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SUMMARY

'The two-parameter solid equations of state, the Murnaghan Equation, the Tait Equation,

and a generalized fohm of the Birch Equation were selected to fit the static pressure-

volume isotherms of solid and liquid high polymners. These equations were found to

have a wide range of applicability. They can be extrapolated to very high pressure

with good accuracy. The first and second derivatives appear to be well behaved. These

equations can be used to obtain analytical expressions for the Griineisen parameter,

containing the volume or pressure explicitly and temperature implicitly. They yield

values that -eem to be in agreement with the latest theoretical deductions. When used

with the Kennedy fusion law, these isothermal equations can be used to pred-_ct n'elting

temperatures under very high pressures. it has also been shown that these equations

can be used to predict the shock compression data, and a discussion of the shock

compression data as influenced by the degree of crystallinity of the polymers is given.

Along with ihe PVT properties of polymers, the specific heats (CF rnd Cv) of poly-

ethylene, polychlorotrifiuoroethylene, and polytetrafluoroethylene tuder high pressures

are evaluated.

•j1
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1. INTRODUCTION

There Is considerable theoretical and practical Interest in studying t.- equations of state of

solids under high pressure. For high polymers, there are only scattered data amailable In

the literature including the pioneering work by Lridgman. A common method of

correlating the data has been the use of q polynomial--the specific volume as a

function of ascending powers of pressure. The obvious disadvantaga of this method is that

the empirical equation of state Is limited by the range of the experimental data. Extrapolation

beyond the range becomes highly uncertain; however, extrapolation is sometimes necessary

for estimating the pressure-volume relationship in the region where no experimental data

exists. There is no theoretical approach which yields results for high polymers which

compare In accuracy to the experimental data.

It has been shown( 1 ) that the bulk properties of orgrnic high polymers under high pressures

behave similarly to the properties of oth3r non-ntalli srd metallic solids. These propertiec

under high pressure can be well represented by one of ýhe sever~l semi-empirical eqdatioas

of state which can be derived on the basis of the theory of fipite strains. Among these

equations, the Murnaghan and Birch equations are well known. Anderson(2) has shown that

the Murnaghan eqiation can be used to estimate P-v isotherms to very high pressures many

times beyond the pressure range where the parameters were determined with good accuracy.

The simplest form of the Birch equation has two fixed exponents and one adjustable coefficient.

A generalized and modified form of the Birch equation based on the theory of finite strains

containing two adjustable parameters was used in the present paper. The Tait equation,

also a two-parameter equation of state, has customarily been used to correlate compression

data for liquids. Nanda and Simha(3) have applied the Tait equation to solid and liquid organic

high palymers. MacDonald(4) has applied the Tait equation to other solids and compared the

Tait and Murnaghan equations.

2
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These three equations have been chosen to fit the volumetric data of several organic high

polymers. The volumetric data used were taken from the work of Weir(5) and Hellwege,

Knappe, and Lehmann(6). Weir's data were taken at pressures up to 10, 000 atm. ; while

those of Hellwege et al. cover a wide temperature range encompassing both solid and liquid

regions of the polymers.

It was fouxLd that these three equations could be extrapolated to very high pressures with good

accuracy. Values of the first and second derivatives obtained from these equations appear to

be smooth, well behaved, and in good agreement with the values obtained from other methods.

On the basis of the above results, four areas were examined:

a. The specific heate Cp and Cv under high pressures for three polymers w3re
evaluated.

b. The melting phenomena of polymers under high pressure are examined on the basis
of the Simon Equation and the Kennedy fuscn law. When combined with the Kennedy
fusion law, these isothermal equations of state can predict the melting temperature
of polyethylene up to 30, 000 atmospheres and agree to within 10 percent with the
experimental data.

c. The Griineiscn pRrameter can be directly calculr.ted from these equations of state by
invoking one of the well known models of solids. Values thus obtained seem to be in
good agreement with the latest theoretical deductions.

d. The shock compression of polymers Is shown to be predictable. The few Hugoniots
found in the literature are examined, and It is found that in all cases insufficient
information is given on the physical properties of 4he polyraers and the initial
conditions of the experiments, which are Important in the calculation of Hugoniots.
The observed decrease in slopc -f the Hugoniots at high shock pressures may be
explained by the opposite effects of pressure and temperature on the degree of
crystallinity of the polymers.

The w~de range of applicability of these equations of state seems to indicate a fruitful area for

theoretical and experimental investigation.

3
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S* 2. ISOTHERMAL EQUATIONS OF STATE

The Murnaghan, Tait and a generalized form of the Birch equation have Leen chosen to fit the

experimental data. The Murnaghan equation can be derived from the fact that the bulk

modulus of some solids Is a linear function of pressure along an isotherm,

-v () = B + sP (1)T o

where v and P indicate the specific volume and the pressure, respectively; B is the initial0

bulk modulus at atmospheric pressure, and s is a dimensionless coefficient.

The Murnaghan equation is obtained by integrating Equation 1 with the pressure given as a

function of (v /v),
0

P=B 0 V\ 5 1

( 2 ) 
(2)

Anderson(2) has shown that the Murnaghan equation is capable of predicting tne compression

,)f solids to very high pressures. He further demonstrated that the necessary parameters

can be obtained from ultrasonic measurements. Because of the inherent inaccuracy in the

direct measurements of specific volume and the small change of volume under pressure, it

iL very difficult to obtain B and B from the slopes of the P-v isotherm, especially when the0

pressure interval is large.

In the original Birch equation, the exponents of the v /v terms had the fixed values of 7/3 and
0

5/3. Because of its greater flexibility, a modified and generalized form of the Birch Equation

given by Knopoff() is preferrEd. In this equation, the pressure is given as

4



P 13K /2 (1 + a 2 )I(Vo/V) (vo/V) - (3)

where K = -v @P/Bv)T at P = 0, a2 is the coefficient of the quadratic term in t: F train

energy expressed as a function of strain, and P and v have the usual me9'ings. if Equaticz,

3 is rearraaged, and 3 K /2 (1 + a2) and 3/2 (1 + a 2) are considered as two -Ijustable

parameters, the following equation is obtained

[r 1/ -B1

VVo= [1/2 + (P/A' + 1/4)1/2 (4)

with A' = 3K /2 (1 + a 2) and B' = 3/2 (1 + a 2 ).

The Tait Equation is purely empirical. It has been used extensively to represent the P-v

isotherms of liquids. Recently the Tait Equation has been applied to polymers and other

solids (3,.4) This equation can be written as

v/v = 1 -A In [(B+P)/(B+1)] (5)
o

In Equation 5, A and B are the two adjustable parameters. The constant A is often regarded

as a universal constant. Nanda and Sinha(3) have taken this view and apply the constant A

found for hydrocarbons to polymers. In order to obtain a good fit, both pai-ameters have

been considered as adjustable in the present work. It is found that the variation of A is

rather large near the glassy transition temperature in the case of poly, ethyl methacrylate.

An attempt has been made to fit these equations to the experimental data by means of the

(8)
method of least squares. The general metbhd, developed by Deming , which is applicable

to non-linear equations, was not found to be helpful in this case. It seems to require that the

initial estimate of the values of the parameters be very close to the true values in order that

5.



the linearization of the expressions for the errors be valid. Consequently, an iteration

procedure was developed. First, a pair of initial values of the parameters are obtained

from a pair of well separated data points. Then the sum of error squares is minimized by

trial and error with respect to each parameter alternately, with the other parameter held

constant. The minimum is of the order of 10 for Weir's high pressure data. It is in the

order of 10-7 for the data of Hellwege et aL The sum of error squares becomes larger as

the melting point is approached. In the case of polyethylene In the melting region (where the

volume change is rather sudden), fitting of the data could only be done by obtaining separate

parameters for the liquid and solid phases.

Tables 1, 2, and 3 give the parameters in the Murnaghan, modified Birch, and the

Tait equations. Temperature dependence of the parameters in each of the equations in the

case of polymethyl methacrylate are plotted in Figures 1, 2, and 3. The parameter

B in the Murnaghan Equation, the parameter K in the modified Birch Equation, and B in
0 0

the Tait Equation are always decreasing with increas.ng temperature as expected. Both

coefficients s (Murnaghan Equation) and a2 (Birch Equation), which are related to the

compressibility, remain fairly constant at temperatures far below the transition temperature

and then rise and fall precipitously on going through the transition.

The parameter s in the Murnaghan equation for solid and liquid atactic (amorphous) polystyrene

is plotted in Figure 4. The shape of the curve for the parameter s is similar to that of the

specific heat data of Karasz, Bair, and O'Reilly(. The cause of the abrupt rise of s near
o (3)

250 C is not clear. Nanda and Simha suspect degradation or loss of material at this high

temperature.

Any of the three equations of state can be used to calculate the specific volumes of polymers

with higher accuracy than can Weir's polynomials, even in the range where the polynomials

were fitted to accurately represent the experimental data. In Table 4, the specific volumes

if polytetrafluoroethylene at 30 C and at pressures from 1000 to 10, 000 atmospheres are

compared with values calculated from the Murnaghan, Birch, Tait, and the polynomial

6



Table 1. Parameters in the Murnaghan Equation of State for High Polymers

B Static

Polymer S v T (K) Pressure
r(atm) 0 Range (atm)

Low Density 30063.2 9.4902 1.0895 293.2 10,000
Polyethylene 25138.4 8.4305 1.1269 343.2 10,000

High Density 40148.4 (a) 16.9992 1.028 292.6 2, (a)

Polyethylene 35034.6(a) 12.2738 1.042 332.8 2,000(a)

Polymethyl 39712.3 (a) 9. 0004 0.842 293.2 2, (a)

Methacrylate 28191.3 (a) 10.9414 0.862 373.2 2,000(a)

6388(a) 8.5179 0.955 29.2 20Polysyrene(a)00(a)
Polystyrene 14073.2 (a) 15.7109 0.994 399.2 2,000(a)

Po:,,chloro - 39146.6 10.4331 0.4662 293.2 10,000
trifl, oroethylene 33993.5 9.8502 0.4745 343.2 10,000

Polytetrafluoro- 29267 14.9218 0.4484 293.2 1 to 5,000
ethylene 21040 12.8603 0.4484 293.2 6,000 to 10,000

Polyvinyl 416S7.7 7.8864 0.7956 293.2 10,000
Fluoride 31102.5 9.3506 0.8135 343.2 10,000

Polvvinylidene 34757.8 9.5880 0.6439 293.2 10,000
Fluoride 32208.2 9.3077 0.6582 343.2 10,000

Polyviny 58233.0 10.7629 0.7720 293.2 10,000
Alcohol 46258.8 11.0647 0.7861 353.2 10,000
Nylon 6-6* 56688.27(a) 7.7507 0.858(b) 300 40,000(a)

Nylon 6-10 55470.7 7.8852 0.917 300 40,000(a)

(a) the unit is in Kg/cm 2

(b) Based on average density of amorphous and crystalline samples.
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Table 2. Parameter in the Modified Birch Equation of State for High Polymers

Ko a2 Temperature
Polymer (atm) 2 (0K)

Low Density 27861.4 4.77267 293.2

Polyethylene 22116.0 3.83297 353.2

High Density 42770.0(a) 7.0998 292.6

Polyethylene 9063.7 10.1728 403.3

Polymethyl 39813. 9 (a) 3. 54545 293.2

Methacrylate 27704.4 5.08729 373.2

36284.7(a) 3.43000 293.2
Polystyrene 17976. d 8.9576 373.8

Polychioro-tri- 3935,-).3 4.55555 293.2

fluoroethylene 316',4.9 4.97655 353.2

Polytetrafluoro- 27741.8 7. 7944 293.2 (0 - 5000 atm)

ethylene 18801.6 7. 0129 293.2 (5000 - 10000 atm)

Polyvinyl 39714.1 3.64910 293.2
Fluoride 29396.5 4.54066 343.2

Polyvinyl 57311.2 4.93094 203.2

Alcohol 49088.0 4.25164 353.2
^(a)" '

Nylon 6-6 (oriented) 52578.3 3. 69220 300
Nylon 6-6 (unoriented) 62392.7 (a) 3.56303 300
Nylon 6-10 50865.7 3.83297 300

(a) The unit of K is in Kg/cm2

8



Table 3. Parameters in the Tait Equation of State for High Polymers

Polymer A B (atm) Temperature (OK)

Low Density 0.086812 2510.1 293.2
Pc~lyethylene 0.097213 2383.0 343.2

High Density 0.055221 2 3 1 0. 9(a) 292.6
Polyethylene 0.054046 1809.7 332.8

Polymethyl 0.098701 3911. r (a) 293.2
Methacrylate 0.080562 2253.7 373.2

Polystyrene 0.09C000 3200. 0 (a) 293.2

Polychloro- 0.086480 3430.0 293.2
trifluoroethylene 0.084714 2777.4 353.?

Polytetrafluoro- 0.05587 1523.5 293.2 (1 to 5000 atm)
ethylene 0.06367 1216.8 -93.2 (6,000 to 10,000 atm)

Polyvinyl (.13650 4400.0 293.2
Fluoride 0.088401 2656.8 353.2

Polyvinylidene 0.088353 3019.4 293.2
Fluoride 0.090014 2834.2 343.2

Polyvinyl 0.081121 4676.8 293.2
Alcohol 0.077595 3513.8 353.2

(a) The unit of B is in Kg/cm 2

9
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Table 4. Comparison of Specific Volumes (cm3/g) of Polytetrafluoroethylene at 300C with
the Calculated Values by Polynominal, Murnaghan, Birch, and Tait Equations of State

12-parameter

P, atm Expt'1 Polynominal Murnaghan Birch Tait

1000 0.4367 0.4397 0.4376 0.4373 0.4374

2000 0.4289 0.4308 0.4286 0.4284 0.4285

3000 0.4228 0.4219 0.4221 0.4221 0.4220

4000 0.4174 0.4181 0.4170 0.4171 0.4170

5000 0.4120 0.4134 0.4128 0.4130 0.4129

6000 0.3985 0.3981 0.3983 0.3982 0.3981

7000 0.3942 0.3921 0.3944 0.3944 0.3944

8000 0.3907 0.3905 0.3910 0.3910 0.3910

9000 0.3879 0.3876 0.3880 0.3880 0.3880

10000 0.3856 0.3855 0.3853 0. v?53 0.3853

14



equations of state. In the transition region (1000 to 5000 atmospheres), all the three

isothermal equations give more accurate predictions than does Weir's 12-parameter

polynomial. Even In the range 6000 to 10, 000 atmospheres where the polynomial fits the

data very well, these equations are still more accurate.

2The compression data (v/v ) of polyethylene and polystyrene up to 40,000 Kg/cm2, published

by Brldgman(10 ), are compared in Table 5 with values calculated from the generalized

Birch equation. The parameters used in the calculations were evaluated by fitting the data

of Hellwege et al. up to only 2000 Kg/cm"•. The agreement might have been better, if the

"room" temperature of Bridgman's experiment had been specified. In this calculation 20°C

has been used.

The derivatives of these equations yield smooth and reasonable values. The compressibility

of polyethylene at 20 0 C is calculated by rneanp of the Murnaghan equaticn and compared to

that obtained from graphical differentiation of the P-v isotherm and with the compressibility

calculated from the polynomial equation. This comparison is given in Figure 5.

15



Table 5. Comparison of Calculated (by Birch Eq.) V/V of Polyethylene, Polystyrene

up to 40, 000 Kgicn 2 with Bridgman s Experimental(1 0 ) Resuits

Pressure Polyethylene Polysty rene

p V/vv
(g/cm (calc.) (Expt'l) Dev. ('ale.) (Expt 1) Dev.

2500 0.9378 0.9447 0.7.4 0.9473 0.9591 1.23

5000 0.9025 0.9126 1.11 0.9125 0. 92'. 3 I 1.63

10000 0.8582 0.8681 1.14 0. 8656 0.8800 1.64

15000 0.8293 0. 6379 1.03 O. S334 0. 8481 1.73

20000 0.8078 0. 814t .86 0.8090 0.8244 1.87

25000 0.7907 0.796') 0.66 0.7893 0.8054 2.00

30000 0.7766 0. 7 806 0.51 0.7728 0.7894 2.10

35000 0.7646 0.7679 0.44 0. 7587 0. 7760 2.23

40nO0 0.7541 0. 7570 1. 39 .464 07641 2.32

1.6
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3. SPECIFIC HEATS OF HIGH POLYMERS UNDER HIGH PRESSURES

The thermodynamic expression for the variation of Cp with pressure and the relationship

between C and C are well known. They are given as,
P v

Cp(P) = OP (P=0) - T J v/• T) dP (6)

and

C (P) - C (P) = Tv o/1 (7)

where a, and 03 are the thermal expansion coefficient and the compressibility, respectively.

The quantitives P, T, CP, Cv, and v have the usual meanings. I"he thermal expansion

coefficient a and the second derivative of volume with respect to T for branched

polyethylene, polytetrafluoroethylene, and polychlorotrifluoroethylene can be obtained

(5)as a function of P frrnm the polynominal equations by Weir

(6)
The volumetric data reported by Hellwege et al. have only three significant figures.

Since the thermal expanison coefficient is in the order of 10 , it is difficult to obtain

reasonable values of i.his quantity (ýln v/b T)p and of ( 2 v/ý T2 ) . At the present

time, the specific heat of polystyrene and polymethyl methacrylate under high pressure

cannot be obtained from equations (6) and (7).

The specific heats of many high polymers have been measured under atmospheric

pressure. In Table 6 there are assembled the data sources, types of material, and

the range of measurements of several polymers which are of the most interest in this

work.

18!
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Table 6. Data Sources of Specific Heat (C p) f High Polymers under Atmospheric Pressure

Type of Temperat-ure
Polymer Polymer Range R.f

Polyethylene Linear and branched 900 to 4330K (11)

Polyethylene Annealed, Irawn, -20° to 2000C (12)
granular and sheet

Polyethylene Low pressure 530 to 145 0 C (13)

Polychloro- Quenched and 00 to 240. 80 C (14)

trifluoroethylene slow cooled

Polytetrafluoro- Powdered and quenched 3460 to 7250 K (15)

ethylene Powered and drawn -250 to 120 0 C (16)

Polytetrafluoro- Commercial -1300 to 80 0 C (17)

ethylene sheet sample

Polvmcthyl (Data by Sochava, et al) 100 to 3000K (18)

Methacr-late

Polyvinyl Alcohol (Data by Sochava, et al) 100 to 245 0 K (19)

Polystyrene Isotactic 00 to 310 0 K (20)

Polystyrene Atactic-annealed, 293 to 378.61 K (9)
as received 89.430 to 473. 140 K (9)

Isotactic-amorphous, 301.90 to 521.4 0 K (9)

anneale6 3050 to 526 0 K (9)

Polystyrene Atactic and isotactic -50 to 280 C (21)

Polyvinyl Chloride With 10, 20, 30(, plasticizer -300 to 80 0 C (17)

Polyvinyl Chloride Powdered GE L-38 -200 to 1200 C (22)
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The specific heats C p and Cv .rnder pressures up to 10, 000 atmospheres, have been

obtained for Nolyethylene, polychlorotrifluoroethylene, and polytetrafluoroethylene

from Weir's polynominals. They are presented graphically in Figures 6 through 12.

In Figures 6 and 7, the specific heat of polyethylene is plotted as a function of

temperature and as a function of pressure. Some errors in the values of the specific

volumes of polyethylene were found in Weir's data between I and 2000 atmospheres

and above 60 0 C. These errors have been corrected by comparison with the data of

Hellwege eb al. The material used by Weir was a brached type polyethylene which has

a melting point of about 110 0 C. The atmospheric specific heat C of this material has

been measured by Dole et al(I1) This data has been used in th,!I Cp (0) in Equation (7)

to obtain the C 's shown in Figures 6 and 7.

p

The effect of pressure on CpI i.e., T f (2 v/8 T2)p dP for polytetrafluoroethylene
0-4 -3

and polychlorotrifluoroethylene are in the order of 10 and 10 , respectively.

Compared to the magnitude of the specific heat itself, this effect is negligible.

The quantity (CP - Cv) of polytetrafluoroethylene is plotted as a function of temperature

in Figure 10. Two first order transitions have been reported between 10 and 40°C

and 1 and 6, 000 atmospheres. This transition is reflected in the (Cp - C v) values.

Above 6, 000 atmospheres (Cp - C ) becomes very small.

The quantity (C - Cv) for polychlorotrifluoroethylene (Kel-F) as a function of temperature

and of pressure is plotted in Figures 11 and 12, respectively. Figure 11 shows that

(Cp - C v) is linear in temperature up to 9, 000 atmospheres. In Figure 12, the three

isotherms cross each other twice, once between 3, 000 to 4,000 atmospheres and once
3

near 8 x 10 atmospheres. The one atmosphere curve does not show art effect of the

glass transition at 52 0 C and one atmosphere which has been confirmed by Hoffman and

(23)
Weeks
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4. THE .UIE-GRUNEISEN EQ*UATION OF STATE

The thermal energ" of crystalline materials consists of the vibrational energ" of atoms in

the lattice. The Grtineisen parameter can be expressed in terms of specific volume v and

the freouency ,. of the harmoniL.- oscillators,

"- (d In -,id In vi (8)

The Mie-Gridneisen equation of state :-ay be written as:

P--P =-(E- E) (9)
o 0

where P and E are pressure and energy of a reference state, and 7 is the GriineisenO O

parameter.

Differentiating P in Equation 9 with rtspect to E at constant volume and substituting

dE = C dT. - can be expressed in terms of experimental quantities as:

- = va/C 3 (10)
v

w•.here a and 13 are the therme! ex-pansion coefficient and the compressibility respectively.

From equations of state and thc- e.xerimnental data discussed above, 7 car. be easily calculated.

The 'alues of - for se~veral polivrers ahave been evaluated in Reference 1. Figures 13 and

14 present the Gr-iheisen parameter of Kel-F as functions of temperature and volume,

respectively. The volume dependence of this parameter is well known, but the temperature

dependence has not ;een cleaily establisheu. In the case of Kel-F in this limited temperature

range, the Griineisen parameter decreases significantly with temperature increase. Recently,

Barke:'(2 4 ) has concluded that the GrUneisen parameter of polymers is l 4 and the §',/dT > 0.
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Based on a simple model, Slater (25) has given an expression for the Grimneisen parameter as,

"= -2/3 - v ( 2 P/ý V2 )/2 (b P/ 6v)T (11)

This expression employs only the isothermal P-v property of a solid. This formula, as
2/3

modified by Dougdale and McDonald, contains derivatives of Pv2. It has recently been
(26)

generalized by Al'tshuler(, who gives

S= -(2/3-z/3) 2v (2 2/3 0P2 2z/3 (12)

Pv/3z/3 /- ),'6Pv v /)T

which includes the above two as special cases. The Slater theory corresonds to z 0, and

the Dougdale-McDonald theory corresponds to z = 1.

These formulas, which do not require calorimetric measurements, offer convenient means

to obtain the Grýineisen parameter from any one of the three isothermal equations of state that

have been fitted to the experimental data in this work. Based on Slater's theory, the

expressions for the Gruneisen parameter from each of the three equations of state are given

as follows:

Murnaghan Equation

S= (s - 1)/2 - 2,/3 (13)

Modified Birch Eauation

L(B + )(/ 1/B1 +v/ 1/13B ./

-2/3 - (1/213B') 4 2)(-/ (B' 1)/2] [(V/V - ' (4

or
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r = -2/3 + (1/4B') (P/A' + 1/4)1/2 + (B' + 2)/2B' (15)

Tait Equation

f = (V/V )/2A - 2/3 (16)

The meanings of the parameters s, A', B' and A have been defined in Equation 2, Equation

4 and Equation 6.

In Equation 13, T is dependent only on s, which incre-Lses with increasing temperature in

the cases of polymethyl methacrylate and polystyrene (Figure 1 and Figure 4). At lower

temperatures, remote from the melting zone, P is in the order of 4.

In Equations 14 and 15, the dependence of F on volume or pressure is explicit, while the
-1

dependence on temperature is through A' and B'. Since the first factor (2B') is increasing

with temperature (Figure 2), examination of the relative magnitudes of the terms in this

equation shows that the derivative d1/dT is positive for polymnethylmethacrylate.

From Equation 16, the temperature derivative of the Griineisen parameter is:

d'/dT = - (V/Vo) (dA/dT)/2A - [dv/dT - (v/v ) (dv /dT) (2AVo) (17)

If the Tait parameter A is independent of temperature, dF/dT > 0 at high pressures because

dv (P)/dT < dv (P = 0)/dT. If '\ is decreasing with increasing temperature, as in the case

of polymethylmethacrylate above 50 0 C (Figure 3), the first factor on the right-hand side of

Equation 17 is also positive. If A• 0.1 and dA/dT• [dv/dT - (v/v ) (dv /dT)], the first
0 0

term on the right-hand side of Equation 4-10 will be greater than the second term,

Consequently, d1/dT > 0.
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5. MELTING OF ORGANIC HIGH POLYMERS AT HIGH PRESSURES

The Simon equation has been used extensively to represent the melting temperature of

solids as a tunction of melting pressure:

0-p =a - 1 (18)
m m

where P (atmosphere) and T ( K) are the melting pressure and temperature respectively.m m

If P 0 = 1 is taken as reference pressure, then T 0 is the melting point of the solid at 1m m
atmosphere.

The melting temperature of polymers increase with pressure as is the case of other solids

On the other hand, the melting zone of high polymers covers a rather large temperature

range. The amorphous constituent softens gradually, and the crystallites of increasing size

melt at progressively higher temperatures.

The melting transition zone of polystyrene (atactic, ai -phous), polyvinyl chloride,

polymethyl methacrylate, and two types of polyethylene (high and low densities) has been
(6) 2investigated by Hellwege et al. under pressures up to 2000 Kg/cm . The melting of

several types of polyethylene under pressures up to 4, 000 atmospheres has been investigated
(27.3-Densuidbby Matsuoka 7). The melting of a type of high density polyethylene ha: been studied by

Osugi and Hara(28) un to 30. 000 atmospheres where the melting temperature is 400 C.

MeGeer and Du,,s(29) obtained data on the melting of Teflon under pressures up tc 615

atmospheres.

Based on these results, the parameLrrs for polymers in the Simon's equation have been

evaluated. These parameters are presented in Table 7. A list of the Simon constants for

solid elements and compounds has been given by Babb( 30 ). The constants for polymers

presented in Table 7 are comparable with those for some of the solids studied by Babb.
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Table 7. Parameteis of the Simon Equation for Polymers

a Pressure Range

Polymer (atm) c (atm)

Teflon 1086 3.329 1 to 615

Polystyrene 19961 0.5928 1 to 2000

Low Density 4369 3.261 1 to 4000

Polyethylene

High Density 6742 2.115 :. to 2000
Polyethylene

(marlex 9)

High Density 3100 4.5 1 to 30, 000*
Polyethylene

(Marlex 50)

Polyvinyl Chloride 18869 1.27 1 to 2000

(Hart) 9

Polymethyl 7526 2. 083 1 to 1500
Methacrylate

"* J. Osugi and K. Hara Rev. Phys. Chem.(Japan) 36, 28, 1966
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Salter h~s pointed out that the Simon constant c is related to the Grfneisen parameter by

the following equation:

c ( r + 1/6) ( F - 1/3)-1 1 
(1()

which would enable theoretical calculation of c if the Grtineisen parameter is known more

accurately.

(31)Recently, Kennedy' has discovered empirically that the melting temperature T is am

linear function of the isothermal compression (Av/v ) at normal temperature:

t (P) = t 0 (1 + kAv/vo), °C (20)
m In 0

In subsequent articles( 32 and 33) Kennedy et al. have shown that for the majority of solids

Equation 20 holds veny well. For a few solids, such as solid argon and methane, the

deviations observed might be attributable to quantum effects or the uncertainties in the

compression.

Gilvarry (34) and Vaidya and Gopal( 35) have derived the relations between the corstant k in

Equation 20 and the Grtineisen parameter F, and between k and the constant c in Simon

Equation:

k = 2 (F- 1/3) - (c- i)- (21)

The available melting data of polymers have been assembled to test the Kennedy's fusion

equation. Within the range of the available data, Equation 20 seems to be applicable to

polymers. The results for six polymers are plotted in Figure 15, and the constant k is

presented in Table 8. The compression data for polytetraf!1-oroethylene and low density

polyethylene ,,,ere based on the data by Weir(5). Both the melting and the compression

data of polystyrene, polyvinyl chloride: and polhimthyl methacrylate were based on the

data of Hellwege et al.
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I ible 8. Constants in the Kennedy Fusion Equation

Polymer k () Maximum

Polytetrafluoro- 26.78 325 0.0108
ethylene

Low Density 9.27 110 0.0829
Polyethyler~e

High Density 10.33 136 0.3276
Polyethylene
(Marlex 9)

Polystyrene 19.75 9.6* 0. 0441

Polyvinyl 11.02 71.5 0.0395
Chloride (Hart)

Polymethyl 11.02 108.1 0. 0319
Methacr-ylate I I

*Value obtained by extrapolation to I atmosphere
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By combining Equation 20 with the isothermal equations of state, the melting temperature

can be directly predicted. The melting temperature of high denlity polyethylene (Marlex 50)

measured by Osugi and Hara(2 8 ) at pressures up to 36, 000 atmosphea-es is compared with

the calculated melting temperature by means of Equatian 20 in Table 9. The compression

Av/v was calculated from the isothermal equations of state Equations 2, 3, and 6.

The constant k in Table 8, and the constants in these equations were determined for
2

pressures up to 2000 Kg/cm for Marlex 9 which is diflerent from Marlex 50 in the degree

of crystallinity and the number of methyl groups (CH 3 ) per 100 carbon atoms. Below 10, 000

atmospheres, all those equations yield values agreeing with the experimental data within 1

percent. Above 10, 000 atmospheres the difference between the calculated and experimen~tal

melting temperature is greater. Both the Birch and the Tait equations give values which

deviate from the experimental by less than 10 percent at 30, 000 atmospheres. The value

from the Muroaýjhan equation differs slightly more: 10.2 percent, at 30, 000 atmospheres.

38



Table 9. Comparisoni of Measured and Predicted Melting Temperature
of High Density P, - ylene by Means of Isothermal Equations of

Stpl'-. md Kennedy Fusion Law

T, K Predicted T, K
Pm, Atm (Measured) Birch Eq Murnaghan Eq. I')t ti

1 409 409 409 409

1,000 431 437 437 437

3,000 468 474 472 473

5,000 509 501 494 498

10,000 551 545 529 539

20,000 630 597 567 585

30,000 671 630 590 613
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6. SHOCK COMPRESS'ON OF HIGH POLYMERS

Shock compression is a means of obtaining semi- empirical equations of state for matter
under high pressures and high temperatures. Properties of matter under such conditions

are de'ermined by the interactions, and thermal vibrations of i~s component molecules, atoms,

ions, and the excitation of the electrons. Static compression under isothermal c17nditions

seive.3 to investigate the forces of interaction, and the thb: t-mal energy nt the prevailing

temperature. For a given initial state, the isotherm-il p "essure can be calcuiated for a

specified volume, v, b% use of the isothermal equations of state developed above. If the

pressuie due To temperature rise can be determinee, then the prediction of the shock

comrT-ssiLin curve, better nmnown as Hugoniot, is possible.

"In a -,eneral r,on-isctherxral comnpression,

dP = ( P '• - d%- P ,+ ( ', T ) d T (22)
v

wit'. use of the well tnoawn relations

P.- (T In v3T)(: In V4p).

Equation 6-i can be rcarrange] to give

-dPv(SP,'v) = -dv v n-' 1nv, ,T- d (2T)
T P

Integration of Eauation 2" will be easy if the thermal expansion coefficient c= (In vcT)
(1)

is assumed constant, i-, has been~ shown ,based on such an assumption of constant a, that
a non--isothermal MIuraghan Equation can be derived,
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P = (Bo/S) [(vo/v)S- 1]+ B (vo/V)5 a(T- T ) (24)0 0

where B and s are the parameters in the Murnaghan Equation of state and the other symbols0

have tde usual meanings. By equating the Rankine-Hugoniot Equation to the integrated

Liternal energy,

f E T T fV

dE J C + ET @P/6T) - P] dv
E T o

0 0

The Hugoniot pressure can be expressed as,

1) = P + [g (x)/C I [P v (1 - 1/x) - F (x)Mi F1 - v (1 - 1/x) g (x)/2C (25)
0 V 0 0 0 V

where P is the Hugomot pressure and P is the isothermal pressure at the same vcr'ume
H 0

ratios v /v. The other quantities are defined below•

X =v /V
0

s
g(x) = B c0 x

F -B v L(1 - s a T ) (x-- 1)/s (s- 1)- (1 - 1/x)/s]
Z0 0

Equation 25 is based on the Murnaghan Equation. The Birch and Tait Equations can also be

employed in such derivations, but the Murnaghar Equation gives the simplest expression for

The shock compression data for several vinyl polymers are available (36); however, except

for density, other characteristics of the polymers used in those experiments and the initial'
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conditions in the experiments are not knowr.. In order to use Equation 25, one must select

constants in the Murnaghan equation for the given material and given initial temperature of

the shock experiment.

It is stated (36), that the material used in the shock comp;iession of polychlorotrifluoroethylene

(Kel-F) has an initial density p = 2. 1, but the initial temperature of the experiment is not

given. For this density the specific volume is 0. 4762 cm 3/g. The data of Weir(5) and

Hoffman and Weeks( 2 3 ) indicate that this material has a degree of crystallinity of about 26

percent. Using the data in Reference 23 and Reference 5, degree of crystallinity is

calculated for a series of specific volumes. With this information, the parameters in the

Murnaghan Equation as functions of crystallinity can be plotted and extrapolated to the

degree of crystallinity nf the test sample. Thus, the Murnaghan parameters s and B are
0

ou-ined as -. 4 and 10,761 atmospheres, respectively.

In the case of plexiglas (it is assumed to be polymethylmethacrylate), the p given was 1. is
3 0

g9 c. c., corresponding to a specific volume of 0. 8475 cm ig. By use of the specific volume

(6)
as a function of temperature at one atmosphere reported by Hellwege et al. , it is estimated

that tljs p corrcsponds to a temperature of 42. 5 C (108. 5 F). From Fisure 1 the
0 2

parameters s and B for the Murnaghan Equation are found to be 8. 70 and 35,550 Kg/cm0

respectivwly.

In Reference 36, it is stated that the polyethylene used in a shock compression test has a

density of 0. 92 g/c. c. Three materials of the same density (0. 92 g/c. c. ) and differing

molecular weight, between 14, 000 and 38, 000 (deternined by viscosity), was used by
(10) 2

Bridgman for static compression to 40, 000 rg!cn; . The branched polyethylene used by

(5)0Weir has a density of 0. 918 g c. c. at 20 C. A high pressure polyethylene with a density

of 0. 918 g/c. c. at 20 0 C was also used by Hellwege et al. However, it is evident from

Figure 16 that the pressure versus v 0v curves for all static compression lie above that

for the shock compression test. For a given material, however, this situation is thermo-

dynamically impossiib•e. TIAs seems to indicate that a material of much higher compressibility
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has been used in the ýhock experiment, or the ambient temperature at the site of experiment

is much higher than the temperature at which the density was measured.
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7. DISCUSSION AND CONCLUSIONS

The results of our recent interest in the equations of state of high polymers has been reported.

Adoption of the semi-empirical equations of state for solids for use with polymers seems to

have a wide range of applicability. The results presented in this paper indicate that they

are capable of predicting the isothermal volumetric data with good accuracy to very high

pressures. They give smooth and reasonable values for the first and second derivatives.

The compressibility of polymers calculated from these equations are quite close to the

values obtained from graphically determined slopes and the values calculated from empirical

polynomial equations.

The ability of th'se equations to predict static data (Table 5) at high pressures much

beyond the original data range is quite impressive. The data calculated to 40, 000 Kg/cm2

in Table 5 were based on constants which were obtained from the data of Hellwege et al.

up to only 2000 Kg/cm2.

By use of the theory of Slater(25) or the generalized theory by Al'tshuler(2 6 ), the

Grtineisen parameters can be obtained from these equations. The Murnaghan Equation

yields Griineisen parameters dependent only on temperature; while the Tait and generalized

Birch equations both predict Grineisen parameters dependent on both volume and temperature.

The values thus predicted seem to possess the correct theoretical magnitude at normal

temperatures.

When combined with the Kennedy fusion law, these equations predict the melting temper-

atures of polyethylene (Taole 9) to within 10 percent at pressures mere Uhan fifteen times

the original pressure range.
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Under shock compression, the temperature is very high but the polymers remain solid

because of the high melting point under pressure. Normalization of the temperature scale

by the melting temperature may extend the range of applicability of the parameters in the

equations of state to the solid in this high temperature, high pressure region.

The range of applicability and the accuracy of these equations of state may be enhanced if

they are fitted to accurately measured compressibility or bulk modulus data rather than

specific volume data. As proposed by Anderson (2, 37) r &asurements of ultrasonic speed

in materials under high pressure is most suitable for obtaining accurate compressibility

E - (6in v/b P) I or bulk modulus - (2 P/a In v)T] data. The compressibility of polymers

has values in the order of 10 which cannot be obtained accurately from direct volumetric

measurements. Since the compressibility is the first derivative of (In v) with respect to P,

accurate values of specific volune can be obuined by integrating the compressibility data.

From such data, accurate val-' of thermal expansion coefficient of polymers, which is

in ti.a order of 10 can alsc obtained.

Guenther et al. (38) have meaoured the ultrasonic speed in polymers as a function of tem-

perature under atmospheric pressure. Zosad(3q) ncasured the ultrasonic speed in

polyvinylchloride at 1 atmosphere and 1000 atmospheres from 20 0 C to 140 0 C. If accurate

values of C are available, accurate values o- uompressibi1Ly under atmospheric pressurev

can be obt.ined as a function of temperature irow Reference (38). A more detailed

description and specification of the polymers and the ir~tial conditions of the experiment

other than just a statement of the density , ,udd be valuable for theoretical work.

The success o mpplying to polymers fYe sere; ,mnw :-al equations based on. finite strain

theory, may be attiibutaole to the increase in der ,e- of crystllinity in polymers under

high pressure. Although the Tait equation bas no tj., -)retical basis, it r-vertheless gives a

bulk modulus very close to the values calculated from ,he nther two equations. The Tait

Equation constant A was found to vary with temperature. This variation beeomes large
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when the melting point is approached (Figure 3). It is speculated that the Murnaghan

parameter, s, and the parameter a2 in the generalized Birch equation may also be nearly

unix ersal constants for a wide range of materials.

In shock compression, temperature rises with pressure. Degree of crystallinity of polymers

increases witb pressure( 3 '4 0 ) but decreases with increasing temperature(12' 23). At low

temperatures, the degree of crystallinity decreases very slowly with increasing temper-

ature. As the melting fcmnpe-ature is approached, the degree of crystallinity drops

rapidly to zero at the melting point. In this region, the rate of increasing crystallinity

produced by pressure may become insignificant in comparison to the rapid decrease of

crystallinity produced by temperature. This situation may account for the decrease in

slope of the Hugoniots at the highest shock pressures.
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NOMENCLATURE

A Tait Equation Parameter, Dimensionless.

A' Delined in Equation (4).

a Constant in the Simor Equation, Equation (18).

a 2  Corstant in the generalized EBrch Equation, Equation (3).

Constant in the Murnaghan Equation, Equatioo (2), atm.,
0 or Kg/cm 2 .

B Bulk modulus defined as -v (7p/)v) T; Constant in the
Tait Equation.

B' Defined in Equation ý4).

c Constant in the Simon Equation, Equation (18).

Cp Specific heat at constant pressure, cal/g, 0 K.

Cv Specific heat fit constant volume, cal/g, 0 K.

E Internal energy.

Eo Internal energy at a reference state.

F(x) Defined in Equation (25).
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g(x) Defined in Equation (25). 1

Ko Constant in the generalized Birch Equation, Equation (3),
atm., or Kg/cm 2 .

k Constant in the Kennedy fusion equation, Equation (20).

PH Hugoniot pressure, atm., Equation (25).

P0  Pressure of a reference state, a'm., Equation (9).

P Pressure, atm. 1*

P P Me!ting pressure, and reference melting pressure, usually 1 atm.

s Constant in the Murnaghan Equation, dimensionless.

T Temperature, K.

t Temperature, °C.

Tm, tin, T , t o Melting temperature, and reference melting temperature.
m m

To Reference temperature, OK.

v Specific volume, cm' /g, under pressure P.

v 0Initial specific volume, at 1 atm.
o4

x Defined as (v /V).

Z Defined ir. Equation (12).
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GREEK SYMBOLS

Sa Thcrmal expansion coefficient, defined as
()In v/;)W) ( °K)-I

-1 -1
Compressibility, defined as -v (A v/ PT atm

r' Grilneisen parameter defined in Equation (8) and
Equation (9).

v Frequency of harmonic oscillators, cps.

p Density at a reference temperature, To,

I
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