AD 678900

...........

1.8

and a set of the set o

e

. .

TRANSLATION NO. 569

Y

DATE: July 1968

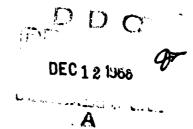
DDC AVAILABILITY NOTICE

۰.

This document has been approved for public release an sale; its distribution is unlimited.

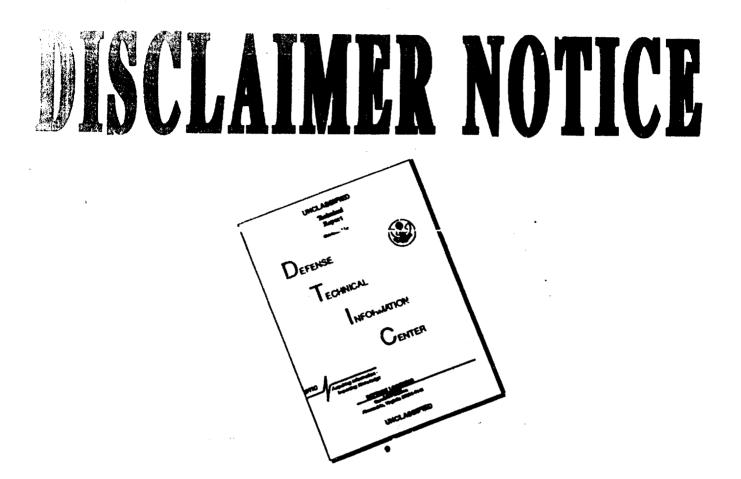
DEPARTMENT OF THE ARMY Fort Detrick Frederick, Maryland

> Reproduced by the C.L.E.A.R.I.N.G.H.O.U.S.E. for Federal Scientific & Technical Information Springfield Va. 22151



This decurrent has been approved for public release and sale; its distribution is unlimited

1



THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Morris D. Friedman

Russian Translation.

Three Dimensional Diffrection Problem for Electro-Magnetic Oscillations D. Z. Avazashvili Soobshchenic, A. N. Gruz. SSR, vol. 14, No.6, 1953 pp. 321-323

In this paper I consider the problem of diffraction in a three-dimensional space, following the basic method used by V. D. Kupradze to .solve the blane problem of the diffraction of electromagnetic waves [1,2].

81. In an infinite space with electromagnetic constants $\epsilon_0, \mu_0, \sigma_0$ let there be a successive non-intersecting enclosures bounded by the regular surfaces (see [1]) S_{ν} ($\nu = 1, 2, ..., n$). The electromagnetic constants of the media occupying the successive enclosures - the dielectric constant, magnetic permeability and conductivity coefficient - we denote, respectively, by $\epsilon_{\nu}, \mu_{\nu}, \sigma_{\nu}$. The region bounded by S_{ν} (assuming no subsequent enclosure) we denote by T_{ν} , the outer boundary of the surface by S_1 and the outer infinite region by T_0 ; the region included between S_{ν} and $S_{\nu+1}$ by $T_{\nu} - T_{\nu+1}$. Here, let $T_{0,\nu} = T_0$ and

T_{n,n+1} # T_n . Moreover, let

$$\kappa^{2}(\Sigma) = \begin{cases} \kappa^{2}, & M \subset T_{o} \\ \kappa^{2}, & \Sigma \subset T_{\nu, \nu+1} \\ \frac{1}{2}(\kappa^{2}_{\nu} + \kappa^{2}_{\nu+1}), & M \subset S_{\nu} \end{cases}$$

There

$$k_{j}^{2} = \frac{\omega^{c} \epsilon_{j} \mu_{j} + l; \pi i \omega \sigma_{j} \mu_{j}}{c^{2}}; \quad \text{Im } k_{j} \ge 0 \quad (j = 0, 1, 2, ..., n)$$

The complex vectors of the electric and magnetic electromagnetic field intensity are \vec{E} and \vec{H} , respectively.

The problem is formulated as follows:

Required to find \vec{E} and \vec{H} satisfying the conditions (sec [3]):

Morris D. Friedman Russian Translation_

2.

$$(1.1) \begin{cases} 1. \text{ rot } \vec{H} = \frac{h\pi\sigma_{j} - i\omega\epsilon_{j}}{c} \vec{L} + \frac{h\pi}{c}\vec{v}_{0} & 2. \text{ rot } \vec{E} = \frac{i\omega\mu_{j}}{c} \vec{H} \\ 3. \text{ div } \vec{E} = h\pi\rho_{0} & 4. \text{ div } \vec{H} = 0 \text{ in } T_{j,j+1} \\ 5. (E_{s})_{y} = (E_{s})_{y-1} & 6. (H_{s}) = (H_{s}) - 1 \text{ on } S_{y} \\ 7. \vec{E} = \exp(ik_{0}r) O(1/r) ; \quad \frac{\partial\vec{L}}{\partial r} - ik_{0}\vec{E} = \exp(ik_{0}r) O(1/r) \text{ at infinity}^{1}. \end{cases}$$

where

$$\vec{U}_{o}(M) = \begin{cases} \vec{G} & M \subset T_{o} \\ 0 & M \subset T_{y_{g}} \gamma_{+} \end{cases}$$

G is a given vector characterizing a source which is continuously differentiable to the second order inclusively:

$$\rho_{o}(\mathfrak{U}) = \begin{cases} \frac{1}{\varepsilon_{o}} \, \rho & \mathfrak{U} \subset \mathfrak{T}_{o} \\ 0 & \mathfrak{U} \subset \mathfrak{T}_{\nu_{o}} \nu_{+} \end{cases}$$

 ρ is the electric volume-charge density, also a given and continuouslydifferentiable function; ω and c are the oscillation frequency and the velocity of light in a vacuum; $(E_g)_{\nu}$, $(H_g)_{\nu}$ and $(E_g)_{\nu-1} (H_g)_{\nu-1}$ respectively, are the limit values of the tangential components of \vec{E} and \vec{n} within and without the surface S_{ν} ; r is a radius-vector; $r o(1/r) \rightarrow 0$ as $r \rightarrow \infty$; r O(1/r) is bounded as $r \rightarrow \infty$.

B 2. By virtue of (l_{l_i}) , the vector \vec{H} in $T_{j,j+1}$ (j = 0, l, 2, ..., n) will be sought as

$$(2.1) \qquad \qquad \vec{H} = \frac{1}{\mu_i} \operatorname{rot} \vec{F}$$

1. When k. is a real constant (1.1₇) and (1.1₉) become: $\vec{z} = O(1/r); \quad \vec{\partial} \vec{z} = o(1/r); \quad \vec{H} = O(1/r); \quad \vec{\partial} \vec{d} = o(1/r).$ Morris D. Friedman Russian Translation.

where \vec{F} is the vector field potential. Using (2.1) in (1.1₂) we obtain: (2.2) $\vec{E} = \operatorname{grud} \varphi + \frac{i\omega}{c} \vec{F}$ in $T_{j,j+1}$ where φ is the scalar field potential. The vector \vec{F} , introduced in (2.1), in determined with the accuracy of a component and is the gradient of an arbitrary function and, obviously, the potential φ is also not uniquely defined. To eliminate this indefiniteness, let us require that this condition be fulfilled (in the $T_{j,j+1}$ region)

3.

(2.3)
$$\operatorname{div} \vec{F} = \frac{\mu_j(h\pi\sigma_j - i\varepsilon_j\omega)}{c} \varphi = 0 \text{ or } \operatorname{div} \vec{F} = \frac{c}{i\omega} k_j^2 \varphi$$

Let us put $\stackrel{?}{H}$ and $\stackrel{?}{E}$ from (2.1) and (2.2) into (1.1) and let us use (2.3); we obtain

(2.4)
$$\Delta \vec{r} + k_{e}^{2} \vec{r} = -\frac{1}{c} \frac{\pi \mu_{e}}{c} \vec{r} \qquad \text{in T}.$$

(2.5)
$$\Delta \vec{r} + k_{e}^{2} \vec{r} = 0 \qquad \text{in T}_{\nu,\nu+1} \Rightarrow \Delta = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}}$$

By virtue of (2.3) and (2.2) we obtain from (1.1₂)

(2.6)
$$\Delta \varphi + k_{\bullet}^{2} \varphi = \frac{\mu \pi}{\epsilon_{\bullet}}$$
 in T.
(2.7) $\Delta \varphi + k_{\bullet}^{2} \varphi = 0$ in $T_{\nu_{\mu}\nu+1}$

(2.8) Lareover, from (1.1) it is evident that in T. $div \vec{E} = \frac{-i \ln \pi}{\ln \sigma_0 - i \epsilon_0 \omega} div \vec{G}$

Now from (1.1_3) and (2.8) there results

(2.9)
$$\rho = \frac{-\varepsilon_{\bullet}}{\ln \sigma_{\bullet} - i\varepsilon_{\bullet}\omega} \operatorname{div} \tilde{G}$$

Let us note that (2.6) and (2.7) are consequences of (2.1.) and (2.5). In order to confirm this it is sufficient to take the divergence of (2.1.)

 \bigcirc

Morris D. Friedman "Russian Translation_ h . and (2.5) and to use (2.3) and (2.9). Let us put $\mu_j = 1$ (j = 0, 1, 2,..., n), then in place of the boundary conditions (1.1_5) and (1.1_6) we will have the following: 1. $(E_s)_{y} = (C_s)_{y-1}$; 2. $(H)_{y} = (H)_{y-1}$; (2.10) by virtue of (2.1), (2.102) is fulfilled if 3 satisfies $(rot \vec{F}) = (rot \vec{F})_{-1}$ By virtue of (2.2), (2.10,) is fulfilled if we have on $S_{\mathcal{V}}$: $\left(\frac{\partial\varphi}{\partial s} + \frac{i\omega}{c}F_{s}\right) = \left(\frac{\partial\varphi}{\partial s} + \frac{i\omega}{c}F_{s}\right)$ Evidently, the latter always occurs if these boundary conditions are fulfilled on S_{γ} : $\left(\frac{\partial \Psi}{\partial 3}\right)_{\nu} = \left(\frac{\partial \Psi}{\partial 3}\right)_{\nu-1} i \qquad (\vec{r}_{s})_{\nu} = (\vec{r}_{s})_{\nu-1}$ Finally, the diffraction problem reduces to two boundary problems for the oscillation equations. To find F requires solving the boundary problem: 1. $\vec{AF} + k_{\vec{a}}^2 = -\frac{1}{2} \frac{1}{6} \vec{a}$ in T. 2. $\Delta \vec{F} + k_{\vec{F}}^2 = 0$ in T_{v.v+1} (2.11) 3. (rot \vec{F}) = (rot \vec{F}) ; $(F_s)_{\nu} = (F_s)_{\nu-1}$ in S_{ν} 4. $\vec{F} = \exp(ik_{\sigma}r) o(\frac{1}{r})$; $\frac{\partial \vec{k}}{\partial r} - ik_{\sigma}\vec{F} = \exp(ik_{\sigma}r) o(\frac{1}{r})$ at infinity. To find Q , the problem is solved 1. $\Delta \varphi + k_{\circ}^{2} \varphi = \frac{\ln n}{\epsilon_{\circ}} \rho$ in T. (2.12) $2. \Delta \varphi + k_{\nu}^{2} \varphi = 0 \qquad \text{in } T_{\nu,\nu+1}$ $3. \left(\frac{\partial \varphi}{\partial s}\right)_{\nu} = \left(\frac{\partial \varphi}{\partial s}\right)_{\nu-1} \qquad \text{on } S_{\nu}$ 4. $\varphi = \exp(ik_{\sigma}r) o(^{1}/r); \frac{\partial \varphi}{\partial r} - ik_{\sigma} \varphi = e^{ik_{\sigma}r} o(^{1}/r)$ at infinity.

Morris D. Friedman Russian Franskition

5.

Here \vec{F} and φ , found from (2.11) and (2.12), must satisfy condition (2.3).

B 3. The solutions of boundary problems (2.11) and (2.12), respectively, are expressed through solutions of the following integral equations:

(3.1)
$$\vec{F}(M) = \frac{1}{\ln \pi} \sum_{j=0}^{n-1} \left\{ (k_{j+1}^2 - k_j^2) \int \vec{F}(M) \frac{e^{ik_0 r(M_0, j)}}{r(M_0, M)} dz_N \right\} + \vec{f}(M)$$

wrere

$$\hat{f}(\underline{x}) = \frac{1}{c} \int_{T_0}^{T} \hat{g}(\underline{x}) \frac{e^{ik_0 r(\underline{x},\underline{x})}}{r(\underline{x},\underline{x})} dz_N$$

$$\begin{pmatrix} (3,2) & \frac{c}{i\omega} c^{2}(\omega) \varphi(\omega) = \frac{c}{l_{i}\pi i\omega} \sum_{j=0}^{n-1} (k_{j+1}^{2} - k_{j}^{2}) \left\{ k^{2} \int_{T_{j+1}}^{t} \varphi(\omega) \frac{e^{ik_{0}r(M_{j})!)}}{r(M_{j})} dr_{\omega} + \int_{S_{j+1}}^{t} \varphi(\omega) \frac{\partial}{\partial n_{M}} \left(\frac{e^{ik_{0}r(M_{j})}}{r(M_{j})} \right) ds_{\omega} \right\} + L(\omega)$$

$$= \frac{1}{k_{1}} \left\{ k_{1}^{2} - k_{1}^{2} - k_{1}^{2} \right\} = \frac{1}{k_{1}} \left\{ k_{1}^{2} - k_{1}^{2} - k_{1}^{2} \right\} = \frac{1}{k_{1}} \left\{ k_{1}^{2} - k_{1}^{2} - k_{1}^{2} \right\} = \frac{1}{k_{1}} \left\{ k_{1}^{2} - k_{1}^{2} - k_{1}^{2} \right\} = \frac{1}{k_{1}} \left\{ k_{1}^{2} - k_{1}^{2} - k_{1}^{2} - k_{1}^{2} \right\} = \frac{1}{k_{1}} \left\{ k_{1}^{2} - k_{1}^{2}$$

$$L(\mathcal{U}) = \sum_{j=0}^{n-1} \frac{k_{j+1} - k_{j}}{\mu_{n}} \int' F_{n}(\mathbf{I}) \frac{e^{ik_{o}r(\mathbf{I}_{g}\mathbf{I})}}{r(\mathcal{U}_{g}\mathbf{I})} ds_{\mathbf{I}} - \frac{1}{c} \int' G_{n}(\mathbf{I}) \frac{e^{ik_{o}r(\mathbf{I}_{g}\mathbf{I})}}{r(\mathbf{I}_{g}\mathbf{I})} ds_{\mathbf{I}} - \frac{1}{c} \int' G_{n}(\mathbf{I}) \frac{e^{ik_{o}r(\mathbf{I}_{g}\mathbf{I})}}{r(\mathbf{I}_{g}\mathbf{I})} ds_{\mathbf{I}}$$

 $k^{2'} \equiv k^{2}(!); M \subset T_{\nu,\nu+1} \quad (\nu = 1,2,\ldots,n)$

 F_n and G_n are the projections of \vec{F} and \vec{G} on the interior normal. The volume integrals in (3.1) and (3.2), taken over the infinite region T., exist since \vec{G} and \vec{p} are bounded and Im k. > 0. For

real k., \tilde{G} and $\tilde{\rho}$ must satisfy some existence condition of the integrals over T. .

(3.1) and (3.2) represent, respectively, the ordinary and loaded Fretholm integral equation of the second kind (as is known, Fredholm theory applies to the latter). Morris D. Friedman Russin Translation

These equations are completely analogous to the equations of V. D. Kupradze which were constructed in [1,2] for electric and magnetic vectors.

5.

The integral equations (3.1) and (3.2) were studied completely also, as was done by V. D. Kupradze (see [1] ch. 3), for the plane diffraction problem. Condition (2,3) remains to be satisfied.

Let us introduce the vector

grad
$$\chi = \frac{c}{4\pi i \omega} \sum_{j=0}^{n-1} (k_j^2 - k_{j+1}^2) \int_{j+1}^{j} \varphi(k) \vec{n}(k) \frac{e^{ik_o r(k_j,k)}}{r(k_j,k_j)} ds_k$$

where $\vec{n}(N)$ is the direction of the interior normal at the point $N \subseteq S_{j+1}$, $\phi(N)$ is the solution of (3.2), and we form the vector (3.3) $\vec{F}_1(N) = \vec{F}(N) + \text{grad } \mathcal{X}$

The vector (3.3), obviously, satisfies (2.11), hence we have from (3.3):

$$(3.4) \quad \operatorname{div} \overline{F}_{1}(\mathcal{U}) = \frac{1}{4\pi} \sum_{j=0}^{n-1} (k_{j+1}^{2} - k_{j}^{2}) \left\{ \int_{T_{j+1}} \operatorname{div} \overline{F}(N) \frac{e^{ik \cdot e^{r}(M_{j}N)}}{r(M_{j}N)} d\tau_{N} + \frac{e}{i\omega} \int_{S_{j+1}} \varphi(N) \frac{\partial}{\partial N} \frac{e^{ik \cdot e^{r}(M_{j}N)}}{r(M_{j}N)} ds_{N} \right\} \\ + \frac{e}{i\omega} \int_{J=0}^{n-1} \left\{ \frac{k_{j+1}^{2} - k_{j}^{2}}{4\pi} \int_{S_{j+1}}^{0} \overline{F}_{n}(N) \frac{e^{ik \cdot e^{r}(M_{j}N)}}{r(M_{j}N)} ds_{N} \right\} \\ - \frac{1}{e} \int_{S_{j+1}}^{0} G_{n}(N) \frac{e^{ik \cdot e^{r}(M_{j}N)}}{r(M_{j}N)} ds_{N} \right\} \\ - \frac{hnd_{e} - i\omega e_{e}}{e^{e_{e}}} \int_{T_{e}}^{0} \widehat{\rho}(N) \frac{e^{ik \cdot e^{r}(M_{j}N)}}{r(M_{j}N)} ds_{N} \right\}$$

Subtracting (3.2) from (3.4), we obtain:

3.5)
$$\operatorname{div} \vec{F}_{1}(M) = \frac{c}{i\omega} k^{2}(M) \varphi(M) = \frac{1}{4\pi} \sum_{j=0}^{n-1} (k_{j+1}^{2} - k_{j}^{2})_{T_{j+1}} \left[\operatorname{div} \vec{F} - \frac{c}{i\omega} k^{2} \varphi(N) \right] X$$
$$X = \frac{e^{ik} e^{i(N,N)}}{r(N,N)} dz_{N}$$

Morris D. Friedman

Rus on Frankation.

If in particular, we fulfill use condition:

:..

$$\int_{\mathbf{T}_{j+1}}^{j} \frac{\mathrm{d}\mathbf{k}_{s}\mathbf{r}(\mathbf{k}_{s}\mathbf{N})}{\mathbf{r}(\mathbf{k}_{s}\mathbf{N})} \frac{\partial}{\partial \mathbf{r}} \frac{\int_{\mathbf{r}_{s}(\mathbf{k}_{s}\mathbf{r}_{s}(\mathbf{k}_{s}\mathbf{n}_{s}))}^{j} \mathrm{d}\mathbf{r}(\mathbf{r}_{s}\mathbf{n}_{s})}{\left(\mathbf{r}(\mathbf{k}_{s}\mathbf{n}_{s})\right)} \mathrm{d}\mathbf{r}_{i} = 0 \quad (j=0,1,\ldots,n-1)$$

where $N \subset S_{j+1}$ then (3.5) becomes

$$\operatorname{div} \vec{F}_{1}(\mathcal{U}) = \frac{c}{i\omega} k^{2}(\mathcal{U}) + (\mathcal{U}) = \frac{1}{4\pi} \sum_{j=0}^{n-1} (k_{j+1}^{2} - \lambda_{j}^{2}) \int \left[\operatorname{div} \vec{F}_{1}(\mathcal{U}) - \frac{c}{i\omega} k_{0}^{2} \varphi(\mathcal{U}) \right] \frac{e^{ik_{0}r(\mathcal{U}_{0}\mathcal{U})}}{r(\mathcal{U}_{0}\mathcal{U})} dr_{N}$$

From which follows (s.e [1]):

$$\operatorname{div} \overrightarrow{F}_{1}(\mathfrak{M}) - \frac{c}{i\omega} k^{2}(\mathfrak{M}) \varphi(\mathfrak{M}) = 0 \quad \text{or} \quad \operatorname{div} \overrightarrow{F}_{1}(\mathfrak{M}) = \frac{c}{i\omega} k^{2}(\mathfrak{M}) \varphi(\mathfrak{M})$$

i.e., (2.3) .

In the general case, we consider the system:

$$\vec{F}(M) = \frac{1}{4\pi} \sum_{j=1}^{n-1} \left(k_{j+1}^2 - k_{j}^2 \right) \int_{T_{j+1}}^{T} \vec{F}(N) \frac{e^{ik_o r(M_0N)}}{r(M_0N)} dx_N + \frac{c}{2\omega_i} \left(k_j^2 - k_{j+1}^2 \right) \int_{S_{j+1}}^{T} \left(\psi(N) \vec{h}(N) \right) X$$

$$\times \frac{e^{ik_o r(M_0N)}}{r(M_0N)} dx_N + \vec{f}(M)$$
(3.6)

$$\frac{c}{i\omega}k^{2}(\underline{M})\varphi(\underline{M}) = \frac{c}{\ln\pi i c} \sum_{j=0}^{n-1} (k_{j+1}^{2} - k_{j}^{2}) \left\{ k^{2} \int_{T_{j+1}} \varphi(\underline{M}) \frac{e^{ik_{o}r(\underline{M}_{o}N)}}{r(\underline{M}_{o}N)} d\tau_{\underline{M}} + \int_{S_{j+1}} \varphi(\underline{M}) \frac{\partial}{\partial n_{\underline{M}}} \left(\frac{e^{ik_{o}r(\underline{M}_{o}N)}}{r(\underline{M}_{o}N)} \right) ds_{\underline{M}} + \frac{i\omega}{c} \int_{S_{j+1}} F_{n}(\underline{M}) \frac{e^{ik_{o}r(\underline{M}_{o}N)}}{r(\underline{M}_{o}N)} ds_{\underline{M}} ds_$$

where

$$\widehat{f}(\underline{u}) = \frac{1}{c} \int_{T_{\bullet}}^{T_{\bullet}} G(\underline{u}) \frac{e^{i\mathbf{k}\cdot\mathbf{r}\cdot(\underline{M}_{\bullet}N)}}{r(\underline{M}_{\bullet}N)} d\tau_{\underline{u}}$$

$$L(\underline{u}) = \frac{-1}{c} \sum_{j=0}^{n-1} \int_{S_{j+1}}^{G_{n}(\underline{u})} \frac{e^{i\mathbf{k}\cdot\mathbf{r}\cdot(\underline{M}_{\bullet}N)}}{r(\underline{M}_{\bullet}N)} ds_{\underline{N}} \frac{4\pi\sigma_{\bullet} - i\omega\varepsilon_{\bullet}}{c\varepsilon_{\bullet}} \int_{T_{\bullet}}^{\rho(\underline{u})} \frac{e^{i\mathbf{k}\cdot\mathbf{r}\cdot(\underline{M}_{\bullet}N)}}{r(\underline{M}_{\bullet}N)} d\tau_{\underline{u}}$$

Morris D. Friedman Russian Granslation

5.

The functions F and φ , determined from (3.6), satisfy (2.11), (2.12) and (2.3). Therefore, (3.6) and (1.1) are mutually equivalent. In particular, the homogeneous problem (1.1.) is equivalent to the corresponding homogeneous system of integral equations (3.5.).

8 4. Let us study the system (3.6). For simplicity, let us consider the case n = 1:

$$\vec{F}(M) = \frac{(k_1^2 - k_0^2)}{4\pi} \int_{T_1}^{T} \vec{F}(M) \frac{e^{ik_0 r(M_0 N)}}{r(M_0 N)} d\tau_N + \frac{c(k_0^2 - k_1^2)}{4\pi} \int_{S_1}^{T} \phi(N) \vec{n}(N) \frac{e^{ik_0 r(M_0 N)}}{r(M_0 N)} ds_N + \vec{f}(M)$$

$$(h.1) \qquad \frac{c}{1\omega} k^{2}(\mu) \varphi(\mu) = \frac{ck_{1}^{2}(k_{1}^{2} - k_{0}^{2})}{4\pi i \omega} \int_{T_{1}} \varphi(N) \frac{e^{ik_{0}r(M_{0}N)}}{r(\mu_{0}N)} d\tau_{N} \\ + \frac{c(k_{1}^{2} - k_{0}^{2})}{4\pi i \omega} \int_{S_{1}} \varphi(N) \frac{\partial}{\partial n_{N}} \left(\frac{e^{ik_{0}r(M_{0}N)}}{r(M_{0}N)} \right) ds_{N} \\ + \frac{k_{1}^{2} - k_{0}^{2}}{4\pi} \int_{S_{1}} F_{n}(N) \frac{e^{ik_{0}r(M_{0}N)}}{r(M_{0}N)} ds_{N} + L(\mu)$$

Let
$$M \subseteq T_1$$
; let us introduce the notation:
 $\Phi_1(\mathcal{L}) = F_x(\mathcal{L})$; $\Phi_2(\mathcal{L}) = F_y(\mathcal{L})$; $\Phi_3(\mathcal{L}) = F_2(\mathcal{L})$; $\Phi_4(\mathcal{L}) = \Phi(\mathcal{L})$
 $\Psi_1(\mathcal{L}) = f_x(\mathcal{L})$; $\Psi_2(\mathcal{L}) = f_y(\mathcal{L})$; $\Psi_3(\mathcal{L}) = f_2(\mathcal{L})$; $\Psi_4(\mathcal{L}) = L(\mathcal{L})$
 $\lambda = \frac{k_1^2 - k_2^2}{\hbar\pi}$; $\Lambda_{\alpha,\beta}(\mathcal{L}_{\beta}\mathcal{N}) = \begin{cases} -\frac{\exp ik_2r(\mathcal{L},\mathcal{N})}{r(\mathcal{L}_{\beta}\mathcal{N})} & \text{for } \alpha = \beta \\ 0 & \text{for } \alpha \neq \beta \ (\alpha,\beta=1,2,3,4) \end{cases}$
 $B_{11}(\mathcal{L}_{\beta}\mathcal{N}) = B_{12}(\mathcal{L}_{\beta}\mathcal{N}) = B_{13}(\mathcal{L}_{\beta}\mathcal{L}) = 0$; $B_{14}(\mathcal{L}_{\beta}\mathcal{N}) = \frac{c\cos(n, \xi)}{i\omega} \frac{e^{ik_0r(\mathcal{L}_{\beta}\mathcal{N})}}{r(\mathcal{L}_{\beta}\mathcal{N})}$
 $B_{21}(\mathcal{L}_{\beta}\mathcal{N}) = B_{22}(\mathcal{L}_{\beta}\mathcal{N}) = p_{23}(\mathcal{L}_{\beta}\mathcal{N}) = 0$; $B_{24}(\mathcal{L}_{\beta}\mathcal{N}) = \frac{c\cos(n, \gamma)}{i\omega} \frac{e^{ik_0r(\mathcal{L}_{\beta}\mathcal{N})}}{r(\mathcal{L}_{\beta}\mathcal{N})}$
 $B_{31}(\mathcal{L}_{\beta}\mathcal{N}) = B_{32}(\mathcal{L}_{\beta}\mathcal{N}) = B_{33}(\mathcal{L}_{\beta}\mathcal{N}) = 0$; $B_{34}(\mathcal{L}_{\beta}\mathcal{N}) = \frac{c\cos(n, \gamma)}{i\omega} \frac{e^{ik_0r(\mathcal{L}_{\beta}\mathcal{N})}}{r(\mathcal{L}_{\beta}\mathcal{N})}$

Morris D. Friedman Racia Denote 2. $\frac{1}{44}(-,-) = -\frac{1 + \cos(\pi \cdot \frac{\pi}{2})}{c \cdot \frac{\pi}{2}} \frac{d^{2}(\cos^{2}(-,-))}{r(\cdot,-)} = -\frac{1 + \cos(\pi \cdot \pi)}{c \cdot \frac{\pi}{4}} \frac{d^{2}(\cos^{2}(-,-))}{r(\cdot,-)}$ $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{\cos(\pi \cdot \pi)}{c \cdot \frac{\pi}{4}} \frac{d^{2}(\sin^{2}(-,-))}{r(\cdot,-)} = -\frac{1}{2} \frac{1}{2} \frac{1$

and B(M,N)

$$B(\mathcal{L}_{n}, \mathcal{L}) = \begin{bmatrix} B_{\alpha,\beta}(\mathcal{L}_{n}, \mathcal{L}) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \frac{3}{1L} \\ 0 & 0 & 0 & \frac{1}{2L} \\ 0 & 0 & 0 & \frac{1}{2L} \\ 0 & 0 & 0 & \frac{1}{3L} \\ B_{L1} & B_{L2} & B_{L3} & B_{LL} \end{bmatrix}$$

il.

Then (4.1) can be written

(4.2)
$$\vec{\Phi}(\underline{u}) + \lambda \int_{\mathbf{T}_{1}} A(\underline{u},\underline{v}) \hat{\Phi}(\underline{u}) d\mathbf{r}_{\underline{u}} + \lambda \int_{\mathbf{S}_{1}} B(\underline{v},\underline{v}) \hat{\Phi}(\underline{v}) d\mathbf{s}_{\underline{u}} = \vec{\Phi}(\underline{u})$$

Equation (4.2) is a loaded Fredholm equation of the second kind. This can be written in the usual form if we introduce a new kernel and new differential.

Let us put $(\mathbb{M} \subset \mathbb{T}_1 + S_1)$

 $\mathbb{K}(\mathbb{Z}_{\mathcal{H}}^{\mathbb{H}}) = \begin{cases} \mathbb{A}(\mathbb{M}_{\mathcal{H}}^{\mathbb{H}}) & \text{if } \mathbb{H} \subset \mathbb{T}_{1} \\ \mathbb{B}(\mathbb{Z}_{\mathcal{H}}^{\mathbb{H}}) & \text{if } \mathbb{H} \subset \mathbb{S}_{1} \end{cases} \qquad \mathbb{E}_{\mathbb{K}} = \begin{cases} d\mathcal{T}_{\mathbb{H}} & \text{in } \mathbb{T}_{1} \\ d\mathcal{D}_{\mathbb{H}} & \text{on } \mathbb{S}_{1} \end{cases}$

Morris D. Friedman Russin Transaction

10.

Then (4.2) becomes 3) $\vec{\Phi}$ (M) + $\lambda \int_{T_1 + S_1} \vec{x}(M, L) \vec{\Phi}$ (M) $dM_1 = \vec{T}$ (M)

(4.3)

As is known, Fredholm theory is applicable to (4.3) (see V. I: Smirnov $\lfloor 4,7 \rfloor$).

The proof of the uniqueness theorem for (1.1) is given in [5]. Therefore, by virtue of the equivalence, the homogeneous system (4.3.): (4.3.) $\vec{\Phi}(\Sigma) + \lambda \int_{T_1+S_1} K(\Sigma, \Sigma) \vec{\Phi}(N) d\omega_N = 0$

has only a trivial solution. This means that (h.1) is solvable for any right side and the existence theorem is proved.

Tiflis Inst of HR Eng. July, 1953

References

1. V. D. KUPHALZE: Boundary problems of oscillation theory and integral equations. Noscow, Gostekházdat, 1950

2. V. D. KUPRADZE: Electromagnetic wave propagation in inhomogeneous media. Trudy, Tiflis, Math. Inst., vol. II, 1937

3. D. Z. AVAZASHVILI: Three dimensional problem of diffraction of monochromatic electromagnetic waves. Doklady, A.N.

USSR, vol. 82, No. 1, 1952

4. V. I. SMINHOV: Course of higher mathematics, vol. IV, Moscow, Gostekhizdat, 1951, pp. 169-170

5. D. Z. AVAZASHVILI: Uniqueness theorem for Maxwell's electromagnetic equations in inhomogeneous infinite medial Trudy, Tiflis Math. Inst., vol. VIII, 1940