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PREFACE 

This  Memorandum draws  on  three  previous RAND studies,   [9],  [ll], 

and [121,   to  Illustrate  the  use  of a  probability prediction method 

Involving  the  loglt model.     It   Is  shown how the model   Is  used  to develop 

the  prediction of  failure  trends within aircraft and  the  prediction of 

the  reenllstment  rate of  first-term airmen.    The authors  plan subsequent 

studies   In which  they will use  the   loglt  model   to study  the   interrelated 

maintenance characteristics  of different aircraft subsystems and to 

analyze  the  reenllstment probabilities of Category IV airmen. 

To   follow the procedures described here, readers  should  be ac- 

quainted  with regression analysis and contingency  table  methods. 
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SUMMARY 

This Memorandum discusses estimation  techniques of  logit models 

whose response variables are not  necessarily statistically independent. 

The statistical   techniques developed and utilized here include   the 

Generalized Least Squares approach of Zellner  [14]; stepwise  regression 

und its  relevance  in estimating  logit model  parameters; and  the 

"contingency   table"  concept of fixed marginal  probabilities which  <s 

used to develop a bivariate  logit model  that   possesses certain sta- 

tistical and probabilistic properties  concerning the correlation co- 

efficient and   the summation of individual cell probabilities   to  unity. 

The  techniques are designed  for application  to two Air Force 

problems.    The  first  problem uses  concomitant   informiition  to estimate 

the probability  that   first-term airmen reenlist.    The second uses  In- 

formation concerning  flying missions  to estimate  the probabilities  that 

interdependent aircraft subsystems  fail during  these missions. 

Some applications  to  the problems are presented in this Memorandum; 

however,   this   effort   is mainly directed   toward development  of  the neces- 

sary techniques.    An example illustrating the various  techniques  is  given 

in Sec.   V of the Memorandum. 

In a  forthcoming study,  these  logit models will be applied   to  two 

problems, analyzing them in detail.     First,  pxisting aircraft sortie 

data will be  used to study the  interrelated maintenance characteristics 

of the different aircraft subsystems.     Second,  the survivability (as 

defined  in  the   text)  and  reenlistment   probabilities of category  IV airmen 

will be analyzed. 
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Endogenous variable 
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GLOSSARY 

A variable determined within 
the framework of a specific 
model. 

A variable determined outside 
of or independent of the model. 

Air Force Qualifying Test score. 

The difference in dollars between 
reenlistment and the best civilian 
alternative employment, if the 
best civilian employment pays 
more and the choice is reenlistment. 
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I.  INTRODUCTION 

Thiw^ Memorandum presents a probability prediction model, the loglt 

model, and its theoretical development tailored to be used on two prob- 

lems explored in previous RAND studies. The first area is aircraft 

performance; the second, airmeü survlvablllty and retention.  In a 

forthcoming study we will extensively apply the theory developed here. 

McGlothlln and Donaldson [12] describe an Air Force Base supply 

officer who became well known because of his ability to predict future 

aircraft performance based on previous maintenance records. The authors 

report that the 5th Bomb Wing at Travis Air Force Bese claims that its 

method of increasing the probability of sortie success depends on a 

particular aircraft selection procedure for each sortie.  In the same 

vein, they discuss aircraft labeled "dogs," which are inherently less 

reliable in terms of sortie success than other aircraft of the same 

type, flying the same type of sorties.  The method in [12] and in a 

subsequent study by Donaldson and Sweet land [9] employs statistical 

analysis to discover the failure trends within aircraft and LO delin- 

eate differences in performance and maintenance among aircraft, and 

thus to identify the inherent dogs. 

In a seemingly different area, McCall and Wallace Cll] have studied 

the training and retention of Air Force electronic specialists. Approach- 

ing their analysis from an economic standpoint, they generate a supply 

function for electronic specialists.  Their basic function relates the 

probability that first-term airmen will reenlist to the opportunity cost 

of doing so, where the cost is defined as the difference between poten- 

tial civilian earnings and Air brce remuneration.  A similar problem 
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Is  that  of predicting the  firBt-terra enlistment survivability of various 

t 
airmen groupp 

Although aircraft performance and airmen survivability and re- 

tention present different problems  in terms of subject matter, both 

can be analyzed by probability prediction models.     In the  first case, 

the  probability of failure  is  considered an endogenous  variable, de- 

pending upon one or more exogenous variables such as  type  of sortie, 

previous maintenance actions on the total aircraft and/or its subsystems, 

and   length of maintenance service.    In the second  case,  the  probability 

of reenlleting is an endogenous  variable, depending on  the opportunity 

cost of reenlistlng;  the probability of survival  is an endogenous 

variable depending on exogenous  variables such as age,  prior education, 

race, and  initial AFQT score.    These two problems use similar pre- 

dictive models and statistical  tests. 

To treat such problems and to indicate answers to others falling 

within the eame framework, we analyze a predictive model known as the 

logit model.    In this model,  the  probability P that an event E will 

occur depends on a vector X1   " (X.   X )  of exogenous variables and 

is written 

(la) P(E) ; " -B'X • 1 + e ^ — 

where £'   ■ (Bi»   •••!  ß )   is a  vector of  the  regression coefficients  to 

be estimated.    This  is  known as  the  logistic  function.    The  logit of 

P(E),  then,  is simply the  following transformation: 

Survivability denotes   the  capability of an airman to complete his 
first  term of reenlistment. 
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(lb) logit [P(E)] - ln[1 ^pLI - i'i • 

The occurrence (or nonoccurrence)  of E  is usually assumed  to be 

independent of the occurrence (or nonoccurrence)  of other events.    It 

is well known,  however,   that aircraft subsystems do not   fail  independently 

of one another during sorties.     To verify this  statement we have observed 

the writeup histories  of three aircraft  subsystems  for 200 sorties: 

radar,  inertia 1 navigation, and  fire control.    Table  1 shows  the ob- 

served cell  frequencies and the expected cell  frequencies under the hy- 

pothesis of  the mutual  independence of these writeups. 

Table  1 

FREQUENCIES OF DIFFERENT EVENTS FOR THREE SUBSYSTEMS 

Frequency SSS SSF SFS FSS SFF PSF FFS FFF Total 

Observed 
Expected 

86.0 
72.3 

46.0 
46,2 

10.0 
19,8 

18.0 
23.5 

9.0 
12.7 

7.0 
15.0 

8.0 
6.4 

16.0 
4.1 

200.0 
200.0 

NOTE:     S  stands  for no writeup and F  for writeup.     Thus,  the 
event SFS  is  no writeup of the radar, writeup of the  inertia 1 
navigation, and no writeup for fire control. 

The analysis  is essentially that of a 2x2x2 contingency table  in 

which  there are  two outcomes  for each subsystem:    S  for no writeup and 

F for writeup.     Let  f..,   be the observed  number of sorties  in  the cell 
ijk 

(i,J,k), where i, J, k - S, F. Similarly, let f   be the expected 
1 JlC 

number of sorties  in the same cell.    Under the assumption of mutual in- 

dependence of the writeups, the expected  fraction p.  ,   (of the  total 
1 JK 

number of sorties)   in  the cell (i,J,k)   is  equal  to  the product of the 
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marginals; that Is pi v - P1>#P « P..^« where Vit ,   " ^ fijk^N' 

i ■ S, F, and similarly for the other two subsystems.  Then f. , = Np. .. . 

We then compute the statistic 

2   V*  (fijk "  ijk) 

i.j.k Ijk 

The associated chi-square  value is  49.0, with a single degree of   freedom. 

This  value  is significant beyond  the  0.0001   level.     Thus,  the hypothesis 

of mutual  independence of writeups   for  these   three  subsystems   is  emphat- 

ically rejected.    This  dependence of aircraft subsystems as well as  the 

dependence of airmen subgroups    has   led us  to  couch our specific  problems 

In a dependent equation model. 

Section 11 presents the basic theory of the  loglt model.    First, 

we  briefly  review the   literature on  the  use of   these models,  and   then 

describe the model as  It applies  to our needs.     This  Includes a  theo- 

retical explanation of  the Generalized Least  Squares approach that 

Zellner [141  uses   to estimate  "seemingly  unrelated  regression equations." 

A short discourse on stepwlse  regression and  Its  relevance  In estimating 

the  parameters  of  loglt models   Is  also  Included.     Section 111 describes 

the estimation  procedures  that are subsequently used  to establish  the 

posited relationships.     In Sec.   IV, we  present  a  blvarlate  loglt model, 

describe  its  mathematics, and  give  reasons  why a  generalized dependent 

loglt model might be better  than  Individual  Independent   loglt models. 

Section V  Illustrates  a problem solved by  the methods  described  here. 

And  the Appendix contains derivations of  some equations  in  the  text. 

Airmen subgroups  are any groups  that  can be distinguished on some 
predetermined basis:     for  example,  Caucasian and non-Caucasian;   high 
school graduates  and high school dropouts.     These groups are clearly 
neither  Independent  nor homogeneous. 

mt 
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II.     BASIC THEORY 

! 

Much has  been written about   the   theory and  application of  the 

logistic  function.    One  pioneer  in  the  use of the  logistic   function 

is Joseph Berkson [2-6,7],     He has applied the  logistic  function  to 

quantal data   (death or survival)   in bioassay testing of animalsj   that 

is,   the  testing of a chemical compound   in animals   to determine   lethal 

doses   for various  percentages  of  the  particular animal  population. 

Other  important  papers  concerning the  logistic   function have been 

written by Cox  [8], Dyke and Patterson  [lOl, and Walker and Duncan [13]. 

Suppose  that each observation  in a series of  trials  can  take one 

of two  forms, which in our particular applications are  "reenlistment" 

or "failure   to   reenlist"   for  the airmen data, and "subsystem writeup" 

or  "no subsystem writeup"  for  the aircraft maintenance data.     Suppose 

that corresponding to each  trial  there are one or more  independent 

variables  upon which the outcome of a  particular trial  is  suspected to 

depend.     Since  each observation  (the dependent  variable)   is  dichotomoue, 

we denote  the observations  by  0 and  1 and  thus obtain a  sequence of O's 

and  I's   for  the outcome of  the  trials. 

To  formulate  the  logistic  function,   let Y.,   ,.,, Y    be mutually 

independent,  binomially distributed  random variables and X',   ,.,,  X'  be 
—1 —n 

a set of fixed s-vectors;  that   is, X^ • (Xi0, X ,,..., X,       .).     We 

assume s < n.     Further,   let  p    be  the  probability of success  and K.   be 

the number of  trials at  the  i      stage,   i  = 1, 2,   .,,, n.     Then  the 

binomial distribution may be written: 

(2) 'i'VW -(Y1
l)pIi(1-pii"Yl)' 

 - 
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where Y.   = 0,  1 K   ,   I • 1,  2,   ...,  n.     It  is  suspected  that  p1  is 

related  to  the  vector X  . 

One might  conjecture  a   linear  relationship between p.   and X.. 

i  = 1 n.     That   is , 

Pi  -l'^  -ßo4BiXil + ---   +8s-lXt.s-l  ' 

However, p must lie between zero and unity so that the procedure for 

estimating the parameters BQ, B, P  , would be constrained by 

this condition on p., I ■ 1, ..., n.  There are functional relationships 

between p and X , i = 1, ..., n that are free of the above constraint 

but yet insure the restriction that p lie between zero and unity is 

not violated. One such relationship is the logit model given by 

Pi 
(3) logit (p^ • In Y fi'^i , 

where j}' ■ (0-, ..., 0  i^ is t^e regression vector upon which we draw 

inferences.  Rewriting (3), we see that 

(4) 1       "(1%) 
1 + e 

Ordinarily,  X _  »  1  (i  ■  1,   ...,  s  -   1)   so  that  0Q is  the  intercept 

parameter.     We  shall abide by  this  convention. 

We  place emphasis  on  the  logit model  in  this Memorandum  for the 

following reasons: 

1. The procedure  for estimating^  is   free of constraints  such 
as  those   that  exist   for  the   linear model. 

2. Estimates  of  the   logit model  parameters are easily obtained 
and possess  desirable statistical properties. 

3. In many applications,  including those discussed here,  the 
model  has  empirical Justification. 



4.     Much has  been written  that  we can use  concerning the  logit 
model and  its application. 

Thero are two standard  procedures  for estimating  the  regression 

coefficient  vector  (0ni  S, »   •••,  0     . )--maxitnura  likelihood and minimum 

chi-square.     Berkson compares  these methods   in  [6]. 

We solve the equations 

(5a) 

11 

5j K (Y /K    - p.) - o 
i-1 

and 

(5b) 

n 

E hVi'h ■ Pi) = 0 

A A A 

j  - 0,   .... 8  - I, for I'   - (ß0, B1,   ...  Pg.j), where 

(6) 
1 

1        -d'Xi) 
1 + e 

^ is  then  the maximum  likelihood  estimate of j3. 

The  solution of  the equations 

(7a) J2 K, 
i-1    l 

^(1 - Y1/Ki) + (1  - P^Y^K^ 
(Yi/Ki ' ^i) " 

Equations (5a) and  (5b) are the normal equations whose solution 
yields  the maximum  likelihood estimates of £.    The derivation of these 
equations   is  sketched  in the Appendix. 

Equations  (7a)  and  (7b)  are  the normal equations whose solution 
yields  the minimum x^ estimates  of Ij.     The derivation of  these equations 
Is also  sketched  in the Appendix. 
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and 

(7b) 
Yi/kl) + (i 
 KT 

P^Y^Kj 

P.d   -  ?,) 
(Yi/K1  -  P^   - 0 

J-l s-l,   in  terms  of 13,  where 

(8) i -WIT)  ' 
(1 + e l   ) 

yields   the  minimum chi-square  estimate ^ of ^.    The  solution of each 

set of equations   (5a, 5b)  and   (7a,  7b)   usually requires an  iterative 

approach.    This   is  so because   the  coefficients are   functions of  p  (or p), 

and  p  (or ^)   is  not   linear  in  the  parameters, 

Berkson  [6]  discusses   the  properties  of |l and £ and,   to some extent, 

their  relative merits.    For example,   the  estimates ^ are  best asympto- 

tically normal  (BAN)  and hence  they have  the  same asymptotic  properties 

as j}.     That   is ,  both j} and  B are  consistent , asymptotically efficient , 

and asymptotically normally distributed  estimates  of £.     In the  com- 

parative  sample  Berkson worked with he  demonstrated  that  the mean square 

errors of  the  minimum chi-square  estimates were smaller  than  the mean 

square errors  of   the  corresponding maximum  likelihood  estimates.     He also 

2 
discusses  the minimum "logit  x   »"  which has   the desirable  property  that 

the  parameters jj  can be estimated  simply and  directly. 

2 
The  "minimum  logit x    estimate" of £ is   the solution  to   the 

2 
following quantity defined as   the  "logit  x ": 

(9) 
1  .2 

logit x    ■  L   n.P.d   "  PiK'i   "  M   • 
i-1 

_ 
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1 

wh ere     i    = In  p./(I  -  p.,)   is  the observed  logit,  and  I    = ^'X is   the 

estimated  logit.    The normal  equations   for obtaining  the minimum  logit 

2 t X    estimate of ^ can easily be written: 

(10a) 

N 

I 
i-1 ~ Vi (i - p^Uj - IJ - o, 

(10b) 

N 

L "!?!<! - P^^JC^ - v - o. 

Unfortunately,   the  usual   logit model as   it  is  structured applies 

only  to blnomially distributed variables and  thus  cannot  be applied 

directly to a multinomial  situation.     Because  of  the dependent  nature 

of cur data  (in the sense  that aircraft subsystem writeups are cor- 

related)  and because efficient  linear regression procedures are avail- 

able when the observed proportions  r    - ^/K*  are  not merely zero or 

unity, we now discuss  these applicable procedures.    The substance of 

the  following derivations   can be  found   in Zellner  [lA] and Zellner and 

Lee  [15]. 

Suppose   that  independent  samples  of size  n   ,   n   n    are 

observed on items (such as airmen reenlistments , and aircraft sub- 

system writeups) that have a dichotomous response. Suppose that r 

is   the  proportion of "I's"  for  the  1      sample.     We  then assume  that 

(U) ri  "Pi +V 

where u    has a binomial distribution with mean zero and  variance 

[pi(l  - pi)]/ni, and where -pj < i^ < 1 - p^ 

The derivation of these normal equations   is  also  sketched  in 
the Appendix. 
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From (11)  we see that 

(12) 
r1 _Pi_ /    ^VPj     \ 

J-r^ -1 - P1 [i - Vd - P^ 

Thus,   letting Z.   - In -j—±— and   using  (3)  we have 
1 l  -  xi 

(13) Z1  - i'Xj + In (1 + u^p^   -   In [1  - 1^/(1  -  p^]. 

Expanding  the  last  two  terms  of  (13), we  obtain 

(14a) zi-£'*i+^(rhv+Qi' 

-1 
where Q    denotes  the  remainder.     Q    is  of order n.' in probability, 

and  its  omission will not affect   the asymptotic properties of  the 

estimates of Z.,. 

Thus 

(14b) 

where 

\ 'SLI^ «!• 

•i- vAi^-pi^ I*   1,   > • • i  in< 

Hence,   the  least squares of estimate £"  of £ is given by 

(15) i* -(x'E'M'1 X'E'   Z. 

th whereY^ is a diagonal matrix whose  i      element on the diagonal  is 

[n.p.(l   - P,)!'  •    The  least-squares  procedure to obtain §    is an 

   i 
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application of Altken's generalized  least  squares  [l].    The varlance- 

* 
covarlance matrix of £    Is  given by 

' 

-1   \-l 
(16) Var |" (x'E'x) + o^1), 

where o(n'',,)  signifies a matrix whose elements are of smaller order 

than n.     in  probability. 

As demonstrated   in  the Introduction,  with  respect  to subsystem 

writeups, while  there  is  no apparent  intracorrelation among writeups 

within a subsystem,   there may be a  correlation among groups of sub- 

systems with  respect  to writeups.    Thus,  we make some  changes   in the 

model  (14)   for the case of  £ characteristics.     We again  follow Zellner 

and Lee's  lead.     Let 

(17) 

h 

J   0  ... 0 R.   ... R 
   1 -s 

0 J   .,. OR.   ... R 
   1 -8 

0 0 lh 

poi 
• • 

»01 

• 

+ 

V 
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where J is an n-vector, each of whose components  Is unity: 

R "   (X   - ,    • • • i   '*__)»     D  ■  I,   I ,   • • • i   8, — m ml mn 

vij "uij/pij(1 - v* 

For the remainder of Sec.  II,   the X    vectors will denote  the  vector 

of  trials  for the  i      exogenous  variable  (the  R,  vectors   in  the 

footnote). 

We  require  that  the  Z.'s  each have  the same dimension--N x 1. 

Thus, writing (17)   in compact  notation we see  that 

(18) 

where 

v 

z - x £ + v 

'iti '  _2 *   * * * • —*' ' 

(B 01' • flor •••' ^i' 
(v; v J) 

•• BJ. 

It   is  important  to note  the  relationship between  the X vectors at 
the bottom of page 5 and  the R vectors.    The  individual components 
of the vectors are such  that  XX*   ■ R'R, where we define  the matrices 
X and R as   follows: 

and 

X - [X.   ...  X ]  - —1 —n 

R - [Rj^  ... R^ 

Xll X21  '••  Xnl 

X,    X.     ...  X Is    2s ns. 

Xll X12  *••  Xl8 

nl    n2 ns J 

where   the X^  represents   the value of the  j      exogenous  variable  for 
the   ith trial. 
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(19) 

10 
Hi 
•      • 

0 0 

0 Xj  .. 

o x1 .., 

Ih 

X 
-6 

X 
-6 

X -s-1 

The model  for determining the  proportion of airmen  reenlistments 

is   the   generalization of (14)   that  Zellner and  Lee  [151 discuss.     It 

can also be  written as   (18) with the same definition for Z1  and V* , 

but with £'   - (ij,   .-.,  Bp, and 

(20) 

X j,   0    ...   0 

o  h 

0    0     ...   X, 

where X^ denotes   the set of exogenous   variables  for  the  i       distinct 

group of airmen. 

The variance-covariance matrix  for V, which  is  independent   of Xf, 

will now be developed  in  general.    Again,   following the development  of 

Zellner and Lee  [151,  the variance-covariance matrix T, is given by 

(21) 

E21 ^22 

E/l S£2 

. E 11 

'It 

Jil 

and 

V  - (11,   ....  1). 
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(22) Zu 
0     a i 

22 

0      0 

ind djj  - t^j?!^1 " Pij^'   • 

0 

0 

nn 

To evaluate E     ,  (1  j* J) , we need some additional  theory.     First 

of all,  E(VJ   V,  )  » 0 unless  v = w.     To calculate E(V.   V,   )  we  sketch 
Iv ju' iv jv 

the  approach in [15],     First  of all we note   from the  definition of V.    , 

k =   i,  j  and Eq.   (11)   that 

(23a)      ay.   = E(Vt  V.  )  -   [p,   p.   (1-p.  )(l-p1  )]"    E(r.   -p.  )(r.   -p.   ) x       ' ij Iv jv'       tKiv^jvN    'iv'        jv/J iv riv/    jv 'jv' 

r.      k =  i,  J   can be written  as  the  average of n    dichotomous variables 
kv '  J V 

so  that 

■'       J n\t=l t=i / 

where 

\^ 

1 with probability p kv 

0 with probability  1-p 
k = i, j 

We now observe that E(ylv(t) - P^Xy.^O " Pjv) " 0 ""less t = t' 

in which case 

ij, 
E(yiv(t)   ■ Piv)(yjv(t)   - "jv) ■ P11(V)   -  pivpj 

Thus, 

1  r  il (23b)    o^  - [nvPlvPjv(l -  piv)(l - PJV)]      [p^Cv)   -  pivpjv] 
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p jr(v)  is   the  probability that an  individual  in  the v       group has 

value "1"  in both characteristics   i and  j.    Thus, 

(24) 
1J 

' 1 
0i.l 

0 ■   '   • 0 

0 
2 

• • « 0 

0 0 •  •  • a 
lj 

,     for  1 ^ j. 

Since we want  to  test hypothesee  about ]3 and derive  corresponding 

confidence  intervals, we now discuss  some  general principles  con- 

cerning  testing of hypotheses and derivation of confidence  regions   for 

the  estimated  parameters.    Suppose we wish  to  test  the hypothesis   that 

the  s-dimensional  parameter space ^,  based on  the estimate ^    given by 

(15),  can be  reduced  to a s'  < s dimensional space.    The null hypothesis 

H    can be written 

(25) 

where C 

H   :  C i =  0   , 

,       ..        exhibits  the  restriction  under H,,.    To  test Hn, (s-s  )xs 0 0' 

Zellner  [14]  gives  as a  test statistic: 

(26)   F       , 
s-s   ,n-8       (s-s   ) 

_ (n-s)   z,^"1x(x'r"1x)"1c'[c(x'r'1x)'1c'lc(x'r"1x)"1x'r"1z 

z,r_1z-z,E'1x(x,i:'1x)'1x,j:'1z 

That   is, we  reject H-, at  the cy-level of significance  if and only  if 

(27) F       , > F       , s-s   ,n-8        s -s   ,n-8 ,cr 

F       i is   the  upper o- percent lie  of   the F distribution with s-s' 8-8   ,n-8,a rr r 

and n-s'  degrees of  freedom. 
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To obtain a  confidence   region for ^,  we  note   tuat since £    is  a best 

linear unbiased  estimator of £,  then based on  the  normality assumption 

of Z^ 

(28) 
s ,n-s 

/n-8\ (j*  - j) '   (B*  -  fl)  

\ 8 /{z'y^z-z'T^xa'T^x)'1*^'1?/] 

Thus,  a  (l-a)   level of confidence  region  for ji  is  given by 

(29) 
\ 8 / z,r"1z-z,j:"1x(x,y'1x)"1x,i:"1 

^   F 
s ,n-s;cy 

where  F is  similar  to  F       , s^-s;» s-s   jn-s;^ 

In applying  the   logit models considered here,  we note  that  there 

is a  relationship between  the dependent   variables  and several exogenous 

or  independent  variables.     For example,   the   failure   (or success)  of  inter- 

dependent  aircraft  subsystems   is  related  to  exogenous  variables  such as 

type of mission  (for example,  escort mission,  bombing mission),   length 

of mission, maintenance actions  prior  to  the mission, and  time of  previous 

overhaul.     In   these applications  it  is   important   to   identify,  if  possible, 

those exogenous  variables  which   "best  explain"  the  behavior of  the  de- 

pendent   variables   in  the  sense   that  by  eliminating   those  exogenous 

variables   that  are not   "best,"  little   is   lost   in  the accuracy of  pre- 

dicting   the outcome of   the  dependent  variables.     Stepwise   regression 

affords  a methodology  for choosing a  subset   from  the  set of exogenous 

variables   that are among  the  best with  regard   to  "explaining"   the 

The asymptotic normality of Z  is  a  consequence of  the asymptotic 
normality of u.     The  rate  of  convergence  of u   to normality depends on £. 
For  p£ small or  large,   the  rate of convergence of u^^   is slower  than  for 
moderate  values of  p.. 
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behavior of the dependent variables. Briefly, the stepwise regression 

"explains" the behavior of the dependent va r iable by maximizing the 

regressio1. sum of squares sequentially until some prespecified criterion 

is achieved. 

(30) 

t That is, we examine all simple regressions 

z'·sx' +£ 
i v vi i 

X' •(X -X); 
vi vi v 

z~ - (Zi - Z) ; i - l, 2. . .•• n. v - l. 2 ••..• s. 

We then choose B' such that 
"l 

(31) regrossion s.s.(Bv
1
Jt. max~v • ~ x~1x;~ 

v•1,2, .•. ,s 

a rna ( t X 1 Z 1 ~ X 1 
2
\ 

~i-l vi Yt:l vi J 
v- l, 2, •..• s 

.. 
Next, we let Z" • Z' - B X , and examine the s-1 remaining re-

i i v1 vl 

gressions. Thus, we consider 

X~, i • (X" 1 i - X",) ; i • 1, 2, •• . , n, 'V I a 1 t • • • ., S t v ' ; v 

.. 
Now we choose A such that 

"2 

(33) regression s.s ) t (( n )/n ) B - x I: x' z" L x• 2 

( "2 ' : • I ' .. • ,s i•l v ' i i i•l v 'i • 

v ""1 

1 . 

t 
We assume E(£iet) -

- 1, 6ij - 0, i , j. 

2 
ijo , where 6ij is the Kronecke r delta, i.e., 

1'1' A 

! egression s.s.(ei) , i • 1, 2 is the regression sum of s~1ares 

to ei. due 
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Thls  procedure  Is continued until one of  the   following occurs:     (1)  a 

predetermined amount  of  total variation  is  explained by the subset 

(0     ,   ...,  0       );   (2)  a predetermined number of regression coefficients i 
Vl V81 

say s., is chosen;  or  (3)  some other practical cutoff point   is  reached. 

As   indicated  in  the  footnote on page   15 ,   this  development  assumes 

uncorrelated and homoscedastic observations;  however,  the modifications 

discussed earlier enable  us   to apply  the  stepwise  procedure   to our 

problem. 

   J   ■    -       - -»!,, 
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III.     ESTIMATION PROCEDURES 

In describing  the   techniques  used to  estimate   the  parameters  of 

the  loglt model, we divide  the   following discussion  Into  two major 

parts:     (1)   the estimation of single equation models, and  (2)   the 

estimation of dependent  equation models. 

A  single equation model   is  one  that estimates   the  parameters  of 

a single posited relationship when  this  relationship  is  uncorrelated 

with any others.     For example,   the equation  that   relates   the  proba- 

bility of reenlistment  for airmen to exogenous   factors   falls  into  this 

category.    Consider now 

(34a) ''I  "I'Xi  + V 1  - 1.   ....  n, 

where 

and  for  1  " 

-1  = (X0i'  Xli'   •*" Xs-l,i) 

€i  = Ui(ri(1  ' ri)) 
-I 

ECe^   = 0, 

j,      EU^j)   = [N^^l  - r^l -1 

Using  the procedure of ordinary  least squares   (OLS) ,  we can obtain 

an estimator ib    of ^: 

where 

b*  - (X'X)'1 X'Z, 

X  -   (X, ,   X- ,   ...   X ) • 

The estimator b    is unbiased and  Is  equal  to  the maximum  likelihood 

M 
estimator b  (assuming,  of course,   that   the e.   are  normally distributed) 

The disturbances, e, ,  exhibit heteroscedasticity,  however,   and  hence 

- 
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h    is  not a best   linear unbiased estimator  (BLUE).    To  get an 

asymptotically BLUE estimator,  we  use  the  following procedure.     Since 

* 
(34)   is a  single equation,  it   is  easy  to obtain b^ .    First we cal- 

culate  the weights 

(34b) Wi ' ["Vi^1  "  ri^   '     1  " 1«   •••>  n» 

th 
where  r     is   the  observed proportion of "1's"  for the  i       sample as 

given in  (11).     A weighted regression is   then performed  using OLS 

on  the   following  equation: 

(35) Vi ' I'w^i + ^v 

The OLS estimator j}    of ^ is  now an asymptotically BLUE estimator and 

2 
is  equal  to both  the MLE a and  the minimum  logit x    estimator of  (14). 

* * 
In addition, |J     is  exactly  the  same as   the j}    of  (15). 

However,  the  simple procedure  does  not suffice  for dependent 

equation models,   that  is  those   that have  two or more  posited  re- 

lationships  which are  interdependent.     Two   types of these models  were 

explained  in  (17)  and  (20).     Assuming  that  the  entire model contains 

i equations,  we  can write  the  system as 

(36a) 

k 

h 

x1 0   ... o 

o   x2 ...  0 

0    0 h 

hi "M 
r2 
i • 

+ 
■    1 

K rl\ 
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or 

(36b) Z   = X| + u   . 

As  noted above,   the  Xe are  not  necessarily mutually exclusive 

(see   (17)),  nor  is   it  essential  that all  the £    be diffe 
rent.  The 

solution of (36) can be writt en as 

(37) 1* = ix'z'hyh'T.'h . 

The method  that  Zellner has  devised [141  is  used  to estimate  the 

matrix E    .    Essentially,   it  estimates  each of  the   f.   individual 

weighted   regressions   by OLS.     Thus 

(38) lv. ^•CX^Xg)       ^ 9=1,       ...,       £. 

The  estimator bQ  is  used   to obtain  the MLE of   the  disturbance vector 

u     for equation   0: 

(39) 
He =20 -XeV     e = 1' •••> e- 

We  can  then compute the matrix 

(40) 
^i •'• au 

.^i '•- au 

n-1 

such   that Eu  is  of dimension  ;  x  . and has   the  general  element 

given by 
J90 

9. 0 - 1,  .... I. 
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*-l -1 -1        "-1 
The matrix    E      is an estimate of Z    .     Replacing E      by II      in  (37) 

*                                * i           *i                 * i *i\ yields  estimates j3    for £, where ^      =  (JL   ,   ... i ^.Q &1, '' 

* 
These  estimators  Br  consider explicitly  the  intercorrelation between 

the  t equations. 

The  principal advantage of using  the above method  is   that  the 

estimators B.  are more efficient     than the b  .    This  is  especially 

helpful  to  the decisionmaker when various  constraints are  imposed on 

the estimators  as  in (42)   below. 

However,  there  is a  gain in efficiency using Zellner's method only 

if correlation exists between  the  dependent  variables;   that   is,  only 

if EU^J   |» 0,   for all 9,  0 such  that  9  »< 0. 

If  there   is  a  good reason  to  believe  that E(ZJZ-)   =  0,   then  there 

is a  considerably simpler method   that may be  used to estimate  (17). 

Thus,   let l'  ■ (Zj,  .... Zj), X - (Xj Xg+p. and fi'   ' ^i ß8+jt) 

Then the  following regression may be  estimated by OLS: 

(41) 

s+i I 

B-l+1    e e      6=1    e e 

where  XQ  = 0,   1   for all  6 e  [l.Jtl.     Similarly,  the  parameters of   (36) 

can be  estimated by applying OLS  separately  to each equation of  the model. 

The  system  (17) we wish to  estimate  is merely  Mie   general system 

(36) with  linear  restriction on  the  estimates;  viz.,  the   "slope"  co- 

efficients are  constrained to be  the  same among the equations,  while 

Tha t  is , 

Var(£*) 

 ^ 1. 
Var^) 

for all 9. 
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the  intercepts are allowed  to vary.    To handle  linear  restrictions   in 

the  present prcblem,  we must minimize  the  following equation with 

respect to £: 

(42) (Z  - K&'iZ - X£)   - X(R£ -  r), 

where Z, X, and £ are defined  in  (18), X   ie  a  row vector of Lagrange 

multipliers, and R and  r are a matrix and a  column vector,  respectively, 

which  together define  the  restrictions on  the system.    The estimator, 

ji   ,  will satisfy  the   relationship 

R£A=_r   . 

where R is a matrix with a  row  for each  restriction.     For example,   the 

restriction matrix  for  (17)  would be 

where 

ail   ••*  aU  ••' alT 

n n        n 

'01 

'0i 

ß 

(i)    a 

(ii)    a 

ij 

(iii)    a 
IJ 

0, for  i,   j   - 1   ...   £ 

1, for  j   - £ + 1;   i  -  1,   . 

and T  - i.S 

1,     for  j  - i + s + i. 

••»   *!   J   ■  1,   •••, T 

Minimizing (42),  we obtain the  following expression  for BA: 

(43a) &.A - g. + (X'X)-1R'[R(X'X)"1Rn"1(r  -  R|) , 
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where  ^" (X'X)    X'Z,   the  unconstrained  least-squares  estimator.    The 

covarlance matrix of  the  estimator |[    Is  given by V(^ ): 

(43b)      v V(iA)   -■ V(|)   -  V(i)R'[R(X,X)'1R,l'1RV(|). 

To  account  for the correlated  error  term between equations, we  use  the 

following estimator of £: 

(44a) bA - b + (X,^1X)"1R,[R(X,v'1X)"1R,l"1(r   -  Rß) , 

and   the  covarlance matrix  Is 

(44b) V(bA)   - V(b)   -  V(£)R,[R(X,^"1X)'1R,]"1RV(b). 
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IV. BIVARIATE LOGIT MODELS 

The development to this point has been oriented toward univariate 

logit models. That is, we have considered the probability that an 

aircraft system would either "fail" or "not-fail," that an airman would 

either "reenlist" or "not-reenlist," or that the subject under con-

sideration would possess some c haracteristic on a "yes-no" basis. 

Then we analyzed the interdependen t relationships of the vario~s sub-

jects. However, situations ar i ; e in which a subject can possess more 

than one characteriti!:ic, each on a "yes -no, " or "pass-fail" basis. 

For example, consider any weapon system with more than one com-

ponent part (or in some circles, "black box"). In these instances it 

would be preferable to incorporate the dependence of the component 

parts directly into the probability functions. W(· have done t his below 

for the simplest case--that of two variables--such that the marginal 

distribution of the probability of "success" for each variable is 

repn- s ented by a logistic functioo. 

Consider the following 2x2 con t inge nc y table for two characteristi.cs, 

say!J
1 

and?z2 , of some subject on a "success-fail" basis such that 

success is represented by a one and failure by a zero, 

where 

L: 1. 
j 

Table 2 

CONTINGENCY TABLE FOR CHARACTERISTICS 17
1 

AND 1'(
2 

'>1'NJ..1 Success Fail Marginals 

Success Pu P1o pl. 
Fail POl Poo Po 
Marginals P.l P.o p .. 
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We now take  into acconnt  the  intercorrelation of 77.  and^..     Let 

th 
p (i), where r, 6 « 0,1 is the probability that on the i  trial the 

t S 

characteristic h j^  takes  on  the  value  r, and ?j7„  the value s. 

If 7/    and 7?     are  independent  characteristics we can  then write 

(45a) 

where 

and 

>1.(i)P>1(i)  -   Id +  eYlt)(l + eY2i)J = ?nii) , 

vii = -K)+ ^i^ ••• + Vixi..-i)' 

Y2i=  -(e0+ 0lZil+   •••+et-l'Zi't-l)- 

However,   (45a)  does  not  hold  if  characteristics^ and ^2 are dependent. 

Regardless of whether or not>^    and?]    are  independent,  the  relation- 

ships of Table  2 must hold.     Namely P^i) + P^1^  E  pi  (1^'  pll^ 

+ P01(i)  « P  ^i).  P10(i) + P00(i)  = P<0(i).  *nd PQI^ 
+  PoO(i)  "  P0.(i) 

We shall require   that   these marginal probabilities be  logit models  so 

that when we deal with  these characteristics marginally (separately) 

we  can use  the  theory already developed. 

Thus , 

r   Yul'1 
I* (i) P1%(i)  - [l+ e       J (t) 

(11) ^.[-^l"1 • 
A way  to write p    (1)  as  a blvarlate  logit model  to  Include  the  situa- 

tion  for which'»/     andTt,  are dependent while preserving the  requirement 

that  (46)   holds,   is  to write 
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(45b) p11(i)  - [(1 + e   li)(l +  e 2i) + u(Yl..  Y21,  A12)] 

so  that p     (i),  p     (i),  and P00(i)   are  chosen  in such a way  that   the 

relationships  of Table  2 hold as  well as  Eq.   (46).     In order  that 

(45')   reduce   to   (45)   when 7/.   andTj?    are   independent, we  require 

Ui  ~ "^li*  Y2i'  A12^     t0  be SO chosen  that 

the Pro(
i)-     we  require 

(47) u(Yli,  y2i,  0)   =  0. 

We now  investigate  further properties of 

the  following  five  conditions  concerning p     (i). 
rs 

(i)  The probability associated with any one cell is greater than 

zero and less than one.  Hence, for Pi.(0 we have 

ü<[(lte
Vu)(l+e

V21)+u1l"
l<l. 

(ii)     The  probability,  p     (i),  can be written explicitly by 

using  the  equality Pu(i)  + P10(i)   =  ?!  C1) .  which 

from Table  2.     Hence, 

comes 

(48) 

Since p10(l) has th. sa„e restrlction „ pii(1)i ^ ^^ 

no means The manner in which the u(Yli. Y2i. ^ij) i8 incorporated is by 
>ns unique. The constant covariance term between the two charac 

teristics seems appropriate for the present situation, however, an 
in fact much simpler than some more general function such as 
A12i "8<Y11'  Y21). 

d   is 
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(iii)  Similarly, since P11(i) + Poi
(i) " P.l^' 

Again, 0 < PQ^1) < 1. SO that 

0<(l+e
Y2i)'1.[(l+e

Yli)(l+e
Y2i)+uJ

1<l. 

(iv)  Now, p00(i) = 1 - p10(t) - P01(i) - Pu(i). ^th the U8ual 

restriction 0 < PQQU) < l'     Thu8. 

(30) p^^-^^r-^^^K-^x-^-j1 

and 

-  (. + J")"1  -  (! + e
Y21)"1 + [(! -Vli)(l + >)+ uj1 < 1, 0 < 1  -   (1 +  e 

(v)    Let  p      be  the  correlation coefficient between the  two 

characteristics >7    and"^.     Then noting  that 

i covC^^lgiven  i) 

'12 

(51)       P 
i 
12 

JvarCT^Igiven i)var(^2| given  i) 

we have 

vii +Y2i A. niv2 A..Y2i Kur (-2i) T 

i 
'12 

Since p*„ is a correlation coefficient it must lie between 

• 1 and 1. Thus , 

1 < 
(u^u^^-H^)^)]1   . 
y :^ (u^f ^f 
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We can consolidate conditions  (i),   (ii),  and (iii)   into  the   following 

theorem. 

Theorem   1.     Conditions  (i),   (ii),   and  (iii)   hold  if and only   if 

(52) 

Proof 

The 

max     T  / \i yli'y2i\l 
ui>k-i,2L'(e   +e      )i- 

,   w ^    max     r   / Yki Yli+Y2iV 
(a)   Assume   "^   > i._i   o     "(e +  e J     - 

/ ^li        Y2i Yli+Y2i\ /       Yli 
n,   u     > -fe        +  e        +  e ),  which   implies   (1+e        ) 

/    Y2n 
( l+e        J + u    > 1.     Hence,  condition  (i)   follows. 

Furthermore, 

max     /.     \i\      (.     YllVi     Y2i^ 
k-1.2   (1+e      j<(1+e      A1+e      h  Ui' 

(l+eYli)(l+eY2i)+Ui>0, and  since we  have 

-1 
max     /       Ykiv r/,      Y^x/      Yon i  1 

lc-1,2  (1+e      )     < 1 + [(l+e      X1+e      ) + ui 

Thus,   conditions  (ii)   and   (iii)   follow. 

(b)     Assume  conditions   (i),   (ii),   and   (iii)   hold.     Then   from 

conditions  (ii)   and   (iii)   it   follows   that 

Y^+Y. 

"!  > ^2 K'   "  -   "     21)] 
Q.E.D. 

Theorem 2.     It  is  necessary  and  sufficient  that 

Yn\/      Yo 

<5«        ™2 {-{> - e
Vll+Ya)] < u1 <    ('"  "X1^ ")   e<Vu+V21) 

(l-e'llT,2') 
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in order that conditions (i)-(iv) hold, provided Yn + Yo• < 0« 

Otherwise, (52) provides the necessary and sufficient condition. 

Proof.  (a)  Assume y      + y      < 0,   and that (53) holds.  Then 

^ max r / Yki J  "^li^iN") .  ,.     ,_,    ... ..... . ,. 
u >  .  | -Ie   + e      ) I implies conditions (i)-(iii) hold, 

Further, this implies 

since 

^K^l'^K-")^1)-.]" 
V2i 

Fina lly, u <-3  e        implies that 
1    (i-e^") 

-1 -1 v2i> 
! + [(1+e

Yli)(l+e
Y2i) + uj  >(l+e

Yli)  +(l+e
Y2i)  , 

for the case y. .  +  y». < 0, 

(b) Assume y      + y?    <  0, and that conditions (i)-(iv) hold. 

Then a reversal of the argument in (a) establishes (53). 

(c) If y^    + yy,   2 0, it is then easy to show by an argument 

analogous to the proof of Theorem 1 that (52) provides a 

necessary and sufficient condition for conditions (i)-(iv) 

to hold. 

Theorem 3.  (a)  Assume y     + y7    <  0.  Then condition (v) holds 

if and only if 
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(55) (l+e
Y")(1+e

V21^ (^        l 
1   -   e 

All + V2t\ 
v    2   ; 

^  u, 

ggV^^M 
s 

(b)     Assume ^ + y^   2 Q.     Then condition  (v)   holds   if 

if 

'Yli+Yzi 

and only 

ui =' 
^ZirfcXiii!!) 

/Yli + V2i\ 

l+eV        2        / 

Proof-     Rewriting condition  (v)  we see  that 

\  2  ; 

[(-VliX^Y21)]"1'[(I«
YuX'"¥21)-JI 

^YH+Y,, 

A manipulation of this inequality for the t, 

and 
-wo  cases,   y^  + V21 <  0 

(56) 

Yli + Y2i  2 0 es^blishe8   (54)  and  (55)   respectively. 

Theorem 4.     Suppose  5 < 0.     Then, 

§/2 
,5 

Proof-     (56)   follows because  e5/2  -  e
3/2^ > e5 .     3/2§ 
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(57a)        e 

Theorem 5.     If y?-   -* Yi • i   then 

Yll 

1+e 

(lu^a) 

Otherwise,   if Yi•   2 Yo^ 

(57b) e 

/Vu^n        Yl Y2iN 
Y2i  ^^liUe^      2       ^       A1+e      I    s Jli  (1+e

Y2i^ K11) 
1-^ 
^) 

Proof.     If y      > Yi•«   then 

11 
1+e 

Yli^2i filial) 
l- 2 /  /      YliN < e Z [l+e   LXj   . 

The  other  inequalities  are  proved  in  a  similar manner. 

Theorem 6.     (a)     Assume y      + y      < 0  and y      > y...    Then 

conditions  (i)-(v)   hold provided  that 

(58a)     -e 
'li 

If Y       
2 Y91 i  then conditions  (i)-(v)   hoUI  provided  that 

v2I /  vin       (i^'X^21) (ni+v21) 

(b)     Assume  Y,• + Yo•   2 0'     If Yoi   > vii'  condition8   (l)-(v)   hold 

provided  that 

u _^_____„ 
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(59a) 
Yu   /      Y2i 

•e ( 1+e (l+e  2i) < u. 

If  YIJ   2 Y?,,   then conditions   (i)-(v)   hold   provided   that 

(59b) 
Y2i  A     Yu 

•e (l+e 
)<". 

Proof,     (a)     Theorem  2  provides   the  upper  inequality   for u.   in 

order  that  conditions   (i)-(iv)   hold.     Theorems   3  and  4 show  that 

no  adjustment   is   required when condition   (v)   is   added.     The   lower 

inequality   for u,   follows   from Theorems   2,   3,   and   5,  depending on 

whether v,, .   > v. .   or Vn.   ^ Y, • • T2i        ' li '21        ' li 

(b)     If Y,.  + Yo-   ^ 0>   there  are  no  upper bound   requirements 

u.   with  respect   to  conditions (i)-(v). 

on 

We now consider an example incorporating specific assumptions 

about the form of u.  Let 

_ Yli+Y21 , A12   n ui  = e (e   - 1). 

Then 

m     M       
Yli      y^      Yii+Y2i+Ai2 (60) P^1)   =  lv

1+e +c +e j   . 

max     '    f  ^ki Y^ "^2i\'1 

Clearly,   u    ~> .   .       j^-^o +  e ) |,   so   that   the   lower  inequalities 

in Theorem 6  are  satisfied.     We  need only  be  concerned with  the  upper 

inequalities  if Yi • +  Y21  < 0l     In   t^is  case)   we  must   have 

(61) e    -  I < 
l+e 14« l) 

Y^+V. 
(1-e'1' '21) 

satisfied  for all  y^  and Y2i  such  that y^ +  7,.   < 0.     Thus,  -» < A 

<  In  2  assuret   that   conditions   (i)-(v)  are  met. 
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We  now  sketch  the  development  of  the maximum   likelihood equation. 

Suppose we make  observations  on N  individuals,  each of which can be 

measured on a  zero-one basis  with  regard  to  the  two characteristics 

7^,  andTp-.     Let  y.w(f)   be  the  random variable  that  takes   the  value   1 

if the outcome on  the  i-th individual  is  (J,k)  with  respect  to 7^    and 

772,  respectively,  i  =  1,   ... , N;   J, k = 0,  1.    Otherwise,  y^U)   takes 

the value zero. 

(62) pr ryJk(i)   - 1}  - Pjk(i). 

Thus, the likelihood L of a sample of size N is equal Co 

(63) n n    [p4k(i)] 
j,k=0,l     i-1       JK 

yJk(i) 

where 

(64) § v« ■ 5 v" -i- 
Letting  L represent  the  likelihood and X = lne  L,  we  have 

N 

i-i 

+y01(i)   lneP01(i) +y00(i)   lneP00(i)1' 

kl 

-65)   X - £  iynW   lnePll(i>  + yi0(1)  lnePlO(1) 

Now, Eq.   (60)  determines  P.k(i)  as a   function off and  A12.    Thus, 

with some algebraic simplification 

.« 
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N 

(66) ^-Elne   (l + eYli
+eY2i

+eYli+Y^ 

N 

N 

N 

+ 5 y(»(1)[(vu + V21j + 1%  (2 + J" + J21 .    h2^ . eVu^2^ 

% (l* « lI) - .% (! + >)]. 

«.«Ulng th.t vu ■ [.„ + t%: and Y21 . :8o + i%h the 

tlon. „hose .olutlon yuU. the „.„!„,. llk.Ilhood esttaatorii are glven 

equa- 

by 

(67) 
'  0 

(68) 

i = I.     ....    3-1 

(69) 4-- 
(70) 

and 
J   -   1 t-l 
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(71) 

where,   for example,   (67)   is 

-^-    = 0     , 
^A12 

N N 

(72)   L y^^) +S yoi(i) 

t"l 1=1 

I Y2i+A12 '21 

1 + X
l12  ! + > 

N 

i-i 
yoo^i1 + 

^U ± X
Al2) '21 

2  + e + e li    ,     Y2i        "12/ (i.;^")] (i + e ) 

i=l 

^^d . e
Vl^12) 

li       % ;   Vu^zi^UN 
1 + e + e        + e 

Thus,  the   fitted  p     (1)   values denoted  by  pJk(l)  are given by 

(73)  p.-Cl)   ■ Yü Y2i ^li^i^^' 
11 1+e+e +e 

(75)  Pl0(l) 
Mi t :ii+h2) A > 

h I > I > I V^+4l2)(i * e
Vu) 

and 

(76)  ?00(i) 

^li +^2ir,         ^11 4     V2l        &12             ^li^2iN1 _e L2+e        +e        -e      (1-e )J 

1  + e       j(l+e + e + e 1 

i ■ 1,   2,   • • • i N. 

1 + e 
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In  conclusion, we note  that  besides   the  predictive  properties  of 

p ,(i), we  can  use  the   likelihood  ratio  technique  to  test  various JK 

hypotheses  concerning  the  parameters.     For example, we  can  test   the 

hypotheses: 

(i)  A12  - 0, 

(ili)Bpl=e
P2---=e

Pn=0. 

Where  ßpl'   0p2'   •••'   ^pn   l8 a  subset   from  g       ....  B 
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V.     USE OF THE MODEL:     AN EXAMPLE 

Logit models  provide  excellent  opportunities   for specific   types 

of  decisionmaking.     If a  choice must be made between different  courses 

of  action,  then the decisionmaker can consider  the  various  probabilities 

of success as determined by   the  specified model.    The  parameters of 

this  model would be estimated   from past  performance,  using  the  techniques 

developed  in  the previous  sections.     Similarly,  if  the decision does 

not   involve choosing between alternatives,  but  rather  involves deciding 

whether  to  "choose one alternative" or not,  the decisionmaker can con- 

sider the probability of success of  this one course of action as de- 

termined by  the posited   logit model and  then base his  decision on some 

a  priori probability  level. 

Frequently,  the  determinations of  the  probabilities of success  of 

two  different  classes of alternatives are  not  independent.    Hence, 

models   that  consider such  possible  dependence will be  of more  value  to 

the  decisionmaker.     The dependent  logit models  developed above are such 

models. 

This  section presents  an  example  that describes   the determination 

of   the  logit model  parameters  under three different assumptions  that 

will b^ explained.     The data   for the example are  data  on Category IV 

airmen who were admitted  to   the service  in 1960 under a special program. 

These data were  collected   into a  specific   file known  as  the "Dual 23" 

data   file. 

To be admitted  to  this  special program, a  potential  recruit had 
to  achieve a  score  of 25   (out  of 100)  on at   least   two AQEs.    However, 
a   score  of  40 (out  of  100)   on any one AQE would  qualify him  for "regular 
enlistment," and hence would  preclude participation  In  the  "Dual 25" 
program. 
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The basic  hypothesis  is  that   the  probability of reenlistment 

after an  initial  4-year term by Category IV airmen  is  related  to   their 

initial AFQT score,   their race, and their age at enlistment  by  means 

of the   logistic   function.    Thus   the  logit  relation can be written 

(77) logit  (r)  = in (JT;) - ^ + „^ + o^ + Q^, 

where X    ■ the AFQT score, X„  = a dummy  variable  for race  (0 for Negro, 

1  for Caucasian) ,  and X„  = an age scale   variable. 

If we assume  that  the reenlistment   rate of all enlistees  is 

determined by  the  independent  variables  X., X„ ,  and X    in the same way, 

then the  parameters of  (77)   can be estimated straightforwardly by using 

"simple   least  squares"  regression analysis.    The  results are 

(78) logit   (r)   = 9.532  -  0.326X1   -   1.696X2  -  0.215X 

(2.125)(-1.907)     (-2.244)     (-1.526) 

R    = 0.1757, 

(SE)2   = 0.75 09, 

where  the numbers   in parentheses are  the   "t" values associated with  the 

parameter estimates,  and 

Mean      Variance 

Logit   (r)     -0.4711 0.8243 

1 25.1310 0.6179 

0.5548 0.0596 

4.0095 1.7204 

. 

I 
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Now assume   that   the  enlistees  can  be  categorized   into  two  groups: 

those with a high school  education and  those without.     Separating the 

sample  into  its  appropriate  parts, we  can estimate   (77)   tor each  group. 

Thus 

(1)  high school  education completed: 

' 
(79) logit   (r)   =  13.420 -  0.594X1   -   1.630X2  + 0.313X 

(2.671K-2.926)     (-1.385)       (1.423) 

R    = 0.3766, 

(SE)2  = 0.5242, 

where the numbers in parentheses are the "t" values and 

Logit   (r) 

Mean Variance 

24.971 0.6687 

0.3762 0.0247 

5.1143 0.7460 

-0.4238 0.8409 

(80) 

(2) high school  education not completed: 

logit   (r)   = 8.019  -  0.216X1   -  1.124X     -  0.762X 

(1.505)(-1.068)     (-1.309)     (-2.625) 

R    = 0.3569, 

(SE)     = 0.4147, 

where  the "t" values are  given  in the  parentheses  and 

Mean Variance 

logit   (r)     -0.4714 0.6449 

X 25.2900 O.Mbl 

X 0.7333 0.0308 

Xa 2.9048 0.2538 
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Assume  now,  however,   that   the   two  groups   do not   function   independently. 

We   then  estimate   parameters  of each  equation,   given   this  dependency 

assumption.     The   residual  covariance  matrix  between Eqs.   (79)   and   (80) 

is   given by 

r0.5242     0.1463^ 

0.1463     0.4147y 

The   inverse of Z    is  then used as  developed   in Sees.   II  and  III   to 
u 

obtain  "better"     estimates   for  the   parameters  of   (79)   and   (80).     Thus 

we  obtain   the   following estimate: 

(1)   high  school  education  completed: 

(81) logit   (r)   =  10.330 -  0.487X    -   1.338X2 + 0.373X3 

(2.I49)(-2.497)     (-1.195)      (1.767) 

and 

(2)   high  school  education  not   completed; 

(82) logit   (r)   = 5.446  -  0.114X1   -  0.757X2  -  0,850X3, 

(1.074)(-0.595)     (-0.927)     (-3.035) 

where   the  "t"  values  are  given   in  parentheses. 

Thus  depending on  the  stringency  of   the  assumptions   the  decision- 

maker   is   willing   to  endure,   the   best   estimates   for   'hose  assumptions 

may be obtained  as  above. 

One other  case  may be   illustrated  by  iisin^  this   example.     Assume 

that   the   group of  high school   graduates   is   different   from,   but   not   in- 

dependent   of,   the   group of non-high  school   graduates.     Further,  assume 

The  estimates  are "better"   in  the  sense manifested   in Sees.   11 
and   III,  specifically Eq.   (37). 
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that  the  difference   is  manifested merely by some  constant amount, 

whereas  the effect  of each  independent  variable  on the  probability 

of success  is   the  same  in both groups.     In  this   case we "constrain" 

the parameter values o, , a9, and a^ of  (77)   to  be  the same  for  the 

estimates  of   (81)   and  (82).    Thus we  obtain 

(83) logit   (r)   = (Joisiol '  0-383Xi   -  2.085X2  -  0.025X3, 

where  the  intercept  value  10.050 is  associated with high school  gradu- 

ates and   10,810  is   the   intercept   for non-high school  graduates. 

We have  used  this  set of Category  IV airmen data  to  illustrate 

how the  techniques  developed  in Sees.   Ill and  IV can be  implemented; 

and although  the  various  assumptions  employed  are not necessarily 

tenable,   their  use  should  suffice   to demonstrate  the  possible   im- 

plementations  of  the  "dependent   logit models." 

_ 
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APPENDIX 

2 
Th~ derivations of the maximum likelihood, minimum x, and minimum 

2 logit x estimates are, for the most part, well known. Hence the 

various methods will merely be sketched as an aid to those unfamiliar 

with that body of literature. 

1. MAXIMUM LIKELIHOOD 

Let P represent the probability that an event E wtll occur, and 

further, let this probability depend on an exogenous vari~ble X by 

means of the logistic function 

(84) 1 p. ----'~~~ 
1 + e -(a+8X) • 

Construct the following likelihood function from a sample of size n: 

(85) L • 

where yi • 0 or 1 for each i. 

Then 

and 

(87) o.t -. 
OCY 

• o, 
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(88) 

11 

ff = E  niXi(pi   -   pp   =  0. 

r -(cr+6Xi)--l 
where  p     = y1/t1

1   and  ^   =    1  + e '     . 

2.    MINIMUM x2. 

Let   P,   the   probability  that  an  event  will  occur,  be   the same  as 

in  (84)   above.     Consider a sample  of k     from  the  population  and  observe 

the  successes,  say   y   ,   in a  success-fail mode.     The observed  probability 

of a  success   is   then y,/k., and   the   probability of a   failure,   1   -  y./k.. 
^ii r J ii 

The  expected  probability of success   is   p, ,  where   p    is defined  as 

above;   of   failure,   1   -   p.. 

2 
The x     statistic  can   then be  written 

(89) 2      V 
■ ^-r 

1-1 

fWN^/k.  - ?1)2     (^ - y^r 
1  -  P. 

and 

(90) 

It 

= S v1'- Pi>(yi/ki' 'i)2* 

Let   p     = y./k.   and  p.   be   the  estimate  of   P   ,   the   true   probability 

2 
of success.     Then   the x    statistic   is   minimized when  the   following 

equations  are solved: 

(91) En. 
i=l 1 

[^(1      -     P^     +    (1      -     P^Pj 

P.d      -     P,) (P. 
5    \ 
Pi) o, 

(92) 

i=l 

CPid  - P^  + (1   -  P^P^ 
Pl(1 Pl> 

(P. Pi) 
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3.     MINIMUM LOGIT x^ 

Consider  n    samples  out   of  the   population,   L  "  1,   ... ,  N.     Let 

the   observed   proportion  of successes   p^   be 

(93) 
Pi   =Pi+ui- 

where   P.   is   the  "true  proportion   for  the   ith sample,  and   u.   is  a  bl- 

nomially distributed  random   variable  such   that 

and 

EiuJ   = 0, 

P.d  -  P,) 

F-Cu.Uj)   =0    tor i t l 

We  wish   to minimize,   then, 

i=l 

where  w.    is   inversely  proportioned   to   the  variance  o 
f  P.,   and   p     is   the 

estimate  of P..     observe   that   for a   rather small  difference.   ( 

can  be  approximated as   follows: 

Pi   "   Pi) 

•  ,2 

where   ^   =  ln(p./(l  -  P.))(and   ^  . „ + ^ 

Consider,   then,   (90)   above: 

(95)     x' 

n 
V* ni n 

(1 - PjHfj - Jl)
: 
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Since all   the   terms   in   the approximation are   linear,  ordinarily 

least-square  regressions  with weights w    [p, (1  -  P.,)]    can be  used to 

cbtain estimates  of a and   B,  and  subsequently,  p     for all  i.     Thus 

(96) i^'E^l  - P^h -\)  -0. 

(97) ■En^Cl  - P^p^Aj - 11)   - 0. 

Equations  (96)   and (97)   are   the normal  equations   for  ordinary  linear 

regression. 
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