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PREFACE 

In this Memorandum we investigate a  duality relation- 

ship (called "blocking") between nonnegative convex polyhedra. 

The theory developed Is then applied to a number of problems 

in extremal combinatorics. 

This Memorandum continues  RAND's basic mathematical 

work with network flows«  graphs,  and matroids.     Earlier 

relevant publications include R-375-PR,  RM-5368-PR,   and 

RM-5375-PR. 
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SUMMARY 

Let 0- {x € Rn|Ax > 1, x > 0),  where A is a non- 

negative matrix and 1 - (1«   ...,  1).     The blocking poly- 

hedron of the polyhedron 0 is defined to be * - fx e Rn|x* #> 1, 

x > 0}.     It is shown that a » S and a method is described 

for obtaining the minimal nonnegative matrix B * A (the 

blocker of A) such that ^ * {x c Rn|Bx > 1, x > 0}. 

The "max-flow min-cut equality" and the  "length-width 

inequality" are always valid for a blocking pair of poly- 

hedra,  and, in a sense, characterize the blocking relation. 

Operations of "contraction" and "deletion," analogous 

to those in matroid theory, are defined for 0, and it is 

observed that, just as for matroids,  a contraction in   3 

corresponds to a deletion in §. 

The geometric theory of blocking polyhedra is applied 

to various combinatorial situations in which A is taken to 

be the incidence matrix of a family of subsets of a finite 

set.    A typical result in this domain is the following: 

The n by n permutation matrices,  which are well known to be 

the extreme points of the n by n doubly stochastic matrices> 

are also the extreme points of the (unbounded) convex poly- 
2 

hedron in n -space defined by the inequalities 

S       514 >   |l|+|j|-n,        all I,  J c {1,   ...,  n] 
i€l,j6j     'O 

and 

«ij > 0, all i,  j  e {1,   ...,  n}. 
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BU)CKING POLYHEDRA 

1.     INTRODUCTION 

It is well known that the permutation matrices can be 

characterized geometrically as the extreme points of the 

convex polyhedron of all doubly stochastic matrices.    A 

new result of this paper  (Sec.  6)  Is that the permutation 

matrices can also be characterized geometrically as the 

extreme points of the  following (unbounded)  convex poly- 

hedrrn.     Let §..  be a variable associated with cell 1*  j 

of an n by n array, and consider the linear Inequalities: 

(1.1) E  ?..  > |I|  + |J| - n,    all I, J c {1,   ...,  n}, 
l€l    1J 

(1-2)        (^j > 0,      all 1,  j  € {1,   ..., n}. 

.2 
Each extreme point of the polyhedron ^ defined In R  by 

(1.1) and (1.2) Is a permutation matrix x - C?!*)* More- 

over, almost all of the Inequalities (1.1) that correspond 

to positive right hand sides are essential In defining "P. 

Thus we have another, albeit more complicated, geometric 

representation of the permutation matrices. 

The results of this paper were arrived at partly In 

an attempt to understand better the Inequalities (1.1). 

The basic underlying geometric fact (Theorem 2.1) appears 

to be a certain polarity between members of the class of 
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all (unbounded) convex polyhedra defined by linear in- 

equalities of the form 

(1.3) Ax > 1, 

(1.4) x > 0, 

where A Is a nonnegative matrix,  0 ■ (0,   ...,  0),  and 

1 > (1,   ...j   1).    We call a polar pair of this class a 

blocking pair of polyhedra, because the geometric theory 

developed here has Intimate connections with the notion 

of a blocking pair of "clutters" defined on a  finite set 

E  [6,  9,   10].     (A clutter on E is a  family of noncomparable 

subsets of E.)    From this point of view,   the present paper 

may be regarded as a continuation of  [6,  9,   10].    In 

particular,   It is found that the  "length-width" Inequality 

and the "max-flow min-cut" equality,  studied in [10]  for a 

blocking pair of clutters, are always valid for a blocking 

pair of polyhedra (Theorem 3.1). 

I should  like to thank Jon Folkman for helpful dis- 

cussion concerning the proof of Theorem 2.1. 
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2.     A POLARITY 

Let A be an m by n nonnegative matrix«  and consider the 

convex polyhedron 

(2.1) 0- {b e Rj|Ab > 1}. 

Here 1 denotes the m-vector all of whose components are 1 

and R? is  the nonnegative orthant of Rn.     The polyhedron 

0 is  thj vector sum of the convex hull of its extreme 

points and  the nonnegative orthant: 

(2.2) »- conv. hull ({b1, b2, ..., br}) + R^, 

1 r 
where b ,   . .., b are the extreme points of. S. 

We say that a row vector a of the matrix A is in- 

essential if it dominates a convex combination of other 

rows of A, i.e., the inequality a > S?.! o^a holds for 

some Qi > 0, ..., a > 0 satisfying ON ■ 0, I? , a. - 1; 

otherwise the row a is essential.  It is a consequence 

of the Parkas lemma that an inequality of (2.1) may be 

dropped in the definition of tf if and only if the cor- 

responding row of A is inessential. Accordingly we may 

suppose without loss of generality that all rows of A 

are essential. We call such an A proper, and include in 

this definition the degenerate cases (i) A is a one—rowed 

zero matrix (ß is empty), and (ii) A has no rows (3 ■ R^). 
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Let 

(2.3)       ^- {a € R"|a.»> 1}. 

We call^ Che blocker of B-    Note that If # Is empty, then 

W "  R?, and if Ä ■ R , then ß is empty. Theorem 2.1 below 

shows that the blocking relation is a polarity on the class 

of all convex polyhedra of the form (2.1). 

Theorem 2.1. Let the m b^ n matrix A be proper with 

rows a , ...» am € RJ. Let ^- {b 6 R"|Ab > 1] have extreme 

1      r 1      r points b , ..., b , let B be the matrix having rows b , ..., b , 

and let A- {a e Rj|Ba > 1}. Then (i) ^-4; (ii) B is 

proper and the extreme points of Ä are a , ...» a10; (iii) 

Theorem 2.1 can be deduced from standard results about 

polar cones. We give a direct proof below. 

Proof.  We first prove (i).  Suppose a € a.  Thus 

b^a > 1, ..., br'a > 1.  If b £ *, then by (2.2) we have 

b - EJ, Qjb + z, where z > 0, o^ > 0, E*^ o^ - 1.  Thus 

ab > EF , a.(a-b ) > 1.  Hence a t &,  and Äc ^.  Conversely, 

if a e ^, then a-b > 1 for all be«, and in particular, 

a-b > 1, ..., abr > 1.  Thus a e Ö, and &<z€L.     Hence 

1   r     i 
To show that B is proper, suppose b > E^^ alb * where 

a. > 0, rj,2 ai " ^ Let y ■ 1^,2 aib * Then b1 - y + z, 

z > 0.  If z ■ 0, then clearly b1 is not extreme.  If z ^ 0, 
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then y + 1/2 z,  y + 3/2 z are distinct points of 40 whose 

average Is b , again contradicting the fact that b    Is an 

extreme point of I?.     Hence B is proper. 

Let C - conv. hull ({a  ,   ...,  a1"}).     We shall show 

that <?+ Rj »A.     To this end,  suppose  first that x € (? + R", 

so that x ■ £? j^ a^a    + z,   z > 0,  Q^ > 0,  7"^ a^ - 1.    Then 

b^-x - b^T1^ a^1 + b^-z > 1.    Thus x € Ä,  and  (?+ Rjc Ä. 

If equality does not hold here,   then by the separating 

hyperplane theorem,   there is a b e Rn and an a c R such 

that b-x > a for all x € (• + R",  whereas b'a < a  for some 

a t Q.     Since b*x > a  for all x € ö + R]?,  we must have b > 0. 

Thus a > b-a > 0.     Hence 1/Q b-x > 1  for all x c tf + Rj, 

and ir particular,   1/Q b-a    > 1,  1 ■■ 1«   2,   ..., m.    Thus 

1/a b € ^ and hence 1/a b - sj.   ßj^b1 + z,  where z > 0, 

Pi - 0*  ^i-l ^t * ^^    But then 

1 > i b-a ■   IJ   ßj^-a + z^a > 1, 
a 1-1    1 

a contradiction.     Hence Ä + Rj - Ä.     It then follows that 

the row vectors a  ,   ...,  a10 of A are the extreme points of 

d.     For suppose a   ,  say,   is not extreme.    Then a    ■ l/2(x + y), 

where x - z"^ o^a1 + u + a1,  y - E^ ß^1 + v + a1, Qj^ > 0, 

ßi > 0,  E? , a^ - 1, E?wi  ß^ - 1, and u > 0, v > 0.    Moreover, 

a. + ß,  < 2,  since x f a  ,  y + a  .     We have 

1        m,   (a,  + ß^    . 1 -   S       1 0    1    a1 + l/2(u + v). a 
1-1 

«• 
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Let 1/2 (a1 + ß^ - y^    Then yi < I  and 

i-2 1^1    L^l 1-2 1^1 

This contradicts the assumption that A Is proper, and finishes 

the proof of (11). 

Part (111) of Theorem 2.1 now follows from (1) and (11). 

We call the matrix B of Theorem 2.1 the blocking matrix 

of A. The blocking matrix of B Is then A. 
2 

An example Illustrating Theorem 2.1 in R is shown in 

Fig. 1 below. 

It follows  from Theorem 2.1 that  If we are given the 

matrix A that defines B>   then the blocking matrix B defining 

£can be determined by the following straightforward but 

exceedingly tedious process.    Append     the n by n identity 

matrix to A,  and  then find an n by n nonsingular submatrix 

A of the matrix thus obtained.     Next solve the linear system 

of equations having A as coefficient matrix and having right 

hand side 1 or 0 according as the corresponding row of A 

belongs  to A or to I.     If the resulting solution b satisfies 

b > 0,  Ab > 1,   then b is a row of B.     All rows of B are 

obtainable in this way. 

The case in which A is a  (0,l)-matrix is of particular 

Interest for extremal combinatorics.     The assumption that 

A is proper is   then equivalent to saying that A is  the m by n 

Incidence matrix of a clutter of m subsets of a  set of n 

elements  (no row of A contains another row of A).    Thus 
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(0,2) 

bx-x > 1 

a1 - (3, ^) 

(1.9) 

A - 

3 h' 

2 1 

1    2 

B - 

0    2 

i   * 

i   o 

Fig.   1 
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Theorem 2.1 provides a way of characterizing the subsets 

comprising an arbitrary clutter as  the extreme points of 

a convex polyhedron.     If A Is  the  Incidence matrix of a 

clutter,   then the Incidence matrix b(A) of the blocking 

clutter has as rows all  (Oil)-vectors with n components 

that have  Inner product at least 1 with all rows of A and 

that are minimal with respect to this property  flO].     It Is 

not hard to see that each row of the matrix b(A)  will  then 

be a row of matrix B In Theorem 2.1.     In general,   B will 

have many other rows.     But there are significant classes 

of clutters  for which b(A)  « B.     For example.  If A Is  the 

Incidence matrix of all simple paths Joining two distinguished 

nodes of a graph having n edges,   then b(A)  Is equal  to B, 

and hence B Is  the Incidence matrix of all cuts separating 

the two nodes. (By the duality asserted In Theorem 2.1,   we 

could of course start with b(A)  and obtain A.) 

In the context of Theorem 2.1,  Lehman's  Interesting 

paper  [10]  can be viewed as a study of clutters A for which 

b(A)  - B.     Generalizing from the example above,  he shows 

that this situation holds  for a clutter A If and only If 

the max-flow mln-cut equality holds  for A and b(A),  or If 

and only If the length-width Inequality holds  for A and b(A). 

Here,  In analogy with the example of paths and cuts  In a 

graph,   the max-flow mln-cut equality Is said  to hold for 

a  (0,l)-inatrlx A corresponding to a clutter,  and  the 
1 r matrix b(A)  having rows b ,...,   b  ,   If and only If for 
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every w € R^,  it is  true  that in the linear program 

(2.4) yA < w, 

y > 0, 

max  l-y, 

we have 

(2.5) max  l«y ■   min    b  «w. 
l<i<r 

Similarly,   the length—width inequality is  said to hold for 

a   (0,   l)-matrix A,  whose rows a  ,...,,am correspond to the 

sets of a clutter,  and the matrix b(A),   if and only if for 

every i € R^,  w e R",   we have 

(2.6) /min    a   •^\/min    b .w\ < f w. 
U<i<m / \l<i<r / ~ 

In the next section we shall examine  the analogs of 

(2.5) and (2.6)  for a nonnegative matrix A and the blocking 

matrix B of Theorem 2.1. 
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3.     THE LENGTlfr-WIDTH INEQUALITY AND MAX-FLOW MIN-CUT EQUALITY. 

Let A and B be m by n and r by n proper matrices having 
1 ml r* 

rows a  ,   ...,  a    and b ,   ...,  b    respectively.     Say that the 

max-flow mln-cut equality holds  for the pair A,  B  (in this 

order)  if and only If,   for each w e RJ,  It Is  true  that In 

the linear program 

(3.1) yA < w, 

y > 0, 

max l'y« 

we have 

(3.2) max l.y ■    min    b  -w. 
l<i<r 

Similarly,   say that the length-width inequality holds  for 

A and B if and only If,   for every I 6 R^,  W e R",  we have 

(3.3) /min    ai.t\/ min    b^wWt-w. 
U<i<m /U<i<r / 

Theorem 3.1.     (1)  Let A and B be a pair of blocking 

matrices.     Then the max-flow mln-cut equality holds  for 

A,   B (in either order) and  the  length-width inequality 

holds  for A,   B. 

(11)  Let A and B be proper matrices whose rows 

a1,   ...,  a01 and b1,   ...,  br satisfy a1-^ > 1.     If the 

length^width Inequality holds  for A,  B,  then A and B are 
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a blocking pair. 

(iii) Let A and B be proper matrices.     If the max- 

flow min-cut equality holds  for A,   B  (In that order)» 

then A and B are a blocking pair. 

Proof.     (1)   Suppose that A and B are a blocking pair. 

The max-flow mln—cut equality follows from Theorem 2.1 and 

the duality theorem for linear programs.    The linear program 

dual to  (3.1)   Is 

(3.4) Ab > 1, 

b > 0, 

mln w.b. 

The minimum In this program Is achieved at an extreme 

point of the constraint set J9 • [h £ R^lAb > 1},  that is, 

by Theorem 2.1,  at a row of B,  and hence (3.2) holds. 

To see  that the   length-width   Inequality holds, let 

(3.5) x  -    mln   a  -l ■ mln a-i, 
l<i<m ae<t 

(3.6) u)  -    mln   b^-w - mln b«w. 
l<j<m be 13 

1 m 1 r* 
Here a  ,   ...,  a    are the rows of A,  b ,   ..., b    are the 

rows of B,  and Ö- {a e R^JBa > 1},   5 - fb € Rj|Ab > 1}. 

The second equality in (3.5)   (the second equality in  (3.6)) 

follows  from Theorem 2.1 and the  fact that the minimum 
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value of a nonnegative linear form defined over 4(0) occurs 

at an extreme point of «(Ö). 

If either X - 0 or uu - 0,   the length-width Inequality 

holds  trivially.     If both X  f 0, UJ + 0,   then we have 

-t/x-a > 1 for all a e O. and w/uu.b > 1 for all b € ^ by 

(3.5) and  (3.6).    Consequently l/\ e a and w/uu *.£-&. 

Thus t/x-w/iw > I,  t'W > Xuu. 

(11) Let A and B be proper matrices whose rows satisfy 

a1.^  > 1,  and define Ö - {x € R"|AX > 1}, Ä- [x € RJ|BX > 1]. 

Thus 'S - conv.  hull  ({a  ,   ...,  a0}) + RJ and a- conv.  hull 

({b1,   ...,  br}) + Rj satisfy Ä-^> 1.     Hence ^ c ^ - ^. 

Assume now that the length-width Inequality holds  for A,  B, 

and  let bei?.    We want to show that b-<2 > 1.    Thus  let 

a  e <Z.     By the length—width Inequality applied to a,  b,  we 

have 

a •b > ( mln    a-b^W mln    ba1^ > 1, 
\l<j<r /\l<l<m / 

since a  € Ä,  b € £.    Thus ß<z(l, and hence  &■*&. 

(Ill)  Let A and B be proper matrices and assume that 

the max—flow mln-cut equality holds  for A,   B.     Let a  ,   ...,  a 
1 r be the rows of A,   let b  ,   ..., b   be the rows of B,  and let 

£ ■ (x c R?|Ax > 1}.     Suppose that b^  ^8.     By the separating 

hyperplane theorem,   there Is a w e R,  and an a > 0 such 

that w-b-J  < a < w.b for all h t 8.     But by the duality 

theorem for linear programs and the max-flow mln-cut 
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equality,   we have mln bw =    min    b   -w,   a contradiction.     Hence 
. be^ l<i<r .    * 

bJ  € Ä for 1 < j  < r and consequently a  .bJ > 1 for 1 < i < m, 

1 < j  < r.     We shall finish the proof by showing that the 

length-width inequality holds.     Thus let l  e R^,  w e  R?»   and 

define 

X   *    min    a  -i,    w  =    min    b-^-w. 
l<i<m lSJ£r 

By the max-flow min-cut equality,   there is a y »(ni*   •••*  n ) > 0 

such that   yA < w and l-y ■ w.     Thus 

Xuu 
m m . m^ . 

X(l-y)  -X    D   TH   <    S   (a    OTH   - ^-    S   r^a    < ^-w. 
i-1    1       i=l 1 i-1    1 

Hence the  length-width inequality holds  for A,   B,   and thus 

A,  B are a blocking pair. 

Theorem 3.1 is sometimes useful in proving that two 

matrices A and B are a blocking pair.     In Sec.   6,   for example, 

we shall  take A to be the incidence matrix of the clutter of 

permutation matrices and use Theorem 3.1 (iii)   to pin down 

the blocking matrix B.     Some other examples of this kind will 

also be discussed. 
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4.     COWTRACTIONS.   DELETIONS.  PAINTINGS. 

One can define operations of "contracting a coordinate" 

or "deleting a coordinate" in a proper matrix A (or on the 

polyhedron tf ■ fb e R.|Ab > 1})  that are analogous to the 

operations of "contracting an element" or  "deleting an 

element" in a graph,  a matrold   [13],  or a clutter  [10]. 

Just as for graphs, matroids, or clutters,   these operations 

commute.    Moreover,  contracting the i—th coordinate in A 

corresponds to deleting the 1-th coordinate in its blocking 

matrix B:     the resulting matrices again constitute a blocking 

pair. 

Let A be an m by n proper matrix.     By a contraction of 

coordinate 1 e  fl,   ...,  n}  in A,  we mean the  following:    drop 

the  i-th column of A,  and then drop all inessential rows in 

the resulting matrix.     A deletion of coordinate i in A is 

the following:    drop the i-th column of A,  and then drop 

all rows that had a positive entry in column 1.     The new 

matrix obtained in each case Is proper. 

Geometrically,  contracting coordinate 1 in A Is an 

intersection of the polyhedron ^ - {b € R"|Ab > 1) with the 

hyperplane ^.  - 0;  deleting coordinate 1 is a projection of 

tf on the hyperplane ?*   - 0.    It Is easy to see that first 

contracting coordinate 1,   then deleting coordinate j,  is 

equivalent to first deleting coordinate j,   then contracting 

coordinate i.    Thus one can unambiguously define "minors" 

of A (or of fl),  just as in matrold theory  [13],  that arise 

by contracting some subset of coordinates  and deleting some 
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other subset, since the order In which operations are carried 

out Is Immaterial. 

It Is also not hard to see that If A, B are a blocking 

pair, and If coordinate 1 Is contracted In A, then the blocker 

of the resulting matrix Is obtained from B by deleting coordinate 

1. 

If A and b(A) are n-columned Incidence matrices of a 

blocking pair of clutters, and If we partition the set 

fl, 2, ..., n} Into two sets, the "blue" set and the "red" 

set, say, then It Is true that precisely one of the following 

alternatives holds:  (a) there Is a row of A all of whose l's 

lie In the blue set; (b) there Is a row of b(A) all of whose 

l's lie In the red set.  This "painting theorem" In fact 

characterizes the blocking relation for a pair of clutters 

on fl, 2, ..., n} [6, 9].  The analogous painting theorem Is 

valid also for blocking matrices A and B:  For any partition 

of the column set fl, 2, ..., n) Into two sets, blue and red 

(empty sets not being excluded), there Is either a row vector 

of A whose support Is blue or a row vector of B whose support 

Is red, but not both.  (Here the support of a vector 

a ■ (a,, . . ., a ) Is the set of i e f 1, 2, . . . , n] such that 

a. ^ 0.)  It Is clear that both alternatives cannot hold, 

since otherwise some row of A and some row of B would have 

Inner product zero.  That one of the alternatives must hold 

can be seen In various ways, e.g., assume there Is no row 

of A whose support is blue, and consider the effect of deleting 

all red coordinates in A.  Or consider the max—flow min-cut 
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equality for A,   B where the vector w has red coordinates 

zero and blue coordinates one. 

In terms of the blocking polyhedra tf» {b € R?|Ab > 1} 

and ^ » [a € R?|Ba > 1}  defined by blocking matrices A and B, 

the painting theorem asserts that for any blue-red partition 

of the coordinates«   there Is either an a  e Ä with blue support 

or a b e iff with red support,  but not both. 
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5.     BLOCKING POLYHEDRA FROM ORTHOGONAL COMPLEMENTS. 

A particular class of blocking polyhedra can be generated 

in the  following way.     Let £ and H* be complementary orthogonal 

subspaces of Rn,  and  let e and e* be the set of all elementary 

vectors of < and Ä*,   respectively.     (Here a vector of space 

H is elementary if it is nonzero and has minimal support over 

all nonzero vectors of   )e[13]).    Define 

(5.1) g1 - (a  -  (ar   ...,  an)  e e\a1 - 1}, 

(5.2) t^ - {b - (ß1,   ...,  ßn)  e  t*\ßl = 1} 

The sets e^ and ej are  finite,  say 

(5.3) ß1 - {a1,  a2,   ...,  am}, 

(5.3) el - {b1,  b2,   ...,  br}. 

For each a    - (1,  a2,   ...,  ün)   e  ^   bJ  » (1,  ß2,   ...,   ßn)  e  ej, 

let 

(5.5) a1 -  (|a2U   ...,   |Qn|), 

(5.6) bj   - (|ß2|,   ...,   |ßn|), 

and  let A and B be  the nonnegative matrices with n - 1 columns 
—1 — m —1 —T" 

having rows a , ..., a and b , ..., b , respectively.  It is 
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easy to check  that A and B are proper.    We assert that A and 

B constitute a blocking pair of matrices. 

This does  not seem to be obvious,  although one can see 

quickly that ä    h^ > 1,  since a  «b^   - 0.     That matrices A 

and B are a blocking pair follows  from Theorem 3.1  (iii)  and 

the proof in  [9]  that the max-flow min-cut equality holds 

for A,  B. 

One case of particular Interest for combinatorics  is 

where the space ft (and hence ft*)  is  regular.   I.e.,  can be 

viewed as the  row space of a totally unlmodular matrix   [13]. 

(A matrix is  totally unlmodular If all its square submatrlces 

have determinant 0 or ±1.)    In this case  each elementary 

vector of it (and of K*)  can be  taken to have coordinates 

0,   1,  or -1,  and consequently matrices A and B above are 

(0,   l)-matrices.     For example,  if the space C Is the row 

space of the  (0,  ±1) vertex-edge incidence matrix of an 

oriented graph on n edges,   the construction above yields 

A as  the  (0,1)—incidence matrix of all cuts  separating the 

two end nodes of edge 1  in the underlying unoriented graph 

with edge 1 suppressed,  and B as the Incidence matrix of 

all paths joining these  two nodes in the same graph. 
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6.     OTHER EXAMPLES OF BLOCKING POLYHEDRA. 

In this concluding section we describe some other 

examples of blocking polyhedra that have combinatorial In- 

terest.     In each of the examples,  we start with a   (0,1)— 

matrix A which can be viewed as  the Incidence matrix of a 

clutter on a  finite set,  and examine  the blocking matrix 

B.     It Is usually difficult to determine B,  and we have 

not succeeded In doing this  for certain clutters about which 

little Is known,   such as all minimal node—covers  In an 

arbitrary graph,   or all Hamlltonlan tours In a complete 

graph. 

Let A be the Incidence matrix of all n by n permuta— 
o 

tlon matrices.     Thus A has nl   rows and n    columns corresponding 

to pairs  1,  j,   for 1,  j   e   {1,   2,   ...,  n] .     We assert that 

the blocking matrix B consists of the essential rows of the 

following matrix B  .     For each I c [1,   2,   ...,   n], 

J c {1,   2,   ...,  n}   such that s(I,  J)   =   |l|   +  |j|   - n > 0, 
2 

let b(I,  J) be the n -vector having coordinates  l/s(I, J) 

for 1  e  I,  j   e J,   zero otherwise,  and  let B    be  the matrix 

consisting of all rows b(I,  J).     (Some of the  rows of B    are 

Inessential,  but not many.     If I = (1,   2,   ...,   n],  and 

J ■ [ji*   •••*  ju)   Is not a  singleton,   the row Is  Inessential, 

being a convex combination of the rows b(I,   [j-i]),   ..., 

b(I>   fj^D*  and similarly  for I not a singleton,   J = [1,   2,   ...,  nl 

It can be shown that all other rows of B    are  essential, 

however.)    That  the matrix B Is  the blocking matrix of A 

follows   from Theorem 3.1   (ill)  and results of   [8],  where 
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the max—flow min-cut equality is proved for the matrices 

A and B « and hence for the proper matrices A and B.  As 

shown In [8], there Is an efficient algorithm for solving 

the max—flow mln-cut problem for the matrices A and B, In 

this order, based on the maximum flow routine for (ordinary) 

flows in networks.  That is, the maximizing vector y in 

(3.1) and the minimizing row of B in (3.2) can be calculated 

explicitly and efficiently.  The max-flow mln-cut equality 

of course holds in the reverse order B, A, but we know of no 

efficient algorithm for finding the maximizing vector y here. 

Finding the minimizing row of A is the well-known optimal 

assignment problem, for which efficient methods are known. 

It seems likely that there is an alternative approach to 

the optimal assignment problem based on the max—flow mln- 

cut equality for B, A, i.e., based on the above characteriza- 

tion of the permutation matrices as the extreme points of 
_2 

Ö« fa e RV |Ba > 1].  For example, consider the 7 by 7 

assignment problem with cost matrix w shown in Fig. 2 below. 

An optimal assignment (minimizing row of A) is Indicated by 

the asterisks in the figure.  An optimal y weights two rows 

of B positively:  y(f6,7), [2,3,4,5,6,7}) - 1, 

y({2,4,5,6,7}, {3,5,6,7}) - 2. 

The discussion above can be generalized to the linear 

programming problem known as the transportation problem f7]. 
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Fig. 2 

We turn next to an example of a different kind.  Let 

A be the incidence matrix of all minimal node—covers in a 

graph.  It would be interesting to know a characterization 

of the row vectors of A as the extreme points of a poly^ 

hedron.  Here, in contrast with the example above, in- 

equalities charactrrizing the convex hull are not known. 

Neither do we know inequalities characterizing the vector 

sum of the convex hull and the nonnegative orthant, i.e., 

the rows of the blocking matrix B.  Some examples may 

indicate the difficulty of determining B.  Suppose A is 

the incidence matrix of all minimal covers in the complete 

graph on n vertices.  Thus A is n by n with zeros down the 

main diagonal and ones in all other positions.  It is not 

difficult to see in this case that the matrix B has 2n - (n+1) 

rows, one corresponding to each subset I = ("l, 2, ..., r\] 
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such that   |l|  > 2;  specifically,   the row b(I) has coordinates 

1/(111-1)  in positions corresponding to i e I,   zeros  elsewhere. 

Thus here again we have  the situation in which the nonzero 

elements of each row of B are all equal,  just as  for the 

permutations.     But this situation is not typical  for this 

problem.     For instance,  consider the graph of a  "wheel" with 

an odd number of "spokes."    To be specific,  consider a 5— 

sided wheel,   shown in Fig.   3 below.     The matrices A and B 

are shown in Fig.   3 also.     Note  the first row of B. 

B 

1 2 3 4 5 6 
jo 1 1 1 1 ll 

1 1 0 1 0 

0 1 1 0 1 
1 0 1 1 0 
0 1 0 1 1 
1 0 1 0 l| 

1 2 3 4 5 6 
2/5 1/5 1/5 1/5 1/5 l/5l 

1 0 1/3 1/3 1/3 1/3 1/3 

1/2 1/2 1/2 0 0 0 1 
1/2 0 1/2 1/2 0 0 I 
1/2 0 0 1/2 1/2 0 

1/2 0 0 0 1/2 1/2 

1/2 1/2 0 0 0 1/2 

1 1 0 0 0 0 

i 1 0 1 0 0 0 

1 0 0 1 0 0 

1 1 0 0 0 1 0 I 
1 0 0 0 0 1 

0 1 1 0 0 0 

0 0 1 1 0 0 1 
0 0 0 1 1 0 1 
0 0 0 0 1 1 1 

! o 1 0 0 0 1 J 

Fig.   3 
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Another clutter arising In graph theory that has been 

studied In depth by Edmonds   [1,   2]  Is where A Is  the Incidence 

matrix of all perfect matchlngs  In a complete graph.     Edmonds 

has characterized the convex hull of such a clutter,  and 

has described an efficient algorithm for determining a 

minimum-weight perfect matching for an arbitrary weight 

function defined on  the edges of the graph.     What is the 

blocking matrix B for A?    The blocking clutter b(A)  is 

described  in   [6],   the description    being deduced  from 

Tutte's  theorem characterizing graphs  that contain a per^ 

feet matching  fll].     All members of b(A)  will yield rows 

of B,   but what other kinds of rows does  B have?    It would 

appear that to answer this  question,  we need Information 

about  the maximum "number of disjoint matchlngs" contained 

in an arbitrary graph,  at least in the sense of admitting 

rational weights on matchlngs,   i.e.,   we need to know how 

to solve  the mä-:—flow problem  (3.1)   for A and an arbitrary 

w > 0 defined on the edges  of  the graph.     Good information 

on the  (0,   l)-form of this problem (i.e.,  w a given (0,1)— 

vector and y restricted to be a   (0,1)—vector) could well 

lead to a  solution of the  four—color problem (the  three- 

color problem for edges of a cubic planar graph).     Even 

the rational  form of the problem appears  to be unsolved, 

except in the bipartite case,   where we are dealing with 

the permutation matrices. 
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In each of the examples discussed thus far In this 

section« the blocking matrix B for the Incidence matrix A 

of a clutter appears to be more complicated In structure 

than a list of Inequalities defining the convex hull of 

the clutter.  We conclude with two examnles In which this 

is not the case. 

Let A be the Incidence matrix of all spanning trees 

In a graph on edge-set (1, 2, -..»n} (more generally, we 

could consider bases In a matrold).  Here Edmonds has shown 

that the extreme points of the polyhedron 

n 
(6.1) S ?. - rank ({1, 2, ..., n}), 

1-1 1 

(6.2) B ^ < rank (I),  all Ic {1, 2, ..., n}, 
lei 1 "" 

(6.3)       ^ > 0, 

are precisely the rows of A [5].  (It is enough to consider 

sets I c [1, ..., n} In (6.2) that are spans.)  It can also 

be shown, using results of Tutte [12] and of Edmonds [3, 4], 

that the blocking matrix B of A consists of the essential 

rows of the matrix B which has a row b(I) corresponding 

to each nonempty complement I of a span I:  the row b(I) 

has components l/(rank ([1, 2, ..., n}) - rank (I)) In 

positions corresponding to elements of I, zeros elsewhere. 

Edmonds has described an efficient algorithm for finding the 
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maximum number of edge-disjoint spanning trees in a graph 

[3, 4] (or the maximum number of disjoint matroid bases) and 

it is not hard to extend this to the case of an arbitrary 

weight function w > 0 defined on the edges.  In other words, 

the max-flow problem (3.1) in either integer or rational form 

has been solved for this clutter A, just as it has for the 

clutter of permutation matrices.  The max-flow problem in 

the other direction, that is, for B, A, has also been solved: 

Finding a min—cut is the well—known minimum spanning tree 

problem and it is not difficult to describe an algorithm 

for finding a corresponding maximizing vector y.  Here one 

can make good use of contractions and deletions in determin- 

ing a min-cut and a max-flow. 

Our last example deals with edge-covers in a bipartite 

graph.  Let A be the incidence matrix of all minimal covers 

of nodes by edges in a bipartite graph having r nodes in 

one part, s in the other, and n edges. (Since we want to 

consider an arbitrary weight function w > 0 defined on the 

edges, we could suppose without loss of generality that the 

graph is a complete bipartite graph having rs edges.  Then 

A has rs columns and a row corresponding to every minimal 

cover, i.e., a row corresponding to ev2ry r by s (0, 1)— 

matrix having at least one 1 in each of its rows and columns, 

and which is minimal with respect to this property.)  The 

blocking matrix B of A here is simply the node—edge incidence 

matrix of the graph.  In other words, the incidence matrix 
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b(A) of the blocking clutter Is equal to B In this instance. 

This can be shown in various ways, perhaps the easiest of 

which is to start with the (0, l)-matrix B and ask for its 

blocking matrix.  It is well-known that the matrix B is 

totally unimodular, and it follows from this that all 

extreme points of Ä» {a € R^|Ba > 1} are (0, l)-vectors. 

Consequently, the blocking matrix A of B is the one described 

above. In connection with this example, the max-flow min- 

cut equality for A, B (in this order) appears to be a new 

result. Moreover, it can be shown that if w > 0 has integer 

coordinates, then there is a maximizing y in (3.1) having 

integer coordinates, which leads to the following theorem: 

The maximum number of edge-disjoint covers (of nodes by 

edges) in a bipartite graph is equal to the minimum valence 

in the graph. This appears to be an overlooked companion 

to the well-known König theorem that a bipartite graph 

having maximum valence k can be decomposed into a sum of 

k matchings, i.e., the minimum number of colors required in 

an edge-coloring is equal to the maximum valence.  In 

terms of (0, l)-matrices, the König theorem says that if 

G is a given (0, l)-matrix, then the least k for which we 

have 

(6.4) G < Mj +. ..+ J^, 

where each H. is a (0, l)-matrix having at most one 1 in 
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each row and column.   Is  equal to  Che largest row or column 

sum of G.     The companion theorem says that the largest k 

for which 

(6.5) G > C^ +•..+ C^, 

where each Cj Is a (0, l)-inatrix having at least one 1 in 

each row and column, is equal to the smallest row or column 

sum of G. 

We have said nothing about the length—width inequality 

in these examples-  In the examples where the blocking 

matrix B is known (for permutations, trees, and edge—covers 

in a bipartite graph), the corresponding length-width in- 

equality appears to be a new result in each case. 
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