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FOREWORD 

This report and its companion work, "Nonlinear Pro- 
gramming: Sequential Unconstrained Minimization Tech- 
niques," represent the product of a number of years of 
research in the mathematics and applications of nonlinear 
programming. This program of research has been funded 
by the Army Research Office with basic research funds and 
has resulted in a very powerful tool of potentially great value 
to the Army in increasing its power of problem solving. It 
is hoped, by the distribution of these reports throughout the 
Army and the other services, that the government will reap 
the benefits most expeditiously of its investment in basic 
research. 

Applications of recently developed nonlinear program- 
ming methods to problems in a wide range of areas are 
presented in this report. These methods are currently 
employed at RAC for the solution of problems concerning 
large-scale weapons systems. 

Frank A. Porker 
President, Research Analysis Corporation 
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PREFACE 

This book presents selected applications of nonlinear programming in some 
detail. The first chapter, which is a general introduction to nonlinear pro- 
gramming, contains definitions, classification of problems, mathematical 
characteristics, and solution procedures. The remaining chapters deal with 
various problems and their nonlinear programming models. For most of 
the problems considered we give a brief summary, a mathematical formula- 
tion of a nonlinear programming model, and one or two examples. Some 
of the examples are based on "live" or real-world data, others on hypothetical 
data. 

The mathematical programming problem is to determine values for a 
specified set of variables that optimize (maximize or minimize) a numerical 
function of the variables, subject to various constraint relations that are 
numerical functions of the variables. 

When both the constraints and the objective function are linear, the 
problem is a linear programming problem. We have not dealt with linear 
programming models in this book because the area admits of a large quantity 
of literature and also because computer programs have been developed to 
such an extent that it is difficult to do justice to the topic of applying them 
to various problems without writing a great deal on each. A good intro- 
ductory description of the application of the LP/90 linear programming 
simplex method computer program to optimizing production mix in an oil 
refinery is contained in Chapter 3 of An Introduction to Linear Programming, 
IBM Data Processing Application, International Business Machines Corpora- 
tion, E20-8171, 1964 

When one or more of the constraints, or the objective function, are 
nonlinear, the problem is a nonlinear programming problem. Nonlinear 
programming problems may have widely varying characteristics, and certain 
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limitations on the forms of the functions are necessary if problems are to 
be solved. We discuss mathematical limitations in Chapter 1. Research is 
progressing on many of the unsolved problems and therefore it is difficult 
to characterize the kinds of problem that can or cannot be solved. It is not 
our purpose to delimit the areas of possible nonlinear programming applica- 
tions by completely characterizing the nonlinear programming problems 
that can be solved mathematically. Rather, we use the approach of 
discussing solved problems by assuming that model building will interact 
with mathematics to influence the direction of mathematical developments. 

It should be noted that procedures used to solve nonlinear programming 
problems can in many cases solve linear programming problems. They are, 
however, seldom as efficient and should be used only when justifiable in the 
particular situation. 

This book is intended primarily to help the interested reader to acquire 
facility in building mathematical programming models—in particular, non- 
linear programming models. Mathematical programming as characterized 
above is not the context in which many are introduced to the field and thus 
is not the usual foundation for thinking about problem areas to which 
mathematical programming models might be profitably applied. Rather, 
many think of linear input-output systems with linear objective functions 
and try to extend the framework to more general problems. It is particularly 
difficult for persons with limited mathematical training, as is often the case 
in linear programming courses in business schools, to go beyond linear 
systems. We hope that this book will serve as a vehicle for extending the 
mathematical programming horizons of persons with such backgrounds and 
interests. Notes for the book have been used as supplementary material in a 
graduate course in mathematical programming, which emphasizes model 
building, in the School of Government and Business Administration of 
The George Washington University, with one of the authors as the 
teacher. 

This book is also intended to be of interest to practicing model builders 
in that it presents, in one source at a consistent level, nonlinear programming 
models from diverse fields. The material is given in sufficient detail that 
there should be few questions about model formulation. Computational 
questions are not discussed in depth, but all of the application examples 
have been solved by the sequential unconstrained minimization technique 
for nonlinear programming (SUMT). A brief description of SUMT is given 
in Chapter 1 and further information about it can be found in the references 
cited in Chapter 1. 

It should be noted that this book has been written in parallel with 
Anthony V. Fiacco and Garth P. McCormick: Nonlinear Programming: 
Sequential Unconstrained Minimization Techniques. 
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I 
INTRODUCTION 

I.l    MATHEMATICAL  PROGRAMMING—GENERAL 

The problem of optimizing (either maximizing or minimizing) a numerical 
function of one or more variables subject to constraints on the variables is 
called the mathematical programming, or constrained optimization, problem. 
The general mathematical programming problem can be formulated as 
follows. Determine values for n variables x = (,r,, . . . , :r„) that optimize 
the function (called the objective or criterion function) 

f(x)=f(xu...,xn) (1.1) 

subject to / linear and/or nonlinear inequality constraints 

gi(?) =&(*!,..., O^O,        /=1 / (1.2) 

and to m — I linear and/or nonlinear equality constraints 

gi(x) = &(*!, ....*«)- 0,        i = / + 1 m. (1.3) 

When the objective function (1.1) and the m constraints (1.2 and 1.3) 
are linear, the mathematical programming problem is a linear programming 
problem. When either the objective function or one or more of the constraints 
are nonlinear, the programming problem is a nonlinear programming problem. 

In considering the nonlinear programming problem we prefer always to 
think of a minimizing problem, but this implies no loss of generality since, 
if the objective is to maximize F(x), this can be converted to an equivalent 
minimization problem by letting/(.r) = — F(x) and minimizing/(.r). Also, 
the equal-to-or-greater-than inequality constraints £,(.r) > 0, /= 1 / 
do not impose any loss of generality since, if there is a constraint G,(x) < 0, 
we may define gt(x) = —C,(x) and write gt(x) > 0. 

The values of m and n need not be related. Some or all of the variables 
X; (j = 1,. . . , n) may be restricted as to sign, or have lower and/or upper 

l 







4 Introduction 

1.2    CLASSIFICATION  OF  OPTIMIZATION  MODELS 

Any real-world optimization problem may be characterized by five 
qualities. The problem functions may all be linear, or some may be nonlinear. 
The functional relationships may be known {deterministic), or there may be 
uncertainty about them (probabilistic). The optimization may take place at a 
fixed point in time (static), or it may be an optimization over time (dynamic). 
The variables of the problem may be allowed to take on a spectrum of real 
values (continuous), or some or all may be required to be integers (discrete). 
Finally, the problem functions may all be continuously differentiable 
(smooth), or some may have points where the functions are nondifferentiable 
(nonsmooth). 

The statement of the general mathematical programming problem allows 
for nonlinearities in the problem functions, but it assumes a deterministic 
model. That is, given x, the values assumed by the functions f(x), gt(x), 
i = 1, . . . , m are uniquely defined. Also, the vector x is considered only at 
one point in time—the static situation. There is no way to restrict the solution 
vector to take on integer values for a selected subset of variables. Although 
there are algorithms for linear programming that generate integer solutions, 
at present none exists for nonlinear programming. In principle the cutting 
plane method referred to in the subsection on convex programming in 
Section 1.3, or Bellman's principle of optimality [2, 3], can be applied to 
integer programming problems. Finally, almost all algorithms for solving 
nonlinear programming problems require that the functions be smooth. 
Thus in most cases the model builder must develop deterministic-static- 
continuous-smooth models to represent probabilistic-dynamic-discrete- 
nonsmooth real-world problems. 

In this book the weapons assignment, bid evaluation, and stratified 
sampling problems require integer solutions. Because of the large numbers 
involved (and in view of the accuracy of the inputs), rounding the fractional 
solution to the nearest integer provides a satisfactory resolution for these 
examples. This stratagem is not a good one for combinatorial problems 
(requiring 0-or-l solutions) or for logical problems that have been converted 
to nonlinear integer programming problems. In these cases graph theory, 
dynamic programming, or combinatorial analysis is required. 

All of the examples included in this book are static; they deal with the 
values of the variables at one point in time. In problems such as optimal 
control [38] or chance-constrained programming [10], in which a solution 
vector over time is required, the usual tactic is to divide the time interval 
into a fixed number of intervals and make each combination of variable-time 
points into a separate variable. This technique, of necessity, generates very 
large programming problems, and it is responsible for much recent linear 
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programming work in large-scale decomposable systems. Very little work has 
been done in large-scale nonlinear programming on problems with special 
structures that result from methods of approximating optimization over 
time. 

For problems with stochastic or probabilistic elements, a higher level of 
difficulty is introduced. Two questions must be resolved: (a) What constitutes 
a proper objective function for a problem whose real payoff has a probability 
distribution? (b) What does constraint satisfaction mean when constraint 
relationships are probabilistic? A common way of resolving the difficulty 
of specifying the proper objective function is seen in the weapons assignment 
problem. Here the outcome of the assignment of one variable to a target 
is known with a certain probability. The criterion function is given as the 
expected damage done to the target complex. In the cattle feed problem, 
where the nutrient content of each food is known to satisfy a certain prob- 
ability distribution, the Charnes-Cooper concept [7, 9] of establishing a 
deterministic equivalent problem to the chance-constrained problem, 
whereby constraints are satisfied with a preassigned probability, is employed. 
In problems like the alkylation problem, where the functional relationships 
between independent and dependent variables as defined in the model are 
determined from experimental data and are represented in the model in 
algebraic form, one can use the results of nonlinear curve fitting as a de- 
terministic input, or simply require (as is done here) that the relationships 
fall within bounds of specified experimental error. 

For problems where the functions are not smooth, it is often possible to 
develop an equivalent sequence of models that have smooth functions. The 
bid evaluation problem is one such example, in which recent work in branch 
and bound techniques allows for efficient solutions. 

Finally, although most of the problems in this book are not deterministic- 
static-continuous-smooth mathematical programming problems, the models 
that approximate them necessarily have these characteristics. 

1.3    ALGEBRAIC  STRUCTURE  OF  MATHEMATICAL 
PROGRAMMING  PROBLEMS 

Quite apart from the historical setting and disciplines from which the 
mathematical programming problems originated, and apart from their 
qualitative characteristics, there is a third way of describing them, which 
we shall call here their algebraic structure. This is the way in which mathe- 
matical programming problems are regarded by those who develop algorithms 
to solve them. 

Some of the terms employed are linear, nonlinear, quadratic, convex, 
concave, and separable. We describe below the mathematical programming 
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problems characterized by these terms and mention briefly the algorithms 
developed for their solution. 

Linear Programming 

Define 

A = {atj),       i = 1,. . . , m,   and   j = 1,. . . , n, 

b = (bu . . . , bm)', 

c = (Cj cny. 

The linear programming problem is to choose x = {xx, . . . , xn)
1 to 

minimize c'x (1.4) 
subject to 

Ax-b>0,       x>0. (1.5) 

The linear programming problem is the best known mathematical pro- 
gramming problem. It is characterized by a linear objective function, linear 
constraints, and non-negativity requirements on the variables. Any solution 
must (under mild nondegeneracy assumptions) lie on a vertex of the convex 
polyhedron described by constraints (1.5). Because of this, most methods 
for solving the linear programming problem are efficient computational 
schemes for moving from one vertex to an adjacent vertex in an effort to 
find the one that is optimal. Since there are a finite number of vertices, the 
algorithms using this property are guaranteed to yield the solution in a 
finite number of iterations. Once the appropriate vertex is found, the solution 
vector is uniquely determined by those equations that define that vertex. It 
is this property of the linear programming problem that makes it relatively 
easy to solve. For, from the vertex solution property, when m, the number 
of rows of the matrix A, is less than «, the number of variables (as is usually 
the case in practical problems), then at least n — m of the variables of the 
solution vector are equal to zero. The simplex method for solving linear 
programming problems makes efficient use of this fact. The degree of diffi- 
culty in solving large linear programming problems is a function of m and 
of the density (per cent of nonzero elements) of the matrix A. Linear pro- 
gramming computer codes readily available for large-scale computers have 
been developed to solve problems with up to 4000 constraints and an 
unlimited number of variables. 

It is not surprising that many early efforts to develop nonlinear program- 
ming algorithms were attempts to convert these problems to sequences of 
linear programming problems. Much of the effort today still proceeds from 
this point of view. 
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The following simple example gives some idea of the geometry of linear 
programming problems. The problem is to choose x1 and x2 to 

minimize —3xt — 2x2 

subject to 
— 2-T-j — x2 + 3 > 0, 

-a;, - xa + 2 > 0, 
•r, > 0,        x2> 0. 

In Figure 1.1 the problem is depicted geometrically. The constraints of the 
problem define the feasible region, which is shaded. It is a bounded convex 
polyhedron in two dimensions. The dashed lines are isocontours of the 
objective function; that is, lines where the function — 3.rt — 2x2 has constant 
value. The solution as obtained by inspection lies on the vertex (1,1). 
Geometrically any mathematical programming problem, and in particular 
this example linear programming problem, is to find the values of the 
variables associated with that isocontour of the objective function with 
minimum value, with at least one point of intersection with the feasible 
region. 

The geometrical approach to mathematical programming problems in 
later sections will bring out more of the differences between linear and 
nonlinear programming problems. 

Quadratic Programming 

Define 
B = (bjk),      j = \ n   and    k = 1 n, 

a symmetric positive semidefinite matrix. [This means that for every 
vector z = (zu . . . , zn)\ z'Bz > 0.] The quadratic programming problem is 
to choose x = (xlt . . . , xn)' to 

subject to 
minimize c'x + x'Bx (1.6) 

Ax-b>0,       x>0. (1.7) 

The problem is characterized by linear constraints, non-negativity re- 
quirements on the variables, and an objective function that is in a positive 
semidefinite form. Unlike the linear programming problem, the solution to 
a quadratic problem need not lie on the vertex of the convex polyhedron 
formed by the constraints (1.7), as the following example shows. The 
problem is to choose xt and x2 to 

minimize x^ — xl + x.,2  
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Optimum 

x2)=(h 1) 

-3xi-2*2= -5 

Minimize 
-3x1 - 2x2 

subject to 
-2xj - xt + 3 > 0 
- Xj - x2 + 2 > 0 

Xj                   > 0 
z2         £0 

subject to 

Here 

B = 
"1    0" 

0    1 

*i 

Figure 1.1    Linear Programming Problem 

-x1 - x., + 1 > 0, 

x1 > 0,        *, > 0. 

c = (-!,-})',        ^ = [-1,-1],        /,= _! 
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Since 

[zuzt]B = Zi2 + -2
2>0   for all    (z^Zj), 

B satisfies the definition of a positive semidefinite matrix. 
This problem is presented graphically in Figure 1.2. The shaded region 

is the set of points satisfying xx > 0, x., > 0, and —x, — x.z + 1 > 0. The 
isocontours of the objective function are circles, something that never 
happens in linear programming. They represent decreasing values of the 

X2 

2 

Optmium 

dh'x2)=(\,\) 
ij-ii+^-x2/2=-.3125 

Minimize 

subject to 
ri2 _ ri + -V 

-Xj - x, + 1 > 0 
x, > 0 

x„ > 0 

•»' 

Figure 1.2   Quadratic Programming Problem 
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objective function as they move into (|, ^), which is the solution to the 
example. This point does not lie on the boundary of the shaded (feasible) 
region. This possibility is one central difference between linear and nonlinear 
programming problems, a particular case of which is illustrated here by 
this quadratic programming problem. 

By using known theoretical properties of the solution of a quadratic 
programming problem it is possible to develop special-purpose algorithms 
that solve them in a. finite number of steps, usually by some variation of the 
simplex method for linear programming. For references, see Hadley [24], 
pp. 240 and 241. 

A great deal of work has been done in the area of solving quadratic 
programming problems with some emphasis on special structure—for 
instance, efficient ways to handle upper and lower bounds on the variables. 
This effort seems particularly out of proportion when one considers the 
class of models that fit the special requirements of the quadratic programming 
problem. There are no quadratic programming models in this book. Two 
quadratic programming problems in the literature are the portfolio selection 
problem of Markowitz [30], in which the objective function (to be minimized) 
is the variance of a probability distribution, a well-known positive semi- 
definite form, and the problem of least-squares estimation of the parameters 
of a linear regression model with constraints on the parameters and/or 
deviations. There is another possible use of these algorithms, as sub- 
algorithms for solving nonlinear problems whose objective functions can be 
locally approximated by a quadratic positive semidefinite form, and whose 
constraints can be linearly approximated locally. 

Local and Global Minima 

The reason why B must be a positive semidefinite matrix in the quadratic 
programming problem provides an introduction to the most serious problem 
found in nonlinear programming: the problem of local and global minima. 

A local minimum is a point (xL) in the feasible region about which all 
indications are that xL is the solution to the problem at hand. The global 
minimum to a problem is the local minimum of all possible local minima 
with the smallest value of the objective function. When the nonlinear pro- 
gramming problem has certain characteristics, such as in the quadratic 
programming problem discussed above, that is, when B is a positive semi- 
definite matrix, it can be shown that any local minimum is also a global 
minimum. When B is not a positive semidefinite matrix, there is a possibility 
that several local minima exist. 

Consider the following example. The problem is to choose xx and x2 to 

minimize — xx
2 — x2

2 
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subject to 
-3, - 4r2 + 5 > 0, 

-*, + 1 > 0, 

•T,   >  0, T2  >  0. 

~-l        0" 
The matrix B = , which is not a positive semidefinite matrix. 

0 —lj 
As shown in Figure 1.3, the isocontours of the objective function are arcs of 
circles with the origin as center. The values of the isocontours decrease in 
any direction away from the origin. As is seen by inspection, the points 
(0, 1|) and (1,1) are both local minima to the problem. Any attempt to 
leave (0, 1}) must of necessity leave the region of feasibility or increase the 
value of the objective function. In short, all the information about that 
point indicates that it is the solution to the problem. The same analysis 
applies to (1, 1), and thus it is also a local minimum. Obviously, because 
f(\, 1) </(0, 1|), (1, 1) is also the global minimum. In a large problem 
one does not know whether all the local minima have been found, and thus 
no algorithm can guarantee convergence to the global solution. 

Mathematical researchers, in order to satisfy the desire for proof of 
convergence to the global optimum, have been influenced to consider 
mathematical programming problems (as the quadratic one stated at the 
beginning of this section) where this could be done. 

Convex Programming 

The problem of choosing x to 

minimize/(.r)       (/a convex function) (1.8) 
subject to 

gi(x) > 0,        / = 1 in        {gi a concave function for all i)    (1.9) 

is called the convex programming problem. Definitions and examples are 
given below. 

The same mathematical considerations that lead to the quadratic pro- 
gramming format, which avoids the local-global minimum problem, also 
lead to this general class of problems for which any local solution is a global 
solution. In an important paper in 1951 [27] K.uhn and Tucker established 
necessary and sufficient conditions for a point (vector) to solve the convex 
programming problem defined by (1.8) and (1.9). 

The term convex is applied to sets of points and to functions. In the first 
case, for T to be a convex set oj points, every straight line connecting any 
two points in T must be contained entirely in T. A function/is a convex 
function of x if it is never underestimated by linear interpolation, or, for 
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*2 

Feasible region 

First local minimum (0, lj) 
7(0, li)= -1.5625 

Minimize 

subject to 

Second local minimum (global) (1, 1) 
m, i) = -2.o 

Xl X2 

x1 - 4r2 + 5 > 0 
asj + 1 > 0 

l 
X2 

X > 0 
> 0 

Figure 1.3   Quadratic Programming Problem with Two Local Minima 

every scalar A, where 0 < X < 1, and any two vectors xtu and x{2), 

f[?jcM + (1 - A)z(2>] < ;/(*<!>) + (1 - A)/(a;(2»). (1.10) 

The two notions of convexity of sets of points and of functions are con- 
nected in the following way. If/(.r) is a convex function, then for any number 
k the set of points x for which/(x) < k is a convex set. A concave function 
is one whose negative is a convex function. Thus the convex programming 
problem is sometimes specified in terms of maximizing h(x), where h(x) is a 
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concave function. It follows from the above that, if g(x) is a concave function, 
then for any number k the set of points for which g(x) > k is a convex set. 

Many other properties follow from the definitions of convex and concave. 
In particular it should be noted that the points common to two or more 
convex sets form a convex set. Also, the constraints to the convex program- 
ming problem are sometimes written ht(x) < 0, / = 1, . . . , m, where each 
ht(x) is a convex function. 

The convex programming problem is the problem of minimizing a convex 
function (or equivalently maximizing a concave function) in a convex set of 
points. 

Consider the example of choosing xl and x2 to 

minimize f(xlt x2) = (xl — 2)2 + (x2 — l)2 

gx(*i. *2) = — *i2 + -r, > 0 

£2(*i. 2*2) = —*i — x., + 2 > 0. 

The geometry of the example is given in Figure 1.4. It can be verified that 
f(x1, x2) is convex and that gi(xu x2) is concave. The function g2(xu xs) is a 
linear function. Linear functions are always both convex and concave. From 
the figure it is easy to verify that each constraint defines a convex set, and 
the points satisfying both constraints (the shaded feasible region) form a 
convex set. The points yielding smaller objective function values than those 
on any particular isocontour form a convex set, a direct property of the 
definition of a convex function. 

A general proof can be given that any local solution to the convex pro- 
gramming problem is a global solution, and this example indicates geo- 
metrically how to go about proving it. 

Since the appearance of the Kuhn-Tucker paper [27], many algorithms 
have been directed toward solving the convex programming problem. 

One method that would seem useful is to convert the problem to one of 
minimizing a linear objective function while approximating the boundary of 
the feasible region by a convex polyhedron. This suggestion (roughly) was 
made independently by Cheney and Goldstein [12] and Kelley [26], and is 
called "the method of cutting planes." This method relies almost exclusively 
on the fact that the tangent plane to any point on the boundary of a convex 
region lies entirely outside the region. For this reason it is not well suited 
to any class of problems other than convex ones. Even for this class, com- 
putational experience using the method of cutting planes has not been 
extensive. 

Cutting plane methods are conceptually related to generalized linear 
programming methods (decomposition methods), which attempt to convert 
nonlinear programming problems into linear programming problems by 
approximating the convex set by chords drawn between extreme points [15]. 
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Optimum 

(xi-2)i+(x2-l)
2"l 

\ 

y 

Minimize 

subject to 
f(x1,x2) = (xl-2? + (x.i- 1)2 

gl(xl, x2) = — Xj2 + • > 0 
g%(xv x2) = -xA   - x.z + 2 > 0 

Figure 1.4   Convex Programming Problem 

A second approach developed to solve convex programming problems 
can be classified as methods of feasible directions. Three particularly im- 
portant algorithms are those of Zoutendijk [47], Rosen's gradient projection 
techniques [35, 36], and the reduced gradient method [1, 46]. These 
algorithms have been extensively tested computationally for nonlinear 
objective function and linear constraints, but, because of the many difficulties 
inherent in solving problems with nonlinear objective functions and nonlinear 
constraints, computational verification of the algorithms has been quite 
limited. For additional references and discussion of these methods, see 
Chapter 9 of Hadley [24]. 

A third and quite recently developed approach, extensively tested for 
nonlinear objective function and linear and/or nonlinear constraints, is 
described in Section 1.4. It is the sequential unconstrained minimization 
technique (SUMT) of Fiacco and McCormick, and has been used to solve 
the problems described in this book. 
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Several of the examples in this book are convex programming problems. 
The weapons assignment problem is a convex programming problem because 
the constraints are linear and the objective function (to be maximized) is 
concave. The bid evaluation problem has linear constraints and a separable 
piecewise linear objective function. The general characteristic of the objective 
function, excluding the origin, where it may not be continuous, is that of a 
concave function. Quite often objective functions representing total cost are 
concave and hence pose mathematical difficulties in determining global 
solutions. The cattle feed problem has a linear objective function, one 
concave (>) constraint, and the remainder linear constraints. The stratified 
sampling problem has a linear objective function and several convex (<) 
constraints. The chemical equilibrium problem has a convex objective 
function and linear constraints. 

The alkylation problem has many badly behaved (nonconvex or non- 
concave) functions: the objective function, the constraints representing 
bounds on the fit to experimental data, and the nonlinear equality con- 
straints. 

The classic linear regression problem is the minimization of a convex 
function, but any curve-fitting problem where the parameters enter non- 
linearly is a nonconvex programming problem, as in the example presented 
in Chapter 8. Similarly, in general a maximum likelihood estimation is the 
maximization of a nonconcave function. 

Separable Programming 
The problem of choosing xj (j = 1 /;) to 

minimize/(x) = % /,(*,) (1.11) 
7-1 

subject to 

&(z)=2gu(*,)>0,       i=l m (1.12) 

is called a separable programming problem Essentially this means that 
variables are not coupled together in any of the problem functions except 
in an additive fashion  Mathematically it can be expressed (for all x^ as 

- 0    for    k * j,        -£&- = 0    for    k * j,    / = I m. 
dxk dxj dx,. dxt 

(1.13) 
The notion of a separable function is not directly related to the concepts 
discussed thus far. All linear programming problems are separable. The 
quadratic programming problem is separable if and only if B is a diagonal 
matrix. (Note that the linear programming example and the two quadratic 
programming examples were separable.) 
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Sometimes separability has the more general meaning that any problem 
is separable if it can be reduced to the form (1.11) and (1.12) by a linear 
transformation of the variables. Using this extended notion the quadratic 
programming problem is separable. Since the objective function of the 
weapons assignment problem can be made to separate by a linear transforma- 
tion, it also is a separable programming problem. This extended notion of 
separability is a very powerful one. Many problems fall into this form 
regardless of convexity or concavity. Because of this, many algorithms have 
been devised to solve just this kind of problem. For more information see 
[11] and Chapter 10 of [8]. 

The bid evaluation problem is separable. The alkylation problem cannot 
be separated by any linear transformation. The chemical equilibrium problem 
is not separable, nor are any of the curve-fitting problems or the cattle feed 
problem. The stratified sampling problem is given in separable form. 

1.4   THE SEQUENTIAL UNCONSTRAINED MINIMIZATION 
TECHNIQUE FOR NONLINEAR PROGRAMMING 

Minimizing a nonlinear function subject to linear constraints is much less 
difficult then when the constraints are nonlinear. The main reason is that it 
is very difficult to move along the boundary of a nonlinearly constrained 
region, whereas it is relatively simple to move along the boundary of a 
linearly constrained region. Rosen's projected gradient method for nonlinear 
programming with linear constraints [35] provides a good procedure for 
moving along the boundary of linearly constrained regions. In order to 
solve the nonlinearly constrained problem, an idea for handling nonlinear 
constraints was proposed by C. W. Carroll [4, 5]. The mathematical validity 
and computational implementation have been developed by Fiacco and 
McCormick [17-20]. 

It is convenient to write the nonlinear programming problem with non- 
linear inequality and equality constraints in the following ways. Choose x to 

minimize f(x) (1-14) 
subject to 

£,(*)> 0,       i=\,...,l, (1.15) 

gi(x) = 0,       ( = /+ l,...,w, (1.16) 

where there exists at least one point x such that gi(x) > 0, for / = 1, .. . , /. 
To solve this problem the following algorithm is proposed. Define the 
function (called the P function) 

P(x, r0 s/(*) + r,£-f- + T* I &*(*). (1-17) 

where rl is a positive number. 
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As a starting point determine x° such that gi(x°) > 0, i = I,...,/. 
Proceed from x° to a point .r(/,) that approximates the minimum of />(.r, /,) 
in the set of points satisfying (1.15). Form the new function 

P(x, r2) s /(x) + r2 2 —• + /%'* f g,2(.r|. (1.18) 

where r"j > r2 > 0. Starting from a-^), approximate the minimum of P(x, rt). 
By continuing in this manner, a sequence of points {x(rk)}, k = I, 2, 3, . . . 

is generated that respectively minimize {P(x, rk)}, where {rk} is a sequence 
that decreases strictly monotonically to 0. The conjecture (which must be 
proved) is that the sequence of unconstrained minima {.»"(/-A)! will approach 
a solution to the mathematical programming problem defined by (1.14), 
(1.15), and (1.16) as rk. goes to 0. The intuitive reasons for this can be 
summarized as follows. 

The term rk 2Li'/£»(x) IS regarded as a "penalty" factor attached to the 
objective function f(x) and assures that a minimum to the P function is 
achieved in the interior of the inequality-constrained region by balancing 
the avoidance of boundaries and minimization of f(x). This can be seen 
intuitively. Consider the trajectory of points that tend to minimize P(x, i\), 
starting from x°. By assumption, gt(.<•") > 0, all /, and so P{.r. /,) exists and 
has some finite value. Since this trajectory defines a curve on which P is 
continually decreasing, no point on the trajectory can yield a P function 
value exceeding P(x°, rt). Since the feasible boundary is defined by one or 
more of the £,-(.r) = 0, it is apparent that P - + oo as the boundary is 
approached from any interior point. Consequently the boundary can never 
be pierced by the trajectory and the minimum of P(.r, rt) must be a feasible 
interior point. 

The intuitive motivation for the third term is clear. As rk~*0, the third 
term would tend to +oo unless each gi[x(rk)] went to zero. Thus minimizing 
the P function would tend to force the g,'s to zero. 

Another motivation behind this formulation is the transformation of the 
original constrained problem into a sequence of unconstrained minimization 
problems. The desirability of this lies in the fact that a number of methods 
for minimizing an unconstrained function are known and many newer ones 
are being developed [16, 21, 22, 33, 34, 41]. Thus by this transformation it 
becomes possible to solve the more formidable constrained problem without 
inventing new techniques. 

A very desirable feature of this transformation with respect to a problem 
previously mentioned is that it avoids the necessity of coping separately 
with the boundary of the inequality-constrained region, for example, by 
attempting to move along the boundary once it is encountered. Such motion 
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2 
WEAPONS  ASSIGNMENT 

In this chapter we discuss two weapons assignment models. The first model 
determines an assignment of weapons to targets to maximize expected target 
damage value. There are constraints on weapons available of various types 
and on the minimum number of weapons by type to be assigned to various 
targets. The constraints are linear, and the objective function is nonlinear. 
The second model determines an assignment of weapons to targets such 
that weapons cost is minimized and at least a specified expected damage 
value is inflicted both on various targets and on various target classes. The 
constraints are nonlinear, and the objective function is linear. 

2.1    MODEL  FOR  MAXIMIZING  EXPECTED 
TARGET DAMAGE  VALUE 

The variable to be determined is 

xti = the number of weapons of type / assigned to target/, 

i = 1, . . . , p   and   j = 1, . . . , q. 

Limitations on the number of weapons assigned are specified in terms of 

at = the total number of weapons of type /' available, 

bj = the minimum number of weapons of all types assigned to target/ 

The constraints on total number of weapons and on minimum weapons 
assigned to targets are 

i>,,<fl,        /=l,...,/>, (2.1) 

Ixu>br       /-1,...,«. (2-2) 

22 
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The objective function is formulated in terms of probability of damage of 
various targets weighted by their military value. Define 

Xff = the probability that targety will be undamaged 

by an attack using one unit of weapon / 
and 

Uj = the military value of target /'. 

The expected damage to target j by an assignment of xit weapons of type i 
is [1 — afv], and the expected damage to target j by the over-all assignment 
of weapons of all types ]£»_j •*",, is [1 — IT," i *,'•']• The total expected target 
damage value is the sum of the expected damage to targets weighted by the 
military value of the targets, 

2«i i-n (2.3) 

The nonlinear programming problem is as follows. Choose .r,/s to maxi- 
mize the nonlinear objective function (2.3) subject to linear constraints (2.1) 
and (2.2) and to the non-negativity conditions 

.r,j > 0,        / = 1 p   and   j = I q. (2.4) 

An alternative definition of ocM is the fraction of target j that will not be 
damaged by an attack using one unit of weapon ;'. The objective function 
is then interpreted as the total fractional damage value (to be maximized). 

2.2   MODEL FOR INFLICTING SPECIFIED DAMAGE 
WITH  MINIMUM  COST 

The variable to be determined is xit (/ = 1 p and j — 1 q), 
the number of weapons of type i assigned to target j, as defined previously. 
The probability a,, that target j will be undamaged by an attack using one 
unit of weapon / is also defined as before. 

Constraints on the amount of damage to be inflicted on the targets are 
specified in terms of 

dj = the minimum expected damage to target j, 

d(k) = the minimum expected weighted damage to targets of class k, 

w here A- = 1, . . . , r, 

t>j*> = the weight of targety with respect to the targets of class k. 

Constraints on expected damage to the various targets may be written 

l-lW><^       i=1 9- (2.5) 
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Constraints on weighted expected damage to the various target classes may 
be written 

I»? 
1 

i-n > dm,       k = 1 r. (2.6) 

For purposes of formulating the objective function, let us assume that the 
cost of weapons assignment is linear over the range being considered, and 
define 

c, = the cost per unit of weapon of type i. 

The total cost of the assignment of xu (i = [,... ,p and / = 1, . .. ,q) 
weapons to the various targets is 

iUi>«. (2.7) 
i=l     i-l 

The nonlinear programming problem is as follows. Choose xif's to minimize 
the linear objective function (2.7) subject to nonlinear constraints (2.5) and 
(2.6) and to non-negativity restrictions (2.4). 

It should be noted that constraint (2.5) can be converted into a linear 
constraint by appropriate logarithmic transformation. 

An alternative definition of a,; would again be the fraction of target j 
undamaged by an attack using one unit of weapon i. The damage constraints 
may be interpreted as requiring certain fractional damage values to various 
targets. 

2.3    EXAMPLE 

As an example we consider a model for maximizing expected target 
damage value such as was given in Section 2.1. Weapons of five types are 
to be assigned to 20 different targets. Upper limits on available weapons and 
lower limits on weapons to be assigned are specified. 

Figure 2.1 is a map of a hypothetical area containing the 20 targets, and 
on which the range of the five weapon types is indicated. The characteristics 
of the five weapon types could be thought of as follows: 

1. Intercontinental ballistic missiles. 
2. Medium-range ballistic missiles from first firing area. 
3. Long-range bombers. 
4. Fighter bombers. 
5. Medium-range ballistic missiles from second firing area. 

Table 2.1 gives the values of the parameters needed for the model: prob- 
abilities that targets will be undamaged by weapons, total number of weapons 
available, minimum number of weapons to be assigned, and military value 
of targets. 
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Weapon 1 tZU       Weapon 2 [^] Weapon 3-AII targets VyA Weapon 4        E^.J Weapon 5 

Figure 2.1    Map of Targets and Coverage of Weapons 

Using the information given in Table 2.1, we formulate the model for 
maximizing expected target damage value as follows. The criterion function 
to be maximized is the total expected target damage: 

60[1.00 - (1.00J" • .84*" • .96^' • 1.00r" • .92*")] 

+ ••• 

+ 150[l.00 - (1.00*»-» • .85•»« • ,92*»-M • LOO*'-" • 1.00*»">)]. 

The linear constraints on the total number of weapons of the five types are 

•'•ii + • • ' + axa) < 200 

*M + • • • + *».*> < 250, 

and the linear constraints on the minimum assignment of weapons lo the 
seven specified targets that must be attacked are 

*11 + 1" *81      >     30 

*i« + • • • + *M    > 100 

&1.S0 H + *s.2Q >    10. 
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A solution of the nonlinear programming model is given in Table 2.2. 
Values determined by the algorithm and shown in this table have all been 
rounded to the nearest integer. Note that the assignment of 101 weapons of 
type 2 exceeds the availability. In this case we check the solution values to 
find which one has been rounded the most and find that xa ,7 = 2 was 
rounded from 1.627, so we set x., 17 = 1. A rule for rounding in this problem 
could be to round to the nearest integer and then check all the constraints 
to see if they are satisfied. If they are not, perform manual adjustments. 
There can be no simple rule, since there are both upper and lower limits on 
assignments. 

2.4   SOURCE  OF  PROBLEM  AND  REFERENCE 

Source 

Work on this type of weapons assignment problem has been performed 
at the Research Analysis Corporation for several years. Work by W. Eckhart, 
M. Brush, and R. Gramann has resulted in a linear programming model 
for weapons assignment that uses linear approximations to nonlinear 
functions such as those given in this chapter. The two models described in 
this chapter were formulated by W. Charles Mylander, III, who discussed 
one of them in [1]. 

Reference 

[1] W.   C.   Mylander,   III.   "Applied   Mathematical   Programming."   Proc.   U.S.   Army 
Operations Res. Symp., Part I (March 1965). 



3 
BID  EVALUATION 

3.1    DESCRIPTION  OF  BID  EVALUATION  PROBLEM 

There are many variations of the bid evaluation problem. The following 
description is general enough to include most of the elements that make it 
difficult to solve. 

A company wishes to purchase a specified number of units of an item. 
It obtains bids from /; vendors, each of whom cannot necessarily supply 
the total amount. The vendors submit bids indicating their prices as functions 
of the amounts purchased. Such bids usually reflect setup costs and decreasing 
unit costs (depending on order sizes) as well as maximum and minimum 
quantities. The problem is to choose the amount to be purchased from each 
vendor so as to minimize the total cost for purchasing the required items. 

For specificity, consider the following bid evaluation problem. A buyer 
wishes to purchase 239,600,480 units of a specific commodity. Five vendors, 
A through E, have submitted bids to supply certain quantities, but no one 
vendor can supply the total desired by the buyer. In their proposals all of 

Vendor Setup Cost Unit Price Quantity (Units) 

S3,855.84 S0.061150 0-33.000,000 
(0.068099 22,000,000-70,000,000 

B 125,804.84 
10.066049 70,000,001-100,000,000 
10.064099 100,000,001-150,000,000 
(o.062119 150,000,001-160,000,000 

C                     13,456.00                 0.06219 0-165,600,000 
D                      6,583.98                 0.072488 0-12,000,000 

{0.070150 0-42,000,000 
(0.068150 42,000,001-77,000,000 

28 
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the bidders except one have included setup costs, which are independent of 
quantity sold. The buyer is also faced with the problem of scaled costs; 
that is, a certain unit cost is quoted for a certain minimum quantity to be 
sold, a lower unit cost is quoted for a larger quantity to be sold, and so on. 
The relevant information is included in the table at the foot of page 28. 

Let (fii-r^) denote the cost of .r, thousands of units supplied by vendor A, 
p2{x2) denote the cost of x2 thousands of units supplied by vendor B, etc. 
The total cost is ?(.r) = pifa) + <p2(x2) + (p3(x3) + (pt(x4) + <j"5(r5). The 
following transforms the information in the previous table into cost functions. 
The "level" information on the right will be used later. 

Level 

9»iOi) = !       ° \       3,855.84 + 61.150.r, 
•'•1 = 

0 < .c, < 
0 

33,000 
1 
2 

(              ° x2 = 0 1 
1,623,982.84 0 < x2 < 22,000 2 

(p2(x2) = 
I     125,804.84 + 68.099.r, 
\     269,304.84 + 66.049.r2 

22,000 < x2 < 
70,000 < .r, < 

70,000 
100,000 

3 
4 

464,304.84 + 64.099.r2 100,000 < xt < 150.000 5 
V   761,304.84 + 62.119.r., 150,000 < xt < 160,000 6 

<f3(xs) = !      ° \     13,456.0   + 62.019.r3 

1          0 
\       6.583.98 + 72.488.r4 

•r3 = 
0 < x3 < 

0 
165,000 

0 
12,000 

l 
2 

1 

<Ftix*) = 
r4   = 

0 < .r4 < 
1 

1 

fs^s) = 
j                          70.15Or6 

(     84,000.00 + 68.150.r5 

0 < x5 < 
42,000 < x6 < 

42,000 
77,000 

1 
2 

Note that zero units may be purchased from vendor B: otherwise no positive 
number of units less than 22,000,000 may be purchased. We incorporate 
this condition in (p2(x2) by requiring <f2(x2) = SI,623.982.84 for 0 < x., < 
22,000, noting that this is just the sum of the setup cost plus the cost of 
22,000,000 units at 0.068099 per unit. 

The bid evaluation problem may now be written as the following multi- 
level, fixed-charge problem. 

Choose x1,... ,xf to 

minimize </,(.*•,) + y.,(x.,) + f/;!(.r3) + q>t(xt) + g>5(a:8) 
subject to 

.r, + x2 + x3 + r4 + .r5 = 239,600.48, 
0 < ,r, < 33,000 
0 < .r2 < 160.000 
0 < av, < 165,000 
0 < x4 < 12,000 
0 < .r5 <   42.000. 
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3.2   BRANCH AND BOUND METHOD FOR SOLUTION 

This problem, although the objective function and constraints have only 
linear elements, qualifies as a nonlinear programming problem because the 
total objective function varies nonlinearly as a function of the number of 
items purchased. It is not, however, a nonlinear programming problem as 
defined in Chapter 1, because of two mathematical characteristics. 

First, since setup costs (usually referred to as "fixed charges") are allowed, 
the objective function is discontinuous. That is, if no item is purchased from 
a particular vendor, there is no cost. If one is purchased, there is a jump 
in the cost function of the amount of the fixed charge. Second, there are 
abrupt rather than continuous changes in unit cost per item as a function 
of the total number purchased. Although the total cost function is con- 
tinuous, it is nonsmooth, or, in mathematical terms, its derivatives are 
discontinuous at the points where the unit costs change. 

As stated, the bid evaluation problem is an example of a multilevel, 
fixed-charge problem consisting of a cost function with piecewise linear 
segments. Algorithms for solving standard linear programming problems 
are not applicable to the problem as it is stated. Although the objective 
function is not strictly linear, nonlinear programming algorithms do not 
apply either. 

Because of its piecewise smooth structure, this problem can be expanded 
into a number of linear programming subproblems by restricting each of 
the variables to one of the intervals on which its objective function is linear. 
By solving all of the possible subproblems the solution of the large problem 
may be found. There are two levels at which purchases can be made from 
vendor A, six for vendor B, two for vendor C, two for vendor D, and two 
for vendor E. The number of possible programming subproblems is 2 x 6 x 
2 X 2 X 2 = 96. Although for problems of this size there is no difficulty 
in solving this number of subproblems on a computer, the combinatorial 
possibilities inherent in bid evaluation problems are usually much too large 
to allow their solution. In recent years, research on the "traveling salesman" 
problem has stimulated the development of a technique for reducing the 
number of subproblems necessary to solve in order to find the optimum of 
the original problem. The name given to this technique is "branch and 
bound." 

Branch and bound techniques are based on the capability of partitioning 
sets of possible subproblems into subsets and associating a lower bound 
with each subset that applies to every subproblem in that subset. If any 
lower bound exceeds a known feasible solution value, then that entire subset 
of possibilities can be ignored. The remaining subsets are then partitioned 
into smaller subsets. Note that the lower bounds generated for the new 
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partitioning must be higher (or equal) to that of the subset from which they 
were created. The process terminates when one of the subproblems yields a 
solution value less than or equal to the current lower bound for every other 
subset. 

For different problems the implementation, the generation of the lower 
bounds, and the method of partitioning all vary. For multilevel, fixed-charge 
problems, a class of problems of which the bid evaluation problem is just 
one example, a branch and bound algorithm was developed in [2] and is 
summarized here. 

To explain the branch and bound technique used to solve the bid evalua- 
tion, we introduce the following notation. The ;'th subset of subproblems of 
the bid evaluation problem is described by a five-component vector, 
5, = (jj, . . . ,/j)- Each component of .?, can take on as many values as 
there are levels of purchasing available from the corresponding vendor, 
plus 1. A 0 in the Ath component indicates that the subset contains no 
restrictions on the level at which the Ath vendor can be purchased. A 1 in 
the Ath component means that the Ath vendor is to be purchased at his 
first-interval level. A 2 in the Ath component means that vendor A is to be 
purchased at his second-interval level, etc. Thus the vector (0,5, 1,2,0) 
indicates the subproblems in which vendor 1 can have any level of purchase, 
vendor 2 can be purchased between 100,000 and 150,000 items, etc. Ob- 
viously the subset indicated by (0, 0, 0, 0, 0) is the set of all possible sub- 
problems. The possibilities or levels in each component have been indicated 
in the rightmost column of the definition of the programming problem. 

The bound for each subset is computed in the following way. A program- 
ming problem is associated with each subset. The variables with nonzero 
components in the st vector are restricted to their indicated level, and their 
costs are the corresponding linear functions. The cost for variables whose .v, 
components are zero is the linear function with largest slope that under- 
estimates the piecewise linear cost associated with that variable in its total 
interval, and that passes through the origin. Or, mathematically, let 
ct — max {c | cxt < 9,(.r,) for 0 < zt < cl,}, where </, is the maximum 
amount that could be purchased from that vendor (the upper limit on .*•,). 
Then c,r, is the cost term of that variable in the subproblem associated with 
st. Thus the solution to the programming problem generated in this manner 
is lower than the solution to any subproblem in that subset. This is the 
lower bound associated with that subset. 

To illustrate this we exhibit the programming problem associated with 
5 = (0,5, 1,2,0). 

Choose values of xu . . . , zb to 

minimize 61.267^ + 464,304.84 + 64.099.r.2 + 0,r3 

+ 6,583.98 -(- 72.488.r4 + 69.241.r5 
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subject to 
xx + x., + x3 + xt + .r5 = 239,600.48, 

0 < xx <   33,000 

100,000 <x, < 150,000 

x3= 0 

0 < x4 <    12,000 

0 < xb <   77,000. 

Because the marginal costs in this problem are nonincreasing, the linear 
function with maximum slope that passes through the origin and under- 
estimates any piecewise linear cost function is easily computed by dividing 
by the maximum number the total cost for any vendor at the maximum 
number of items purchasable and using the term as the coefficient for 
the variable in the objective function. Thus, since xx has a zero coefficient 
in the s vector, its objective function coefficient is 

3,855.84 + 61.150x33,000 
<i = ^r-^x — 61.267. 

33,000 
Similarly, 

84,000.00 + 68.150 x 77,000 
r5 = = 69.241. 6 77,000 

Two numbers are obtained from the solution to the programming problem 
associated with s. The first, its solution value, we denote by P(s). This is 
the lower bound associated with that subset. Let x(s) denote the solution 
vector for that problem and xf(s) denote its /th component. Since it is a 
feasible vector, its cost value using the true cost function <p(s) is an upper 
bound for the solution value to the original programming problem. Thus, if 
any subset has a lower bound on a subset higher than any upper bound on 
the original problem given by any feasible point, that subset can be discarded 
since it cannot contain any subproblem better than those in other subsets. 
This simple fact allows the exclusion of many of the combinatorial possibilities 
and makes the algorithm efficient. 

The next requirement for the branch and bound technique is the rule for 
deciding which of the existing subsets to partition further in the search for 
the optimum subproblem. For the bid evaluation problem the rule is to 
partition the subset with the lowest lower bound. 

The final rule is how to partition that subset. The rule is to choose one of 
the components that is zero and expand the subset into all the possibilities 
with respect to that variable. Thus one possible partitioning of (0, 5, 1, 2, 0) 
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is (1,5, 1, 2, 0) and (2, 5, 1, 2, 0). The only other possibility is to partition 
with respect to the fifth component. The choice of which component is more 
of an art than a science. The (effectively) arbitrary fixing of the order in 
which the variables are considered is clearly not as efficient as an order 
determined by the particular problem being solved. In fact, no rigid order is 
desirable; rather, the choice of the next variable to be considered should be 
made only when such a variable is about to be chosen. An effective rule used 
for choosing the variable .r. on which s is to be partitioned is as follows. 
For the solution vector .r(.s) yielding the solution value P(s) we choose .', 
such that 

?•<[*<(*)] - Cftfis) = max {</,[•<•,(.?)] - frr((i);. 
i 

In this case the index / = 1 5. That is, xi is the variable for which 
r,r, is the worst approximation to </,(•<•,) at the solution to the problem 
yielding solution value P(s). This procedure attempts to increase the lower 
bounds as quickly as possible so that fewer subsets need be examined and 
partitioned. 

Assume that the indicated partitioning is made. The next step is to establish 
a lower bound for (1.5,1.2,0). This is done by the method indicated above. 
Several efficiencies are available at this point. If the lower bound for the 
subset is higher than the current lowest upper bound for the solution of the 
original problem, then that subset may be removed from further considera- 
tion, as stated above. Next, a lower bound is established for (2, 5, 1. 2. 0). 
Often a full iteration is not required to discard a subset of possibilities. 
This can occur if the method used to solve the subproblcms yields the 
information that the optimum is higher than the current lowest upper bound 
before the subproblem is completely solved. Using a dual feasible method 
(SUMT) this efficiency was incorporated in the algorithm. Other tricks for 
discarding subsets of possibilities may be used at this point in a general 
branch and bound algorithm. 

3.3    SOLUTION   OF   EXAMPLE   PROBLEM 

Having outlined the technique used for the bid evaluation problem, we 
now solve the example problem given at the start of this section. Figure 3.1 
shows graphically the steps described. 

ITERATION 1 
Sl = (0,0,0,0,0). 

For this first problem every variable is allowed to vary from zero to its 
upper bound. The objective function costs are the linear underestimates for 
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For larger problems effective use of branch and bound techniques may 
be even more valuable. A description of the general algorithm to handle 
multilevel, fixed-charge problems is contained in [2]. An explanation of 
branch and bound techniques in general is contained in [1]. 

3.4   SOURCE OF PROBLEM AND REFERENCES 

Source 

A. P. Jones and R. M. Soland worked with the bid evaluation model in 
connection with their branch and bound research presented in [2]. 

References 

[1] N. Agin, "Optimum Seeking with Branch and Bound," Management Sci., 13, B176- 
B185 (1966). 

[2] A. P. Jones and R. M. Soland, "A Branch and Bound Algorithm for Multi-level 
Fixed Charge Problems," RAC-TP-285 Research Analysis Corporation, McLean, Va. 



4 
ALKYLATION PROCESS 

OPTIMIZATION 

In this chapter we describe a model for optimization of the operation of a 
chemical process common in the petroleum industry. The model seeks to 
determine the optimum set of operating conditions for the process, based on 
a mathematical model of the process, a profit function to be maximized, 
and a set of starting conditions. Most chemical processes can be represented 
by nonlinear relationships without discontinuities, and they are usually 
constrained by numerous restrictions on the operating ranges of the variables. 
The interrelationships among the variables are sufficiently complicated so 
that changing one variable usually results in changes in a number of the 
other variables. 

The model was described by Sauer, Colville, and Burwick [3], and the 
process relationships used in the model are based on those given by Payne 
[2], The solution procedure used by Sauer. Colville, and Burwick for opti- 
mizing the model is a reduction of the nonlinear problem to a series of linear 
programming problems, which is described by Colville [1]. We have formu- 
lated the model as a direct nonlinear programming model with mixed 
nonlinear inequality and equality constraints and a nonlinear criterion 
function. The formulation is described in this chapter. 

4.1    DESCRIPTION OF ALKYLATION  PROCESS MODEL 

Description of the Process and Variables 

A simplified process flow diagram of an alkylation process is given in 
Figure 4.1. There is a reactor in which olefin feed and isobutane makeup 
are introduced. Fresh acid is added to catalyze the reaction, and spent acid 
is withdrawn. The hydrocarbon product from the reactor is fed into a 
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Figure 4.1    Simplified Alkylation Process Flow Diagram 

fractionator, and isobutane is taken from the top of the fractionator and 
recycled back into the reactor. Alkylate product is withdrawn from the 
bottom of the fractionator. Several of the simplifying assumptions are that 
the olefin feed is 100 per cent butylene, isobutane makeup and isobutane 
recycle are 100 per cent isobutane, and fresh acid strength is 98 per cent 
by weight. 

Payne [2] discusses the process variables and their relationships with each 
other. Some of the relationships involve material balances, while some are 
correlations between variables within certain ranges, described by linear or 
nonlinear regressions. We shall develop equality constraints for material 
balances, and inequality constraints for regression relationships. 

It is convenient to define independent and dependent variables in for- 
mulating the model, although mathematically the nonlinear programming 
problem treats the variables alike. The independent variables are the con- 
trollable or "knob" variables, the values of which are determined by the 
operator by changing set points on automatic control instruments. On the 
process flow diagram these variables are indicated by butterfly valves HX]-). 
Changes in the values of these independent variables induce changes through- 
out the process. The independent variables are the olefin feed rate in barrels 
per day, the isobutane recycle in barrels per day, and the fresh acid addition 
rate in thousands of pounds per day. There are other independent variables, 
not in the model, which we assume have been appropriately taken care of, 
such as relative humidity of outside air and temperature of cooling water 
in the process. 

The dependent variables can be divided into three classes: (a) economically 
significant variables, (b) performance indices, and (c) supporting variables, 
defined and used when building the model. The economically significant 
dependent variables are alkylate yield in barrels per day and isobutane 
makeup in barrels per day. The other dependent variables are acid strength 
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by weight per cent, motor octane number (also economically significant), 
external isobutane-to-olefin ratio, acid dilution factor, and F-4 performance 
number. 

Relationships Used in Determining Constraints 

We start off by defining the 10 variables to be considered in the model, 
which have already been mentioned and are mathematically related in this 
section. We define 

a;j = olefin feed (barrels per day), 
.1-, = isobutane recycle (barrels per day), 
.r3 = acid addition rate (thousands of pounds per day), 
.r4 = alkylate yield (barrels per day), 
J-5 = isobutane makeup (barrels per day), 
:>-

6 = acid strength (weight per cent), 
.r7 = motor octane number, 
.'•s = external isobutane-to-olefin ratio. 
x9 = acid dilution factor, 

xlf) = F-4 performance number. 

Values to be taken on by the variables are all bounded from below and 
above. The independent variables xu xt, and .(., and the dependent variables 
xi and .r5 have limitations imposed by the economic situation under analysis. 
For example, only 2000 barrels per day of olefin feed, xu may be available 
for use in the process. These bounds will be included as constraints in the 
model. Similarly, the performance indices are required to lie within certain 
specified ranges because of the physical relationships of the process, and 
these bounds will be included as constraints. 

We give the equations for the dependent variables as functions of in- 
dependent variables and of other dependent variables. The alkylate yield. xt, 
is a function of the olefin feed, .rl, and the external isobutane-to-olefin 
ratio, J:8. The relationship is determined by a nonlinear regression holding 
at reactor temperatures between 80 to 90F and reactor acid strength by 
weight per cent of 85 to 93. The regression equation is 

r4 = .r,(1.12 + .13167*8 - .00667.rs
2). 

The isobutane makeup, .r5, can be determined by a volumetric reactor 
balance. The alkylate yield, *4, equals the olefin feed, .r,, plus the isobutane 
makeup, .r6, less shrinkage. The volumetric shrinkage can be expressed as 
.22 volume per volume of alkylate yield. The balance is then 

•r4 = •rl + xt - .22*4, 
or 

x. = 1.22.r, — .r,. 
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The acid strength by weight per cent, x6, can be derived from an equation 
that expresses acid addition rate, x3, as a function of alkylate yield, x4, 
acid dilution factor, x9, and acid strength by weight per cent, x6. The addition 
acid is assumed to have acid strength of 98. The equation is 

(98 - *6) ' 

Rearranging, we obtain acid strength as a function of acid addition rate, 
alkylate yield, and acid dilution factor: 

98,000a-3 
Xg — 

£4*9 + 1000x3 

The motor octane number, x7, is a function of the external isobutane-to- 
olefin ratio, x8, and the acid strength by weight per cent, x6. The relationship 
holds for the same reactor temperatures and acid strengths as for alkylate 
yield, x4. The equation determined by nonlinear regression is 

x7 = 86.35 + 1.098a;8 - .038x8
2 + .325(x6 - 89). 

The external isobutane-to-olefin ratio, x8, is equal to the sum of the 
isobutane recycle, x2, and the isobutane makeup, x5, divided by the olefin 
feed, xx. The equation is 

X2 H~ #5 

The acid dilution factor, x9, can be expressed as a linear function of the 
F-4 performance number, x10. A curve is approximated by the linear regres- 
sion equation . n x9 = 35.82 — .222x10. 

The last dependent variable is the F-4 performance number, x10, which 
may be expressed as a linear function of the motor octane number, x7. The 
linear regression equation is 

x10 = —133 + x7. 

The above relationships give the dependent variables in terms of the 
independent variables and the other dependent variables. All of the relation- 
ships must hold for the process to be in balance. In addition to the above 

Table 4.1    Lower and Upper Bounds on Selected Dependent Variables 

Dependent Variable Minimum Limit Maximum Limit 

xe, acid strength (weight per cent) 85 93 
xq, motor octane number >)(> 45 
xs, external isobutane-to-olefin ratio 3 12 
•r9, acid dilution factor 1.2 4 
x10, F-4 performance number 145 162 
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relationships, there are lower and upper bounds to be imposed on the 
variables. The independent variables have these bounds imposed by the 
capability of the physical plant and/or the economic situation being analyzed. 
These will be specified in the example. The dependent variables alkylate 
yield, x4, and isobutane makeup, x5, also are affected by the economic 
situation and other general conditions. But the dependent variables xt, x7, 
xa, x9, and .r10 have bounds that are directly related to the physical process. 
Table 4.1 shows the minimum and maximum limits for these variables. 

Profit Function 
The profit function is defined in terms of alkylate product or output value 

minus feed and recycle costs. Operating costs not reflected in the function 
we assumed not to vary among possible process setups. 

Define the value and cost parameters to be used in the profit function: 

c-! = alkylate product value (dollars per octane-barrel), 
c, = olefin feed cost (dollars per barrel), 
f:, = isobutane recycle costs (dollars per barrel), 
c4 = acid addition cost (dollars per thousand pounds), 
cB = isobutane makeup cost (dollars per barrel). 

The total profit per day, to be maximized, is 

Profit = c,a;4x7 — c2x1 - c3x., - r4.r3 - c5.r5. 

Specification of Model 
Define lower and upper bounds on the variables 

arj" = lower bound on they'th variable, 

x{.u) = upper bound on they'th variable, 

where j = 1, . . . , 10. 
Regression analysis was used to formulate the relationships for .r4, .r7, x„, 

and xl0 in terms of the other variables. Exact models were used for the 
relationships for x5, xe, and xs. For the former variables we use two in- 
equality constraints that specify a range within which the true value can be 
approximated by the estimated value. For the latter variables one equality 
constraint is used. 

Thus for the relationship 
xt =/(*!, *«) 

we use 
f(xuxa) - dixi > 0, 

-/(*i. *s) + d^ > 0, 

where d4 and d4 are the lower and upper values establishing the percentage 
difference of the estimated from the true value. An example that illustrates 
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how these inequalities work may be seen by setting c/4 = -fs and dt  = V- 
The inequalities 

To*4 ^/(*i> *s) ^ ~tT*4 
reduce to 

/(«it V ~ &*< > 0, 

-/(*!, *.)  +   V«|   >  0. 
With these preliminaries taken care of, we write the nonlinear programming 

model for maximizing profit per day of the alkylation process by setting the 
independent variables equal to the optimal values as follows. Choose 
Xj(j= 1,... ,10) to 

maximize c1x1x7 — c2
xi — c3x2 — c4.r3 — r5*5 

subject to the constraints 

*'/'< *, < x\u),       j = 1, 10, 
[.^(1.12 + .13167aj8 - .00667V)] - d^x, > 0, 

-[VI.12 + .13167:r8 - .00667V)] + dKxt > 0, 
[86.35 + 1.098z8 - .038V + .325(*6 - 89)] - d1x1 > 0, 

-[86.35 + 1.098*8 - .038V + -325(.r6 - 89)] + d7x7 > 0, 
[35.82 - .222*10] - d9 x9 > 0, 

-[35.82 - .222*10] + d9xa > 0, 
[-133 +3*7] -dloxlo>0, 

-[-133 + 3.r7] + d10x10 > 0, 

1.22.r4 — *! — *5 = 0, 

98,000*3 

*3*9 +   1,000*3 
*2  +   *- 

*6 = o. 

- *8 = 0. 
xl 

The final element to be mentioned is the starting values that are input to 
the model. These represent a balanced or nearly balanced process that 
engineers have developed, which should be a feasible solution satisfying the 
constraints. It is not absolutely necessary, for some nonlinear programming 
procedures can determine their own feasible solutions, but good starting 
values can be very helpful in solving the nonlinear programming problem. 

4.2    EXAMPLE  OF  ALKYLATION  PROCESS  MODEL  APPLICATION 

In this section we given the necessary data for an example of the model 
just described and discuss solution of the problem. The example is taken 
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Table 4.2    Lower and Upper Bounds on Variables, and Starting Values 

Variable 
Lower 
Bound 

Upper 
Bound 

Starting 
Value 

•fj, olefin feed (barrels per day) 
.r2, isobutane recycle (barrels per day) 
•r3, acid addition rate (thousands of 

pounds per day) 
r4, alkylate yield (barrels per day) 
x-, isobutane makeup (barrels per day) 
.r6, acid strength (weight per cent) 
J7, motor octane number 
•Tg, external isobutane-to-olefin ratio 
>'9, acid dilution factor 
x10, F-4 performance number 

0 2.000 1,745 
0 16,000 12,000 

0 120 110 
0 5,000 3,048 
0 2,000 1,974 
85 93 89.2 
90 95 92.S 
3 12 8 
1.2 4 3.6 

145 162 145 

from Sauer, Colville, and Burwick [3]. Lower and upper bounds on the 
variables are given in Table 4.2, which includes the bounds to be used in 
the particular situation being studied in addition to those previously specilied 
for the physical process. Also given in Table 4.2 are starting values for the 
optimization procedure. 

Parameters for profit from the sale of alkylate and costs of inputs 
required for production are given in Table 4.3. Using the starting values 
from Table 4.3, 

Profit = (S.063)(3,048)(92.8) - (S5.04)( 1,745) - (S.035)( 12,000) 

- (S10.00)(110) - (S3.36)(l,974) 
= S872. 

The final input parameters to be specified arc the permissible error rela- 
tionships for the inequality constraints on the regression relationships. 
Table 4.4 gives the lower and upper deviation parameters. 

Table 4.3    Values of Profit and Cost Parameters 

Profit and Cost Parameter Value 

fj, alkylate product value 
c\,, olefin feed cost 
r.,, isobutane recycle cost 
c4, acid addition cost 
c5, isobutane makeup cost 

5.063 per octane-barrel 
S5.04   per barrel 

S.035 per barrel 
SI0.00   per thousand pounds 

S3.36   per barrel 
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Table 4.4   Values of Deviation Parameters 

Deviation Parameter       Value 

<v. 99/100 

./,.. 100/99 

' 7i 99/100 

*. 100/99 

*., 9/10 

rf,. 10/9 

dw, 99/100 
dw„ 100/99 

The data in Tables 4.2, 4.3, and 4.4 are sufficient to allow application of 
the model described in the previous section. Values of the independent and 
dependent variables that maximize profit subject to the constraints are given 
in Table 4.5. Also listed are lower and upper bounds and starting values. 
The profit associated with the optimal solution is S1769 per day, an increase 
of S897 over that of the starting value. 

Isobutane recycle, xb, is at the upper limit in the optimal solution given 
above. To test the sensitivity of profits of the process to an increase in the 
availability of isobutane makeup, we increase the upper limit of x& by 10 
per cent to 2200 barrels. We also arbitrarily increase the upper bound on 
fractionation capacity by 25 per cent to 20,000, to allow for more isobutane 
recycle if this will balance the process at a higher level of profit. The profit 
goes to S1946, an increase of S1074 over the starting value. Isobutane 
recycle xb is used at the limiting point of 2200 barrels, and isobutane 
recycle goes to 17,396 barrels, which shows the necessity for increasing the 
fractionation capacity to balance the increased isobutane makeup. 

Table 4.5    Optimal Solution of Example Problem 

Variable Lower Bound Op timum Value Upper Bound Starting Value 

x\ 0 1,698 2,000 1,745 

*i 0 15,818 16,000 12,000 

•'3 i) 54.1 120 110 
XA 0 3,031 5,000 3,048 
x5 (1 2,000 2,000 1,974 
Kt N5 90.1 93 89.2 

*7 90 95.0 95 92.8 

*8 3 10.5 12 8 

•'•9 
1.2 1.6 4 3.6 

rio 145 154 162 145 
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5 
CHEMICAL EQUILIBRIUM 

The problem of determining the chemical composition of a complex mixture 
under chemical equilibrium conditions has long been of interest. Such 
problems arise in the analysis of the performance of fuels and propellants 
and in the synthesis of complex organic compounds. 

A mixture of chemical species held at a constant temperature and pressure 
reaches its chemical equilibrium state concurrently with reduction of the 
free energy of the mixture to a minimum. This is a consequence of the second 
law of thermodynamics. The objective function to be minimized in the 
chemical equilibrium model is the expression of the free energy of the chemi- 
cal mixture under study. The value of the free energy of the mixture is 
minimized subject to the chemical reactions possible between species of the 
mixture. 

White, Johnson, and Dantzig [3] formulated the chemical equilibrium 
problem as a mathematical programming problem with linear mass balance 
constraints representing the possible chemical combinations of the chemical 
species of the mixture, and a nonlinear objective function representing the 
free energy of the mixture (to be minimized). They investigated steepest 
descent and piecewise linear programming approaches to formulating the 
the problem. In a second paper [2] they explored the piecewise linear pro- 
gramming problem further. The problem is discussed briefly by Dantzig [1], 
who used it to illustrate the method of generalized linear programming. 

5.1    CHEMICAL  EQUILIBRIUM  MODEL 

Consider a mixture of m chemical elements. It has been predetermined 
that the m different types of atoms can combine chemically to produce n 
compounds, where the monotonic atom is regarded for our purpose as a 
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possible compound. Define 

xt = the number of moles of compound j present in the mixture at 
equilibrium, 

x = the total number of moles in the mixture, where x = £ xit 

a,, = the number of atoms of element i in a molecule of compound /', 

b{ = the number of atomic weights of element / in the mixture. 

The mass balance relationships that must hold for the in elements are 

^aijxj = b,.,        /=1 m (5.1) 

and 
Xj > 0,       j = 1 n. (5.2) 

Determination of the composition of the mixture at equilibrium is equiva- 
lent to determination of the values of .r, (/ = 1 n) that satisfy (5.1) 
and (5.2) and also minimize the total free energy of the mixture. The total 
free energy of the mixture is given by 

\RTIi 

(5.3) 

where 
F° 

ci= ' 

where (F°/RT) is the modal standard (Gibbs) free energy function for the 
y'th compound, which may be found in tables, and P is the total pressure in 
atmospheres. 

Thus the nonlinear programming problem is as follows. Choose xs 

{j = !,...,») to minimize the nonlinear objective function (5.3) subject 
to linear constraints (5.1) and non-negativity restrictions (5.2). 

5.2    EXAMPLE OF CHEMICAL EQUILIBRIUM MODEL APPLICATION 

We consider the example problem formulated and solved by White, 
Johnson, and Dantzig [3]. The data are from [3]. We solve the nonlinear 
programming problem by the sequential unconstrained minimization 
technique and obtain similar answers, though a remark is warranted that 
the value of the objective function that we obtain is smaller (thus better) 
than that given in [3]. 

The problem considered is the determination of the equilibrium composi- 
tion resulting from subjecting the compound iNLH., + \0„ to a temperature 
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of 3500oK and a pressure of 750 psi. In Table 5.1 we show for each compound 
j of 10 possible compounds (where the monotonic atoms are termed com- 
pounds) the Gibbs free energy function (F°jRT)j, the computed value of c5 

for P = 750 psi, and the number of atoms of H, N, and O per molecule. 
The number of atomic weights of H, N, and O in the mixture are assumed 
to be bi = 2, b2 = 1, and b3 = 1. 

Formulating the nonlinear programming model, the nonlinear objective 
function to be minimized is 

x 

+ •• 

+ *io 

-6.089 + In (*/£•'). 

-22.179 + 1 n (^./j>>) 
and the linear constraints of the nonlinear programming problem are as 
follows: 

Xj -J- Zx% -\- zx3 •+-   xB -f- a*10 = 2, 

xt + 2xs +   xa +   x7 = 1, 

^3 T     X7 +     Xg + 2xs -f- x10 =   1, 

«i > 0,. . . , xw > 0. 

Solving the above nonlinear programming problem, we obtain the values 
of Xj (j = 1, . . . , 10), the number of moles of the 10 compounds present 
in the equilibrium mixture, which are given in Table 5.2. These values 

Table 5.1    Data on |N2H4 + J02 at 3500°K, 750 psi 

au 

i= 1 i = 2 ; = 3 

j Compound (F0//J7-), ci H N O 

1 H -10.021 -6.089 1 
2 H2 -21.096 -17.164 2 
3 H20 -37.986 -34.054 2 1 
4 N -9.846 -5.914 1 
5 N2 -28.653 -24.721 2 
ft NH -18.918 -14.986 1 1 
7 NO -28.032 -24.100 1 1 
X O -14.640 -10.708 1 
9 °2 -30.594 -26.662 2 

10 OH -26.111 -22.179 1 1 
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Table 5.2    Composition of 2N2H4 + £02 

at 3500°K, 750 psi 

j Compound xi 

1 11 .0407 
2 H2 .1477 
.1 H20 .7831 
4 N .0014 
5 N2 .4853 
6 NH .0007 
7 NO .0274 
s O .0180 
9 o2 .0373 

10 OH .0969 

agree with those obtained in [3]. The corresponding value of the objective 
function is —47.76. 

5.3    SOURCE  OF  PROBLEM  AND  REFERENCES 

Source 

Robert   E.   Pugh   applied   the   sequential   unconstrained   minimization 
technique to this problem, examining the example problem given in [3]. 
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STRUCTURAL  OPTIMIZATION 

In this chapter we describe a nonlinear programming model for optimization 
of the design of a vertically corrugated transverse bulkhead of an oil tanker. 
The model determines the design that minimizes the total weight of the 
transverse bulkhead subject to constraints on performance characteristics 
and on certain dimensions. The constraints are both linear and nonlinear, 
and the objective function is nonlinear. The nonlinear programming problem 
is not convex. 

The model was given by Kavlie, Kowalik, and Moe [3], They cite reference 
material in their paper. The solution procedure used by Kavlie, Kowalik, 
and Moe was the sequential unconstrained minimization technique for non- 
linear programming with the incorporation of unconstrained minimization 
techniques of Davidon [1] and Fletcher and Powell [2]. The present writers 
solved the model using the SUMT program on the IBM 7040, obtaining 
only slightly different results. The formulation of the model is described in 
this chapter in terms of the specific bulkhead analyzed by Kavlie, Kowalik, 
and Moe. 

In this chapter we first generally describe the vertical corrugated bulkhead 
and the design problem, defining the design variables. Then we discuss the 
constraints and objective function, defining necessary parameters as we go 
along. The model is given in detail. Results of solution of the nonlinear 
programming problem are presented. 

6.1    DESCRIPTION  OF  DESIGN  PROBLEM 

Vertical transverse bulkheads form the lateral walls of the internal com- 
partments of tankers that hold liquid cargo. Longitudinal bulkheads and 
other structures form the longitudinal walls of the compartments. Corrugated 
bulkheads have certain design advantages over plane bulkheads, which make 

50 



Description of Design Problem 51 

H 

E p 

Deck 

  

C - 

stnnge 

D      Lower 
stringer 

i r / 

Ah •*• B 

Bottom 

Longitudinal bulkhead Center girder 

Section /-/ 

Figure 6.1    Vertical Corrugated   Transverse Bulkhead 

them candidates for inclusion in tankers. They have been used in some 
tankers, but are not the usual design. 

The corrugated bulkhead to be considered is shown in Figure 6.1. We 
assumed the shapes of the corrugations to be identical in all of the panels, 
and the positions of the stringers CD and EF are assumed to be fixed. The 
lengths of the top, middle, and bottom panels are denoted by /,, /,„, and /,,, 
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Figure 6.2   Specification of Design Variables 

respectively. The width of the panels is denoted by B. It is possible to vary 
the positions of the stringers, but they are assumed for this problem to be 
fixed because of the configuration of the neighboring longitudinal bulkheads 
and other members. An optimization model involving stringer position could 
include stringers of longitudinal bulkheads. 

In Figure 6.2 the basic design variables are shown for one panel. The 
design variables for all three panels are 

bi = width of flange (centimeters), 
h2 = length of web (centimeters), 
d = depth of corrugation (centimeters), 
tt = thickness of plate in top panel EFGH (centimeters), 

tm = thickness of plate in middle panel CDEF (centimeters), 
tb = thickness of plate in bottom panel A BCD (centimeters). 

The corrugations are assumed to be identically shaped in all three panels, 
but the thicknesses are allowed to vary among panels, thus giving variables 
tt, t„, and th. 

6.2    DESCRIPTION  OF  OBJECTIVE  FUNCTION 

The objective function (to be minimized) is the total weight of the three 
panels of the corrugated bulkhead. Figures 6.1 and 6.2 show the dimensions 
to be incorporated in the weight function. We also define 

n = number of corrugations, 

r = weight per unit volume of the material (tons per cubic centimeter). 

The total weight of the bulkhead in tons is 

W=rn(b1 + b.J(ttlt + tJ„l + tblb). 

The number of corrugations can be expressed in terms of the width of the 
panel, B, and the width per corrugation, s, by 

B 
n = —. 



Description of Constraints 

Thus the objective function becomes 

W=TB(bl + b2) U'l + tfJm + h'b 

51 

(6.1) 

6.3   DESCRIPTION OF CONSTRAINTS 

Figure 6.3 shows the lengths in centimeters of the stitTener spans (panels), 
/(, lm, and /,,; the heights of pressure at the middle of the spans, /?,, //„,, and 
hb; and the heights of pressure at the lower ends of the spans, hu, hlm, 
and hlb. 

Section Modulus 
The first three constraints are on the section modulus of each of the three 

panels. The section modulus is derived by Kavlie, Kowalik, and Moe [3] 
to be 

Z = f(j + ^)    <cm3)' (6.2) 

q = yhs (load) 

Figure 6.3   Specification of Design Parameters 
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where e is the effectiveness of the flange (dimensionless). The subscript is 
dropped from the t because there are three constraints for the three panels. 

For each of the three panels, the requirement is that 

Z > Zrule, (6.3) 

where ZmXe is derived from specifications given in 1964 rules issued in Det 
Norske Veritas (Section III, Paragraph 6). Each stiffener is assumed to be 
clamped at the ends with a constant load: 

q = yhs    (kg/cm), 

where the specific gravity of fresh water is 

y = .001 kg/cm3 

and the geometrical relationship gives 

s = bx + VV - d2   (cm). 

In this case the bending moment at the supports is 

,.      ql-      yhsl2    .. . 
M = — =    (kg-cm). 

12        12 

The maximum permitted bending stress, a•ax, is 1200 kg/cm2. The bending 
stress is 

<ib = —   (kg/cm ). 

Thus, since ah< er? 

— < 1200 kg/cm2 

Z 

z>    }'hsl'2 

12 •1200 

> K.hsl2   (cm3), (6.4) 

where Kx = yjUAW = .0000000694 cm"1. 

Moment of Inertia 

The moment of inertia is calculated directly from the section modulus as 

J = Z - . (6.5) 
2 

For each of the three panels the requirements given by Kavlie, Kowalik, 
and Moe [3] are that 

J > 2.2VZ*^C. (6.6) 
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Plate Thickness 

For each of the three panels it is required that 

(6.7) 

where t = plate thickness (millimeters), 
fmin = function of length of ship (centimeters), 

*-(l.056,   (mCterS)' 
fix = height of pressure at lower end of panel (meters), 
K2 = corrosion allowance (millimeters). 

Geometrical Limitations 

The length of the web is constrained to be equal to or greater than the 
depth of corrugation, 

bt-d> 0. (6.8) 

which is obvious from Figure 6.2 if there are to be other than right angles 
in the corrugations. 

6.4    SPECIFICATION  OF  NONLINEAR  PROGRAMMING   MODEL 

In this section we use the constraint and objective function descriptions 
given in the two previous sections to formulate a nonlinear programming 
model. There are 16 constraints, five sets of three each for top, middle, 
and bottom panels, and one additional constraint. 

For all of the parameters of the model we use the notation of the previous 
sections, but for convenience we define the design variables 

Xj = bt = width of flange, 

ar2 = b2 = length of web, 

x3 = d = depth of corrugation, 

xt = tt = thickness of plate in top panel, 
xs = tm = thickness of plate in middle panel, 
.r6 = tb = thickness of plate in bottom panel. 

Objective Function 

From the definition of the objective function (6.1), and using other rela- 
tionships previously given, the objective function (to be minimized) is 

W = VB(Xl + xt){t^ + tmxt + tbxt)[Xl + (*,« - *,*)'']-•«.       (6.9) 
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Constraints 

From (6.2), (6.3), and (6.4), and substituting in the variables x1,. . . , *6, 
we obtain the three constraints on section modulus: 

6*2:r3*4 + - Xlx3x, - K^l^x, + (x2 - *3
2)u] > 0,        (6.10) 

4*2*3*5 + - *A*« - KihJm
a[xi + (*2

2 - x3
2)'A] > 0,        (6.11) 

er*2*3*6 + - xxx3x6 - K,fc»/»*[*i + (x.2 - x2)A] = 0. (6.12) 

From (6.2) and (6.5) we obtain the three constraints on moment of 
inertia: 

A*2*3
2*4 + : *i*3

2*4 ~ 2.2(Kxhtl?f[Xl + (*2
2 - xij4f > 0,      (6.13) 

&W*« + \ xxx?xh - LKK.hJjflx, + (x2 - *,*)"]« > 0,      (6.14) 
4 

-&x2x3% + - Xlx3
2x6 - 2.2(K1Vi>

2)'*K + {x2 - x3
2)'Af > 0.      (6.15) 

4 

Noting that the definitions of the terms in (6.7) are not in centimeters, 
we use (6.7) to obtain the following nine constraints on plate thickness for 
the three panels: 

*4 - tfn > 0, (6.16) 

10*4 - [3.9 • l.OSCOlA^COla:,) + 10K2] £ 0, (6.17) 

10z4 - [3.9 • 1.05(.01/i1()
H(.01*2) + \0K2] > 0, (6.18) 

*5-C
in>0, (6.19) 

10*5 - [3.9 • 1.05(.01Alw)w(.01*i) + 10K2] > 0, (6.20) 

10*5 - [3.9 • 1.05(.01/ilm)w(.01*2) + 10X2] > 0, (6.21) 

*6 - tfn > 0, (6.22) 

10*6 - [3.9 • 1.05(.01/jlb)w(.01*,) + 10K2] > 0, (6.23) 

10*6 - [3.9 • 1.05(.01ft16)^(.01*2) + 10K2] > 0. (6.24) 

Finally, from (6.8) we obtain the final constraint on length of web greater 
than depth of corrugation, which we express as the inequality constraint 

*2 - x3 £ 0. (6.25) 
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6.5   RESULTS OF SOLUTION 

Our solutions do not agree exactly with those of Kavlie, Kowalik, and 
Moe [3], but they are approximately the same. Like these authors, we solve 
the problem using two Det Norske Veritas design coefficients, 3.9 and 4.25 
(for 1964 and 1955, respectively), in the linear plate thickness requirement 
(6.7), and thus in our constraints (6.17), (6.18), (6.20), (6.21), (6.23), and 
(6.24). Their solutions and our solutions are given in Table 6.1. 

Table 6.1    Optimal Solutions to Structural Optimization Problem 

Kavlie-Kowalik-Moe Optimal 
Solut on [3] Our Optini al Solution 

Starting 
Point DNV* 1964(3.9) DNV 1955(4.25) DNV 1964(3.9) DNV 1955(4.25) 

/', 45.8 cm 64.2 cm 55.6 cm 57.8 cm 55.7 cm 
!>., 43.2 cm 64.2 cm 63.2 cm 57.8 cm 55.7 cm 
J 30.5 cm 36.9 cm 36.7 cm 37.8 cm 37.3 cm 
I, 1.2 cm 1.05 cm 1.05 cm 1.05 cm 1.05 cm 
',„ 1.2 cm 1.05 cm 1.05 cm 1.05 cm 1.05 cm 
t„ 1.3 cm 1.15 cm 1.15cm 1.05 cm 1.10 cm 
»)' 6.40 tons 5.29 tons 5.38 tons 5.34 tons 5.44 tons 

* Det Norske Veritas. 

Kavlie, Kowalik, and Moe obtained a lower total weight than we do for 
both problems, but our calculations indicate that for both of their optimal 
solutions the moment of inertia constraint (6.14) is not satisfied. We have 
found no indication in their paper as to why this would be the case, but 
perhaps there is an improper coefficient somewhere in the model. 

The solutions to the model using the SUMT program required approxi- 
mately 200 sec on the IBM 7040 to obtain final convergence. 

References 

[1] W. C. Davidon, "Variable Metric Method for Minimization," Research and De- 
velopment Report ANL-5990 (Revised), Argonne National Laboratory, U.S. Atomic 
Energy Commission, 1959. 

[2] R. Fletcher and M. J. D. Powell, "A Rapidly Convergent Descent Method for Mini- 
mization," Computer J., 7, 149-154 (1964). 

[3] D. Kavlie, J. Kowalik, and J. Moe, "Structural Optimization by Means of Nonlinear 
Programming," Department of Ship Structures, Technical University of Norway, 
Trondheim, 1966. 



7 
LAUNCH VEHICLE  DESIGN 

AND  COSTING 

7.1    INTRODUCTION 

As the nation has progressed farther into the space program, the job of 
developing space vehicles has been more complex, time-consuming, and 
costly. Although the technical problems and the meeting of schedules have 
received first attention in the past, the job of cost prediction and control 
has become more demanding and is requiring a greater emphasis. As a 
result of this trend, new and improved tools are required so that today's 
manager can make quantitative appraisals of the costing problem. 

One of the tools receiving a great deal of attention, and the subject of 
considerable research, is the use of cost models. Cost models typically use 
the physical characteristics of the subject system as independent variables 
and include as dependent variables the various costs of the system. Use of 
these models allows a quantitative approach to many costing problems. 

The National Aeronautics and Space Administration has directed and 
conducted a number of studies in the development of cost models for space 
vehicles. Most of this effort has been in the determination of launch vehicle 
cost models, although work is also being done on spacecraft and total 
program space vehicle cost models. The need for accurate and responsive 
cost-predictive tools is motivating research in all areas. 

Most of the work to date has been to improve the methods of producing 
cost predictions. The studies have been along the lines of determining cost 
parameters, developing cost-estimating relationships (CERs), and forming 
descriptive cost models. It is the objective of this paper to go one step beyond 
the descriptive cost model and develop an optimizing cost model. In ac- 
complishing this objective we have utilized previous studies as much as 
possible. 
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Cost-Estimating Relationships 

A key element in the development of the subject model is the use of CERs. 
The CERs relate the design parameters and variables of a launch vehicle to 
the cost of the launch vehicle or the cost of that particular subsystem of the 
launch vehicle being considered. The summation of CER terms for each 
subsystem being considered forms the objective function of the subject 
model. 

The CERs used in the model were developed by a cost study on launch 
vehicle components conducted by Lockheed Missiles and Space Companv [1]. 
The determination of CERs was accomplished by cost data collection and 
extrapolation, selection of design parameters, and formulation of equations. 
The primary data sources were Lockheed in-house cost data files, NASA- 
supplied Saturn data, previously collected data used in NASA cost models, 
and data from other contractors. By using this information, and through 
forecasting and extrapolating, a data base was provided for correlation 
analysis. The final selection of design parameters and the formulation of 
cost-estimating equations were performed through correlation analysis. The 
correlation was performed either by computer, using Lockheed's Weighted 
Regression Analysis Program (WRAP), or manually for the scarce data 
cases. 

It must be recognized that the CERs were developed from a limited amount 
of data, and extrapolation for advanced systems is not a precise art. Despite 
these limitations it is necessary that CERs be formed with reliance on the 
best data available to enable advanced systems planning. 

The need for more accurate CERs is a requirement of all cost models. 
CERs have been developed by various contractors and agencies, but further 
work is still required. 

Introductory Discussion of Constrained Optimization Model 

In order that the model may be seen in as realistic a form as possible, an 
example launch vehicle is used as the basis. The example vehicle is a three- 
stage launch vehicle typical of what might be required for an earth-orbiting 
or earth-escape mission. A detailed description of the example launch 
vehicle is given in Section 7.2. It is noted, however, that the model is not 
limited to the example vehicle and that the objective function and constraints 
can be changed to accommodate any type of vehicle for which CERs can be 
determined. 

Although an example launch vehicle is used, it is our intent to keep the 
model in as generalized a format as possible and to illustrate the method for 
developing models for all types of launch vehicles. In general the objective 
function is a cost function that is to be minimized. The cost function is 
expressed by CERs as a function of variables that determine the total cost 
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for developing, building, and launching a launch vehicle. The constraints 
are based on the desired performance of the launch vehicle. A typical kind 
of over-all constraint is that a launch vehicle must boost a specified payload 
(PL) to a certain velocity. This is the type of over-all constraint used for the 
subject model and developed in Section 7.3. To develop all the constraints 
that express the required physical characteristics of the system, a number of 
nonlinear and linear relationships are specified. 

The model as developed for the example launch vehicle is solved by the 
sequential unconstrained minimization technique. The results are given in 
Section 7.4. 

This type of model is primarily for use by groups concerned with future 
projects and advance planning of launch vehicles. It provides an initial 
attempt to obtain a valid and flexible tool that advance planners may use in 
the formative stages of design for the purpose of obtaining optimum design 
parameters. These design parameters are chosen to obtain the minimum 
over-all cost of the launch vehicle within the constraints of the performance 
required to carry out the mission. If the model were to be developed to a 
further level of sophistication, it would be necessary to make a specific 
determination of its use. Two widely varying examples of application would 
be use for obtaining detail design parameters and use solely as a guide for 
preliminary planning. 

7.2 DEVELOPMENT OF COST FUNCTION 

Definition of Variables 

Total cost for developing, building, and launching a launch vehicle is to 
be expressed as a function of design variables. Only the costs for the launch 
vehicle will be considered, and the development of a total space vehicle cost 
function, including the spacecraft or other PL, is not attempted. In this 
model the launch vehicle is defined as the composite of the three booster 
stages and the instrument unit. The instrument unit is the guidance and 
control for all three booster stages. The PL or spacecraft is that package 
above the launch vehicle that the launch vehicle is to place in the desired 
orbit or space trajectory. The space vehicle is defined as the composite of 
the launch vehicle and the spacecraft or PL. The cost function expressing 
the cost of the total launch vehicle development and production program 
is the objective function of the optimization cost model. 

In the construction of the cost model a typical launch vehicle is used as 
an example. A number of basic design assumptions must be made before the 
development of the model. These assumptions include the number of stages 
in the launch vehicle, the number of engines per stage, the type of propellant, 
and the total number of launch vehicles to be built. Additional assumptions 
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are made when  the constraint equations are considered,  but the  ones 
mentioned are of primary importance for the cost function. 

For purposes of illustration the example is a three-stage launch vehicle. 
The first stage has five identical engines of the bell-shaped exhaust chamber 
type. The first-stage engines use liquid oxygen/rocket projectile (LOX/RP) 
propellant. The second stage also has five engines of the bell-shaped type. 
The second-stage engines also use LOX/RP propellant; however, they are 
assumed to be of a design and thrust different from those of the first-stage 
engines. The third stage has a single bell-shaped engine. The third-stage 
engine uses a liquid oxygen/liquid hydrogen (LOX/LH2) propellant. An 
instrument unit stage is considered that contains the guidance and control 
systems of the individual stages. No PL is considered in the cost function, 
although it is in the constraint equations. Thus the model is strictly for the 
launch vehicle costs. The number of launch vehicles to be built and launched 
is designated as the constant Kv 

The primary costs of a launch vehicle program are incurred in three major 
areas: research and development (R&D), manufacture of hardware, and 
launch operations. The cost of facilities for manufacturing and launching, 
which could be a fourth major cost area, is not considered, and the use of 
existing facilities is assumed. The R&D and hardware costs are determined 
at the subsystem level for each stage and at the system level for the instrument 
unit. The launch operations cost is determined by an equation representing 
the entire launch vehicle. 

The two major subsystems comprising each stage for both R&D and hard- 
ware costs are the airframe and propulsion subsystems. Other subsystems 
less significant in terms of over-all stage cost are not considered. The two 
subsystems considered are assumed to represent the entire stage. The equa- 
tions representing the costs of the two subsystems are primarily in terms of 
weight and/or thrust variables. The CERs between the given variables and 
the cost are expressed by the equations for the different cost categories of 
airframe and propulsion. 

In the development of the cost model, the variables are defined as follows: 

Xu = Stage 1 airframe weight (thousands of pounds), 
X12 = Stage 1 total inert weight (thousands of pounds), 
X13 = Stage 1 mass fraction (dimensionless), 
Xu = Stage 1 total thrust (thousands of pounds), 
Xlh = Stage 1 impulse propellant weight (thousands of pounds), 
Xlt = Stage 1 individual engine thrust (thousands of pounds), 
Xl7 = Stage 1 length (feet), 
X2l = Stage 2 airframe weight (thousands of pounds), 
X22 = Stage 2 total inert weight (thousands of pounds), 
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X23 = Stage 2 mass fraction (dimensionless), 
X2t = Stage 2 total thrust (thousands of pounds), 
X2b = Stage 2 impulse propellant weight (thousands of pounds), 
X26 = Stage 2 engine thrust (thousands of pounds), 
X2-, = Stage 2 length (feet), 
X31 = Stage 3 airframe weight (thousands of pounds), 
X32 = Stage 3 total inert weight (thousands of pounds), 
X33 = Stage 3 mass fraction (dimensionless), 
X3t = Stage 3 total thrust (thousands of pounds), 
X3S = Stage 3 propellant weight (thousands of pounds), 
X36 = Stage 3 impulse engine thrust (thousands of pounds), 
X37 = Stage 3 length (feet), 
A^, = Instrument unit weight (thousands of pounds), 

fj = Stage 1 burn time (seconds), 
t2 = Stage 2 burn time (seconds), 
t3 = Stage 3 burn time (seconds). 

Total Stage 1 R&D and Production Costs 

The variables to be used in determining the Stage 1 cost function are 
defined above. This portion of the cost function, encompassing both R&D 
and production costs, is developed in terms of the airframe and propulsion 
subsystems. The Stage I design assumptions will be as indicated in the earlier 
description of the example launch vehicle. 

Stage 1 Airframe R&D Cost 

The first category of cost to be considered for Stage 1 is the airframe 
R&D cost. This cost category is a combination of airframe R&D design 
engineering, tooling, special test equipment, subsystems test hardware, and 
static test hardware, as well as subsystems and static test support and 
acceptance costs. The equation for the total airframe R&D cost as taken 
from the Lockheed study is 

Y= 5272.77(A'11)
1•2781(^12)-0•,959(A'13)!!•4242(A'14)

0•38745(A'15)-
1,9904. 

The term Y equals the total Stage 1 airframe R&D cost in millions of dollars. 
The equation takes into consideration the three major design parameters of 
an airframe—weights (Xu, X12, and X15), thrust (Xu), and mass fraction 
(A"13)—and is applicable to expendable chemical airframes. A detailed 
definition of the term "mass fraction" is given in Section 7.3. Also to be 
taken up in that section are the interrelationships of the variables. With 
regard to the variable propellant weight, Xlb, it is noted that impulse pro- 
pellant weight is equal to total propellant weight, and no residue subsequent 
to burning is assumed. 
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Stage 1 Engine R&D Cost 

The next cost to be considered is that of the propulsion subsystem R&D 
cost. This cost category includes R&D engineering, test hardware, special 
test equipment, qualification testing, and propellant costs, through qualifica- 
tion. The equation for Stage 1 total R&D cost of the engine through quali- 
fication as taken from the Lockheed study is 

(y    s-0.146 ,y    \0.64H 

^| + 282.874(^1 
103/ \ 10/ 

In this equation Y is equal to the total Stage 1 engine R&D cost through 
qualification in millions of dollars. The equation is for the specific example 
of Stage 1; that is, an engine burning LOX/RP with a bell-shaped nozzle. 
If the engine were using another type of propellant, the constants of the 
above equation would be changed, as is done in the case of the Stage 3 
engine. When a different type of nozzle or a nuclear or air-breathing engine 
is used, a new equation must be determined. 

The first stage is ignited on the earth's surface, and therefore engine 
sea-level thrust is used for the engine thrust variable X16. As will be the case 
for Stages 2 and 3, engine-rated thrust is used for all upper stages. 

Stage 1 Air frame Production Cost 

The first subsystem to be considered in obtaining the Stage 1 production 
cost is the airframe. The basic equation for airframe production cost is given 
in terms of the cost of the first production unit and is taken from the Lockheed 
study. The airframe as defined here includes structure tanks, insulation, 
thrust structure, fairings, engine accessories, fuel systems, oxidizer system, 
stage controls, telemetry structure, pneumatic system, separation system, 
and the interstage (that portion attached to the stage at separation). 

To obtain the total production cost of all airframe subsystems produced 
for Stage 1, the number produced is raised to a particular exponent, de- 
pending on the slope of the learning curve, and multiplied by the first 
production unit basic equation. This is an approximation commonly used 
for learning curves. All learning curve values used are taken from the Lock- 
heed study, along with the applicable cost term. The number of airframes 
produced is assumed to be equal to the number of stages required and thus 
equal to the number of launch vehicles to be built and launched. A,. The 
first-unit airframe production cost for Stage 1, in dollars, is 

Y= 185,214(A'11)
03322(A'13)~

1-5i,35(A'1,)
l,23B2(A'17)

l,1,,79(^2)
0"!le. 

where K2 = number of engines for Stage 1 = 5. 
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The total airframe production cost for Stage 1, in millions of dollars, is 

Y= 185,214(A'11)
0-3322(A'13)-15935(A'15)

0i!36i!(A',7)01079(5)01616(/:i)
v(10-6), 

where y = learning curve slope = 0.90. 

Stage 1 Engine Production Cost 

The hardware cost of the propulsion subsystem is the next to be con- 
sidered, and, as in the case of airframe production costs, the first production 
unit cost is determined. The first production unit cost equation, in millions 
of dollars, for a Stage 1 LOX/RP engine with a bell-shaped nozzle as taken 
from the Lockheed study, is 

!Y   \ IY   \0-736 IY   \-0-229 
Y= 0.2085|^) +2.509(^1       + 0.9744 |^-6)       . 

\ 103/ 1107 \ 107 

The total engine production cost for Stage 1 engines, in millions of dollars, 
is 

y = 0.2085^)+ 2.509^"     +0.9744^)" 
-0.229-1 

(5K,)0-93 

The term 5A\V is the total number of engines produced, raised to the exponent 
of the slope of the learning curve. For the given engine the slope of the 
learning curve equals 0.93. The equation is for the total cost of the production 
hardware, excluding spares. 

Total Stages 2 and 3 R&D and Production Costs 

The Stages 2 and 3 cost functions are developed in the same manner as 
those for Stage 1. The same subsystems are used, and the variables and 
design assumptions are as defined earlier in this section for the example 
vehicle. Since the Stage 2 design assumptions for propellant and number of 
engines are the same as those for Stage 1, the incorporation of Stage 2 
variables is the only change to the cost function for Stage 2. Because of this 
it is not necessary to repeat the discussion for the development of the Stage 
2 cost function. 

The Stage 3 cost function, although developed in the same manner, has 
some different values, owing to the use of a LOX/LH2 propellant and only 
one engine. This primarily affects the engine costs. The airframe costs differ 
only by the incorporation of Stage 3 variables and by a value of 1 for the 
number-of-engines term in the airframe production cost. Because of the 
difference in propellant, the Stage 3 engine R&D and production costs are 
discussed. 
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Stage 3 Engine R&D Cost 

The engine R&D cost for Stage 3 is determined from the same basic 
equation as that for Stages 1 and 2. The constants of the equation are changed 
because of the change in propellant from LOX/RP to LOX/LH2 in Stage 3. 
The total R&D cost through qualification for the Stage 3 engine, in millions 
of dollars, is 

,y    v0.039 ,y    \0.772 

Y= 32.591 + 181.806|^^|       + 232.57 |^f|     . 
\ 107 \ 10/ 

This equation for a LOX/LH2 engine is taken from the Lockheed study. 
The comments on the engine R&D cost for Stage 1 are applicable. 

Stage 3 Engine Production Cost 

The engine production cost for Stage 3 is determined from the same basic 
equation as for Stages 1 and 2. The constants of the equation are changed 
to account for the LOX/LH2 propellant of Stage 3. The Stage 3 engine first 
production unit cost, in dollars, is 

Y = 0.0705^«] - 0.1807/^\ ''" + 166.87 (^fj (10s). 

The total engine production cost for Stage 3 engines, in millions of dollars, 
is 

-I.S3 iv    \0.49S~! 

0.0705(^f) -0.1807pf]   " + 166.87&J (lO^'MK,)     • 

The comments on Stage 1 engine production cost are applicable to Stage 3 
engine production cost. The above equation for production unit cost was 
taken from the Lockheed study and is only for LOX/LH2 engines. 

This concludes the Stage 3 costs and the development by stage of R&D 
and hardware costs. The cost of the instrument unit, which is not considered 
as a stage, is determined in much the same manner in the following subsection. 

Launch Vehicle Instrument Unit Cost 

The guidance and control of the launch vehicle are provided to all three 
stages from a single instrument unit throughout the entire powered flight. 
The instrument unit is mounted on top of the third stage and beneath the 
PL. Thus 1 lb of instrument unit weight is equivalent to 1 lb of PL weight 
with respect to launch vehicle performance. The costs are determined by 
R&D and production equations, as was done for each stage. 
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Instrument Unit R&D Cost 

The R&D cost of the instrument unit is given by an equation representing 
total R&D costs of the guidance and control system. This cost category 
includes R&D engineering, tooling, special test equipment, components, 
test hardware, and components integration. The equation for guidance and 
control R&D cost as taken from the Lockheed study is 

Y = 10.35{15,822[(Jr41)(10»)]0-7M(10-8)} - 35.5. 

The variable XiX is the weight of the instrument unit in thousands of pounds. 
The equation does not include any flight-test hardware units. The cost of 
flight-test units could be determined using the single-unit cost, which is the 
bracketed portion of the R&D equation above. It is assumed for the purposes 
of the example that any flight testing of the instrument unit would involve 
the entire launch vehicle. Therefore flight-test hardware cost may be treated 
as a production hardware cost and no addition is required for the R&D 
cost equation. The above equation is the total instrument unit R&D cost 
in millions of dollars. 

Instrument Unit Production Cost 

The guidance and control system production cost is the last hardware 
cost to be considered. The equation for the instrument unit first-production 
unit cost in dollars as taken from the Lockheed study is 

Y= 15,822[(A-41)(103)]0786. 

The total instrument unit production cost for all first stages, in millions of 
dollars, is 

Y = {15,822[(A'41)(103)]0-788}(10-6)(A:iy. 

The learning curve slope y equals 0.90 for the given equation and example. 
The total instrument unit hardware includes computer, adapter, platform, 
flight controls, and miscellaneous equipment. 

This concludes the development of R&D and hardware costs for the 
example launch vehicle. 

Launch Vehicle Operations Cost 
The last major cost area to be considered is the launch operations cost. 

This cost is determined by an equation developed for the total launch 
vehicle, not by stages and subsystems. The operations cost is defined to 
include the costs of pad operations, propellant, transportation, and other 
operations support. The equation for this function as taken from the 
Lockheed study [1] is 

~{XK + X,, + X35)(C)°- 
1000 

•=8.5^ (Ki), 
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where C = the number of stages = 3. This equation gives the total flight 
operations cost for all vehicles launched (A\), in millions of dollars. 

Total Cost Function 

The total launch vehicle program cost is the sum of all the costs described 
in this section. The total cost, which is the objective function of the cost 
model, can be written as 

Total cost = R&D cost + hardware cost + operating cost. 

The first two elements of the total cost, R&D cost and hardware cost, 
were developed by individual stage and the instrument unit. 

The first-stage costs are 

Airframe  R&D + LOX/RP propulsion   R&D + airframe production 
unit (Kj) + LOX/RP engine production unit (5) (A,)- 

The second-stage costs are 

Airframe R&D + LOX/RP propulsion  R&D + airframe production 
unit (A,) + LOX/RP engine production unit (5) (A,). 

The third-stage costs are 

Airframe R&D + LOX/LH2 propulsion R&D + airframe production 
unit (Aj) + LOX/LH2 engine production unit (1) (At). 

The instrument unit costs are 

Instrument unit R&D + instrument unit production unit (A,). 

The launch vehicle operating cost is 

Launch operations (A,). 

Thus the complete objective function of the model to be minimized is as 
follows. 

Stage 1 

[5272.77(.V^)1•27s,(.\^.,)-0'!n.V13V2,'•:42(-Yu),,•3'<T4:'(A^,^0•99,,4] 

IX    Y~°-,,l! /V    \°-6,,8"| 
+    -247.963 + 160.9091 '-^\        + 282.8741^) 

\-0.22!H 

+ [o•i^)+im{%)' +o,744(^)' <5K,>" 
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Stage 2 
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+ [5272J7(XuYm\X^1•(XjtA•(X^om^X^-9»*\ 

+ ^)        + 282.874(^1 
107 V107 

2S 

0.648- 

+ [185,214(AT,1)°-3322(A'23r
1-D935(X25f

2362(A'27)
0-1079(5)0-161,)(K1)

0-90(10r,>] 
0.736 / v    \-0.229-1 

+ (5/C,)' 0.93 0.20851^ + 2.509 (£*\'     + 0.9744 (M 
\io7 V107 1107 

Stage 3 

+ [5272.77(Xu),-2781(X32r
0-1959(X33)2-4242(A'34)

0-38745(X35r
0-9904] 

^    s0.772n 

\10 

+ [185,2L4(X30°-3322(A'33r1-5935(A:35)
0-23,i2(X37)

(,1079(l)01616(K1)
0!K)(10r6] 

+ •m + 232.57 (4i|) 

|"o.0705&] - 0.1807^] l'33 + 166.87^]° dor'cK,)0 

Instrument Unit 

+ {10.35[15f822(A-41 • 103)°-786(10)^6] - 35.5} 

+ [15,822(Af„ • lO3)0-'8^^)-6^!)0-90] 

Launch Operations 

+ 8.5 
(X{, + X25 + X33)(3y 

1000 
(Ki)- 

It should be noted that in the fourth term of the Stage 3 cost the co- 
efficient 166.87 appears. In our numerical solutions discussed in Section 7.4 
we mistakenly used the coefficient 16.687. 

7.3   DEVELOPMENT  OF  CONSTRAINTS 

Definition of Types of Constraints 

It is the purpose of the constraints in the model to set forth the basic 
conditions of the problem and the limitations on each of the variables. The 
conditions and limitations on the given variables are determined by three 
sets of relationships. The definitional interrelationships of the seven variables 
of each stage are determined by the definition of the variables. The basic 
performance relationships are determined by the fundamental scientific laws 
and definitions of rocket propulsion. The third set of relationships is those 
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set up to express desired performance parameters. This section expresses as 
equalities or inequalities the required constraints from each of the three 
basic relationships for each of the three stages and for the instrument unit 
of the example model. 

Total Stage 1  Constraints 

The Stage 1 constraints are developed from the three basic types of rela- 
tionships mentioned above. This is accomplished for Stage 1 in detail. The 
basic design assumptions of the example model, as used in the development 
of this objective function, are assumed to hold in this development of the 
constraint equations. Necessary additional assumptions are discussed as the 
constraints are developed. 

Stage 1  Definitional Interrelationships 

The definitional interrelationships result from definitions that allow the 
expression of certain variables in terms of other variables within the basic 
set of seven Stage 1 variables that appear in the objective function. Because 
of these definitional interrelationships it is possible to reduce the number of 
variables used in the statement of the problem. This could be accomplished 
by using the definitional interrelationships and eliminating those variables 
that are expressible in terms of other variables. It is not desirable to eliminate 
the redundant variables, however, because of the additional clarity in 
changing relationships from problem to problem, and because of the 
conciseness achieved by using an additional variable term. 

The first definitional interrelationship of Stage 1 is the determination of 
weights. The equation is 

(0.5)JV12 = A-,,. 

This equation indicates that the airframe weight is equal to half the total 
stage inert weight for Stage 1. The other half of the total stage weight empty 
is in the form of the propulsion subsystem and equipment from other sub- 
systems, such as instrumentation. The propulsion subsystem makes up a 
large percentage of the remaining half, with miscellaneous equipment being 
a much smaller part. The use of one-half as the airframe portion of the total 
stage weight empty is an arbitrary judgment based on values from similar 
stages. A curve to depict this fractional value could be generated based on 
the number of engines and the relative size of the airframe. However, this is 
not a useful effort for our purposes. Arbitrary judgment based on experience 
will again be used to determine values for Stages 2 and 3. 

The second definitional interrelationship is that of the stage thrust ami the 
thrust of a single engine. This equation for Stage 1 with its five engines shows 
that stage thrust is equal to the single-engine thrust multiplied by the number 
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of engines. The equation is stated as 

A14 = (5)A16. 

The number of engines, namely, five for Stage 1, is a basic design assumption 
given in Section 7.2. 

The next definitional interrelationship is that of the dimensionless frac- 
tional value, the stage mass fraction. For Stage 1 this important parameter 
in airframe design is the ratio of the launch vehicle weight subsequent to 
Stage 1 burn and prior to Stage 1 separation to the initial launch vehicle weight. 

This is expressed in equation form as 

y A12 + X2j + A"25 + X32 + X3S + X41 + PL 

Xl2  +  -*15  +  X22 +  X25 +  X32 +  A35 +  Xtl  •+-  PL 

More will be said of the stage mass fraction in the basic performance 
parameter section. 

To maintain the structural integrity it is necessary to provide a relationship 
between the stage's inert weight and the propellant weight. This relationship 
is 

12Z12 < Xu < \6X12. 

These two inequalities state that the propellant weight for Stage 1 is between 
12 and 16 times the Stage 1 inert weight. The range of 12 to 16 was arbitrarily 
selected on the basis of the design of similar stages. Thus the size of the 
stage and the amount of propellant it will hold are correlated. 

The last variable to be considered for Stage 1 is the stage length, XX1. 
Some relationship between the length of the stage and the inert stage weight 
or propellant weight could probably be determined using volume and 
density constraints. It appears most appropriate, however, to let this variable 
fluctuate between arbitrary limits set because of the capability of handling 
or practicality of design. Thus 

C17 <, X17 < CiV 

The bounds C{7 and Cf7 are determined by selecting values from knowledge 
of the typical kind of stage required to meet the performance requirements. 
Thus the bounds are 

125 < Xu< 150. 

This completes the definitional interrelationships of Stage 1. 

Stage 1 Basic Performance Relationships 

The basic performance relationships are essentially the definition^ of the 
basic relations of performance parameters used in rockets. These basic 
performance parameters are expressed in terms of the variables of the 
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example model. The parameters to be discussed are the more important 
performance parameters used in rockets. 

One of the most important performance parameters is the specific impulse, 
Is. This may be defined as the "impulse delivered per unit weight of pro- 
pellant." 

The equation for specific impulse in terms of the variables of the model is 

i _ r_(x.«)(M 
'    w      xu 

In dimensions, specific impulse is pounds of thrust divided by pounds per 
second of propellant flow. Thus the above equation gives the thrust divided 
by the propellant flow rate. For the LOX/RP propellant of Stage 1 the 
specific impulse can take on a range of values owing to chamber pressure, 
mixture ratio, exit pressure and velocity, and other factors. For the specific 
impulse of Stage 1 engines, bounds are given that are consistent with the 
type of propellant and desired performance. Thus the specific impulse 
equation is rewritten as a constraint as follows: 

240 < (-^i) < 290. 

The next performance parameter to be discussed is the stage mass frac- 
tion, X13. This design parameter, which is a variable in the model, is the 
ratio of the final vehicle weight after first-stage propellant burn to the initial 
vehicle weight, including propellant. This is expressed for Stage 1 by 

SMF, = —• = Xl3. 
M0 

In the development of the constraints of this model the difference between 
the initial and final weight is assumed to be the total propellant weight. 
This assumes that all propellant is burned and that there is no residual. 
This is done for simplification of the model and has little impact on the 
accuracy, as the residual is a very small percentage of the total propellant. 
If a greater degree of accuracy were necessary, residuals could be included 
in the model. The mass fraction is an important performance parameter 
since it has a major effect on stage velocity attainable. This can be seen in 
the later equations in the next subsection, where mass fraction is used. The 
variable Xl3 is bounded by typical values attainable through good stage 
design and necessary for the performance required in the model. Thus the 
Stage 1 mass fraction constraint is 

0.25 < Xw < 0.30. 
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The thrust-to-initial-weight ratio for the stage is the next performance 
parameter to be considered. This ratio is self-explanatory and is stated as 

F X» 

"0 "* 12    i     ^15  "I"  ^22 "("  ^25 "I"  -*32 "I"  "*35 "1"  "*41 "I"   '  *- 

The thrust is the total stage thrust Xu, and the weight is the initial launch 
vehicle weight plus propellant and PL. The bounds set on this parameter 
are typical of states required in the model performance range. Thus the 
thrust-to-weight ratio constraints are 

1.2 < ^ < 1.4. 
Xlt + Xu + Xi2 + Xib + XM + X3b + Xn + PL 

This concludes the basic performance relationships subsection. 

Stage 1 Desired Performance Parameter Relationships 

The desired performance parameter relationships are determined from the 
basic equations of motion, and relate velocity and altitude to the given 
variables. Only velocity is discussed here, and the equation is for a simplified 
vertical trajectory with additional assumptions that simplify the model. The 
equation was chosen because of its simplicity and is intended to illustrate 
the incorporation of the variables into performance equations. More de- 
tailed equations used for detail design could also be adapted for use with the 
variables given in the objective function. The impact of the assumptions 
made is discussed in this subsection and in the subsection "Total Launch 
Vehicle Constraints." 

The desired performance parameter for a simplified vertical trajectory is 
the velocity that can be achieved for a vertically ascending rocket assuming 
that (a) the earth is stationary, (b) the direction of thrust coincides with the 
flight path, and (c) no side forces are present. These assumptions basically 
mean that the effect of centrifugal and Coriolis forces and the effect of 
aerodynamic side loads are neglected. These effects are of relatively small 
magnitude. By definition of the trajectory, no maneuvering of the launch 
vehicle during the boost phase will be required. 

Under the foregoing assumptions, the velocity of the total vehicle at the 
completion of the Stage 1 burn time, /,, is given by 

©" w„ 
Reviewing the terms of this equation, from last to first, the initial velocity 
v0 at ignition of the first-stage engines is assumed to be zero, representing a 
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pad launch. The next term, (BXC nA)jWa, is the effect of the earth's at- 
mosphere. This aerodynamic drag term is composed of the coefficient of 
drag, Cn, for the launch vehicle, the maximum cross-sectional area. A, of 
the launch vehicle, the initial weight, H„. of the vehicle before ignition, 
and the term Bv. The term B^ is represented by the following integral: 

.In a/ 

h 
In this model the aerodynamic drag will not be considered, and thus Stage I 
velocity will be greater than that which would actually be achieved. The 
penalty in burnout velocity due to atmospheric drag for a large, well-designed 
launch vehicle is less than 2 per cent. Thus the deletion is not important. 

The next term, gtu is the effect of gravity during the burn time, /,. This 
term will not be considered in the velocity calculations, and thus the equation 
for velocity disregards all external forces and reduces to what can be called 
the "ideal velocity." To compensate for the deletion of the external forces 
the total velocity constraint will be in terms of an ideal velocity for the mission. 
This is discussed further in the last part of this section. 

The remaining term of the velocity equation for Stage 1 represents the 
velocity imparted to the mass during the burn time /, under the idealized 
conditions reviewed above. Thus the velocity equation for Stage 1 is 

= ,.n3\ 

where M0 and Mf are respectively the initial mass of the total launch vehicle 
and the final mass subsequent to Stage 1 burn. The effective exhaust velocity, 
c, is defined as the specific impulse, IB, multiplied by the average gravity, g. 

The ratio M0/M/ is the inverse of the stage mass fraction. Thus, when the 
expressions defined earlier for effective exhaust velocity and mass fraction 
are inserted, the velocity equation in terms of the variables of the model is 

Total Stages 2 and 3 Constraints 

Stages 2 and 3 constraints are developed in the same manner as the Stage 
1 constraints. The same three basic sets of relationships are developed as 
were used for Stage 1. The only changes to these constraints are the result 
of different design assumptions among the three stages and the incorporation 
of the applicable stage variables. Although the equality and inequality 
constraints for Stages 2 and 3 are not given until the end of this section, the 
following is a discussion of changes from Stage 1. 
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The determination of weight equations for Stages 2 and 3 differs by the 
fractional value of the airframe weight to the total stage inert weight. The 
arbitrary values for Stages 2 and 3 are 0.6 and 0.7, respectively. 

The bounds on the inequality constraints for Stages 2 and 3 are changed 
from the Stage 1 bounds to be typical of good design values for middle and 
upper stages, respectively. The Stages 2 and 3 bounds are arbitrarily chosen 
in the same manner as those for Stage 1. 

The variables in the terms for the stage mass fraction and the thrust-to- 
weight ratio constraints are in accordance with the sequence of stage separa- 
tion and/or stage burning. Thus for Stages 2 and 3 the terms for these two 
constraints do not include the variables for the stage or stages already fired 
and separated. The variables in the terms for the other constraints contain 
only variables of the stage being described. 

This concludes the discussion of Stages 2 and 3 constraints. The actual 
constraints used in the model are shown at the end of this section. 

Instrument Unit Constraint 

There is only one launch vehicle parameter of the instrument unit that 
appears in the objective function. This parameter, the instrument unit weight 
in thousands of pounds, must be constrained. Since no direct relation exists 
between instrument unit weight and the other variables and parameters that 
are considered in this model, the constraint is accomplished by an arbitrary 
bounding. Since the size and weight of the instrument unit depend on the 
sophistication required of the guidance and control system, the assumptions 
of the example model make this variable somewhat meaningless. Therefore 
the instrument unit constraint is not based on requirements of the example 
mission, but on the type of requirements that might be placed on a launch 
vehicle such as the example vehicle. Thus the variable is bounded by the 
following: 

2.5 < Xn < 4.0. 

Since the variable is in thousands of pounds, the bounds are also in thousands 
of pounds. 

Total Launch Vehicle Constraints 

The total launch vehicle constraints are the composite of the individual 
stage constraints. The three basic types of constraints ensure that each 
variable of the model is constrained and within the desired bounds. The 
definitional interrelationship constraints ensure that variables not used in 
the performance parameters or relations are constrained through their 
relationship to those variables that are used. The basic performance relation- 
ships ensure that the proper relationship is maintained between the design 
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of the individual stages. The desired performance parameters ensure that 
the total launch vehicle is capable of accomplishing the desired mission. 

The total launch vehicle velocity is the summation of the incremental 
velocities of the individual stages. Thus the total launch vehicle velocity is 
given by 

vt = i\ + v2 + t-v 

This equation in terms of the variables of the model is given by 

v, = I Xu )      \XJ]      l\ X2b J    \xj]      LI X3b /     \xj] 

This equation gives the terminal velocity that can be attained by the 
vehicle in a gravity-free vacuum if all the propulsive energy of all stages is 
applied in the same direction. If the mission velocity requirement takes into 
consideration ideal velocity calculations, an earth escape velocity constraint 
is given by the following inequalities: 

35,000 < v, < 50,000. 

This completes the velocity constraint of the model. 

Summary of Constraints 

All the constraints have been discussed. The constraints required for the 
model are summarized as follows: 

Stage 1 

(0.5)XW-X„, 

A14 = (5)A 1G, 

Xl2 + XM + Xa + Xtt + X3b + XAl + PL      \ 
^n — "(3 \X12 •+• X15 + X22 + X2b + X 32 + A35 + Xn + PL! 

nx12 ^ xu < i6x12, 

125 <, X17< 150, 

240 < Xuh < 29Q 

^15 

0.25 < X13 < 0.30, 

1.2 < 
X\i 

Xl2 "T"   X15  +   X22 -f-  X2b +   X32 T   -^35  "T   X 4l   T   PL 
< 1-4, 
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Stage 2 

(0.6)X22 —  X2\, 

X2i - (5)X„, 

Launch Vehicle Design and Costing 

Stage 3 

X 23 \x„ 
X22 4"  X-s2 +   A35 +  A41  +   "L 

22 ~t~ X2i + A32 + ^£35 + A41 + rL,' 

10A%2 < X25 < 12X22, 

) 

75 £ X27 < 100, 

240 < ^24*2 

Xnc. 

<290, 

0.24 < X23 < 0.29, 

0.6 < 
Ajj +  X2b +  X32 +  A 35 +  X 41  +  / L 

< 0.75, 

(0.7)X32 = X31, 

-^34 =  -^36' 

:S3 - (3 *32 +  Xtl  +  PL \ 
X32 + X35 +  *41  +  PLj 

7X32 < X35 < 9*M, 

50 < X37 < 70. 

340 < ^2lL3 < 375, 
**» 

0.16 < A'33 <0.21, 

X 34 
0.7 < 

Instrument Unit 

X32 + A35 + X41 + "L 

2.5 < Xa < 4.0, 

<0.9, 

Total Launch Vehicle 

*-* [»(fJM(^'"(rJ] 
-y34?3g\ < 50,000. 
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7.4    APPLICATION  OF  MODEL 

Method of Solution and Results 

The nonlinear programming problem has been solved using the sequential 
unconstrained minimization technique. 

The values shown in Table 7.1 for Model I are with the objective function 
and constraints as developed in Sections 7.2 and 7.3. The objective function 
parameter Kl was given a value of 10, and the PL was assumed to be 20,(XX) lb. 
Thus the program consisted of the development, building, and launching of 
10 launch vehicles. The values of the objective function computed for 
starting point sets a and b were S3.36 billion and S3.16 billion, respectively. 
The value of the objective function computed at the optimal solution to 
Model I was S2.53 billion. The same answer (optimal solution) was obtained 
for both starting point sets. 

Table 7.1    Starting and Solution Values of the Variables for Models  I and  II 

Starting Point Starting Point Solution for Solution tor 
Variable Set a Set b Model 1 Model 11 

*« 150 100 68 54 
Xlt 300 200 136 109 

^]3 0.28 0.29 0.3 0.3 

"*14 7000 5500 3733 3353 

*18 4000 3000 2177 1956 

*16 1400 1100 746 671 
X„ 135 150 125 125 
.V,, 54 39 28 24 
x22 90 65 47 40 

"*23 0.27 0.286 0.29 0.29 

x*. 800 700 478 438 

-*25 900 750 566 518 

*28 160 [40 96 88 

^27 85 100 7S 75 

*ai 17.5 16 II 4.5 

"*32 25 23 16 13.6 

-^33 0.19 0.20 0.21 0.21 

-^34 200 180 129 120 

*36 200 190 145 136 

"*3S 200 180 129 120 

-*37 60 70 50 50 

•^41 3 4 2.5 2.5 

'l 150 145 155 155 

l-i 300 275 314 314 

h 350 370 403 403 
Total cost (bill ons)  S3.36 S3.16 S2.53 S2.33 
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A variation of Model I (called Model II) was solved using different 
bounds for the structural integrity constraint. The bounds of the propellant- 
to-stage-weight multiple were changed for Stage 1 from 12 and 16 to 10 and 
18. For Stage 2 the bounds were changed from 8 and 12 to 7 and 13, and 
for Stage 3 from 7 and 9 to 6 and 10. The same starting point sets were used 
as in Model I, and the solution values are also given in Table 7.1. The value 
of the objective function computed at the solution of Model II was S2.33 
billion. The same optimal solution was obtained for both starting point sets. 

Analysis of Results 

One of the most difficult problems in nonlinear programming is dealing 
with local and global minima. No algorithm has been developed that assures 
convergence to the global minimum for a complicated, nonlinear, nonconvex 
programming problem such as the model developed in this chapter. However, 
by using various starting values, convergence to the same optimal solution 
indicates that a global minimum may have been achieved. Examination of 
the results of the computer runs for Models I and II has shown that the 
solution values for the variables are nearly identical for both starting point 
sets. Obtaining the same results for two sets of starting points over a number 
of runs indicates that the values of the objective function obtained for the 
two models may be the global minima. 

The solution value of the stage mass fraction is interesting to note. The 
solution values for all three stages in both variations of the model attain 
their upper bounds. This indicates that, although a lower mass fraction is 
desirable from a good engineering design standpoint, the cost of achieving it 
is greater than the performance benefit gained. This is at least true within 
the constraints of the model and can intuitively be said to be true in areas 
of missile design. This can be shown, practically speaking, in that it is clear 
that beyond a certain point refinements in design are no longer practical, 
and simply a larger over-all vehicle is required. 

When the bounds of the structural integrity constraint for the second 
variation of the model were changed, the variables again attained their 
upper bound for all three stages. When the structural integrity constraint is 
deleted, the stage structural weight goes toward zero, and the propellant 
weight goes as high as the remaining constraints will allow. Thus the pro- 
pellant-to-stage-weight ratio will go as high as the structural integrity 
constraint will allow. This indicates that a structural complexity factor to 
include the greater design sophistication of a stage with a high propellant- 
to-stage-weight ratio could profitably be included in the objective function. 

The thrust-to-weight ratio attained its lower bound for all three stages 
and both variations of the model. Analysis of this result is the same as that 
given for the stage mass fraction. The greater the thrust-to-weight ratio, the 
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greater the cost, and within the limits of the model the increase in performance 
capability was not required. 

The specific impulse constraint for Stages 1 and 2 remained the same 
between the two variations of the model and between the two stages. It is 
expected that this constraint would respond similarly for the two stages, as 
they utilize the same fuel; however, it is not expected that they would remain 
the same. It is possible that the model is overconstrained in this area or that 
this may be a reflection of an optimum point in the CERs, which are the 
same for the two stages. Which of these possibilities is in fact the case was 
not determined. 

The velocity constraint was not pushed to its lower bound in either varia- 
tion of the model. In both models the velocity constraint attained the value 
of 38,632 ft/sec. This indicates that a relaxing of the constraints is required 
to obtain the optimum-sized vehicle to accomplish the minimum velocity 
objectives. This could be achieved by deletion of the thrust-to-weight ratio 
constraints, which, along with the burn times, determine the acceleration. 
In relaxing some of the constraints to attain a minimum velocity objective, 
consideration must be given to retaining a sound launch vehicle design and 
not allowing basic design parameters to achieve infeasible values. 

Since the stage length variables are unrelated to the performance con- 
straints as utilized in the model, these variables may be adjusted after the 
computer run. Thus the stage length may be put in the proper relationship to 
the other stage design variables. The total cost function will be affected, and 
incorporation of the new length will result in a more accurate total cost value. 

Solution of the nonlinear programming problem has demonstrated that 
this type of complex nonlinear model is computationally feasible. The 
analysis of the results has given some indication of the usefulness of the 
model, and further discussion in this area is given in the next subsection. 
The fact that the model developed is a prototype and that numerous im- 
provements can be made should be emphasized. A discussion of some of 
these proposed improvements is given in a later subsection. 

Model Sensitivity to Changes in Constraints 

Associated with the solution of any nonlinear programming problem is a 
set of values called "shadow prices" or generalized Lagrange multipliers, one 
for each inequality constraint that represents the sensitivity of the value of 
the objective function to a tightening or relaxation of the constraints. For 
those constraints that are not binding at the solution, the corresponding 
shadow prices are equal to zero. The interesting shadow prices are those 
associated with the binding constraints. 

The theory behind the use of shadow prices is that, if the original problem 
were changed and the ;'th constraint relaxed by an amount <">  [that is, 
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Table 7.2   Sensitivity to Changes in Limits of Binding Constraints in Model I 

Sav; ings in Total Cost 
Constraint Unit Change (ni illions of dollars) 

Stage mass fraction, upper bound 
Stage 1 +0.01 41.3 
Stage 2 +0.01 50.0 
Stage 3 +0.01 121.5 

Thrust-to-weight ratio, lower bound 
Stage 1 -0.1 24.7 
Stage 2 -0.1 13.1 
Stage 3 -0.1 15.8 

gi(x) + ^ > 0], then the change in the optimum value of the objective 
function would be approximately equal to —8fiu where ftt is the shadow 
price associated with the /th constraint at the solution of the original problem. 

The use of these values is particularly important in those design problems 
where one is interested in the sensitivity of the model to changes in the 
design requirements. This is illustrated by using the shadow prices produced 
by the sequential unconstrained minimization technique. 

The two constraints to be considered are the stage mass fraction and 
thrust-to-weight ratio inequalities. The stage mass fraction constraint sought 
its upper bound for all three stages in both models. The thrust-to-weight 
constraint sought its lower bound for all three stages in both models. Table 
7.2 shows the savings in millions of dollars that could be realized by allowing 
the stage mass fraction to go an additional hundredth higher than the upper 
bounds in the original model, and the savings for allowing the thrust-to- 
weight constraint to go an additional tenth lower than the lower bounds in 
the original model. Thus Table 7.2 shows the sensitivity of the objective 
function to unit changes in the limits of the binding constraints. 

Possible Extensions of the Model 

Two types of changes can be usefully accomplished to improve the results 
from the model. One type of change is a variation within the framework of 
the present model. The second type of change is the building of a new model 
utilizing the basic ideas of the prototype model. 

One type of variation that has been accomplished and discussed is the 
changing of the values of the constraint bounds. Perturbations of the model 
such as this are useful in analyzing the results and in resolving some changes 
in design. Another variation that can be easily accomplished is changing the 
basic design assumptions, such as the number of stages or number of engines 
per stage. This could be useful in determining optimum staging. Numerous 
other changes within the framework of the prototype model are possible. 
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The second type of change would essentially require the building of a new 
model. This is desirable from several standpoints. New models could be 
developed with consideration of specific uses dictating their design. Also new 
models could incorporate the latest CERs and utilize more complex per- 
formance constraints as required. With the advent of more accurate CERs, 
more subsystems could be considered, and possibly to a lower level of detail 
than the subsystem. As more programming models are developed, un- 
doubtedly many other areas of improvement will become evident. 

Conceptual and Preliminary Design and Costing 

The model presented in this paper is applicable to the conceptual and 
preliminary design phases in the development of a launch vehicle. Its useful- 
ness is limited to those phases performed before detail program definition. 
In the first two phases, however, the model can serve as a flexible, quick- 
response planning tool. 

Descriptive cost models are being used at present for future projects 
planning by NASA and in industry. These models are used for cost prediction, 
funding, and scheduling. Other programming models are used to a limited 
extent in engineering design during the conceptual and preliminary design 
phases. However, a model that enables consideration of both engineering 
design and costing through optimization is not in use. The subject model is 
a prototype development to fill this void. 

The difficulties in attaining an effective cost model are similar whether it 
is of the descriptive or optimization type. Both are restricted by the degree 
of accuracy of CERs and seldom are able to go below the subsystem level. 
The optimization model has the additional difficulty of being very hard to 
solve through mathematical programming methods. The use of SUMT and 
future refinements to this or other algorithms promises to open the door for 
complicated total system programming models. 

7.5    SOURCE  OF  PROBLEM  AND  REFERENCES 

Source 
The nonlinear programming model was developed by Benjamin C. Rush 

as a student of one of the authors at The George Washington University. 
His thesis [2] documents the research. We collaborated with him in pro- 
gramming and solving the model. The model is presented in an R AC technical 
paper subsequently published in Operations Research [3]. 
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8 
PARAMETER ESTIMATION 

IN  CURVE  FITTING 

In this chapter we discuss the application of nonlinear programming to 
the fitting of linear and nonlinear regression models. It is possible to expand 
remarkably the criteria employed in fitting linear regression models by using 
nonlinear programming. The nonlinear programming problems are in all 
cases convex. Nonlinear regression models are much more difficult, yielding 
nonconvex nonlinear programming problems, but the general approach is 
promising and is quite natural when there are constraints on the parameters. 

8.1    LINEAR  REGRESSION  WITH  VARIOUS  CRITERIA 

We consider the problem of choosing the coefficients of linear regression 
models by minimizing functions of vertical deviations. We define the vertical 
deviations (a/s) by 

Hi - (*,A H + *iA) = «,-,       / = 1, . . . , m, (8.1) 

where m is the number of observations, yi is the /th observation on the de- 
pendent variable, xa, . . . , xin are the /"th observations on the n independent 
variables, and blt . . . ,b„ are the n regression coefficients to be determined. 
We define weights on the observations by wlt . . . , wm. The criteria for 
choosing the coefficients are as follows: 

m 

(a) minimize ^ w,- |Xj|* for p > 1. 

(b) minimize {maximum w, |oc,|,       / = 1, . . . , m}. 

Consideration of these criteria requires some discussion. Frequently in 
practice the assumptions of classical least squares are not met. For instance, 

B3 



84 Parameter Estimation in Curve Fitting 

a weighted least-squares procedure would be desirable for dealing with 
heteroscedasticity. More serious cases result in such problems as errors of 
measurement, dependency in the error terms, or mis-specified relations. 
Under these practical conditions one may search for a "robust" estimator 
by Monte Carlo methods, in these cases estimators defined as arbitrary 
integer powers of weighted residuals cover a wide spectrum of possibly 
useful estimators. Ashar and Wallace [1 ] provide an example with a sampling 
study of minimum absolute deviation estimators. 

The mathematical programming approach allows considerable power and 
flexibility in constraining regression coefficients or deviations. A study by 
Meyer and Glauber [10] used linear programming with constraints on the 
coefficients and a criterion of minimizing the sum of the absolute deviations. 
Constrained regression problems are mentioned in econometrics (see 
Goldberger [6]), and ability to specify constraints would be useful in 
incorporating prior knowledge about parameters (Theil [11]). 

Application of linear programming to minimizing the sum of absolute 
deviations and to minimizing the maximum absolute deviation has been 
discussed by Charnes, Cooper, and Ferguson [2], Kelley [9], Fisher [5], 
and Wagner [12]. Wagner [13] shows that minimizing the sum of the squared 
deviations can be written as a problem with linear constraints and a quadratic 
criterion function. 

Minimizing Functions of Absolute Vertical Deviations 

The z'th vertical deviation is defined by (8.1), and we consider criterion (a). 
Denoting the ith absolute vertical deviation by /S4, we may write limitations 
on the deviations from below: 

-.'/, + (*,A + ' • ' + »<A) + P, > 0,       i = 1,. . . , m,    (8.2a) 

and limitations on the deviations from above may be written 

Ui ~ KA + • • • + xinbj + ft, > 0,       i = 1, . . . , m.       (8.26) 

The final constraint is that the deviations be non-negative: 

/?, > 0,        / = 1 , /;;. (8.2c) 

The coefficients bj (j= 1, . . . , w) may assume any value unless otherwise 
restricted. Additional restrictions on the b/s and /J/s may be included if 
desired. The mathematical programming problem is as follows. Choose 
bu..., b„ and /?,,..., />',„ to 

IN 

minimize 2 wiP/' (8-3) 

subject to (8.2a), (8.26), and (8.2c). 
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When p = 1 and w{ = 1 (i = 1, . . . , ni) the mathematical programming 
problem is the linear programming problem of minimizing the sum of the 
absolute deviations. When p > 1 it is a convex nonlinear programming 
problem. 

The /th vertical deviation is defined by (8.1), and we consider criterion (b). 
Denoting the maximum absolute weighted deviation by e, we may write 
limitations on this deviation from below and above: 

»',[!/, - (*a*i + \- *;A)] < «.       ' = 1 » m, 

»'.[(*,A + • • • + -»\A) - .'/,] < e,       / = I m. 

Adding the constraint that e must be non-negative, we obtain 

—w&i + Wifrabi + " ' " + *iA) + £ > °.       i — 1 »». 

»»',?/; — ",(^1*1 + • • • + *<„*«) + e > °>        1=1,..., m, 

€ >0. 

(8-4) 

(8.5) 

The coetlicients bit... , bn may assume any value unless otherwise restricted. 
The mathematical programming problem is as follows. Choose />,,..., bn 

and e to 
minimize e (8.6) 

subject to (8.5). 
When the w,'s are all equal to 1, this is the Chebyshev criterion. In the 

linear regression model formulated here the constraints and objective 
function are both linear, and so this is a linear programming problem. 

Minimizing Functions of Vertical Deviations 

We give here two nonlinear optimization formulations of the linear 
regression problem for criterion (a) that are valid only for even positive p. 
The two formulations are equivalent, and the problems are convex. 

The first is a nonlinear programming problem with m equality constraints 
and n + m variables. Choose blt... , bn and a,,. . . , xm to 

m 

minimize }T w.a," (8.7) 

subject to 

-V, + (*,A + • • • + •*-, A) + a, = 0,        1 = 1,..., m.       (8.S) 

The second nonlinear optimization problem is a direct minimization of 
the m term, n variable functions: 

m 

I w,[/A - (*,A + • • • + xinbn)Y. (8.9) 
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If constraints are imposed on the b/s and/or deviations this is a nonlinear 
programming problem. Otherwise it is an unconstrained minimization 
problem. 

When p = 2 this criterion is the least-squares criterion and the first 
formulation is a quadratic programming problem. Asp increases the criterion 
approaches the Chebyshev criterion. The problem has been investigated for 
increasingp by Goldstein, Levine, and Hereshoff [7]. 

8.2   EXAMPLE OF A LINEAR REGRESSION PROBLEM 
WITH  VARIOUS  CRITERIA 

In this section we present results of nonlinear programming solution of a 
linear regression problem involving one dependent variable and three 
independent variables, with the coefficient bx to be determined as an auton- 
omous term. Data in Table 8.1 are 20 observations on cotton yarn character- 
istics, taken from Duncan [4]. A column of l's for xn (i = 1, .. . , 20) 
ensures the autonomous term. 

We use the formulation for minimizing the sum of the weighted absolute 
vertical deviations to integer powers p = 1, 2, 3, 4. The weights are taken 

Table 8.1 Da :a from Duncan 14], P. 517 

i Vi                x, i     xa xi3 
xu 

1 99      1 85 76 44 
2 93      1 82 78 42 

3 99      1 75 73 42 
4 97      1 74 72 44 
5 90      1 76 73 43 
6 96      1 74 69 46 
7 93      1 73 69 46 
S 130      1 96 80 36 
9 118      I 93 78 36 
10 88      1 70 73 37 
11 89      1 82 71 46 
12 93      1 80 72 45 

13 94      1 77 76 42 
14 75      1 67 76 50 
15 84      1 82 70 48 
16 91      1 76 76 41 
17 100      1 74 78 31 
18 98      1 71 80 29 
19 101      1 70 83 39 
20 80      1 64 79 38 
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Table 8.2   Computed Regression Coefficients 

S7 

Objective 
Function            bl ** 

m 

2 hi 
*=1 

7.563 1.187 

m 

i=l 
m 

7, M3 

39.328 1.069 

42.013 1.033 
»=i 

m 
46.827 1.019 

i=l 
m 

I *< 7.700 1.187 

m |         53.756 1.006 

f 1- 
3 

55.268 .957 

m 3 
i 

60.308 .949 

Value of 
Objective Function 

.375 

.164 

.204 

-.843 

.936 

8.900 

69.399 

-.988 5,227.6 

-1.045 40,265.6 

.373 -.812 

.048 

.105 

.975 

•1.008 

.088        -1.080 

.92410 

.07494 

.00608 

.00052 

to be the reciprocals of the observed values yt (i = 1, . . . , 20). Table 8.2 
presents the results of the computations. 

The  nonlinear  programming  model  for  the  third  case  of minimizing 

, for example, is as follows. Choose blt . . . , b4 and /9t, . . . , /S20 to 
.'/, 

subject to 

'20 •ntaimiz, (A)ft> + •••+(£)* 

-99 + (1 • bt + 85A2 + 7663 + 44/>4) + /J1  > 0 

-80 + (1 • 6, + 6462 + 7963 + 847>4) + /*20 > 0 

99 - (1 • ^ + 8562 + 76^ + 44bt) + (tt  > 0 

80 - (1 • 6, + 64/>2 + 79A3 + 38ft4) + /J20 > 0 

Pi £ 0, . . . , y?20 > 0. 



88 Parameter Estimation in Curve Fitting 

8.3   NONLINEAR REGRESSION WITH  VARIOUS CRITERIA 

In this section we consider the problem of choosing coefficients of non- 
linear regression models by minimizing functions of vertical deviations. We 
define the vertical deviations (a/s) by 

yt —/(*«».•., *<»;*i *r) = a<,       i=\,...,m,      (8.10) 

where m is the number of observations, yt is the /th observation on the 
dependent variable, and the function f{- ; •) is a nonlinear function with r 
parameters bu . . . , bT. The weights are again denoted by w\, . . . , u,„. 

Minimizing Functions of Absolute Vertical Deviations 

Denoting the /'th absolute deviation by fit, we may write the following 
mathematical programming model for minimizing the sum of the weighted 
absolute deviations to a power equal to or greater than I. Choose />,, . . . ,bT 

and ft,... ,/?,„ to 
m 

minimize £ w,./?,* (8.11) 

subject to 

-Vt +f(xiu ...,*<„; &i,..., K) + ft > o, 
?/, -/(*a. • • • . «tn\ *l. • • • » *r) + ft > °- 

^ > 0,       /=l,...,w.    (8.12) 

Since/(• ; •) is a nonlinear function the constraints are always nonlinear. 
For p = 1 the objective function is linear, but for all p > I it is nonlinear. 
The objective function is always convex. However, the first and second sets 
of m constraints, taken together, cannot be concave, and so the nonlinear 
programming problem is not convex. 

Some nonlinear regression problems have been solved using this formula- 
tion, one of which will be given as an example. 

For minimizing the maximum weighted absolute deviation, denoted by e, 
a nonlinear programming problem may be written as follows. Choose 
bx,. . . ,bT and e to 

minimize e (8.13) 
subject to 

-»',?/, +/(*«, • • • , xtn'- bu . . . , br) + e > 0,        ;=!,..., m, 

WiVi -/(*«. • • •, *,•„; bu . . . , br) + e > 0,      / = 1, 

i = 1,.. . , m, 
i = 1, . . • , m, 

/=!,.. . , m. 

m, 

e >0. (8.14) 

This is a nonconvex programming problem since the constraints are not 
concave. 
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Minimizing Functions of Vertical Deviations 

As in the corresponding observation in linear regression with various 
criteria, two equivalent nonlinear optimization formulations valid only for 
even positive p may be given. But in the case of nonlinear regression the 
problems are not convex. 

The first is a nonconvex nonlinear programming problem with m equality 
constraints and /• + m variables. 

Choose bi,...,bT and ax, . . . , y.m to 

m 

minimize ^ u'ix,'' (8.15) 
i=i 

subject to 

-yi+f(Xix,---,xin\by />r) + a,=0,        /= !,...,«/.     (S.16) 

The second is a direct minimization of the w-term, /-variable nonconvex 
function, 

m 

!>",[!/, -/(*,-, <•„,;/', K)Y- (817) 

If additional constraints are imposed, this becomes a nonconvex nonlinear 
programming problem. 

8.4    EXAMPLE  OF  A   NONLINEAR   REGRESSION  PROBLEM 

We consider a nonlinear regression problem solved by Hartley [8] in an 
article on a procedure for fitting nonlinear regression functions by least 
squares using a modification of the Gauss-Newton method of iterative 
solution. 

The nonlinear regression model is Mitcherlisch's law of diminishing 
returns, 

.'/ = bx + b***', 

where y is the dependent variable, x the independent variable, and /',, h.,, 
and b3 the parameters to be determined. Hartley's data are as follows, with 
six observations on the variables. 

Dependent Variable Independent Variable 
Observation y Observation x 

127 -5 
151 -3 
379 -1 
421 5 
460 3 
426 1 
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We use the first nonlinear programming formulation for minimizing 
functions of absolute vertical deviations. The nonlinear programming 
problem is as follows. 

Choose &!,... ,b3, /?x, . . . , ft to minimize the-nonlinear (quadratic) 
objective function 

ft2 + • • • + ft2 

subject to the nonlinear constraints 

-127 +A, + V,<~sl + ft > 0, 

-151+A, + V3<-3) + &>0. 

-379 + 6, + fc2e
63<_1) + ft > 0, 

-421 + 6X + 62e
M1) + ft > 0, 

-460 + 6, + V»«<»> + ft > 0, 

-426 + bt + &je*'<« + ft > 0, 

127 - [6, + A^-5'] + /}, > 0, 

151 - [A, +ft2e^<-3»] + ft >0, 

379 - [A, + VM_1)] + ft > 0, 

421 - 0! + VM1)] + ft > 0, 

460 - [b, + VM3)] + ft > 0, 

426 - [b, + &ae»»<«] + ft > 0, 

ft ^ 0, . . . , & > 0. 

Results obtained from solving the nonlinear programming problem agree 
with Hartley's and are as follows: 

bt = 523.3,       b2 = -156.9,       b3 = -.1997. 

8.5    MAXIMUM LIKELIHOOD ESTIMATION 

Another common method of finding estimates of parameter values that 
explain observed data is the method of maximum likelihood estimation. 
Let b = (bt, . .. ,br) be r unknown parameters of a frequency function 
go(1J, b) of the random variable y. Let y1, . . . , ym be m observations of y. 
The likelihood function associated with these observations and frequency 
function is 

Ujlv ••• , ?/m> blt..., br) = goiy,, b)g<>(y2, b) • • • g0(ym, b).    (8.18) 
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An important method of estimating the values of blt.. . , bT based on 
the observed ylt... ,ym is to maximize the likelihood function (8.18). 

The b1, . . . , bT that maximize (8.18) are called maximum likelihood 
estimators and have many desirable statistical properties. The reader is 
referred to Cramer [3] for a fuller discussion. 

The problem of maximizing L{yx, . . . , ym, b) is an unconstrained mathe- 
matical programming problem. Sometimes it is also desirable to constrain 
the fc/s so that certain physical requirements are not violated. This is the 
case for the maximum likelihood problem discussed next. In such a case a 
constrained mathematical programming problem results. 

Since the logarithm of the likelihood function achieves its maximum at 
the same b as the likelihood function itself, the general problem of likelihood 
estimation is stated as follows. 

Find values (bl, .... br) that 

maximize ]£ In g0(y, b) (8.19) 

subject to 
£,(*)> 0,       1=1,...,/. (8.20) 

Our example comes from the biomedical area. It is hypothesized that the 
population of systolic blood pressures can be separated into three separate 
groups. The distribution of blood pressures within each of these groups can 
be represented by a normal frequency function. Let px, pt, and p3 represent 
the proportions of the population in each of the three groups. Let (/*,, <r,), 
(fi2, er2), and (fi3, <r3) be the means and standard deviations of the normal 
frequency functions corresponding to each group. These nine values cor- 
respond to the unknown {£>,} parameters. 

Then under these assumptions the frequency function for the random 
variable y, which denotes systolic blood pressure, is obtained by summing 
the frequency functions of the individual groups times their probability of 
occurrence to yield 

3 
1       4  PA- 2Qexp 

N/2T7-A.--I ak 

where 

(y - thj (8.21) 

Pi + Pi + P*= I- 

There are eight parameters in this frequency function since one proportion, 
or probability, can be eliminated. Let p3 = 1 — px — pt. Using the general 
problem of maximum likelihood estimation given by (8.19) and (8.20), the 
mathematical programming problem is as follows. 
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Find values of (fa, p2, fa, fa, fa, fa, fa ,a3) that 

maximize exp (Vi — Hit 
lac 

Pi + - exp 
(To 2a0

2 

+ 1 - Pi - Pt exp 
2oy     J/j 

subject to 
Pi > 0, 
/>2>o, 

(i - Pi -/>2)>o. 

The data for this are given in Table 8.3. 
Use of SUMT algorithm with an initial starting point of 

(Pi°> Plf*lf4>(4, oft o* °a) = (.1, -2, 100., 125., 175., 11.2, 13.2, 15.8) 

yields estimates _        „,_ 1 p-i = .365 

A = .475 
fa = .160 = (1 — fa ~A) 
fa =130.1 
fa =163.1 

/?,= 221.2 
a, = 12.0 
<?,= 18.5 
ff3 = 18.5. 

Table 8.3   Data Giving Systolic Blood Pressure Values 
with Frequency of Occurrence 

(8.22) 

(8.23) 

Systolic 
Blood 

Pressure 
Frequency of 
Occurrence 

Systolic 
Blood 

Pressure 
Frequency of 
Occurrence 

Systolic 
Blood 

Pressure 
Frequency of 
Occurrence 

95 1 150 17 200 3 
105 1 155 4 205 3 
110 4 160 20 210 8 
115 4 165 8 215 1 
120 15 170 17 220 6 
125 1? 175 s 225 0 
130 15 180 6 230 5 
135 13 185 6 235 1 
140 21 190 7 240 7 
145 12 195 4 245 

260 
1 
2 
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8.6    SOURCE  OF  PROBLEM  AND  REFERENCES 

Source 

We worked on this problem with Dale M. Heien of The George Washington 
University Logistics Research Project. The maximum likelihood estimation 
model and its data were given to us by E. A. Murphy of The Johns Hopkins 
University. 
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9 
DETERMINISTIC   NONLINEAR 

PROGRAMMING   EQUIVALENTS 

FOR   STOCHASTIC   LINEAR 

PROGRAMMING   PROBLEMS 

In this chapter we discuss the formulation and solution of a deterministic 
nonlinear programming problem that is equivalent to a stochastic linear 
programming problem of the chance-constrained type. In the chance- 
constrained problem the constraint coefficients are normally distributed 
random variables. The elements of the right-hand side and of the criterion 
function are deterministic. As an example of the application of this formula- 
tion, we discuss a chance-constrained programming model of minimum 
cost cattle feed under probabilistic protein constraints. 

The chance-constrained programming problem is treated by Charnes and 
Cooper [1, 2]. They proposed [2] the deterministic equivalent presented in 
this chapter. Van de Panne and Popp [4] formulated the example problem 
and solved the associated nonlinear programming problem. Fiacco and 
McCormick [3] also solved it by using the sequential unconstrained mini- 
mization technique. 

9.1    CHANCE-CONSTRAINED  PROGRAMMING  PROBLEM AND  ITS 
DETERMINISTIC  EQUIVALENT 

The ordinary deterministic linear programming problem corresponding to 
the chance-constrained problem to be discussed herein can be written as 
follows. Determine xt (j = 1, . . . , n) to 

minimize 2 c,a^ (9.1) 
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subject to 

2«u»i£ b{,       / = 1 m (9.2) 

and 
*,->0, y=l n, (9.3) 

where a„ (/' = 1, . . . , m and j — I,... ,») are the constraint coefficients, 
the b^s are elements of the right-hand side, the c/s are elements of the 
criterion function, and the non-negative as/s are the variables to be determined. 

The chance-constrained formulation of the linear programming problem 
to be considered extends the deterministic problem given above as follows. 

Determine xj(j = [,..., n) to minimize (9.3) subject to 

18ij*i > bi 
J-1 

> a,,        / = 1 w (9.4) 

and to (9.2). Here some or all of the coefficients au (i = 1, .... m and 
j = 1, . . . , n) are random variables with normal distributions, and a^ 
(/ = 1,. . . , m) are prescribed probabilities with which the m constraints 
must be satisfied. 

Independent Normal Case 

Let us assume for the ;'th constraint that the a^'s are independent normal 
random variables with means 

an,...,anl (9.5a) 
and variances 

<*W <r*(a,.„). (9.5/3) 

Define for the /th constraint 
n 

"i=J.3Uxr (9-6) 
j-i 

This variable is normally distributed with mean 

n 

", = Z atixt (9.7a) 

and variance 

Aui)=iAa-u)z;i. (9.7b) 

The /'th constraint of the chance-constrained problem may be restated as 

P[St > bt\ > a,. (9.8) 
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We investigate the left side of inequality (9.8) to represent it in terms of 
xs (J = 1,... , n) and standard functions. 

We write 

where h(u() is the normal density function of ut. Setting 

",- - »• 
"i - 2 «u*, 

>=1  

' [A*)] 2*"W,W 
J=I 

•2 

and substituting the lower limit of integration, we obtain 

pw.£*i]»r .   zoo***. 

where /(y) is the standardized normal density function 

I 
f(y) = 

In terms of the standardized normal left-tail cumulative function 

Pbl > b,] 

bi-J.aiixj 
 2=1  

2 AfiiH** 
-.a 

j=i 

We need to have /"[«; > 6J > a;, so equivalently we need 

bt - 2 «H*J 
 i=i  

3=1 

< 1 - a,-, 

(9.9) 

(9.10) 

(9.11) 

(9.12) 

(9.13) 

(9.14) 

and using the inverse function (also known as the percentage point or 
fractile) we obtain 

bi-J, aiixi 

-^—^ ^ < F-\\ - a,) - *F(«,), (9.15) 
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where xF(at) is the percentage point corresponding to (1 — o^). If a, = .95, 
^"(a,) is the .05 fractile. Finally, we can write the nonlinear constraint 

2»,+lr'(a,.) 2>2( au).r:- > />, (9.16) 

It is necessary to expand each of the stochastic constraints separately, 
considering the variances and required probabilities of satisfying the con- 
straints a, (/ = 1, . . . , m). 

Dependent Normal Case 

Now let us consider the problem where for the z'th constraint the «,/s 
are dependent multivariate normal. We use matrices and vectors because of 
the necessity to handle off-diagonal elements of the variance-covanance 
matrix. We define 

ai = (an,...,ain)t, (9.17) 

the distribution of which has mean 

a{ = (dn, . . . ,«,„)' 

"var(a„)- • • cov (ana,„)' 
and variance 

V(a,) = 

Define for the /'th constraint 

where 

cov (ainan) • • • var (ain)_ 

"i s 3t*x, 

x = (xlt . . . , xny. 

The random variable w, is normally distributed with mean 

"i = Cli* 

and variance 
V{iii) = xtV{at)x. 

(9.18a) 

(9.18/)) 

(9.19) 

(9.20) 

(9.21a) 

(9.21/)) 

The ith constraint of the chance-constrained programming problem is 
again written 

P[u, > bt] > a,. 

Using the same procedure as previously, and substituting a^x for Tj' , aijx1 

and x'Via^x for ^" ( o*(Aii)x*> we obtain the constraint 

ai
tx+T^i)[xty(al)x]'^>bl. (9.22) 
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9.2    EXAMPLE  OF  DETERMINISTIC  EQUIVALENT  FOR  A 
CHANCE-CONSTRAINED PROGRAMMING PROBLEM 

Determination of optimal computation of cattle feed is a well-known 
application of linear programming. The problem concerns the mixing of a 
number of raw materials in such a way that cattle feed is obtained that 
satisfies certain specified nutritive and other requirements with minimum 
cost for the input quantities of the raw materials. If the nutritive contents 
and unit costs of raw materials, and the requirements for nutrients, are 
known, the problem can be solved in a straightforward manner by linear 
programming methods. One problem that arises is that the nutritive content 
of the raw materials varies randomly, so that the solution given by linear 
programming using expected values, for instance, does not always satisfy 
the requirements. The example will deal with this type of problem. It is 
taken from van de Panne and Popp [4]. 

We first formulate the deterministic model assuming no random elements, 
and then go on to assume independent normal random variation in the 
protein content of the raw materials. 

Deterministic Model 

Table 9.1 gives the data of the problem. The percentage protein content 
and percentage fat content of the raw materials (barley, oats, sesame flakes, 
and groundnut meal) are given, with the required percentage content of 
protein and fat. Cost per ton of the four raw materials is also given. The 
problem is to determine a mix with minimum cost per ton that satisfies the 
nutritive requirements. 

Let ait (/' = 1,2 and / = 1, . . . , 4) denote the percentage protein content 
(i = 1) and the percentage fat content (/ = 2) in the four raw materials. 
Let bt (/ = 1, 2) denote the percentage requirements. Let cf (j = 1 4) 
denote the cost per ton of the raw materials. Let »/(/' = 1, . . . , 4) note the 
fraction of the mixture that is composed of each of the raw materials. The 
deterministic linear programming model is as follows. Choose Xj(j= 1,..., 4) 

Table 9.1 Data for Deterministic Problem 

Barley Oats 
Sesame 
Flakes 

Groundnut 
Meal Requirement 

Protein content (per cent) 
Fat content (per cent) 
Cost per ton (guilders) 

12.0 
2.3 

24.55 

11.9 
5.6 

26.75 

41.8 
11.1 
39.00 

52.1 
1.3 

40.50 

21 
5 
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to 
4 

minimize ^ f3*y (9.23) 
3 = 1 

subject to 
4 

2>«*j> t\,       i = 1,2, (9.24a) 

2*1-1. (9.24ft) 
;=l 

•r;>0,       y=l,...,4. (9.24c) 

Writing out the constraints in detail using the data of the table, we obtain 
the following. Choose xlt x2, xa, xt to 

minimize 24.55.Tj + 26.75x2 + 39.00r3 + 40.50.r4 (9.25) 
subject to 

12.0a;, + 11.9*, + 41.8r3 + 52.1x4 > 21, 

2.3*x +   5.6*,+11.1*8+    1.3x4 >   5, 
x, + x2 + x3+ xt =    1 , 

*i, x2, x3, x4 > 0. (9.26) 

The optimal mixture solution of van de Panne and Popp [4] is as follows: 

x, = .6852 (fraction barley) 

x2 = .0127 (fraction oats) 
x3 = .3021 (fraction sesame flakes) 

xt = 0       (fraction groundnut meal) 

with a cost of 28.94 guilders per ton. 

Chance-Constrained Model with Deterministic Equivalent 

This model differs from the previous one in two respects. First, the protein 
content of the four raw materials used for one batch of the mixture is con- 
stant but subject to variation for different batches of the mixture. The 
distribution of protein control of each raw material is normal and independent 
of the other raw materials, with mean equal to the values given previously 
and variance given below. Thus 

dn = 12.0, a,2 = 11.9, o13 = 41.8, o14 = 52.1, 

o-2(an) = -28, <r\ai2) = .19, a\ai3) = 20.5, <r2(au) = .62. 

Second, the specification is made that the probability of achieving a 
protein content of 21 per cent is at least .95. 

Applying the procedure given in the previous section for a deterministic 
equivalent in the independent normal case, we obtain the following model. 
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Choose Xj, *2, x3, x4 to 

minimize 24.55*i + 26.15x2 + 39.00*3 + 40.50*4 (9.27) 

subject to 

12.0*! + U.9*2 + 41.8^ + 52.1a:4, 

+ (-1.645)[.2&V + .19*2
2 + 20.5*3

2 + .62*4
2]^ > 21, 

2.3^  +5.6*2 +11.1*3 +1.3*4      >   5, 

*1    " *2    + *3    + *4 ~      *, 

*1» *2, *3» *4  >  0- (9.28) 

The optimal mixture solution of van de Panne and Popp [4] is as follows: 

*! = .6359 (fraction barley) 

x2 = 0       (fraction oats) 

*3 = .3127 (fraction sesame flakes) 

*4 = .0515 (fraction groundnut meal) 

with a cost of 29.89 guilders per ton. 
The increase in protein content required in the deterministic ecpjivalent 

given by (9.27) and (9.28) over the stochastic programming problem given 
by (9.25) and (9.26) is satisfied by increasing the fraction of sesame flakes 
despite their high cost and high variance, and by introducing groundnut 
meal in place of oats along with a reduction in barley. 

Fiacco and McCormick [3] obtained the same solution to the problem as 
van de Panne and Popp [4], using a different algorithm and also using a 
modified formulation where *4 is replaced by [1 — (*, + *2 + *3)]. 

9.3    SOURCE OF  PROBLEM AND  REFERENCES 

Source 

Fiacco, McCormick, and Mylander solved the problem using SUMT and 
presented the results in [3]. 
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10 
OPTIMAL SAMPLE  SIZES 

IN STRATIFIED  SAMPLING 

ON  SEVERAL VARIATES 

In this chapter we discuss the use of nonlinear programming to determine 
optimal sample size allocations in stratified sampling problems when several 
variates are being sampled. The use of linear and nonlinear programming in 
approaching this type of problem has been discussed by several writers, for 
instance [2, 4-6], but primary concern has been given to reducing the direct 
model discussed herein into more simple mathematical programming models. 
For problems with two strata and several variates a graphical solution has 
been proposed by Dalenius [2], and Yates [8] has given a general mathe- 
matical approach useful for problems with a small number of strata and 
variates. However, formulation as a nonlinear programming problem and 
direct solution by general nonlinear programming algorithms has received 
less attention. Fiacco, McCormick, and Mylander [3] have treated the 
direct problem. 

We use the notation of Cochran [1], and consider as an example problem 
one used by him, with four strata and two variates. 

It is important to note in considering this problem that the real power of 
the nonlinear programming methods is seen when the number of variates 
grows large. The procedures given for determining the optimal sample sizes 
are very cumbersome, whereas nonlinear programming procedures can handle 
problems with many strata and many variates. 

Decreasing marginal costs of sampling may be handled by branch and 
bound methods such as that discussed in Chapter 3. 

We do not discuss optimal sample size in Bayesian stratified sampling. 
A discussion of the use of nonlinear programming techniques is given in 
Soland [7]. 

101 
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10.1    STRATIFIED  SAMPLING PROBLEMS WITH NONLINEAR 
PROGRAMMING MODELS 

The index h denotes the stratum and/' the variate, where h = 1,.. . , L 
and/' = [,..., K. We define 

N = total units in the population, 

Nh = total units in the hth stratum, 

nh = number of units in the sample in the hth stratum, 

N 
Wh = — = stratum weight. 

The estimate of the population mean of the/'th variate is 
L 

1 NhVih        L 
E(yi) = h-^-~=I^S^ (10-1) 

N A=l 

where yjh is the hth stratum mean of the /'th variate. The variance of the 
estimate yt is 

L 11/ 2<j2 L w <-2 

VCy^I^^-I^, (10.2) 
A=I   nh       A=I   Nh 

as shown by Cochran [I], Chapters 5 and 5A, where S2
jh is the known 

sampling variance for they'th variate in the hth stratum. 
In stratified sampling the values of the sample sizes, nh, in the respective 

strata must be chosen by the sampler. They may be selected to minimize 
the variance of the estimate for a specified sampling cost, or to minimize 
the sampling cost for a specified value of the variance of the estimate. When 
only one variate is being sampled (j = 1), and the sample cost is of the form 

C = c0+2chnh, (10.3) 
h=l 

optimal sample sizes for the various strata may be obtained by standard 
methods for either the minimum sampling variance criterion or the minimum 
cost criterion. When several variates are being sampled (j > 1) the problem 
is more difficult. 

The optimal sampling problem is to minimize sampling cost subject to 
the constraints that the variance of the estimate of the population mean 
must be equal to or less than a specified value for all of the K variates. 
Constraints may be written as follows: 

J.   U/2^2 /.   w <j2 

I^L^-jrilsia^K,,    s-i,....x, (io.4) 
h-i    nh        /,=i Nh 
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where Vi is the upper limit on the variance of the estimate of the mean of the 
y'th variate. It should be observed at this point that in the above constraints 
everything except the stratum sample sizes nh (A = 1, . . . , L) is known. 

The sample size in the fah stratum must be non-negative, and it must be 
equal to or less than the total number of units in the stratum. Thus lower 
and upper bounds may be specified: 

0 <nn < Nh,       h=\,...,L. (10.5) 

Most of the references emphasize minimizing the linear sampling cost 
function, given by (10.3) above. The nonlinear programming model for 
obtaining optimal sample sizes with respect to this cost function is as 
follows. 

Choose nh (h = 1,. . . , L) to minimize the linear cost function (10.3) 
subject to the nonlinear constraints (10.4) and to the non-negativity restric- 
tions and upper bounds (10.5). 

We discuss an example problem of this type in the next section. Kokan 
[5] has discussed this type of problem in some detail, and Jagannathan [4] 
has shown how it can be converted into one with linear constraints and non- 
linear criterion function. 

Certain types of sampling may have costs that are not linearly related to 
the number of units in the sample in the various strata. A more general cost 
function might be 

c = c; + ic;Jh». (io.6) 
h   1 

When the major element of cost is that of taking measurements on the unit, 
the previous cost function (10.3), where /' = 1, may be appropriate. But 
when the major cost of sampling is a cost such as traveling between units, 
the relationship (10.6) with p < 1 (for instance, p = .5) may be more real- 
istic, where c'h is the travel cost between each unit. For the more general cost 
function, the following nonlinear programming problem would arise. 

Choose nk (h = 1,..., L) to minimize the nonlinear criterion function 
(10.6) subject to (10.4) and (10.5). We do not give an example of this problem. 

10.2    EXAMPLE WITH  FOUR  STRATA  AND  TWO  VARIATES 

The example is taken from Cochran [1, pp. 123-125]. The problem is to 
find the sampling plan with minimum cost where the variances of estimates 
of population mean for two variates are equal to or less than specified 
values. Table 10.1 gives data for the problem, including the population 
sizes in the strata, known variances of the two variates in the four strata, 
and unit cost in sampling inthefourstrata,where total cost equals 1 + £*_, nh 

(here c0 = 1, cx = 1, . . . , c4 = 1). 
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Table 10.1    Data for Stratified Sampling Problem 

Stratum Cost per Unit 
Stratum Population Variances of/th Variate of Sample 

h *» «?2 <T2 
0, 

1 400,000 25 1 1 
2 300,000 25 4 1 
3 200,000 25 16 ! 
4 100,000 25 64 1 

The upper limits on the variances of estimates of the population means 
of the two variates are 

Pj < .04,        V2 < .01. 

The nonlinear programming problem is as follows. Choose n1, n2, n3, and 
n4 to minimize the linear criterion function 

(1) + (!)(«,) + (l)(/72) + (!)(#!,) + (I)(n4) 

subject to 

(•42)(252 
+ (.32)(252) + (.22)(258)      (,12)(252) 

(.4)(252)  ,  (,3)(252)  ,  (.2)(252)   ,  (.1)(252) + + 
L400.000       300,000      200,000 

+ 
100,000 

< .04, 

(•42)(12) + (.32)(42)  (,22)(162)  (,12)(642) 

»1 «2 «3 «4 

(•4)(12)  (.3)(42)  (,2)(162)  (,1)(642)- 

.400,000  300,000  200,000  100,000. 

0 < «! < 400,000, 

0 < Ra < 300,000, 

0 < n3 < 200,000, 

o < >n < 100,000. 

< .01, 

Solving the nonlinear programming problem given above, we obtain the 
optimal sample sizes and costs given in Table 10.2. The total cost is 1 + 
2jt-i chnu = 232.2. Cochran obtained the same sample sizes and costs using 
Yates' method. 



Source of Problem and References 105 

Table 10.2    Optimal Sample Sizes and 

Stratum Sampling Costs 

193 193 
180 180 
187 1S7 
171 181 

Stratum Optimal Sample Size       Cost 

A »h ch"h 

10.3    SOURCE  OF  PROBLEM  AND  REFERENCES 

Source 

Fiacco, McCormick, and Mylander formulated and solved by the sequen- 
tial unconstrained minimization technique the example problem of Cochran 
and presented the results in [3]. 
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