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* PREFACE

As one element of a continuing program to study AGILE communication

4 requirements, Defense Research Corporation has been analyzing the trans-

mission of radio signals through heavily vegetated (jungle) terrains.

The major objective of this work is to devise theoretical models that can

be used to predict the signal strengths to be expected in a variety of

practical situations. Our program to accomplish this examines the

electromagnetic characteristics of particular models of the propagation

medium and then tests the usefulness of the model by its ability to

represent experimentally available results in a meaningful way.

Beginning with the simplest possible model, we are introducing

increasing levels of sophistication as required by Lhe comparison with

experiment. For example, in the initial phase, the transmission medium

was represented as an infinite, homogeneous region, (see Ref. 2 of the

present report), characterized only by a complex dielectric constant. In

this report, a somewhat more complicated model is analyzed: a uniform

slab, of thickness corresponding to the height of the jungle, bounded on

one side by an infinite lossless region (air), and on the other side by

an infinite, lossy region (ground). Further refinements will be intro-

duced in the future.

This program is under the direction of Dr. B. A. Lippmann. T;e work

reported on here was carried out by Drs. D. L. Sachs and P. J. Wyatt, with

substantial assistance from Dr. P. J. Redmond.
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ABSTRACT

A theoretical determination of the path loss in radio propagation

through jungle is obtained by considering the jungle as a hcmogeneous

conducting dielectric slab on a flat earth. An exact integral is ob-

tained for the verti.cal component of the electric field within the

jungle due :o a vertical electric dipole within the jungle. An analytic

evaluation of the integral leads to an approximate expression for the

field and an estimate of the error. When this accuracy is insufficient,

a numerical evaluation of the integral is performed. The combination

of analytic and numerical techniques leads to the evaluation of the

electric field and thereby path loss to any accuracy desired. Experi-

mental measurements of path loss in a Thailand jungle are compared with

the calculations. The results agree within a standard deviation of 6 db

when the jungle conductivity is taken as 0.15 millimho/m.
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S . INTRODUCTION

The practical difficulties associated with radio communications

' In regions of dense vegetation have been recognized for some time.1

The vegetation has a high water content so that the jungle medilm is

lossy. If the radio waves propagated along a direct path through the

<22

medium the riceived signal would be exponentially attenuated.2 With

reasonable values of the conductivity (a -v 100 umho/m) the attenuation

is approximately 0.2 db/m at one megacycle and is even greater at

- higher frequencies. Such a high attenuation would effectively'prevent
radio Tohrunicaion over distances greater than a few thousand feet.

Since radio fdens eation does exist over greater distances than this,

albeit quite poorly on occasion, there has been speculation that the

radiation propagates for the most part ina the jungle.

This paper derives fros first principles expressions for nhe pro-

pagation between two antennas Immersed in a jungle-like medium. The
theory nb copared with experiments conducted in a Thai jungle by
iAnsky andpBailey 0.2 and the apparent anomaly referred to appears to be

explained.

The electrical properties of a jungle are extremely complicated.

Mo•st of-the space is occupied by air with properties close to the
vacuum. The trees and other vegetation have a higher conductivity and

dieloctric conitant and are distributed more or less randomly over the

surface. Fortunately, at long wavelengths the propagation character-

altitc of an elpctrorlonetoc wave are not sensitive to this fine detail.

An electromagnetic w#,ve propagating through a medium is only sensitive
to some average progerties of the medium where the average is taken

over regions whose linear dimensions are of the order of a wavelength.

We therefore, consider an approximation to the-like econsisting

of a uniform slab of fixed height with permitivity n and conductivity

aO T bounded by a flat earth surface with per etevity re and conductivity

atot and above by the air with vacuum properties. This picture t s
reasonable provided: a

4 '"tED,"
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1. The flutctuation tn the number of trees, etc., in an area

one wavelkngth squared is small compared to the total number

of trees in this area.

2. If the height of the ungle is larger than a wavelength it

is necessary that, within the jungle, the average electrical

p-coperties do not vary significantly with height.

3. The transition region between the air above and the jungle

must be small compared to a wavelength.

These conditions are probsbly sufficient to guarantee the quali-

tative validity of the theory. For quantitative validity it would also

be necessary that the terrain be reasonably level over the range and

that the properties of the jungle be reasonably uniform over the range.

In this study it was intended to determine the range of validity

of this idealized slab model by comparing the results of calculations

with experimental data. For the wavelength region studied so far (wave-

length from 3 to 50 meters) we have obtained satisfactory agreement

between theory and experiment.

The problem of the propagation of electromagnetic energy through

a many-layered medium has been studied extensively. For this

ge-aeral class of problems it is relatively easy to obtain a formal

sos..ution to the problem in which the field strength at the receiver is

represented by an integral. We have obtained such an integral represen-

tation for the particular geometry of our problem.

Unfortunately, the integral representation of the solution is

cufficiently complicated that considerable effort is required before

numerical results can be obtained in a form suitable for comparison with

experiment. We have performed these calculations with sufficient pre-

cision so that any discrepancy between the-mathematical results and the
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experimental data is due either to inadequacies in the physical model

or uncertainties in the experiment.

At larger ranges it is possible to cbtain an approximate analytical

evaluation of the integral and an estimate of the error involved in the

approximation. This acyaptotic solution corresponds to a lateral wave

propagation mode, or "treetop" mode. This mode may be described in

terms of a wave packet (ray) which propagates up to the treetops, strik-

ing the boundary near the critical angle for total internal reflection.

It then propagates in the air until it reenters at an angle near the

critical angle. The field is attenuated exponentially only along a

path from the transmitter to the treetops and from the treetops to the

receiver. While propagating through the air the field falls off as h/r2.

This asymptotic formula is capable of explaining most of the experi-

mental data. At the smaller ranges the error becomes too large. For

this region the original integral was evaluated by numerical quadrature.

As a check on the consistency of the two procedures the numerical

quadrature was carried up to ranges where the asymptotic formula was

valid. In the region of overlap the two methods gave identical results.

Examples where all of these numerical techniques are required are given

in Sec. III, and the transition regions are discussed.

In Sec. II the formal mathematical solution is presented and

it is demonstrated that this solution is consistent with our description
of the lateral waves.

In Sec. III the path loss for a variety of experimental data is

compared with the theoretical predictions. To date we have considered

only the cases where both the receiving and transmitting antennas were

in the jungle medium. There is a considerable amount of data for this

case and it is in this situation where the greatest difficulties in

communication might be anticipated, The calculations considered only

6 UNCLASSIFIED
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the case of vertical polarization, a frequency range from 6 to 100 Mc/sec,
and a range up to one mile. Withln these restrictions the available
data provided by Jansky and Baiiey was considered. The theoretical

results depend most critically on the jungle conductivity and this was

the only parameter varied. The theoretical and expertmcatal results

agree to within a standard deviation of 6 db when the jungle conduc-

tivity is taken as 0.15 millimho/m. This agreement is considered satis-

factory. Jansky and Bailey performed independent measurements corres-
ponding to the same range, height of antennas, and frequency with results

, varying by as much as 13 db.

The average conductivity of the Thailand jungle has not been

measured, and there are very few measurements of this kind available

for any jungle. The value we have obtained is reasonable and is con-

sistent with experimental results8 obtained in California.

The slab model predictions appear to provide a satisfactory

correlation with the experimental data. Indeed the model works well

_ ifor wavelengths shorter than we had at first anticipated and we intend

to extend our calculations to still shorter wavelengths in order to

determine when and if the model seriously breaks down. We also intend

to consider horizontal polarizations and cases where one or both of the

* iantennas are above the jungle.

The details of the numerical evaluations and the derivation of

the formal solution are contained in appendices.

II. PHYSICS OF THE SLAB MODEL

The mathematical problem posed by the idealized physical situation

possesses an exact formal solution. It suffices to consider only the

formula for the z-component of the electric field, since the other

field components are readily obtained from E . The z componeat of the

electric field at the receiver is given by

SUNCLASSIFIED
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E P ia3 Ho 1 ) ()aR) F(a) da volt/m (1)
i 1/f

where P -T- (power radiated in kw)I12 and f is the frequency in Mc.
n

For both the receiving and transmitting antenna it, the jungle

- e-XjX I ([e-xj IY -x ( 2 11-Y) -Xj (2H+X)F(a) 1•. +[+Va + VaV e

ex (2H--x 2H)

+l V V e (2
a g afg

where _ -n 2 n 2 n2
v- V --
a 2 +n g 1xj + nj xa9 ng 2xj +n j 2xg

ja gj j

where n2 - c + 18 ic (millimho/m)/f(Mc). (See Fig. 1.) This integral

represents the solution in the jungle as a superposition of cylindrical

waves which are successively reflected from the jungle-air and jungle-

ground interfaces with reflection coefficients V a and Vg respectively.

The variable of integration, a, is the cylindrical propagation constant.

Distances are measured in units c/w - 150/0tf) - 1/K°0

and R - Kor, H - Koh, X - KoZ-Zo1, Y - K"0(Z+Z ), Z-K 0 zZ 0 K z

The attenuation factors for different paths are described in terms of

the variables

Xj;7j X a and xg - JI~g2

and the square roots are defined so that the real parts of the x's are

positive.

8UNCLASSIFIED
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The various terms in Eq. (2) have a simple interpretation. The

first term e-xJX represents the field produced by the dipole in the

absence of the interfaces. The next term proportional to V e-xjY

g
represents those plane waves which are reflected an odd number of times

with the first reflection occurring at the ground. The remaining terms

represent cases where there is an odd number of reflections with the

first -eflection at the air interface, an even number of reflections

with the first reflection at the air interface, and an even number of

reflections with the first reflection at the ground interface. The

numerators represent the results of the first one or two reflections

respectively and the denominator sums the contributions from all sub-

sequent pairs of reflections from the ground and air interfaces.

For most values of the parameters the integrand in Eq. (1) is

strongly peaked at a = 1 corresponding to a ray, called the lateral

wave, propagating at the angle of total internal reflection. In such

cases the integral may be approximated by a simpler integral describing

this ray. The new integral can be evaluated easily by a Gaussian U

quadrature. An approximate analytical evaluation of the new integral

can also be performed. Such solutions are presented ia Appendix III

and the domains of their validity are discussed.

When the methods described above break down, it becomes necessary

to evaluate the original integral, Eq. (1), numerically. This is a

difficult task because the integrand is oscillatory. Methods for

accurately evaluating such oscillatory integrals are available and

they were applied to this type of problem for the first time in tt'!s

study.

When the solution can be expressed in terms of the superposition

of a set of plane waves with propagation vectors lying in a small region

of k-space it is most appropriate to interpret the solution in terms of

a wave packet which suffers successive reflections. In order to gain

S~UNCLASSIFIED"lp
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some insight into the nature of these solutions we consider the behavior

of a wave packet after a single reflection.

Consider a wave packet with average propagation vector to incident

on a plane boundary as in Fig. 2. For simplicity we assume the fields

are independent of y. The incident wave packet can then be described by

E zinC (x,zt) = f dk xdkz A(k ,k z) expi(kx + kzz - wt) (3)

where w is a function of k and k and the function A is strongly peaked
X z

at k -t. If we expand the phase factor about the point k - ,we

obtain

ik0X+ ik0z 0 iW°t

Ezinc (x,z,t) t e x z f - 'x-w t, z- t4)
x

where w/ak x and aw/ kz are components of the group velocity evaluated

at to and

APPARENT PLANE OF REFLECTION

AN-4021-30-U

REIO 11\
/ \

/ \
/\

REGION II /

/ /\ \
/ /\ \

/ /\ \

/ x

* /\

REGION 1

INCIDENT WAVE PACKET REFLECTED WAVE PACKET

Figure 2. Displacement of Wave Packez
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f (a, 0) mJ~dk dk A(k ,k ) exp i [(kx-kx 0) a + (k,-k 0) 0] (5)

The reflected wave is given by

E refx(x,z,t) -fdkxdkz A(kx kz)IV(k kz)exp i (kX-kxz-wt+O(kx kz (6)

where the reflection coefficient is IVIeiO. If we assume that the

amplitude of the reflection coefficient varies sufficiently slowly so

that it may be taken outside the integral we obtain

ref 0 0 ~~i(k x0x - k ° z - w 0t + O(k x ,kz ))

Eref (x,z,t) JV(k xk z°) e k z(xz
f 2tW - z -- + a (7)

( ak 3kf zt + Ik

where f is the same function that occurs in Eq. (4) and the derivatives
are again evaluated at t .

Consider now an incident wave packet which first strikes the boun-

These conditions require

f(a,O) - O if a > 0 or 8 > 0.

By examining Eq. (7) we see that the reflected signal will not appear

in region I (illustrated in Fig. 2), until a sufficient time has elapsed

so that the second argument of f is negative at z - 0. This time delay

is given by

6T- (a•/kz) / (/3k z).

12 UKLASWIiED
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When the field reappears, the wave packet has traveled a lateral

distance 6L obtained by setting the first argument of f equal to zero.

The transverse displacement is given by

6L = -W/akx + (w/k x) 6T.

This lateral mode, or "treetop mode," dominates at large distances

because it propagates mainly in the lossless medium rather than in the

jungle. The effect will be a large one only when the phase * is a

rapidly varying function of either the frequency or angle. In our

problem this occurs at the critical angle e of total internal re-c
flection. At 0 =6 c, 6L = and is a rapidly varying function of the

difference 8 -0c

By looking in detail at the dependence of 6L on 0 it is possible

to demonstrate that the field strength varies as 6r- 2 5L 31 2 which is

consistent with the analytically obtained dependence cf /r 2 .

The above analysis is by no means novel or original. The phe-

nomenon is a general characteristic of wave motion and whenever the

phase of a wave is a function of any parametee there will be a displacement

in the corresponding "canonically conjugate" parameter. In ele' .rical

network theory the time delay associated with a phase change wV~ich

varies rapidly with frequency is very familiar. In quantum mechanics

the rapid energy variation of a phase shift at a resonance is associated

with the time the particle spends in the resonant state. The lateral

displacement of a light beam has been observed for rays near the

critical angle, and this kind of a wave is well known in seismology.

In our discussion it was necessary to make the assumption that

the magnitude of the reflection coefficient varied slowly with angle.

Such an assumption is correct for a lossless medium but is not valid

if there are significant losses. Such losses would change the shape of

UNCLASSIFIED
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the wave packet. Other effects, such as a spherical divergence of the

wave packet, which change the shape of the wave packet have also been

ignored. The formal solution correctly contains all these effects. As

a result these contiderations are an aid in the understanding of the

analytical calculations but do not in any sense replace them.

The formal solution is originally expressed as an integral over

real a. In this form the numerical quadrature described in Appendix II

is appropriate. The integral may also be considered as a contour

integral in the complex plane. By deforming the contour, contributions

from discrete poles and branch cuts may be identified and separately

considered. This is discussed in detail in Appendix III. The pole

terms correspond to damped waveguide modes. For sufficiently large r

the contributions from the branch cuts correspond to the lateral waves

as described above. At smaller r the contribution from the branch

cuts has a more complicated behavior than described above and represents

an extension of these simple ideas.

III. SAMPLE CALCULATIONS AND PRELIMINARY COMPARISON WITH EXPERIMENT
Figure 3 is a plot of calculated E z(rms) vs range for a frequency

of 0.88 Mc. For this low frequency, the numerical integration described

in Appendix II must be used throughout the range of interest. Figure 3

illustrates three distinct stages of the behavior of Ez vs r. For

r < 10 2m, Ez decreases exponentially. In this region the waves remain
In the jungle and are described mathematically by the pole terms. For

10 2m < r < 10 3m, Ez decreases as h/r. The pole terms are now negligible

compared to the lateral wave which has a 1/r dependence at short ranges.

For 10 3m < r < 10 4m, the r dependence of the lateral wave is in a

transition region which will lead to the final dependence of 1/r2 given

by Eq. (40), Appendix III for r > 10 4M.

Figure 4 illustrates this transition for f - 2 Mc. The points

marked with an x are the result of the Gaussian integration of the

"14 UNCLASSIFIED
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10 "TRANSMISSION FREQUENCY, f = 0.88 Mc/sec--
TRANSMITTER HEIGHT, zo = 21 ft.

RECEIVER HEIGHT, z = 20 ft.
-- SLAB HEIGHT, h = 40 ft.

GROUND, g 20, 0g = 10 millimhos/m

- _ - JUNGLE, Ej = 1.02101
IIP

\ aj 0 0.1 millimhos/'3

I• •

LLL-

a. = 0.2 millimhos/m
5-- 1-O---• -

00

FE

-0

10,

RANGE r, meters

Figure 3. Sample Calculated Field for f =0.88 Mc/sec
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107 TRANSMISSION FREQUENCY, f = 2.0 Mc/sec

TRANSMITTER HEIGHT, z0 = 21 ft.

ECEIVER HEIGHT, z = 20 ft.

- SLAB HEIGHT, h = 40 ft.
GROUND, g 20, ag 10 millimhos/m

- JUNGLE, E. = 1.02

10

j= 0.2 millimhos/m = 0.1 millimhos/m

4 
.

01

N 
i

10 x
-- x

10 2
-•1 0 1 00 1 0 0 0 1 0,O0 0 0

RANGE r, meters

Figure 4. Samaple Calculated Field for f - 2.0 Mc/sec
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lateral wave described in Appendix III. For this frequency, the lateral

wave is the dominant contribution throughout the range of interest.

However, it is best evaluated by the method of Appendix II for

r < 5 x 10 3m. From Fig. 4, the lateral wave falls off slower than h/r2

2 2
then faster than 1/r , and finally settles to a 1/r range dependence.

The remainder of this section is concerned with a preliminary

comparison of the calculated electric field with the experimental results
3 4of Jansky and Bailey.' The only case under consideration at this

time is that of vertical polarization with both transmitter and receiver

within the jungle. The frequency range of this comparison is from 6

to 100 Mc.

The distance from the transmitter is limited to one mile. For

ranges larger than this the transmitting and receiving antenna were

often separated by intervening hills, and the results do not directly

apply.

The simple expression [Eq. (40), Appendix III] for the lateral

wave is accurate to 3 db in the regime covered by the following graphs.

The points on thi graphs, however, are calculated by the Gaussian

integration and are accurate to 0.1%.

For comparison purposes the calculated electric field is trans-
4

formed into basic path loss, Lb, by the equation

L - 13 9 .0 - 20 log Erms + 20 log f

where f is the frequency in megacycles and E (microvolt/meter) is
rms

calculated for a point dipole radiating one kilowatt into empty space.

Figure 5 shows a series of curves of L vs r (miles) for various
b

receiver heights at a given frequency, f, and transmitter height, zo.

The straight lines are calculated values for the input parameters,

UNCLASSIFIED 17



TRANS11ISSION FREQUENCY, f s 6 Mc/sec

AN-4-028-30-U TRANSMITTER HEIGHT, z. = 40 ft.

SLAB HEIGHT, h = 40 ft.

RECEIVER HEIGHT, z GROUND, c, . 20, o9 10 milllmhos/ni

50E H GT 1 JUNGLE, ej 1 .02

Z 7 ft. z 20ft. z 3 ft. z 40 ft.

V~0 - AAT

=70--
INAN

A A A

80 'A

A

90 A - -%
0.1 1 0.1 1 0.1 1 0.1

RANGE r, miles - a 0.1 mill mhos/m
.--- a = 0.2 millimhos/m

Figure 5. Comparison of Predicted and Measured Path Loss,
f - 6 Mc/sec, z - 21 ft

h - 40 ft
Cg- 15, a - 10 millimho/m

g g

and cj - 1.02

oj = 0.1 milllmho/m for the solid line and

oj - 0.2 millimho/m for the dashed line.

Figures 6 through 12 are additional graphs for other combinations

of f and z . In all graphs the experimental points are denoted by the

letters A and B. These points denote measurements along two different

winding trails (A and B) at the Thailand jungle test site. The scatter

of the experimental data points is believed due to the lack of homo-

geneity of the jungle and the variation in environment of the antenna.

The environment of the transmitting antenna can cause an azimuthal

asymmetry in the radiation patterns. Also, the jungle character of

the ray path at each azimuth may be different. Thus, there will be an

azimuthal asymmetry in the electric field. Since the trails are not

18UNCLASSIFIED
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RECEIVING ANTENNA HEIGHT
70 7 ft z = 13 ft - - 2

AA.N 8 I - --I

80
C) BB

B\ -\\4

- 90 'AA- Ai, - \A

AB

CO 100 A
A :B

A A110 - -- i 0.

I 1 ' 1 0.1 1
RANGE, mi

z 30 ftz = 4 0t

A rAB\ B

80- -

U B!

-J-A

90 -B

S100 -

110
0.1 1 0.1 1

-0.1 millimho/m RANGE, mi
- = 0.2 millimho/m TRAW':tIISSION FREQUENCY, f = 25.5 Mc

SLAB HEIGHT, h = 40 ft

TRANSMITTING ANTENNA HEIGHT, z. = 40 ft

Figure S. Comparison of Predicted and Measured Path Loss,
f - 25.5 Mc/sec, z = 40 ft
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TRANSMISSION FREQUENCY, f - 100 Nc/sec
TRANS11ITTER HEIGHT, zo T 40 ft.

RECEIVER HEIGHT, z SLAB HEIGHT, z 40 ft.
GROUND, .g 20, og . 10 millimhos/m

80

z 20 ft. z 30 ft A z -40 ft.

A
90 A

B

10 B 1 sB
110

A A

A

120A

enm130
0.1 1 0.1 1 0.1 1<Z

RANGE r, miles a = s0.1 rill tihos/m
a = 0.2 millimhos/mZ.

Figure 12. Comparison of Predicted and Measured Path Loss,
f -l100Mc/sec, zo = 40 ft

!0

straight, each measuremnent taken at a different ra..ge is also at a

different azimuth. Finally, the receiving antenna is in a different

environment at each measurement.

Since the calculated electric field depends most critically on

the jungle conductivity, this was the only quantity varied in the

calculations. The curves for the two values of conductivity generally

bound the experimental points for all values of receiver and trans-

mitter height and frequency with the exception of the f - 25.5 Mc,
4

z - 21 ft case (Fig. 7). Jansky and Bailey, on pp. 4.6 - 4.8 of

Report 6, call attention to an apparent inconsistency in their data

at 25.5 Mc and low transmitter height and observe that a 10 db decrease

in their path loss would make their results more reasonable. This

10 db decrease in measured path loss will bring the experimental

points into the neighborhood of the calculated values.
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The difference between the calculated and measured path loss is

plotted statistically in Fig. 13 for the two conductivities. The

points of Fig. 7 were not included. These plots show the lower

conductivity to predict a path loss which is too low by 4 db and the

higher conductivity to predict a loss high by 5 db. The important

result is the standard deviation of 6 db. This illustrates the utility

of the slab model. The calculation has a 68% chance of being within

6 db of the measurement for all antenna heights, ranges and frequencies

between 6 and 100 Mc when the Jungle conductivity is taken as approxi-

mately 0.15 millimho/m.

10

1 -O.1 milllmho/m

-J • MEDIAN - -4 db
> "• STANDARD DEVIATION =6 db -•

0-

0.' -10

20

20

a = 0.2 millimho/m
< MEDIAN =5 db

"STANDARD DEVIATION = 6 db

0

Ldh

., 0.01 0.1 1 10 2030 4050 6070 8090 95 99 99.9

z PERCENT OF SAM4PLE EXCEEDING ORDINATE VALUE

Figure 13. Distributions of Differences Between Predicted
and Measured Path Loss
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IV. CONCLUSIONS

A simple slab model of the jungle is capable of explaining the

experimental propagation data over a wide range of parameters. The

calculations performed so far have considered only vertical polarization

and both antennas in the jungle. We are continuing the study to in-
clude horizontal polarization and cases where either or both of the

antennas are above the jungle. A comparison with the experimental

results of Jansky and Bailey and other experimental groups, where

available, will be made and the regimes of validity of the slab model

will be determined.
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APPENDIX I

DERIVATION OF THE FIELD EXPRESSIONS

The integral representation of the fields can be obtained simply.

For the sake of completeness we include an outline of the derivation

following that given by Wait. 7

The free-field equations are

V x E i !-H (8)
C

c c c

where w - 2wf - cK is the angular frequency of the radiation. The fields

can be expressed in terms of the Hertz vector n

E ,=V x (V x R) (9)

H - iX n 2V x f (10)0

if H satisfies the equation

V2H + n2K 2f 2n O. (11)0

Because of the cylindrical symmetry of the problem (with vertical polari-

zation), H is in the z-direction.

The solutions of Eq. (11) which are regular at the origin and

independent of azimuth angle are
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I - J (aR) e ±zx (12)

2 2 2

where R is measured in units of c/w and x = a 2 n , and the real

part of x is greater than zero.

The solution to our problem satisfies the free-field equations

everywhere except at the antenna where it has a singularity character-

istic of a point dipole. By superposition the solution has the form

= Xa(H-Z) d
1a f aa(a) Jo(aR) e ada (13)

0

nj Go [°e J+ a ea j~)ex da
0 a-xIX aj (a) xJ (H-Z)+ bj (a) e-x (H-Z)1 aJa)d

(14)

f -x (H-Z)
b(a) e J 0 (aR)a da (15)

J
0

where the coefficient a is a measure of the dipole moments of the trans-

mitting antenna and the other symbols have the 3ame significance as in

Section II.

By using Eqs. (9) and (10) the field components can be determined

as linear functions of the four unknown functions a a(a), aj(a), b (a), bg(a).

The requirement that the tavgential components of the electrical and

magnetic field be continuous at the boundary leads to four algebraic

equations Which determine these coefficients. The algebra is straight-

forward and leads to

Ez 2Po a 3 Jo(aR)F(aR)da (16)
z j 0 4

0
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where P and F(aR) are as given in Eq. (1) in the text. It is convenient

to have the range of a extend from -- to +-. To do this we note that

F(-c*) - -F(a) and

1 *(1)()(-RJ(cR) - H ()H (aR) - H°M(-R)j.

With these substitutions we obtain Eq. (1) of the text.
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APPENDIX II

EXPLICIT EVALUATION OF THE FIELD INTEGRAL

I
The explicit evaluation of the field integral given by Eq. (1) of

Section II cannot be achieved by conventional quadrature techniques

because of the rapid oscillation of the Bessel function for large cR.

Thus even though the function F(a) converges in general within modest

ranges of a, most numerical integration procedures would lose all signif-

icance whenever R became appreciable because of the cancellation of the

individual quadrature terms with one another. For any well-behaved F(c)

the integral is easily shown to tend to zero as R tends to infinity. Via

numerical quadrature, this would be manifest by a large number of terms

of essentially equal magnitude (though different sign) being added together

to yield a residual which may be made as si.all as desired by letting R

become large. Irrespective of the number of significant figures a given

digital computer is capable of handling, there will always exist an R

beyond which a mechanical quadrature will result in a total loss of

significance. There is, however, a means of numcrically evaluating the

Sintegral in question without meaningful loss of accuracy for any value of

R so long as computing time is no obstacle. In other words, a numerical

attack upon the integral is always possible, but becomes more time-

consuming as R increases. The broad range of validity for the analytic

methods of Section III, however, insures that these contingencies do not

arise. Of particular note concerning the numerical evaluation described

herein is its exact agreement with the results of Section III in the

regime beyond which the latter approach was shown to be accurate. Thus

two essentially independent evaluations of the integrals concerned yield

identical results, thereby providing a self-consistency check rarely

V available in similar work. In regimes where the methods of Section III

are no longer accurate, those described in this appendix .ýre used; and

conversely, where these numerical quadratures become too time-consuming,

the analytic methods of Section III are of sufficient accuracy to be used.
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A mechanical quadrature of the field integral is achieved by first

noting that the source term contribution may be evaluated explicitly •

Thus

E z Eprim + A f(a) + f 2(a) R) 3  (17)

where

Epri= A ei nJ 2 +. 2  in1 -1/Q
z Q In + Q

n- n2 Q-Z°2 
(18)

and

Q R2 + ,)2 (19)

with fl(a) and f 2 (a) given in appendix I.

When a 2 becomes somewhat larger than the irodulus of nj 2 , the dominant

behavior of fl(a) is controlled by the exponential factor

-x Y -Y (20)

e J-e

whereas f2(a) is dominated by the factor

-xj (2H-Y) - (HY
i -a(2H-Y)e ÷e •(21)

Thus given h, z, zo, and f (See Sec. II for nomenclature) an upper limit

of a (called a max) may be chosen beyond which the integrand of Eq. (17)

contributes a negligible amount. This a will be sufficient for a
max

""3
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complete range of R. If R is fixed, on the other hand (i.e., the genera-

tion of height gain curves is required), a max must be varied in such a way

that a Y is greater than a fixed constant. Since Y and H are directly

mmax
Sproportional to the propagation frequency, a max is easily frequency scaled.

All that remains, therefore, is the evaluation of

amax

E zsec . A f [flc(a) + f 2 (a)] JO (aR)a3da (22)

0

where fIc(a) and f 2(ca) are complex functions. Separating each into real

and imaginary parts, the secondary field may still be written in terms of

finite integrals along the real a-axis as

Esec =A + (3

E[z gl (u) J0 (aR)ci dc + i g2 (a) J0 (aR)ct3d (23)

0 0

where gl(a) = Re[fl(a) + f 2 (a)] and g2(a') = Im [fl(a) + f 2((a)].

The severe oscillations of J o(aR) do not occur until aR is well

beyond unity. Indeed at this point J c(aR) can be accurately replaced by

the first two terms of its asymptotic expansion, viz.

J(aR)- 2 cos (iR - r/4) +- 8aR - (24)

This expansion will provide an approximation to J 0(aR) better than one part

in 104 when aR > 30. Choosing 0 = 30/R the integrals of Eq. (23) may be

divided into two parts, viz.

c acaI

J da d odct+ f da , (25)

UN0
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with the asymptotic representation of J o(aR) being used in the last inte-

gral. The integrals from 0 to 8 may be very accurately generated using

standard Gaussian quadratures whereas the integrals from 8 to %max are

most amenable to solution by Filon's method. 9 This latter method, des-

cribed in considerable detail in references 9 and 10, was developed to

handle mechanical quadratures of the type

J f(x) cos Rx dx (26)

a

Upon substituting (24) into (23) for a > 8, the resulting integrals

may be cast into one of the forms
/max max

FI(x) cos (Rx -n/4)dx or F2 (x) sin(Rx - r/4)dx (27)

The interval from 8 to a max is then divided into 2n equal inter'als of

size 6 - (a max- 8)/2n and the values of the indepen'ent variable a at

these points are indicated by x0 , x1 , ... , x2n. Introducing the variable

e - 6R, one obtains

f F(a) cos(aR - n/4da

XIx0x

-6 [p(e) IF2  sin(Rx2  - F sin(Rx - -)T

+ q(0)C2n + r(6)C2n-1] + Rn (28)

and
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x2n
i3 F(c) sin(cR - f/4)dc

x0

" [s(Ro -c- Rxx o o 2n

6[p0o F2ncos( 2x

+ q(0) S2  + r(O)S 2  + R (29)

where the generalized Sinmpaon coefficients p, q, and r are given by

21 sin 20 2 sin2(p(O) = * * 202 (30)

fi 2e2e

q(0) =2 +Cos 2 0 sin 2(31)
/s02 022 (s 0

r(0) 4 (32)o2 3

In addition, one has

"n

C2  = F21 cos (Rx2i - r/4)
iMO

- [F2n cos (RX2n /4) + F cos (Rx - (33)

n

C2n 1  F2 1-l cos (Rx2 1-, - n/4) (34)

n

S2n = F2i sin (Rx2 - ir/4) - • [F2n sin (Rx2n -/4)

:t=O

+ F sin (Rx - n/4)] (35)

0 0
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n

S2n-1i F 21- sin (Rx2 i-1 - i1/4). (36)
i-I

The remainder terms are given by

Rn -=ý Rh5  -(3) sin (Rx 2 i - /4) - F(4) ()-O(Rh 7) (37)

i-i

R ' 2Rh 5  FMl cos (Rx~i - ,/4)-nh- F(4) (&)-O(,Rh 7 ) (38)

i-i-

As Is evident from expressions (37) and (38), the error is propor-

tional to R times the interval size to the fifth power. Thus for very

large R the interval size h must be decreased appropriately to maintain

accuracy. This in turn results in increasingly long periods of computa-

tion. The true practical usefulness of Filon's method is therefore in

some doubt. Although postulated to be a panacea for large R, the method

is actually most useful from the practical point of view for small 0, i.e.,

for hR small. With a computer, however, the method does yield a convergent

solution as the interval size h tends to zero. This should be contrasted

to any other mechanical quadrature scheme which, irrespective of the

smallness of the integration step size, will in general not converge for

any reasonably large val'e of R.

U S
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APPENDIX III

ANALYTIC SOLUTIONS

In order to obtain an asymptotic expansion of the fields we first

note that HM has the asymptotic expansion
0

H(1)oHI1 cR ejit/4 e iaR + +0
0 =7raR (181azR R2

valid for IaRI >> 1. This may then be inserted into Eq. (1) of the text

and the resulting integral can be evaluated as a contour integral.

The integrand vanishes on an infinite semi-circle in the upper

half a-plane because of the e term in H(0 . The original contour which
0

lay along the real axis is therefore deformed to this semi-circle. One

is left with integrals along two branch cuts and contributions from poles

that were crossed (Fig. 14).

The poles correspond to transmission modes through the jungle which

are exponentially damped. The cut at x =0 (a= n ) corresponds to the

lateral wave at the jungle-ground boundary. This wave is highly attenu-

ated because of the high conductivity of the ground and is negligible.

The cut at x = 0 (a - 1) corresponds to the lateral wave at the jungle-
a

air boundary. This wave is not exponentially attenuated and is therefore

the dominant contribution after one damping length of the pole terms.

There is no branch point at xj = 0 (a - nj) since F is even in xj.

The poles are the normal modes of propagation through a waveguide

and would be the dominant contribution if the waveguide were not a lossy

jungle, In this case these pole contributions are negligible for
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to the air above and then propagates through the air. This is analogous

to the usual ground or surface wave of radio propagation except in this

case the lover boundary is jungle rather than ground.

The contribution from the cut at a -1 is evaluated by transforming

2!

to the variable a by the transformation a -1 + is 2; -- < s < -.* This

transformation describes the contour of the a-plane which runs from a - 1

+ i- to a - 1 on the left of the cut as the negative real s axis and the

contour in the a-plane which runs from Ca -I to a -P1+ ic on the right

side of the cut as the positive real s axis.

By taking

x o a- _1 _ s(i + 1) o7 +h s2 /2

the correct sign for xa on each side of the cut obtains.
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With this transformation the branch cut contribution is

Eb PQ8 ei•/4 e'R ds(l + is 25/2 s e-RsF((s))2 + **.)I ~8iR(l+is)

(39)

The functions F(s) and (1 + is2)m where m = -1 and 5/2 are expanded

in Taylor series about s = 0. Only terms of the integrand that are even

in s survive. The result is

Ebw~ ~i~ r~ 29iF' Fp
Eb 1F .+-ji+-- P-00

where the subscript "o" means the derivatives are evaluated at s 0 0. Theb 1
expression for Eb is an asymptotic expansion in R. The - terms in the

z Rbracket provide an estimate of the error involved when using the first

term alone. The result is then

0iPF
So

rms P?

9"1 O10 Voe
K (Z, Z, H) pvolt/m (40)

2 --ff in2_1 Ir 2

where

I--x

eJ0 +V0 e i

K(Z,Z ,H) [ e 0  2]

g
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and

2 o 2 oV° n x, n x .r x -• -n 2 and x• 0- l

"9 2 o 2 o 9 2n g x j + nj xg

] The fractional error is

'+E +E +E (41)8R 4RF 1 2 3 4 5

01where

o -2xH H
EI -3h .9

Srx 0 0o e-2xoH

Se 
i(-2x1- j

E9

2 R

12n4 V0 e-2x H

E 3a- '

1 ) ( e o2)

3 Y _V e e XV° e + e

Em xg + 2 g x X x ,/]

+~ ~ Vex +x)(

22 2 2
3n n (n - )

00 0o 2o2
IE I

e -x X ex JX -x y 2e-2x.H

x~~~~~~~~ • Xy+v -j j 2

ej + e + +e I ) + e
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This expression is too complicated to be useful if a quick estimate

of the error involved in using Eq. (40) is desired. Comparison with a

numerical evaluation of the branch-cut integral, Eq. (39), shows that

the discrepancy between Eq. (40) and the exact evaluation agrees with

the estimated error only at the high frequencies (f > 25.5 Mc). At

f < 25.5 Mc, the discrepancy is greater than the estimated error by a

factor of three in some cases. It would therefore be desirable to

replace the error expression, Eq. (41), by a simpler and more accurate

error bound. Numerical work shows that the expression for the error may

be approximated by the following formula:

S3 n 4  3 (H - Y/2)"E - -n-- + x- o(42)

R(n - 1) RX0

for frequencies in the range 6 < f < 100 Mc. However, this expression is

overly pessimistic at the high frequencies and is too small for f < 6 Mc.

An accurate error bound at all frequencies can be obtained by simply

, ,using three times E (expression 41). More extensive numerical comparisons

will be necescary in order to determine simpler expressions for accurate

error bounds in all frequency regions.

Both expressions (41) and (42) show the error to be inversely

proportional to r. The error decreases as the range increases. Thus the

long-range behavior of the electric field is accurately given by

expression (40).

When E = 1, expression (40) is no longer accurate but the integrand

of Eq. (39) is still well-behaved so that a Gaussian integration of

Eq. (39) is easily effected. In this regime, the branch cut is still

the dominant contribution. However, it is evaluated numerically to an

accuracy of 0.1% rather than by the asymptotic expansion.
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For E > 1, the Gaussian integration fails to converge. In this

regime a numerical integration of the original integral is used. The

numerical integration is accomplished by a machine code, described in

Appendix II, which evaluates the total field, that is, the contribution

from the cuts and all poles. We thus are in a position to make an

accurate numerical evaluation of Ez for all values of the input parameters.
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