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ON TWO DIMENSIONAL INCOMPRESSIBLE STEADY

STATE FLOWS WITH SEPARATION

by
Alexander Pal

Polytechnic Institute of Brooklyn

ABSTRACT

The subjects of this study are two-dimensional incompressible steady
state flows which have constant vorticity (w) in a domain N bounded by a
closed streamline and are irrotational in the com;lementary part P of the
flow domain, and such that the streamfunction y(z) (z = x+iy) satisfies on

the boundary vy =3 P13 N Bernoully's law

2 2
(1) '-2-3) - (—:—E) = XA = constant > 0.
A3 p N

According tn G.K. Batchelor such flows (below called '"Batchelor-flows'')
may be models of laminar flows exhibiting separation phenomena in case of
high Reynolds numbers.

Let f(C) (C =2 + in) denote a regular function in the domain E:
n > 0 ("open flows') or 0< n< 1 ('channel-flows') which is O\lfl) as
|¢] ~ =, and such that on 3E
(a) |£' (€) | is bounded away from 0, (b) is even in § (c) non-increasing
if £>0, and (d) £'(),f'(C) satisfy HOlder - conditions and have finite real

limits as € - ®,



The existence of Batchelor - type flows in the domain A = {(E),
bounded by the streamline(¢) ¢ = 0 and in case of channel flows . = 7T is

proved by direct methods of variational calculus. In particular, let

(V] = LJ'{V[t(IK))]}ZdEdn .

Li4]=-2 “ Wz)axdy, ALl =[] axay .
¥(z)< O $!z)<0

Then, if u(z) is an arbitrary function for which these functionals are finit.,
the problems

(1m) Tlu) - X Alu] = min.
(k and L[¥] = m> 0 given parameters)
and

(Iv) Tiul - X Alu] - w L[u] = min. ,
(k and w > 0 given parameters) » have solutions which can be considered
stream functions of the Batchelor - type, if only » (and ¢ in casc of
problem IV) satisfy certain reasonable inequalities. The region N is thin
defined by the condition {(z)< 0, { the solution of problems IIl or IV. The
flow is asymptotically uniform at large distances. Further properties of
the s»olution: vi!(f(C)) is an increasing function of || ard evenin®. The
sets NUAN and P are simply connected and 3N contains a finite arc of
3A. For solutions of IV or if f{{) / { = const., (straight boundaries of ")
N itself is connected.

Applying the minimum - principle to special variations of . near 3P,

ii



>
it is shown that if z converges in P to the | = 0 streamline, then

lim inf |9y| > %

Consequently Y is rectifiable. By analytic variations of the domain it is
shown that § and N satisfy an integral equation similar to the one found
by P.R. Garabedian and D. C. Spencer in the case of cavitation flows.
Properties of the solution, such as boundedness of N and that the matching
condition (1) is satisfied along Y almost everywhere, can be deduced from
this integral equation.

Solutions of III are never ''trivial'', i.e. the domain N is never
empty. Solutions of IV are non-trivial if A exceeds a limit dependent on 7.
Such solutions exist unless A has straight boundaries.

The set of solutions depends continuously on A,X and ¥ or m.
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Most frequently used notations.

A the physical flow domain in the plane z = x+iy, bounded
by a streamline 8 in case of open flows, and the stream-
lines 3, 3’ in case of channel flows.

E: the halfplcone 0<n for open flows, the strip 0< n< T for
channel flows of the {-plane. ({ =8 +in).

C=gl(z) the analytic function mapping A conformally into the half-

plane or strip E, See for details Section 1.1,

z=£f(C) the inverse of g(z).
aut o =lf(@), u=int{lg(2) *:2en |
A, M: A o=1/a%, M=1/|f(0) 2 .

If u(z) is a function in &, S a subset of A, then
a(€) =ulf(C)) ,
=g(S) .

u+( z)’u_(z) the positive and negative parts of the function u (z).

142}

Plul Olul,N[ul: for any function u(z) the subset of the interior of the
domain of definition of U, where 4>0,=0,<0 respectively.
Qlul=nN[ulVoO[u],
Y, T v=3pPaN, T=3P-3’,

(For open flows B’ is the empty set. )

S, Int (S), If S is any set, then S is its closure, Int (S) the interior
mes(S).mesl(S) of S, mes(S) the plane measure of S, mes,(S) its linear
measure.




| g

Functionals:

Dlu,v]s]

D[ulS]

T[ul S]
L[ulS]
T{ul, L{ul:

Alu]

As or A(S)
Viul
V! [u)
Wlu]

A, m, L

Function Spaces:

7

D
7P"DN
ZL(m)
# Jl+ M
S

If S is an open set, u,v functions in S, then
=_” Yu Vv dx dy,

S
=D(u,us],
If u(z) is a function in A, u(z) =u((), then
D[ G-“l g] ’

-2'”8 u (2) dx dy.

If S is not specified in these functionals, the integration

should be extended over the entire domain of the func-

tions involved.

=”Q[u] dx dy.

But:

is the plane measure of the set S,
=T [u] -1 Alu)

=Tlu,]- mZD[u_]/L[u_]Z -2 Alu)
=T [ul-2Alul-yLlu],

are specified positive constants,

: See Section 1,2
" " 2.1
" " 2,1
" " 1.3
" " 2.1

" " 2. l



INTRODUCTION

The problems connected with wakes and ca ‘lies appearing in
fluid flows have stimulated a great deal of applied and pure mathema-
tical research since Helmholtz described a mathematical model of
cavitational flows, An impressi.e body of mathematical results is
available about incompressible irrotational cavity flows. In the plane
case, the shape of the cavity can be obtained in special cases by con-
formal mapping techniques; (cf. e.g., Birkhoff- Zarantanello: Jets,
Wakes and Cavities, 1957) and even in the more difficult axially sym-
metric three dimensional case an explicit solution was constructed by
Garabedian (1954). The existence of solutions of flows with cavities
behind more general obstacles was shown in the plane and axially
symmetric cases by Garabedian and Spencer (1952) and by Garabedian,
Lewy, and Schiffer (1952) respectively. Uniqueness of solution is
proved by Gilbarg (1952), Serrin (1952). Integral equations are derived
by the method of interior variations, and it is shown that the free bound-
ary is an analytic curve, For an extensive bibliography of cavitation
flows, see Gilbarg (1960).

The model of flows with cavitation has been widely applied to
problems of wakes behind obstacles, This practice may be objected to
on the basis that in cavity flow the velocity is constant on the free bound-

ary,; however, adjacent fluid particles of the wake region would de-




aelerated the neighboring free stream particles by viscous friction,
Admittedly, for unbounded regions there is no assurance that for

large Reynolds numbers, R, steady state solutions of the Navier -

Stokes equations exist at all, but if 'such a solution exists for R
so large that the singular perturbation method of boundary layers
is applicable then this solution is probably not well approximated
by the cavity model.

The assumption that the flow is irrotational is in general
justified by Helmholtz's vortex-theorems, in any region covered
by streamlines originating in infinity. Indeed, in the Lagrangian
frame of reference the initial condition of zero vorticity for
t = - co implies no vorticity anywhere along the entire streamline.
However, if the flow domain contains a region covered by closed
streamlines, then a non-viscous flow becomes indeterminate in
this region. In fact, arbitrary constant vorticity may be prescribed
along each closed streamline dependent only on the value of the stream-
function y. This indeterminacy is of course merely a recsult of the
excessive idealization implicit in the Euler-or Lagrange-equations.
The indeterminacy disappears if steady state viscous flows are con-
sidered for a given set of boundary conditions, such that the Reynolds
number R of the flow converges to . Batchelor (1956, 1957) pointed
out that in the Z-dimensional case under such circumstances a limit
flow may exist, containing regions bounded by closed streamlines, in

which the vorticity is constant (eddy regions) and outside which the



flow is irrota.tiOnal.* The eddy regions are separated from each
other and from the outside irrotational region by slipstreams
(streamlines of velocity discontinuity) which are the limits of
boundary layer type velocity distributions. The velocities :1‘1 C

ae on the two sides of a slipstream must satisfy Bernoulli's law,

and therefore along the i - th slipstream

3 2 _
M o] - |az|* = 2y
on each slipstreamline, In the simplest case both the eddy region

N and the irrotational region P are bounded by the domain-boundary
and a single slipstream Yy, so that (1) can be written as
-~ 2 - 3

@ |apl - |qu =\
along Y.

In contrast to c avitation-flows, little is known about Batchelor
type separated flows. Goldshtik (1962) proved the existence of such
flows for A=0 by methods of functional analysis in bounded domains.
He also showed that if the vorticity W in the eddy region exceeds a
certain value wo then at least two solutions exist (other than the
trivial solution with no eddy region) and that for W - WO no solution
other than the trivial exists. Childres. (1965) investigated the A ~. 0
case with the asymptotic approximation of slender eddies, and
found a simular bifurcation. To my knowledge no rigorous existence-
proof exists for the A >0 case, and no special explicit solution for the

unknown boundary Y, although both Goldshtik and Childress give numerical

“See also Prandtl (1961).



results under the special assumptions mmade in their papers,

Mathematical description of the separated flow-problems to be

investigated.

Let us introduce the streamfunction ¥ (z), (z =x +1iy) in
the flow-domain A, which is simply connected open set bounded
by one or two streamlines extending to infinity*. If - is bounded
by a single streamline 3, we will talk about an open flow, in the
case of two streamlines (B,p') about a channel flow. (This is not
intended as a complete definition of the flow domain; 2 will also
be required to satisfy certain additional conditions, which allows
Steiner symmetrization of the streamfunction ! (z)., More precise
definition will be given in Section 1. 1). It is assumed that - is
simply covered by streamlines, hence | (z) is one-valued on the
Riemann surface in which £is embedded. The eddy region N=N[-,]
is bounded by P and a slipstreamline Y. We assign the value
v(z)=0to B and y. In the simplest case Y is the only subset of . in
which §y (z) vanishes. Thus, for positive vorticity in N, v (z)~0 in N,

and y (z) >0 in P[‘v‘]= A -N-Y. v (z) should satisfy the equation

(3) "%y = 4.8 (v)

It will only be assumed that 4is locally schlicht. Thus it may cover
multiply a plane domain without branchpoints.



in 4, where s () is the characteristic function of N [Q’] Further

¥ (z) should be continuous on § (and B'), and assume the values of 0

on B (and ron B'), If the set N is bounded (as it will be proved for
almost all cases), the asymptotic behavior of y (z) is (up to a trivial
factor in the case of open flows) determined by the geometry of -,

This will be discussed in Section 1. 1. On Y in addition to the condition
¢ (z)=0, we have the matching condition between the normal derivatives

of § on the two sides of Y :
3

3 X,
(4) 3'?;?'37

obtained from (2).

"
>

N

The purpose of this paper is to prove the existence of a two
parameter family of flows in the given domain 4 which satisfies these
conditions. (The two parameters are ) and either the vorticity w or
the angular momentum m of the wake region.) As a side result minimum-
principles will be derived of which the streamfunctions are solutions.
These minimum-principles might prove convenient in the numerical so-
lution of the separated flow-problem. They also offer interesting analogons
or extensions of the energy-principles of potential flow theory.

The xS_O case will not be treated because it is felt that it has no
physical importance. In fact, X < 0 would correspond to flows, in which

Iap.g laNl along Y. In such a case the wake region would continuously loose

kinetic energy in the boundary layer along B, which would not be replaced

through the boundary layer along the slipstream Y.



It also should be observed that in case of channel flows it is in
general unrealistic to assume that a viscous flow with high Reynolds
number remains everywhere approximately harmonic in the vicinity
of ', Rather, eddy regions can be expected adjacent to both } and B'.
It would be easy to allow eddy regions bounded by § =1 streamlines;
but this is for the sake of simplicity not done here. Nevertheless, if
B' is straight, we get a realistic flow by reflection of ~and ., (z) on B'.

This paper will have four parts. Part [ contains preliminary
results, including the formulation of the minimum-problems. Section
1.1 discusses the flow domain, Section 1.2 introduces a functional
analogon to the Dirichlet-integral and the virtual mass, and together
with section 1. 3 discusses the properties of this functional. Section
1.4 defines related minimum-problems which are formally equivalent
to the flow -problem just described. In Sections 1.5 and 1. 6 both neces-
sary and sufficient conditions are given under which the functionals
appearing in the minimum-problems have lower bounds,

Part Il contains the proof that the minimum-problems chosen for
investigation have solutions. In particular, 2.1 and 2.2 contain pre-
liminary lemmas on the equicontinuity and lower bound of admissible
functions. 1In 2.3, 2.4, and 2.5 it is shown that if the set O=0[;Jc-
where | vanishes, is a givenclosed set, then the so obtained ""restricted"
minimum-problems have solutions, which satisfy (3). Further lemmas
needed to clarify the limitations on the vertical and horizontal spread

of the eddy region are in Sections 2.6, 2.7, and 2.8. Finally, in 2.9



it is shown that any minimum-sequence of adimissible functions contains
a subsequence converging to an admissible function, which is thus the
solution of the minimum problem.

The unboundedness of the flow domain makes this proof more com-
plex. In the theory of cavitation flows this difficulty is circumvented
(see Garabedian-Spencer (1952)) since domains considered there permit

Steiner symmetrization relative to both the real and the imaginary axis

accompanied by a decrease in the variational functional involved. In the
present problem only Steiner symmetrization relative to the imaginary
axis will be applied. Therefore additional tools will be needed for the
proof of the compactness of the set of competing functions. This is pro-
vided in the fundamental lemma 2.8. This lemma essentially states that
if a function + (z) has its support of finite area A in parallel strip S of unit
width, and has a finite Dirichlet integral D, then a unit square subset
S*CS exists, such that

rr - k r 3
U(z)dxdy {> —— 3 ¥(z) dxdyi
I'Js" | “2p ISJ

where k is an absolute constant.

In Part III the topological properties of the solution will be investigated.
In particular, it will be shown that the domain P is simply connected, the
set N is the disjoint union of simply connected open sets (Section 3. 4), the

set N is connected. * This latter result is based on the theorem, interesting

%
1 did not succeed in showing in all cases that N itself is connected.



in itself, that in a two-dimensional potential flow around an obstacle

B which is free to move without rotation, no equilibrium position of

B is possible unless B touches the flow boundary. In particular, it
was shown with the aid of the investigation of Schiffer and Szeg'cl) (1949)
on the properties of Green's function, that the virtual mass as a func-
tion of the position of B is a superharmonic function., (Section 3.1)., It
is further shown by application of the minimum-condition to certain
restricted variations of the positive part of the stream function, that
the gradient of the latter has in P a positive lower bound (Section 3. 5).
From this follows easily (Section 3. 8) that the boundary y separating
the regions P and N is rectifiable and that the boundary of N contains
an arc of B of nonzero length., (Section 3.6). It also follows that the
minimum-problems considered have ''non-trivial", i.e., not every-
where irrotational solutions in given regions of the (w, 1) plane (Section
3.7).

In Part IV a variant of the method of interior variations of
Garabedian and Spencer (1952) is applied to derive an integral equation
for the solution and the curve y. The method is applied in a halfplane
or parallel strip conformal image of &, rather than in O itself; this
results in a simplified calculation and somewhat more explicit form of
the integral equation. (Section 4.1). This integral equation is used to
show that the matching condition (4) is satisfied almost everywhere on
Y (Section 4. 2), and that the eddy region is bounded (Section 4. 3). The

remaining sections contain results on the connectedness of the eddy region.

10



In the derivation of the matching condition a difficulty not encountered
in works on cavitation flows is again the lack of the twofold symmetrization,
and that the boundary Y is probably not an analytic curve; in any case,
analyticity could not be proved. Although Y is probably smooth, this could
not be proved either. Nevertheless, results on the boundary behavior
in the theory of the functions analytic in the unit circle, in particular some
theorems of Fatou, F. and M. Riesz, and Privaloff helped to overco.ne

this difficulty.

11



(1.1)

PART I. FORMULATION OF THE MINIMUM PROBLEMS

1.1 The flow domain., Let (=g (z)({ =€+in, z=x+1iy)denote

a function analytic in & which maps & in a locally schlicht manner into
the domain E, where

E is the 1 >~ 0 halfplane for open flows,

E is the strip 0 <n <7 for channel flows.
We may impose the additional conditions that the line p must be mapped
into the open real axis, and for channel flows, the line B' onto the open
line N =n Thus z = 0o is mapped into ¢ = co, It is clearly no restric-
tion of generality to assume that § contains the origin of the z-plane.
We may then normalize g (z) by setting g (0) = 0, and in the case of open
flows, g' (o) = 1. The inverse of the finction g will be denoted as

z = f ((). Only such 4 will be considered, for which

(a) £ (C ) is an even function of £ and { (0) = O,

(b),f’ (¢ )lis a constant or a bounded decreasing
function of |E| 2

(c) £f* (C ), £'( € ) are bounded in E;

(d) £* (C ) and {" (¢ ) have finite limits if IQI-ooo (along any path),
and the former limit is non-zero.
Let us consider now the boundary values

f1e5) (% real)

(%) =1log

and in case of channel-flows

o *(2) = loge* (5+i")| '

12



(1.1)

It will be shown that p( & )(and p”(lg)) determines f ( £ ) uniquely,

and in case of open flows find sufficient conditions that the function
P(2) may define an admissible domain-function.

Proposition. The admissible domain-function { () is uniquely
determined by the boundary values oflf' (¢ )| on 3E. u] f(E+in )|
is a non-increasing function ofl glon the boundary, then it is constant
or decreasing in E.

We note first that ' ( () is continuous on 3 E, becaueelf" (¢ )[

18 bounded. Then uniqueness of the harmonic function log lf' (¢ ),is a
consequence of the Phragm'en-Lindel'c;f theorem and the maximum-
principle for both open and channel flows. loglf' (s )lthen determines
ph f' ( () up to an additive constant '(to be obtained from the symmetry
of & to the imaginary axis). f'(C ) determines then f ({ } with the ad-
ditional condition f (0) = O.

If it is now assumed that lf' (€ +in) l is a non-increasing function
of I% | ond E, then the harmonic function Re{ " (¢ )£ (¢ )} has non-
positive boundary values on the real axis, is zero on the imaginary
axis;and bounded in the right half of E, Therefore by the maximum-
principle

Re { £ (C)/ £ (¢)}= a—ag—log]f' (¢)go

in E, where the equality sign holds only if f' ({ ) = constant. Hence

,fl (8+in )I is indeed a decreasing or constant function of lg I with

limit a > 0 for |g]~ co.

13




(1. 1)

The functions f' ({) -a, {'"(¢), analytical in E are there bounded
by Poisson's theorem, being defined as Poisson's integrals, with
bounded boundary values. Since they have zero limits on the boundary
for £~ oo, by the Phragm'en-Lindel'c;f theorem

lim |f" (5)|=a

- o0
and

lim |[f* ()] =0.

Iof-

Theorem. Suppose that the function ¢ (£ ) is even, non-increasing if

£ >0, and has a limit p (o) for £ ~oo. Let the functionp (£ )-p (oo0)

and its first derivative P' (£) belong to some space Lp (-oo0, oo) with

p >1. Further it is assumed thatf (£ ), P'(£)€Lip v’ i. e. they satisfy
H'c;lder conditions

(1) le(g+h) -p(e)|<Kh",

(@) lr@E+n) -o(B)|Kh"  (0cve.

Then the relations
p(€)

oyt

(3) logf (C)=m
-0

(4) £ (0) = (0)
define an admissible domain function f( 7) in E: n » 0, such that

lim £ (¢) =eP®)a 50,

ls*"oo

14



(1. 1)

In fact, the real part of (3) is a Poisson-integral, and p (8)
is continucus on the boundary whcere it assumes the boundary
values ¢ (£). The Hilbert-transform 0(f) (cf., Titchmarsh, 1937,
Chapter V) of p (§) - P () also belongs by the equivalent of Privaloff's
theorem (see Zygmund (l959)§ 7.5) to LipY and Lp. Therefore,

0(5)~0as £~ . Furthermore f' (£) has a limit for n -0 and

lim Imlog f' (§) =0 (£)
n—0
or
lim log f' ({) =1log f' (8) =P (&) +io(E),

nd0
and

5) Mm £ (8)= ef (@) g,

€~o0
By differentiation of (3) with respect to £ and subsequ.nt inte-

gir~tion by parts . -

' (¢) _ 1 P (8)-P (o) ,. 1 p' (8)
(6) )~ 'ﬁ'f 5-c73 48 'n—i‘f 5o d8
Q0

-Q0

for n—0 . Since ' (9) belongs to Lp and Lip , we find by repe‘ition
Y

of the previous argument

Hm o £0(C) _ o (e)4iox(E)
0 g o(¢)

where © *( €)is the Hilbert-transform of p' (£), belongs to Lp

and LipY. Thus
Hm £ (r )/ (r)=1" (e )/f(5)

n—0

15



(1.1)

also belongs to Lp and I.,ipY . This implies by (5)

lim £ (£ )=0.

'-‘
g0

Thus it is proved that (c) and (d), are satisfied. The symmetry condition
(a) is satisfied because the boundary values are symmetric and they
determinz f (v ) uniquely as a symmetric function; that (b) is satisfied
was proved earlier,

A formal analogon of (3) for channel flows is given by

Qo
1 1 1 -
M ‘°8f"”’=?rf 3—9'—_ * —1+—$ plo)d
e -1 e -1

0
Qo
, 3; + io*(e)da
U 0 € “+1 € +1

o -8 -8 o
- *
nl\f ,e coshr o (8 )+ e + cosh¢ p(ﬂ)‘de
0

cosh 8 -cosh r cosh 8+coshr

where P (£ ), p* (2 ) are the boundary values of loglf'( o )Iprescribed
onn=0, n="respectively.

It seems likely that if P (§ ) P*(g ) satisfy suitable differentiability
and integrability conditions, then (7 ) defines an admissible domain-function
for E: 0<n <.

We note that the half plane and the parallel strip are examples of
admissible domans. These domains, which can be described by 4 = E,
f(C)=1C, are particularly interesting. Any non-trivial solution III, IV,

for such a domain describes a separated flow without apparent ''reason"

16



(1.2)

*
for the separation, since the boundary of & is straight . Such solutions
will be called free eddy solutions.

1.2. The e:tension of the concept of the vi rtual mass. It was shown

by Garabedian and Spencer that the existence problem of Riabouchinsky -
flows can be tackled by solving the variatiomlproblam of minimum vir-
tual mass. Let ® denote a smooth curve in the upper halfplane joining
the points a, b of the real axis. * and the real axis bound a domain B, .
B, and its mirror image in the lower halfplane form a domain B. The

virtual mass of B in a flow uniform at large distances is defined as

(1) v=ff[\7(w-y)]°dxdy
z-B

where V¥ is harmonic in Z - B and
{=Im(z+alz+...)

in the neighborhood of co. Then

(2) V+Ag=2Ta

1
where AB is the area of B. (cf. Schiffer-Szego (1949))

We have to introduce a few notations to be used through this treat-

ment :
If S is an open domain, u (z), v (z) functions then
_ du dv du dv = du dv .
S S
*

However, it is possible to reflect the flow into the lower halfplane,
and assume that the eddy is caused e.g. by a flat plate of suitable
length and position on the real axis.

17
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D [uls)= D[uuls].
If S is not specified, then the integrals have to be extended over the

domain of definition of the integrand. Thus e.g. if uis defined in <,
b i
D[u]= 4 —| dxdy = ld?dn

We cannot apply the concept of virtual mass for j;eneral domains

in this form., It can be applied, however, if the integration is extended

over E rather than over A We define therefore the functional
S 3 .
(3 T[u]ﬂ (% [8(¢)-n])® a5 dn=Df- 1)
E

where A
u(z)=u(C)z=1(C)
T is certainly defined for piecewise smooth functions u, for which
ao(;)=“- outside some circ':, If these functions form the space 7',
then T[u]is defined further for all elements of J, the closure of J'
in the Dirichlet-metric.

A A A A

Let O=0 [u]denote the subset of E where u = 0, and suppose O is a

measurable set in the plane measure. Then by defnition

. A A
4) T [u) = D[G-n|E-0O)+mes (O)

an identity analogous to (2).

18
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Let 57 _ denote a family of open subsets of E for positive
values of r such that
"‘s T, if s <r

and o
Uz,-
r=

o
For open flows = may be the half circle {|c f<r, n>0 }o
for channel flows the rectangle-domain ( - r,r) x (0, ).

By Green's identity

{5) T[u]:lirr:D;D[ﬁ |>;r]+ Ref (20 - n)d ¢ z
. r—.
T

Suppose now that a (C) = v (¢ ) outside some open bounded

set 0, (u, v€J). Then from (5)

6) T [u} T[v}= b [ala)-D(¥|n]
In particular, if 2 =0 for zéﬁ and $=00onkE- (1, then
T (] = T[u}t DO|a].

or by (4)

(8 T[v]=5[-q|E-a)t D[VIn)+mes 7.

If v (z), v (z) denote the positive and negative parts of v(z) respect-
ively. and Pls the set where V(C) > 0 then (7) and (8) can be given the
form

Tlv]=T[v,]+ Dlv_1=D[$,- n|P1+Dlv_] + mes (E-F)

A "

This identity remains true even if Q = E-P is not bounded but
has finite area.. In fact we can find a sequence of functions’ K such
that v =v in P v_=0 in Q Q where Q is an open bounded subset of Q

1

and the sequence an approxzmates 7 in the Dirichlet-norm over Q

19



(1.3)

A

Then ( 8 ) holds for each pair (vn, 7i), hernce in the limit for (v,Q ).
Suppose that /=E is the halfplane y > 0 and the function § is

harmonic over its support A - O, and O is a domain bounded away from

o. Then for open flows

(99 T([y] =ra.
where 2 is the mass-coefficient defined in (2).

An analogous result holds for channel flows. Suppose that & = E,
¢ €J, and y§ is harmonic in its support 4 -, and () is a set bounded
away from B' and from infinity. Then

y=Im (z+k+)+0 (e ~ X ) as|x|-.i00.
and we find easily—by Green's identity
(10) T[w]=n Re ( k+-k_) 5

1.3 Variation of T [ﬂ We will derive a further identity expressing

the variation T [Wf -T [‘1’] for functions {, \'J* in harmonic over their

supports D, D* respectively, First let E denote the halfplane n5 0. We
assume that D, D* contain the outside of some half-circle Cr:{lf' <r, n>0 } .
Then V¥, W* are imaginary parts of analytic functions § (), o (r) respec-
tively. By reflection 8 (z), 6*(z) can be extended into the n <0 halfplane.
Then 6 (z), 9*(z) have first order poles i.. infinity:

O(c)=ctctdt. ..

(1)
e*(;)=(+c*+°;-+. 0 o

20
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(c, c* real) By Green's identity

(2) ffV'w\.J?*dgdn=f$3

<>

X
Yoy f R ds
DADNC_ »D* 3C_
A a’q\;* PO * -3
= WaTds+-z-r+—z-(a-a)+O(r )e
o *
Interchanging ¥ and ¢ * yields
& ffv@v@*dgdni/‘@*%l—ds";— £ .2 (a*a)+o 7).
pAD* N C_ ab *

Sub tracting the identities (2), (3), we get

j *3__31’ ds- fwﬂ

ds =T (a -a)
an
aD*

Therefore, by (1.2.9)

A
I\* d Aav*
T[w*] - T[a']= W B—n ds- A ¥ ﬁ ds,
3 D*
or . A
A A A *
v*- '1=- . f.* Ay . f QY
T[v*])- Tlv; 21’ *srd A W-B.Z d¢
> B 3D *

This identity is clearly invariant to confarmal mappings, hence

%*
@) th- tlv)- -Zigﬁ* g-i dz -fv g-:_ dzi

3D*
It can be shown similarly that (4 ) is valid for channel flows as well
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1.4 Minimum-Problems. We introduce the functionals A [lg the

area of the domain N [u]; (u = u (2) real):
A [u]:ff dxdy,

uiO

L[u]= - fou(z)dxdy.

The quantity L (u_) has an interesting physical meaning. A

and

simple computation shows that if 73; =W inN [v], then L [v -]is the
angular momentum of the flow in N[*’].

We will also use the notation

L[u‘ S]= s L[u (z) dxdy
S

where S is an open domain.

Definition. The dasses of all continuous functions u (z), such that
L [u-]= m will be denoted as £ (m),and the class for which A [u]= b
as f3 (b).
We will also use the notations
IBE) £ (m)=0 p,m)=a,  *
J B (b) =) 24,
9L (m) Apylm) =2y,

Minimum problem 1. Find a function / ':01 (b, m), such that for any

u 601 (b, m),

T[V]: T[u].

Fy
H th otation
ere the n UV e UNV

was used. (U, V are arbitrary classes of functions)
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A weaker version of this problem only requires
6T[u]=0ifu='#, (uéal)

or more precisely,

A lr e,
for all v = v (z), for which ¥ + Oy eaIfor all sufficiently small values
of |8]. (Variational problem I, to be distinguished in the future from
minimum -problem I.)

If we introduce suitable Lagrange multipliers, other equivalent

variational problems arise:

II. 65U [u]= 6{T[u] -wL([u]}=0
if uedfb);

IIL. 6§V [u]ef6T[u]- 2 Afu]}=0
if ue€gf(m);

v. 6§ W [u]= 8{T[u)- wL [u]-2A[u]}=0
if ued .

To each variational problem we can formulate a corresponding
minimum-problem. We cannot expect however these minimum-
problems to be equivalent to each other,

There is an equivalent formulation of minimum-problem III.
Given any function u (z) € J, we set

u (z) ifu(z) >0

Y () = u (z) if u (z) <0.

RIS

23



-

Then u (z) : 7.L(m). Thus III is equivalent to III' :

Functional minimized:
v! [u]= T [u] - y A [u]
= Tfu)+ m Dfu]/L[u]?-r AlYd,

where in the second equation the identity (l.2.7) was used.

Constraints: None.

Giv

en Data;: m, A

Competing functions: 7 ,

(1.4)

An equivalent version of I can be formulated similarly. (See

Table 1.)
Min. Functional Paramaa'sl Space of
Problem | Minimized Constraints Given Admissible Functimn
1 T [u] L [u} m, Afu}=t{ m,b (lI (m, b)
2J./(m)p3 (b)
1 T'[u]= T(u,) Alu]=b| m,b a;(b) (), (b)
#m' Dfu-]/ L[u-]? =78 (b)
== =
11 U [u)= Tlu)w L [u ) Alu)=b| w, b a. ()
-— T
L \ [u]= T[u]-) A[u] L [u] = m m, A UIII (m) =77 (m)
r vt fo]=T' [u]-r Alu) | -- m, A Ay =ty =7
v w[u)= T [u] -\A[u]-w L{u] oo w, A aIV =d
Table I.
24
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(1.5)

1.5 Lower Bounds of the functionals T, U,V, W, First step in solving

any of the minimum-problems I-1V is of course to establish the existence
of a lower bound of the functionals, the minimum of which is asked for,

For allu € 7 , T[u] > 0 by definition. To find a lower bound
for U[\J, uce€ an (w, b), we first have to prove a

Faber-Krahn-type inequality. Let u (z) be a function such that

u has a finite Dirichlet-integral and its support S has a finite area AS.
Then
(1) a [u) = Ac D[u]/L[uf> 27,

where
Lu]- -fou(z)dxdy

Equality holds if and only if S is a circle and u satisfies there

9% = const. in S,

u continuous everywhere, i.e.
u = Amax / l-lz-zc’la , 0)
where #is a real constant, z, fixed.

For, it is clear that Schwarz symmetrization of the function u (z)
around z_ leaves L[v’] and AS invariant., On the other hand it is known
that (see Pélya -Szegg 1951) Schwarz-symmetrization decreases the
Dirichlet integral of |, hence the result.

By the inequality (1)

U [u] > D [u_]-w L [u_]

2 Lul?
> 7?[3?&1—] -wL[u_]Z --é-”—f-r A[u]a= --gw? ba
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Hence: U [u]has a lower bound br u¢ I dependent only on b and
%, This also implies that V [u] and W [u]always have lower bounds
depencent on (), m) or (), W) only if the area of A is finite.

We will show now that W is unbounded from below and hence
IV has no solution for open flows if {' (()-1 as lgl -, Letus

+ . A _
define for r > 0 the functions u (z) = u_ (c). We set¢ =0 2r,

Im{c-2r+t4r2/(C - 2r)] in P - {c: ' C-Zr'> 2r, n >0}

S <[4 - (24) £]? - Ain N ={C :|C- (2¢idr| <}
0 h16==E'-p-ﬁ.

Clearly ur(z)ei . Infact by (1.2.7)

A A
T [ur]: 4n ra + D[ur| N]: (TT/16) (.l,)a ra+ 4 ﬂra.

Further
L[(ur)-] 2 M, ffar (c)degdn=(n/8) M_ wr'
\
where N

M_= inf {|f' (0N |C - (2+i)r) <}
and similarly
A [ur] <M r?,

Hence

wle] < (nn16) w? r'(1-2M_) + (4-0) r’

With r-oo, M_~1, hence W [u_] - -m.
I

r
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(1.5)

We will investigate now the existence of lower bounds for
\Y% [u] , W [u] in general. As before, we will use the ndations
a=1lim ()]

:’..a,

and
A= l/aa.
In addition we set
X =a® M=)/,
_ 1 W (2
Y -TZ—(FA')

We will consider only ) > 0, i.e., X > 0.

Definition, Wewill say that a minimum problem III or 1V is well-
posed, if for any set SCﬂIn (m) oraIV in which V [u. W [u]
respectively are bounded, A [u]is bounded uniformly for u ¢ S.

Proposition. If IIl is wellposed, then T [w]has an upper bound for

y e S dependent on sgp V[y)alone. Obvious.

If IV is wellposed, then T[w}\as an upper bound for § ¢ S, dependent
on sgp W[w] alone. In fact, if A<B and W[W](Q for §y ¢ S, (A=A [\b])

D J-wL[v]< U] Wiltx A< 0 +B,
where B is dependent on (Jalone since problem [V was assumed well-
posed. Therefore by (1.5, 1)

2n (L [1.]/B)* -wL[< o+ B,

This inequality iimplies that

3
L[v])< %[w+{wa+ 8n (0 + B) /B } 1/2].

27



(1. 6)

hence from T[w] =V[V] + w0l [W-] »

T[]J< 0+B+

w 3 Q+B , 1/2
= B o et v 8 5 7

1.6 Theorem on the existence of lower bounds for V [u] . W Iul c

(a) For both open and channel flows, it is necessary for the existence
of a lower bound for V [u] overaln(m) that X < 1, and it is sufficient that
X<l

(b) For open flows W[ u] has no lower bound overaIv = dJd (at
least if a > 0 as postulated)

(c) For channel flows, it is necessary for the existence of a lower
bound of W [u] over alv ihat
(1) X<land Y< $ (X),
and it is sufficient that
(2) X land Yc ¢(X),
where Y = §(X)represents the envelope of the family of straight lines
@3 x+8¥=p=, 5 crcg.

(See the figure)
(d) If X <1, then problem 1Il is wellposed. Similarly, if in (c)
- the strict inequalities (2) hold, then IV is wellposed. -

Proof. We will prove (a),(c),(d) only for channel flows, since the proof

for open flows is entirely similar. (b) was already proven, hence it will
be sufficient to examine V [¥]and W [V]only for channel flows. Let us first

establish sufficient conditions for the existence of lower bounds.

28




ve L.
2

(1.6)

N

=
A’

-7 50 45 40 35 30 20/.10 .
P=2 3

O -
Sk \\ —

\\\
- N\ |
\

3+ -
20

' p =0 .10 .20 .30.35. 40\
0 | | | | \\\

0 0.2 0.4 06 0.8 1.0 I 2 1.6

X=AA

29



(1. 6)

(i) We introduce the functionals

n
D‘[v]'-' f ag j (%‘5’)2 dn<D[v],
-0 [o]

T, [u] = D,[u-fﬂ< T [u)
and the function H = H (£ ) the measure of the supportof u. (§ +in)

for 150, fixed 5. We find by application of a trivial modification of
(1. 2. 6), (1.2.7).

A
(4) T, [“+]=/ (g—% - lf dgdﬂ+A6 .
B

34

(5) T‘ [u]: T‘ [u+]+f (17) dg dN = T‘[u+]+D‘[u-].
A
N

Let us reflect 4 on the real axis, and apply subsequent Steiner-sy.a-

metrization relative to the real axis. It is known that the integra’

7 ou, o I 35,(5 M) 4
©) Jfm-stentnz,)] - f[(—“_)] an-z[m+ H (5)]

L -n
is not increased by Steiner-symmetrization. On the other hand, we
note that L [G.]and A[G] remain unchanged by it. We may assume
therefore that the set Q [G] and G+ (5.7) are already symmaetrised,
hence G+ (2,n) is a non-decreasing function of lﬂ' . For such §

by Schwarz's inequality

Ll
A

au+ s m
(s ) dn> =
0
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Introducing this estim.ate into (6) we find

~ 2 . 2
(au+ -signa\ dn > H () .
an +) = 7 - HE)

Therefore by (1) and (5)

QO QO
3
(1 T, [u]z/ 2= d§+A8=f;iH-d€+fHd.‘f
’ -0 -0

a8 ¢)

= 7 H(f) dr
m-H{ET '

e o]

Given any function v(n)>0 of support S of measure « H, the minimum of

C[V]={Z:‘;; d’l/(fvd-‘.)a )

S

is achieved if S is the interval (0, H)and v = 1 (H-n) = v Thus
9] [v] >0 [vo]= l&/Ha .

Applying this result to the estimation of D, [u_] » we find

09 n S 0 9)
8 Dy[u]> “b[ 3[ U-(§+in)dn§3%§—=3 f%{% '
(o] -0

where
b

K=K(E)=-Z/ u_ (£+in)dn.
0
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Further @

9 L[] - -&fﬁf' ©]? “-“"’“ﬂsf pe)K (g) de,
E -0

where

2
P=P(§) =sup{lf! (§+in)|:0<nc n}.

CGombination of (8) and (9) yields
3
D, [u]-wLfu] > Z(ﬁ K? - puK) dz.

The smallest value of the right hand integrand for all values of K is

-11/12) w? pa HJ. hence

(o o]
3
(10) D, [u)-wLlfu.])> - 13 [ p(elH(8) d.
(o o]
Finally o
(11) Acfff" (€)? dgdng f p (EYH(§ de .
Q T

Combining (7) and (11), (7), (10) and (11) respectively, we find

(12) v,[ulsr,[u]-mozf (woyr -'p ) Hdg,

-

(13) wifu]e v,[u]-wL[u,]Z Z(.“I'm_ -Ap -_ruzi_pag')n‘dg.

1f (2) is valid then we can select an X' > X andincaseof IVa Y'Ss Y

such that (2) is still satisfied even in X' , Y! is substituted for X, Y.
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Since 3
lim p(?) =a =41/A’

F « @O

we can choose 7 so large that for £ > £
: )

v p (F)® <«X' (IIl and IV)
and -
YP (5P <Y (IV)

But then, with H/7 = ¢ = 0 (#), by (2) and (3)

VAR < 4 2\ ’ 1 [\‘ -

——— - A E | —— - | 2>
f\ﬂ-H Ap ) Hd,zﬂf\l_p X od o,
£ £
0 o
(problem III), and
® o«

(T w22\ 1 r_o 2y £
f\ﬂ-H-)p-l pH'Hdgz‘” ‘\I-P-X-OY/’0d1>o'
€ E
(problem IV) . Thercfore by (12) and (13)

g
o T
V> Vi[> f (== - p)Hdr
0
2 - 3.,§0,\d3’
g
o]
n o
Whi> W, [u] > &f[__g -ip ‘vpaf{a]Hd‘
0

0 W 2\ 2
2 = &TT 50 (“ + 1-2— At )FJ' ’
where we took into consideration

ple) < sup £1|( )= 2.
E
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(ii) We show that if X>1, or if Y > ¢ (X), then W[u]has no
lower bound. Let h denote any number in (0,n) and{ any positive

number. Then we introduce the functions

-(w/2A) nh-n) if Ocnch,
v(n)= ;
m '—h‘n:h if h<nem,

lifg <<l
w(B,2) = {0if €<¢-1, orz> 20+1

linear in ({-1, ¢) and in (8¢, 204+ 1) ;

ufetin, ¢)= v(n)w(g,L )+ [1-w(E.L)]n,
and the rectangle domains
R,=(t, 2¢)x(0,h), S, =(L,2¢)x ()
further the non-negative number

M =inf{lf' (C)1°: CER,}.

If Q denotes again the domain where a (¢ )=u(z) < 0, AQ its area,
then obviously

n
(14) h<AQ < h+l',

A simple calculation shows that constants C,, C, independent of {

and h exist such that

2
h
(15) T[u+] -AQ<D[V-?\ 'st,] +C & = 1+C
2
.ow .3
(16) D[u-]<D[v|R"] +C,=E=nr4c,

12A
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and that

' Myt
(17) L[u_]>-ZM£ ff vin)dédn= h *~,
6
Ry
) atalf[i0i2atan>m,n.
N

Combining Eqs. (15), (16), (17), (18) we find

V[u]= T [u+] + D [u_] -\ A[u]

(19) 2 Th
<(—s h* + = - AM h)L + C,
120
wlu]= v{u)-eL[ul]
(ZO) 3 Th e
<(l"’?a ha+m- - - M,h® A M h)Lc,,

( C, independent of h and 4 ). Since

lim [£(¢)?=a’=1/n,

lg |- o0

uniformly in 0 < n< 7, to any number ¢ > 0 we can find an 2 such that
M >—1— + e
{4 A *
We substitute this inequality into (19), and get

) Th W a A W 3o .
(21) V[u]([ﬂ_h + — h'-2—h+ (F +x)e] +C,

1 h 3 ‘
=h [y - X+ () Y]+ C, +C e 4,
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and similazly
1 h\?
(22) W[U]< h[m 'x‘(?% Y].{,"’C "‘C‘CL.

Cleazy V [u] has no lower bound if X > 1, since we can choose then a
positive h, such that in (21) the last expression in brackets becomes
negative, then fixing h, for 4=, V[u]+- c. Similarly. if X > 1or
Y > ¢ (X), then there exists a value of h such that in (22) the expression
in brackets is negative. Then clearly W [u]-. - @ asl -+ .
This completes the proof of parts (a), (b), (c) of the theorem.
Statement (d) is a consequence of (11), (12), (13). In fact, we

can write (11) in the form

(11') Aoiazj.. H(g)d¢t

By hypothesis numbers X'>X, Y >Y can be found which still satisfy
(2), i.e., such that

(23 /1) 1-X =a>0
and
(23/1V) inf {_11_ -X'-sz'}= b> 0
-p
0<p<l

2
respectively . Taking into consideration that p(g)~a as <=, we find

from (12) and (13) that a finite C exists such that
4+

V[v]zf H(%)[l—_-gév; -X']dQ-C.

4+
- 2
w[ulzf.u(g)[l—;i-:m-x’<§$1) Y']d!-c.
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Introducing inequalities (23) and (11') into these inequalities, we find
2
Aoglv[u] +C}a/a (111)

Aoglw[u] + c}aZ/b (Iv)
from which the statement (d) follows.,

Remark. From the contents of this chapter it is clear that these min-
imum-problems are not equivalent. However, any solution of a well-
posed IV is also a solution of I, II, III, with suitably chosen parameters
(m=0, b=0 must be included). Any solution of a well-posed IIl or a
problem II is also a solution of a problem I.

We will further consider only lll and IV, since attempts to show

that N has a rectifiable boundary were unsuccessful for I, II.

When we speak about III or IV, we will always mean a well-posed

minimum-problem III or IV,

Well-posed problems may be characterized equivalently by re-
placing the condition of boundedness of A [u] by a condition that T [u] be
bounded for all function u(z) for which V[u] and W [u] respectively are

bounded. In fact, by (1. 2. 4)

Tlu) = T[u)> Alul ,

and since it was assumed that |f’ (C)I has the upper bound (;, this implies

(28) A[u]= ff'(g) adgdnsuszdédnsuz'r[u].
N

alu) o)
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PART II

CONVERGENCE OF THE MINIMIZING SEQUENCE

2.1 Definitions

4, is the family of non-negative continuous functions harmonic in
their supports. #_ is the family of non-positive continuous functions u

which satisfy

V2u=x

in their supports with any constant @ > 0,

M is the set of all continuous functions u(z), such that
u,(z) = max (u(z),0) e 4,
u_(z) = min (u(z),0) ¢ 4
7(j) is the set of all functions u(z) in 7, such that T[u] <j.
J, is the set of all functicns in  having subsets of P as their supports.

P
P is the Dirichlet-norm closure of the set of all functions which have

finite Dirichlet-integrals,

Dy, is the set of all functions in b having subsets of N as their

supports.
S: the set of functions U(z) = ?U(g + in) even in £, and decreasing
functions of || in E.

A relationship betwesn D[u], L{u] and w. Suppose that ue 4 2.

Then by Green's theorem applied to u in the domain Ne = {z :u(z)< - e} (e > 0)
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ro. [r
D|lu|N =F[‘ (Vu)zdxdy={‘ uauds- uVZudxdy

L € e . 3n Je

N 3N N

€ € €

~

o/

r > = -
Sc ] rﬁds-wfﬂ udxdy=-e_” V\1dxdy+(w/2)LLu|Nt,_l
N

N N
€ € €

=-ewA(N€)+(w/2)L[u|Ne:] .

Letting ¢ =0, we find that for any u€H4_ 0.

(1) 2D (ul =w L [u] .

2.2 Elements of J (j)4L(m) and of*7 (j)JJaIv(fu) are equicontinuous.

Proof. It is sufficient to show that there are positive increasing
functions Qp (d), iN (d) such that QP (d) ~ 0, QN (d) = 0, and dependent only

on the parameters j, m or j,w besides d, for wnicn

(1) lu(z) ~u(ty ) Sép(lz-¢t])
if ze Plul, te Plul;

(2) lu -u® | 28g(iz-t])
if z e N [u], te N lul.
It is sufficient to consider only |z -t |=d <1,

Case a. By a well known lemma used in the theory of the Dirichlet-
( hY
problem, to any u > 1, there is a circle C=1z: |z - t| < p}, d<p<ud,

such that on any two points p,q of 3C
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2n D [ulCl %
(3) o (p) -u (@ & (——) -
log 4

(3) remains valid even if u is replaced by u+(z), or equivalently, if C is
replaced in (3) by c’'= cNPlul. We estimate now the righthand Dirichlet

integral in (3).

Dlu-y |C'7, = Dlu |C'] - 2Dly,y lC'] + D[y |C'].
Here

Dh,y |C’] =J udx.
ac’

However, if € € P = g (P),
a (0)<n
because of the maximum principle of harmonic functions. Thus

Dh\cq=9w|&q=nw-n|éﬂ+Awﬂ
< Tlul+ pzﬂmax | g(2) |2 <} +ul A a® .,
A
We substitute this and u = d't into (3) :

ok
lulp) = ulq) ‘f (ﬁﬁa‘r} +Ama = Qp(d)

for any p,q € 3C’, By the maximum principle the same estimate remains
valid if p is replaced by any z in C and q by t.

Case b, With the same meaning of C as before, C canbe replaced
in (3) by ¢’ =cN N{y]l. From (3) we deduce, considering also

Dly | €1 < Tlul <j (a consequence of Eq. (1. 2. 7)).
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(4) b (p) -u™ (@) | < (%)é + §u°a?,

* *
where u (z) = u(z) - % Iz-tlz. The function u (z) is harmonic in C”,
therefore by the maximum principle (4) is valid if p,q are replaced by t, z
respectively, z an arbitrary point in c’. Hence, returning to the function

u(z), we find

b
(5) fu() - i) | < (Fd) + # % &

%

We substitute now p =d <, ( d <1 was assumed) into (5), and find

'
(€) lu(z) - u(t) | < (u‘%&m) +3d = 8 (a) .

Ifue J(j)#L(m), thenby (2.1.1) w canbe replaced in (6) by 2j/m,
Corollary. Elements of the spaces J(5\#4.Z(m) and of

7V H GN (w) have a common lower bound.

2.3. The restricted minimum-problems,

Suppose that the sets P, O, N are specified, such that a \bo e
exists for which P[wo] = Ik Nwo] = N, O[Wo] =0O. P and N are deter-
mined uniquely by O,

The set of all functions u€J for which

u>0 in P,
u=0 in O,
and u<0 in N,

form a subset /° C J, We define the restricted minimum-problems III'

and IV:
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Find v € 7° such that for any u € J°
vilul > V041, ' (m’)
wlul > wly] (IV)

We define the class 7PC7° of functions v > 0 of support P, Let

'DN denote the closure of the space of continuous differentiable non-positive

functions with support N, The restricted minimume-problem splits into the

following two problems:
A) Outer minimum-problem

Find t+(z)67p such that for any u€J,,
T(ul > T(y,J,

B) Inner minimum-problem

Find v_(z)E 9N, such that for any v € QN’

plv] . DIy.] .
Tivit = If I3 =X

or

D[v] - wLlv] > DLy _] - wLly_] (Iv)

Because of (1, 2, 7) it is clear that th: function V¥(z) = ¢+(z) +y _(z) is a

solution of the restricted minimum-problem.

2.4 The solution of the outer minimum problem

We first consider the case that l; = g(P) is bounded by a finite number

of Jordan-arcs. Let W*(C) be the solution of the Dirichlet-problem for
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1; with the boundary value assignment
*
v (§)=-n

~ ~ ~ %
on °P, !J;* bounded in P. We set then W+(C) =y (C)+n. I u(z) is an

arbitrary element of 7o, thenby elementary identities

DLu*] = D[W:] + DW: -u') '
or

(1) T{u] = Tly,] +DLu- ¥,

Thus { " is the solution of the outer minimum-problem, as shown by
Polya (1947).

The more general case is that P is any open domain in E, the class
7. is not empty. We approximate P by increasing connected open domains

P

P each of which is bounded by Jordan-curves:

PICPZC... Cpkcpk+lcoo. a={gpk.

By the maximum-principle the corresponding harmonic function %n( z) are

monotonic domain-functions. For fixed z, y> 0,
(O i) . SHO S,

hence by Harnack's second theorem they converge to a function $+(C)
barmonic in P. The functions %n(z) are equicontinuous in P because of
lemma 2. 2,hence W+( z) is also continuous in P, and vanishes on dP. Let
u(z) denote any function in7p . Then u(z) can be approximated in the

Dirichlet-norm by a sequence un(z) € 7p . By Eq. (1) then
(2) Tlu ] = Ty, ] + Dlu - i

By the definition of the functions u

tim D[u -u] =0.
n~® n
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From the last equation by the triangle inequality of Dirichlet-integrals

(3) Lim T[un] = Tlul.

n—e®

Furthermore by the lower semi-continuity of the Dirichlet-integral

(5) tim Tly _J>T(y], _tim Dlu -v J>Dlu-¥).
n-—e n—®

Combining (3), (4), (5)

TCul > Ty] + Dlu - ¥] > T[]

if ut v,
We observe first that by the maximum principle

V(2020 if zeB

and therefore the same inequality applies to V in PLV). By the maximum-
principle therefore

(4) Wz)>0 if zeP,
Second, if ¥ is the solution of the outer problem, then by the uniqueness of

the solution of Dirichlet's problem T[¢] depends on the domain P alone,

and may be considered a domain functional; say,

(P].

T(4] = inf{'r[u]: ue .'ip}

1[P] is a decreasing domain functional. -For, if P, CP is an admissible

outer domain, i.e., it is open and the class 7p is not empty, then
1
I C 7p. implying that

P,

7[P,] = inf {T[ul: ue 7P1} > iaf {Tlul:ue Jp}=1(P].
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2.5 Solution of the restricted inner minimum-problems.

First assume again that N is a bounded open set bounded by a
finite number of Jordan-curves., We will prove the following lemma:

(1) For such N there is a function ¥ (z) which satisfies

(1) vy¥=1 (geN)

and
(2) VY is continuous and vanishes on 3N .

()  Let Vpp = (m/LI¥])¥(z), ¥y, =w ¥(z)
Then for any ue O L(m), ve b, ,
(3) Dlu] = DLyl + Dlu - vyl
(4) D{v] - wL{v] = Dlyp,] - wLlépy,] + DLv - 4,1,

hence *III , wIV are solutions of the inner problems III, IV respectively.

*
Proof. Let z, denote a fixed complex number, Y (z) the solution of the

Dirichlet problem for N with the boundary value assignment

v z) =- (1/4) ] z - z°|2 if ze€dN.
We set
% 2
¥(z) = Y (2)+(1/4)]z- zol in N,
Then indeed
(5) w2y =1

and Y is continuous and vanishes on ON, For any function w(z) eﬂN , and
real a,

(6) D[w] =Dla¥])+D[w-a¥])+2D[lay, w-aV)
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Here by Green's identity and by (5)

2D[ay, w-a¥l)= zaf (w-c.‘i’)-g%-ds - za”(w-aw v ¥ dx dy
3N N

= a(L{w] - LlaY]),

If we setnow w=u, ¢ =m / L[Y¥], ay= wm , then because of L{u] = m,

2Dy =¥yl =0,

hence substituting the last identity into (6) yields (3). On the other hand, the
substitutions w=v, a=w, a¥ = wIV lead similarly to (4).

We show now that the statement of the lemma is true even if N is any
open get of finite area. Then we approximate N by increasing bounded

open sets bounded by finite numbers of Jordan-curves:
v
NICN2C000 CN_v:l Nvo

Let z, be any point in N, The distance dk of z, from Nk is less than the
distance d from N, Hence, and because of the inequality (2. 2. 2), the
functions Yv are uniformly bounded. The functions

* _ 1 2

Y (z)=Y¥(2)-7]z-z2|
are harmonic. They form a decreasing sequence for any z €N, The proof

of this property is the same as for the analogous outer problem. The

%
functions Yk have a common lower bound. Therefore by Harnack's second

%x
theorem they have a pointwise limit Y (z) harmonic in N, The function
%k
Y(z) = ¥(2) + |-z |2/4

will therefore satisfy (1). The functions Yv(z) are equicontinuous in N cf.

lemma 2,2, thus Y is continuous there and vanishes on 9N, Furthermore
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(7) ¢ =Ly 1 -Llv] =2,
and because of the lower semicontinuity of the Dirichlet-integral,

(8) Dl¥] < tim DL¥ ].

) o Rl

Thus, setting \Uv(z) = (m/Lv) ‘i’v(z)

(9) "Jv(z) -‘(m/‘t) Y(Z) = ‘l’nl(z) ’

uniformly in N, wIlI is continuous and vanishes on 2N, and from (7), (8)

L) = m, DLyy) < tim DLy J.

J o~

The functions \;‘v(z) = (m//\v) Yv(z) satisfy (3) if we replace there N by Nv'
Thus
1 = ; -
(10) Dlul = DLy ] + Dlu -v ].

Suppose that u € 'DN L(m) = aN(m). Then we can approximate u by a

sequence u_ € aN (m) in the Dirichlet-norm so that
v

(11) D[uv- ul| Nj - o0, D[u\)? = D[ul.
Hence indeed by (9), (10) and (11)
Dly;) < Dlul - Dlu - ;0 < Dlul,

unless u = \Um .

The corresponding proof for problem IV differs only in trivial

details,

We observe that the maximum - principle associated with the equa-

tion (1) implies that for all n
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Y (z) <0 if zeN
n n

and therefore
Wz) <0 if zeN,

Hence again by the maximum - principle

(12) V(z) <0 if zeN,

2. 6. Estimates on the vertical spreading of the domain Q[u) . (Open flows)

If P=A-Q is simply connected then it is known that the image Q= g(Q)
has finite height if 7’[Q]) = 1(P] is bounded (cf. Garabedian-Spencer (1952)
p. 382). This is, however, not necessarily true if P is not simply connected.
Unfortunately we have to admit as admissible domains Q any closed subsets
of . The measure of the subset Qh = {C : £ eQ, n >h} can be expected
nevertheless to tend to zero as h = ® for any closed QCA, if 7'LQ) is finite.

We will estimate, therefore, the minimum of 7'[(Q] if

mes Qh=A.h>0.

t'{Q] will not increase if Q(¥] is replaced by Q,, because y is an admis-
sible function for the minimum-problem of the funciional’ T in the domain

E - Qh It can be also assumed that Qh is symmetric to the imaginary axis,
since Steiner-symmetrization will not increase TW]*. and leaves mels Qh
unchanged. The value of 7' is further reduced (or not increased) by replacing
Qh by its intersection R with the imaginary axis, because of the monotonic
dependence of J on the domain, hence the inequality

(1) ‘(@] > T'[R] .

* cf, Pollya-Szego (1951).
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On the other hand, suppose that (after symmetrization) Qh contains a

horizontal segment I = (ik - a/2, ik +a/2), (k >h). Then similarly
(2) 1'[Q) > r'l1].

We will estimatenow T'LR] and T'[I] .

(a) If wl(z) is the solution of the outer problem in E-I, v = :l -n

then by Schwarz's inequality

kL2 |
[ G5) ez peh=x
(o]

Hence
a/z s .-.* 2
(3 Tn>] &
-al2 o

(b) Similarly, if @Z(C) is the solution of the outer problem of R,

Q) = 5,000 = 1 and ¢ =1 et®, 1¥(0) = ¥¥(z,6), then
d o
[ (e <] ) =grun® =gt
0 0

Hence, let S denote the set obtained by rotating R around the origin. Then

using the estimate (4),

5 2 h+b
’ ] /‘f> dr 4 7 4 T
T[Qh]z”‘KTG- r_deZﬁJ rdrz«ﬁJ r dr
S R h
or
"~ ¥ i 4
(5) T'LQh] > =hb

where b is the linear measure of R. From (1), (2), (3), and (5)
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(@)% > 3n?an.

It "mul" denotes linear measure, then

ab = a mes, RZmeth = Ah

Thus we find for open flows

(6) Tlu)? > 7/[Q1% > (4/m1n” A _.

2.7. An all-important point in the proof of the existence ofa solution of the
minimum problems will be to show that if {*n} is a sequence of admissible
functions it is not possible that 'lln(z) = 0 in all fixedfinite domains. This will
be achieved by lemma 2. 8, which will essentially state that if Dirichlet -
integral and the area of support of a function vanishing on the real axis are
finite, then the function values in a strip adjoining the real axis are in a

sense lumpy. For the proof we first need an inequality of the type (1. 4.1),

but with milder assumptions.

Lemma 2, 7. Assume that the function u(z) defined over the rectangle

R = (0,8) x (0,h)

vanirhes on the lines y = 0, y =h, is continuous and has a finite support
area A and its Dirichlet integral D = D{u] is finite. ThenD, A and L = L[ul

satisfy the inequality

(1) L < @/m? (1 +n/me) aD

Proof. We write

u(z) = v(z) + w(z), v(z) = (x/s) u(z).
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By Schwarz's inequality

(2) Dlv] = (l/sz) ‘{ r‘[ xz (Vu)z dx dy + 2 .” x ug-:- dx dy

+ “. uz dx dy}
< {D[u]% + (1/s) (_” u? ax dy )$ }Z .

On the other hand

h h
kj.uzdy < J‘(g% dy
o o

where k = (T‘r/h)z is the smallest eigenvalue of the vibrating string of

length h. Substituting this into (2) yields

(3) Dlv] < (1 + h/ms)® Dlul .
Let us continue v(z) into the rectangle
R* = (s, 28) x (0,h)

by reflection on the line x = s. Then v is vanishing on the boundary of
the domain d consisting of the support of u and its mirror - image on the
line x = s. d has area 2a. Hence by the inequality (1. 4.1) and by (3) and

(4)
| Llvl | < (z/n)é (1+ h/ms) AD%

and similarly

| Llw] | < (?-/ﬂ)é (1+h/ns) ap? .
Adding these inequalities yields

| Llul | < z(z/n)i (1 + h/ms) AD%,

which is equivalent to (1),
2.8. Lemma. Let I denote any interval of length £, H = (0,h).
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Suppose the function u defined in the rectangle domain R = I x H has thezxe
a finite Dirichiet - integral D, vanishes on the lines y =0, y =h, and its
support has area A, Then given any s, 0 < s <{, there is a subintexval
I*Cl of length exceeding s, such that

* 3

m 1 L
(1) L >3

(1 + 2h/m8)° A°D

where

L=Llu|IxH), L*=Llu|1* xH].
Proof* Suppose that
(n-1)s <4 <ns

where n is an integer > 1. Then I can be subdivided into n parts (Il. I,,

cees In) of equal length 0 where

(2) 8/2 <0< s
L = L{u | xkaJ )
L*= max{Lk:k=l.....n}
D, = D(u | xkaJ

.and A.k ths area of the support of u in the rectangle Lk x H. By Lemma 2.7
then
L <(8/n)i(l+h/ﬂo) Désa Dt
k= Ax Dy A Py

By Holder's inequality then

n m ﬂ3 n m 1[3 m } O 2/3 n 1/3
Z e Z AR EE (2 Ak) (Z Dk)
k=1 k=1 k=1 k=1

or

* The method of this proof is due to Professor Peter D. Lax (unpublished
communication). The author proved only a weaker result (which however
is still satisfactory for the present purpose) and not as elegantly.
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n n
< n
L Tk - L Tk -
k=1 k=1

Noting that by (2)

a = (8/mif (1+ /o) > (8/mF (1 + 2n/me)

and introducing this inequality into (3) we get (1).

Remarks.(i) Since the length ! does not o.cur explicitly in (1), the
latter remains valid even if I is serai-infirite or infinite,

(ii) The inequality (1) remains valid even if u (x + iy) is discon-

: e 13 = < < < .
tinuous on tlie lines x Xys Xoppeoer Xo (xo< X Seee SX SXgG

” "
g8 < min{xv-xv_l;v=l,..., k+lj'.

(iii) The requirement u(x + ih) = 0 (x real) is not essential. If only
u(x) = 0 is assumed, than by reflection on the line y = h the inequality

bl 1 L3

*
(4) L >
1671 + an/ms)® AD

zan . derived from the reinterpretation of (1).

2.9 Convergence of the minimizing sequence

Suppose tnat thc minimum problem III' or IV is wellposed for some
given A, A\, and m or w respectively, Then there is a sequence of functions

v, of J, such that
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’ - iv! . ‘L..
va inf \V[u].ueﬂJ-Jm
and
Wy )~ tnf (Wlul:ueJ}=
*v inf {Wlul :ue = Iy
respectively.

It will be shown that the sequence :wv} contains a subsequence which

converges pointwise tu an admissible function {, which is the solution of the
gee p

minimum-problem. We also show that | € IS,

(i) We start with the proof of the exister.e of a subsequence con-
verging to a function V¥(z) € J 48 . Steiner symmetrization with respect to
the imaginary axis of the time ({-plane does not increase the value of the
functionals V' or W, Infact, for any u €., Steiner-symmetrization yields
a function Gs(C) €S, and &s = N[ﬁ']. The Dirichlet-integral is not increased

-3
by Steiner-symmetrization., Hence with obvious notations

(1) o[, - n] =D&, -,

@  ofE,) ] <ofa] .

Furthermore from

ol

| £/ (¢) 128(C) a8 an ,

Zr»e—

Alal = [[ 1€ (0 12 a8 an
N

* See P.olya-Szegg (1951)
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it ie clear that
(3) Y (u)_] > L[uj. Alu,] > alul

since |£'(C)| is a non-increasing function of §. Hence combining Eqgs.

(1), (2), (3) accoraing to Eq. (1.2.7),
(4) v'lud < vIul,
(5) W lu ] < Wlul.

Now suppose that the solution of the restricted minimum-problem

defined by the functions sets p* = ’r‘[u']. N*= N[ua] is the function
viz) €7 # . Then we claim that v €& as well. In fact, if this were not
true, then symmetrization to the imaginary ( - axis would reduce the
values of the functionals V‘and W, leaving the already symmetrized
domains P*, N* unchanged. But this would contradict the assumption that
v(C) is a solution of the restricted minimum-problem defined by P’ and N*.
Therefore by (4), (5)

v'[v] < Vv'[ul ’

w [v] <Ww (ul

where v € J JS. It is no restriction of generality therefore to assume that

wne71‘$

to begin with,
The supremum of the values Twn] depends by the remark in Section
1. 6 only on the supremum of the values V'[vn]. W[wn] respectively, There-

fore there is a positive j, such that

T[wn] <j (n=1,2,...)
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Hence the sequence {vn}muu- the requirements of 2. 2, consequently the
functions ‘V(C) are equicontinuous. By Arzel}a.'o theorem therefore, they
contain a subsequence converging to a continuous ;(C). Since each WV( z)
belongs to S, so does ¥(z). We maintain that ¥(z) ¢ 4. Let ,cP[jl.
Since P[¥] is open, ¢, has a neighborhood o, = {C 2 g - Cll <e }
in P[;]. Suppose that

V(0 > 6(e) i o

a

Then, because of the equicontinuity of the functions ‘l’\,- there is an integer
Yo such that

V&) > £ 8(e) ino_,
and therefore

o, €PLy 1 for v 2>

Then by the theory of normal families, ¥({) is harmonic in Je . Since Cl
was arbitrary, ¥(C) is harmonic everywhere in P[\‘U\]. If Cl e N[§] together

with a neighborhood o ¢ 28 above, then similarly ¢ CN[@\,] for v>v,, and

€ 1’

Vv( z) satisfies

Vz Wv(z) ol in f(ce) = ‘|'c .

In case of IV, w =W In case of III'
w_ =(2/m) DLy ] <(2/m) max Tly ] < 2j/m .
\Y VAR ] v V-

We can select therefore a subsequence such that

Yk

Again only the subsequence is kept, and ‘3\, relabeled \bk. The functions
'k
T - 2
1, (2) = ¥ (2) - (0 /2) y
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are harmonic and uniformly bounded in Tt and therefore again
*¢ 3
v @) = 4 (2) = w) - (/2 vt

o’
uniformly in O and | (z) is harmonic there. Theref>re the function ((z)

will satisfy
v ¥(2) = w

in Te? consequently everywhere in N[y]. By the lower semicontinuity of

the Dirichlet-integral

pfi, - 1] < um o|(3), -ﬂ]

2 b
[i.] V)
Dy v <dim D (v J
L. “ae LV M-
Combining these inequalities and considering Eq. (1.2.7),we find
(7 T(y3 < tim TLy ]
Neeo

which implies of course that {€ J.

(ii) We show‘that
o um o] o)

If 0 is any bounded open domain then certainly

w0 i) |- 103

because of the uniform convergence ‘bv = ¢ in 0. Let us choose a fixed
h > 0 (for channel flows we choose h = 1), and for arbitrary p,q (p <y)

introduce f{g = f(Rg) where Rg is the rectangular domain

Rg = (p,q) x (0,h) .
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Then (10! is valid for QO = ig . We show next that it remains valid even if
= Rf: = Sh' (which is unbounded). First it will be shown that for the

elements *n of the minimum-sequence

"
= 0.

(11) tim Lir L (§)_ | R

a=® N ®

By lemma 2.8 (Eq.(2. 8. 4)) there is an interval (c, ¢ + 4h/m) c(a, ®) such

that
* 3
(12) Ln > K Ln
where
! — M @ kT c 4 4h/n"
(12°) Ln = I"L('!‘n)-l Ra J’ I"n - LLNn)- l Rc J’
and
K = /64 j3 |

In the determination of the constant K it was taken into consideration that
js szp Trt';n]
is an upper bound of both Dr“’n) ] and A[wn] 5
L- -
Since the function v is symmetrized to the n - axis, the
lefthand side of (12) can only increase if ¢ is replaced by a in (12') .

Suppose that (11) is not true. Then there is a number b, such

that for any a > there is a subsequence {Il'n } such that
k

LQ ) |R°° >t>0 (k=1,2,...)
nk_ a

L|(¢ IR2*40M] kel
nk a

58

Then by (12)




(2.9)

a+4h/n

The functions i}n(C) have the uniform limit G(C) in Ra Therefore

we must also have for any a > b, where b is fixed,

a+4h/n
a

3

i | R ]2k >0

However, this is impossible (or bounded I,r;_]. Thus (11) is proved.

Letec be any given positive number. We choose then an a,

such that for a > a,

~ ®
(13) L[w R <c¢.

Then we select an a > a, and a VvV such that

(14) i) IR <e

if n > V. (This selection is possible by (11)), Then, fixing the value of a,

we select an n >V such that

2
<u €

(15) L[{(sn)_ - @_} | £/ |? I R-Z}

where ( = sup {I f'(C)I g CeE}. This is possible by the uniform convergence

a

of { to § in Ra_‘a.- From (13), (14)

A A ’ 2 @ 2
i, - ig 1o R[] 2.
In combination with (15) therefore

L{w). - v | fsy]

(16)
=l 12 {d ). - ;J}_]|Sh]5 3u’e
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vhere Sh = R:,. We note that (16) is valid for any fixed h, if only n is
sufficiently large. For channel flows with the choice h = 7, (16) completes

the proof of

- | r <
(17) L‘L(drm)_J - Ly .

In case of open flows, we select a sequence hn ~ o, Then by Eq. (2.6.6)

the measure A~ of the sets T = {C : "n(C)< 0:n>h | converges to

m

zero as m -~ ®, uniformly in n, Since the functions "n(z) are uniformly

bounded in N[wn], also

Li¢) | = j-0

L' n'- mn

uniformly in n, hence we can sclect m so large that

L[wn)- B {l}- |zmn .“ SRR
or

l
18) L[(‘"n)- - v leE ) ]‘< ule.

Thus, selecting h = hm in (16), and combining with (18),

g 2
Ll - e ]| anle,
which is equivalent to (17).

(iii) We will show that for any bounded measurable set S

(19) 1im mes { sﬂo[mnl} < mes {SnQ[H } .

n—®

60



(2.9)

Notations:
sNali ] =R, s qfvl = R, M= }zj R, o= [

M .
n n I

1
The set p contains all points z*C.S such that n(z*) < 0 for infinitely many
values of n. For such z* then ! (z*) < 0, hence

(20) PCR.
On the other hand since the nested sets Mn are bounded

mes P = Lim mes M
n-—-- n

hence from R CM
n n

mes p> 4im mes R .
nN—® n

Combining this with (20), we get

2im mes R < mes R,
n-—w« 19}

which is identical with (19).
(19) remains valid if g(S) is the strip s: SN

J

For channel flows this is no new statement. For open flows we set

2h = (a,b) x (0,h).
Then by Eq. (2.6.6) we can select h so large that
\ ; b

mes {Q F@n]ﬂ(za - Zh) j<e L =S

h independent of n. Thus by application of (19) to Eh
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Tim mes (£, N Qli )] < 7im mes (T, NQli ) + ¢

N-o® n—-o

< mes (Zth[;D + € < mes (z nQr:']> + €

\ @

is obtained. Since ¢ is an arbitrary positive number, (19) is valid for

Sb = £  as well.
a [
(iv) After these preliminaries we are now in the position to
prove that
V' [#¥l< 2im v'[i ] (111’)
n-® n
or
Wil < 2im wily ] . (IV)
n-o n

We use the notations
b i 3
Na (ul = 12 :z€N[ul ; a< Re g(z) < bj,

P: (ul, Q: Cu) defined analogously ;

L: (u) =-2 “. u(z) dx dy = - 2 JJ ﬁ-(C) I £(C) IZ df dn,
Nb [ul a<Ef<b
a
A: (u) = mes (A - P: [uJ) = mes Q: (u]
n ’ 2
= | | £°¢¢) |* ag an ;
;SO;a<§<b
T: (u) = J'J (V[G(C) - n]>2 dg an .
a<g<bpb
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Then with the notation .1 = sup { be'(¢) | ra< e [

A

(21) A:[-n]< ..ZJJ JqE dﬂ=J§A:{ 1.

n

By the well-'tnown semicontinuity property of the Dirichlet-integral

-a [(%)J ’

a . a
(22) T, i, s tim T

n—w

On the other hand,

o 2]z

This is a direct consequence of (1. 2. 8), if applied to the function

¢ (€) if £>a
,..: () = A" _
{(2a-T) if £<a.

From (23) then by (21)
e ]z (A,
Combining (23), (24),
12, ledstm J e, ]- (20]) A7 Lo 00

- n
n—

or by (21)

a a : Fow v
T_, b, -2 A7 [ < tim Ti(w,), - rale ]

n---o

-2 % - AT e )
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-2 ]
For a = =, My a " =A, and since A< i, we get

(25)

n-—.oo

T(¢,J - A Alv]< Lim 3T[(+n)+]-mrun]z :

Also by the lower semicontinuity of the Dirichlet-integral,

J

(26) Dl¢ ] < tim D[(fn)_

]
n-e J

Combining (17), (25), (26) we find (with obvious indices III, IV)

Vi< tim vie 123
LY = &

W § ¢ O
n -

P -

W ¥y S Lim

Since ! itself is admissible for III' and IV respectively,

T M. ==
Vitm) S m e Wil T v

2.10 Continuous dependence of solutions ¢n the domain and on A, w, m.

(2.10)

Theorem. Suppose that the sequence of domains {An} is character-

ized by a sequence of functions {fn(C)} convergent in E in the Dirichlet -

norm to a function f(¢) defining the admissible domain A

Let Z . (8),

ZIV(M denote the set of all solutions of the problems III', IV respectively

in the domain &.

subset of A, and .Z'm[(‘] the metric space with the distance

o(u, v) = sup | u(z) - v(z) |
z€e

Then for any (),

Z(An) - Z(b)
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in the .Zmr(.‘] metric. (Z = zZe 'ZIV)'

Proof. We have to show that if { n(z)j is a sequence of
solutions in An, then it contains a subsequence {"’k (z)} converging to a
solution in 4, unitormly in any 0. There certainly is a convergent sub-
sequence as shown in the preceding section. Therefore it onlv has to be
shown that the limit ((z) of this subsequence (uniform limit in any ()) is a
solution of the corresponding minimum-problem for A. It is no restriction

of generality to assume that the original sequence itself converges to

Then by the semi-continuity of the Dirichlet integral

(1) T(¢) < tim T[]
n =
whereas
(2) Llv )= um L{w) ],
n—=o
(3) Ale] > tim ale .
n-—-o
By (1), (2), (3) therefore
(4) vl tim vI»0 T,
n-=o
(5) whil < im wilv J.
n-o

Suppose that y(z) is not a solution of the minimum-problem corresponding

]
to A, Then any solution | (z) satisfies the inequality

(6/111) B=vild-vIL™I>o0 (11’

or

(6/1V) c = wlvl - w[w*] >0 (IV).
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The functions

hz) =t (gz) (=)

which map the domain 4 into An may be used to construct admissible

functions of the minimum-problem corresponding to the domain An' Thus
% K
i @) = ¢ (b (2)

are competing functions in An. By definition we have

(7) T[vn*] = DU: -n] = ThI,
further
(8) e ]=-2] 1e@l?i%0at an
<0
= - 2 IJ | h;(z) lz w*(z) dx dy
N[:]
and similarly
(9) ale¥] = -z2[j Inl@ 1% axay.
N(y]

From the hypothesis that fn(C) - f(C) in the Dirichlet - norm, follows that

hn(z) = (z) in the same sense. Therefore by (8) and (9)

(10) vm L) ] = L[],
n-—o

(11) Lim A[w:] = A[_w*].
n-o
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By (7), (10), (11) a number Vv exists to any given < >0 such that for any
n>v

12 v'[i *:] < V'[w*-} e, whi < wi *] + ¢
(12) ¢l = jte WS W €.
On the other hand, by (4) and (5) a number m >V exists such that

(13) vl < v'[wm] +e Whil< w[\m] te

Combining (12) and (13) and (6) we obtain:
(14) viv < vy ]-B+2e, (B> 0),

(15) wle ¥ < wlv_]-ceaze, (C>0).

(14) or (15) are valid for any given ¢ for some m. If we set therefore

2¢ < min (B, C), we get a contradiction to the assumption that Vi is the
solution of the minimum-problem III' or IV corresponding to Am. Hence
! must be a solution of the minimum-problem III' or IV for A,

The solution-set Z depends continuously on the parameters X ,

and w or m. Suppose that !l'n(z) is a solution of III’ or IV for X = )\n A,

w or m and 4 fixed ()\m must be such that the problem remains well-posed

with X = X ). Then by the argument already used in this section we may

assume that wn(z) - U(z) where {(z) is admissible. Therefore also

a0 v JovPod iyl

where the dependence of the functionals V', W on A is made explicit. On

the other hand for any admissible u,
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(17/mm) viuir ]2 vfe i ]
and
(17/1v) wuir 1> wly o]

respectively. Combining the relations (16), (17) and the assumption

)‘n - X., we find

v'[u ; x.] 3v'[¢ ; x_] , and W|u; x°] > w[y ; x.]
respectively. Hence § is a solution of the minimum problem for A = A,

The continuous dependence on w or m can be shown similarly.
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Part III
TOPOLOGICAL PROPERTIES OF THE SOLUTION

3.1 Theorem. The sets BUN[y] and T=3P[y)-8' are connected™

Proof. To study the connectedness of the set N, we will show that
if BUI:J. consists of two closed unconnected sets, 0l and O2 and if we
replace these with solid bodies free to move, the pressure forces result-

ing from the potential flow will force them together, accompanied by a

decrease of virtual mass.

More precisely, let 0l and 02 denote two disjoint closed sets, such
that the admissible outer streamfunction w+(z) vanishes in OIUOZE OW+]
and is harmonic in 4 =4 -o[w+] , and that O is bounded away from 8. We
assume that 01 is free to move without rotation in A. If c is a complex
number denoting a point. fixed to O, , then TW+] is a function of c, say,

sk
T[w+] =7(c,€). We will compute the first and second derivatives of

17{c, ).

We will first assume that 0l is bounded by an analytic curve Y Let
us denote w+(z,3)l ¢v+(z,i;c,E) . We will need the derivative Bw+/BE . Since
y, was assumed analytic, we may continue v analytically (as a harmonic

function) beyond \ into a strip of width everywhere exceeding 6>0. Let us

%* * - %k _% ® *
choose c such that |c - c|< &, and denote v+(z, z,c,C )=V+ (z,2). If |c - cl

In case of open flows B’ is empty.

ek
For sake of clarity in this section h(z) will denote an analytic. function,
k(z, Z) any function of the complex variable z.
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is small, then

= f&‘ 3 e
--[az_‘ (c =c) + O(ic -ci ).

z GYI zGYl

(1) V(%)

* =
The function w+(z, z)- w+(z, z ) can be continued as a harmonic function
*
n Al , and D[y -wlAl J<® . Hence denoting Green's function for the domain
8, by G(z,%, ¢, ),

F(@ D) 402 7) == (- | 3—0%,—2—5*-“ QLaL) jag)+ ole™-el?)
1

-Zi(c _C)J._G_(bﬁ.g.l_g.)_ ._‘L‘S.l_g.). dC + O(lc*-clz)
|

*
Letting ¢ —-c, we find

3y Z.J‘ acgz,'z'-.;,gz
= 2i
dc - 14

and similarly

(2) Zif __G.EJLL.L_C)_. M dz

We find from (1.3.4) and (1) that

08 - T =- 2 (-0 3L az +oql’dl?)
Yl .

= Zi(c*-c)J‘ (—g—i—)z az + oflc -c|% ,
!
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or
dc A J (Bz) =
b

He o e
Let Y,Y denote two piecewise smooth, simple, closed, non-intersecting
Jordan curves separating O1 from OZU B. Then by the analyticity of the
s sk
integrands, the integrations in (2), (3) can be performed along Y,y instead

of Yl . Thus we find

(4) azT = 4i [ _a.z.ﬂ_ g4,
Ac dc JY* 313c Az !

Hedle
and from (2) we find for z noton Y that

(5) 2% o 26eZoT) oM 7
Reo ot
dz d¢C W* 3z 3 az

- Ty A g
nlJY* K(z, () az d
The kernel 5 _
d Giz,z,C,C)

was investigated by M. Schiffer and G. Szegg (1949) for the 3-dimensional case.

-:—:- is essentially the resultant of the pressure forces acting on Y
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For the two-dimensional case see: R.Courant: The Dirichlet-integral

(1949), Appendix by M. Schiffer, Ch. 2.2. Since the kernel K(z, () is
*ook

analyticinT ° A-0O, evenfor z=(, we mayallow Y to coincide with

]
Y . Substituting (5) into (4) we find

2
(6) 3t _ dy 3y
3 - - 4m ‘[v* L* Kz 0) 3, 30 dzd{

We can now remove the restriction that Yl be analytic. Let {Yln} be a

sequence of simple, closed analytic Jordan-curves disjoint from BOZ and of
* - . -—
Y , and Yin ™Y Each pair (Oln' 02 )(BOln- Y ) defines a § (z,Z). The sequence

”n'approximates ¥ uniformly in some range (c-5,c+6) and in a neighborhood of

2 2

* *

Y . Then a_;.'l - a—% uniformly on v , since the functions wn'are harmonic.
3z 9z

Similarly, with obvious notations
iﬂJZ.Z) - K(z,C)

and
'rn(C.E) - 1(c,C)

*
uniformly in some c-neighborhood and ony . Hence by (3) and (6)

_n _ ar
dc dc
2
9 e 321_
dcdc ~ dcac
AT 327
and 3¢ ' 3car Areagein given by (3) and (6) .
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It has been proved by Schiffer and Szego that the quadratic form
defined by K staisfies the inequality

| § 1 K(gi,fk) tt, > g T(C. )t 8
i, k=

i, k=1
- 2 L (Z-C.)Z x ¢y
m izl i
A1

[ T A a7 L
(7) JY*IY* Kz 0) = 55 dedl2

|1 -

for arbitrary N and ti . From here we find in the limit that

m

28 4c

dxdy
(a0 %

The righthand integral is clearly non-negative. We assert that it cannot

vanish. In fact, assume that it vanishes ; then the inner loop-integral

would vanish for almost all zeAl . We find by integration by parts

I(z) = I 1 2
Y

d¢ =
% (z-C)Z aC [*

3¢ .
The function I(z) thus suffers a jump aﬁ'z/az2 upon crossing y*, so that
I(z)= U is impossible. Thus inequality (7) implies that the function 7(c,¢)
is strictly supe rharmonic.
It is an immediate consequence of this, that the set BU N is connected.
If it weren't, say, if

BUN = NlU N,
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Nl ) Nz closed and disjoint, and, say, BC Nz , then by a suitable small

translation of N] we could reduce T[w+] » while keeping L[w_] . A[w_]

unchanged.

The set T=3P - B’ is connected for similar reasons.

3.2 The set O[¢{] has no open non-empty subset.

Suppose that O[{] contains a circle C: |z-zo|< p . We define then the
admissible function (III'or 1V)

(w/4)(|z-zo|2- pz) in C

y(z) outside C.

Here w is given for problem IV, and

(1) w = 2D[y] / L[y]

in case of III'’ . Then

E 3

T[w+l = T[n"+] ,

ALTI = AL

L{y™) = L0y )+ % wo?

D(y') = Dlyl+ § oot
Therefore, taking (1) into consideration

2

(2) Vi) = Ty, ] - 2Aalyd + ?_Lh_l
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_2 Dly]+(m/8) u’e’
iL[w_]+(n/4)wo4}2
(3) ,

Tle ] -rale)  + e
2 LLy_J+(n/2)w0

v [

T[w+] - \Aly] +

w ™

Tl ) - 1Al + DL - Lle ] - (n/a)®o”

(4) ,

wl¢] - (ﬂ/4)w20

From (2),(3), (4) follows that
/ * 1 r * "
VI ]<vie) , wiyl<wied,

a contradiction. Hence O[{ ] contains no circular disk.

3.3 The sets N[y] has no "internal' boundary points, i.e.

(1) 3N = aN.
Since the domain N is open, it is the countable union of connected
open sets Ni(i=l. 2,...). Suppose that say
Int(N)) = N'=NUs ,

S not empty. If | is a solution of III' , let V. denote the solution of the

inner minimum-problem III’ for N’ , normed such that

(2) 2ply,J/Ll¢d =2D(Ld/ Lly]=u
If ¥ is a solution of IV and Uy of the inner problem IV for N’ , (2) is valid
by (2.1.1). Then Yy - ¢ is harmonic, hence by the maximum-principle of

harmonic functions
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(3) : ¥4(2) >¥(z) in N
Thus
(4) D [y,J D[y ]
< : (')

L[ v*JZ L[v_lz

(5) Dly,)-wLly <Dy ] -wLly ] . (v) .

Hence

Vex2) = ¥, (2) + ¥, (2)
is admissible III' or IV, and

v'ly,,] 2 VIy] (1x’)

Wiy, > wiil (IV)

However, since t**= ¥ outside Nl » (4) would result in

vl <V,
and (5) in
Wiy, J <whvl ,

contrary to the assumption that § is the solution of OI’' or IV. Hence S is

empty, and

Ni = Int(Ni)

for each i. Consequantly

Nzkrlni =Um N .
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By an easy topological consideration
L{}Int'ﬂi = Int(UN) = meR

hence indeed _
N = Int(N)

3.4 The set Pis simply connected, and the set N{ ./ J is the (countable)

union of disjoint, open simply connected sets .

Proof. (a) The set P[{] is connected. If the flow is a channel flow,

then by the equicontinuity property of the members ;"n of the minimum
sequence there is a strip 7™ -€< n<7 which belongs to all P[E'n] and there-
fore also to P[E;] . If on the other hand the flow is open, then the projections
o of the sets Qfan] on the imaginary (-axis have by Eq. (2.6.5) uniformly
bounded linear measures, and therefore the measure of the projection o of
the set Q['L'\'] has the same bound. Iience there is a sequence of horizontal
lines n =nn R nn-w , belonging to P[:] | § P[E’] is not connected then it can
be decomposed in eithexr case into the disjoint, non-empty open sets Pl . P2 c

where PZ is in some strip 0 <n< no , and where no< n in case of channel-

flows. Along 3P =0. If P, is bounded, then by the maximum-principle

I
2" ' 2
v=0in P2 , a contradiction. Suppose now that P2 is unbounded. Then by the

maximum-principle N
L(C)<n<n_
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in g(PZ),thus ¥(z) is bounded in P, . Therefore, by the Phragmen- Lindeldf

2
theorem and the maximum principle {(z)=0 in P, , contrary to assumption .
Thue P is indeed connected.

(b) The sets P and N.1 are simply connected. In fact, if P were

multiply connected, then T'=3P - B’ could not be a connected set, contrary

to the results of section 3.1,

If some component of N were multiply connected, then this component
would surround a set R not belonging to N. Since P is connected,
RcOfl{]. Butthen R consists entirely of 'internal'' boundary points of N:
RC3N- 3N, contrary to the result in 3,3 , or it contains an open non-empty

set, contrary to 3. 2.

3.5 Theorem. If y(z) is a solution of a minimum-problem III or IV, then

(a) givenany ¢ >0, any point of the set =3P -8’ has a neighborhood
in P in which
(1) oyl >a? e

(b) in the entire domain P

é %
(2) logl > 1 g’ (z) (A0 .

For open flows A =1 should be substituted.
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(c) If the flow is an open flow or 8’ is a straight line, then
(3) Jou] >

holds in the entire domain P.

Proof, It is sufficient to carry out the proof for channel -

flows, since open flows can be considered limiting cases of flows in channels

such that a= lf'(co)l —~®

Consider the regular function z=F(8) (6 =+ i¢) which maps the strip
E into the domain P in such manner that the imaginary axis and the boundary
points t® are preserved. Given the real numbers p and q (0<q<T), let T
denote the triangle domain (p-q, ptiq,ptq) . We introduce now the function
o(8) = lu-pl4i-q
which vanishes on the sides (p-q, p+iq) and (p+iq, ptq) of T. Given any
¢ >0, let 7 denote the subset of T where (+€ p(8)<0, i.e., the triangle
domain (p-a, ptiae/(l +e¢), p+ta)and set
v+ep(9) in T-171,
“2)=v@)={ o o
4 outside T ,
'.=l:(z) is then continuous in A, Let u'*(z) = C*(C) by the mapping z={(]) . Then

by Eq. (1. 2. 6)
% .o % -
Tl¢ ) - Tle) =Dl |T] - Dle|T1],
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and after a simple calculation
* 2
(4) Ty 1 - Tlyd < g7 e(1+Cpe)
where Cl does not depend on q or ¢.
Let ¢ denote the image of T under the mapping F. Since obviously

(5) Ly 1= Liv) , al)=ale)+ AL

we find by (4) and (5)
* % 2
(6) Vi l-vlgl=wly ]-wly] i-on+q e(1+Ce)

If ¢(z) is the solution of III, then
*
viy 1-vlyl>o0,

and for IV
wii'l-wlyl>o0.

We find therefore by (6)

z
(7) rs =5 g+cpe)
c

The area of the t is
(8) A =ac/(14c)
Introducing (8) into (7) yields

(9 A (14C, ¢) .A.T/.A.o

We will estimate now the righthand quotient. Since the arithmetic mean is

bigger than the geometric mean,
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A

_Q.._l_ 2 .’L P ) \

A . A, ,U IF/(8)| “dody > exp i A, IJ log IF'(G)Ideu} ,
1'

and with (8) and (9)

(10) = [ 1og IF'@) dvdi < 10g (1//X) +O(e)
qQ€

The function
Z(8) = g(F(8))

maps in a schlicht manner the domain E into P[@ JcE . We introduce the

relationship

2'(9) = g'(F(6)) F'(8)

together with the estimate |g'(z)|</\é into (10). Hence

-';lg- [ 10gl2'®)] dwar
q€ 7

1 [ ) -%
(11) <=5 | log|g'(F(6))| dodi +1ogh™* + C
qe

3€

3

< log(A/A)° + C e

3

Z2(9) maps 8 { =T into B: n=n. Thus Z(8) can be analytically continued
into the strip mM< y < 2m by Schwarz's reflection principle. If 'ro(q) is the
triangle-domain 7 with p=0, and §(t) is the shift operator 6 -6 +t, then

the function
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(12) u(t) = —;— l'j' log |2'(8)] d=de
Q¢ S(t)fo(q)

is harmonic in the strip Sc: O< < r=2m-qe/(l+€). We show that u(t) is
bounded and continuous in S, . Ea (11) already established the boundedness
of u(t) on the real axis. Consider the reflection T of the triangle S(tl)fO(Zq)

for real t, on the line 8. By (11) then

1oy A

(13) - j'[ loglz’(8)| dvde < 2l0g T+ +4C e <C,
q€ ~
=

Observe here that the constant C4 does not depend on q or €,

The triangle 7. the vertices of which bisect the sides of T , is obtaincd

1

fromS(tl) -ro(q) by a shift ir =2mi-iq €/(l +¢ ) or from o by a shift t= t, tir,

Since = 7, by (10) therefore

(14) ut) < C,
if t is on B” = {8: V= r} . The same inequality holds if t is real.

Since the mapping accomplished by Z(8) is schlicht, Koebe's thectem
can be applied after a conformal mapping of the domain E into thc uni!
circle., By routine calculations Koebe's theorem leads to the inequalit,

€

g
2 sin { |Z (1TT/2)|

(15) 1z'8)] <
in S, as cp-.:too, and thus by (12)

1

u(8) <2 ol +cg
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[
By the Phragmen-Lindelgf theorem and the maximum principle therefore
(14) holds everywhere in S, . The continuity of u(8) follows from (15) easily
by substitution into (12).

From the existence of an upper bound independent of q and the continuity

of u(t) follows the same for

(16) v(t) = —— J‘f log [F'(8)| v a ¥ .
1% 807 (a)

Therefore G(6) =log |F'(9)| is also bounded. In fact, if v(eo) > M for some
internal point 90 and real M, then given any 6> 0, q can be chosen so small
that G(6) > M-5 in 8(60) ‘ro(q), and then also

(17) v(8)> M-8 .

Consider now the function w(6) bounded and harmonic in 0< § < /2

which assumes the boundary values

(18a) w(p+im/2) = G(o +i/2) +10g A /2
(18b) w(p) =0

The function

1) Viosde [[ tae-we svay

1
1€ 817 ()

is harmonic in 0< § <r-m /2, and by (10)

-1/2

(20) v*(:p)flog A + O(€)

By (18a, for sufficiently small q
% -
v +ilr-m/2)) <log A~ 24 ¢,

4
By the Phragmen-Lindel'c')f theorem and the maximum-principle follows then
that (20) holds in the entire region (¢ replaced by 6). Therefore from (19)
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follows by an argur..ent similar to the one preceding (17) that
(21) G(8)<w(8) +log A~ /24 ¢

By the continuity of w(8) on the real axis and by |9¥] =1/|F(8)] we
obtain the statement (1) from (21).

To prove (2), consider agair the analytic function
(22) 'Z'(8) = g'(F(8) ) F'(8) .
In some vicinity of the lines y =0 and y=2m ,
(23) ol < ot gre)
< ot ¢ A2

Because of {15), we can apply the Phragmén-Lindeldf theorem and then
the maximum-principle to Z'(68) again and show that (20) holds everywhere
in E. Since ¢ was arbitrary, indeed

2'e) = wim
for any § . By (19) then

IF' (o) < it

1
g'(F(8))
resulting after change of variables in (2) .

The proof of (3) : The function dz/df is regular and by (2) bounded
in E. Therefore in case of open flows it follows from (1) by the Phragmen-

Lindeldf theorem and the maximum-principle that

< x'i‘ (6€E)
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which implies (3). In case of channelflows with straight 2', the function
i(z) can be continued into the mirror image of 4 on the line &' by
Schwarz's reflection principle,and then the same reasoning applies as

for open flows.

The theorem just proved is quite fundamental in the investigation of
the properties of the solution. In fact, the remainder of Pa .t III of this

treatment contains essentially nothing but corollaries of this theorem.

b
3.6 The boundary of N contains an arc of R of positive length. For, by

the theorem 3.1 and the symmetrization there is a segment I=(0,1%) (£ >0)
of the imaginary axis in N. (At the normalization of £({), {(0)=C was

agreed upon,)

The solution of the restricted outer minimum-problem can be only
increased by a decrease of the set N because of the maximum-principle.
Hence

e
(1) i,(2) < ¢ (2)

where 'u(z) is the streamfunction of the flow in 4 over I (1.e., for which
r % .
ol J=1). Since

%
lV‘l' | = 0, also |V¢v| =0

z=0 z=0

By the theorem 3.5 therefore the point z=0 does not belong to 3P ;

consequently a circle C : |z| < p exists such that C{JA C N.

£33
Except if the set N is empty. (Trivial solution, see next section).
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3.7 Trivial solutions.

We will say that if
¥ (2) = Img(z)
is a solution of a minimum-problem, it is the trivial solution,

The solution of III is never trivial if a positive m is specified. The

question arises whether the solutions of IV are not trivial ?

A sufficient criterion in light of theorem 3.5 is that if anywhere

inA é
|vw°(2)| <\,

then 1:0 cannot be a solution of IV, With the usual notation
M = 1/]£(0) |2
IV will have a non-trivial solution for any (A, w) , for which IV is well

posed, and

(1) M< A

By definition M< A . If A # E, then M< A, and (1) is satisfied in the strip
M< A< A of the (w, \) plane.

Goldshtik (1962) proved (although for bounded domains and different
boundary conditions) that for A=0 , the differential equations have no other

than trivial solutions below some value of w . This is in harmony with the

In other words, the trivial solution is the streamfunction of a potential
flow in 4 ,
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present findings,

3.8 The set =3P - 3’ is a rectifiable curve. In fact, letu,v€E T .

The function w = F(z) maps P into E conformally, and let z = G(w) denote

its inverse. The image of u can be defined as the closed set

F(u) = n

LES
u

F(I)

where Su is a basis belonging to u in the topology of P. F(v) is defined

similarly.

Let the interval (0, o) denote the convex hull of the set F (u){J F(v),
with c€F(u) , o0€F(u) real, and let pn= o0+i/n, 0, = ~+i/n. Then
G (pn)-u , G (on)-ov . The intervals Jn=(on, nn) are mapped by G
into the curves (;n It "n is the length of (:n , then from (3. 5. 1) follows

that given €>0, for sufficiently large n

n -1
48 -3 _
(1) ’«,,‘!: vl B L G R
n

Thus l:-in are represented by vectors z = Zn(:) of the uniformly bounded

variation (1) . By Helly's theorem of choice we can therefore select a

subsequence an(w) converging to some Z_(v) of total variation

)\-%(o-C) . Zm(:[,) represents therefore a ractifiable curve Xc° . The curves
n are subsets of the level-curves { =1/n , so that the curve xcn must be 2

subset of 3P , and must connect u and v .
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3.9 The set P[¢] has no "internal' boundary points, i.e.

(1) 3P = 3P .

We have to show that Int(F) = P. Clearly
PcInt(P) = P’

Suppose that
(2) P’ = PUS,

where S is not empty. Then SC3P, thus

v(z) =0 if z€S.
We define the function ‘L:(z) such that the restricted outer minimum-problem
defined in the domain P’ has a solution w:(z) , w:(z) >0 in P’ , hence also
on S. Therefore by the maximum-principle

w:(z) > y(z) in P.

*
Hence by the definition of w+ 0

(3) 'r[w:j < Tly,] .
The function
* *
(4) V(2) = i (2) + y_(2)
is a competing function for III , IV respectively. The equation
*”
Ly ) = L[y )
is obvious ; "
Aly ) = Aly)
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% r . -
is valid, because the sets QL' J , Q[(] differ only in a subset of I

which is a rectifiable curve and therefore of zero plane measure. Hence

i
Vi 2 viigd

and I
)

r ro1
Whopyd 2 Whyyl

with obvious indexing of { . However, from (3), (4)

-

% {3 sk ¥
vl =Tl )+Dlv_J-2al') < Tle )+ Dl J-raler=viel

and similarly "
wlivd<wiel,

a contradiction. Hence S defined in (2) is empty.

3,10 aPNA = 3NNA = Of¢l=y.

The relationships
3PNACO , 3NNACO

are consequences of the continuity of ¢(z). Therefore it is sufficieut to

show that
(1) Of¢]c 3PNAN =y ,
By (3.3.1) _
aN = aN = 3(A-P)c sUapP ,
hence
(2) ANNAC APNA

Similarly, by (3.9.1) -
3P = 3P = 3(a-N)crUrUanN
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hence considering also (2) ,
(3) 3PNA = 3NNa4 .
Since O[{] contains no open non-empty set,
(4) of¢]Jc(3PU3N)NL

therefore Eqs. (3), (ft) result in (1) .
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PART 1V

INTEGRAL EQUATION AND APPLICATIONS

4.1 The method of interior variations. Garabedian and Spencer (1952)

showed how restricted '"analytic' variations of the domain can be applied

to deduce from a minimum-principle boundary conditions in explicit form,
cven though smoothness of the domain boundary is not a priori known. In

the problems of free boundary problems discussed by them even the anali-
ticity of the unknown boundary curve can be deduced. In the present problem
the boundary curve is not a frece boundary, it only separates two domains in
which the solution satisfies different differential equations. It is therefore
questionable whether the boundary is analytic, and there seems no known
method available to prove it. Nevertheless, the method of interior variations

will be quite useful.

We will apply a variant of the methods of Garabedian-Spencer (1952) ,
Garabedian-Lewy-Schiffer (1952) and Garabedian (1964), Chapter 15.
The interior variations will be given in the halfplane or strip domain E
co.anected with the flow domain A by the conformal mapping
functions z = (), C=g(z) , (rather than in A itself). It will be assumed

that f({) satisfies the conditions in Section l.1.
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Let eo denote a small positive number and F(C,t) a complex

valued function with finite Dirichlet-integral. Then we set

(1a) -+ FILT)
(1b) P = et T
€, should be chosen as small that(la)is a schlicht mapping, F should
be such that the boundary line(3) n=0, (n=7) be mapped into themselves.
We will also assume that F together with its first and second derivatives

is bounded.
4
We proceed to estimate the variation Ty ) - T[v] . Let Zr denote
e % S %
the preimage of the domain Zr ={¢: ¢ l<r, CEE } under the mapping

(la). Then by Eq. (1.2.5)

ey { ] ([
z
r

+1) dfdn + 2Re r v dc}
aﬁr

(2)
=lim (T + T, .

We use the estimate

AL (. 3F 2
(3) a(g*’n*) = (1 2 eo Re ag> + 6.K. eo

where |e|<l and K is independent of r. Thus we find by routine calculations

from (2) and (3)

For the sake of clarity here and in later sections h({) will denote an
analytic function of { , k({,T ) any function depending on € and n .
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>

( T¢'] - Tly] = e, lim Re {s ” (g%)z :—.§ dgdn
7y

r

(4)

- (zf-%f)dF(C.EH%J‘ F‘dc}+0(c§).

\ az’: az:‘

We will compute next the variation of the integral

I= ” U(z,Z) dxdy = ” U, T) 1 agan ,
<0 E(C)<0

where U(C,T) = U(z,Z) = 208(C,T) -1 . Then

6 "= [[  v'ezraxay = [[ 676, 0 ' ()| *ag an
V¥ (z)<0 (<o

=[] 0T kol? A ge*an’
o 3 M)

where o
.0 = 6t TH . D = wh T .
With the variational formulas (1) then

£l = 1e€™? - 2¢ e {£'cH) (¢ FE' TN} + o(h)

Substituting this and (3) into (5) leads to

(6) I - 1=-2¢ Re{ [[[2wic.T)-12]lf'l?
N

£(¢) 7 2

{FU.T) + df F(6T)] d8dn + o( )

93



(4.1)

We specify now the function F(C,E) for open flows. Let t denote any

point in E, and p any positive number for which the circle Cp =i§ g |C-T|< D'
is entirely in E. We set

T 0% +e YTy e cec,

(7) F(C) = . ’
e ®/(C-1) + e %/(C-T) if (€E-C, .

a is here an arbitrary real number .

It is easy to see that for sufficiently small values of ¢, C*=C+ €, F(C,C)
is a schlicht mapping of E onto itself. We introduce now (7) into (4) and (6).
A certain care is required in the evaluation of the line integrals in (4) . Let
us denote ( = r- , ;(r.e) =4 . %),

J(r) = f[;(r,e) - rsine] dé
0

{ (: a< |C|<b, n>0}

nab

r
r

{C:lC'=r. n>0}

thcn by Schwarz's inequality

) - s@)l? = [ I
a
dr

< [ [ G-rome)] rarae [[ £ a
Oab Qb

~

(-g-:- - sine) drdG]z
b

<nmn D[;-n |Qab] log (b/a)
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Keeping a fixed, and letting b—==, we find by the boundedness of the

right hand Dirichlet-integral for admissible functions . that for b -« |

(8) l7(b)| = O(J/Togh )
If |'| >2|'r| , then by (7) a constant Cl exists, such that
C
'E <
38 r
Therefore by (8)
n a -1
| (\ -m) —:—g del = O(r  ./logr )
1-\r
and thus
A 2 £y A
lim 'r { oF df = lim rsinf 3 df = - mcosa
r —om 5 a T <) 36
I‘r I-‘r

Evaluation of the other terms in (4) is straightforward. Thus we find for

small o
T["*] T()=¢ R "ch i /i\}_\z dEdn + 21 2 + O cz)
vl- THRT 7 L \Rrh E o
CO

(9)
= 2nRe 4 4eET(T,?)2 tej 4 o(o| ¢l +O(|€|2)

where €= eocm . Similarly from (6)

(20, ¢)-a] 0 =2l v ——
’ (C-7) (C-7)
(10) v<0

1

an C
k=

»

sie
I -I=2Re 4| €

c Y I oNq 02
L (el s =0 e @l? agan; +otel®)
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where (Q,Z) is the characteristic function of the set E - CO .

Suppose first that {(z,z) is a solution of minimum-~problem 1V,
Then it is also a solution of the minimum-problem obtained by narrowving
down the class of admissible functions to those obtained from ((z,z) by
the interior variations of the of the domain A specified in Eqs. (1) ancd (7),
say Y(z,Z;¢). (Then of course, {(z2,Z2) = ¥(z,Z; 0).) The functionals
T(¥], I[¥) become now ordinary functions of the complex variable ¢. Hence

for Y(z,z;€) to be a solution of the minimum-problem IV, we must have

a | Mol : " 1 __a_ f ’ ] -
(1) =7 (Tl¥I-wLly 1- 2alvly o= == {TM]+10Y¥] =0.

=0

If now { is a solution of minimum-proklem III , then (11) is still valid,
but w is then an unknown Lagrange multiplier , to be chosen such that
L{¥J=m can be realized. The derivative (11) is obtained immediately

from Eqs. (9), (10) leading to

4(_8_%135_1>2+1__% | Cowpe,Ty-a]quibeld L

T v L J L 2 2
i<o (C-7) (C-7)
(12)

£"(€) [n(c.Z)

1l 201 &
o et s ol azanson) .

The left hand side is independent of 0. Thus letting 5 =0, we find

o 3 2 1 A r a — eI - .
03 &(FE =2 T {2 ) o RERET I aran,
<0
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where "
£ 1 £ (¢) 1
K(Cu T) = - ]
2 T T

We return now to the ''physical' coordinates x,y, z=x+1iy :

LT G0 A Y- U L O R 2
(14) 4(>= = -2 [ T2aw(z,3) 0 K@ 0 KT ) jaxdy - g(n)?
§<0

where

. &) 1

72
(15/0) K(z,t) = g (t) :
(e(z) - g(t)]z g'(z)° 8 - 8lt)

~ PR 1 £(z) 1 |
(16/0) Kz, t) = g'(t)” |————_ + E(z) - g(t)

(8z)-g®)?  F')

The function g(z) here is defined by the relationship

8(z) = g(?)
and is analytic in the reflection of A to the real axis.

For channelflows similar results can be obtained if we define

Co = {C:ltanh(@-‘r)/2|<o} C

. T.= y =

¢'® tanh "‘2'1 / pz+e 1% coth %T_ if CCCD .
F(6,C)={ . . T

' coth % + ol coth > if C‘E-Co .

Then using the same technique as for open flows we find that (14) is again

valid with
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t ger2
) g (t) all
(5ich) Kz = b momy {coth (stz)-git)] + g@’ |
and
, 2 —l/‘ l
~ ) g (t) K]
(16/ch) K{z,t) = sinh [ g(z) - g(t)] {coth[g(z) - g(t)) + E,(:)3}

The functions R(z,t) defined by (16/0) and (16/ch) are analytic if t&€A and
2€A , where S is the mirror image of A to the real axis. The function

K(z,t) can be written in both cases in the form

(17) K(z,t) = + k(z,t)

2
(2-t)

where k(z,t) is analytic in both variables if z€A ,t €4 .

4.2. The matching condition. We want to use now the integral

equation (4. 1.14) to derive a matching condition on the boundary v

between P and N. The set N is in general an open set consisting of finite
or countably many disjoint open connected sets. Let N’ denote one of them.
For the derivation of the matching condition it suffices to investigate the
integral equation in any neighborhood of the curve y . Therefore we write

it in the form

(1) 4n¢'t(t,?)2 = - J[ [2wy(z,Z) - ] - > dxdy + A’(t)
N’ (z-t)

where A’(t) is an analytic function in Int( PUN’) . We will show first that
the term

I, T) = ” ﬂiizl dxdy

N’ (z-t)
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is uniformly bounded. We obtain by integration by parts, taking into

consideration that | vanishes on 3N’ ,

v (2,2)
(2) J(t,T) = fj ——T7 dxdy
N/

Let Nc denote the open set where (< - ¢, NCC N’ . Then by integration

by parts
v (z,2) , - - -
— z _ 1 z-t - . z-t
3 (t,t)-” —— dxdy = > j =y (2,7)dz “ 2=y dxdy
N

aN N
€ €

3)

3 EE weme- ¢ [

3N N
€

dxdy ,

where in the second equation wz? = @/4 was taken into account. From

Ay =w follows by Gauss' identity that

N .
€

(4) .” %ﬂf ds = wA
3N

3y/9n>0 almost everywhere on BNC because of (2.5.12) . Hence (4)

can be written in the form

N N - N

zf I%‘kl ldz| = wA.. < wA_, < uwA
z
aN U

Therefore from (3) we obtain the preliminary estimate
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_ v (2.%)
5 13 &l |” 2—— dxdy| <

N
€

1
2 N

Since this inequality is valid for all ¢>0, even

- 1
(6) J(t’t)< E(L\AN

Next we estimate the integral

(7) 7. 7) = ] ey
N’ (Z’t)

Let N” denote the intersection of N’ with the circle |z-t|< 1. Then by

integration by parts

L - i dz ( dxd
= = == 4 Xy
Jtt) 2 r z-t JI

BN” N-N”

If d is the distance of t from aN’ and |t|< R , then from here

1
d ’

(8) 3%, F) < = [ laz| + A

<
2d -

J N’
aN”

where Cl may depend on R but is otherwise independent of t.

Substitution of (6) and (8) into (1) yields

(9) le, .0l < cas?
implying also
(10) lye,t) | < scal
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Therefore | itself satisfies a Holder condition with exponent %, in any
subset M_: |t|< R of N’.This fact implies however (cf. Courant-Hilbert II,

p. 353) that

- Moz, z—)-v(t t)dxd
= | y
RO T
R

is also Holder - continuous in MR . The remainder Im-IR is for sufficiently

large R analytic there. Thus (1) can be written in the form

(11) am (6, T) --LZJ}u(t T) it T)- x]ﬂ' _}'_2.+C(tt)

N' z-t)
where C(t,t) is continuous in 4, and ©(t,t ) is the characteristic function
of N,

We will transform now the terms of (1) into the {-plane in order to
- s
make use of the symmetrization properties of y({). The integral J (t,t)

(Eq.(7)) can be transformed as follows.

7%t =H J[;'(—C)E—z d€d

~ (g)-f(T)]
N’
(12)
_ £ 7 didn L) [[ ST 4
£ (-nf () (€-7)
N N

where A(T) is continuous in E. By integration by parts

ggan=4i[ E=Tgq4
.I (c-n? 2l wet
I aNl
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hence the second right hand term in (12) is bounded. Let us examine

([ a8n _i [ &€
JJd . 2 2 J Z:-T *
lCJJ (€-7) a&'

Let To denote a point of 5N’ in which the latter has a tangent, with unit

vector e . Given €20 and 0<3_<m/2, let

(13) T =1 4eeil®¥3-T/2)

where B=B(€), |B|< Bo . Lat ¢ denote the path 3N ‘=0’ without the arc

lIm To-nl <€, Then by Privaloff's lemma (cf Privaloff (1956) Ch. 3,§ 2.)

€=0

(14)  lim {_[ %;T T Vem [? I
Ql € (‘é‘ (o]

the dot denoting differentiction with respect to the arc length.

We combine with (14) the limit relationship

q Fodl .
lim w~, =Ti,
€-0 T

T

valid for any 7_ in which 0’ has 4 tangent. Thus

lim i.[, -g%e-_'if %?To e ni{[?'-’-l +1},
0 Qe o)

€e—0

We will say that 7.~ To"non-tangentially" if €0, Notation: Te"* T
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i.e., for €=0

da _,. [ dn
ul FTC —ZIJ. FTO +O(l) o
0 Qe

n is a monotonic function of the arclength along the curve 0’ because

of the symmetrization property of 6((; , 7). Therefore

[ dn [ dn y 1 ’
l ,'C‘Tof-i h—_;—|-210g-é-+C,
Qe Qe "o
or
rdat C
(15) < 4log <.
:;’ [ELA €

By (11) therefore constants Cl' C2 exist, such that

(16) 7)< €, log (C,/¢)
where
(17) t=f(To+€ei(°' +B)) ,

3

and e ' is the tangent unit-vector of Y in T

By a theorem of Privaloff (1919) the mapping f(T) is angle-preserving
in the points of ; with the exception of a set of measure zero., By the theorem
of F. and M. Riesz (1916) a set of measure zero of v is mapped by f(T) into a
measure zero of Y. Therefore non-tangential approach to ; is equivalent to

non-tangential approach to Y. Hence the appraisal (16) remains valid with

103



(4.2)

suitably chosen constants C CZ' even if (17) is replaced by

1.

z=t+€ei(a+8)

where teY, and eio' is the tangent unitvector of Y in the point t. Taking (10)

into consideration, we find from (16) that

(18) w(t)JJN, ——Lz

(z=t )

if z—t non-tangentially, for almost all t€Y'. Let now

z.=t-Ce i(o.+a+n/2).

i(a+8 +m1/2)
P ?

zN=t+€e

For sufficiently small € the segment totleP. totzeN for almost all tey’,

By the theorem of Golubew*(cf. Privalow (1956))

lim {J ;_—t- :—ft; } =2mie?® - omt ?,
€=0 aNl P a

or, by integration by parts,

[ dxd "dxdy ) _ &+ 2
19 1 xdy . E - ,
58k ef’no LIJ (z-tp) IJ, (z-tN) J e

N’ N

Substitution of (19) and (16) into (11) yields

2

(20) um (&) @)Y }--3¢2

€0 z=zp z=zN

" This theorem is an easy consequence of Privaloff's lemma.
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We will prove next that 3(/3z has measurable limits if v’ is

approached from either side non-tangentially:

lim =y (”') =408 lim < =y’ ()
1m te’TO.W_'P"_’&F{'N
z=2p zN t
for almost all t€Y’. Since {(§+in) is a non-decreasing function of £ for

£>0, we find

)

@ Jem@) <3,

Let now Y” denote an arc of Y, which has tangents in its endpoints a, b, and
®p a rectifiable arc connecting a and b of finite length inside P, v’ and Op
are chosen so short that in the domain Cp bounded by ®pand v" for any two

£
points z,z in Dp

i
(22) ph g’(z) - phg'(z )| <n/2.
We will consider the point z* fixed, z variable. Then from (21) and (22)
d
(23) -n+o<ph<3-'i-><n+o,

where

%
0=phg'(z ).

If the function z=F(Z) maps the unit circle R into Dp conformally,
3
then 5—{- =H(Z) is an analytic function of Z in R. Hence by Fatou's theorem

we find that there is a measurable function (6 ) on the unit circle such that

105



(4. 2)

lim exp(i 1ogH(Z)) = §(8)
Z_.*eie
for almost all 6. By the theorems of F. and M, Riesz ~ud Privaloff quoted

above, for t&Y‘U®p.

(24) zl_i.r;:t exp(i logg-i->=§(t)

where ¢(z) is a measurable function defined on BDP. Let ¥ denote the subset
of aDp on which $(t)=0. Then

. oy
1 hi— !=.® jf T,
z*l;rzlo P \az / ZOE

with the exception of a set of measure zero. By (23) however, ph(9{/0z2)
has a lower bound hence T itself is of zero measure. Thus (24) has the

consequence that a measurable function vl"p(t). defined on Y exists, such that

(25) I;m (9y /32) =exp(-ilog ‘Nt)) = W_'p(t)
z-A¢t

for almost all tG.Y”, and therefore for almost all t€ Y,
Consider now domains DN bounded by Y’ and arcs ®N in defined

%
analogously to Dpand ®pand inside some circle |z-z |=p. Then we set

(26) zl=z*+ZD .2 ,
aw* 9 w i0 r io y
e~ =3¥+Ze ReLe (zl-z)J.

*
It is easy to check that 3y /3z is analytic in D,. With the choice (26) of z

N°* 1

Re [eio(zl-z)] >0,
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If v has the same meaning as there then 3y/3z satisfies (23). Therefore

also

e

Ay
(27) 0 - <ph .5?. <g+Tm, (ZGD‘N)

N !
We can prove now that a measurable function 'N (t) defined on

Y” exists such that
28) 1i af‘-w (t) (z€D,.)
( im F—=Vy t), z€ N -

The proof, based on Eq. (27), is identical to the proof of (25). We define

now

8 =4 (1) -3 el Re [ei"’(zl-t)J.

Then from (28)
2 lim Yoy D
(29) im <== JN(t) (ze N)

for almost all t on Y”. (In (29) WI:I is a measurable function of the arc length.)

Substituting (25) and (29) into (20) we get

r T2 ¢ 12 -2
(30)  [iplt) [P- ¥ P21 /)T (tev)
a.e.,on Y. For all t for which (25) is valid, we find

(31) ph Vp(t) =ph ¥ (t)=-0 - /2,

eei(c +1/2)

Therefore for Zp-t= , (zp on the normal of Y ir. t) we find by

integration
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w(zp)= 'Z*lp(t)(zp't) +of lzp't“

hence

F3yN ¥zp) } ,
(3 emm | R )
and similarly

A N e 'W(ZN) _ ’
o G, | e

Combining (30), (31), (32), (33) and the identity z =e'i° and substitution into
(29) yields

O 2 ,O0n, 2
{(=) =t ) =

for almost all t€Y,

4.3 Boundedness of the eddy region.

We assume that the eddy region N is unbounded and show that this

assumption leads to a contradiction.

Because of Eq. (2. 6. 5) and its connectedness, N has to lie in the strip
0<n<n_, thersfore the "length" of N, that is sup{Re(C,-C,):(,, ¢, € 1\3}15
infinite. Since the set P[:&:] is connected in the complex topology, the entire
real axis must have a neighborhood in N(i] in the Euclidean topology. The
linear measuve of the cross sectionog, of the set N["l; ] with =8’ tends to

zero as §'~® because mes(og) is by the symmetrizaticn property a decreasing

function of §, hence it has a limit, and this liinit is zero for otherwise T[{]
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(4. 3)
would become infinite, The area Az [ of the part 2>2' of N[7] also

tends to zero because of the finiteness of the area A[‘A] We will show that
assuming an infinitely long eddy region,

q 3 2
e r
(1) [ (D) ac-- Fu-v/na-p)

P

if p,q are real, p~® and |p-q|<l. The integration here is along the real
axis, (1) can be written in the form

(1) | SILRtRYCE R
P

2c% a o
\-a—i—> is an increasing function of |€| , since for any h>0, U(£ +ih) is in-
n=0

creasing for a symmetrized {. Therefore (1) implies that

(2) QLTS ~(an? asg-e,
\ n n=0

uniformly in any finite interval. On the other hand it will be shown that if the

real axis belongs to 3N, then

q .
T

(3)
p

as p~®, contradicting (1').

We start with the proof of (3).

In case of open flows, we set A=1,
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(4. 3)
We introduce the following notations:

Ng for the segment p <§5<q of N,
Ag for the area of Ng, (if q==, it is omitted) ,

cp for the segment 5=p of N ,

From

Vz\y =y
follows
(4) v2 §=ule'l®

hence by Gauss' identity and by |f'(€)|22 1/A,
2 rrod
-wA, /ASH veydidn= _[j 3% ds
Np 3N

<- [ﬂdn+: (—9'-) : --I(p)z[ﬂdn.
o 28 p ¥ 'n=0 o8
P P
Integrating with respect to & we get
ptl 1:+l c Ei
(5) wh/hz | uDas+] &)
) P 4
By Schwarz's inequality
. ~p+l
g | e}
P
(6) p+l -2
p+l el <pl f1nPH!] APH]
<A f:[ ng;< ;) dn_D[u|Np ]Ap .

Hence taking into consideration that I(p) is a decreasing function, we obtain

from (5)
LS A, * (D[&_]AP_I)LO :
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It remains to prove (1). We can write the integral equation

(4.1.13) in the form

4n(.é£>2+n:-l|f'('f)|2—l () +3.(7) 20 e (N E (1) +3,(7)
3T L1 1V L2 2' ]

'13( T)-J3(T)'I4(T)'J4( T) + H() ’

where
ry — f did‘
Il(')_"'N' (C_H)Z ’
T\ = o a dgdﬂ
12( )"lj\fl ‘SE z?" 5
. AN I t,_a2
L= ) l;f 6, 2,7y latae,
N (C-7)
_ o f dfdn
14(T)_JJ () T.T'
N0
H(T)-:-;‘.'T‘N” 20422 (K (¢, M+K (¢, 7)pasan,
where

’

N'=N_ = Clz> 1/2, ceNj,

N”:ICIOT/Z =40:0<2<7/2, (€N}

The functions Jl’ JZ’ J3, J4 are obtained from 11’ IZ' 13, I4 by replacing

1/(¢-7) by 1/(% -7) in the corresponding formulas.



(4. 3)

We first show that H, 12, 13, 14, J J3, J, tend to zero as T—®, H(T)
clearly tends to zero because in H(T) the function ({-T)" is majorized by
2/T, and all cofactors of (C-T)'Z, (C-T) 'l, ('C-T)'Z, (?,'-T)'1 in the integrals
are uniformly bounded. The integral IZ(T) is estimated with the method

applied for J(7) in section 4. 1. Thus by integration by parts

where Or/2 is the intersection of the line € = 1/2  with N’. In the last
evaluation of the integral Eq. (4) was used. The first right hand integral
converges to zero egince |C-T|>T/2 and mesl(oT/Z)"O. The seccnd integral

has zero limit by (4, 2. 4). The third is majorized by

P
[j I¢©l%agans = = AN)
5
which also has 0 limit, Therefore 12("') also tends to zero as T—®, The
terms 13, I4 can be estimated together, since
2 2
Jrd ) o T o e - ({9

(7) -
(c-1)° ="

where H(C, T) is bounded in the whole plane. Observing that 14(1') is also of

the form (7), we find sufficient to estimate only integrals of this form, Thus
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|13(T)Is" Jf*ll(i”l_)l d3dn < C n ‘}‘d"l :
I C'T & C_.r
N’ N

Let () denote the intersection of N’ with the circle

lg'-Tl <'\/r.r/2 .
We write
Inlsc, &4y LAl 41,
3 -1 Ir TI JJ I, "'I 1
~ _,- b-
. =0
Here
"'/I-T/Z 2n
I'<s . ar  do=2mJ/A.
dJ b /2
and
7 ' d&d
<
I s ’(J ’\/K — "]erlz ’
N - T/2
hence indeed
(8) ILnlsc en+ /A, =0, as T==,

and similarly

|I4(T)|’°0 as T—=®,

The same arguments hold for JZ(T), J3(*), J4(T) hence these integrals also

tend to zero as T—®, We thus found that

Q’

L=t

2 - F v re 3P N
) -fﬂ:ll{(T)lzﬂkJer’d' wi| LYy,

4
9 n< (C-T) (€-7)
Nl /

(o %
r
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(4. 3)

where 6(T)=0 as T—=, It is known that if = is any path inside N’

connecting the points p, qéﬁ[t‘;], then

[ar ”_597 ” (25 - ) asan +7(@5)

= (C-T)

(cf. Garabedian-Spencer (1952)). This is even true if p,q are on BICI'.

set

;
[ar ][] :’cgd =G(7), l£(ml =F(7) .
p N 7

Then by integration by parts

f F(1)G'(7)dT = [F(q)-F(p) ]G(q)
P

q
+ F(p)(Gla)-G(p)] - | F'(MG(m)ar.
P

Here G(q) is uniformly bounded, and since

lim F(p)=a%, lim F'(1) =0,

p—° T®
we get
q
lim [ F(1G'(1)a1 =lim F(p)Glq)-Gip)]
P p-e

- o m(qTp) + Lim [] (-qu-c%)dgdn.

PN
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(4. 4)

The last integral has zero limit (see Eq.(8)). Hence

(10) lim ngf'(w)lz ar ” _d.gl’lz = a®m(q-p) .
pP—®p N (C-7)

Quite similarly

d N
Jd‘r{ll :’_Ci‘_’%z =$ (z—iq-é;>d§dn,
hence by the same steps
q
(11) ;iﬂ! If'mlszg (?"T) -0 .

Substitution of (10) and (11) into (9) yields (1).

4.4 Lemma. Suppose that Ql(z), Qz(z) are solutions of IV in the
domains ‘A‘l’ [,2 respectively, for the same values w, A. If there is an open
nonempty domain GC’ 1”“‘2' such that Wl(z)=\bz(z) on 3G, then (a) Prtl] e
P(4,] = Sand i (z) = i,(z) in S: (b) Either one of the sets N[ ], Nl¢ ]
is empty or Nl'wl] s N[wz] =R and dvl(z)=ﬁ12(z) in R.

Proof. We introduce the functions

\Lz(z) inG
uy(z) = .

\1’1(2) in Al'G ’

\lfl(z) in G
u,(z) '-‘3
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(4. 4)

Clearly both functions are admissible for IV in their domains of definition.

Furthermore, it is easy to verify the identities
T[ull + T[u?_] = T[w1]+ T,1,
Ll(up) T+ L0y T=Lhvp T+ Ll 1,

A[ull + A[u?_] = A[d!ll + Aly, 1.

Consequently

W[u1] + w[u?_] =wli I+ w[\;‘z].

This implies that

W[ul'_] < W[WIJ or W[uz]f_ W[\l’z] .

Suppose that e. g., the first inequality holds. If i, does not belong to J#,
then the solution \(z)€ J}} of the restricted minimum-problem in Ay defined

by Olu,] satisfies

wiy) <W[u1]§ W[\lrll

which is impossible. Therefore ul(z)Eﬂﬁﬂ
1

Suppose first that ﬂ!l(z)f 0 is not everywhere true on 9G. Then we

define the sets

p; = Ply, Mo, B}* = Ply Nz,-G)
P, = Py, NG, P," =Pli,1N(1,-G) ,

and

3 ek
P =apiﬂapi (i=1,2)
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(4. 4)

where

p, €3G,

and P, is not empty. The function 1(z) is harmonic in P:;, and
uy(2)-v,(z)= 0

there, If P, is not empty, then P’;*ﬂ P:; is not empty because of con-

tinuity. Thus by analytic continuation

...........
......

L ]
(l) ul(Z) ql(Z) in pl npz
But outside G ul(z) = 2(z) by definition, hence

(2) 'l(z) - “Z(Z) in S:::::: - P:f‘::: np::::

afsate
PRE X

(S is not empty becausc of continuity) . By analytic continuation into
P;':f\P; it can be shown that (2) is valid in the whole of S=P[wl]np.r 2] .

Hence in particular

\31(2) = l','z(z) 0 (open flows)
‘ul(z) = wz(z) = 12 (channel flows)
on the boundary of S. Since both Pl l] and P[,Z] are simply connected,
r] = i ] =
P[ul] P[u?_] S

and

,l(z) = wz(z) in S.
Let us now assume that everywhere on 0G

vy(z) = v,(z) 0.
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(4. 4)

Then

3G Ny, JNNDy,] .
This implies GC.N[wl]nN[wz], because both right hand sets consist of
disjoint simply connected open domains. Thus the function
Wl(z)-\'lz( Z)

is harmonic in G, continuous and vanishing on 3G, hence
(3) ¥,(2) = ¥,(2)

in G. If Ris the union of the open sets where (3) is valid and \Bi(z) <0, then
*
¥,(z)=0 on 3R . The set Y =3R)Y cannot be empty since no subset of 8 is a

*
closed curve, thus cannot form alone a boundary. Y ispart of the boundary

s*e
of S = Prwl]ﬂprvllz] , and for almost all tey and for z€R

I Y R e
(4) My, T3 T o Umg, T

By the matching condition (4. 2. 30) the same limit relation holds for z€S, for

ok
almost all tey . The function

v 3
u(z) = exp {i ( :zl - ::2 )} -1

is analytic in P and bounded because of the symmetrization property of

'l'l(z) and v'vz(z) , and as just shown has 0 as non-tangential limit on a sub-
set of 3S of positive measure. By a theorem of F, and M, Riesz (1916)
follows that u(z) vanishes identically in S, or tl'l(z) = vllz(z) there. This

also implies that

Ply,] = Ply,] = 5.

2
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(b) First we observe that if N[Li] consists of more than one dis-

joint open component, then all but one of these components have their
boundaries made ur of sections of 3P exclusively. This follows from
the symmetrization property of \i'i. These components are therefore
completely determined by P, and (except possibly their ordering) are
the same for \1:1 and dyz. The functions wl(z) . wz(z) are in turn deter-
mined in these components because of the uniqueness of the solution of

the restricted inner minimume=-problem. Thus we only need to concern

4
2
to sections of 3P, by arcs of the bounding streamlines Bl , B

irselves with the components N/ , N’ , which are bounded ; in addition

5 respectively.

If, NWIJ and N[‘L'Z] are not empty, neither are N'l and N;_ , for

otherwise 3 Ninai would consist of a single point, contradictory to the

result 3, 6. By the symmetrization property BPﬂaN'ln?N'z contains an arc
Yw't of non-zero length, ans since !l'l = \112 in P, (4) is valid with z€P and
ANesk

for almost all te€vy . From this follows that N'l = N'2 = N’ and !l'l =

N’ by an argument entirely similar to the one applied after Eq. (4).

U, in
2

Corollary 1, If IV for specified w, A and A has two different solutions
'1'1, "2, then y‘lz '2 in A\, or vice versa.
Suppose the statement is not true. Then let S denote the set on which

¥y <Y,;S and A -5 are not empty by the assumption. Then ! on 9S,

1772
Therefore by the lemma Uy = \1!2 in A,
Corollary 2. If A =E, then the only solution of IV is the trivial. Other-

wise with the solution {(z) all functions l(z+c), c real, would be solutions.

Thus y(z+c)=1{(2) for all ¢, which is only possible for {=y.
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(4.5)

Thus at least one case is found when the only solution of IV is the
trivial one, However, for most other domains non-trivial solutions exist

for some values of w, as was shown in Sections 1. 5, 2.9,

4.5 Theorem. If ¥(z) is a solution of IV, then {(z) has only one
relative minimum (on thLe imaginary axis, of course) and therefore the set

sk
N[%] is connected .
Proof. Suppose ¥(z) has relative minima in ip, iq, and a
maximum in ir,p<r<g, Then for sufficiently small h>0,

¥(ip-ih) > y(ip) ,
(1) ¥(ip) < ¥(iptih),

¥(ir) > y(ir+ih) ,

(2) h<p, h<q-r.

Suppose that Sh is the set in which
V(z+ih) <¥(z) .
Sh is open, therefore it can be represented in the form

S, =°1U°zU ces

x
The reader may be reminded that the results of Section 3.1 only assert the

connectedness of the closure of N,
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(4. 6)

where o, 2are connected open sets which are pairwise disjoint. Since

¥ is symmetrized, if some component 0, contains a point §o+ino it contains

k
the point ino as well, Therefore from the relationships (1) follows that

there is a component, say Oy in the strip

gli(p-h) ) <n<g(i(r+h) )
On the boundary of 0y
(3) ¥(z+ih) = y(z) .

This implies by the previous lemma that (3) is valid everywhere in P{{],
which is impossible.

4, 6 The domain N of the free-eddy solutionm of problem Il is connected.

Proof. If N is not connected, then there is a yo>0 such that
. 3
= ¢ v .
Nl {\ Zy>Ye zeNJ'
and

N, = N-Nl= iz:y<yo, zeN}

are disjoint, The intersection of *he set N with any line y =const. is an
interval symmetric to the imaginary axis. Given any €>0, one can choose
the positive numbers hl' h2 such that the intersections with the lines
y=yo-hl=b. y=yo+ h,=b +h are of equal length 2a, and that the segment of N

between these lines is inside a circle |z-iyo| <€,

X
i. e., the solution for the domains A =E ,E either the strip 0<n<T or ths

halfplane n>0,
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(4. 6)

Consider the sets

N} = {e:y>b+h, z€N}

* . -~
N, =1zt y<b, zeNJL ;

e senend }

N* = N’;UN; ™ = fat (Nl!EUNz;E;! ).

Thus the set N* arises from N by slicing off the tips of Nl and Nz lving in
the region b<y<b+h, and N'" is obtained from N" by shifting the upp=r

disjoint part N;: downwards until it touches the lower part N: and forming
of the two sets a single open set connected on the line y=b. The potential
flow around N* which satisfies the appropriate boundary conditions at ®, B

(and on B') is a function V*( z) and the one around N** is a function \lf**( z).

It is clear that

(1) Tly; 1< Tly, ]
because the function
« _|V4(=) in PLY)

“*1 o inpl*- el
is a competing function for the outer minimum-problem for the domain N*.
If any translations of the upper part N;: of N* are allowed, then T[\lr*] will
increase if N;: is translated horizontally. In fact, such translation happens
to be for A=E (free eddy) the inverse operation of symmetrization, and the

latter is known to reduce the functional T. Let wc(z) denote the stream
function obtained by translation of N’; by the complex vector <. Then, as

just shown, tc is a concave function of ¢ for real ¢, and therefore by theorem
3.1, concave for imaginary c. On the other hand,

T[tc] ~+® ag c~ +i® ,
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Therefore there is a constant K for any C>0, such that for c= icl . (clreal)

(2) -a"zl'r[wc]z K>0

Y i

if °1<C' whenever ¢, is such that the translated NZ" does not intersect Nl’
i.e,, for C>c.l> -h.

From (2) follows that
O} 12 Tly} "] + Kn,
and in combination with (1),
(3) Tly, 1> Tly; 1+ Kn .

The set N’1 obtained from N, by a downward shift -ih intersects N; in the
set No' which is '"'symmetrized' to the imaginary axis. No is bounded by

the curves
01={z:z€3NZ, y>b},
g, ={z:z€3N', yﬁb}.
Then

V(z+ih)=y(2)<0 on 01 ,

V(z+ih)-{(z)>0 on 9, .
Therefore there is a Jordan-curve 8 connecting the points ib+ a inside No'
such that y(z+ih)= §(2z) along 6. We define now a new admissible function

Y (z) of the minimum problem III as follows. The curve 6 with the portion
of aNz under y =b bound a domain M,, and with the portion of 3N'1 over y=b
the domain Ml' We introduce
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*Mz2) mPM=a.N

¥(2)={¥z) inM, ,

¥(z+ih) in Ml

¥ (z) is clearly continuous, and therefore by its definition admissible for
the problem III or IV, Further

(4) Ty J=Tl"*1< Ty, )- Kn,
(5) ply_J=Dl¥iM, 1+ DLy **|M,1<Dly ],

(6) ALY] = A(M,) + A(M,) = Ali]-A(N ) > AlY] - 2 sh,

(M L0Y_J=Lly_)-Lly_IN,-M,] - LLy_(z4in)IN) M, 1> LLy_]- 4 shy

where
u = max |¥(z)|
N
and

s =sup {x:¥(x+iy) <0, b<y<bth}

or,in other words:2s is the maximal width of No’
Assuming that L[{J=m, (which can be achieved by normalization),
from (4), (5), (6) and (7) we find easily

V'IY) <V [1- (K-2xs - 4T(EE) h+ Ol 2h2) .

Since s 0 as h=0, we find that for sufficiently small h,
VIvl<Vv'[y],

a contradiction.
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SUMMARY OF RESULTS AND CONCLUDING REMARKS

This work gives a partial answer to Batchelor's problem outlined in
the introduction, The existence of solutions is shown in flows in regions
bounded by a single or two streamlines, and characterized by mapping
functions f(() described in Section l.1. Considering all functions u admiss-

ible for which the functionals involved are finite, the minimum-problems

(111) T[u) - X Alu] = min

(side condition: L[u] = m) and

(1v) Tl{u] - X Alu) - w L{u] = min

(no side condition) were formulated. They were found ''well-posed'' in the

sense of Section 1,5 if A< A= l/f'(°°)Z and in case of problem IV, channel-

flows also N
1 (7)< (%)
where
1 1
4(X) =i<i:i.§ {-p-z- (1—_'0 - X )}

These bounds cannot be improved. Problem IV is never well-posed and

has no solution for open flows.
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It was found that well-posed problems IIIl and IV have solutions
¥(z) which are admissible. These solutions satisfy
o2y = us(¥)
where S(¥) = 1 if y<Oand = 0 if §>0 ; ¢ is continuous in & , and assumes

the boundary value(s) 0, (7) on the bounding streamlines. Further

v=ttyro)  (lzl-e).
The function y(z) = 3(§+in) is even in € and an increasing function of |§|
("symmetrized'). The set N is bounded. The sets N = { Wz)< 0' and
P= {z: v(z)> 0' are simply connected, and in case of problem IV or in case -
of the '"free eddy' problem even the open set N is simply connected. Further
N and P have no "internal' boundary points: AP = 35, 3N = aN. The function
Ival has a uniform positive lower bound in P, and if the boundary B’ is empty

%

(open flows) or straight, then this lower bound is A\ , Consequently the

boundary
y = 3 PNA3N

is a rectifiable curve of finite length, 3{/3z has non-tangential limits w'P (t),

y’ (t) for almost all t€y , if t is approached from either side of v, and
N P

2 2 8
’ ) Fof (V! = o 2
L] - [ =- /e T
This implies the weaker result :
3y \2 34\2
a8 - s \
(an>P (an >N
almost everywhere on y .
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The solution of IV is not necessarily non-trivial, i.e., the set N
may be empty. Such is the case if A has straight boundaries. The soluticn
of IV is non-trivial if )\>l/|f'(o)|2 . Uniqueness oi the solution of
Batchelor's problem was not proved and in some cases the solution is
demonstrably not unique. Nevertheless the solutions satisfy another
criterion of being physically well-posed ; the set of solutions for given

A, X andmor w depends continuously on these.

The present study falls short both in the theoretical and the practical
sense from the desired goal. From the theoretical point of view, it does not
answer some very important questions relative to the smoothness of the
boundary. It seems very plausible especially in view of the results of
Garabedian, Spencer, Lewy, Schiffer on the analiticity of the free boundary
in cavitation flows, that the boundary y is smooth or even can be described
by infinitely differentiable functions. No such results could be proved for
Batchelor-flows. It is also plausible that at the point of separation the curve
Yy has a tangent which then has to be the tangent of the curve 8 in that point.
Attempts to prove this were also mostly unsuccessful. Also, no explicit
solutions in particular cases are in sight, such as the ones found for cavity
flows.

The more general case of domains not permitting symmetrization

is interesting because it includes a model of the wake formation in flows

127



behind bounded symmetric obstacles. Preliminary investigations indicated
that the present analysis could be broadened to include more general domains.
However then all arguments based on the powerful tool of symmetrization
have to be replaced, and some results will be lost or weakened in the process.

In particular, the connectedness and boundedness of the eddy domain cannot

be guaranteed, only that the components of the eddy region are adjacent to the
| domain boundary. This is quite natural, for if e.g. B consists of widely
separated indentations connedted by intervals of the real axis, it is quite
plausible that the wake will not be connected, nor bounded if the indentations
extend to infinity. The matching condition can be proved in a slightly weaker
form.

From the practical point of view, no atter st has been made to cornect
this analysis with the theory of the boundary layers. Anyway no boundary
layer analysis is possible in the case of infinitely long boundary lines. In the
case of 'free eddies'' this objection can be eliminated since reflection to the
real axis may produce a flow region without boundaries or with finite boundar-
ies. In the case of flows around finite bodies not included in the present study,
the latter may lend enough plausibility to the existence of the flow to encourage
an attempt for the numeriqal determination of such flows based on the mini-
mum-principles discussed. However, any numerical study is made rather
Jifficult since the two unknown parameters (A and w or m) have to be deter-

mined from the matching of outer, inner, and boundary layer flows near the
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separation and reattachment 2oints. In the case of flows in halfplanes
(free eddies) the set of solutions reduces essentially to a one-parameter
family by similarity considerations. Since arbitrary sections of the real
axis wetted by the eddy domain can be reploced by flat plates, it seems
possible that any choice of the parameters 4, m determines a limit case

of viscous flows.
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