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PREFACE

This expository RAND Memorandum is an outgrowth of earlier work

written for inclusion in a series sponsored by Management Science.

It was felt that this somewhat expanded version warranted publication

as a RAND Memorandum because of its application to problems in model-

ling, analyzing, and optimizing systems that frequently arise in the

Air Force. The study adds to a number of other RAND Memoranda that

deal either directly or tangentially with the general subject of

semi-Markov processes (see References).

As the title indicates, this Memorandum is intended as an intro-

duction to the subject of semi-Markov processes. Only a moderate degree

of mathematical sophistication is required to read it. The presenta-

tion is unconventional, however, and this is deliberate. It permits

a more heuristic discussion of a subject that has a high intuitive con-

tent but that may be masked in an abstract setting intended to rigor-

ously cover all pathological cases. Measure-theoretic niceties and

many other recondite matters are omitted. It is expected that readers

primarily interested in applications will be grateful for these omis-

sions, but those whose interest in semi-Markov processes per se has been

stimulated will certainly wish to consult the references. In addition,

some topics that arise in applications are only briefly mentioned along

with appropriate citations for the interested reader.

It did not seem feasible to write a primer for readers lacking any

knowledge of renewal theory and Markov chains. Besides, good presenta-

tions of renewal theory are already available in Refs. [11 and [161, and

only a few elementary facts about Markov chains, which can be found in

most textbooks on probability theory, have been used.



SUMMARY

Marrying renewal processes and Markov chains yields semi-Markov

processes; the former are special cases of the latter. This exposi-

tory Memorandum outlines some of the main properties of the union.
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I. INTRODUCTION

A key concept, already familiar to readers acquainted with

queueing theory, is that of an imbedded Narkov chain connecting re-

generation points of a stochastic process. Starting from a regenera-

tion point, the future is stochastically independent of the past,

given the present. In the imbedded Markov chain, the original time

scale of the transitions between regeneration points is replaced by a

discrete time version where all transitions take unit time. The cor-

responding imbedded semi-Markov process looks only at the "states"

corresponding to these regeneration points, but it does so in continuous

time.

The use of these distinauished states, generally referred to as

events by probabilists, is natural in a dynamic programming framework

as described, for example, in Denardo and Mitten [13]. In fact, it

was programming over semi-Markov processes that motivated our interest

in these processes. We shall have more to say about this in Sec. X.

Part of the definition of a distinguished state is its association

with certain regeneration points. To fix this idea concretely, con-

sider the H/G1i queue (Poisson arrivals, general service time distribu-

tion, single channel). For many purposes, a convenient set of

distinguished states is (0, 1, 2, ... ) where state i signifies i cus-

tomers in the system and a service has just been completed.

This procedure has been found helpful as a modeling device in

applications, although it is definitely in conflict with the notion

of a state used in fully rigorous treatments of probability theory

and semi-Narkov processes in particu,ar. There, a sample path of a
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stochastic process is defined as a function X(., w): ýO ,) - E and

the members of E are called states. This often necessitates speaking

of a "holding time" in a state. If, as in semi-Markov processes, this

holding time is not necessarily exponentially distributed, then we

intuitively feel that the proces. does not remain in the same state

during the holding period because the process has memory (is not

Markovian), Thus, with usual definition of state, two processes in

the same state could have different conditional future paths, depend-

ing on their respective histories. By contrast, all our distinguished

states are occupied only for an instant, and previous history is irrele-

vant. This interpretation is unconventional and heuristic, but the

underlying mathematics remains the same. It is intended to make it

easier for those readers with some prior exposure to Markov chains and

renewal theory to get a feel for what semi-Markov processes are all

about and to learn to see imbedded semi-Markov processes in applications.

For many readers belonging to this class, it is felt that this primer

is a more accessible first introduction than the original papers cited

in the reference list.

Letting N (t) denote the number of times state j is entered in

the half-open interval (0, ti, we obtain the Markov Renewal Process

(MRP) N(t) - (No(t), N1 (t), N2 (t), ... ). In the M/G/l queue, for

example, N (t) is the number of busy periods completed in (0, tj.

Let Z(t), the semi-Markov process, be the last distinguished state

entered in [0, C. In general, such a last state is not well defined,

but in the applications there is virtually never any difficulty. See

Sec. III for a discussion of this point. In the M/G/l queue, if at the
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last service completion epoch in FO, ti there were i customers in the

system, then Z(t) w i; however, at time t there may be more than i

customers in the system due to arrivals since the last service

completion.

I+ is defined to be the set of distinguished states, assumed

countable. The state transitions form a Markov chain with transition

probabilities (Pij), where direct transitions from a state to itself

(e.g., pii > 0) are allowed. Given that an i - j transition is about

to occur, the duration of the transition has distribution F ij. The

transition matrix for the M/G/lI queue is given in Sec. VII.

Semi-Markov processes (SMPs), first studied by P. L4vy and

W. L. Smith, generalize several familiar processes. Note that

(i) a one-state SHP is a renewal process;

(ii) an SHP with Fij degenerate at one for all i, j is a

Markov chain;

(iii) an SMP with all Fij exponential and independent of j is

a continuous time countable-state Markov process; and

(iv) an alternating renewal process is a two-state SMP.

All SMPs have renewal processes imbedded within them corresponding

to looking only at successive returns to the same state. In the

M/G/l queue, if the state in question is 0, then we are looking at

successive returns to the beginning of an idle period.

Many problems in management science and operations research can

be modeled as SMPs: for example, queueing, inventory, and maintenance

problems. Explicit recognition of the underlying SMP often stream-

lines the analysis. For details, see, e.g., Pyke [44, Barlow and
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Proschan fli, Fabens [151, Foley F181, ginlar r4-81, Neuts [37-411,

Lambotte r591, and Simon r61]. These areas by no means exhaust the

possibilities; e.g., Perrin and Sheps ý431 and Weiss and Zelen r521

apply SMPs to medical problems. John McCall [601 has used SMPs to

model movements among income classes in a study of strategies for

combatting poverty. For proofs, citations of earlier papers, and

additional topics in SliPs, the reader should consult the reference

list. Another expository paper is Janssen [261. Howard [58] develops

a flow graph interpretation of SlPs.

Recently, Neuts [42] has published a bibliography on SMPs. I

thank Professor Neuts for bringing several relevant papers to my

attention.
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II. DISTINGUISHED STATUS

In this section we examine precisely what is meant by a distinguished

state. Since discussing this topic in an offhand manner could result

in confusion, the subject is treated in some detail.

For each sample path of a stochastic process X, there is a

correspondence between [t: t 2 O and a set of states S. If every

state (in our sense of the word) in S is required to have the Markov

property, then in general S will be uncountable since a history of the

process, or at least the relevant portion of it, must be part of the

state definition. All that we require of S, however, is that it have an

appropriate countable subset I+ of (distinguished) states having the

Markov property. Thus, for a state to be a candidate for 1+, it must

correspond to a regeneration point, but we do not require that all

states corresponding to regeneration points belong to I+. We assume

that the process starts in a distinguished state at time 0.

Note that the set of distinguished states used previously in

our discussion of the M/G/il queue does not include all regeneration

points, since any time the system is idle (empty), it is at a regen-

eration point. Occasionally, it is convenient to add to I the

state corresponding to arrival epochs to an empty system. Our choice

of distinguished statep conforms to our requirements because the

time to the next arrival is stochastically independent of the time

elapsed since the last arrival. In general, arrival epochs, except

those corresponding to the start of a busy period, are not regenera-

tion points. Thus the state "i customers in the system and a cus-

tomer has just arrived" cannot be a distinguished state, unless
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i a 0 or the service times are exponential. Through the use of so-

called supplementary variables, we can define every state in the

original process so that it is Markovian. Each state is then a couple

of the form (i,u), which denotes i customers in the system and the

customer being processed has been in service for time u; for i = 0,

u is arbitrary, say 0. Sometimes supplementary variable techniques

are useful as an alternative or adjunct to SMP techniques; see, e.g.,

Cox and Miller [9]. A disadvantage of supplementary variable techniques

is that superfluous regularity conditions, e.g., absolutely continuous

transition time distributions, often must be imposed on the original

process to justify their use.

Returning to the general discussion, we require the distinguished

states to be defined such that nonzero holding times in a distinguished

state are forbidden but instantaneous transitions among the distinguished

states are allowed. This is a departure from the setup of Pyke [44],

although the two formulations are essentially equivalent. The notion

of an auxiliary path r471, needed in the conventional setup to

handle such processes as the M/G/i queue, is not required by us. Our

definition of distinguished state permits a graphic representation

of SHPs in terms of networks with branch nodes (distinguished states)

and stochastic arc lengths r191. For example, traversing an arc
could correspond to a customer completing service.

1By contrast, in the conventional setup nonzero holding times
are essential, but this seems to be an artifice unless at every
instant the process is memoryless, i.e., Markovian.
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2
To remove ambiguity in the case of instantaneous transitions, we

define X +(t) - X(t +); thus, X+ is right continuous and the last dis-

tinguished state of X+ entered in [0, t1, say, is well defined,

provided that the process does not explode; see the discussion of

regularity in Sec. III. Since we have prohibited nonzero holding times

in distinguished states, we cannot allow a distinguished state to cor-

respond to a nondegenerate interval of regeneration points (e.g., an

idle period in an H/G/l queue). Thus, to exclude an infinite sequence

of instantaneous transitions from a state to itself, we require that

the distinguished states be defined such that, for all nondegenerate

intervals (a, b), i E I+ . PfX(t) = i, Yt E (a, b)) = 0. For example,

in the M/G/l queue it does not suffice to define the distinguished

state 0 as 0 customers in the system. The condition that a service

has just been completed must be added.

In applications, the first step is to specify the distinguished

states carefully, which throughout the sequel are simply called "states,"

necessitating definitions slightly different from conventional usage.

To make the states correspond to regeneration points often requires a

detailed state description, calling for considerable disaggregation.

This has the effect of multiplying naive estimates of the number of

states.

CAUTION: The "state" of the underlying stochastic process and

the state of the imbedded SHP generally differ. Except at a countable

set of (regeneration) points, the state of the underlying process is not

a distinguished state.

2 Sometimes it is convenient to permit instantaneous transitions,

for example, Denardo [111. Yackel [551 makes a detailed study of limit
theorems for SMPs with instantaneous transitions allowed.
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III, R-ULAR SMPs

In the literature the Z process is called an SlP. But the IRP

and the SHP are different aspects of the same u-iderlying stochastic

process; therefore, by slight abuse of language, we sometimes use the

terms SHP and MRP interchangeably.

An MRP is regular if with probability one (w.p.1) each state is

entered only a finite number of times in any finite time span--i.e.,

if PrNL(t) < -1- 1, Vi E I+ and t Z 0. An MRP is strongly regular

if w.p.1, the total number of state transitions is finite in any finite

time span--i.e., if P[E Ni(t) < -1 = 1, Vt 2 0. Clearly, strong

regularity implies regularity and, if n < w, it suffices that

S- (Ho0 ... ,H n) have at least one component nondegenerate at zero

for every ergodic subchain of the imbedded Markov chain, where Hi is

the unconditional distribution of time elasped starting from state i

until the next state is entered (possibly i itself). In the denumerable

state case (n - -), Pyke 4Y41 and Pyke and Schaufele E461 describe

conditions that imply strong regularity, as does Feller [171. In

the sequel, we assume that strong regularity holds.

I
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IV. FIRST PASSAGE D COIJUNTING DISTRIBUTIONIS

3
Let

Q j(t) Pij F ij(t)

Hi(t) QiQ M(t)
L~Ji j

P (t) -P rz(t) - JIZ(O) - il

Gij(t) - PrN i(t) > OIZ(O) -

(first passage time distribution)

M j(t) - E[N l(t)Z(O) - il

(mean entry counting function).

Defining the convolution

Ct
(A * B)(t) a f A(t - x) dB(x)

0

and delpting the argument t below, we have by straightforward renewal-

theoretic arguments:

PiJ - (1 - H )dij +EQik * Pkj - (1 - Hi)61j + P j * ij
k

G Q +~ FLOij " QiJ + Q Ai * Gkj

k#j

Mij - Gij + Gij * Mj - Qij + E Qik * Mka.
k

3Unless otherwise stated, all summations will be over 1+ and all
functions vanish for negative arguments.
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In general, these relations cannot be solved analytically, although for

the moments, complicated expressions have been obtained (Pyke and

Schaufele r461) for irreducible recurrent SMPs (C.ij (=) 1). In the

finite state case, numerical solutions can be obtained by numerical

inversion of the corresponding Laplace transforms.4 For each value

of s, only one matrix inversion in the transform domain is required.,-

that of I - q(s), where s > 0 and

q(s) -=(fe-st dQ ij (t)).

In obvious notation, having found [I - q(s)7"1 either analytically as

a function of s or numerically (for suitably spaced values of s), one

successively computes

m(s) - ýI - q(s)] -lq(s) f rI -l

gij(s) m ijl(s)/[l + mjjls)l

Pij (s) P p (S)gij(s), i # j

1 - hj(s)
- - gj(s)

and then inverts the transforms. Although this procedure is not trivial,

it often compares favorably with the alternative simulation approach for

getting the transient behavior in the time domain. By usual limit theo- I
rems for Laplace transforms (Widder r531, Feller r161, see also Jewell

[271), the behavior in the time domain for large (small) t corresponds

to behavior in the transform domain for small (large) s. Renewal theory

provides an important tool in studying asymptotic behavior; see Sec. VIII.

For the stationary probabilities, see Sec. VI.

4 See, for example, Refs. 2, 24, 33, and 47.



Conditioning on the event that no state in a subset B of I+ is

entered in (0, t3 may be of interest. For example,

B Pij(t) - P(Z(t) - JjZ(O) - i, Nk(t) k 0, Vk E BI

B Gij(t) - P[Nj(t) > OIZ(O) - i, Nk(t).- 0, Vk E B]

B ij(t) - E[Nj(t)IZ(O) - i, Nk(t) - 0, Vk E B]

can be calculated from the formulas already given by (temporarily) making

the states in B absorbing.

Barlow and Proschan [1, pp. 132-134], using "renewal" arguments,

show that the first and second moments of Gij, denoted respectively by

i jand are given by

1iJ k- j Pik~kj + v4

(2), Pi[ (2) 2ka,~
i.1 " i 11kj + 2Vikikj i

, (1)
where vii is the mean of Fi v, and

0

(2) +We assume that i < M,, Vi r I . If the imbedded Markov chain is

finite and ergolic, these equations have a unique finite solution5

and, with r the stationary probability that the last state entered

5 See appendices 1 and 2 of Fox [19) for an efficient way to solve
these equations. (An expression for the "bias terms" in Markov renewal
programing involves the first passage time moments, which are of in-
trinsic interest, but recently Jewell r291 derived a remarkably
simple alternative expression, obviating the need to calculate
these moments to evaluate the bias terms.)
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6 (2)
is j if all F,, were degenerate at one, multiplying p~j and J

by TT and summing yields

Ili= (l/T) E Tkvk

k

(2) n)~~k2)1= (1/j +2 I ZniPikvik'Jkj

kCj i -

For finite state SH~s, the probability that state j is ultimately

reached starting from i is 7

Af

1, ~if i, i Ek

Gij " , if i E Ek, J E E19 k J,

[(I - A)-I] 1 , if i E T, J E Ek

where A is the submatrix of P corresponding to the set T of transient

states, El, ... , Em are the recurrent subchains of P, and

O= , Pi i E T.

The last case can be checked using a renewal argument. A similar

argument shows that the mean time to leave T starting from i is

•t=[(I - A)-'vtj,. i E T.
t

where v is the vector of vj's, j E T. Pyke [451 obtains a double

generating function for the distribution of Nj(t), viz.,

6 1n other words, rr is the stationary measure for the imbedded

chain, but not (in general) for the SIO itself.
7The case i, j E T, of less interest, is not considered.
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Z 1 -(1 - z) m[z I + (1 - z)D-1,

where 1 is a matrix of l's. D is a diagonal matrix whose positive

elements are the corresponding elements of (I - q)-1 and

Yz " [lJj(z; W)

0ij(z; s) mW" e-st d wj(z; t)

wij(z; t) - zk vij(k; t)

k-0

vij(k; t) - P[Nj(t) - kjZ(O) - il.

Thus, in principle, the probabilities and moments can be obtained in

the usual way. The Laplace transform m of the first moment (Mij(*))

was already given. See Pyke and Schaufele [46] for further general

moment computat-ons, weak and strong laws of large numbers, and

central limit theorems. A generating function that yields mauy

quantities of interest upon considering special cases has been ob-

tained by Neuts [36]. Stone [501 derives the distribution of the

maximum of an SHP.

Several times in the sequel we use an asymptotic expression for

a transform valid for small a. A good way to check these results

is to expand e-st in a power series and interchange the order of sum-

motion and integration; this procedure can be rigorized. If a function

K has Laplace-Stieltjes transform a/s + b + o(1), then K(t)-at converges
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in the (C, 1), or Ces~ro, sense to b. Cesaro summation tends to

damp oscillations, -. g., by averaging a periodic function over its

period. Under the same conditions on K, t-lK(t) converges in the

usual sense to a.
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V. STATE CLASSIFICATION

In classifying the states of an SMP transient, null recurrent, or

positive recurrent, we must distinguish between a state's classifi-

cation in the imbedded Markov chain and in the SMP itself. For I+

+

finite and vi < -, Vi E I , the distinction disappears and a state j

is either transient or positive recurrent (G jj() - I and tjj < w).

In large-scale applications, the ergodic subchain-transient set

breakdown may not be obvious and recourse may be necessary to an

algorithmic classification scheme such as that of Fox and Landi [232.

For I infinite, a state j is transient (recurrent--i.e., G j () = I)

in the SMP o j is transient (recurrent) in the imbedded Markov chain.

State I is positive recurrent in the imbedded Markov chain (contained

in ergodic subchain Ek) and, for some constant c, v.. • c < -, Vi,

J E Ek, z I is positive recurrent in the SMP. An SMP is positive
+

recurrent if all the states in I are positive recurrent in the SMP.

We remark that, if Z(O) - i and i belongs to the same positive

recurrent ergodic subchain as j, tI N.(t) - 1/1&j w.p.l, a strong law

that follows inmnediately from renewal theory. Under these conditions

and assuming (2) m, N (t) is asymptotically normally distributed

with mean t/•jj and variance t -3 2 2 ), a consequence of a

renewal-theoretic result found, for example, in Feller [16, p. 3591.
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VI. STATIONARY PROBABILITIES

It is important to distinguish between the stationary proba-

bilities (TTi] with respect to the imbedded Markov chain and the
8

stationary probabilities [p,) with respect to the SMP. Thus P,

is the steady state probability that the last distinguished state

entered is i. Hence the (pi are of direct interest in applications,

while the (ii) are computed only as an intermediate step. We consider
i++

first the case I finite and vi < •, Vi E I

V/j 4E Ek. Z(O) E Ek

P G ijj( ) / jjj j E Ek Z (O) - i E T

0, jET

0, j E Ek' Z(O) E Ell k 1

where C ij() was computed already and

vJ/•JJ " ivi

iEEk

with rri] here being the stationary probabilities for the imbedded

Markov chain given that Z(O) E Ek. Note that the expression vj/Wjj

is intuitively reasonable and follows from the fact that Pjj(s) -

vj/Lli + 0(l), easily verified using the expression for Pj (s) given

in Sec. IV, and a Tauberian argument.

8 in general, the stationary probabilities must be interpreted

as Cesaro limits. If the process is aperiodic, these reduce to
ordinary limits.
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In the remainder of this section we assume that the imbedded

Markov chain is irreducible and that the SMP is positive recurrent,

where I+ may be finite or infinite. We also assume that the mean

transition times are uniformly bounded away from zero; i.e., 0< <

Vij < C. With these assumptions, Fabens r15] shows that

".1.1

P rrJ ivi

in agreement with results given above for the I+ finite case. Define a(x)

as the time of the last transition completion before or at x and T(x) as

the time of the next transiton completion after x. The random variables

y(x) = -r(x) - x (excess rtv.)

6(x) - x - q(x) (shortage r.v.)

are of interest. Adding to the previous assumptions the hypothesis

that Z(') is aperiodic, Fabens shows that

lir Pfa(t) ! xjZ(t) - i) li PF[Y(t) ! xjZ(t) - i]
t-.D t-OM

(I - H.(u)] du.

This generalizes the well-known result from renewal theory for the

one-state case, obtained there as a corollary to the key renewal

theorem [1].



The general question of existence and uniqueness of stationary

measures is dealt with in Pyke and Schaufele [471. Cheong [3] and

Teugels [511 give conditions under which convergency to the steady

state is geometric. An estimate of the convergence :ate is impor-

tant. If it is high enough, troublesome transient phenomena can be

neglected. We then pass directly to a relatively simple steady-state

analysis.



-19-

VII. EXAMPLE: THE M/G/l QUEUE

To illustrate the notion of statiorary probabilities for an SWP,

we consider the M/G/I queue. Let
9

n. = the stationary probability that i customers are in
L the system just after a random service completion

epoch

Pi = the stationary probability that i customers are in
the system just after the service completion epoch
preceding a random point in time

Pi = the stationary probability that i customers are in

the system at a random point in time

We assume that the traffic intensity ib is less than one, where I is

the arrival rate and b is the mean service time, assumed positive.

Although it is easily shown from a result in St:. VI and the fact that

Vi= b, i 1, o /i + b, and - = I - ib that

i Xbr, 2 i l

S(1 + Xb)r .° 1 - (kb) i - 0,

it turns out that pi - ri' V, a remarkable result originally due to

Khintchine r311 and derived in a more elementary manner by Fox and

Miller [241 using SMP theory. In bulk queues r15', for example,

the stationary measures for the imbedded Markov chain and the

original queueing process art different.

Readers familiar wi.h queueing theory may prefer to skip to the

last paragraph of this section. In between, the standard manipulations

yielding G (z), the generating function of the f-.., are peiformed.

9 The stationary probabilities for tile imbedded chain and the SMP
are f.iI and fcI, respectively.
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Recalling that state n means that there are n people in the

system and a service has just been completed, we obtain the well-

known transition matrix for the imbedded Markov chain:

C ko k, k 2  k 3  k 4 .

1 k 0  k 1 Ik 2 k 3 k 4

2 0 k0 kI k 3  .___

3 0 0 k 0  k k 2

4 0 0 0 kI0  k 1 _

where the probability that n customers arrive wnile a customer is being

serviced is

kn -f e (,t)n dB(t),

0

and B is the service distribution. By the usual straightforward

manipulations, we find that the generating function of the [kin) is

Gk(z) uEkiz i - O•(I - Z))
i

where 0 is the Laplace-Stieltjes transform of B, i.e.,

-s e- st dB(t).
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To obtain the stationary vector Ty for the chain, we multiply the i-th

I

relation determined by yrP - 17 by z and sum, define the generating

function

Gn(z) = 2 y•zi,

i

and obtain the standard result

ITT - z)Gk(z)0 (z) =o
T Gk(Z) - z

from the special form of P for this chain by an easy calculation.

Using the fact that lir G (z) = 1 (i.e., the probabilities sum to 1)

and applying L'Hospital's rule,

S= 1 - Xb.

(Intuitively, this corresponds to the fraction of time the server

is busy equalling the mean service time divided by the mean arrival

spacing.)

Summarizing our results so far,

r (I - z)O(M(1 - W))

(z) = 0( - )) - Z

Thus, using L'Hospital's rule, the mean number in the system averaged over

service completion epochs is, with a the variance of the service times,

[Gk(z) - 2GC(z)(Gk(z) - 1 2b2 2

lim GC(z) - yo lim . . . . 2 .. ()b,
z-l - 10 z-1 2( (z) - 1) 2 2(1 - b)
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and because T!. = Pi. ,i is also the mean number in the system at a

random point in time (in the steady state). Higher moments and

probabilities can be obtained from the generating function by appro-

priate differentiations, which, however, become quite tedious.

Having found G (z), the Laplace-Stieltjes transform of the sta-

tionary waiting distribution (Pollaczek-Khintchine formula) for the

first-come, first-served (FIFO) discipline can be easily found. The

derivation depends on the fact that, since the arrival process is

Poisson, an arrival plays the role of a random observer. If an arrival

finds the system empty, the conditional wait in queue is 0. Otherwise,

it is governed by the remaining processing time of the customer in

service, the excess random variable (Sec. VI), plus the service times

for the customers (if any) already in queue. Noting that Gp (z) = G (z),

the interested reader can readily derive a version of the Pollaczek-

Khintchine formula, namely, o+ 1 b(s) [G - o. See Feller
0 sbB(s) , 0 e Fle

r16, p. 3921 for an alternate elegant derivation that bypasses the

calculation of G (z). A third derivation follows from the fact that

the number of customers in the system just after a departure is the

number of arrivals during his total wait (queueing time plus service

time); the resulting equation is solved by taking generating functions

yielding the standard form of the Laplace-Stieltjes transform of the

stationary queueing delay distribution so/Ifs - N[l - 0(s)]i, the more
10

familiar version of the Pollaczek-Khintchine formula. A fourth

10Comparison of the two versions yieids an interesting and
surprising identity.
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derivation, where the (superfluous) assumption of an absolutely

continuous service distribution is tacitly made, is given in Cox

and Miller [9, pp. 241-242].
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VIII. ASYMPTOTIC FORM OF Mij

From a previous section, we know that

mij(s) - gij(s)[1 + mjC(s)]

-ij(s)[ + i gj 1 (s)j

- SX

Formally expanding e in a Taylor series under the integral defining

gij- integrating termwise, and performing the appropriate algebraic

manipulations yields for i, j in the same ergodic subchain

(2)

mij(s)= _ + 2 " 2 + o(1),

J j 2pj j Jj

whence by a Tauberian argument

(2)

S(t) - (Cesro) 2
i Ili 2j j 2

a reuult that can be obtained by analogy with renewal theory for

delayed recurrent events, where the time to the first "renewal" has

distribution Gij and the spacing between subsequent renewals has

distribution G jj If the SMP is aperiodic, the Cesaro limit reduces

to an ordinary limit. It can be shown that the formal manipulation

used Lo obtain the asymptotic expansion of mij(s) is justified if

(2) I+ is finite, (2) Vi E I+ (2) < c. A result
iij i .I sfiie i<•,¥
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that holds for all t is Z(O) R j M H.j(t) • t/.-jj which follows

from Barlow and Proschan [1, Theorem 2.51. We can obtain a tighter

inequality from [1 and, if Gjj has increasing failure race, an upper

bound as well.
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IX. FINITE SMPs WITH COSTS

Sometimes system performance is evaluated by probabilistic

criteria, suci as average delay in a queue, that serve as surrogates for

monetary loss. It is more appealing to deal directly with expected loss
11

as a performance measure. In this section we indicate how to do this.

Often in applications, costs are associated with the transitions.

Measuring time from the start of an i - j transition, let Cij (xlt) be

the cost incurred up to time x given that the transition length is t.

The expected discounted cost for a transition starting from state i

is then

M t
Y i(V) = ij dFij(t) e-CO dxCi (xit)'

0- 0

where a cost incurred at time x is discounced by the factor eW.
An elementary renewal type argument then shows that vi(0), the total

expected discounted cost over an infinite horizon starting from state

i, satisfies

v(a) = Y(•) + q(a)v(a),

where o > 0 and v(c,) and y(o) are vectors with i-th components v i()

and 'Yi(t), respectively. Thus, assuming a finite number of states,

v(C) r [I -I

A similar remark applies to "chance-constrained" programming.



-27-

Since I - q(O) is singular and a direct abymptotic expansion is not

obvious, it is convenient to use the relation between q and

m given earlier to study the behavior of v(Ly) as c - 0 Following

Jewell [281, we have

v(0) [I + m(V)I().

Making use of the expansion of m(a) given in the preceding section,

we find that, if i is a recurrent state, vi(t) has the form

vi (C) LIil + w i o(+ )

and a straightforward argument in Fox [19] then shows that this form

is valid for any state; i.e.,

v(a) = ./0 + w + o(I)

Expressions for 1, the loss rate vector, and w, the bias term vector,

can be found in Jewell '28, 29' and Fox 7191, where appropriate

conditions are given to justify the expansion. Substituting this

relation into v(&) = V(l) + q(or)v(y) and equating the coefficients

of - and the constant terms, respectively, yields 1 2

PL = t

Y(0) + Pw - w + y

Yi= E PiAviALA

= viLi, if i is recurrent.

1 2'This procedure can be justified by a simple contradiction
argument. Note that qij(a) -pij(l - Ovi ) + o(a) and that the
loss rate for all states in an ergodic su~chain is the same.
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These expressions can be solved uniquely for 1, but w is determined

only up to an additive constant in each ergodic subchain, as described in

Denardo and Fox (12]. An interesting and intuitive result that follows

easily from the first formula is that the loss rate for each state in

an ergodic subchain Ek is the same and equal to T (k) Y'/ (k)v', where

r (k) is the stationary vector for the corresponding submatrix and y'

and v' are the restrictions Y and v, respectively, to E This formula

can be rewritten as (cf. Sec. VI)

F Pi(*Yil/Vi),
iEEk

which is the sum of the expected cost per unit time in each state of

Ek weighted by the respective stationary probabilities for the SKP.

Having first computed the loss rates for the recurrent states, the

loss rates for the transient states are obtained from the fact re-

flected in P1 - p that the loss rate for a state is given by the ap-

propriate convex combination and that I - A is invertible, where A

is the submatrix corresponding to the transient states.

Denoting the undiscounted loss up to time t by L(t), we obtain

from the asymptotic expansion of v(s)

L(t) - ft w.
(Cesiro)

Jewell T30] studies the fluctuations in cumulative loss in what

is essentially the one-state case. If the imbedded Markov chain is

ergodic, these results extend in principle to n-state problems by

considering G and the distribution of cumulative loss until the



-29-

first return. In general, the calculation would be tedious. Besides,

we are distinguishing here only one state out of n. Apparently, no

one has dealt with fluctuation theory for the n-state case directly.

A related topic is a central limit theorem for cumulative loss.

Since cumulative loss is an example of a functional of a Markov

Renewal Process, results of Pyke and Schaufele [461 apply.
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X. MARKOV RENEWAL PROGRANMING

The situation becomes more interesting when, at each state i, one

has a set of options A. and the choice at i simultaneously determines1

P.., F.., and C.. for all i E I+. The goal is to choose a policy that

minimizes either the expected discounted loss or the loss rate. In

the latter case, an appropriate secondary objective is to minimize

(i, w) lexicographically, which is especially important when some

policies can have transient states. With either criterion, an optimal

policy can be found by linear programming when I+ and X iEI+ A,

are finite. Details may be found, for example, in Jewell [28, 291, Fox

[19, 221, Denardo [10, 111, and Denardo and Fox [121, where references

to the earlier (extensive) literature on the subject are given. The

linear programming formulation facilitates sensitivity analyses and

parametric studies. Controlling roundoff errors is probably less

difficult in the averaging version, as indicated in [121.

Some papers treat the 1+ infinite case, but the author believes

that, for applications, the general theory developed so far for that

case is inadequate, since "policy evaluation" requires solving an in-

finite system of equations, and that particular problems are best at-

tacked on an ad hoc basis. The averaging version of the infinite state

case apparently has been studied only in the discrete time setup,

described, for example, in Derman [141 anJ Ross [48]. In the discounted

continous time version, however, no new theoretical problems arise when

the problem is approached via contraction mappings [101. Fox r201

describes the case where I+ is finite but the finiteness restriction on
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X A. is dropped. The connection with generalized linear programming and

column generators is outlined in [121.

Miller [32, 33' treats the continuous time Markov process case

with loss proportional to the transition time. His results go beyond

what has been obtained for general Markov Renewal Programs,

Markov renewal programming problems are a fertile source of large-

scale linear programs. Many problems that look deceptively simple at

first can lead to linear programs with hundreds or thousands of

constraints because of the detailed state description required to

make all decision points regeneration points. But often we need not

throw iL, the towel. AiuLhu luuk generally reveals that the constraint

matrix is sparse and structured so as to be amenable to decomposition.
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XI. ESTIMATION. INFERENCE. AND ADAPTIVE CONTROL

Moore and Pyke r351 develop estimators for the p ij) and the

fF. I and their large sample distributions. And Wolff [54] describes

statistical inference in birth and death queueing models. Both of the

foregoing approaches are objectivist, i.e., non-Bayesian. When a large

number of observations are at hand, the objectivist approach is un-

objectionable and difficulties stemming from a possible lack of con-

sensus of prior belief do not emerge. On the other hand, when the

observations are few or nonexistert, as is common, a Bayesiar approach
13

incorporating prior beliefs and loss functions is essential. Such

an approach may be formal or may simply consist of a sensitivity analy-

sis with the outcomes being given subjective weights. In the realm of

decision making, policies should adapt to modified beliefs as more

observations are taken.

Unfortunately, when the tradeoff between information acquisition

and immediate losses is explicitly included in the problem formulation,

the number of states generally explodes. Generally, explicit inclusion

is advisable because, if an average cost criterion is interpreted

literally, policies that are absurd for any positive discount rate can

result. Thus, from a practical viewpoint, "optimal" adaptive

policies can be found for relatively few problems [211; for the

remainder, it appears that we must be content with heuristic devices.

This area remains largely unexplored and is ripe for investigation.

"lThis is, of course, a statement of the author's opiniot,. These

matters are highly controversial.
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