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CALCULATION OF THE GRAVITY FALL 
MOTION OF A MOORING SYSTEM 

ABSTRACT 

> Fast digital computational methods enable solution of the system of non¬ 

linear partial differential equations describing the free fall motion of a mooring 

system. The problem is initially approached by a simplified model in which the 

distributed mass of the cable has been lumped in a series of discrete masses 

attached to a weightless line. Also, the more general mooring configuration 

analyzed in this report includes floats (for which the buoyancy it, considered 

uniformly distributed and then re-distributed into lumped discrete negative 

weights), cables which car. be either inextensible (steel) or elastic (synthetic 

line), and an anchor which is assumed o? spherical shape. The simulation results 

are presented for several différé it specific cases, but in order to minimize the 

computational cost, most of the textual material is derived from the compre¬ 

hensive analysis of a single relatively short mooring system. These results 

are extrapolated to apply to the 6500 foot Oceanic Telescope, which constituted 

the original purpose of this work (the problem was to investigate the feasibility 
of the free-fall of such a mooring). , 

The major contributions of the authors are: 

1) The flexible character of the three-dimensional program which 

is designed to handle i lany posnible configurations of moorings as well as further 

effects of cross-current perturbations or Karman-Vortex-indvced lateral 
motions of the cable. 

2) The inclusion in the program, for the solid cable case, of the 

inextensibility condition directly within the tension equation. 

3) The complete treatment of the elastic case which permits the 

calculation of the transient motion occurring after the anchor has hit the bottom 
of the sea. 

4) The determination of a stable and efficient numerical procedure 

using a tension-correcting feed-back from boundary conditions at the anchor 
which minimizes the amount of iteration. 



The conclusion of immeJiate practical interest is that the free drop of the 
Oceanic Telescope would involve excessive risk due to overstress at one portion 
of the cable and the possibility of an undesirable transient at impact. 

It may also be concluded from this report that elasticity properties of the 
cable do not appreciably affect the time of fall or the general shape of the falling 
cable. It is necessary to include elasticity in studying the tension histories, 
especially at the time immediately following anchor impact when the tension may 
rise to critical values. 

by 
Michel R. Froidevaux 

and 
Roger A. Schölten 



CALCULATION OF THE GRAVITY FALL MOTION 

OF A MOORING SYSTEM 

By Michel R. Froidevaux and Roger A. Schölten 

TABLE OF CONTENTS 

I. Introduction 

II. Derivation of the general equations of motion 

A. Non-elastic cable equations 

B. Modified equations for the elastic cable 

III. Description of computational procedure 

A. Programming the non-elastic model 

B. Modifications of standard program to obtain transient motion 

after anchor impact 

C. Programming the elastic fall 

IV. Simulation results 

A. Non- elastic cable fall 

B. Elastic cable fall 

V. Conclusions and recommendations for further studies 

Appendix A: Programming notations and symbols 

Appendix B: Consideration on numerical stability 

References 

5 

M . ' i V i:.. - - . 





I. Introduction 
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In the recent past, attention has been given to the study of flexible cables and 
their general equilibrium configuration and tensions in various flowfields . iviuch of 
the early literature on the subject stems from the work of H. dauert1 who published 
his papers on the stability of an airborne, ncnlifting towed vehicle in rectilinear 
motion in 1930. His prior assumptions were steady-state aerodynamics and constant 
tow-vehicle velocity which eliminated time from all the equations and thus enabled 
a closed-form hand calculation of the cable shape. More recently, Walton and 

2 
Polachek implemented a numerical solution for the calculation of transient motion 
of submerged cables subjected to fixed boundary conditions (positions of end points 
known at all times ). This was carried out as a generalization of the classical 
vibrating string problem. It is a major reference for better understanding of the 
present report. 

With a computer solution in mind, in this paper the authors derive the basic 
equations governing the hydrodynamic fall of the mooring and present them in a 
simple form. Equally important.they present a flow-chart of the computational 
process to clarify the digital solution in its simplest form (non-elastic cable). 
Forces that are assumed acting on the cable are: (a) Reaction at the fixed attach¬ 
ment point at one extremity of the cable,(b) damping or drag as the cable falls 
through the fluid, and (c) inertial reaction of the surrounding fluid and weight or 

* buoyancy of the mooring system which includes a massive anchor at the free 
extremity of the cable. There are no restrictions or the size of displacements and 
no approximations are made in any of the governing equations of the program. This 
enables a great flexibility of computation and presents capability for practical 
application. The report is presented so that the most straightforward non-elastic 
case appears first. The motions here can be calculated using relatively long time 
increments, provided that all significant components of the driving forces lie in 
the frequency range well below the lowest natural frequency of the model system. 
(Practically, all the cable modes are more or less excited by non-perfectly stable 
initial conditions.) In the more general case o< the elastic cable, the computational 
time increments have to be very small to allow tracking the longitudinal vibration 
waves of the mooring line. This subsequently increases the overall computational 
time and economically prohibits the calculation of the full drop history. Only the 
first second of fall and the first second following the impact of the anchor were 

. investigated. Nevertheless, these histories present a comprehensive amount of 
> information for the derivation of conclusions. 
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A MAC* language computer program was written to study the application of 
the theoretical equations to several cases of interest. It permits an elegant and 
concise digital solution to the hydrodynamic problem because all the equations are 
easily formulated in terms of vectors. All the curves and charts have been drawn 
from MAC runs. 

The available program, although designed to determine the gravity fall motion 
of a mooring system, provides an applicable solution to a wide class of other engin¬ 
eering problems involving the motion of cables. 

This study was initially prompted by a desire to more rationally estimate the 
risk associated with free-fall implantment of the Oceanic Telescope Outer Moorings. 
See figure 1 for a schematic drawing of the Oceanic Telescope. It was concluded 
that a free-fall implantment might involve an overstress shortly after the drop and an 
extreme transient at impact with the ocean floor. Until further study can be undertaken, 
the anchor-first technique will be employed. 

♦MAC is an algebraic computer language developed at the MIT Instrumentation 

Laboratory for engineering applications. It has a basic 3-line format but otherwise 
is similar to the more generally used Fortran. 
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II. Derivation of the Equations of Motion 

A. Non-Elastic Cable Equations 

The Runge-Kutta method of numerical integration, based on finite-difference 

approximations, is available within the automatic library of the computer. It uses 

finite-differences in the time domain, and thus leads to the possibility of using finite 

lengths in the space dimensions. It is therefore natural to introduce space discrete¬ 

ness into the original formulation of the problem and thus to present the equations of 

motion of a simplified model in which the distributed mass of the cable is replaced 

by a series of discrete masses attached to a weightless, inextensible line. This 

leads to a system of ordinary differential equations. 

Figure 2 shows a typical configuration of the system, before and after the 

anchor drop. It is assumed that one extremity of the cable remains fixed at the 

surface at all times. 

^TTTTTTTTTTTTTTTTTTTTTTZTTT^ 

Fig. 2 Mooring line simplified model. 

All the equations were formulated in vector form. It is therefore necessa-y to 

define two directions related to the cable by means of two unit vectors (at present, 

motion can be assumed to take place in the vertical plane). 

USEG^: unit vector at the center of segment k in the vertical plane,the direction 

of which is parallel to segment k, positively toward the anchor. 

UVNOR^: unit vector at the center of segment k in the vertical plane, the 

direction of which is normal to segment k, positively toward the surface of the ocean. 

in 



Figure 3 shows the segment and node numbering system adopted for compu¬ 

tational purpose as well as the external forces acting on node k, with the proper sign 

convention for the tensions. The junctions between the segments are numbered 

according to the subscript index k. which runs from 0 at the boat to S at the anchor. 

Also, it should be noted that the positive X direction is chosen to be directed 

toward the bottom of the ocean and that the positive Y axis lies on the surface of the 
water as indicated on figure 1. 

When considering the inertial properties of the fluid in which the cable is 

immersed, it is assumed that the kinetic energy imparted to the surrounding 

medium varies as the square of the component of velocity normal to the line and 

that it is almost independent of the component of velocity parallel to the line, although 

the same law with a tangential drag coefficient 50 times smaller than in the normal 
direction is used as an approximation. 

That is, for the cable, 

DNC = 1/2 RHOSW AN CDN VN2* and, (2<i) 

DTC = 1/2 RHOSW Aj CDT VT2 i2 2) 

with CDT * 0.02 CDN 

For the calculation of the equivalent mass of the fluid entrained with each segment 

(sometimes referred to as the virtual mass), the additional mass in a direction 

parallel to the cable is considered to be 1/50 the additional mass normal to the cable 

so that for the augmented mass of one foot of cable, we have: 

UMCN * UMC ( 1 + 9/46) (2.3) 

UMCT * UMC ( 1 + 0.02 9/46) 

* See Appendix for definitions of the 
(Programming notation) 

parameters which appear in equations. 

(2.4) 
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The (9/46) coefficient is calculated from the expression for the virtual mass: 

= p k V ^ 

where v is the volume ot the moving body 

p is the density of the fluid 
k * 0.5 for a sphere and = 1 for a cylinder. 

For the cylindrical cable, the ratio of the specific mass of sea water to that 
of the metal cable is roughly 9/46 and thus, the augmented mass is given by: 

UMCN = vpc Tl + p/pc J 

where p refers to the cable. c 

Each lumped mass (MN, MT) has been expressed as half the mass of the seg¬ 
ment on one side of the node plus half of the mass of the segment on the other side 
of the node, including the equivalent masses of the fluid entrained. 

The vector force acting on node k can then be expressed as the sum of four 
vectors: the 2 tensions acting along the adjacent segments (internal forces), the 
weight and the hydrodynamic reaction or drag force (external forces), as shown on 
figure 3 . Newton's law of motion can now be invoked in vector form for the lumped 
mass k: The acceleration in the normal direction is given by: 

ANk - (TEk - TEk_1 + Dk + Wk) • ÜVNORk/MNk (2.5) 

The acceleration along the tangential direction is expressed as: 

ATk « (TEk- TEk_1+ Dk + Wk) • ÜSEGk/MTk (2.6) 

(where Wk can be representative of a weight or a buoyancy force). 

If we let Fkbe the sum (-TEk_j + ^ + Wk), we can write the equation of 
motion in a more concise form: 

Ãk » [pk + TEk) • ÜSEGk/MTk] ÜSEGk + [(Fk+TEk) • 

, “I - (2.7) 
UVNOiyMNj UVNORk 

where 

Fk-TEk-l*Dk*Wk <2 8' 
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which is the form used in the computer program. 

In the expressions (2.5) and (2.6) the drag forces is also computed by 
summing the effect on the two half-segments connecting at node k and are 
rewritten as: 

Dk * 1/2 (DNk j + DNk + DTk l + DTR) (2.9) 

As mentioned previously, it was assumed that all drag forces were proportional 
to the square of each component of relative velocity with a very small drag coefficient 
in the direction parallel to the line tDNC. = 50 DTC ) 

k k 

(2.10) 

DTk = - DTCk I VTk VTk USEGk (2.11) 

where the velocity at the midpoint of each segment (VMP) is taken as a repre¬ 
sentative value for the computation of the drag force related to the full segment. Thus: 

VNOR = VMP • ÜVNOR (2<12) 
VT * VMP . ÜSEG (2 13) 

The use of the minus sign and the introduction of the absolute value of one of 
the scalar velocity factors ensurer, that the drag will always be opposed to the direc¬ 
tion of the motion and thus acts as a dissipative force to remove energy from the 
system. 

In equation (2.6), the tensions have yet to be determined. 

If one assumes the tension at the fixed point f EQ to be known (tension at the 
boat or TBOAT), then at node 1 all the forces and positions are known from the 
preceding iteration, (hydrodynamic reactions are computed from the knowledge of 
positions and velocities) except for the tension to the right of node 1, that is TE , 
which is calculated next. 1 



Again, if one lets Fj be the sum of forets acting at node 1 except for the 
tension to the right, 

F--TE0+W1 (2.14) 

One can invoke the inextensibility condition of the cable directly in the equation for 
the tension by writing that the lumped mass at node 1 cannot accelerate in a direction 
parallel to DSEGQ with respect to point 0, but can only accelerate around the fixed 
point 0, at a certain given distance IL from it. In vector notation, 

TE V - V 
1 0 

J.™± 
1 [_ iLj 

[ ÜSEGj/ÍÜSEGj* ÜSEGOLDo)J 

+<MT1 d Vq/ dT - Fj) • USEGOLDQ 

(2.15) 

Equation (2.15) can be thought of more simply as being derived from the more 
general relation (at node 1): 

(TEj + Fj) • USEGOLDq * MTj USEGOLDq (2.16) 

which clearly is Newton's law of motion projected along the longitudinal direction. 
(Aj is the vector acceleration. ) 

Now, Aj is constrained such that: 

I V - V 2 
Aj* USEGOLDq - - --1L 0 + (d Vjj/dT) * USEGOLDq (2.17) 

Also, TEj * TEj USEGj (2.18) 

so that from (2.16), 

TEj (USEGj* USEGOLDp) * (MTj Aj - F^ • USEGOLDq (2.19) 

'T'hus it follows that: 

TEj • (MTj Aj - Fj)* USEGOLDq/(ÜSEGj* ÜSEGOLD) (2.20) 

The reader may verify that a simple substitution of (2.17) into (2,20) is sufficient 
to obtain equation (2.15). 

The inextensibility constraint, contained entirely in equation (2.15) holds for 
each segment of the line until the last segment is reached, that is, the anchor. 

14 



At that particular point, it is required that no tension exist along the last segment 
to the right of the anchor. The error tension is computed by the dot product: 

TE = TE • ÜSEG (2.21) 

(A fictitious USEG parallel to USEGOLD is introduced at the anchor.) 

If TE is sizable, it is fed back with a suitable gain to con °ct the initial guess at 
the first tension (TBOAT) so that, after a new iteration (or several) no extra 
tension remains to the right of the anchor and a new time step calculation :an be 
-'itiated. The proper feedback gain is computed after the first iteration by assuming 

a linear relationship between the tension change at the boat (DTBOAT) and the extra 
tension change (TEOLD - TE) as shown on the simulation flow-chart contained in 
the next section. 

Finally, to complete the formulation of the problem, a set of initir.l conditions 
must be given for each lumped mass on the line. Since the equations ol motion are of 

the second order, it is necessary to specify both the positions and velocities at T = 0. 

In order to obtain the position of each ataUon initially (which should be found 
to lie on a catenary curve), one can assume that the initial velocity components are 

zero at each node, and obtain the positions from the equations for static equilibrium 
of the line starting from any approximated solution of the catenary, provided certain 
precautions are taken with regard to stabiUty (see section IV). This method, although 
accurate,requires excessive computer time, especially for the case of a long moor¬ 
ing line with numerous segments where the cable oscillates in the water for a very 
long period of time before settling toward the equilibrium configuration. 

B. Modified Equations for the Elastic Cable 

The equations governing the motion of the elastic cable falling in a fluid 
medium are almost equivalent to those derived in part A of the present section with 
the exception of equation (2.lu). The elastic properties of the cable are introduced 
by replacing this equation by an expression for Hooke's law. That is, it is 
assumed that linear stretch is proportional to tension i* a good model of the 
elastic behavior of the cable. In the case of a synthetic line, this assumption is 
not as good as one might expect. The energy loss due to hysteresis is a significant 
factor, greater than the effect of longitudinal drag near the bottom of the rope for 
example. Also, the slope of the stress-strain (related to the spring constant) curves 
varies greatly with the time rate of change of lension so that two different longitudi¬ 
nal moduli of elasticity could be used as a model, one for the quasi-static stretch 
of the line and another for rapid vibrational motions. Finally the elastic model of a 

15 



synthetic line under tension should include the variation of the cable cross-section 
which should have the further effect of changing aopreciably the drag characteristics 
of the line. 

The following equations are derived for the simple linear elastic rope. (A 
more detailed analysis for nylon cable may be undertaken in the future). 

It is first assumed that the initial equilibrium "elastic" conditions are known, 
that is, all the segments and node positions are available with their respective 
tensions for the static spring-mass system. (The initial "elastic" conditions 
are set up by a special simple program, called ANCHOSET, which takes the "stiff" 
coordinates at initial time and corrects all the values by application of Hooke's 1 .w.) 
One step in time is then taken after having computed all the drag forces acting on 
the line. After each iteration in time, the stretch of each segment is computed by: 

SEGk * ^ + 1 “ \ (2*22) 

DELX,^ - SEGk - USEGk (2.23) 

Thus, the new tensions, once all the lumped masses have undertaken a 
certain motion, are obtained by: 

TEj^SI^ DELJ^ (2.24) 

SKk being the spring constant of the kth segment. Equation (2.14) can now be com¬ 
pleted to include all the forces acting on the mass k. 

Fk.-TEk.i*TEk+rV Wk (2.25) 

where all the hydrod/namic reactions have been computed as in part A. 

Finally, Newton's law of motion is written 

\ “ (Ek * ÜSEGk/ MTk) USEGk + (Fk • ÛtfNORk/MNk) ÜVNOI^ (2.26) 

In this manner, it is fairly obvious that no iterative feed-back is necessary as it was 
in the case of the non-elastic cab.'e: at the anchor, the "imaginary" tension to the 
right of thin last mode is simply jtt to zero. (TELAST = 3) so that equation (2.26) 
is still valid with FLAST containing all the forces acting on the anchor. 

IS 
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The reader will note that because of the much simpler form of the tension 

equation (2.24) and the lack of iteration, the overall computational efficiency 

appears much greater for the elastic case. Unfortunately, this advantage vanishes 

when one considers the stability constraints of this calculation method which 

requires very small time steps. (In fact the elastic system adds one more degree 
of freedom to the computation. ) 



in. Description of Computational Procedure 

A. Simplified Non-Elastic Model 

The complete mooring is divided into different sections according to sym¬ 

metrical properties. For the non-elastic model, four sections are required: 

The first section carries floats (the floats are widely separated) 

The second section also carries floats (the floats are closely spaced) 

The third section of the mooring has no floats 

The last section consists of the anchor 

In this manner, the computation is simplified by cycling through the same 

Newton's law equations of motion for all segments with 4 different sets of constants 

corresponding to the 4 different mooring sections described above. ( A subscript 

"p" is used in the program to index the different sections.) 

All the initial conditions are read from data cards or loaded from a tape 

data file as is shown on the simplified flow-chart found at the end of the present 

section. The equations governing the motion of the cable, as derived in the last 

section, are summarized here. The basic equations of motion are repeated for 

convenience. 

(2.14) 
Fk * ’ TM °k + Wk 

Once the acceleration vector is calculated, the numerical integration of the 

equations of motion is carried out automatically by using the simple statements; 

d VdT * Ak 
(3.1) 

dXj^/dT » Vk (3.2) 
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from which numerical values for the velocity Vk and the position vector are 
directly obtained if one uses the MAC computer language. The approximate solution 
to this set of differential equations is accomplished by the Runge-Kutta process. 

A 

The basic process consists of the following steps : 

1. Establish initial conditions for the dependent and independent variables 

(X^ and Vk are the dependent variables and T is the independent). 

2. Specify a value for the increment to be applied to the independent variable. 

3. Evaluate the derivatives for a particular value of the independent variable. 

4. Using the values calculated in step 3, update the dependent variables with 
respect to the current value of the independent variable. 

5. Update the independent variable. 

S. Repeat steps 3 through 5 until true values of the dependent variables have 
been calculated for the initial value of the independent variable plus the 
requested increment. 

It should be further noted that in order to properly sequence through these 
functions, the differential equation loop is associated with a counter called the 
DQPHASE counter and a DIFEQ statement placed at the end of the differential 
equation loop. The DIFEQ statemei t has the task of updating all requested depen¬ 
dent variables with respect to the independent variable, and also of updating the 
independent variable by the specified increment. The DQPHASE is initialized to 0. 
Each time the DIFEQ statement is encountered, DQPHASE is incremented by one, 
and the corresponding operations are performed. Each time DQPHASE becomes 
4, a full cycle of steps has bet completed and the counter is reset to 0. 

It is important to understand that the values of all the independent variables 
are valid only after the full differential equation cycle has taken place. This is the 
reason for placing a DQPHASE test into the program whenever any variable value 
is to be printed or utilized in further computation. 

The computational procedure, as shown on the simplified flow-chart, can 
be considered to be divided into two phases. The first phase assumes a consistent 
set of tensions all along the line and perfect knowledge of all positions and velocities. 
(This is done by propagating TBOAT from the fixed point to the ’..ext lumped masses 
by using the proper precomputed external forces. ) The same phase then involves 
the numerical intesmation of the equations of motion (3.1) and (3.2) to predict the 
node positions one step ahead. 

19 



The second phase involves the evaluation of a small tension discrepancy 

existing at the anchor (constraint boundary condition), from which a first-order 

correction to TBOAT (DTBOAT) can be obtained. This requires a first tentative 

iteration to calculate the gradient of TBOAT with respect to the small tension 

discrepancy at the anchor (TE) as indicated by the feed-back iteration equation: 

TBOAT = TBOAT - TE (3.3) 

where 6 T¿^?AT * SLOPE ^ A TBOAT 
ATE 

DTBOAT 
DTE 

Assuming a linear relationship between DTBOAT and the variation of TE, 

one only expects a total number of 3 iterations in order to obtain a full consistent 

set of tensions, (two iterations for the computation of the tension error gradient 

SLOPE and a third to achieve the necessary corrections.) 

B. Modifications of Standard Program to Obtain Transient Motion After Anchor 

Impact. 

The mathematical model of the mooring developed for the simulation of the 

fall motion is a reasonably good approximation of a real test at sea if the only 

interest is in cable shapes, duration of fall,and quasi-static tensions. It is no 

longer valid after the anchor has hit the bottom of the sec. Immediately before 

anchor impact, the whole line is under tension and must be consiuered a spring- 

mass system for the analysis of the impact effect. Immediately rfter anchor 

impact, a different sot of conditions exists, and the problem mi st be modified. 

The first simple approach to the problem consists in considering the entire 

line to remain non-elastic except for the last segment adjacent to the anchor. This 

modification is carried out with very little change to the original program. 

Equations (2.7), (2.14),and (2.15) are still used but only 3 iteration cycles are 

performed with index |). No further computation is done at the anchor (p=4) which 

is assumed to remain in fixed position on the bottom of the sea. When reaching the last 

segment, two different tension computations must be used. The first one is used if 

the last line segment is slack (the lengths of the segments are easily calculated by 

the equation SEGk * X^+1 - X^). If the last segment is slack, its pull is then set to 

the weight of the last segment, that is, approximately 5 pounds. The second is 

used if the last segment is found to be taut. Hooke's law is used for calculating the 

tension after computation of the segment stretch and choice of the proper modulus 

of elasticity. 

20 



The reader may refer to the more detailed modified flow-chart which 
immediately follows for a better understanding of the computation procedures. 

It should be noted that in the case of a mooring system including floats 
near the boat, consideration of the elastic properties of the cable is almost super¬ 
fluous since the slack in the line occuring after the anchor impact is taken up by 
the buoyancy force at the upper part of the mooring line. 

C. Programming the Elastic Fall 

A more comprehensive approach to the problem posed by the anchor impact 
effect on the tension histories consists in considering the whole line to be elastic. 
The corresponding mathematical model of the mooring approaches reality and 
enables the deduction of conclusions as presented in the next section of this report. 

As briefly explained in section 3, the elastic computation is initiated by the 
ANCHOSET program. ANCHOSET uses any "rigid" initial conditions (stored in 
accessible memory by the ANCKDROP program) and readjusts all the node co¬ 
ordinates according to the existing tensions and the modulus of elasticity of the 
cable (no correction is performed at the anchor if impact has already occured). 
Adjustments should be made on the node at the start of this part of the program to 
account for the elastic properties of the line but they have been omitted. This 
omission is of no consequence for the initial fall when the elastic model is used 
throughout the entire problem. However, errors are inherent for the case where 
the elastic case solution is started using the initial conditions as derived from the 
non-elastic drop conditions at anchor impact. Although the node velocities re nain 
unchanged, a set of updated tensions is also calculated by ANCHOSET. This is 
carried out by using the same iteration (feed-back) scheme presented in the com¬ 
putational procedure of tho non-elastic model (section 3-A), the first TBOAT value 
assumed being the ANCKDROP initial condition value. 

The major set of machine instructions to be used thereafter is formed by 
equations (2.22) - (2.26) which have already been introduced in section 2. These 
equations are repeated here for reference: 

2EGk ■ xk+i - \ 
DELXk = SEGk - ILk USEGk 

TEk = SKk DELXk 

V -TEk.i + ÏEk + Dk + Wk 

V (^V ÛSEGk/MTk) ÛSEGk+ (F^ ÜVNORk/MNk)ÏÏVNORk 

(2.25) 

(2.26) 

(2.24) 

(2.22) 

(2.23) 
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Fig. 4 Simulation Flow Chart (Non-Elastic Case) 
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Fig. 5 Simulation Flow Chart (Last Segment Elastic) 



Fig. 6 Simulation Flow Chart (Elastic Case) 
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As written, equation (2.24) yields positive or negative tensions (using the 

USEGk direction as the positive one) at pending on the sign of the expression 

y « DELXk • USEGk 

If y is positive, segment k is stretched. If y has a negative value, segment k 

should be considered slack and thus no tension exists between node k and (k+1). 
* 

This leads to the nonlinearity shown on the next flow-chart corresponding to the 

elastic mooring: TEk is reset to zero whenever segment k is found to be slack. 

When segment k is stretched, TEk is obtained from the elastic equation (2.24). 

It is of interest to note that the use of a dynamic Hooke's law for the elastic 

properties of nylon cable (taking into account the rate of change of the tension with 

respect to time) leads to simple modifications in the present program. Equation 

(2.24) becomes: 

TEk = SKk DELXk + DKk d (DELXk)/dT (3.4) 

where DKk is the dynamic spring constant of the nylon cable. 

A new differential equation is thereafter necessary, giving the rate of change 

of DELXk with respect to time. 

d (DELXk)/dT = (Vk+1 • USEGk) - (V^ ÜSEGk) (3.5) 

The last expression (3.5) thus replaces equation (2.23). 

*A11 the computational flow-charts in this report have been simplified and do 

not attempt to be self sufilcient for the detail of the programs. They have beer 

prepared solely as an aid in understanding the basic calculation process used in th ^ 

simulations. 
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IV. Simulation Results 

A. Non-Elastic Cable Fall 

The original objective of this analysis is the investigation of the deployment 

of a long mooring at sea. The general characteristics of this long mooring are: 

From the boat to the anchor it is composed of: 

-A first section of line (1370 feet long) with attached floats (widely separated) 

steel cable, 117 lbs/1000 ft, un water) 0.365" diameter cable, 154 spherical 

floats (buoyancy: 5.25 pounds per float). 

-A second section of line (330 feet long) with attached floats (closely spaced) 

steel cable, 117 lbs/1000 ft (in water), 0. 365"diameter, 246 spherical 

floats (same floats as above). 

-A third section of line (4650 feet long) with no floats, steel cable, 117 lbs/ 

1000 ft, (in water) 0.365" diameter. 

-An anchor, or coral hook, weighing 2, 300 pounds (in water). 

The simulation results corresponding to this long mooring will not be presented 

immediately, but rather will follow those obtained for a shorter line requiring much 

less computational time and thus enabling a more complete investigation. 

Each chart contained within Part A of section 4 is briefly described and may 

be found after the following explanatory text. 

Chart 1: Complete cable shape history of the short mooring simulation. The 

characteristics of the short line have been chosen to exhibit approximately 

the same Reynold's numbers as for the original long line during the 

qunsi-static fall. The line is 150 feet long, has a diameter of 0.62 inch 

and has a spherical anchor which weighs 39 pounds in water. 

A normal drag coefficient of 1.8 was used to account for the effect 

of vortex shedding on the cable. The line was divided into 10 segments 

and the computation time increments were taken as 0.1 second. 

After 60 seconds of fall, it was arbitrarily assumed that anchor 

impact had occured, thus the shape of the line was also drawn after 

a settling period of 20 seconds (60 seconds after initiation). It should 

be pointed out that the cable shapes obtained near the anchor at the 

beginning of the fall suffer from the large segment approximation and 

therefore are not really representative of the real line shape. 
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Chart 2: Complete tension history at the first node for the 150 foot long 
line simulation. The tension is also shown after anchor impact and 
thus requires the consideration of a last elastic segment near the anchor. 
During the first 8 seconds following the anchor impact, the tension 
remains approximately constant until the line becomes taut and under¬ 
goes elastic oscillations with a period of 0.6 second approximately. 
The only damping of these oscillations is provided by the tangential drag. 

Chart 3: Tension spectra at different times during the fall. The curve 0+ 
refers to the time immediately after the start of the fall. The tension 
decrease towards the anchor is primarily due to the weight of the cable. 
Longitudinal drag has little effect on the tension although it causes some 
irregularities in the tension steps. 

Chart 4‘ Spectra of velocities along X at different times during the fall for the 
150’ line. 

After 2 seconds of fall, all the cable nodes have very irregular 
velocities due to the vibrational modes that are excited by large acceler¬ 
ations at the beginning of the fall. However, the vibrations damp out 
quickly as a consequence of the normal drag forces. This damping 
provides rapid smoothing to the velocity spectrum curves. Node 5 
falls with a velocity which remains almost constant throughout the 
submerged motion while the anchor velocity decreases rapidly from 
10 f./sec down to 1 ft/sec. 

Chart 5: Spectrum of accelerations along X at T=10 sec for the 6500 foot line. 
This chart refers to some early work undertaken on the large mooring 
simulation when divided into 75 segments (the number of segments was 
later reduced to 13 because of computer cost limitation). It shows the 
vibration modes of the cable. At each node, a sudden acceleration change 
takes place, giving rise to high frequency oscillations. The frequency 
of oscillations is thus directly related to the number of segments. Chart 
5 clearly indicates that a complete solution of this model would be very 
expensive. 

6: Complete cable shape history for a 220 foot long line. This chart 
is quite similar to chart 1 but this time the mooring includes floats at 
the boat end of the line. The buoyant section of the mooring is divided 
into 3 segments. The same buoyancy per unit length of cable as for the 
7, 000' line is used in order to simulate the large mooring behavior. The 
anchor impact is again assumed to take place after 40 seconds of fall. 
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Chart 7: Complete tension history at node 1 for the 220 foot long line with 
floats. This chart is similar to chart 2 but no elastic properties need 
be considered to obtain the solution after anchor impact. The tension 
drops immediately after the anchor has hit the bottom, then oscillates 
with a period approximately equal to 0.3 second. The damping of the 
tension oscillations is small but considerably higher than in the previous 
case (last segment is considered elastic). 

Chart 8: Tension spectra at different t'mes for the 220 foot long line with 
floats. This chart may be compared to Chart 3. The presence of the 
floats creates a tension discontinuity in the vicinity of the third node: 
To the left of node 3 un added tension exists due to buoyancy forces 
acting on the line. Note that the highest tensions occur around 10 
seconds and not towards the end of the fall as was the result obtained 
from Chart 2. 

Chart 9: History of the velocity along Y at node 12 after anchor impact for 
the 220' long line with floats. 

This chart indirectly shows the transverse oscillations of the cable 
immediately after the anchor impact and provides suitable criteria 
to determine the approximate settling time of the cable (around the 
equilibrium position). It is clear that the line will oscillate for a few 
minutes before it reaches its rest configuration. The period of oscil¬ 
lation of segment 12 transversely is seen to remain approximately 0.9 
second, although the amplitude of oscillation change - appreciably. 

Chart 10: Incomplete cable shape history for the long mooring with floats. 
Although the computation has not been completed for the entire fall, 

extrapolations have been made from Chart 6 in order to obtain the 
expected time of the complete fall (ocean bottom assumed at a 4500 feet 
depth), as well as the expected settling time of the mooring after anchor 
impact. Note that during the first two minutes of fall, all nodes from 
4 to 9 are found to be above their equilibrium position at time 0. This is 
due to the large horizontal tension component in the line after anchor drop 

which overcomes the effect of the cable weight combined with the small 
vertical tension component (neglecting the affect of drag). 

Chart 11: Incomplete tension history at first node for the 6500 foot long mooring 
with floats. 

Again, the tension is only computed during the first four minutes 
of fall. Extrapolation irom Chart 7 permits estimation of the maximum 
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tension at time = 4.5 minutes, and then the maximum value occurs 
at node ? as apparent from Chart 8. On both charts 7 and 11, scant 
credence should be given to the results obtained in the vicinity of the 
time origin 'as already mentioned for Chart 1), because of the poor 
correlation of the mathematical model with the physical line immed¬ 
iately after anchor drop. 

S. Elastic Cable Fall 

The following curves are all related to the shoi’t mooring without floats. 
Most of the elastic analysis is done with a synthetic U.iC. Only the last chart 
shows the results obtained with a steel . .ble. In the case of nylon, time steps of 
the order of magnitude of 0.01 second are used. The time increments have to be 
at least 100 times smalle for steel cable. 

The description of all the "elastic" results will, here again, preceoe the 
set of charts placed at the end of this part of section 4. 

Chart 12: Tension spectra during the first second of fall of the 150' long 
nylon line. 

At time (H. which is the time at which the anchor hits the bottom 
of the ocean, the tension spectrum is quite regular all along the line. 
Immediately after impact, elastic tension waves start to propagate 
back and forth along the line. Segment 2 is seen to remain under 
relatively high tensions at all times. This may be explained if segment 
2 is situated at an anti-node of a stationary wave system. In drawing 
all the tension spectra charts, the tensions have been assumed to remain 
constant between nodes and to experience variations only at the nodes, 
following the simplified mathematical model of the multi-segment line. 

—f1 13: L60#*1 variation of fifth segment for the 150' long nylon line (first 
second of fall). 

This chart is similar to a tension history chart although tensions 
have been assumed to remain positive or null at all times during the 
fall. It is clear that the dynamic stretch of segment 5 is irregular. 
Also, minimal damping exists in the mathematical model (tangential 
drag) so that large oscillations are permitted to arise in the vicinity of 
0.9 sec. Comparison of the location of the Cartesian coordinates of all 
the nodes on the elastic line with those on the non-elastic mooring 
discloses that very little difference exists after the first second of fall 
of the cable (the comparison has to be made on an average basis in the 
case of the synthetic line). This result is important: elasticity on the 
average has little effect on the shapes and time of fall of moorings, 
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whereas it greatly influences the tension histories. 

Chart 14: Tension history at node 2 for the 150' long nylon line after anchor 
impact. 

The tension is seen to oscillate between 100 and 400 pounds. A 
maximum seems to be reached after 0.3 second. 

Charts 15 and 16: Tension spectra for the 160' long nylon line after anchor 
impact. 

These 2 charts provide the reason for drawing the tension history 
at node 2 (Chart 14): node 2 sustains higher tensions at all times. The 
time interval between two consecutive spectral figures has been reduced 
to 0.02 second (as compared with 0.1 second for Chart 12) in order to 
permit a closer study of the elastic wave propagation. The 0.2 second 
of time during which the tensions are reproduced here is sufficient to 
follow the entire history of such an elastic wave as the one appearing 
to the right of node 3 at 0.02 sec. This wave very clearly travels 
towards the anchor at high speed (about 625 feet/second) so that higher 
tensions propagate to the right. At time 0.16 sec the wave end has 
almost entirely disappeared at the anchor. At time 0.18 sec, the 
e! He wive has totally vanished and a new wave is about to form to the 
right of node 5, in the direction of the anchor again. Segment 2 is seen 
to sustain high tensions at all times. 

Chart 17: Tension history at the boat after anchor impact in the case of a 
steel cable (150' long line). 

This chart is drawn from the numerical results obtained from 
program VIBRATO. This program takes the initial conditions of the 
cable at anchor impact time both in position and velocity and computes 
the subsequent coordinates and tensions after collapsing the mooring 
to one dimension, t’.iat is, the line is thereafter assumed rectilinear 
from boat to anchor impact point as a simplification toward the 10- 
degree-of-freedom spring-mass problem, (All initial conditions are 
projected along the boat-anchor line). Negative tensions are permitted 
in this simplified mathematical model altnough of not great physical 
significance. The maximum tension (500 pounds approximately) is seen 
to be reached after 0.0055 second following the anchor impact. In the 
time allotted to the present work, it has not yet been possible to run the 
steel elastic case under the regular ANCKDROP program. 
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V. Conclusions and Recomme idations for Turther Studies 

The system of nonlinear differential equations describing the free-fall motion 
of moving systems has been presented and a computational procedure has been 
given for both the inextensible line and the more general elastic cable. The 
simulation results include tension histories and cable shapes during the mooring 
fall motion. Computational cost has limited the study of the elastic line to the 
first second of fall and also the first second following anchor impact. It is seen 
that for the elastic case, the time increments used in the numerical simulation 
have to be very small: 0. 01 second for the synthetic line and 0. 0001 second for 
the steel cable. 

It is felt that a different mathematical model should be used to describe the 
initiation of the fall and the mid-portion of the mooring drop. Elastic properties, 
together with shorter segments are essential for a consistent analysis of the first 
few seconds of the drop. Similarly, elasticity should be considered a major 
factor after anchor impact on the sea bottom. 

A more complete survey would include the study of the mathematical model 
itself. Various parameters could be changed, such as the number of segments 
constituting the line, the moduli of elasticity of the cable and the computational 
time increments. A better model is also needed for the synthetic line if a precise 
tension analysis is to be undertaken. More computer runs should be performed 
for the case of the steel mooring if suitable funding were to be available in the 
near future.(The computational cost for the steel cable analysis is approximately 
100 times that of nylon. For the short 10 segment line, the inextensible program 
requires 3.2 second of computer time for every second in real time whereas the 
elastic program in the case of nylon, requires 86 seconds foi the same second in 
real time). 

Another analysis of interest would use a better hydrodynamic model for the 
anchor which has been assumed spherical in the present work. Also more infor¬ 
mation (and experiment) is needed to design a mathematical model for the hydro- 
dynamic reaction forces where arbitrary numbers or rough approximations have 
been used. Equally of importance, the program itself should be modified to include 
the possibility of investigating a non-homogeneous line, that is, a line for which 
both inextensible and elastic segments may be included. A type of mooring 
consisting of both nylon and steel is of practical interest and any further analysis 
in this area should be beneficial to mooring designers. 

In an attempt to increase the accuracy of the simulation, some tffort should 
be directed toward a direct computational procedure for solving the partial 
differential equation system. Two Runge-Kutta integration subroutines may have 
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to be coupled in a single program, that is, one integration loop in the time domain 
and another for the integration along the line. This procedure would clearly require 
considerable computational time and should therefore initially be restricted to 
short mooring motion analysis. 

Finally, a mixed computational method, that is, a method using both analog 
simulation after anchor impact and fast digital calculation during the free fall of 
the mooring may well represent a more efficient approach to the problem. 
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Appendix A 

Programming Notations and Symbols 

k 
AMF 

AMA 

an 
AN, 
at 

ATk 
CDN 
CDT 
DEL, 

DELX. V 
DF 

* DNC 
P 

DN, 

dT 
DTBOAT 

* DTC 
P 

DTk 

DT k-1 

‘ k 
FTE 
G 
IL 

P 
Li 
LUB 

* MN 
P 

* MT 
P 

NF 
P 

RHOSW 

acceleration vector at node k (components in feet/sec ) 
augmented mass of one float in slugs 

■ augmented mass of anchor in slugs 
■ equivalent normal area of a cable section 
■ acceleration of node k in the normal direction 
■equivalent transverse area of a cable section 
■acceleration of node k in the tangential direction 
■ normal drag coefficient 
■ tangential drag coefficient 

■velocity discrepency due to computational error existing between 
the two consecutive nodes k and (k+1) in feet/sec 

■ stretch in segment k (for elastic case) 
■ float drag constant 
■ drag at node k 

■normal drag constant at each node within section p 
■ normal drag force at node k computed from segment k (components 

in pounds) 
■time increment in seconds 
■tension error at the boat in pounds 
■tangential drag constant at each node within section p 
■tangential drag force at node k computed from segment k (components 
in pounds) 

■tangential drag force at node k computed from segment (k-1) 
(components in pounds) 

•total force at node k except for tension on anchor side 
■tension error existing to the right of the anchor in pounds 

2 acceleration of gravity in feet/sec 
length of segment between nodes within seconds p in feet 

■cable length of the j— section in feet 
• initial depth of anchor (T=0) in feet 
•augmented normal mass of one segment within section p in slugs 
■augmented tangential mass of one segment within section p in slugs 
•number of floats in section p 
■specific mass of the sea-water in slugs 
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Programming Notations anti Symbols (cont. ) 

SEGk 
SKk 

S 
P 

SIX)PE 

T 

TBOAT 

TEk 

UMC 

UMCN 

UMCT 

* UMN 
P 

* UMT 
P 

USEG. 
_ k 
USEGOLD. 

_ k 
UVNOR 

UWC 

\ 
VMP. k 

VNk 

VTk 
* W 

_P 
X 

z 

vector position difference between nodes k and (k+1) 

spring constant for the k^ segment 

number of segments in section p 

ratio of the tension error at the anchor to the tension error at the boat 

time in seconds 

tension at the boat in pounds 

cable tension vector to the right of node k (components in pounds) 

mass of 1 foot of cable in slugs 

augmented normal mass of one foot of cable in slugs 

augmented tangential mass of one foot of cable in slugs 

unit normal mass of one segment within section p in slugs 

unit tangential mass of one segment within section p in slugs 

unit vector along segment k 

unit vector along segment (k-1) 

unit vector perpendicular to the cable at segment k, directed 

toward the water surface 

weight of 1 foot of cable (in water) in pounds 

velocity vector at node k (components in feet/sec) 

velocity vector at the midpoint of segment k (components in pounds) 

normal velocity component at segment k in feet/sec 

tangential velocity component at segment k in feet/sec 

weight of each lumped mass within section p in pounds 

position vector at node k (components in feet) 

unit vector perpendicular to the cable plane completing a right-hand 

triad with USEG and UVNOR 

* When segment k is in section p the value specified for that section applies. 
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Appendix B 

Considerations on Numerical Stability (Non-Elastic Simulation) 

Although ordinary differentials have been used exclusively in the program, 

it should be understood that in strict mathematical terms, the generalized fall 

motion of a cable in a fluid is governed by a system of partial differential equations, 

in which the two independent variables are the time T and the curvilinear length S along 

the line. Both space and time discrete interval approximations enable the treat¬ 

ment of the problem by a system of ordinary differential equations which can be 

shown to approach the corresponding partial differential equations for the motion 

of the cable as ¿T and AS approach zero. 

A rigorous stability analysis may be undertaken using the mathematics of 

the Runge-Kutta numerical integration procedure based on finite-difference approx¬ 

imations. The strict analysis involves the study of the growth of a small disturb¬ 

ance or perturbation. The conditions for stability are satisfied if the amplitude of 

a small disturbance, introduced at any time T, in any of the dependent variables, 

does not increase exponentially with successive time steps. The stability investiga¬ 

tion is customarily carried out using the calculus of variations. 

The full equation of motion is rewritten by regrouping equations (2.7) and 

(2.14): 

Dk = j (DNk.! + DNk * DTk-l + DTk) 

V -TVl * V "k ■ 
V [(TEk+Fk)-ÜSEGk/MTk J USEGk 

+ (TEk + Fk) • UVNORk/ MNk UVNOR,^ 

(B.l) 

(B. 2) 

(B. 3) 

The stability condition may be stated as follows: 

If 6 Q(S,T) and 6 Q(S, T +AT) are values of a variation (or perturbation) in any of 

the dependent variables X, TE, in the system, then the system is said to be 

stable, provided: 

6 Q(S, T+AT)/ 6 Q(S,T) á 1 
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The authors are confident that a complete stability analysis in vector notation 

could have been performed, although the scope of the present study did not permit 

the effort. The contemplated approach would have included that introduction of the 

perturbation b X and 6TE in the dependent variables X and TE. 

In the stability investigation, the following first order approximations were 

used, where for simplicity, terms involving viriual inertia were omitted (only 

mass was included): 

b USEGk « UVNORj. b 0k (B, 4) 

6 UVNOR. = -USEG. b Q, 
k k k (B. 5) 

Vnere ©k is the rotation angle at segment k. (0 is positive in the counter-clock¬ 

wise direction). 

Equation (B. 3) is expanded and the first variation is calculated in the 

following manner: 

USEG 

(B. 6) 

k 

If the weight remains constant during the small variation: 

ó(TEk+Fk) = - 6TEk.1 + fiTEk+ 6 Dk (B. 7) 

Thus, the first variation system of equations is obtained: 

(1) b Xk = l/Mk|J^ (- 6 TEk.1 + 6 TEk + 6 Dk)- 

UVNOR * « I FfsKr. 

(- 6 TEk_1 + 6 TEr + 6 Dk)- USEGk + (TEk+Fk)* 

+ 1^(-0 TEk l + 6 TEk+ 6 Dk)*UVNORk - (TE^F^* USEGk 

6 0 VNOR. k 
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- [<TEk+ Fk)- UVNORkJ USEGk 6 9k 

together with the relation: 

(2) 6 9k * [(Xk+1 + 6 Xk+1) - (Xk + fi Xk> J • UVNOR/ 

(B. 8) 

‘k+1 + 6 Xk+1 * Xk ' 6Xk (B. 9) 

In the above system, 6 Dk * 1/2(6 * Djj) and, assuming that the 

cable drag coefficient CDNk remain’ constant, 

6 Dk « -2 CDNR VNORk 6 VNORj^ UVNORk 

where 

6 VNORk= (Xk+1-Xk)-UVNORk/2 

(B. 10) 

(B.11) 

The following finite difference relations are derived for use in the remainder 

of this projected analysis: 

i n-1/2 _ n _ n-1 
6 Xk = ( 6 Xk - 6 Xk )/AT 

6Xknx ( ÓX^1 -2 6^"+ 6Xkn’1)/ùT 

(B. 12) 

(B.13) 

Where the superscripts refer to the corresponding computational time steps. 

It is further assumed that within a small region in the (S,T) plane, the 

vectors TEkn, Fkn, etc. vary only slightly, and hence may be treated as constants. 

Thus, the corresponding indices will now be omitted for clarity in the text (TEn, 

Fn etc.). 

A solution of the system of equations (B. 8) and (B. 9) can be obtained in the 

exponential form: 

6 X^ = 5e 

6 TE n* be ißk + onAT 

(B.14) 

(B. 15) 

Where a and b are real constant vectors, a is complex and ß is the angular 

wave number of the perturbation functions. Substitution into equation (B. 8) will not 

be performed here because the bracketted expressions become far too lengthy to be 

reproduced in this report and work on this project was terminated. However, it is 
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probable that a system of linear homogeneous equations for the vector quantities ” and 

b could be obtained. 

Walton and Polochek have performed a similar analysis using Cartesia;. coor¬ 

dinates. They achieved a solution after several algebraic simplifications and mani- 

pulat.ons . They finally obtained the characteristic equation of the variational system 

(similar to equations (B.8) and (B. 9) but in Cartesian coordinates), namely, as 

translated into the notation used in this report: 

M SEG A2 + CDN VNOR SEG (1+C0S8) - VT AT (2 i si 

+ 4 TE (AT)2 sin2 (3/2) - 2M SEG 

CDNIVNO 

4 
where A = e 

r| seg| 

sin'l) J 

» A + M SEG - 

AT (1 + cos 8) =0 

AT 

(B. 16) 

(B. 17) 

The authors have used this characteristic equation to test the validity oft heir choice 

of AT = 0.1 sec. as follows: 

In the case of negligible drag, i.e. , CDN = 0, approximately, it is seen that 

equation (B.16) reduces to: 

Í- A + 4 TE sin (3/2) (AT)7M USEG X+l = 0 (B. 18) 

In order for the solution to be stable, it may be shown that the inequality 

TE sin2 (ii/2) (AT)2 / m|sEG|<-1 

must be fulfilled. This requirement is equivalent to the final condition: 

at < / M 1SEQ 
V TE 

(B. 19) 

(B. 20) 

In the more general case, allowing for finite drag, it is possible to show (2) 

that the requirements for stability are that AT satisfies both of the following 

conditions: 

AT á / M 1 
V TE (B.20) 

AT < _M_ 
CDNIVNORI (B. 21) 
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These two conditions (B. 20) and (B. 21) are both necessary and sufficient to 
obtain a stable solution. 

It should be pointed out that the stability requirement (B. 20) may be derived 
from mechanical vibration considerations. It simply represents the natural oscilla¬ 
tion period of the string - mass system formed by a lumped mass M mounted at the 
middle of a string of length2 |sEG| fixed at both extremities. 

For the short mooring example presented in Section 4 numerical substitution 
in the above yields, for a lumped mass of 5/G slugs, a segment length of 15 feet, 
and a tension of 100 pounds, the stability condition: 

AT £ (5/32,2)15 
100 

A F á 0.152 second 

The second stability condition, using a drag coefficient of 1.8, RHOSW * 2.08 
(SLUGS/FT3) and a normal velocity component of 2 FT/sec gives: 

AT 3 077¾¾^ or AT - 0.098 sec. 

It is clear that when the elastic properties of the line are taken into con¬ 
sideration, the stability of the solution depends primarily on the propagation time 
of the longitudinal elastic waves. The stability investigation, in this case, involves 
the determination of the highest vibrational mode of a spring - mass system ’’ ith 
many degrees of freedom. It will not be undertaken in this report. It is however 
clear that very short computational time increments have to be used for +he elastic 
fall, in particular when considering the steel cable. 

40 



lo
o
_
1
2
0
_
1
4
0
 

1
6

0
 

WMMMMMNMMaMIHMIMnMIWMNM 

0) 
c 

o 
Ifi 

(Ui Hxdaa 

41 



T
e
n
si

o
n

 
B

o
a
t 

sasnoH 

42 

T
IM

E
 
¡s

e
c
) 



WMMin MWH MW 

(SONinOcí) NOISN3X 

1 
c 

c 
in 

c •** 
h 

>> ** *• 
n, ■** 

" C .H 
t 
Ci 
£ 
U « 

u 

o 
X c. 

T. 

in 
es 

0 
c 

c 
w 
M 
c 
X 
h 

4 H 



Das/ii X ONcnv axido iha 

44 



C
a
b
le
 o

n
ly

 

mmm «Pfiwiti.......' ' 

45 

(n
o
 e

la
s
ti

c
it

y
) 



C
h

a
rt
 6

 

C
o
m

p
le

te
 C

a
b
le
 S

h
ap

e 
H

is
to

ry
 (

2
2

0
 f

t 
li

n
e
) 

(T
h
e
 
li

n
e
 
In

c
lu

d
e
s 

fl
o

a
ts

) 



(l
b

s 
) 

C
h

a
rt
 

7 

C
o
m

p
le

te
 
T

e
n

s
io

n
 
H

is
to

ry
 a

t 
N

o
d
e
 

1 
(2

2
0
 
ft
 
li

n
e
 
w

it
h
 
fl

o
a
ts

) 

(N
o
 e

la
s
ti

c
it

y
 
n

e
c
e
s
s
a
ry

) 



U. 
+- 
c 

C 

s: 

c 
c 

c 
N 

CA 
CL 

E 

M 
et 
a. 
CA 
C 
Çj 
c 
c 

c 
1 
t- 

c 
L- 

CA 
CQ 
»—« 
0/ 
O 
c 

ir. 
c 
c 

'3 
c 
d 
h 

48 



N
o
n
li

n
e
a
ri

ty
 o

n
 F

lo
a
ts

 

mÊmmmmmaMmmmmmmm 

49 

T
IM

E
 (

se
c
) 



A
n
c
h
o
r 

D
ro

p
 S

im
u
la

ti
o
n

 
(L

a
rg

e
 T

e
s
t)

 



E
x

w
c
te

d
 M

a
x
im

u
m
 T

e
n

s
io

n
 

a
t 

th
e
 
B

o
a
t 

2
2

0
0

#
 

(MI) NOISN31 

51 

T
IM

E
 
(m

in
) 



Tension übs) 

0* sec 

0.1 sec 

0.2 sec 

0.3 sec 

0. 4 sec 

0.5 sec 

0. ti sec 

0. 7 sec 

0. H sec 

0. 9 sec 

I. 0 sec 

52 



(V) (S);udiua¿s Io Mtfuai 

53 





T
E

N
S

IO
N
 
(P

O
U

N
D

S
) 

Tension Spectra - 150' Nylon Une After Anchor Impact 

55 



T
E

N
S

IO
N
 (

P
O

U
N

D
S

) 

200 

100 

0 

.100 

200 

100 

0 

200 

100 

_1_ -1_^_j_1_1_1-1-1 

J-1-L- 1 i-1 I 

0.12 sec 

0.14 sec 

0.16 sec 

200 - 

100 - _ 

0 -1-1-L-. 1 1 1 1-- I 0.18 sec 

200 

100 

0 J_I 
9 10 

Chart 16 

Tension Spectra - 150' Nylon Line After Anchor Impact 

0.20 sec 

56 



S
T

E
E

L
 C

A
B

L
E

 

U
si

n
g
 V

ib
ra

ti
o

n
 
P

ro
g

. 

57 

T
e
n

si
o

n
 
H

is
to

ry
 a

t 
th

e
 

B
o

a
t 

A
ft

e
r 

A
n

c
h

o
r 

Im
p

a
c
t 

(1
5
0
 f

t 
li

n
e
) 

(S
te

e
l 

C
a
b
le

) 




