOLN   LABORATORY 

NUMERICAL SIMULATION 

OF THE ATTITUDE EQUATIONS OF A SATELLITE 

CONTAINING DAMPING ROTORS AND A REACTION WHEEL 

R. W. BROCKETT 

NAOMI M. BRODY 

Group 63 

TECHNICAL NOTE  1968-24 

15 NOVEMBER  1968 

LEXINGTON MASSACHUSETTS 



ABSTRACT 

This report describes a program for simulating the motion of a rigid 

body containing a reaction -wheel,   damping media and torquing (magnetic or 

otherwise).    The dynamical equations are  simulated in terms of the angular 

velocities in  body-fixed coordinates and the kinematic equations are simu- 

lated in terms of direction cosines.    The entire  system of equations has been 

programmed using a fourth order predictor-corrector method with automatic 

step-size adjustment and a fourth order Runge-Kutta starting routine.     The 

ratio of computer time to real time is between 1 to lOand 2 to  1 for LES-5- 

type satellites.     The potential user need only be familiar enough with this 

report to fill out the input data sheets on pages vii - ix. 
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INPUT DATA SHEET 

I.     Kinematic Specifications 

Fill in either A or B 

A.     Initial values of direction cosines: 

A(0)    =| 

B.     Initial Euler angles: 

8 = rad,  cp   = rad    <|»     =  rad o     o           o  

II.     Dynamic Specifications 

The i      moment of inertia and the i      component of angular velocity are 
assumed to be taken about the i      principal axis of the satellite.    If there is 
a reaction wheel, the axes must be numbered so as to place the -wheel on the 
?rd i      axis. 

A.     Satellite Characteristics 

Initial value of angular velocity: 

uu(0) 
(rad                                   rad                                             rad  \ 
 sec,  sec,  sec    J 

Moments of inertia: 

2                                          2 2 
Ij =      kg  m    , !,, = kg  m   ,    I3 =   kg  m 

B.     Rotor Characteristics 

If there is a spherical damping rotor on the i     axis, fill in X:(0),   its 
initial angular velocity;  R., its moment of inertia; and k., its damping constant. 
If no rotor,   write NONE in the corresponding blanks. 

X(0) 
(rad                                   rad                                                rad   \ 
 sec,  sec,  sec    / sec , 

kg 
2 

m   , 

,           2 kg   m 
sec 

2 2 2 
R,        =       kg__m_, R2= kg  m   ,     R3  = kg   m 

2 u 2 i, 2 
kg   m kg  m kg  m 

k. =       sec        k = sec k,.   =  sec 

vn 



C.     Reaction Wheel Characteristics 

If the satellite has a reaction wheel,   fill in Xo>   its initial angular 
velocity, and W\,   W?,   W,, its moments of inertia.   Also supply a control law 
determining i, fA ,  uu,  X o)> the torque of the reaction wheel on the satellite. 
If no wheel,   write NONE: 

rad 
X 3     =     sec 

W   =W2      =     kg  m W      =    kg m2 

f3     =  

III. External Torque 

Supply a control law determining n.,   the external torque on the satellite, 
in body-fixed coordinates. 

n        =     nt   m 

n?      =      nt   m 

n,     =     nt  m 

IV. Termination Criterion 

Fill in A or B,   or both.     If both,   the first criterion to be met will termi- 
nate the simulation. 

A. Terminate after integrating over a period of sec. 

B. Run the simulation until the solutions satisfy the following 
condition: 

V.       Title for Output 

Give a brief title for the output,   128 characters or less; a character is 
a letter,   a numeral,   a punctuation mark,   or a space. 

IX 



NUMERICAL SIMULATION OF THE ATTITUDE EQUATIONS OF A SATELLITE 
CONTAINING DAMPING ROTORS AND A REACTION WHEEL 

I.    INTRODUCTION 

Our objective has been to develop a computer program for solving the 

equations which describe the motion of a satellite about its center of mass 

and to get a feeling for how accurate the simulation might be.     The major 

decisions which needed to be made were: 

(i)    What is the simplest model of the  satellite which can account for the 
main features of the motion.     In particular,   how can -we include 
damping of wobble without introducing too much complexity? 

(ii) Which coordinates should be chosen in carrying out the simulation-- 
Euler angles, quaternions, Cayley-Klein parameters, direction co- 
sines or some other set. 

(iii)    What method of integration should be chosen,   e.g.   Runge-Kutta, 
Adams-Bashforth,   etc. ,   and -what step sizes and error bounds (in 
automatic  step size control)  should be used. 

Naturally the decision in each case was made in terms of what -we felt 

would maximize ultimate usefulness of the program.     The uses we had in 

mind are exemplified by the following,   all of which have been suggested to 

us by other people in the  Laboratory working on LES-5,-6 and-7. 

(i)    Suppose a rigid body has within it a motor driven reaction wheel. 
The power fails and the wheel spins down because of friction.   How 
does this affect the motion of the main body over a period of time 
long enough to let the wheel lose 90% of its relative angular velocity? 

(ii)    Suppose a rigid body has magnetic rods and a control law for orient- 
ing it along a magnetic field.     How large can the magnetic torques be 
without causing instability and how fast can such a system be made 
to  respond ? 

(iii)    Given a particular configuration of gas jets and a particular control 
law, how much fuel will it take to orient a satellite from a given ini- 
tial state ? 

This report does not contain any true applications in the sense of detailed 

parametric studies of a particular problem.     Sample problems however have 

been -worked and the results are given along -with the computation times and 

some remarks on accuracy. 

From the point of view of the potential engineering user the main fact is 

that by filling out the input data  sheet (pages vii -  ix) and handing it to a 



programmer he can in a short time get a complete simulation without ever 

studying the internal workings of the program.    In order to assure useability 

independent of programming personnel we have included a reasonably com- 

prehensive guide to the program in an appendix. 

II.    DYNAMICAL MODELS AND THEIR EQUATIONS OF MOTION 

The actual mechanisms which account for wobble damping in most cases 

are far too complex to simulate in detail.    Perhaps the simplest model which 

bears resemblance to the physical situation    is that of a small rotor in an 

otherwise rigid body with the axis of the rotor along one of the principle axes. 

If the center of mass of the rotor coincides with the center of mass of main 

body and if the rotor is dynamically spherical then further  simplifications oc- 

cur.     For the  sake of symmetry one may also want to consider additional ro- 

tors along the other principal axes. 

A.     Case  1:    3 Spherical Damping Rotors 

Lets now consider the case of a rigid body with moments of inertia I. , 

L  and I_ about its principal axes.     We further  suppose that the body contains 

spherical   rotors having as their moment of inertia about any axis passing 

through their center of mass,   R   ,   R? and R     respectively.    These rotors are 

mounted in   such a way as to permit the i      rotor to rotate about the i      prin- 

cipal axis.     If we let uu, ,   uu? and OJ, denote the angular velocities of the main 
tVi 

body and if X- denotes the angular velocity of the i      rotor (see Fig.    1),   then 

the full equations of motion are: 

(R2 + R3 + I.) (i) l     =     ( I    - I3) uu2 uu3 + i    + n. 

(R1+R3 + I2)d)2      =     (I-I)uuuu+i-+n2 

(Rj   + R2 + I3)ti)3     =     (Ij   - I2) (Oj a>2 

RJXJ =     -lj 

R2*2 =     -i2 

R3X3 =    -i3 



3-6i - 88?6l 

Fig.   1.    A rigid body with three pivoted spherical rotors at 
the center of mass.    See section 2. 1,   case  1,   for equations 
of motion.     Viscous frictions between rotors and main body 
provides damping.     Rotors are shown withdrawn for ease of 
visualization. 



•where i •   is the component of the reaction torque between the i      -wheel and 

the main body lying along its axis of rotation.    To get damping we can assume 

viscous friction in the bearing supporting the reaction wheels.     If this is lin- 

ear then 

I. =        k.  (x- - W.)        ;        k.   s   0 
1 111 1 

and the above equations become 

(R2 + R3 + Ij) (Ju1     =     (I2 - I3) !i)2 OJ3 + kj (Xj - U)j) + tij 

(Rj + R3 + I2) &2     =     (l3 - Ij) ujj u)3 + k2 (x2 - w2) + n2 

(Rj + R2 + I3) i3     =     (Ij - I2) tt)j C02 + k3(x3- u>3) + n3 

RJXJ =     k1(0)1 - Xj) 

R2X2 =    k2(«)2-X2) 

R3 X3 =    k3(aj
3 - X3) 

B.     Case 2:    A Reaction Wheel and 2 Spherical Damping Rotors 

We now consider the possibility  of a reaction wheel along one of the 

principal axes,   say the 3-axis.     To keep the notation simple we will suppose 

that there is no damping rotor about this axis but that spherical damping ro- 

tors may be present along the other two principal axes.     It does not seem to 

be general enough to require the reaction wheel to be dynamically spherical 

so we let it be cylindrical with moments of inertia W1 ,   W? and W, (see Fig. 2). 

In the program,   the coordinate axes are always in such a position that W. = W- . 

In the interest of simplicity -we assume that the center of mass of the reaction 

wheel coincides with the center of mass of the main body.     In this case the 

equations are 

(Ij + R2 + W3) lb j     =     (I2 - I3) uu2 uu3 + (W2 -  W3) (!), X3 + J^i  + n. 

(I2 + Rj + W3) lb 2     =     (l3 -  Ij) H)J uu3 + (W3 -   Wj) U»j X3+*2 + n2 



eg 
13-63-882 71 

<(       1 

*2 2 

Fig.   Z.     Figure  1 with the  rotor about the 3-axis  replaced by a 
cylindrical reaction wheel.     See section 2. 2.     The two rotors 
are spherical. 



(I3 + R,  + R2) uu        =     (I,  - I~) uu   uu- + I    + n3 

R1X1 =    -ij 

R2 X2 " i2 

w3x3 =   -i3 

As before,  i.  is that component of the reaction torque of the i      ro- 
f u 

tor on the main body which lies along the axis of rotation of the i      rotor. 

Typically we let i.  and i_ be 

*! =        Rj  (Xj " Wj) 

i2 = R2  (y2 _ u,2) 

The choice of l~,   like the choice of n.,   n? and n~ must be made so 

as to achieve the desired attitude. 

III.    KINEMATICS 

One has several choices -when it comes to describing the orientation of a 

rigid body with respect to an inertially fixed reference frame.    As is 'well 

known,  the popular Euler angles are not well suited for numerical -work be- 

cause of singular points.     The quaternions are superior in this respect but 

because of our need for direction cosine information in computing magnetic 

torques we have chosen to use direction cosines throughout.     This necessi- 

tates integrating 9 kinematic equations instead of 4,   as would be the case for 

the quaternions,  but these equations are well behaved and for problems which 

would require the calculation of direction cosines at any stage this seems like 

an appropriate choice.     (We have thus far not compared integration times 

with an integration procedure based on quaternions. ) 

Figure 3 shows a moving triad and a fixed triad having a common origin. 

We define a., as the orthogonal projection of a unit vector along the i      axis 



|3-t3-88?»l 

Fig.   3.     The moving triad and the fixed (inertial) triad. 
Note definition of a.    • other a's are defined analogously. 



th 
of   the moving system on the j      axis of the fixed system.     If we let ID. be the 

th * 
angular velocity of the moving system about its i      axis then the equations of 

evaluation for the direction cosines are 

11 *21ffl3- a31u,2 

12 
a22U)3 - a320)2 

13 
a23U)3- a      u>2 

L21 a31U)j - anti,3 

22 a32 ^1 " al2U)3 

23 a33UJl - a13U,3 

31 
anW2 - a21U)1 

32 a12^2 " a22U,l 

33 a130)2 - a23U)1 

Expressed more  succinctly, 

Q   A 

where 

all      a12 

a21     a22 

a31     a32 

13 

23 

'33 J 

n 

0 UU 

-ID, 0 

-   w2 -ID 

UU. 

U). 

We remark in passing that A is an orthogonal matrix so A.'A_ is the  3 by 3 iden- 

tity matrix,   where prime denotes transpose. 

For the sake of completeness we include the formula relating the direc- 

tion cosines and the Euler angles. 



A. Euler Angles in Terms of Angular Velocities and Direction Cosines 

8 = arccos a.,, 

cp = arccos (-a^/sin 8) 

\|j = arccos (a?-./sin 9) 

9" = UK  cos \|i - w?  sin l|l 

cp = UK   sin i|t/sin 9  + UK cos ^/sin 9 

il = UK - UK cos ill cos 9/sin 9 - uu,  sin \|/ cos 9/sin 9 

B. Directions Cosines in Terms of Euler Angles 

(c   l|f    c   cp -  c 9   s cp   s   \JJ      c    i|iscp + c   9    ccp    s ill        s    \|i  s 6 • 

- s   v|;    c   cp- c8   stp   c   f    -s\|fscp + c9    c   cp   c f        c   fsfi 

s9scp -s9ccp c9 

C. Angular Velocities in Terms of Euler Angles 

uu . = cp sin 8 sin i|f + 8 cos i|f 

to = cp sin 8 cos i|f - 8 sin i|f 

U),    =      cp cos 9 + t|J 

In many calculations the angular momentum plays a key role.     It may 

be shown that the matrix 

'      -1 - 1 
L    =       ( A    I_      Ql_      A) det I_ 

is antisymmetric and i?^,   ~^ir> and i   ? are the components of the angular mom- 

entum along the 1',   2' and 3' axes,   respectively,   in the inertial triad. * 

*It  is of some interest to note that the Euler equations for a rigid body can be 
•written in this matrix notation as 

(det I) I-1 6 i"1      =    02 I  -  I    Q2 + N 



IV.     EXTERNAL TORQUES 

It is essential to keep in mind that the basic dynamical equations are writ- 

ten in body fixed coordinates.     The torques must be expressed in body fixed co- 

ordinates and must be resolved along the principal axes of the body.     Thus our 

equations take the simplest form if thrusters,  magnetic rods,   etc. are located 

in such a way as to make the resolution of torques along the principal axes sim- 

ple.     Because of the importance of magnetic torquing we will illustrate the cir- 

culation of torques using this as an example. 

Consider a magnetic field of intensity H directed along the 3-axis of a co- 

ordinate system fixed in space .    Suppose there is a set of 3 orthogonal magnets 

having moments m,,  m    and m,,   respectively.     To calculate the torque about 

the i     moving axis due to the j     magnet we need to compute the cross product of 

the two vectors.    Expressed in terms of the moving coordinate  system,   h has 

the components 

11 

L21 

La3i 

12 

22 

32 

13 

23 

'33 

0 

0 

h 

13 

23 

33J 

Hence we have 

nl ml a13 

n2 
= m2 

X a2 3 

-n3- -m3- -a33- 

m2     a33   '   m3   a23 

m3     a^   -   m1   a33 

ml     a23 m2   au 

V.     NUMERICAL PROCEDURES AND RESULTS 

The attitude stabilization program employs a fourth-order predictor- 

corrector method of numerical integration,   with the predictor calculated from 

the Adams-Bashforth formula,   and the corrector from the Adams-Moulton for- 

mula.     Because iterating the corrector formula proved very costly in execution 

10 



time and only marginally profitable in error reduction,  the first approximation 

to the corrector formula has been taken as the final value.    Starting values for 

the Adams-Moulton routine are obtained by fourth-order Runge-Kutta integra- 

tion. 

To achieve the greatest accuracy in the least time,   careful control must 

be exercised over the integration step size.     Therefore,   after each step,  a 

measure of the truncation error is evaluated as follows for each of the fifteen 

integral curves. 

ri    =     I (yc - yp)/ycl 

•where y    is the corrected value of y,   and y    is the predicted value.    (Since the 7c 7p r 

quotient may be misleading when y    is near zero,  r\  is set to zero -whenever 
/ c 

|y        s   5 x 10      . )    The  step size for the next step is determined by the value 

of T] ,   the largest of the fifteen error estimates.     Lower and upper bounds 
max ° rr 

on Tl ,   GLB and LUB,   are supplied as input data.     If ri is less than 'max rr r 'max 
GLB,   the step size,   h,   is doubled;    if Tl is greater than LUB, h is halved. c max       ° 
When the step size is changed,   the new starting values are computed by fourth- 

order Runge-Kutta integration. 

Because the Runge-Kutta method requires twice as many derivative evalu- 

ations per step,   it was expected to be about twice as slow as A.dams-Moulton 

integration.    As it turned out,   an Adams-Moulton step without step size control 

was only 1. 2 times as fast as a Runge-Kutta step, and an Adams-Moulton step 

with step size control took about as much computer time as Runge-Kutta step 

did.     Although nearly as fast in our application as the Adams-Moulton method, 

Runge-Kutta integration is not amenable to step  size control.     Therefore, 

Runge-Kutta has been relegated to the starting routine,  and Adams-Moulton 

integration has been chosen for the actual simulation. 

Double precision (about 16 significant decimal digits) is used throughout 

the program,   for single precision (about 8 significant digits) proved to be in- 

adequate.    After only 30  sec of simulation time, the discrepancy between the 

uu   integral curves obtained with single vs.   double precision is already  0.2% 

11 



even with a step size as small as 0.01  sec.     The most commonly observed 

mean step sizes are about ten times as big, and as step size increases,  the 

gap between single and double precision accuracy widens exponentially. 

-7 -5 With GLB = 10       and LUB =8x10     ,  the program has the following speed 

and accuracy.     The ratio of simulation time to real time is on the order of 10:1, 

with the exact value determined by the complexity of the derivative functions. 

Over the first two hours of simulation time,  the mean error in the solutions 

does not exceed 0.2%;    over the first three hours it does not exceed 0. 3%.   The 

error may remain well below these upper limits. 

VI. SAMPLE PROBLEM 1: TORQUE-FREE MOTION 

In order to fix ideas and to check the numerical procedure against a solu- 

ble problem, we consider first the case of the torque-free motion of a spinning 

cylindrical body without damping.     The physical situation is shown in Fig.   4. 

The completed data sheets are on the following two pages.    In order to get an 

analytical solution we observe that the dynamical equations are 

11) 

a1. 

UU • 

[(I - I3/I)]u>2 uu3 

C(I3-I)/I]»1 u>3 

0 

Thus letting uu   =   u),(0)  (I - I,)/l we have as a solution 

wl cos UU t    sin   0) t 0 uyo) 

"z = - sin uu t   cos   uot 0 ufe(O) 

_V 0               0 1 _uu3(0) 

If we  select the initial time in a suitable way then uu   (0) 

equations are A    =   Q   A with  (!   given by 

0 and the kinematical 

12 



INPUT DATA SHEET 

I.    Kinematic Specifications 

Fill in either A or B 

A.     Initial Values of Direction Cosines 

1 

A(0) /3/2 
-1/2 

i/i 
n>/z 

B.     Initial Euler Angles 

9 rad, cp =     o rad, rad 

II.    Dynamic Specifications 
f V-i f Vi 

The i     moment of inertia and the i      component of angular velocity are 
assumed to be taken about the i*-" principal axis of the satellite.    If there is 
a reaction wheel, the axes must be numbered so as to place the wheel on the 
3rd axis. 

A.     Satellite Characteristics 

Initial value of angular velocity: 
rad 

0        sec, iu(0) = 
(• 

Moments of inertia: 

6/~T    rad 
15 sec, 

rad    \ 
sec     I 

5   kg m   , l? - 5   kg m   , I, kg m 

B.     Rotor Characteristics 
.th If there is a spherical damping rotor on the i      axis,   fill in \.{Q),   its 

initial angular velocity; R,,   its moment of inertia; and k.,   its damping con- 
stant.     If no rotor,   write    NONE in the corresponding blanks. 

•( 

rad 
X(0) = [NONE        sec, 

R.    =    NONE   kgm2, R£ 

. 2 kgm 

•1 =    NONE     sec 

rad rad 
NONE sec, NONE      sec 

NONE 
2 

kgm   , R3 = NONE  kgm2 

NONE 
kgm 

sec ,   k,= 
1,        2 kgm 

NONE    sec 

) 

13 



C.     Reaction Wheel Characteristics 

If the satellite has a reaction wheel,   fill in \ ,,   its initial angular 
velocity,   and Wi, W;,, Wo, its moments of inertia.    Also supply a control law 
determining ^o(A, t£,  Xo)» the torque of the reaction wheel on the satellite.     If 
no wheel,   write NONE. 

rad 
X3    =      NONE     sec 

W = W2 =  NONE kgm
2,      W3 =   NONE  kg m2 

I, =  NONE 

III.     External Torque 

Supply a control law determining n,  the external torque on the satellite, 
in body-fixed coordinates. 

"l 

n2 

n3 

IV.     Termination Criterion 

Fill in A or B,  or both.    If both,   the first criterion to be met will termi- 
nate the simulation. 

A. Terminate after integrating over a period of 10, 800  sec. 

B. Run the simulation until the  solutions satisfy the following condition: 

0 nt m 

0 nt m 

0 nt m 

14 



13 -63-»829| 

Fig.   4.     Sample problem Number  1.     Torque free 
motion I    = I_ =  5;    I    = 6. 

15 



Q(t) 

»3(0) 

-IB3(0) 

ID, (0) sin U)t 

ID. (0) cos (jut 

10,(0) sin out -ID,(0) cos uot 

as can be readily inferred from the classical treatments 

A(t) = 

cos uut   sin uut   0 

- sin 0)t cos uut   0 

0 0 1 

1 0 0 

0 cos 8 sin 8 

0-sin 8 cos 8 

cos   cp t sin cp t       0 
o o 

• sin   cp t cos  cp t      0 
o o 

where 

cos 

*L 

=     I,  ®J u T2    2,2    2,2    2 
I    CD     + I    ID-  + I    0)_ 

) 

4 2        2 
0)1   +tD2 

sin 8 

In the case of torque-free motion,  the Adams-Moulton solution curves 

can be compared directly with the exact solutions.   Let 

Ti..(t)    = |(a..(t) -  ^..(t) )/^.. (t)| 

where a..(t) is the ij      element of A (t) as computed by Adams-Moulton inte- 

gration,   and  a., (t) is the corresponding element as found by evaluating the 

expression for the exact solution.     Then calculate the mean value 

nA(t) 

and the variance 

aA(t)   = 

\    E     V" 
l.J 

9   £   (V^W 
1»J 

16 



Finally,   let  r\.     (t) be the error in i. ,(A, t), a component of angular momentum 
*13 1J 

computed from the integral curves for A.   Since the angular momentum is con- 

stant in torque-free motion 

1,     (t) '1 13 
|(i13(A,t) - *13(A,0))/i13(A,0)| 

The values of |XA,  O   ,   and r\.      tabulated below were calculated after integrating 
A      A JLl3 

with an initial step size of 0. 08 sec and with the truncation error in each function 

confined to the inte 

time was  10. 3 to 1, 

- 7 - 5 confined to the interval [10     ,8x10     ] .    The ratio of simulated time to real 

t nA(t) o> Til  (A) 
13 

3600 sec 

7200 sec 

10800 sec 

0.0012 

0. 0021 

0. 016 

2.0 x 10"6 

4.4 x 10"6 

1.0 x 10"3 

0.0011 

0.0022 

0.0033 

The anomalous value of \x. (10, 800) is more likely an indication of high er- 

ror in the calculated "exact" solution than of high error in the integral curves. 
2 

This conclusion is  supported by the high value of a     (10, 800) and the low value 

of r\.     (10, 800).    The preceding values of \i . may also be considerably higher 
i13 A 

than the actual integration errors.    In fine, -with the initial step size and error 

bounds given above,   and with an integration period of three hours, the mean error 

in the nine direction cosine solution functions increases, in all likelihood, by no 

more than 0. 1% per hour. 

Since the expressions for the exact solutions for tw do not contain products 

of trigonometric functions of t, the error in these functions is not compounded. 

Moreover, the integrated values of u) were in perfect agreement with the exact 

solutions; during the entire three hours of simulated time, there was no detect- 

able error in U).    Since the integrated and the calculated solutions were known to 

the nearest . 00001  sec    , the maximum absolute error in w was 5x10       sec 

VII.    SAMPLE PROBLEM 2:    A MAGNETIC ATTITUDE CONTROL LAW 

We now illustrate how the program might be used to check out an attitude 
control system.    We assume a spinning cylindrical body with two damping ro- 
tors and no reaction wheel.    We also assume magnetic torquing rods perpendi- 
cular to each other and the spin axis.     For simplicity we examine a fixed 

17 



magnetic field which is parallel with the desired orientation of the  spin axis. 

The dynamical equations,   a synthesis of the basic equations of Sections II, III 

and IV are 

(I + 2R) uu =      (I -  I.) UU3 U)2  - k(uu.   - X,) + n. 

(I + 2R) UU-     =     (I, - I) uu3 uu    - k(uu2 - x2) + n
2 

(2R + I3)UJ3    =     n3 

R xT =     kfUUj - \x) 

R x2 =     k (U^ - X2) 

where 

nl =     u2 a33 

n2 =  "ul a33 

n3 =     uj a23-   u2 a^ 

and the u's (proportional to the  strength of the respective magnets)  are given 

by the control law 

ul =    uo sgn[a33 (a22*2 " a12^3)] 

U2 =    Uo sSn[a33 {*lll23- a12^3])] 

That is,   the u's are chosen in such a •way as to drive the angular momentum 

vector to the vertical.     The numerical constants can be found on the input data 

sheets. 

A plot of the angle between the vertical and the UU   axis is shown for two 

particular values of u   - 



(p°o e 

19 



INPUT DATA SHEET 

I.     Kinematic Specifications 

Fill in either A or B 

A.     Initial Values of Direction Cosines 

1 

A(0) = j 0  VT/2       1/2 
0  -1/2 VT/2 

B.     Initial Euler angles 

rad, cp   =                          rad, ill   =                         rad 
      o         To       

II.   Dynamic Specifications 

The i     moment of inertia and the i      component of angular velocity are 
assumed to be taken about the i     principal axis of the  satellite.    If there is 
a reaction -wheel, the axes must be numbered so as to place the wheel on the 
3rd axis. 

A.     Satellite Characteristics 

Initial Value of Angular Veloc 
/                         rad 

uu(0)    ={             0             sec, 

:ity 

0 

5 

rad 
sec, 

kg m   , I3 = 

rad 
5           sec 

\ 

Moments of Inertia: 

2 
Ij        =           5        kg m   ,   I0 = 6      kg m 

) 

B.     Rotor Characteristics 

If there is a spherical damping rotor on the i      axis,  fill in %(0),  its 
initial angular velocity; R.,   its moment of inertia; and k.,   its damping con- 
stant.    If no rotor,   write NONE in the corresponding blanks. 

x(°) 
(rad                                         rad rad \ 

0 sec,  0 sec, NONE      sec   ) 

R}      =        .05        kg m   , R3  = .05      kg m2, R3 =  NONE  kg m2 

kg m kg m kg m 
k1       =        • 01 sec   , k2   = .01 sec   ,   k    =  NONE     sec 
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C.    Reaction Wheel Characteristics 

If the satellite has a reaction wheel,   fill in \~,   its initial angular 
velocity,  and W.,   W?,   W_,   its moments of inertia.    Also supply a control 
law determining 1-, (A,  (£,  X 3)f  the torque of the reaction wheel on the satel- 
lite.     If no wheel,   write NONE. 

rad 
X3     =       NONE sec 

W  = W"2 =   NONE   kg m2        W3  =   NONE  kg m
2 

i3  =  NONE  

III. External Torque 

Supply a control law determining n,   the external torque on the satellite, 
in body-fixed coordinates.     Let u,  = u    sgn ( (a?? i? - a.? i.) a.,,) and u?  = 
UQ sgn ( (ajjij - a12i2)a33) 

nl 

n2 

n3     : 

where u    is either .01 or .002 o 

IV. Termination Criterion 

Fill in A or B,   or both.    If both,  the first criterion to be met will termi- 
nate the simulation. 

A. Terminate after integrating over a period of 1500 sec 

B. Run the simulation until the solutions  satisfy the following condition: 

U2a33 nt m 

"Ula33 nt m 

Ula23 " U2 a 13 nt m 
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Fig.   5.     Sample problem Number 2.    Magnetic torquing with a 
fixed magnetic field.     Damping rotors are included. 
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VIII.    SAMPLE PROBLEM 3:    REACTION WHEEL SPIN DOWN 

Consider a cylindrical body whose moment of inertia along the axis of 

symmetry is smaller than the moment of inertia along the other two princi- 

ple axes.     Such a body might be held relatively stable by putting a spinning 

wheel along the axis of symmetry with an electric motor drive to overcome 

friction.    We want to investigate what happens if the power fails and the wheel 

spins down due to friction.    The main item of interest might be the angle that 

the axis of symmetry makes with the vertical after a certain period of time. 

Naturally if the system is perfectly balanced and UK   = U)?    =   0 initially then 

momentum lost by the wheel will be taken up by the body but no change in the 

orientation of the spin axis will occur.    However if the initial values of tl). and 

U)_ are slightly different from zero then -wobble -will build up.     We assume the 

existence of damping rotors on the  1- and 2-axes and take the reaction wheel along 

the 3-axis.     Let the moments of inertia be I,   =  L   = 5 and I,   =   3.    The initial 

velocity of the main body is zero and is assumed to be perfectly oriented (A(0) 

is the identity matrix).    Since the complete input data sheet is attached,   we 

only remark that the initial angular momentum of the wheel is  180 kg m  /sec. 

The value of damping picked is such that the wheel spin down has a time con- 

stant of 18 minutes.    Attached graph illustrates the misorientations of the spin 

axis as a function of time. 

When the reaction wheel spin down was simulated -with an initial step size 

of 0. 04 =ec and with the same error bounds as in the torque-free motion simu- 

lation,  the ratio of simulation time to real time was  11 to 1. 
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INPUT DATA SHEET 

I.     Kinematic Specifications 

Fill in either A or B 

A.     Initial Values of Direction Cosines: 

 1 

A(0)    = 

B.    Initial Euler Angles: 

9           =                             rad, cp   =                      rad, i|)    =                           rad o o          o        

II.     Dynamic Specifications 

The i      moment of inertia and the i      component of angular velocity are 
assumed to be taken about the i      principal axis of the satellite.    If there is a 
reaction wheel,   the axes must be numbered so as to place the wheel on the 
3rd axis. 

A. Satellite Characteristics 

Initial value of angular velocity: 

(rad                                  rad rad \ 
• 05 sec, .05        sec,  0 sec   1 

Moments of Inertia: 

2 2 2 
I, =         5   kg m   ,  5    kg m ,  3    kg m 

B. Rotor Characteristics 

If there is a spherical damping rotor on the i      axis,   fill inX-(O),   its 
initial angular velocity; R.,   its moment of inertia; and k.,   its damping con- 
stant.     If no rotor,   write NONE in the corresponding blanks. 

(rad rad rad \ 
0 sec, 0 sec, NONE      sec   ) 

2 2 2 
Rj      = . 05 kg m   , R3=       .05    kg m   , R3 = NONE kg m 

2 2 2 kg m kg m kg m 
k,       = . 01      sec ,   k_ . 01       sec   , k- =  NONE    sec 
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C.    Reaction Wheel Characteristics 

If the satellite has a reaction wheel,   fill in Xo>   its initial angular veloc- 
ity,  and W.,   W?,   W,,   its moments of inertia.    Also supply a control law de- 
termining t   (A,  U),  X?)»  *ne torque of the reaction wheel on the satellite.   If no -3 *~»  n»   ^3 
wheel write NONE. 

rad 
X3     = 60 sec 

W   =W2    = . 1     kg m2, W"3   = .1 kg m2 

i3      = (^3-W3)   X    10"4  

III. External Torque 

Supply a control law determining n,  the external torque on the satellite, 
in body-fixed coordinates. 

nl 

n2 

n3 

IV. Termination Criterion 

Fill in A or B,   or both.     If both,  the first criterion to be met will termi- 
nate the simulation. 

A. Terminate after integrating over a period of 300 sec. 

B. Run the simulation until the solutions satisfy the following condition: 

0 nt m 

0 nt m 

0 nt m 
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Fig.   6.     Wheel spin down problem.     Damping rotors on 
1 and 2 axes; reaction wheel on 3 axis.    Initially the rigid 
body has angular velocities w     =  .05 w 05 w 0, 
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APPENDIX   1 

USAGE OF THE ATTITUDE STABILIZATION PROGRAM 

Purpose of the Program 

The purpose of the attitude stabilization program is to simulate the mo- 

tion of a satellite about its center of mass.    The motion is described by a 

system of differential equations of the form: 

an(t) = fjft, U),  A) 

a12(t) = f2(t, tu, A) 

a13(t) = f3(t, (U, A) 

a21(t) = f4(t, (£, A) 

a22(t) = f5(t, u), A) 

a23(t) = f6(t, U),   A) 

a31(t) = f_(t, IB,  A) 

a32(t) - fg(t,   U),   A) 

a33(t) = f9(t, <B,  A) 

il(t) = f10(t, <U,  X. A) 

u)2(t) = fn(t, tu, x» A) 

(i)3(t) = f12(t, tu, x» A) 

xx(t) = f13(t, tu, X) 

x2(t) = f14(t. w» x) 

x3(t) = £15(t, tu, x) 

where   U)    =   (l^,  U)2,  uu3),  x    =   (Xr  X2>  X3).   and 

a12 a13 

a22 a23 

a32 a33 
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More concisely,   in vector notation,   the system can be written: 

y(t)  =  f_(t,^), where £_= (fj, i^, . . . , fj5)» J.= (an' ai2' ' ' ' ' a33' 

My • • • >X^)> and y_ = (ajj» aj2' ' ' " ' *33'  ^1' '' ' ' ^3^' 

The simulation is accomplished by using techniques of numerical integra- 

tion to compute the solution curves of the above system:   A,  u),   and \. 

Numerical Integration 

Given r\,   t   ,   and the differential equation y(t)  = f(t,y),   there is one and 

only one function y such that dy/dt = y  and y(t   )  = T\.     By numerical integra- 

tion,   one can find a good approximation to y,   the solution function,   on a  set 

of discrete points,   {t. }.     The initial value,   T\ ,   tells where y is located at a 

certain time,   t   ,   and the value of the derivative at this point,   f(t   ,T|),   indi- 

cates where y is headed.     Therefore,   if h is a small time interval,   one can 

compute with little error where y will be at t.   = t    + h.     Then y(t.) can be 

used to evaluate f(t. , y(t,)),   which in turn will point the way to y at t, =t. +h. 

The process of getting from y(t.) to y(t.     ,) is called an integration step, and 

the step size is h = t. ,  ,  - t.. r 1 + 1        1 

A method of numerical integration is called self-starting if the only input 

data required is t    and T).     The Adams-Moulton predictor-corrector method, 

which is used for the attitude  stabilization simulations,   is not self-starting. 

Only one value of y  can be computed from t    to r\,  but the Adams-Moulton for- 

mulas for y(t.     ,) require values of y  at four consecutive points: t.     .,, 

t.     _, . . . ,t..    Therefore,  the program includes a Runge-Kutta integration rou- 

tine,   -which computes the starting values needed for the Adams-Moulton inte- 

gration. 

Runge-Kutta Integration Routine 

A Runge-Kutta integration step has the form y(t + h) = y(t) + h * $(t), 

where $ (t) is calculated as follows: 
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Gl(t) = f(t,y)    =   y(t) 

Zl(t) = y(t) + 0. 5h * Gl(t) 

G2(t) = f(t + 0. 5h,   Zl) 

Z2(t) = y(t) + 0. 5h * G2(t) 

G3(t) = f(t + 0. 5h,   Z2) 

Z3(t) = y(t) + h * G3(t) 

G4(t) = f(t + h, Z3) 

$(t) = (Gl(t) + 2G2(t) + 2G3(t) + G4(t))/6 

When a system of equations,  £(t) = f_(t,y_),   is being integrated, each func- 

tion y. in y_ has its corresponding Gl.,   Zl.,..., G4., I.,   -which are computed 

exactly as above,  using f. to compute Gl., . . . , G4..     It is important to note 

that all components of the vector Zl_ must be calculated before any of the com- 

ponents of G2,   all of Z2 before any of G3,  all of Z3 before any of G4, and all 

of y_ before any of the next G 1.    These are the only restrictions on the order 

of computations. 

In the A, ub, X system, t appears implicitly, as in (JO, but never explicitly, 

as in sin t, e , or 3t + 10. Therefore, the Runge-Kutta equations reduce to a 

simpler form for this system: 

Gl = f(y) 

Zl = y + 0. 5h * Gl 

G2 = f(Zl) 

Z2 = y + 0. 5h * G2 

G3 -- f(Z2) 

Z3 = y + h * G3 

G4 = f(Z3) 

$ = (Gl + 2G2 + 2G3 + G4)/6 

y = y + h * $ 

In the following summary of the Runge-Kutta routine,   and in the summar- 

ies of every subroutine described below,   all CALL's -will be discussed,   and 

30 



all arguments and COMMON variables -will be listed,   together -with all type, 

length,   and dimension specifications not implied by FORTRAN convention; 

since no IMPLICIT statements appear in the program,   no nonstandard con- 

ventions pertain.     None of the COMMON blocks is used for subroutine-to- 

subroutine communication;   they are used only for initializing subroutine vari- 

ables to values set in the main program,   WCHA.    Variables labeled "input" 

contain data supplied to the subroutine in question;   those labeled "output" con- 

tain data computed by subroutine. 

The Runge-Kutta subroutine,   RK(H, T, Y, FY),   computes the starting val- 

ues for Adams-Moulton. 

A. Arguments 

H, REAL * 8;    input;    step size 

T, REAL * 8;    as input,   T = t.       •,   as output,   T = t.. 

Y(15),REAL * 8;    as input,   Y = y_(t.     ,);   as output, 

Y = y_(t.).     The functions are ordered as above, 

in the description of A,  to,   X system. 

FY(15, 5), REAL * 8;    output;    FY(J, K)  = fjft. _ , Y), 

J = 1, 15,   K = 1, 3,   where fT is the derivative of 

Yj.     FY(J,K)  =0,   J =  1, 15,   K = 4, 5. 

B. COMMON 

/CHIDOT/YDOT(15) 

REAL * 8:    YDOT 

Adams-Moulton Integration Routine 

For the differential equation y (t) = f(t,y),   an Adams-Moulton integration 

step has the form: 

y(t + h)    =   y(t) + h *p(t,f) 

f p f(t + h,   y(t + h)) 

DO 1    m = l,n 

y(t + h)   = y(t) + h * c(t,f,f   ) 

f 
P 

f(t + h,   y(t + h)) 
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•where the functions p and c are given by the predictor and corrector formulas 

described below. 

Increasing n,   the number of iterations of the corrector formula, has an ef- 

fect and a side effect:   the error decreases but the computation time increases. 

On account of the gravity of the side effect,   n = 1 in the Adams-Moulton sub- 

routine;   the first corrected value is taken as y(t + h). 

For g, an arbitrary function of time, let g = g at t , n = i - 3, i - 2, . . . , 

i + 1.     Then the predictor formula can be written 

y. =   y. + (55 f. -  59 f.     . + 37 f.    _ - 9 £.     -) * h/24 71 + 1 ' i i i-l i-2 i-3 ' 

The predicted value of y.   ,   ,  is used to calculate f. , , ,   which appears in the r ' i + 1 i+l rr 

corrector formula: 

y. , .      =   y. + (9f. , . + 19f. - 5f.     ,+f.    ,) * h/24 7 I + 1 I i + l I i-l       I - d. ' 

To apply the Adams-Moulton method to a system of equations, y = f (t,y), 

simply apply the predictor and corrector formulas to each component of y, 

making sure to compute the entire predicted vector y_.     .  before starting to 

calculate f. ,  ,  for the corrector formula. 
—i + 1 

It is important to maintain an optimum step size during the integration. 

If h is too small,   the computation takes too much time,   but if h is too big, 

there is a large error in the solutions.     To optimize h,   an error estimate,  E, 

is calculated for each of the fifteen functions after every integration step. 

E ,   the greatest of the fifteen errors,   has upper and lower bounds speci- max ° trtr f 

fied as input to the program.     If E is greater than LUB, the upper bound, 

then h will be halved,   and if E is less than GLB,  the lower bound,  then h 
max 

will be doubled. 

Whenever the step size is changed, the Runge-Kutta starting routine must 

be called, for the Adams-Moulton routine cannot find the complete set of deri- 

vatives at the new points {t.     ,, t.    _, t.     .} = {t. - 3h,  t. - 2h,  t. - h} unless the 
l-O        1-6 1-1 1 1 i 

step size has remained constant. 
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The choice of the lower and upper error bounds,   GLB and LUB,   will be a 

compromise between accuracy and speed.      Often a good set of bounds is 
-7 -5 GLB = 10     ,   LUB = 10     .     However,   an optimum set of bounds for a particu- 

lar A,  &,  X system can be determined as follows.     Form n sets of bounds, 

B,, . . . ,   B   ; B. = [GLB, LUB}.,   i = 1, . . . , n.    Run n simulations, identical ex- 
1 n       I l 

cept in the choice of B.,   and obtain n corresponding sets of solutions, S., . . . , 

S   ; S.  = ( A,  to, X 3-»   i = If n.     Then study the discrepancy between S. and S., 

for {i,j : i / j }.    Suppose B. has more restrictive bounds than B.; i.e., h will 

halve more easily and/or double less easily under B..     Then if the discrepancy 

between S. and S. is great,   one may reject B. as unacceptably lax.    If,   on the 

other hand,  the discrepancy is slight,   and if S. took substantially less execu- 

tion time than S.,  then B. is to be preferred to B.,   for it provides greater 1 j c |_» r o 

speed with comparable accuracy. 

In order to compare S. with S.,  locate m points of time,  t,,t?, . . . ,t    , at 

which solutions appear in both sets of output.    Assuming B. more restrictive 

than B.,   a good measure of the discrepancy at t = t,   is given by: 
J k 

15 

D,      =   X        X,      I   (s-   (*J "  s-   (*! ))/s-   (t, ) I k 15        A—/      i       in   k in   k   '   in   k   ' 
n = l 

where s.    and s.    are the n      functions in S. and S. respectively.     If D.    is 
in jn l j r k 

small for k = 1, . . . ,  m,  then B. and B. provide about the same accuracy. 

Be sure,   when seeking to optimize GLB and LUB,  that the initial value of 

the step size,   h   ,   is reasonable.     If h    is too big,   the accuracy will be poor o o 
no matter how small an upper bound is used.    An initial step size of 0. 0 5 sec 

is usually satisfactory for the WCHA program.     However,   as a precaution, it 
-7 - 5 might be wise to begin with h    = 0. 001  sec,   GLB = 10     ,   LUB = 10     , and see 

how the step size behaves over an integration period of,   say, 60 sec.    Having 

thus determined what range of step sizes is appropriate for the system at hand, 

select h    from the lower end of that range. 
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Summary 

The Adams-Moulton subroutine,   AM(H, T, Y, FY,   GLB,   LUB), computes 

the integral curves for the  system A, U),  j(. 

A. Arguments 

H, REAL * 8;    input;    initial step size. 

T, REAL * 8;    input;    T = t. 

Y(15), REAL * 8;    input;    Y=y_(t.) 

FY(15, 5), REAL * 8;   input; FY(J, K) = fj(t. _ (4_K). Y), J = 1. 15, 

K = 1,3.    For K = 4, 5, FY is computed within the subroutine. 

GLB;    input;    greatest lower bound on error. 

LUB,   REAL; input; least upper bound on error. 

B. Common 

/CHIDOT/YDOT( 1 5);/COEF/P(4), C(4) 

REAL * 8: YDOT,  P,   C 

C. Subroutines Called 

DERIV; evaluates the derivatives. 

OUTPUT;    writes out the  solutions,   and determines when to termi- 
nates the simulation. 

RK; restarts AM when step size changes. 

Auxiliary Subroutines 

I.    ANGMOM 

Subroutine ANGMOM (Y, EL) computes L_,  the angular momentum of the 

satellite.    _L is sometimes needed for the calculation of n in subroutine TORQUE. 

In the special case of torque-free motion (n = ^0,  V   = 0),   the angular momen- 

tum should be perfectly constant;   the accuracy of the integration can then be 

checked by writing out L_ and observing its variance. 

A.    Arguments 

Y(15),   REAL * 8;    input;    Y    =   y_(t.). 

EL(3, 3), REAL * 8; output; EL(i,j) = L..,  i = 1,   3,  j = 1,   3. 
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B.    Common 

/MTM/OMEGA (3,3),   IINV (3,3),   DETI 

REAL * 8:    OMEGA,   IINV,   DETI 

II. DERIV 

Subroutine DERIV (Y, YDOT) evaluates the derivative functions. 

A. Arguments 

Y(15),   REAL * 8;    input;    when the calling program is AM,   either 

Y = y_. [ or y_(t.)]  or Y =^-,it°rj(t.,1)];    when the calling 

program is RK, Y is either Y. or one of the Runge-Kutta 

variables  Zl(t.),   Z2(t.),   or Z3 (t.) 

YDOT(15),   REAL * 8; output;    YDOT = dy/dt,  where y_ is the input 

vector. 

B. Common 

/INIT/EN(3); /LOGIC/CH(3),   TRQ,   WHL; /PARAM/lA(3),   R(3), 

KAY(3),   W,   W3. 

LOGICAL: CH,   TRQ,   WHL 

REAL * 8:  EN,   IA,   R,  KAY,   W,   W3. 

C. Subroutines Called 

RCTN;    evaluates the torque of the reaction -wheel on the  satellite. 

RCTN is called only if WHL = . TRUE. . 

TORQUE;    evaluates the external torque on the satellite.     TORQUE 

is called only if TRQ = . TRUE. . 

III. OUTPUT 

Subroutine OUTPUTfT, Y, HLV, DBL, NSTEP, TERM)  is a user-supplied 

output routine,   called by AM after every integration step. 

A.   Arguments 

T,   REAL * 8;    input;    T = t. 

Y(15),   REAL * 8;    input;    Y = yjt.). 
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HLV, INTEGER;    input;    number of times h has been halved. 

DBL, INTEGER;    input;    number of times h has been doubled. 

NSTEP; input; number of Adams-Moulton integration 

steps -which have been taken. 

TERM, LOGICAL; output;  setting  TERM to .TRUE,   will terminate 

the simulation. 

B.     Common 

/OTPT/WR, EPS, TBOUND 

REAL * 8: WR 

REAL * 4: EPS 

/OTPT/ appears on WCHA for use in OUTPUT.   TBOUND is an 

upper limit on T; i. e.   (T. GE. TBOUND) can be used as a 

termination criterion.     WR and EPS may be used to obtain 

output every WR sec of simulation time.     The following in- 

structions will cause the solutions to be -written out if and 

only if  |T-n * WR | <• EPS,   n = 0,   1,   2, . . . 

TMWR = DMOD (T, WR) 

IF (TMWR. GT. EPS. AND. (WR-TMWR). GT. EPS) GO TO  10 

WRITE (6,20) T, Y 

20    FORMAT ( •   •   • ) 

10   CONTINUE 

Select an EPS small enough to constrain the output,   yet not so  small as to 

prohibit it. 

In choosing EPS,   it is helpful to know the range and average size of h. 

To find the average  size,   write out NSTEP, HLV,   and DBL at the end of 

simulation,   and divide the period of integration by the total number,   N, of 

steps taken;  N is given by NSTEP + 3*(HLV + DBL +  1).     To get an idea of 

the range of h,  make a trial run with a small TBOUND,  a small WR,   and a 

large EPS.    Another way to study the behavior of h is to write out HLV and 

DBL periodically during the integration. 
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IV. MXPROD 

Subroutine MXPROD (L, M, N, MXL, MXR, MXP) calculates matrix prod- 

ucts.     MXP = (MXL)(MXR),  where MXL is L by M, MXR is M by N,  and 

MXP is L by N.    All the matrices are REAL * 8 arrays. 

V. RCTN 

Subroutine RCTN (Y, REAC) is a user-supplied routine which calculates 

the torque of the reaction wheel on the satellite.     The form of the routine de- 

pends on the control law governing the reaction wheel. 

A.    Arguments 

Y(15),REAL * 8;   input;    Y = Y(t.) 

REAC, REAL * 8; output; reaction torque on the satellite 

VI. TORQUE 

Subroutine TORQUE (Y, EN) is a user-supplied routine which calculates 

n,   the external torque in body-fixed coordinates.     The form of the routine is 

determined by the control law governing the external torque. 

A.    Arguments 

Y(15), REAL * 8;    input;    Y = Y(t.). 

EN(3), REAL * 8;   output; EN = n(t.). 

Main Program 

In the main program,   WCHA,   all the input data is read in,   and all the 

COMMON variables are initialized.     The input loop has the form: 

1      READ(5, DATA) 

IF (HJ2f. EQ. 0. ) GO TO 6 

READ(5, 7) TITLE 

7      FORMAT   (20A4) 

[ Integrate.] 

GO TO 1 

6      CONTINUE 

STOP 
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A.   NAMELIST/DATA/ 

All the variables (except TITLE) are read in on a single list,/DATA/. 

The NAMELIST variables are: 

H(2f, REAL * 8; initial step size.     Last data card should set H$ to zero. 

T^, REAL * 8; initial value of T,   not destroyed. 

Y^(15),REAL * 8;    initial value of Y,   not destroyed. 

GLB; greatest lower bound on error. 

LUB, REAL; least upper bound on error. 

WR, REAL * 8,  and EPS(REAL * 4); output can be obtained at desired 

intervals by writing out only when  |T- n * WR | ^ EPS,  for 

n = 0,   1,   2,. . . 

TBOUND; upper bound on T.     TBOUND- T^ = period of integration. 

TRQ, LOGICAL; TRQ = . TRUE,   if there is a non-zero external torque, 

n,   on the satellite.    If n = 0,   set TRQ to . FALSE. . 

IA(3), REAL * 8; IA(j) = I.,  the moment of inertia of the satellite about 
th 

its j      principal axis. 

R(3), REAL * 8; if there is a  spherical damping rotor on the j      axis, 

R(j)  = R.,   its moment of inertia.     If there is no rotor on the 
th J 

j      axis,   set R(j) to zero. 

KAY(3), REAL * 8;    if there is a spherical damping rotor on the j 

axis,   KAY(j)  = k.,   its damping constant.     If there is no rotor 
th J 

on the j      axis,   set KAY(j) to zero. 

W, W3, REAL * 8; if the satellite has a reaction wheel,   with moments 

of inertia Wj, Wz> W3>   then W = W    = W,,   and W3 = W,.     If 

there is no reaction •wheel,   set W and W3 to zero. 

B.     TITLE 

A title of up to  128 characters is printed at the head of each set of out- 

put.     It is read in as an alphameric array TITLE (32).     Since one data card con- 

tains only 80 characters,   two cards must always be  supplied for the title.     If 

only one card is supplied,   TITLE (21),   TITLE (22), . . . ,  TITLE (32) will be read 

from the following NAMELIST card,   with dire consequences. 
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C.     COMMON 

The COMMON blocks are listed below with the subroutines in which 

they appear. 

/CHIDOT/YDOT (15); RK, AM 

/COEF/P (4), C(4); AM 

/INIT/EN(3); DERIV 

/LOGIC/CH(3), TRQ, WHL; DERIV 

/MTM/OMEGA (3, 3), IINV (3, 3), DETI; ANGMOM 

/OTPT/WR, EPS, TBOUND; OUTPUT 

/PARAM/IA (3), R (3),  KAY (3), W, W3; DERIV 

LOGICAL: CH, TRQ, WHL 

REAL * 8: YDOT, P, C, EN, OMEGA, IINV, DETI, WR, IA, R, KAY, W, W3 

Summary 

To use the attitude stabilization program,   read in the input data as de- 

scribed above,  and supply subroutines TORQUE, WHEEL, and OUTPUT.    If 

TRQ = . FALSE. ,   TORQUE will not be called,  and if W = 0,   WHEEL will not 

be called. 

Before making any modifications in the program,   study the interdepend- 

ence of the subroutines involved,  and double-check the specifications of the 

variables.     The pertinent information is tabulated in the above subroutine 

profiles. 
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