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PREFACE

This Memorandum draws on three previous RAND studies, [9], [11l],
and [127, to illustrate the use of a probability prediction method
involving the logit model. It is shown how the model is used to develop
the prediction of failure trends within aircraft and the prediction of
the reenlistment rate of first-term airmen. The authors plan subsequent
studies in which they will use the logit model to study the interrelated
maintenance characteristics of different aircraft subsystems and to
analyze the reenlistment probabilities of Category IV airmen.

To follow the procedures described here, readers should be ac-

quainted with regression analysis and contingency table methods.
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SUMMARY

This Memorandum discusses estimation techniques of logit models
whose response variables are not necessarily statistically independent.
The statistical techniques developed and utilized here include the
Generalized Least Squares approach of Zellner [14]; stepwise regression
und its relevance in estimating logit model parameters; and the
"~ontingency table' concept of fixed marginal probabilities wnich s
used to develop a bivariate logit model that possesses certain sta-
tistical and probabilistic properties concerning the correlation co-
efficient and the summation of individual cell probabilities to unity.

The techniques are designed for application to two Air Force
problems. The first problem uses concomitant information to estimate
the probability that first-term airmen reenlist. The second uses in-
formation concerning flying missions to estimate the probabilities that
interdependent aircraft subsystems fail during these missions.

Some applications to the problems are presented in this Memorandum;

however, this effort is mainly directed toward development of the neces-
sary techniques. An example i1llustrating the various techniques is given
in Sec. V of the Memorandum,

In a forthcoming study, these logit models will be applied to two
problems, analyzing them in detail. Lirst, evisting aircraft sortie
data will be used to study the interrelated maintenance characteristics
of the different aircraft subsystems., Second, the survivability (as
defined in the text) and reenlistment probabilities of category IV airmen

will be analyzed.
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Endogenous variable

Exogenous variable

AFQT score

Opportunity cost

-xi-

" GLOSSARY

A variable determined within
the framework of a specific
model.

A variable determined outside
of or independent of the model,

Alr Force Qualifying Test score.

The difference in dollars between
reenlistment and the best civilian
alternative employment, if the

best civilian employment pays

more and the choice is reenlistment.

T
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I, INTRODUCTION

Thi: Memorandum presents a probability prediction model, the logit
model, and its theoretical development tailored to be used on two prob-
lems explored in previous RAND studies. The first area is aircraft
performance; the second, airmes: survivability and retention. 1In a
forthcoming study we will extensively apply the theory developed here.

McGlothlin and Donaldson (127 describe an Air Force Base supply
officer who became well known because of his ability to predict future
aircraft performance based on previous maintenance records. The authors
report that the 5th Bomb Wing at Travis Air Force Base claims that its
method of increasing the probability of sortie success depends on a
particular aircraft selection procedure for each sortie. In the same
vein, they discuss aircraft labeled ''dogs,' which are inherently less
reliable in terms of sortie success than other aircraft of the same
type, flying the same type of sorties. The method in [12] and in a
subsequent study by Donaldson and Sweetland [9] employs statistical
analysis to discover the failure trends within aircraft and to delin-
eate differences in performance and maintenance among aircraft, and
thus to identify the inherent dogs.

In a seemingly different area, McCall and Wallace [11] have studied
the training and retention of Air Force electronic specielists. Approach-
ing their analysis from an economic standpoint, they generate a supply
function for electronic specialists, Their basic function relates the
probability that first-term airmen will reenlist to the opportunity cost
of doing so, where the cost is defined as the difference between poten-

tial civilian earnings and Air ‘orce remuneration. A similar probliem

S L'




is that of predicting the first-term enlistment survivability of various
airmen groups.

Although aircraft performance and airmen survivability and re-
tention preéent different problems in terms of subject matter, both
can be analyzed by probability prediction models. In the first case,
the probability of failure is considered an endogenous variable, de-
pending upon one or more exogenous variables such as type of sortie,
previous maintenance actions on the total aircraft and/or its subsystems,
and length of maintenance service. In the second case, the probability
of reenlisting is an endogenous variable, depending on the opportunity
cost of reenlisting; the probability of survival is an endogencus
variable depending on exogenous variables such as age, prior education,
race, and initial AFQT score. These two problems use similar pre-
dictive models and statistical tests.

To treat such problems and to indicate answers to others falling
within the same framework, we analyze a predictive model known as the
logit model. In this model, the probability P that an event E will
occur depends on a vector 5' = (Xl, Aoo g xn) of exogenous variables and

is written

1
(la) P(E) = ——7¢ »
1+ e-ﬁ X

where 8' = (Bl, 000 [ Bn) is a vector of the regression coefficients to
be estimated. This is known as the logistic function. The logit of

P(E), then, is simply the following transformation:

fSurvivability denotes the capability of an airman to complete his
first term of reenlistment,

ST L - T R — T AW




(1b) logit [P(E)] = 1nf z i(E)T B'X .

The occurrence (or nonoccurrence) of E is usually assumed to be
independent of the occurrence (or nonoccurrence) of other events. It
is well known, however, that aircraft subsystems do not fail independently
of one another during sorties. To verify this statement we have observed
the writeup histories of three aircraft subsystems for 200 sorties:
radar, inertial navigation, and fire control. Table 1 shows the ob-
served cell frequencies and the expected cell frequencies under the hy-

pothesis of the mutual independence of these writeups.

Table 1

FREQUENCIES OF DIFFERENT EVENTS FOR THREE SUBSYSTEMS

Frequency | SSS | SSF |SFS | FSS |SFF |FSF |FFS | FFF | Total

Observed [|86.0 | 46.0 |10.0]18.0| 9.
Expected §72.3 | 46.2 |19.8( 23.5 |12

o
s O
[

.0 | 200.0
1 | 200.0

NOTE: S stands for no writeup and F for writeup. Thus, the
event SFS i8 no writeup of the radar, writeup of the inertial
navigation, and no writeup for fire control.

The analysis is essentially that of a 2x2x2 contingency table in
which there are two outcomes for each subsystem: S for no writeup and
F for writeup. Let fijk be the observed number of sorties in the cell
(1,3,k), where 1, j, k = S, F. Similarly, let Eijk be the expected
number of sorties in the same cell. Under the agsumption of mutual in-

dependence of the writeups, the expected fraction Pijk (of the total

number of sorties) in the cell (1i,j,k) is equal to the product of the

=




marginals; that is pijk

1 =S, F, and similarly for the other two subsystems. Then Eijk = Npijk'

= = PN
BB B g » hewe p, ik £y /N
’
We then compute the statistic

2
i ik’

2. ¥ SATRE:

i3,k I1jk

The associated chi-square value is 49.0, with a single degree of freedom.
This value is significant beyond the 0.0001 level. Thus, the hypothesis
of mutual independence of writeups for these three subsystems is emphat-
ically rejected. This dependence of aircraft subsystems as well as the
dependence of aimmen subgroups* has led us to couch our specific problems
in a dependent equation model.

Section II presents the basic theory of the logit model. First,
we briefly review the literature on the use of these models, and then
describe the model as it applies to our needs. This includes a theo-
retical explanation of the Generalized Least Squares approach that
Zellner (147 uses to estimate '"seemingly unrelated regression equations."
A short discourse on stepwise regression and its relevance in estimating
the parameters of logit models is also included. Section III describes
the estimation procedures that are subsequently used to establish the
posited relationships. 1In Sec. IV, we present a bivariate logit model,
describe its mathematics, and give reasons why a generalized dependent
logit model might be better than individual independent logit models.
Section V illustrates a problem solved by the methods described here.

And the Appendix contains derivations of some equations in the text.

TAirmen subgroups are any groups that can be distinguished on some
predetermined basis: for example, Caucasian and non-Caucasian; high
school graduates and high school dropouts. These groups are clearly
neither independent nor homogeneous.

— - —— — e .




11, BASIC THEORY

Much has been written about the theory and application of the
logistic function, One pioneer in the use of the logistic function
is Joseph Berkson [2-6,7]. He has applied the logistic function to
quantal data (death or survival) in bioassay testing of animals; that
is, the testing of a chemical compound in animals to determine lethal
doses for various percentages of the particular animal population,
Other important papers concerning the logistic function have been
written by Cox [8], Dyke and Patterson [101, and Walker and Duncan [13].

Suppose that each observation in a series of trials can take one
of two forms, which in our particular applications are 'reenlistment"
or "failure to reenlist" for the airmen data, and "subsystem writeup"
or "no subsystem writeup" for the aircraft maintenance data. Suppose
that corresponding to each trial there are one or more independent
variables upon which the outcome of a particular trial is suspected to
depend. Since each obgervation (the dependent variable) is dichotomous,
we denote the observations by 0 and 1 and thus obtain a sequence of 0's
and l's for the outcome of the trials.

To formulate the logistic function, let Yl, 000 g Yn be mutually
independent, binomially distributed random variables and X', ..., E; be
a set of fixed s-vectors; that is, 5{ = (xio, xil’ 0aoE xi,s-l)‘ We
assume 8 €< n, Further, let Py be the probability of success and Ki be

the number of trials at the ith stage, i =1, 2, ..., n. Then the

binomial distribution may be written:

K
iy ¥ K;-Y
= - pi il
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where Yi =0, 1, o0, Ki’ t=1, 2, ..., n. It is suspected that Py is

related to the vector Ei'
One might conjecture a linear relationship between Py and 51,

i=1, ..., n., That is,
= ’ =
Py =B'X; =By +B Xyt eee FB )X oy

However, Py must lie between zero and unity so that the procedure for
estimating the parameters B, 91, odB g 85_1 would be constrained by

this condition on P> i=1, ..., n. There are functional relationships
between Py and 51, i=1, ..., n that are free of the above constraint
but yet insure the restriction that Py lie between zero and unity is

not violated. One such relationship is the logit model given by

P
- lp —1 =gt
(3) logit (Pi) In = p1 El(i )

where B' = (Bo, cens Bs-l) is the regression vector upon which we draw

inferences. Rewriting (3), we see that

I
(4) Pi'—_Tﬁ'E)‘-
l +e

Ordinarily, X =1(i=1, ..., s - 1) so that BO is the intercept

i0

parameter, We shall abide by this convention.
We place emphasis on the logit model in this Memorandum for the

following reasons:

1. The procedure for estimating B is free of constraints such
as those that exist for the linear model.

2. Estimates of the logit model parameters are easily obtained
and possess desirable statistical properties.

3. In many applications, including those discussed here, the
model has empirical justification.




e

4, Much has been written that we can use concerning the logit
model and its application.

There are two standard procedures for estimating the regression
coefficient vector (BO, Bl’ o0 g Bs_l)--maximum likelihood and minimum
chi-square. Berkson compares these methods in [6].

We solve the equationsf

n

(5a) :E: K (Y, /K, - 51) =0
=]

and
n

(5b) :E: Ry X, (Y /R - p,) =0
i=l

120, ..., 8 -1, for B' = (By, By, ... B ), where

-1 _
-(8'x)
1l +e i

(6) B, =

E is then the maximum likelihood estimate of B.

The solution of the equationsff

n ~
[p, (1 - Y, /K,) + (1 - p)Y,/K,]
(7a) :E: K, : ol - L (Y, /x, -p) =0
=1 P(l - p) i

quuations (5a) and (5b) are the norma] equations whose solution
yields the maximum likelihood estimates of §. The derivation of these
equations is sketched in the Appendix.

*?Equations (7a) and {7b) are the normal equations whose solution
yields the minimum xz estimates of‘E. The derivation of these equations
is also sketched in the Appendix.

""—""11
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and
n ~
(P, (1 -Y,/k,) + (1 -Pp)Y, /K, ]
i i1 i1 ~
(7b) 1;1 KXy 5 AN (Y, /K, -p) =0
j=1, ..., 8 -1, in terms of E, where
~ 1
(8) pi 2 -(E'Ki) 4
(1l +e )

yields the minimum chi-square estimate E'of p. The solution of each
set of equations (5a, 5b) and (7a, 7b) usually requires an iterative
approach, This is so because the coefficients are functions of 5 (or ),
and p (or p) is not linear in the parameters.

Berkson [6] discusses the properties of E and E and, to some extent,
their relative merits, For example, the estimates E are best asympto-
tically normal (BAN) and hence they have the same asymptotic properties
as é. That is, both E and é are consistent, asymptotically efficient,
and asymptotically normally distributed cstimates of B. In the com-
parative sample Berkson worked with he demonstrated that the mean square
errors of the minimum chi-square estimates were smaller than the mean
square errors of the corresponding maximum likelihood estimates. He also
discusses the minimum '"logit xz,” which has the desirable property that
the pavameters B can be estimated simply and directly.

The "minimum logit xz estimate" of B is the solution to the
following quantity defined as the "logit xz”:

N
2 a2
(9 logit x° = X np (1 - p)(e - ED%,
i=]




-9-

where £, =1In p,/(1 - p,) is the observed logit, and 'ii = 8'X is the
estimated logit. The normal equations for obtaining the minimum logit

xz estinite of B can easily be written:

N

(loa) 2 nipi(l - pi)'\l'i = Li) = 0!
N

(10b) 12.1 ngpy(1 - p)X, (4 - F) = 0.

Unfortunately, the usual logit model as it is structured applies
only to binomially distributed variables and thus cannot be applied
directly to a multinomial situation. Because of the dependent nature
of cur data (in the sense that aircraft subsystem writeups are cor-
related) and because efficient linear regression procedures are avail-
able when the observed proportions r, = Xill(1 are not merely zero or
unity, we now discuss these applicable procedures. The substance of
the following derivations can be found in Zellner (14] and Zellner and
Lee [157.

Suppose that independent samples of size 0y Nyy e, N are
observed on items (8uch as airmen reenlistments, and aircraft sub-
system writeups) that have a dichotomous response, Suppose that r

i
is the proportion of "1's" for the 1th sample. We then assume that

(11) r +u

1 - Py Ty

where uy has a binomial distribution with mean zero and variance
[Pi(l s pi)]/ni, and where Py < uy <1 - Py

—_—

The derivation ot these normal equations is also sketched in
the Appendix,

ke i . e
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From (11) we see that

(12) I i
I-r, T-p \l-u/(l-p)

r
Thus, letting Z,6£ = ln-———i—- and using (3) we have

i ) ri

(13) 2, =B'X +1n (1 + u/p) - In 1 -uw/Q - )l

Expanding the last two terms of (13), we obtain
= Q!
(14a) z, =B'X +

where Qi denotes the remainder. Q1 is of order nil in probability,
and its omission will not affect the asymptotic properties of the

estimates of Zi'

Thus,

(14b) Z, = p'x

where

€ = u{//bi(l-pi), i=1, ..., m,

*
Hence, the least squares of estimate B of B is given by

-1

-1\-1
(15) g’”-(x'z x) X'y oz,

wheref: is a diagonal matrix whose ith element on the diagonal is

x *
[nipi(l - pi)] L The least -squares procedure to obtain B 1s an

i 2 STV P
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application of Aitken's generalized least squares [1]. The variance-

*
covariance matrix of B 1is given by

* it -1
(16) var § -(x'z x) +o(n ),

where o(nil) signifies a matrix whose elements are of smaller order
than nil in probability,

As demonstrated in the Introduction, with respect to subsystem
writeups, while there is no apparent intracorrelation among writeups
within a subsystem, there may be a correlation among groups of sub-
systems with respect to writeups., Thus, we make some changes in the

model (14) for the case of £ characteristics. We again follow Zellner

and Lee's lead. Let

(2] [30 0 1.1 [v.]
Ll 122 Ok - R B | %2
Ez gi' '951' 58 : !2
1
(7 Bos
. - . 0 B + . ]
5 1
L (20 1h R [[E [ [y

-




where J is an n-vector, each of whose components is unity:
R' = (X ooy, X ) f m=1,2, ..., 8
- m ml’ * *on H ’ ’ * ’

For the remainder of Sec. II, the X, vectors will denote the vector

i

of trials for the ith exogenous variable (the R, vectors in the

i
footnote).

We require that the gi's each have the same dimension--N x 1.

Thus, writing (17) in compact notation we see that

(18) Z=XB+V,
where
Z' = (2] Zgs ees Zp)s
E'-(BOI) "'laog’ o8 ey Bl! LA | Bs)’

!' = (!', o0y l’t)

*It is important to note the relationship between the X vectors at
the bottom of page 5 and the R vectors. The individual components
of the vectors are such that XX' = R'R, where we define the matrices
X and R as follows:

11 %91 - X1
X=[X «...x1-=

Lxls x23 te xns_
and
X1 X120 Xpg]
R = [51 .. R]=]. ’

-8 .

an an oo an-

g

th
where the X;, represents the value of the j exogenous variable for
the ith triai.
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[=]

0

ul>-<
L

The model for determining the proportion of airmen reenlistments
is the generalization of (14) that Zellner and Lee [15] discuss. It
can also be written as (18) with the same definition for Z' and V',

but with B' = (8, ..., B)), and

&10 S0

0 x2 ... 0
(20) X=4. . . .}

0 0 ... X,

where 54 denotes the set of exogenous variables for the ith distinct

group of airmen.
The variance-covariance matrix for YV, which is independent of Xf,

will now be developed in general. Again, following the development of

Zellner and lee [157, the variance-covariance matrix ¥ is given by

- .
L1 T2 e Ty

221 822 - 221

(21) X-. . K

Ty By e Ty

and

' =L, ..., 1.

s i s ettt
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o11 0 oo O
i
0 o oo 0
22
(22) 2:11 5 a . a
0 0 . oi
L L

1 ST
and T [njpij(l - p“)] .

To evaluate 21 , (1 ¥ J), we need some additional theory. First

b

of all, E(V ) = 0 unless v = u, To calculate E(vivv v) we sketch

1y ju ]

the approach in [15]., First of all we ncte from the definition of vkv'

k = 1, j and Eq. (11) that
v o -1
(233) oij 5 E(vivvjv) = [Pi\)pj\)(l-pi\))(l-Pj\))] E(ri\)-pi\))(rj\)-pj\)).

rkv k = 1, §J can be written as the average of n, dichotomous variables

so that

) n‘v nv
) = E 2 (v, ,(8)-p ) 1 (vy(0-py ) |,

E = =
(riv Piv)(rjv pjv n t=l t=
v

HheTe 1 with probability p,

Vi (t) = k=1, J.
0 with probability l-pkv

We now observe that E(yiv(t) - piv)(ij(t') - pjv) = 0 unless t = t’,

in which case
ij( )
E(yw(t) o piv)(ij(t) S Pjv) =P v) PivPiy
Thus,

(23b) 0\1’1 = [nvpivpjv(l - PN pj\,)].1 [pH(v) " PyPyyl

SN
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p;i(v) is the probability that an individual in the vth group has

value "1" in both characteristics i and j. Thus,

(24) 2. =|lo o o |, for1#ij.

Since we want to test hypotheses about B and derive corresponding
confidence intervals, we now discuss some general principles con-
cerning testing of hypotheses and derivation of confidence regions for
the estimated parameters. Suppose we wish to test the hypothesis that
the s-dimensional parameter space B, based on the estimate ﬁf given by

(15), can be reduced to a s8' < s dimensional space. The null hypothesis

H can be written

0
(25) HO: cp=0,
where C exhibits the restriction under H,. To test H

(s-5")xs 0 0’

Zellner [14] gives as a test statistic:

(26) F - {n-8) E'E'lx(x'f'lx)'IC'[C(X'Z'IX)'IC']c(x'r'lx)'lx'r'

1

&

s-5',n-8 5-8 - - -1 - 5
, ( ) 2t 1£_£,z Lyx'slxy Ixs 1&
That is, we reject Ho at the o-level of significance if and only if

(27) Fs-s',n-s > Fs-s',n-s,cy *

F is the upper o percentile of the F distribution with s-s'
8-8',n-8,a

and n-8' degrees of freedom.
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*
To obtain a confidence region for B, we note that since § 1is a best

linear unbiased estimator of B, then based on the normality assumption

of Z,f

\ ( * 0 *
(28) F, = (“'3 B - B (B - ﬂ)l

8 /[Z'r'lg-g'r'lx(x'z'le x'v'lg]

Thus, a (l-a) level of confidence region for B is given by

(29) (n_S) ¢ -p' ¢ -p
. I

F
d l_z_-g'x'IX(x'z'IX)' o RO

x'z'lg

where F is similar to F

: ' Lot
,N=8 ;0 s-s',n-s;qo

In applying the logit models considered here, we note that there
is a relationship between the dependent variables and several exogenous
or independent variables. For example, the failure (or success) of inter-
dependent aircraft subsystems is related to exogenous variables such as
type of mission (for example, escort mission, bombing mission), length
of mission, maintenance actions prior to the mission, and time of previous
overhaul. In these applications it is important to identify, if possible,
those exogenous variables which '"best explain'' the behavior of the de-
pendent variables in the sense that by eliminating those exogenous
variables that are not "best," little is lost in the accuracy of pre-
dicting the outcome of the dependent variables., Stepwise regression
affords a methodology for choosing a subset from the set of exogenous

variables that are among the best with regard to "explaining" the

TkThe asymptotic normality of Z is a consequence of the asymptotic
normality of u. The rate of convergence of u to normality depends on p.
For pj small or large, the rate of convergence of u; is slower than for
moderate values of Py-
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behavior of the dependent variables. Briefly, the stepwise regression
"explains' the behavior of the dependent variable by maximizing the
regression sum of squares sequentially until some prespecified criterion
is achieved. That is, we examine all simple regressions

1 = el +
(30) Z SvA\, €

¢ - % )

Ko ™ %y xv)’

Zi = (Zi « Y3 A =1, 25 sin; 0 VeL, 2y s0ey B

We then choose é; such that

1
n
(31) regression s.s8.(8 ) = max|3 . :E: X' .x:!
Vi v i=1 vi'i

= ma }E: X' Z?/:E: x' .
i=1 i=1

ve=l,

Next, we let Z2'" = 2Z' - é X , and examine the s-1 remaining re-
i i Vi 'V
gressions. Thus, we consider

(32) Z" = S X' + €

'1 1’

x;.i = (xv,1 - xv.); i =1,2, sass By, V™1, coun, B, ¥ # v

Now we choose 6v such that

2
*
(33) regression s.s (5 = max 2 x'.iz" E x' .
V2 Vel,...,s \\i=1 i=1
v'fvl

*We assume E(eje;) = fijo , where 61j is the Kronecker delta, i.e.,
611"1, 61.1-0 4

Regression s.s. (B ), 1 =1, 2 is the regression sum of squares
due to B1
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This procedure is continued until one of the following occurs: (1) a

predetermined amount of total variation is explained by the subset

(Bv 5 000 Bv ); (2) a predetermined number of regression coefficlents,
1 8

1
say 8., 1s chosen; or (3) some other practical cutoff point is reached,

ll
As indicated in the footnote on page 15, this development assumes
uncorrelated and homoscedastic observations; however, the modifications

discussed earlier enable us to apply the stepwise procedure to our

problem.

— T —_
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I1XI. ESTIMATION PROCEDURES

In describing the techniques used to estimate the parameters of
the logit model, we divide the following discussion into two major
parts: (1) the estimation of single equation models, and (2) the
estimation of dependent equation models.

A single equation model is one that estimates the parameters of
a single posited relationship when this relationship is uncorrelated
with any others. For example, the equation that relates the proba-

bility of reenlistment for airmen to exogenous factors falls into this

category. Consider now

= !
(34a) 2, =B'X +¢,,

where
l B = (Bgs +o0» B, )

' =
Xy = Kogs Xy eeen X4 )

T, e, =u(r,(1 - )

E(ei) = 0,
-1

n

and for { = j, E(eiej

Nz, (1 - )]
Using the procedure of ordinary least squares (OLS), we can obtain

| an estimator Qf of B:
b= o xz,
wherg
X = (X}, Xp, o0 XD

*
The estimator b 1is unbiased and is equal to the maximum likelihood

estimator E (assuming, of course, that the €, are normally distributed),

The disturbances, € exhibit heteroscedasticity, however, and hence
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%

b 1is not a best linear unbiased estimator (BLUE). To get an

asymptotically BLUE estimator, we use the following procedure. Since
*

(34) is a single equation, it is easy to obtain b . First we cal-

culate the welights
(34b) w, o= [niri(l - ri)]%, i=1, ..., n,

vhere r, is the observed proportion of "1's" for the i th sample as
given in (11). A weighted regression is then performed using OLS

on the following equation:
= 1
(35) wiz, = B'w X + 7?1.

The OLS estimator ﬁf of B is now an asymptotically BLUE estimator and
is equal to both the MLE E and the minimum logit xz estimator of (14).
In addition, ﬁ* is exactly the same as the ﬁf of (15).

However, the simple procedure does not suffice for dependent
equation models, that is those that have two or more posited re-
lationships which are interdependent, Two types of these models were
explained in (17) and (20)., Assuming that the entire model contains

{ equations, we can write the system as

- - p— -y - T r— -
Z, X 0 - 0 ﬁl 2
0 X, ... 0|8,
(36a) - o ,

T P T o — D e P T
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or

(36b) Z=Xg+u.

As noted above, the 56 are not necessarily mutually exclusive
(see (17)), nor is it essential that all the ﬁe be different. The

solution of (36) can be written as

(37) g = ol |

The method that Zellner has devised (147 is used to estimate the

matrix 2-1. Essentially, it estimates each of the £ individual

weighted regressions by OLS. Thus

*= ' -l’ =
(38) by = (XX " Xizo, 8 =1, ..., 4.

%
The estimator 96 1s used to obtain the MLE of the disturbance vector

N

Yy for equation 6:

- %
(39) uy = Ze - 5626’ O & Ly oo M

-1
-
. cl1 “es Oy
(40) LR EER

_Oll L I ] ozz
such that iu is of dimension { x ¢ and has the general element 89@
given by

n
5. =k 5=l il a2
op 1 gl =g i Y9itp1 >

e’¢=1, o0y Z.

- F———




S

The matrix 2;1 is an estimate of Z_l. Replacing 2-1 by i;l in (37)

* . * * * *,
yields estimates B for g, where 8 ' = (gl p obb g ge D OOk ﬁz ).
*
These estimators B, comsider expiicitly the intercorrelation between
J
the f equations,
The principal advantage of using the above method is that the
* ot *
estimators ge are more efficient’ than the Re.

helpful to the decisionmaker when various constraints are imposed on

This is especially

the estimators as in (42) below.

However, there is a gain in efficiency using Zellner's method only
if correlation exists between the dependent variables; that is, only
if E(-Z-ezo) # 0, for all §, @ such that 6 # §.

If there is a good reason to believe that E(Eege) = 0, then there

is a considerably simpler method that may be used to estimate (17).

Thusa let 1' = (Z,i) LX) _Z,}J)’ X = (51) ceoy 5’84‘1)’ and ﬁ' = (81) ey BS+L).

Then the following regression may be estimated by OLS:

s+ ) A
(41) y= Z Bg¥y * BoXg t U »
8=4+1 8=1
where X, = 0, 1 for all 8 ¢ [1,£]. Similarly, the parameters of (36)

can be estimated by applying OLS separately to each equation of the model.
The system (17) we wish to estimate is merely the general system
(36) with linear restriction on the estimates; viz., the '"slope' co-

efficlents are constrained to be the same among the equations, while

1.'I‘helt is,

*
Var(ge)
—_ <1, for all 8.

*
Var(he)
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the intercepts are allowed to vary. To handle linear restrictions in
the present crocblem, we must minimize the following equation with

respect to B:

(42) (Z - Xg)'(Z - XB) - A(RB - I),

where Z, X, and B are defined in (18), A if a row vector of Lagrange
multipliers, and R and r are a matrix and a column vector, respectively,
which together define the restrictions on the system. The estimator,

ﬁA, will satisfy the relationship

RQA =T,

where R is a matrix with a row for each restriction., For example, the

restriction matrix for (17) would be

811 o+ 815 - 2111|801
0 Bog| -
. Bl
a . a vee @ B
21 7 LT
where - 4 L BJ

(1) a,, =0, fori, j=1.,, ¢
(i1) a, =1, for j =L +4i;41=1, ..., L; j=1, ..., T
and T = (.S

(111) aij =1, for j =L +s8 +1,

Minimizing (42), we obtain the following expression for BA:

(43a) 8% = B + xR R - Ry,
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where g = (X'X) lx'g, the unconstrained least-squares estimator, The

covariance matrix of the estimator QA is given by V(QA):
A 2 ' 1y~ lowq-1, -2
(43b) V(g™ = v(B) - V(BR'IR(X'X) "R'1TRV(B).

To account for the correlated errcr term between equations, we use the

following estimator of B:
(4ba) RA =b + (X'E;1X)-IR'[R(X'T;IX)-IR']-I(E - rb),

and the covariance matrix is
L

(44b) vty = v(b) - V(E)R'[R(X'YQIX)‘IR']-IRV(é).
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IV. BIVARIATE LOGIT MODELS

The development to this point has been oriented toward univariate
logit models. That is, we have considered the probability that an
aircraft system would either "fail" or "not-fail," that an airman would
either "reenlist'" or "mot-reenlist," or that the subject under con-
sideration would possess some characteristic on a '"yes-no' basis.

Then we analyzed the interdependent relationships of the various sub-
jects. However, situations arise in which a subject can possess more
than one characteristic, each on a "yes-no," or "pass-fail" basis.

For example, consider any weapon system with more than one com-
ponent part (or in some circles, 'black box"). In these instances it
would be preferahle to incorporate the dependence of the component
parts directly into the probability functions. We have done this below
for the simplest case--that of two variables--such that the marginal
distribution of the probability of "success'" for each variable is
represented by a logistic function.

Consider the following 2x2 contingency table for two characteristics,
say‘hl andjqz, of some subject on a "success-fail'" basis such that
success is represented by a one and failure by a zero,
where

Ej: P1j = P1.» Eipu =P § Pyy = 1
Table 2

CONTINGENCY TABLE FOR CHARACTERISTICS 771 AND 7’(2

7@?{& Success | Fail | Marginals
Success Pll p10 pl.
Fail

pQL, pQQ Py
Marginals P, Py P
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We take int

now e into accoont the intercorrelation of771 and 7/2. Let
pls(i), vhere r, s = 0,1 is the probability that on the ith trial the
charact:eristic}]1 takes on the value r, and 772 the value s.

If 771 and 772 are independent characteristics we can then write

Y Yoy | 71
(452) by (Dp (D) = [(1 vethase 21)] = py (1)

where

= -(ay + aX, ) + et

Y1i

1 01Xy -1

and

You = “(By + B2y + A B paZpa )

However, (45a) does not hold if characteristicshl and ){2 are dependert.
Regardless of whether or not 771 and‘}z2 are independent, the relation-
ships of Table 2 must hold. Namely, pu(i) + plo(i) = pl.(i)’ pll(i)

+ g (1) = p (1), pyg(1) + po(d) = p (1), and pg, (1) + poo(d) = pg (1)
We shall require that these marginal probabilities be logit models so
that when we deal with these characteristics marginally (separately)

we can use the theory already developed.

Thus,
YuT 3l
(46) (1) p, (1) =ll+e ,

-

1-1

-

y
(1) p (1) = [1 e o

A way to write pu(i) as a bivariate logit model to include the situa-
tion for which'771 and7’(? are dependent while preserving the requirement

that (46) holds, is to write

- —a, da S

® ek b
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-1

>

Yq. Y-,
(45b) P = [+ ety o2y, Sy Yage b)) ]

so that plo(i), pOl(i), and poo(i) are chosen in such a way that the

relationships of Table 2 hold as well as Eq. (46). 1In order that

(45') reduce to (45) when)?l and772 are independent, we require

T
u = U(Yli’ Youo A12) to be so chosen that

(47) U(Yli’ Yoqo 0) =0,

We now investigate further properties of the prs(i). We require

the following five conditions concerning prs(i).

(i) The probability associated with any one cell is greater than

2zero and less than one, Hence, for pll(i) we have
Y Y -1
i
0<[(1+e11)<1+82)+u1-| <1,

(ii) The probability, plo(i), can be written explicitly by

using the equality pll(i) + plo(i) = P, (1) , which comes

from Table 2, Hence,
Yiqz- L Y14 Y -1
(48) plo(i) = (1 + e 11) - [(1 + e 11)(1 + e 21)+ ui] .

we have

Yiiy7! , Y - 1
0 < (1 + e li) - [(1 + e 11)(1 + e 21) + ui] < 1.

Since plo(i) has the same restriction as pll(i),

N ———————

The manner in which the U(Yli’ Y21 Alz) 18 incorporated is by
no means unique. The constant covariance term between the two charac-

teristics seems appropriate for the Present situation, however, and is
in fact much simpler than some mo re general function such as
bras = 80V s Yy

T
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(iii) Similarly, since pll(i) + pOl(i) = p.l(i),

(49) Po1(1) = (1 + eYZi>-1 - [(1 + eYlin + eYZi) + ui]

Again, 0 < pOI(i) < 1, so that

-1

-1

Yoin~1 Y Y
0<(1+e2i) -[<1+e11)(1+e21>+u1] <1.

1 - Plo(i) - pOl(i) - pll(i), with the usual

(iv) Now, pyq(1)

restriction 0 < p..(1) < 1. Thus
00 !

0 gy = 1= (Lr e - (1 Y [ s )]

and

Y1y 1
0<1 - (1 + e 11)

1 Yoiy\ Y Y

- (1 + e 21) + [(1 + e 11)(1 + e 21) + ui]

(v) Let piz be the correlation coefficient between the two
characteristics'}']1 and 2&. Then noting that

pi ) cov(h1,7k|given 1)
12 Jvar(7(1|given i)var(7?2|given i)

we have
Y1i Y24 % (1+eY1 1>(l+eY21)]'1

Yig * Y Viv 2 7 Y2iv 2
a 11 21 (l+e 11) (L+e 21)

(51) 912 =

Since piz is a correlation ccefficient it must lie between

-1 and 1. Thus,
1

Y Y 3 Y Yoi\q"1
[<1+e 11)(1+e 212f+ uy - 1+e 11)(1+e 21)]
-1 <4 = = <1,

Y11ty Y Y
‘/e i Y24 <1+e 11) (1+e 21)

e e

1
<

-1 l

1.
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We can consolidate conditions (i), (ii), and (iii) into the following

theorem.

Theorem 1. Conditions (1)), (ii), and (iii) hold if and only if

Yo 5 Yqi:tY, .
max ki 1li 724
52 > [-(e + e )] .
(52) Y17 k=1,2

Y ] Y '+Y -
max ki i '24
Proof. (a) Assume u; > k=1,2 -(e + e )J .

Y1i Y Yty Y14,
Then, u, > -(e . + e o + e = Zi), which implies <1+e 11)

y
(1+e 21) + u > l. Hence, condition (i) follows.

Furthermore,

Yy Y3 Yo
max <L+e kl) < (L+e 11)(He 21) + u,,
k=1,2 i

Y Y
and since <1+e 11)(L+e 21) + u, > 0, we have

-1

Yy, Yy Yo 1
S (1+e kl) <14+ (L+e 11)(1+e 21) + u,]
k=1,2 1

Thus, conditions (ii) and (iii) follow,
(b) Assume conditions (i), (ii), and (iii) hold. Then from
conditions (ii) and (iii) it follows that

Y Y, .ty
max ki i "2i\
ui > k=1,2 [-(e + e /] .

Q.E.D.

Theorem 2. It is necessary and sufficient that

Y1i Y2i
max Yei  Y1itYagy- (“e )(“e ) (vy4*vp4)
(33 12 '(e TE )J <Y< + €
2 (1-eY“ Y21>




2

fallis X
.

r
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in order that conditions (i)-(iv) hold, provided Yyt Yoy < 0.

Otherwise, (52) provides the necessary and sufficient condition.

Proof. (a) Assume Yyt Ypq < 0, and that (53) holds, Then

Y Yy HY
o > max (—(e ki | . li 21)] implies conditions (i)-(iii) hold.

k=1,2 ¢

Further, this implies

Y1i771 You7! Y \ -1
sa)  [we ] 4 [me ] > L(1+e ve )+ w0 ],
since
-1 -1
min Yied Yli) Y21
kel,2 [1+e ] > [(1+e (1+e ) + uiJ
Y Y
(e ) gy
Finally, u, < e implies that
1 YiitYay
()
Y Y -1 Y11yt 1IN
1+ [(1+e 11)(1+e 21) + ui] > (L+e 11) + (L+e 21) ,
for the case Yii t Yoy < 0.
(b) Assume Yyt Yy < 0, and that conditions (i)-(iv) hold.
Then a reversal of the argument in (a) establishes (53).
(c) 1f Y11t Yoy 20, it is then easy to show by an argument
analogous to the proof of Theorem 1 that (52) provides a
necessary and sufficient condition for conditions (i)-(iv)
to hold.
Theorem 3. (a) Assume Yyt Yoy < 0. Then condition (v) holds
if and only if
il l . ,=l‘.l T 3

—_—




-31-

(Yu + Y2i>

2 u1
(Yn t Yoqn

1 - e 2

UTIRT
Yy Y
( 2 >(1+e 11)(1+e 21)
e
Y. 4y
[He< 112 21)]

Then condition (v) holds if and only

(55) (1+e 11)( Y21>

2 -

(b) Assume Y13 * ¥p; 20.
1f

2_
Yy

LTI
Yii Y,
ST ) )

(Yli + Y21)
2

1 + e

Proof. Rewriting condition (v) we see that

(Y11+Y2 i )
2

-e

[(e )1 "2)] " & [(+e" i) 0e2) 1o T

<Y| 1+Y2

(0 CR P (IRAAE

A manipulation of thig inequality for the two cases , Yli + Yo i <0

and Yli + y21 2 0 establishes (54) and (55) respectively.

Theorem 4. Suppose € < 0. Then,

§/2
(56) e eg

(1-e§/2> > ITZE

Proof. (56) follows because eg/2 - e3/2§ > eg - eJ/Zg.
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Theorem 5. 1If Yoi > Yii0 then

(Y1i+Y21

2 )(1+EY11)(1+eY21)

(Y11+Y21)
5= 2

Y4 Y Y Y14
(57a) e I (1+e 21) < £ <e ci (L+e 11) 5

Otherwise, if Yli 2 Y2i'

Y1:+Yo
( 112 21)(1+8Y1i)£1+eY21\
/ eYli <1+EY21>

Yy Y
< 112 21)

Y Y
(57b) 5 & <l+e li) <

l1+e

Proof. 1I1f Yo q > Y40 then
Yq.t+Y
Vit (AL 2i)
Y13 2 <e 2 (1+e 11)
e l1+e ‘

The other inequalities are proved in a similar manner,
Theorem 6. (a) Assume Yyt Yoy < 0 and Yoq > Yqi° Then
conditions (i)-(v) hold provided that

Yy Y
(1+e 11)(1+e 21) (Y1£+Y21>

Y Yoi
(58a) -e i <L+e 21) <u; < - e .
(l_eYli Y21)

1f Y14 2 Youo then conditions (i)-(v) hold provided that

Y Y
(1+e li)(1+e 21) (Y1£+Y21)
e L]

i Y1itY2y
(1-e %)

Y Y
(58b) -e 21 (1+e li) <u

(b) Assume Y14t Yoy 20, If Yoq > Yli’ conditions (1)-(v) hold

provided that
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k
Yy Y i
(59a) -e 11 <L+e Zi) <u, . i1
If v)y 2 Yoo then conditions (i)-(v) hold provided that ;

Yo, Yy
(59b) et (1+e “) <u,

;-
Proof., (a) Theorem 2 provides the upper inequality for uy in
order that conditions (i)-(iv) hold. Thecorems 3 and 4 show that

no adjustment is required when condition (v) is added. The lower

inequality for ug follows from Theorems 2, 3, and 5, depending on

1
<
whether Yoi > Yyi OF Yy, T _
(b) 1If Yi; + Yoy 2 0, there are no upper bound requiremznts on »
3
uy with respect to conditions (i)-(v).
We now consider an example incorporating specific assumptions
about the form of u. Let .
Yy oty A 3
il = i 24 (e 12~ 1. :
i
Then
/ Y, Y Y, .ty, +a
(60) pll(i) - \1 e 1i - i + e li 721 712 )
S L max Yki ‘Yli-'-YZi\1 h he 1 { .
Y, ui k=1,2 L \e + e )J, so that the lower inequalities 4

in Theorem 6 are satisfied. We need only be concerned with the upper

inequalities if Yiit Yoy < 0. In this case, we must have

(1n19) (10"

( Y11+V21>
l-e

satisfied for all Yii and Yo i such that Yyt

(61) e - 1<«

9 < 0. Thus, -» < A12

< ln 2 assures that conditions (i)-(v) are mel.
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We now sketch the development of the maximum likelihood equation.
Suppose we make observations on N individuals, each of which can be
measured on a zero-one basis with regard to the two characteristics
771 and772. Let yjk(i) be the random variable that takes the value 1
1f the outcome on the i-th individual is (j,k) with respect to')?1 and
'nz, respectively, 1 =1, ..., N; j, k = 0, 1. Otherwise, yjk(i) takes

the value zero.

(62) pr fyjk(i) =1} = ij(i).
Thus, the likelihood L of a sample of size N is equal to

N yjy(i)
(63) 1 n [pjk(i)] ,
§,k=0,1 [i=1

where

(64) p (1) = 2.y, (1) = 1.

Letting L reprecent the likelihood and £ = lne L, we have

N

(65) £ = 12_1 [y, (1) Ingpy (1) + vy (1) 1In p, (1)

+ y01(1) lnePOI(i) + yOo(i) 1neP00(1H~

Now, Eq. (60) determines pjk(i) as a function of B and By, Thus,

with some algebraic simplification
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: Y11 | Yai o Yigtvptay,
(66) .i!**-Z_lne (1+e +e + e )
i=1

N
Yy, A Y
11 ~12 11
+ 12-1 ylo(i)[‘y21 + lne <1~ + e ) - lne <1 + )]

N
Y, ,+A
21
+ § ym(i)['y11 + lne (1 + e

’ Y
12) - In \1 + e 21)]
e

N
Y Y i} AT RA
+Z yOO(i)[(Yli + Y21> + lne (2 + e 14 + e 24 - e 12(1 = g I 21)
| i=1

' Y Y
| - 1ln <1 + e li) - 1ln <1 + e 21)].
e e

Recalling that Yii = [ao + in] and Yoy = [BO +§'51], the equa-

tions whose solution yields the maximum likelihood estimators are given

by
(67) % .o |
30'0
(68) A,
5&1 ’
l i-= 1, 3 s-1

(69) ggxaﬂ, ,

(70)

and J=1, ..., t-1

[ . i o o




(71) 2 =0 ,

where, for example, (67) 1is

APTRSY) eYZi

N N
(72) :E: y, (1) + }E: yo (1)) == -
10 ~ 701 VIV Y
i=1 i=1 21 12 21

1 +e 1 + e

Y Y, A Y
. 21(1 bl 12) 2

N

*':E:y (1)(1 +
=17 00 Y N A YqqHY Y
i=1 [2+e11+821_e12<1_e11 21)] (1+821)

eYzi(l s eY11+A12)

- Y Y Np1 Yo D
i=1 (1 et 21, Yo 12>

+ e

Thus, the fitted pjk(i) values denoted by Bjk(i) are given by

(73) ,,(1) = Y, Vi, e911+921+512’

6911(1 s e721+512)

PR P A J
e11+e21+e11 21 12>(l+e21>

]

(74) B (1) =
1+

§21(1 . e§11+512)

(75) Byo(d) = = =k = >
10 ¥ v ITRarTa! ¥
L 4elll 2l it 24 12)(1 +e 11>

n 5 o
6 5ty - Ju al, , S, Y Pz TSN
00 : 5 e Ty Snahe
e 11)<1 ‘e 21)(1 A VR SO B Y21 12)

e




In conclusion, we note that besides the predictive Properties of

Sjk(i), we can use the likelihood ratio technique to test various

hypotheses concerning the parameters. For example, we can test the

hypotheses:
(1) A12 =0,

(11) Byy = Byy»

(iii) Bpl = sz = .. = spn =0,
where Bpl’ sz, oL Bpn is a subset from Sl, oo, B

s-1
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V. USE OF THE MODEL: AN EXAMPLE

Logit models provide excellent opportunities for specific types
of decisionmaking. If a choice must be made between different courses
of action, then the decisionmaker can consider the various probabilities
of success as determined by the specified model. The parameters of
this model would be estimated from past performance, using the techniques
developed in the previous sections. Similarly, if the decision does
not involve choosing between alternatives, but rather involves deciding
whether to '"choose one alternative" or not, the decisionmaker can con-
sider the probability of success of this one course of action as de-
termined by the posited logit model and then base his decision on some
a priori probability level.

Frequently, the determinations of the probabilities of success of
two different classes of alternatives are not independent. Hence,
models that consider such possible dependence will be of more value to
the decisionmaker. The dependent logit models developed above are such
models,

This section presents an example that describes the determination
of the logit model parameters under three different assumptions that
will t¢ explained. The data for the example are data on Category IV
airmen who were admitted to the service in 1960 under a special program,
These data were collected into a specific file known as the 'Dual 25"*

data file.

T'I‘o be admitted to this speclal program, a potential recruit had
to achieve a score of 25 (out of 100) on at least two AQEs. However,
a score of 40 (out of 100) on any one AQE would qualify him for '"regular
enlistment,” and hence would preclude participation in the "Dual 25"
program,
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The basic hypothesis is that the probability of reenlistment

after an initial 4-year term by Category IV airmen is related to their

initial AFQT score, their race, and their age at enlistment by means

| of the logistic function, Thus the logit relation can be written

r -
a7 logit (r) = 1n (TT?> Tog tagXyy tay togXy,

where X, = the AFQT score, X

1 ) =2 dummy variable for race (0 for Negro,

| 1 for Caucasian), and X3 = an age scale variable.
1f we assume that the reenlistment rate of all enlistees is

1
determined by the independent variables Xl, Xz, and X3 in the same way,

then the parameters of (77) can be estimated straightforwardly by using )

"simple least squares' regression analysis, The results are

(78) logit (r) = 9.532 - 0.326X, - 1.696X, - 0,215X,,
(2.125)(-1.907) (-2.244) (-1.526)
) J
R® = 0.1757,
(SE)? = 0.7509,

where the numbers in parentheses are the '"'t" values associated with the

parameter estimates, and

Mean Variance

Logit (r) -0,4711 0.8243

X 25.1310 0.6179
! X, 0.5548 0.0596
! X, 4.0095 1.7204
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Now assume that the enlistees can be categorized into two groups: '

those with a high school education and those without. Separating the §
[ |
sample into its appropriate parts, we can estimate (77) for each group. 1
] Thus

(1) high school education completed:

(79) logit (r) = 13,420 - 0.594)(1 - 1.630)(2 + 0.313X
(2.671)(-2.926) (-1.385) (1.423)

3’

2 = 0.3766, l

R

(sE)? = 0.5242,

where the numbers in parentheses are the "t'" values and

Mean Variance

X1 24.971 0.6687
X2 0.3762  0.0247
X3 5.1143  0.7460
Logit (r) -0.4238 0.8409

(2) high school education not completed:

) (80) logit (r) = 8,019 - O.216X1 - 1.124X2 - 0.762X

(1.505)(-1.068) (-1.309) (-2.625)

3)

R% = 0.3569,

(SE)? = 0.4147,

where the '"t'" values are given in the parentheses and

I Mean Variance

logit (r) -0,4714  0,6449

] X1 25.2900 0,516l
X2 0.7333 0.0308
X 2.9048  0,2538
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Assume now, however, that the two groups do not function independently.
We then estimate parameters of each equation, given this dependency
assumption. The residual covariance matrix between Egs. (79) and (80)
is given by

0.5242 0,1463

u 0.1463 0.4147

The inverse of iu is then used as developed in Secs, II and III to
obtain "better"f estimates for the parameters of (79) and (80). Thus
we obtain the following estimate:

(1) high school education completed:

(81) logit (r) = 10.330 - O.A87X1 - 1.338X2 + 0.373X3
(2,149)(-2,497) (-1.195) (1.767)
and
(2) high school education not completed:
(82) logit (r) = 5.446 - O.llel - 0.757)(2 - 0.850X3,

(1.074) (-0.595) (-0.927) (-3.035)

where the "t'" values are given in parenthceses,

Thus depending on the stringency of the assumptions the decision-
maker is willing to endure, the best estimates for *hose assumptions
may be obtained as above.

One other casc may be illustrated by using this example. Assume
that the group of high school graduates is diffcerent from, but not in-

dependent of, the group of non-high school graduates. Further, assume

TThe estimates are "better" in the sense manifested in Secs. II
and II11, specifically Eq. (37).
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that the difference is manifested merely by some constant amount,
whereas the effect of each independent variable on the probability
of success is the same in both groups. In this case we '"constrain'
of (77) to be the same for the

the parameter values a5, a and ¢

2’ 3
estimates of (81) and (82). Thus we obtain

B 10.050}
(83) logit (r) = {10.810 - 0.383% - 2,085X, - 0.025X,,

where the intercept value 10.050 is associated with high school gradu-
ates and 10,810 is the intercept for non-high school graduates.

We have used this set of Category IV airmen data to illustrate
how the techniques developed in Secs. IIl and IV can be implemented;
and although the various assumptions employed are not necessarily

tenable, their use should suffice to demonstrate the possible im-

plementations of the "dependent logit models.'

e
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APPENDIX

The derivations of the maximum likelihood, minimum x% and minimum
logit xz estimates are, for the most part, well known. Hence the
various methods will merely be sketched as an aid to those unfamiliar

with that body of literature.

1. MAYIMUM LIKELIHOOD

Let P represent the probebility that an event E will occur, and
further, let this probability depend on an exogenous variable X by

means of the logistic function

1

(84) P = ———— |
1+ e-(a+BX)

Construct the following likelihood function from a sample of size n:

n yl l-yi
(85) L= 1 p, (1-p) '
i=1 i

where ¥ - 0 or 1 for each i.

Then

1-y
(86).1:-1:11.-2:1'“:1 +21n(1-p) :
i=1 i=1 .

" n
2 1<y la —-—(—( i Z -(r+8X)

+ e i=1
and

£
(87) o 7 n(p, - B =0,
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n

i N
(88) 2_8 = i;] nixi(pi - pi) = 0!

2 '(CY""BXi)j'l
where p, = yi/ni and p, = [1 +e L.

2. MINIMUM y°.

Let P, the probability that an event will occur, be the same as

in (84) above. Consider a sample of k, from the population and observe

i
the successes, say Yo in a success-fail mode. The observed probability
of a success is then yi/ki’ and the probability of a failure, 1 - yi/ki'
The expected probability of success is ﬁi’ where ﬁi is defined as

above; of failure, 1 - P, -

The xz statistic can then be written

n a 2 - 2
RS 3] Bl L TR Ut
i=1 i L-py
and
n
2 N a 2
(90) X=z (y,/x, - p)"
S Ba-Fp P T A

the true probability

Let BT yi/ki and Py be the estimate of Pi’

of success. Then the x2 statistic is minimized when the following

equations are solved:

2 & [p.(1 - p,) + (1 - p,)p,]
ax - i i i7%1 oA -
on P2 505 (P - P =0
i=1 i i
2 n a 1_ 1_ P
o v o (py(1 - p) + (1 - p)p T

= (b, - B) =0
oR io1 171 Pi(l pi) i i




A R ——

~45-

3. MINIMUM LOGIT X2

Consider ng samples out of the population, i =1, ..., N. Let

the observed proportion of successes P be
(93) P, =P, +u

where Pi is the "true proportion for the ith sample, and U is a bi-

nomially distributed random variable such that

E(ui) =0,
Pi(l - Pi)
Var(u,) = —
t i
and
E(uiuj) =0 fori #j,
We wish to minimize, then,
n
a 2
i=1

where v, is inversely proportioned to the variance of pi, and 51 is the
estimate of Pi' Observe that for a rather small differcnce, (pi - p,)

can be approximated as follows:

(94) (g = B~ TB(L - ) p (1 - PO, - T,

where Ly = ln(p A1 - p)),and 3, = 4 4 ex,.

Consider, then, (90) above:

n

n
2 ni ~ 2 R

95 = Z _ N ) ]
(95) X p.i(l - p-i) (P1 Pi) ~ 1Z=:1 nipl([ pi)(gi )

2.

i=1 i




Since all the terms in the approximation are linear, ordinarily
least -square regressions with weights Wy [pi(l - pi)]s can be used to

cbtain estimates of ¢ and B, and subsequently, ﬁi for all 1. Thus

2
) a
(96) SR =2n (L - pp (2 - 1) =0,
o ;
(97) S5 =lngx (1 - PR (4 - &) = 0.

Equations (96) and (97) are the normal equations for ordinary linear

regression.

SRS T S B = L

e

s

ke
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