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Tables of Hertzian Contact-Stress Coefficients 

Duane H. Cooper 

Abstract 

Formulations are given for the coefficients X, u-, u defined by 

H. Hertz in terms of the solution of a transcendental equation involving 

elliptic integrals and used by him to describe the deformation of bodies 

subjected to contact stresses. Methods of approximate calculation are 

explained, and errors in the tables prepared by Hertz are noted. For the 

purpose of providing a more extensive and more accurate tabulation, using 

an automatic digital computer, these coefficients are reformulated so that 

a large part of the variation is expressed by means of easily-interpreted 

elecintary formulae. The remainder of the variation is tabulated to 6 

places for 100 values of the argument. Graphs of the coefficients are 

also provided. 

Introduction 

In two papers [1] published in 1881 and 1882, H. Hertz reported 

his analysis describing the elastic stress system generated in two bodies 

initially making a frictionless contact at a single point upon being pressed 

together with a force F, The description includes formulae for the overall 

deformation 6, the distance through which parts of the bodies remote from 

the contact approach one another, and the semi major and minor axec, a and 

b, of the ellipse bounding the contact interface. These formulae involve 

elementary algebraic expressions multiplied by certain coefficients [2], 

X, |i , v, for each of 6» a, b, respectively, which coefficients are defined 
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in terms of a solution to a transcendental equation involving elliptic 

integrals. Rather than give detailed prescriptions for the calculation of 

these coefficients, Hertz tabulated them, saving his readers from a 

"wearisome" task, and leaving the main body of his papers uncluttered with 

a digression on such matters. 

Unfortunately, the tables prepared by Hertz were given to a rather 

coarse interval for the argument, and the values of th<% coefficients were 

specified to only 4 decimals (later rounded to 3), These cables served the 

purpose, at least, of providing explicit expressions, and useful ones, 

presumably with interpolation, for describing many practical cases in which 

very precise estimates would not be needed. Later versions of the table 

of Hertz have been published [3,4] in which interpolated values for half 

of the original intervals appear. Unfortunately also, however, errors 

which appear in the table of Hertz are reproduced in these later versions, 

so that, for certain entries, the values are not accurate to 3 decimals nor 

yet to the 4 decimals originally quoted. 

The discovery of these errors serves as the motivation for an 

examination of procedures to be used in making fresh calculations of the 

Hertzian coefficients.  It is readily believed that finding the solution to 

the transcendental equation of Hertz by numerical methods, and the evaluation 

of elliptical integrals using that solution as an argument, involve inter- 

polations that would be exceedingly wearisome to implement by hand methods 

to any reasonable degree of accuracy. Such procedures are best left to an 

automatic digital computer. The overall plan of the calculation, however, 

is one in which the solution of the transcendental equation appears as a 
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parameter which is to be eliminated from expressions connecting the co- 

efficient» with a certain variable T,  to be,  in the end, regarded as the 

independent variable.    Both the coefficients and T are given as explicit 

functions of that parameter.    This observation leads to the suggestion that 

curves of X,  p,,  v may be plotted parametrically versus T to achieve a 

graphical elimination of the parameter, essentially replacing numerical 

interpolations by graphical ones.    The accuracy with which this can bt done 

may be enhanced by the use of certain simple approximations X  , u.  >  v    such 

that the ratios X/X , u/u,  >  v/v   exhibit small variations.    For smaller oo o 

values of T, where these ratios show larger variations,  linear interpolation 

on logarithmic scales Is seen to be feasible, even by manual numerical methods, 

An accuracy cf 0.1% seems to be readily accessible by such methods. 

Despite the feasibility of graphical methods, one could desire 

access to an accurate  table, and there is little reason for such a  table not 

to exist.    Accordingly,  the  tabulation has been done using a CDC-1604 com- 

puter.    In designing the table,  the principle was followed of seeking a 

formulation oi the coefficients in which a  large part of the variation could 

be expressed by means of elementary functions of rather simple structure that 

would exhibit a straightforward relevance to  the contact-stress problem. 

Such a formulation was found, aud the tabulated part is of the reformulated 

coefficients denoted by X*, u,*,  v*.    As a  further convenience,   the  tabulation 

is given for the argument  t ■ COST. 

Hertzian Deformation Formulae 

Hertz took the initial shapes of tha bodies to be pressed together 

as being described by quadric surfaces, as elliptic or hyperbolic paraboloids, 

[ 
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Fig.  1.    Geometry of the  contact between quadric surfaces illustrated by 
elliptic and hyperbolic paraboloids  for  the upper   (principal 
axes x-,  y. ,  z) and lower  (principal axes x?,  y«,  z)   surfaces, 
respectively,   in which the axeo  for one  surface have been  turned 
through an angle u) relative  to those  for the  second. 
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in the neighborhood of the initial point of contact. The contact was 

assumed to be frlctlonless, so that the force F with which the bodies were 

to be pressed together would necessarily be directed along the normal to 

the initial tangent plane, and the resulting contact interface would be free 

of traction [5]. He regarded his description of the initial shapes as being 

applicable to a greater variety of shapes, applicable to the contact of a 

sphere with a cylinder, for example, because the infinitesimal dimensions 

of the contact interface, small in comparison to the initial radii of 

curvatures of the bodies, was necessitated, for practical materials, to main- 

tain the validity of the assumption of Hooke's law. It will be recognized, 

however, that there are exceptions, the contact of a sphere with the interior 

of a closely-fitting cylinder, for example, in which the contact will not be 

infinitesimal, even for stress regimes for which Hooke's law will remain 

valid. For these, the quadric-surface approximation may be of questionable 

utility. 

The undeformed quadric surfaces are completely specified by Che 

principal-axis curvatures at the initial point of contact y.. and -y.  for 

the first body, and ty21 and y      for the second body. These curvatures are 

reciprocals of the corresponding radii of curvature, and each is taken to be 

positive if the center of curvature for each instance lies within the body. 

The principal axes of curvature for one body are taken to make an angle u) 

with those for the other body. See Fig. 1. The deformation formulae are 

expressible in terms of certain combinations of these principal-axis curva- 

ture?. These combinations are 
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)(Y12^22)+<Yn"Y12^Y2rY22),ln ^  ' (la> 

Y4 " ^V11-V12>2+<V2rY22)2+2(v11-V12)<V2rV22>cof2u>3  ■ <lb) 

Y5 » %(Y11'h'12>+%(V21^22)j (lc) 

and it may be seen that they are related as the sides of a right triangle 

of which Y- would be the hypotenuse, and of which the auxiliary angle 

T * cos" (V4/Y5) (ld) 

would be the angle opposite y  .    In the case of contact between identical 

cylinders, the auxiliary angle has a simple interpretation; it is then 

the same as m. 

It seems appropriate to refer to the particular combination of 

elastic constants appearing in the deformation formulae as the Hertzian 

modulus. It is [3] 

H - (4/3)E/(l-n2), (2) 

in which E is Young's modulus and n is Poisson's ratio. This is a stiffness 

modulus; for the two bodies jointly, the compliance moduli would be additive, 

so that the joint stiffness modulus would be 

H12 * CHj"1«^"1» (3) 

in which the subscripts refer to first and second bodies. In the formulae 

that follow, H<2 will be written simply as H with the understanding that the 

quantity given by Eq. (3) is roaant. 
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Pig.  2. Plot» of Hertzian contact-stress coefficients,  X,l/u,,v, vs the 
auxiliary angle T, together with the complementary elliptic- 
integral modulus k'-v/u..    The complementary modulus  (shown in 
square root) was used as a plotting parameter, via Eqs.   (8). 
These coefficients define  the overall deformation and the 
dimensions of the interface ellipse, jvia Eqs.   (4),  in their 
dependence on the undeformed-body curvature parameters of 
Eqs.   (1). 
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Fig. 3. Plots of the same coefficients as in Fig. 2, except to logarithmic 
scales. The straightness of the curves for T less than about 2C 
indicates that logarithmic interpolation can be more accurate 
than the linear, for such values of T. 
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The three deformation formulae of Hertz may be written 

V56 - (Fv5
2/H)2/3X, (4a) 

Y5a - (Fv5
2/H)l/3^, (4b) 

V5b - (Fv5
2/H)1/3V, (4c) 

in which the deformation 6 is the distance through which the parts of the 

two bodies remote from the contact approach one another, and a and b are 

the semiraajor and semiminor axes of the ellipse that is the projection upon 

the Initial tangent plane of the boundary of the contact interface. The 

interface itself is also a quadric surface. A plot of the Interface pressure 

would again be a quadric surface, with maximum pressure in the center, a 

maximum which is 507« greater than the average pressure. The ratio of that 

2 
average P  to the Hertzian modulus may be computed by dividing F-y /H by 

y  "nab to obtain 

Pav/H - (FY5
2/H)1/3H,VTT (5) 

In Eqs. (4) and (5), the Hertzian coefficients X, p,, v are expressible 

in terms of complete elliptic integrals of modulus k, which modulus is to be 

found as the solution of a transcendental equation involving the auxiliary 

angle T and these same elliptic integrals. Plots of X, u,, v and the com- 

plementary modulus 

k' - (1-k2)*, (6) 

or its square root, are given in Figs. 2 and 3. Formulae for these are 
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given below. 

Formulae for the Hertzian Coefficients 

With the help of the Byrd-and-Friedman handbook [6], the elliptic 

integrals set down by Hertz may be cast into the standard forms 

(l/a3k2)(K-E) = %TPy5(H/F)siu
2T/2l (7a) 

(l/a3kV2)(£-k'2K) = ^TTY5(H/F)COS
2
T/2, (7b) 

in which the complementary modulus k' for the complete elliptic integrals 

K(k) and E(k), of first and second kinds, respectively, is given by 

k' * b/a = u/p. " (l-kV> (7c) 

(The complementary modulus was written by Hertz without the accent, as 

simply k, since he elected to omit the reduction to normal Legendre notation 

used here, and thus found no occasion to refer to the modulus itself, for 

which the unaccented symbol is usually reserved. Also, in his article of 

1881, misprints sometimes give the appearance of an interchange of the 

roles of a and b in the formulae.  These misprints are corrected in his 1882 

article.)  Equations (7) may be regarded as determining u. and u, upon the 

elimination between them of the modulus and its complement, as  functions of 

the auxiliary angle T. 

Similarly, the elliptic integral expressing the deformation 6 

{for which Hertz used the same symbol, except in bold face, as for the semi- 

major axi« of the interface ellipse) may be cast into normal form, resulting 

in the formula 

Xu = (2/«rr)k'K. (8a) 

5 P 
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The elimination of the modulus is to be obtained by solving the transcen- 

dental equation obtained by dividing Eq. (7a) by Eq. (7b) giving an expression 

2 
for tan T/2 in terms of the modulus regarded as the unknown. After some 

trigonometric manipulation, this transcendental equation may be written as 

(k,2/k2)(K-E)/E - sin2T/2, (db) 

2 
and a complementary expression may be obtained for cos T/2, suitable for 

insertion into Eqs. (7a) and (7b). When this insertion is made, the 

definitions given by Eqs. (4) and (7c) may be used to write 

H3 - (2/trk,2)E, (8c) 

v3 - (2kV77)E, (8d) 

after some manipulation. The solution of Eq. (8b) provides the value of 

k' and, via Eq. (7c), the value of k to be inserted in the remaining Eqs. (8) 

for the calculation of X, u., v as functions of T. 

Manual Computation of the Coefficients 

Obtaining the explicit solution of the transcendental equation 

of Hertz, Eq. (8b) or Its equivalent, is indeed "wearisome" if numerical 

methods executed "by hand" are to be used to obtain results accurate to 

3 or 4 decimals, or better. The principal difficulty obtains in assuring 

that interpolations of sufficient accuracy may be made in the readily- 

available tables of K and E, especially for modulus values near unity where 

K has a logarithmic singularity. As may be seen from Figs. 2 and 3 this 

obtains for T near 0 (k' near 0). 
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For cases in which a limited accuracy would be satisfactory, 

values may be read directly from Figs. 2 and 3, of course, or interpolations 

may be made in the table of u^rtz to obtain the values of u, and v» and thus 

the values of k' may be obtained for use in Eq. (8a). The table of Hertz 

is, except for three instances, accurate to within one unit in the fourth 

decimal. For the three exceptions, at T ■ 10 , 20 , and 70 , corrections 

are given here in Table I. These errors in the table of Hertz were 

Table I. Corrections verified by automatic digital computer of the 
erroneous values for u,, u appearing in the table of Hertz [1], 

T Source H V 

10° 
Computer 6.6115 0.3110 

Hertz 6.6120 0.3186 

20° 
Computer 3.8160 0.4121 

Hertz 3.7799 0.4079 

70° 
Computer 1.2851 0.7999 

Hertz 1.2835 0.8017 

discovered by graphical means and verified by computations on an automatic 

digital computer t> a much higher accuracy. Hertz did not tabulate values 

of X. His errors are reproduced in later tables [3,4] of the Hertzian 

coefficients. As may be seen from Fig. 2, interpolation in a table for p, 

will give the more accurate results if based on 1/(JL, if T not be too small. 

There is, however, a singularity in slope in each of X, p,, v, *nd Jk%  at 

T 
m 0. Similarly, linear interpolations in v will not be quite so accurate, 

since the curvature may be observed to "infect" a larger range of values 

near T s 0, and the same problem may also be observed for X. In these 
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cases, interpolation on logarithmic scales will be more accurate, as may be 

seen irom Fig. 3. 

An explicit solution of the transcendental equation of Hertz may 

be avoided, along with interpolations directly in tables of K and E. 

Instead, one may select, with the help of Figs. 2 and 3, values of k' for 

which tabular values of K and E are available, and which correspond to T 

values bracketing the desired T value. Then for these k1 values, the 

corresponding values of X, u., v, and T are computed from Eqs. (8). If T 

be small, interpolation in these values to logarithmic scales, either by 

plotting X, pt, v vs T on log-log paper, or numerically, will yield the 

X, u-, v values for the desired value of T. For these small values of T, 

the approximation 

K*ln(4/k'), (9) 

since k' will also be small, will sometimes be helpful. If T not be small, 

another interpolation aid will be needed. 

For these larger values of T, it is helpful to compute the ratios 

X/X , u/u » u/u » in which X , u, , v are approximations given by 
O    *t)     O 0   0   0 

Xo - (sinT)*, (10a) 

p,o - (lA/2)/sin(T/2), (10b) 

uo - (1/72)XO/COS(T/2), (10c) 

obeying 

X a uft - 1, (10d) 
0 0 o 
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Fig.  4.    Plots of Hertzian coefficients as ratios  to  certain approximating 
functions  serving as  interpolating aids.    Graphs  such as  these 
may be  readily made  to be  read  to an accuracy of 0.17o as 
parametric plots via Eqs.   (8)  and  (10). 
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also approximately obeyed by X^v. The reason for computing these ratios 

is that they exhibit a range of variation, for T not too small, that is 

rather slight. Thus, interpolation errors stemming from the neglect of 

curvature (second-order differences) will be lessened in seriousnes' , or 

may easily be corrected by computing values for 3 or more values of T 

neighboring the desired one. Graphs like those shown in Fig. 4 may be 

prepared that may be read to an accuracy of 0.17o without excessive diffi- 

culty. The noted errors in the table of Hertz are particularly conspicuous 

on such graphs. 

Automatic Digital Computation of the Coefficients 

In the interest of preparing a table to small increments of T 

and great accuracy in X, p,, v a program was written for an automatic 

digital computer (Control Data Corporation model CDC-1604). This program 

used an elliptic-integral subroutine based on an approximation accurate 

-8 
to within about 1.5x10 , as described by Hastings [7]. The approximate 

elliptic integrals are represented by expressions of the form 

POD+QCnHnl), (ID 

in which P and Q are polynomials for which appropriate coefficient values 

have been tabulated by Hastings, and T) is the square of the complementary 

modulus defined In Eq.   (6). 

Equations  (8) were recast In terms of T| and a derivative 

expression for Eq.   (8b) was obtained with the help of well-known  formulae 

[6].    Based on these  formulations, a Newton-Raphson routine was written 
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to solve Eq.   (8b) for 7] to an accuracy of 5 parts in 10    ,  starting from 

the approximation 

\ «  (T/90°)
3
. (12) 

From 3 to 5 iterations sufficed to solve Eq. (8b) for T values in the range 

from 0.1  h.o 89 , The values of T) so obtained were then t.sed to compute 

Xi Mo u with an overall error primarily imposed by the subroutines and 

-8 
believed to be less than about 2x10  . Tables of these values are given 

to 6-place accuracy in the appendix. 

Reformulation of the Coefficients 

In planning for the publication of a table of Hertzian coef- 

ficients, the experience obtained in preparing Fig. 4 led to the thought 

that a formulation might be found for which the tabulated values would 

encompass a rather small range of variation for nearly all of the argument 

values.  If so, the accuracy with which a table of fixed size could be used 

would thus be enhanced. At the same time, however, it was desired that any 

reformulation not require extensive additional computations in order for 

the tabulated values to be related to the contact-stress situation. 

One possible reformulation seeks to relate the semiaxes of the 

elliptical boundary of the interface with the semiaxes of the curve of 

intersection that would obtain if the two surfaces simply interpenetrated 

one another without deformation, since Hertz had already noted that the 

dimensions of these two ellipses were nearly the same. 

Let the inter/penetration distance be called d.  If one surface 
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be defined by the equation 

z « A^+Cxy+B^2, (13a) 

11       while the other be defined by 

n z-d - A2x
2+Cxy+B2y

2, (13b) 

then the projection upon the x,y plane of their intersection is the curve 

given by 

d - Ax2+By2, (13c) 

in which A ■ A.-A and B - B.-B-, As Hertz pointed out, it is always 

possible to choose a coordinate system In whicn the coefficients of the xy 

term in Eqs. (13a) and (13b) are one and the same while A and B are each 

positive. After some algebraic manipulation, it is possible to obtain the 

expressions of Hertz for y. and y,: 

V5 - A+B, (14a) 

-Y4 - A-B. (14b) 

and thus obtain explicit expressions for A and B: 

A " %<V5-Y4) " V5«^
2
T/2, (15a) 

B -%0Y5+V4) - Y5
C
<>8

2
T/2. (15b) 
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Thus, it is seen that the ellipse of interpenetration given by Eq.   (13c) 

ha8  the semiaxes 

<y- [2d/(Y5-v4)]%, (16a) 

^ - [2d/(v5+Y4)lV (16b) 

It is the casting of Eqs.   (4b) and (4c)  into this form that is the basis 

for the reformulation. 

It may be seen from Eqs.   (15)  that Eqs.   (16) may be written 

cr- (2d/v5)\, (17a) 

ß -  (2d/Y5)*vo/\o, (17b) 

using the definitions given in Eqs. (10), whereas from Eqs. (4) there 

obtain 

a - (6/Y5)VV (18a) 

b - (6/Y5)VV (18b) 

or 

in which 

a - U/y5)\0^t (19a) 

b * (6/v,)^(v /\ )v, (19b) j        o o 

Ü - VMö)CX/\>)"\"
%
, (20a) 

5 - (v/vft)(X/X )"*\* (20b) o    o   o 

represent possible reformulations. 
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Original 
level of plane 

Deformed surface 
(schematic) 

Contact interface DP-1475 

Fig. 5. Schematic drawing of the indentation of a compliant plane on 
the part of a stiff "sphere," a paraboloid of revolution. The 
overall deformation 6 is twice the interpenetration distance d, 
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In terms of these reformulated coefficients, the expressions 

analogous to Eqs. (16) are 

a « [6/(Y5-Y4)]
%ü. (21a) 

b - [6/(Y5+Y4)]V (21b) 

Since it may be seen from Eqs. (20) and Fig. 4 that £L and v will depart very 

little from unity for T not too small (y, not too large in comparison to 

y ), the principal difference between Eqs. (21) and Eqs. (16) is at  butable 

to the factor 2 multiplying d. It may be sail that, for interpenetration and 

interface ellipses of the same size and not co^ elongated, the deformation 6 

is about twice the interpenetration d. This observation is exact for 

circular interfaces for which y, ■ 0 and p, ■ ü ■ 1. This case is illus- 

trated in Fig. 5, depicting a stiff "sphere" in contact with a relatively 

compliant plane. It may also be observed with the help of Fig, 6 that, as 

Hertz had noted, the interface ellipse is relatively longer and narrower 

than the interpenetration ellipse would have been. 

Wlille the reformulation of y, and u appears to offer some inter- 

pretive advantages, besides providing, as shown in Fig. 6, a reduction in 

the range of variation, the reformulation for X does not do quite so much. 

It does at least »reduce the range of variation while offering no inter- 

pretive difficulties; it consists in the substitution of y- for y- via the 

triangle relationship noted in connection with Eqs. (1): 

v5V • (22) 
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Fig. 6.  Plots of Hertzian coefficients in an intermediate reformulation 
that compares the dimensions of the interface ellipse with those 
of the interpenetration ellipse for an interpenetration distance 
that is half the overall deformation, showing the interface 
ellipse to be, as Hertz observed, somewhat the longer and the 
narrower of the two. 
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This substitution provides for writing Eq. (4a) as 

T3 

in which 

v-6 - (FV 
2/H)2/3X* (23a) 

X* - (X/X H 1/3. (24a) 
o o 

With this reformulation, the remaining ones of Eqs. (4) may be written 

y3a « (FV3
2/H)1/3[Y3/(v5-V4)]V*> (23b) 

Y3b - (^Y3
2/H)l/3[v3/(Y5-N4)^v*, (23c) 

in which 

M* = iA*, (24b) 

to complete the reformulation 

The reformulation represented by Eqs. (23) and (24) is that to be 

chosen for tabulation.  That the range of variation has been substantially 

reduced may be seen from Figs. 7 and 8, showing X*, u*, v* to both linear 

and logarithmic scales. Also shown are curves of the geometric mean 

J(\i.*v*)» which may be used to define the radius of an equivalent circle of 

contact for the computation of the average interface pressure. The formula 

is 

Pav/H = (FY3
2/H)l/3/y*i|*TT. (25) 
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Fig. 7. Plots of Hertzian coefficients in the final reformulation denoted 
by \*,u,*,v*, vs the auxiliary angle T. These coefficients define 
the overall deformation and the dimensions of the interface 
ellipse via Eqs. (23), in their dependence on the undeformed-body 
curvature parameters of Eqs. (1). Also shown is the geometric 
mean of the pair of coefficients used to compute interface 
pressure via Eq. (25). 
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Fig. 8. Plots of the same coefficients as in Fig. 7, except to logarithmic 
scales. Comparison of these two plots with Figs. 2 and 3 shows 
that the slighter part of the curvature-parameter dependence is 
expressed by the reformulated coefficients. 
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The plot of V(u-*v*) shows that it is remarkably close to the value of X* 

over most of the range of variation in T.    Tables from which Figs.  7 and 8 

were prepared are given in the appendix. 

; Many practical cases obtain in which u> * 0.    For these cases the 

formulae, Eqs.   (23), are simplified because v-, v,, and y   obey simpler 

formulae.    These are 

v30 * C<Yu+Y21)(Y12+722)]^ (26a) 

v40^(Vu+Y21)^^12+V22)» (26b) 

^50"^Vll+Y21>^^12^22)- (26c) 

Many practical cases also obtain in which the auxiliary angle T 

has no simple geometric significance (the exception is the contact between 

identical cylinders). It is then more convenient to use 

1 ~  Y4/Y5 Ä COS*T (27) 

as the auxiliary variable. Also, it is rare that one would be interested in 

extremely elongated interface ellipses that would obtain for t near unity 

(T near 0), except in the limiting case of contact between parallel-axis 

cylinders for which a separate treatment may be given [3,4]. For this 

rtason, the tabulation given here as Table II presents X*, (i*, and v* as 

functions of the argument t. From the plot shown in Fig. 9, it is seen 

that the range of variation is quite small in comparison to that of 

Fig. 2, and that the curvatures are quite small also, for the range of 

values of t most likely to be of interest.  It is Table II, then, that is 
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Table II.    Values of the reformulated Hertzian coefficients,  X*,  u*,  v* > as 
functions of t-cosT for use in Eqs.   (23) and (25), with auxiliary 
angle T as defined by Eqs.   (1).    For plot,  see Fig.  9. 

t X* n* u* t X* n* V* 

0.00 1.000000 1.000000 1.00C000 .50 .983642 1.076128 .899574 
.01 .99999** 1.001662 .998329 .51 .982853 1.077548 .896993 
.02 .999978 1.003317 .996650 .52 .982036 1.078964 .894375 
.03 .999950 I.OO4963 .994962 .53 .981189 1.080377 .891719 
.04 •999911 1.006602 .993264   | .54 .980311 1.081787 .889021 
.05 .999861 1.008233 .991558   1 • 55 .979401 1.083193 .886281 
.06 .999800 1.009857 .989842 .56 .978457 1.084595 .883498 
.07 .999727 1.011474 .988117 .57 .977478 1.085993 .860668 
.08 •999*43 1.013084 .986381   i .58 .976463 I.O87386 .877790 
.09 .9995*8 1.014686 .984636 .59 .975409 1.088776 .874863 
.10 .999M1 1.016283 .982879 .60 .974314 1.090161 .871882 
.11 .999323 1.017872 .981113 .61 .973177 1.091540 .868847 
.12 .999193 1.019456 .979335 .62 .971996 I.092915 .865753 
.13 .999052 1.021033 .977546 .63 .970767 1.094284 .862599 
.14 .998898 1.022604 .975745   1 .64 .969489 1.095647 .859382 
.15 .998733 1.024169 .973932 .65 .968158 1.097003 .856097 
.16 .998556 1.025729 .972107  ! .66 .066772 1.098352 .852741 
.17 .998367 1.027283 .970270 .67 .965327 I.O99693 .849311 
.18 .998165 1.028831 .968420 .68 .963819 1.101026 .845801 
.19 .997951 LO30374 .966556 .69 .962245 1.102350 .842208 
.20 .997724 1.031912 .964679 .70 .960599 I.IO3663 .838526 
.21 .997485 I.O33445 .962788 .71 .958877 1.104965 .834750 
.22 .997233 1.034973 .960883 .72 .957074 1.106254 .830872 
.23 .996967 1.036496 .958963 •73 .955183 1.107530 .826888 
.24 .996688 1.038014 .957028 •74 .953198 1.108789 .822789 
.25 .996395 1.039528 .955077 •75 .951110 1.110031 .818566 
.26 .996089 1.041038 •953110 !     .76 .948912 1.111253 .614211 
.27 .995768 1.042543 .951127 .77 .946593 1.112453 .309712 
.28 .995434 1.044043 .949126 ;     .78 .944143 1.113627 .805059 
.29 .995084 1.045540 .947109 .79 .941549 1.114772 .8OO238 
• 30 .994720 1.047032 .945073 .80 .938797 1.115884 .795234 
• 31 .994340 1.048520 .943019 i     .81 .935869 1.116957 .790029 
• 32 .993945 I.O5OOO5 .940946 .82 .932747 I.U7985 .784604 
• 33 •993533 1.051486 .938853 .83 .929407 1.118961 .778934 
.3* .993106 1.052962 .936740 .84 .925822 1.119877 .772994 
.35 .992662 LO54436 .934606 .85 .921961 1.120720 .766751 
.36 .992200 1.055905 .932451 1     .86 .917783 1.121478 .760166 
• 37 .991722 1.057371 .930273 i     .87 .913240 1.122132 .753193 
• 38 .991225 1.058834 .928073 .88 .908273 1.122661 .745775 
.39 .990709 1.060293 .925849 .89 .902807 1.123035 .737840 
.4o •990175 1.061749 .9236OI .90 .896744 1.123215 .729298 
.41 .989621 I.O63202 .921327 .91 .889956 1.123150 ,720032 
.42 .989046 1.064651 .919027 .92 .882268 1.122765 .709885 
.43 .988451 1,066097 .916701 •93 .873439 1.121953 .698641 
.44 .987835 1.067539 .914346 .94 .863109 1.120552 .685990 
M .987196 1.068979 .911963 .95 .850727 I.H83OI .671460 
.46 .986534 1.070415 .909549 .96 .835369 1.114743 .654282 
M .985849 1.071848 .907105 .97 .815309 1.108989 .633057 
.48 .985139 1.073278 .904628 .98 .786702 I.O98938 .604763 
.49 .984404 LO74705 .9C2118 .99 .737476 1.077506 .560295 
.50 .983642 1.076128 .899574 1.00 0.000000 0.000000 0.000000 
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Fig. 9. Plots of the reformulated Hertzian coefficients X*, y*, v*. vs 
t«cosT, ss tabulated in Table II. For the greater variety of 
practical cases, t will not be close to unity (T will not be 
close to 0), so that the straightne1-- of the curve indicates 
that interpolation in Table II need involve few precautions. 
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thought most likely to be of wide utility. 

Table II and the plot of Fig. 9 may be extended to negative 

values of t by the formulae, 

X*(-t) = \*(t), (28a) 

M*(-t) = v*(t), (28b) 

v*(-t) - u*(t). (28c) 

Similar formulae extend the plots versus T beyond 90 . These are 

X(T) - X(180°-T), (29a) 

H(T) - u(180°-T), (29b) 

V(T) = y,(l80o-T), (29c) 

applicable also to the various reformulations denoted by bars and stars. 
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Appendix:  Supplementary Tables of Hertzian Coefficients 

Although t:he original table of Hertz with the corrections shown 

above in Table I, the values shown graphically in Figs. 2, 3, 4, 6, 8, and 

9, together with values that may be computed by hand methods, will satisfy 

needs for values o' the Hertzian coefficients of moderate accuracy, and the 
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values shown above in Table II will satisfy needs for high accuracy in most 

cases, there are seine few specialized interests that may remain unsatisfied. 

Very accurate values for the original formulation of these 

coefficients as used by Hertz may 3till be of interest to some. For them, 

the six-place tabulation of Table AI is presented for increments in the 

auxiliary angle of 1 . For those whose interest extends to extremely 

elongated interface ellipses involving extremely small values of the 

auxiliary angle, the logarithmic tabulation of Table All extends the range 

down to 0.01°. 

Others may find it convenient to work with the coefficients in the 
I 
1 ■       reformulation denoted by stars, but, because of an interest in extremely 

j        elongated interface ellipses, find the argument represented by the cosine 

of the auxiliary angle, as used above in Table II, inconvenient. For them, 

the six-place tabulation of Table AIII is presented for increments in the 

auxiliary angle of 1 . When the interest extends to angles less than 10°, 

the logarithmic tabulation of Table AIV extending the range down to 0.01 

should be used. 



30 

Table AI. Values of the Hertzian coefficients \, 1/p,, u versus T, the 
auxiliary angle in degrees, covering 0 < T < 90 . 

T i         x 1/P u       | 1   T X I      1/n V 

0 0.000000 0.000000 0.000000 t5 .854714 I  .519086 .603828 
1 .121107 .027077 .131295 46 .861499 .529269 .611159 
2 .17931^ .044958 .169191 47 .868091 .539^58 .618507 
3 .224669 .060689 .196597 48 .874493 .549655 .625875 
4 .263071 .075231 .218919 49 .880709 !   .559861 .633267 
5 .296894 .088983 .238136 50 .886742 .570077 .640685 
6 .327391 .102163 .255224 51 .892591* .580304 .648135 
7 .355319 .114902 .270746 52 .898269 .590544 .655618 
8 .381179 .127291 .285061 53 .903770 .600796 .663138 
9 .405324 .139392 .298415 * .909099 .611063 .670699 

10 .428013 .151253 .310983 55 .914259 .621346 .678303 
11 .449443 .162910 .322896 1  56 .919251 1    .631645 .685955 
12 .469770 .174392 .33^254 !   57 .924079 !    .641962 .693658 
13 .489118 .185722 .3^5135 i 58 .928744 !   .652297 .701414 
14 .507586 .196920 .355604 59 .933247 .662652 .709227 
15 .525261 .208000 .365713 60 .937592 .673027 .717100 
16 .542210 .218977 .375504 61 .941780 ; .683425 .725037 
IT .558495 .229861 .385015 62 .945812 .693845 .733041 
18 .57M67 .240663 .39^275 1 63 .949690 .704289 .741116 
19 .589269 .251392 .403312 64 .953M6 .71^759 .749264 
20 .603842 .262054 .412150 65 .956991 .725255 .757^90 
21 .617917 .272656 .420807 66 .960415 :    .735778 .765797 
22 .631527 .283206 .429303 61 I    .963692 .7^6329 .774188 
23 .644696 .293706 .^37653 68 .966820 .7569H .782667 
24 .657450 .304164 .445871 lj  69 .969803 .767523 .791238 
25 .6698IO .314582 .453971 70 .972640 .778167 .799904 
26 .681795 .324965 .461963 71 •975333 .788845 .808670 
27 .693422 .335317 .469859 72 .977883 .799557 .817540 
28 .704707 •345640 .477668 73 .980290 .810306 .826516 
29 .715665 .355938 .485399 74 ,982556 .821091 .835605 
30 .726310 .366213 .493060 1   ?5 .984681 .831916 .844808 
31 .736652 .376469 .500659 76 .986665 .842780 .854132 
32 .746704 .386707 .508202 77 .988510 .853686 .863580 
33 .756475 .396930 .515698 78 .990216 .864635 .873^57 
3^ .765975 .407140 .523151   I '   79 .991784 .875629 .882868 
35 .775213 .417339 .530567 80 .993213 .886669 .892717 
36 .784197 .427528 .537953 81 .99^506 .897757 .902710 
37 .792935 .437710 .5^5313 I   82 .995661 .908894 .912851 
38 .801433 .447887 .552653 83 .996679 .920083 .923146 
39 .809698 .458059 .559976 84 .997561 .931325 .933601 
40 .817736 .468229 .567289 W .9983C7 .942621 .944220 
41 .825554 .478397 .57459^ 1  86 .998916 •953975 1   .955010 
k2 .833155 .488566 .581897 87 .999391 .965388 i    .965976 
43 .840546 .498736 .589200 88 .999729 .976861 I   .977126 
44 .847731 .508909 .596510 89 .999932 .988398 !    .988465 
45 .854714 .519086 .603828 1  90 .1.000000 1.000000 1.000000 
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Table All.    Values of common logarithms of the Hertzian coefficients 
A ■ 3+logX, M « logu-, N ■ 2+logv,  versus T - 2+logT,  for 
the auxiliary angle T in degrees,  covering  the range 
0.01° < T < 10°. 

T A         ! M N 

0.00 •893551   I 2.986916 .*08*82 
.10 .95*572  | 2.917015 .**3*33 
.20 1.015*7* 2.8*7037 .*78*22 
.30 I.O7625*   1 2.776977 .513*52 
.40 I.I36905 2.706832 .5*852* 
.50   1 1.197*21   ! 2.636596 .5836*2 
.60 1.257796 ! 2.566265 .618808 
• TO 1.31802* 2.*95833 .65*02* 
.80 1.378097 ! 2.*25295 .689293 
.90 1**38006 2.35*6** .72*618 

1.00 l.*977**   1 2.283873 .76OOO3 
1.10 1.557302 2.212975 .795*53 
1.20 1.616668 2.1*19*1 1     .830970 
1.30 I.675833 1   2.070762 |     .86656O 
l.*0 1.73*78* 1.999*27 !     .902227 
1.50 1.793508 !  1.927925 .937978 
1.60 1.851991 i  1.8562*3 .973820 
1.70 1   1.910217 1  1.78*368 !  1.009759 
1.80 1.968168 1.712281 1.0*5803 
1.90 2.025826 j  1.639967 !  1.081962 
2.00 2.083168 I  1.567*02 1.1182*8 
2.10 \   2.1*0169 I   l.*9*56* 1.15*672 
2.20 2.196802 l.*21*26 1.191250 
2.30 2.253037 1.3*7955 1  1.227998 
2.*0 2.308835 1.27*116 1  1.26*9*0 
2.50 2.36*156 1.19986* 1.302100 
2.60 2.*18950 1   1.125150 1.339511 
2.70 2.*73157 1.0*991* !  1.377215 
2.80 2.526707 .97*085 l.*15268 
2.9O 2.579511 .897580 l.*537*2 
3.00 i   2.631*57 j     .820297 l.*92737 
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Table AIII. Values of the reformulated Hertzian coefficients X*, p*, u*> 
versus T, the auxiliary angle in degrees, covering 
0° < T < 90°. 

T X* n* *   —1 v*        1 |     T X* ^ V* 

0 0.000000 0.000000 0.000000 ft5 .95938ft 1.10ft590 .835852 
1 .ft66891 i     .89ft9l8 •36ft56 ft6 .961487   1 1.102963 .840504 
2 •5ft8707 .960352 .ftl8ft9 ft7 j   .963510 ! 1.101291  1 ,845090 
3 .600635 .997373 .454440   ! ft8 •965ft55   1 1.099577 1 .849612 
4 .63906ft 1.022528 .482248 ft9 .967325   ! 1.097821   I .854072 
5 .669633 1.041126 .50529ft   ! 50 .96912ft   ! 1.096025 .858473 
6 .695007 1 1.055561 .525172 51 .970852 1.09ftl91 .862816 
7 .716673 ; 1.067120 .542771    1 52 .97251ft 1.092319 .867103 
8 • 7;>55ft8 i I.076575 •558644   ! 

53 •97ftlll | 1.090ftll .871335 
9 •7522ft3 1.08ftft25 • 57315 5ft •9756ft5 1.088ft68   ' .875515 

10 .767185 I  1,091012 .586568   | 55 .977119   > 1.086ft92 .879645 
11 .78068ft I.O9658I .59906     1 56 .97853ft 1.08ftft82 .883724 
12 .79297ft 1.101310 .610791   | 57 .979893 1.082ftft0 .887756 
13 .80ft237 1.105337 .62185 58 .981196 I.080366 .891740 
14 .814614 I.IO8769 .6323ft* 59 •982ftft5 I.078262 .895679 
15 .82ft219 I.HI689 .6ft2329 60   1 •9836ft2 1.076128 899574 
16 .8331ft7 1.114165 .651868   1 61 j    .98ft789 I.073965 .903425 
17 .8ftlft75 1.116252 .66100     j 62   ' .985886 1.071773 .907235 
18 • 8^9267 1.117997 .669788   | 63 ! i    .986935 1.069552 .911003 
19 .856577 1.119ft38 .6782ft 6ft .987937 I.O67305 •9lft732 
20 .863ft5ft 1.120606 .686404   j 65 .988893 1 I.O6503O .918421 
21 .869936 1.121530 .69429 66   ! .98980ft 1 I.O62728 .922072 
22 .876059 1.122233 •70193ft 61 .990671 1.060ft00 .925686 
23 .881852 1.122735 .7093ft 68 •991ft95 1.0580ft6 .929263 
21* .8873ftft 1.12305ft .7165ft 69 .992277 1.055666 .932804 
25 .Ö92556 I.I23207 .7235ft 70 .993018 I.O5326O .9363H 
26    ! 

.897511 I.I23205 .730364   1 71 .993718 I.O5083O .939783 
27 .902226 1.123062  ! .737009   I 72 •99ft378 1.048374 .943222 
28 .906718 I.122789 • 7ft3ft9     | 73   1 •99ft999 I.045894 946628 
29 .911002 1.122393 .7ft982 7ft    ! .995581 I.043389 .950001 
30 .915093 1.121886 .756014 75 .996126 1.040860 .953343 
31 .919001 1.121273 .762069 76 .996633 I.O36306 .956654 
32 .92273B I.120562   ! 

.76799 77 .997103 1.035728 •95993ft 
33 .92631ft 1.119759 .77380 78 ■997536 1.033125 .963184 
3ft .929738 1.118870 •779ft91 79 •997933 I.O30499 .966405 
35 .933019 1.117900 .785073 80 .998295 1.027848 .969597 
36 .936165 I.H6853 .790550 81 .998621 1.025173 .972760 
37 .939182 1.11573ft .795928 82 .998912 1.022474 .975894 
38 .9ft2077 I.llft5ft7 .801211 83   ! .999168 1.0*9751 .979001 
39 •944856 1.113295 .806ft0ft      1; 84    ! 

.999389 1.017003 .982081 
ko •9ft7525 1.111981 .811510 85 .999576 1.014231 1    .985133 
41 .950089 1.110610 .816532   ! 86 .999729 1.011435 .988159 
k2 .952552 I.IO9182 .821^74 87 .999848 1.008613 |    .991158 
kl .95ft920 1.107701 .8263ft0 88 .999932 I.OO5767 .994131 
kk .957196 I.IO617O .831132 89 .999983 LOO2896 j    .997078 
ft5 .95938ft 1.10ft 590 .835852 90 1.000000 1.000000 1.000000 
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Table AIV. Values of common logarithms of th* reformulated Hertzian 
coefficients A* » 1+logX*, M* - Rlogu*, N* « 1+logu*, 
versus T * 2+logr, for the auxiliary angle T in degrees, 
covering the range 0.01 < T < 10 . 

T A* M* N* 

o.oo   ! .146259 .704632 .185351 
.10 .1739^6 .718065 .203635 
.20    ! .201515 .731420 .221957 
.30 .228961 .744693 .240320 
.4o .256279 .757^81 .258726 
.50    1 .283462 .770979 .277178 
.60 .310504 .783981 .295676 
.70    ! .337398 .796883 .314226 
.80 .364137 .809678 .332628 
.90    ! .390714 .822360   ! .351^87 

1.00    | .417119 .834923   | .370205 
i.io   ! .4433^3 .847358 .388988 
1.20    | .469376 .859657 .407838 
1.30   1 .495207 .8718II .426761 
1.1*0 .520825 .883810 .445762 
1.50    \ .546216 .895641 .464846 
1.60 .571366 .907293 .484020 
1.70   ! .59626O .918750 I    .503291 
1.80 .620879 1    .929997 .522667 
1.90 .645205 1    .941015 .542156 
2.00 1    .669216 i     .951783 .561771 
2.10 |    .692888 i     .962278 :    .581520 
2.20 ,716195 .972471 .601420 
2.30 .739107 i   .982331 .621483 
2.40 .761589 !     .991820 .641727 
2.50 .783604 1.000895 .662173 
2.60 .805107 1.009503 1    .682842 
2.70 .826049 1.017584 .703761 
2.80 !    .846374 I.O2506I .724958 
2.90 .866016 1.031847 .746465 
3.00 i    .884900 LO3783O (    .768318 
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Formulations are given for  the coefficients     , -,       defined by H. Hertz  in terms 
of the solution of a transcendental equation  involving elliptic  integrals and used 
by him to describe  the deformation of bodies subjected to contact stresses.    Methods 
of approximate calculation are explained,  errors  in the tables prepared by Hertz 
are noted.    For  the purpose of providing a more extensive and more accurate tabulation, 
using an automatic digital computer,   these coefficients are reformulated so that a 
large part of the variation  is expressed by means of easily-interpreted elementary 
formulae.    The remainder of the variation  is  tabulated to 6 places  for  100 values of 
the argument.    Graphs of the coefficients are also provided. 
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