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abstract 

Due to the slower velocities and the transverse wave nature, 

microwave shear waves have interesting theoretical properties and 

important practical application. One of the difficulties for shear 

wave studies at microwave frequencies has been the problem of ef¬ 

ficient generation of microwave shear waves. Because of the polari¬ 

zation effect of shear waves, the parametric interaction of light and 

microwave shear waves in both isotropic and anisotropic crystals pro¬ 

vides potential for acoustic probing and device applications. 

Theoretical and experimental investigation of microwave shear waves in 

solids were conducted with emphasis on the efficient generation of micro- 

wave shear waves and on the theory and applications of the parametric 

interaction of microwave shear waves and light. 

for the generation of efficient microwave shear waves two schemes 

were used: mode conversion in a YAG converter, and surface excitation 

from lithium niobate (LiNbO^) rods and thin disk transducers. A parallel- 

piped YAG mode converter was used to demonstrate the scheme of efficient 

microwave shear wave generation, through which virtually the full effi¬ 

ciency available for longitudinal wave generation can be applied to shear 

waves. The generation and propagation of microwave acoustic waves in 

LiNbO^ crystals, where the large piezoelectric effect has to be included, 

was studied theoretically and experimentally. Experimental results of 

tne velocities, the direction of particle displacements and electro¬ 

mechanical coupling constants for each of the pxopagating modes along 

crystal axes were in good agreement with the calculated values based on 

published constants. The typical conversion loss from electromagnetic 

to acoustic energies for shear waves in an x-cut LiNbO^ disk transducer 

is 10 dB at 1 GHz. These efficient shear wave transducers make possible 

the study of the interaction of light and microwave shear waves in solids. 

In microwave frequencies, the interaction of light and microwave 

shear waves is in Bragg diffraction region. The theory of Bragg dif¬ 

fraction of light from shear waves predicts two important unique features. 
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The first is a 900 rotation of the polarization of the diffracted light, 

with respect to that of the incident light. The second is that the 

intensity of the diifracted light is a function of the polarization of 

the acoustic waves. Utilizing the unique characteristics of shear wave 

diffraction, we have used a laser as an optical probe to map the energy 

distribution of shear waves, to measure the attenuation, to estimate the 

mode conversion efficiency of a YAG mode converter, and to determine the 

reflection and transmission coefficients of shear wave bonds. We have 

also demonstrated the second feature of shear wave diffraction in 

measuring quantitatively the acoustic birefringence in a [llO] oriented 

YAG rod. This provided a technique to determine experimentally the 

orientation and ellipticity of shear waves generated from experimental 

transducers. 

There are two types of Bragg diffraction of light by acoustic waves 

in optically anisotropic media. The first type is identical with that 

in optically isotropic crystals, when the polarizations of the diffracted 

and the incident lights are the same. The second type requires an extra 

phase matching condition for the lights xn the optically anisotropic 

media when the polarization of the diffracted light differs from that of 

the incident light. Based on the second type of diffraction by a shear 

wave column of finite width in sapphire, we have demonstrated a scheme of 

continuous deflection of an optical beam through an angle of 4° by tuning 

the shear wave frequencies from 1.2 to 1.8 GHz. The system should be 

capable of resolving 1000 diffracted spots. The possible extension to 

two-dimensional deflection schemes will also be included. 
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CHAPTER I 

INTRODUCTION 

Physical acoustics at microwave frequencies have been shown to 

have cumulative interactions with carrier waves in semiconductors,^ 

with spin waves in ferrimagnetic materials2 and with light waves in 
7 

transparent crystals. Microwave acoustics include both longitudinal 

waves and shear waves. Longitudinal waves, also called compressive 

waves, have the particle motion along the direction of propagation; 

shear waves, also called transverse waves, have the particle motion 

normal to the direction of propagation. Beside these pure longitudinal 

or shear waves which propagate along certain pure mode axes in the 

crystals, there are quasi-longitudinal or quasi-shear waves where the 

particle motions are no longer parallel or normal to the directions of 

propagation. In this study we are concerned with the studies of micro- 

wave shear waves in solids. The emphasis will be on the generation of 

microwave shear waves, on the theory of Bragg diffraction of light by 

microwave shear waves, and on the applications of the shear wave dif¬ 

fraction on acoustic probing and laser beam deflection techniques. 

The advantages of shear waves over longitudinal waves come from 

the slower velocities and the transverse-wave nature of shear waves. 

For example, shear waves are preferable for delay line applications.1^ 

The polarization effect of shear waves provides potential device 

applications. 

Micowave shear waves, in spite of their interesting theoretical 

properties and important practical applications, have not received much 

attention. One of the difficulties of studying shear waves at microwave 

frequencies has been the problem of efficient generation. In Chapter II, 

several methods of generating efficient microwave shear waves will be 

discussed. The recently developed crystal in class (3m), lithium niobate 

(LiNbO^) single domain crystals, has been found to have unusually large 
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piezoelectric constants, especially for shear wave generation.^ 

Theoretical calculations of the velocities and the electromechanical 

coupling constants for three acoustic modes generated in the surfaces 

« 

of LiNbO^ crystals have been carried out (Section 2.3). Experimental 

results are shown to confirm tve theoretical predictions. An interesting 

integral delay line application using LiNbOj resonators will be given 

in Section 2.k. The low conversion loss of the thin disk transducers 

(Section 2.5) is one reason why experiments of shear wave diffraction 

of light are possible. In Section 2.6 a scheme of efficient microwave 

shear wave generation by a YAG mode converter will be discussed. 

In Chapter III the theory of Bragg diffraction of light by micro- 

wave shear waves will be given. Light diffraction by acoustic waves 

has been^studied extensively since Brillouin first predicted the effect 

in 1922. This phenomenon, Brillouin scattering, was originally used 

to determine the elastic constants'^ and to study thermal phonon distri¬ 

butions in various materials. The early work was done at low frequencies 

where Raman-Nath typ ^ of scattering dominates. In the range of acoustic 

wavelengths at microw re frequencies, the Brillouin scattering experi¬ 

ments are also called ragg diffraction of light by microwave acoustic 

waves because the situation is similar to the Bragg diffraction of x-rays 

by crystal lattices. The criterion of Bragg diffraction has been given 

by Willard.10 The condition for Bragg diffraction is XW > A2 (where X 

is the optical wavelength, W is the acoustic beam width and A is the 

acoustic wavelength). Acoustic Bragg diffraction of light is a parametric 

interaction process.11 The basic requirements are the conservation of 

energies (the frequencies) and the conservation of momenta (the wave 

vectors). Bragg diffraction of light by microwave longitudinal waves 

in solids has been studied extensively by Quate, et al.^ A comprehensive 

review of the principles and history of light diffraction by acoustic 

waves is given in their paper. 

In recent years with the invention of lasers as intense coherent 

light sources and the development of experimental techniques for gen¬ 

erating coherent acoustic waves at microwave frequencies, Brillouin 

scattering has found application in modulating,12 frequency shifting,1^ 

« 

« 
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and deflecting laser beams,^ and in studying the acoustic and photo¬ 

elastic properties of materials ^ Most of the work has, so far, 

utilized longitudinal waves. In Chapter III the theory of shear wave 

diffraction in cubic crystals predicts two unique features. The first 

is a 90° rotation of the polarization of the diffracted light with 

respect to that of the incident light. The second is that the intensity 

of the diffracted light is a function of the polarization of the acoustic 

waves. 

Utilizing the unique characteristics of shear wave diffraction, we 

have used a laser as an optical probe to map the energy distribution of 

shear waves,to measure the attenuation of shear waves, and to determine 

the reflection and transmission coefficients of shear wave bonds. The 

90° rotation in the polarization of the diffracted light has experi¬ 

mental advantages in that the diffracted light can be easily separated 

from the transmitted light and from the light scattered off the crystal 

surfaces, thereby substantially increasing the signal-to-noise ratio. 

We have also demonstrated the second feature of shear wave diffraction 

in measuring quantitatively the acoustic birefringence in s i. 110] oriented 

YAG rod. This provided a technique to determine experimentally the 

orientation and ellipticity of shear waves generated from experimental 

transducers. The experimental results are shown in Chapter IV. 

In Chapter V, a scheme of continuous deflection of laser beams based 

on the shear wave deflection in optically anisotropic media will be dis¬ 

cussed and demonstrated. There are two types of Bragg diffraction of 

light by acoustic waves in optically anisotropic media. The first type 

is identical with that in optically isotropic crystals, when the polari¬ 

zations of the diffracted and the incident lights are the same. The 

second type requires an extra phase matching condition for the lights 

in the optically anisotropic media when the polarization of the dif- 
17 

fracted light differs from that of the incident light. Dixon has 

reported on this type of diffraction in both quartz and sapphire. Based 

on the second type of diffraction by a shear wave column of finite width 

in sapphire, we have demonstrated a scheme of continuous deflection of 

an optical beam through an angle of b° by tuning the shear wave frequencies 

- 3 - 



4 

from 1.2 to 1.8 GHz. The system should be capable of resolving 1000 

diffracted spots. Compared with the corresponding devices using acoustic 

Bragg diffracted in isotropic crystals, it is found that the present 

scheme has improved the bandwidth capacity by a factor greater than 200. 

The possible extension to two-dimensional deflection schemes will also 

be included in Chapter V. 

4 
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CHAPTER II 

GENERATION OF MICROWAVE SHEAR WAVES IN SOLIDS 

2.1 INTRODUCTION 

In all devices and applications of microwave acoustic waves at 

present, one of the largest practical difficulties is the design and 

fabrication of efficient transducers to convert microwave electro¬ 

magnetic energy into microvave acoustic energy and vice versa. For 

longitudinal acoustic wave transducers, part of the difficulty has 

been solved by recent extensive studies of vacuum bonding and thin 

film deposition techniques. A zinc oxide (ZnO) disk transducer vacuum 

bonded by indium to a delay medium18 can be excited in odd harmonics 

in a re-entrant cavity and have a conversion loss from electromagnetic 

energy to acoustic energy below 10 dB. Also thin film techniques of 

depositing sirgle layer or multiple layers of cadmium sulphide (CdS)1^ 

or ZnO film have been used satisfactorily in fabricating efficient 

wide band transducers for generating microwave longitudinal waves. 

For transverse aves the difficulty of fabricating efficient trans¬ 

ducers has always been severe. In this chapter we are concerned with 

schemes of fabricating efficient transverse acoustic wave transducers 

at microwave frequencies and the measurements and calculations of the 

conversion efficiencies from electromagnetic to acoustic energies of 

these transducers. 

The recently developed piezoelectric crystals of class (3m) such 

as lithium niobate and lithium tantalate have been found to have unusually 

large piezoelectric constants. 1 These materials are very important for 

transducer applications. A theory for the generation and propagation of 

the acoustic waves along the crystal axes in these crystals is given in 

Section 2.2. The usual assumption for small piezoelectric effect as in 

quartz crystals is no longer valid for LiNb03 or LiTaC>3 crystals which 

- 5 - 



have larger piezoelectric constants. The effect of the large piezo¬ 

electric coupling on the velocities and the excitation are included in 

the theory. The expressions for the electromechanical coupling constants 

and the conversion efficiencies for the acoustic waves generated in the 

LiNbO^ crystal will be derived. The numerical values calculated on the 

published constants will be given to check the measured values. In 

Section 2.4 an integral delay line application of single surface excitation 

in LiNb03 resonators will be discussed. Preliminary measured values for 

the conversion efficiencies will be given to compare with the predicted 

values. In Section 2.5 experimental results on conversion efficiencies 

for the acoustic waves generated in LiNb03 disk transducer will be given. 

Finally in Section 2.6 a method of efficient conversion from longitudinal 

acoustic waves to shear waves in YAG by surface conversion at an inclined 

surface will be included. Using this process, existing efficient longi¬ 

tudinal wave transducers are applicable to shear wave generation. 

2.2 GENERATION AND PROPAGATION OF MICROWAVE ACOUSTIC WAVES IN PIEZO- 

EIECTRIC CRYSTAIS 

Piezoelectric crystals and ceramics are among the principal gen¬ 

erators and detectors of microwave acoustic waves. Jacobsen22 has 

summarized the piezoelectric effects and examined the generation, 

detection and propagation of microwave acoustic waves in piezoelectric 

media, especially in quartz where the piezoelectric effect is small. 

In the transducer application of the piezoelectric crystals at micro- 

wave frequencies, the crystal is usually operating in a form of thin 

films, > thin plates2-3 or single surfaces.2^ Tiersten25 has rigorously 

calculated resonant frequencies of the steady-state thickness vibrations 

of a homogeneous anisotropic infinite plate with infinite plated electrodes 

on both surfaces. No restriction on the relative magnitudes of the piezo¬ 

electric, elastic, or dielectric constants is imposed in Tiersten's analysis. 

We are interested in the generation and propagation of the microwave acoustic 

waves in materials with high piezoelectric constants such as recently 

developed LiNb03 where the usual weak piezoelectricity assumption26 may 

not be valid. In the following analysis, Tiersten's approach will be 



extendec solve questions concerning the generation and propagation 

of acous„_c waves in media with large piezoelectric constants. 

The linear piezoelectric relations which describe the elastic and 

electric properties in a piezoelectric crystal are 

(2.1a) 

D 
(2.1b) 

where C? is the 
ijgh is the stiffness tensor component (elastic constants) for 

electric field, epiJ is the component of the piezoelectric constant electric field 

stress tensor, €qp is the dielectric permittivity tensor components 

for constant strain condition and Sgh is the component of the strai 

tensor. In terms of particle displacement US is defined as 

The indices in (2.1) refer to an orthogonal coordinate system, the axes 

of which may be oriented arbitrarily relative to the crystal axes. The 

tensor index sum rule is implicit in writing Eq. (2.1) and 

6# h, q, p = i, 2, 3 . it should be noted that E is the total 

electric field in the piezoelectric medium including the external applied 

fieid (Ea)p and the internal induced field, (e.A , while S is 

the total strain in the crystal. P gh 

Since we are concerned with the elastic waves propagating in the 

medium, the system of equations governing the behavior of the piezo¬ 

electric crystal include the stress equation of motion 



and Maxwell's equations which describe electric fields in the medium, 

in addition to the linear piezoelectric relations as shown in (2.1). 

In terms of matrix notation, in which the double subscript ij 

(i,J » 1, 2, 3) is represented by single subscript m (m » 1, 2 , ...6) 

for symmetrical tensors, Eqs. (2.1) become 

T “ S - e E m mn n mp p 

D_ « e„ S + < E 
q qn n qp p 

(m,n - 1, 2, 3, ...6) 

(2.4a) 

(2.4b) 

(p, q - l, 2, 3) 

where Tm and Sn are elements of 1x6 matrices [t] and [s] for 

stress and strain; and E^ are elements of 1x3 matrices D and 

I for electric displacement and electric field; (F . e and 
T¡t mnc qn 

are elements of 6 x 6 matrices [(T] , [e] and [c5] for elastic 

constant, piezoelectric constant and dielectric constant. The convenient 

matrix manipulation can then be adopted in the calculation. Eliminating 
Ep in 3qs. (2.4) we have 

m 
q "1 

C S - e [ea] D mn n mp pq q (2.5a) 

with 

3* + e [cS] e mn mp pq qn 

-1 

(m,n * 1, 2, ... 6 ) 

(P,q - 1, 2, 3 ) 

(2.5b) 

• 8 - 



r Si *** S 
where l€ ] is the inverse of matrix [e ] . The notation [A] 

denotes the scalar pq element of the tensor [a]"^ . 

-1 
pq 

Now consider a special case where plane waves propagate along one 

of the crystal axes, for example the x-axis which coincides with the 

x^ coordinate. There is no variation in the transverse plane under 

the plane wa,re assumption. The derivatives with respect to Xg and 

x^ are zero so that S . reduces to 
j gh 

Equations (2.1) become 

Equations (2.14-) remain valid for the plane waves propagating along the 

x1-axis by letting m,n = 1, 6, 5 and p,q = 1, 2, 3 . 

By rewriting Eqs. (2.5) for the special case (m,n = 1, 6, 5) 

in terms of tensor notation, we have 

1 

(2.7a) 

with 

(2.7b) 

- 9 - 



Combining Eq. (2.7a) with the stress equation of motion, we obtain 

equation for the particle displacement U propagating along 
the x-^axis , 1 

ò2U 

àt 
- C 

-1 

leUP(e)MV • (2-8) 

The term in the right hand side of Eq. (2.8) le recognized ae the somne 

term for the wave equation. 

In general, the electric displacement D in a piezoelectric 

medium can be written as ^ 

where E is 
a 

field. Let 

Dq “ e,glSgl + (Ea ♦ Elnd) P (2.9) 

the applied field and Elnd is the internal induced 

Dq = (Vq + ^ind^q » (2.10a) 

where 

\ 

B €qp(Ea)p (2.10b) 

is the electric displacement due to the applied electric fields in a 

dielectric medium with no piezoelectric effect; 

e<isisgi + €S (E ) 
qpv ind'p (2.10c) 



is the Induced displacenent due to the strain waves S 

electric fields E rial*» \ . 
ind * üsln« (2.10a), the drivii« 

and the Induced 

tens in Bq, (2.8) 
electric fields E 

becomes 

d -1 
' teup(Vp+ Ws)p, 

* schematic vuutlon of the above driviog ter. a. . functlon ot x 

half Infinite plesoelectric crystal with the surface at x 

»1er the Influence of spatl^ly consta .ppnrt ,UcttU fi.J1 , 

is sh»n in fig. 2.1(h). At the surface x, - 0 there is . deiu * 

unction due to the discontinuity of the first term . (e ) . 

is the surface „citation term. Ineid, the crystal the î.coM ter, due 

^ ind^q ' vhlch 1# •Inusoidal function with the saw acoustic wave- 

length, aleo contribute, to the generation of the acoustic «ves. this 

S the volle* «Citation term. In case there is no free charge inside 

the piezoelectric crystals, we have 

7. (D . o 
dx 

The voluw excitation term cows from 

d à 
— <DIn4)2 or _ (Blni,3 

1 

Vhich need not he tero. 0.,.11, the surface excitation ter. 1. much 

strong«- than the volume excitation term in the normal pi.aoelectrio 

a. in the following calculation for the generation of acoustic 

vaves m UlfcOj crystals, the contribution fro. the vol«, «citation 

- 11 - 
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w W^m'q y* X1 

(b) — t.lltl(c8)¿ B 1 Y. X. . up pq q 1 
1 

FIO. 2.1—Spatial variation of source term in Eq. (2.8). 
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term will be neglected, i.e, 

Dq 3 (\)q • (2.10d) 

The Justification for the assumption will be discussed later. 

The solution of the particle displacement for acoustic waves 

propagating along the x^axic can be obtained from the following 

equation with proper boundary conditions; 

0^' Wÿ ' ‘‘WVp1 • ^ 

I*t the plane wave solution of the particle displacement be 

U 
i 

JtVVi) 
A.e (2.12) 

where o)s is the frequency and kg is the wave number. The dispersion 

relation and the velocities of the waves can be determined by substituting 

(2.12) into the homogeneous wave equation 

P C (2.13) 

After the substitution, Eq. (2.13) becomes 



where 

2 
üj_ 

and 6ig is the Kronecker delta. For a nontrivial solution of (2.14), 

the determinant of the coefficients of must vanish, 

^Cil«l " C 6igl “ 0 (2.15) 

Equation (2.15) is a cubic equation in C and gives three real positive 

roots which determine the velocities of the three waves propagating along 

The determination of the amplitudes of A± for each wave requires 

the knowledge of the source terms and the specification of the boundary 

conditions. The boundary conditions at the surface x1 = 0 include 

both the mechanical and electrical conditions. Under the same assumptio: 

of Eq. (2.10d), the displacement vector at the surface x = 0 is given 
by 1 

(2.16) 

where (Ea)p are the components of the applied electric fields. Then 

another boundary condition, that the surface at x1 » 0 is traction 

free, requires that 

1 
(2.17) 

from Eqs. (2.7a) and (2.16). It is noted that 

elastic constants given by Eq. (2.7b). 
Cilgl is the 8tlff‘ene<l 
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The usual weak piezoelectric assumption in quartz is that the 

piezoelectric constants e^j are so small that elastic constants 

in quartz are not stiffened by eplj . The characteristics of the 

medium are not affected by the small piezoelectricity. The excitation 

of the acoustic waves in the weak piezoeL ctric medium is on the surface 

of the crystal only. The present theory is extended to include the 

effect of the medium (characterized by the elastic constants) stiffened 

by the large piezoelectric constants, while the excitation of the 

acoustic waves is still on the surface of the crystal. The bulk effect 

of ^citation is assumed to be small and negligible. The assumption, 

that the volume excitation in LiNbC crystals can be neglected, will be 

Justified in the next section. 

2.3 SURFACE GENERATION CF MICROWAVE ACOUSTIC WAVES IN CRYSTALS OF 

CIASS (3m) 

« 

The recently developed single domain crystals in class (3m) such 

as lithium niobate (LiNbO,) and lithium tantalate have been found to 
j 27 

I have unusual elastic and optical properties. 1 The applications of 

28 
these materials in studies of nonlinear optics and of microwave 

29 
acoustics have become increasingly important. We are interested in 

the generation and propagation of microwave acoustic waves in these 

crystals. In Section 2.3.1 general expressions for the velocities and 

electromechanical coupling constants will be derived. Numerical values 

based on the measured values of elastic piezoelectric and dielectric 
21 

constants by Warner and Ohoe and experimental results will be given 

in Section 2.3.2. 

2.3.1 Theory 

In this section the generation and propagation of microwave acoustic 

waves propagating along the three principal crystal axes in half infinite 

piezoelectric crystals of class (3m) will be considered. The particle 

displacement for shear waves propagating along the x1 or Xg axes in 

an anisotropic crystal of class (3m) is found to be polarized with an 

angle with respect to the crystal axes. We will determine the velocities 

- 15 - 



and the particle displacement polarizations for the normal modes which 

propagate along crystal axes. Conversioi efficiencies for the excitation 

of normal modes at a single surface in a half infinite crystal of class 

(3m), and the electromechanical coupling constants for the normal modes, 

will also be discussed. When the excitation occurs at a single surface, 

acoustic resonances are not involved. Both theoretical discussion and 

experimental results for the excitation at a single surface in LiNbOo 

crystals(class 3m) will be included in this section. Experiments in¬ 

volving acoustic generation in a thin disk transducer, in which acoustic 

resonance does take a part, will be treated in Section 2.5. 

The single surface excitatio.. and propagation of the normal modes 

in an x^cut LiNbO^ rod will be discussed in detail as an example. 

It is customary in this kind of application to mount the crystal 

in a re-entrant cavity as shown in Fig. 2.2. The re-entrant cavity 

provides a high Q resonant circuit at microwave frequencies so that 

relatively high electric fields can be achieved in the surface of the * 

crystal with modest input power. The cross section of the crystal 

(5 X 5 mm) is much larger than the acoustic wavelength (in the order 

of 5n) so that the situation can be approximated to be a half infinite * 

piezoelectric crystal with a traction free surface at = 0 . 

The solution for the particle displacements and the velocities for 

the waves propagating along the x^axis in LiNbO-j can be obtained from 

Eq. (2.11) with the boundary condition of (2.17). The source term in 

the right hand side of Eq. (2.11) contains only the surface excitation 

at x1 = 0 under the assumption given in Eq. (2.10d), The internal 

source due to the nonzero values of âD2/àx1 and âD3/âx1 is 

assumpted to be negligible. 

The Justification of the assumption given in Eq. (2.10d) for 

LiNbO^ crystals comes from the experimental results. Assuming that 

all the strain waves generated in the LiNb03 crystal contribute to the 

induced displacement Dind in the crystal, it can be shown that the 

- 16 - 



•Electric field configuration in the surface of a crystal 
mounted on a re-entrant cavity. 



ratio of the oaxi«*, posslble t0 ^ ls glyen by ^ 

*»• (2.33)] 

(!¿2á\ ./liehyf _ 

^ Da I \<>¿J a K2 i- JL 
Pgb pgh A 

gh W0 

(2.18a) 

'o"* ^pgh is the inversion efficiency for S excited by (E ) ; 

Pgh is the electromechanical coupling constant for S ; A th< 

wavelength of Sgh ; Qq iS the cavity Qq ; and t is the effective 

thickness of the crystal. As shown in Table I, which will be discussed 

later, the typical values for a 13 dB conversion loss transducer, 

UPgh = °-05 > %h “ 0.446 , Qn = 1200 
and Agh = 5 x 10 

-4 
give 

/D. , f 
= 0.125 t 

\ B. I (2.l8b) 

sually the effective thickness t is less than 0.5 cm. Therefore, the 

maximum possible induced displacement Dlnd is i„ order of 0.25 D _ 

ctually the induced displacement inside the crystal will be much sialle 

than the «ximum possible due to the balance of induced electric 

* “ Eind • Under the »»re assumption that the internal source is 

negligible, Eis. (2.11) to (2.17) are directly applicable in the cal¬ 

culations for LlNbOj crystals. Por x - cut Mho crystals, E,. (2.14 
becomes -3 ' 

C11 “ c 

C66 " C 

'65 

'65 

c55-c 

(2.19a) 
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Ü!*»il*l 

where 

2 
aS 

C = P -| 
k s 

For a nontrivial solution of (2.19a), the determinant of the coefficients 

of the Ak must be ¿ero: 

C11 - C 

Cv - C 
I'D 

'65 

'65 

c55-c 

0 . (2.19b) 

The velocities of tne three acoustic waves are determined by the three 

solutions of (2.19b). 

The velocities of the three acoustic waves are given by 

1, 2, 3) (2.19c) 

where 

cM 

cW 

c(3) 

(2.20a) 

(2.20b) 

, (2.20c) 

and p is the density of the crystal. The amplitude ratios of the 

acoustic vavcs can be found from Eq. (2.19a); for the wave with velocity 
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,(1) v' ' , which is a longitudinal wave propagating along the x1 - axis, 

we have 

(*!*’ ■ 
.« . 

(2¾ 
for the v' 7 wave, 

“ ^1 s 0 : oj ¿ (2. 21) 

(*i2) ! 42) ■■ a32>) = (° : : 1 : ß (2) ) (2.22a) 

with 

ß 
(2) 

.(2) . 
'66 

'65 

(3¾ 
and for the v' 7 wave, 

(2.22b) 

: Ap) : Ap^j - : ß^3^ : ij (2.23a) 

with 

ß 

p(3) . 

(3) . I_Ü2 

°65 

(2.23b) 

In general, we need all three acoustic waves to satisfy the boundary 

conditions. The total particle displacements for all three acoustic waves 

(omit the e^ü^t term) are 

01 . A*1’ . J - 1 (2.24a) 

» 

f 
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and 

Ur a£2) e 
-Ik^x / \ -1k^^x 
J S 1 + e(3) A<3) e J s 1 (2.2ifb) 

Uo = 
(2) Í3) 

p(2j a(2) e^s *1 + a(3) e-Jks X1 
. (2.24c) 

Substituting Eqs. (2.24a), (2.24b), and (2.24c) into Eq. (2.17) gives 

the solutions for the amplitudes of the particle displacements: 

s C11 

(2.25a) 

(2.25b) 

J(E*V F' Tür F- 
,(3) , -“Vp p(3) (2.25c) 

where 

,(2) = ^ " ^1) ^¡rçnrr^üTT (2.26a) 

,(3) , (¾1¾ * P(2)c56’ - S6tc55g(2) " %}} 
[c55 C66 - =561 [1 - ,el3,) 

(2.26b) 



and 

¢,(2)^2) „ .(2) . .(3) (3) .(3) 
3 ßw/ A (2.27) 

It should be noticed that the particle displacements of the two 

shear waves are coupled together. For the v(2)shear mode, the resultant 

particle displacement is 

jtagt - xj 

(2.28) 

and for the shear mode ) 

(2.29) 

where Xg and x^ are unit vectors. 

The acoustic power density for each acoustic wave generated in the 

interface at x^ ■ 0 is given by 

1 ¢(1) v(i) 
(2.30) 

(i “ 1, 2, 3) 

where ^ is one of the solutions of Eq. (2.19a) and v^ is the 

velocity of one of the three acoustic modes. The conversion efficiency 

from the electromagnetic to acoustic energies is defined as the ratio 

of the acoustic power of a particular acoustic mode generated in the 
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crystal to the Input electromagnetic power into the crystal. 

Pin is given by 

oW 

pln = - (2-31) 

where Qq is the unloaded Q of the cavity. Under the critical couplirg 

condition, QQ is equal to Qext which determines the amount of input 

power to the crystal. The electric energy W is stored in the crystal 

within an effective volume V , 

U (2.32) 

The acoustic power generated for the v^ acoustic mode is given by 

Eq* (2.30). Therefore the conversion efficiency of the acoustic waves 

propagating along the crystal axis is found to be 

2nV 
(2.33) 

where is the electromechanical coupling constant, iS the 

wavelength of the acoustic wave and A is the cross section of the 

acoustic beam. 

The electromechanical coupling constants for the three 

acoustic waves are found to be: 

I *wcn 
(2.34) 
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and 

4 C(2) 
— [Ff)]2{[ß(2)]2+1) 
€PP 

(2.35) 

4 - ? ^3)i Cß(3))2 
€PP 

where the suscripta 1, 2, 3 for and (l), (2), (3) in above 

equations indicate the longitudinal wave with the velocity v^ , 

the shear wave the velocity v^ ^ and the second shear wave v^^ , 
respectively; fJ2^ and F^ are given in Eqs. (2.26a,b); and 

ß(3) are given in Eqs. (2.22b) and (2.23b); and p is the direction 

of the applied electric field at the interface xx = 0 . 

For the caaes that plane acoustic waves propagate along the Xg - 

axis (y-axis) in y-cut crystals, similar arguments as those for the cases 

of a x-cut crystal hold. The velocities of the three acoustic modes for 

are given by 

(2.37) 

the particle displacement ^ " M2) 

+ 0 , (2.36) 

where 

(2.38a) 
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and 

.(2) . 1 
I ( (C22 + CW) + -^22 - Ck02 + 4 41} (2*38b) 

,(3) 
= (C22 + C1|4^ " (C22 " C41+)2 + ^ C2 ^ 2U } . '2.38c) 

The amplitude ratios of the particle displacement for each mode are 

found to be 

for v^1) mode: 

.f>). (, 

v(3> mode: : A^ : A^j = 

for v' ' mode: A 

for 

(2) . *(2) 
ß 

ß (3) 

oj (2.39) 

(2)j 

(2.40) 

’ 

(a.U) 
where 

ß (2) 
.(2) . 

'22 
(2.4?a) 

,(3) 

'24 

C^3^ - C 44 
(2.42b) 

'24 

It is noticed that, from Eqs. (2.39), (2.4o), and (2.4l), the 

mode is a pure shear mode with a particle motion along the - axis 

while propagating along the x« - axis; the mode is a quasi¬ 

longitudinal wave and the y(3) mode is a quasi shear wave mode. 

- 25 - 
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are found to be The amplitudes of the A 
J 

, 
Ji) , 
ks c66 

(2.1*3) 

(2) JtVp 12) 

75PFP 
(2.44) 

.P) . SÍEF(3) 
örFP (2.45) 

where 

F (2) „ (ep2 tc24e(3> ♦ C441 • S4 [c22g(3) t Cgu1) 

tC22 °44 -(¾)^ U - ß^V3)) 
(2.46) 

.(3) _ {*»4 1C22 + ^21¾) - [0^ + 

P (¾ Ou, - (c?t)^ U - ¿Wh- 1 (2-47 

The expression for the particle displacement, the acoustic power 

generated, the conversion efficiency and the electromechanical coupling 

constant for the acoustic mode propagating along the x2 - axis are 

identical with the expressions in Eqs. (2.28), to (2.36) with F^2^ 
and Fp ' given by Eqs. (2.46) and (2.47). P 

For the case that the acoustic waves are generated at the surface 

at x3 = 0 and propagate along the - axis of the crystal, it is 

easier to obtain the solutions for the particle displacements since the 

three acoustic waves are not coupled to each other in this case. It is 
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.. -'ll I 

found that the velocities of the three waves are determined by the 

three solutions df 

0 

0 

0 0 

. (2.48) 

The resultant particle displacements for these waves are 

for v^1^ , (Ap-) :0:0] 

for v^2) , [o ; Ag2) : 0] 

forv(3>, (0 : 0 : A^] 

where 

j(Ea>p V3 

S c55 

(2.49) 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

J<Ea>0 en3 
c ^ 

s c33 

(2.5^) 
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The electromechanical coupling constants are found to be 

(2.55) 

(2.56) 

(2.57) 

2,3*2 Numerical and Experimental Results 

The elastic, piezoelectric* and dielectric constants of LiNbOo have 

recently been measured by Warner and Onoe.21 Based on these measured values 

(Table la), ve calculated in Table lb the values of velocities, the direction 

of particle displacement and the electromechanical coupling constants for 

the possible waves propagating along the crystal axes with all the con¬ 

figurations of the excitation electric fields as discussed in Section 2.3.1. 

The calculated values for the velocities have two columns as shown 

in Table I. The velocities in the first column are calculated based on 

the stiffened elastic constants, given by Eq. (2.5b), while the velocities 

in the second column are calculated with the unstiffened constant, 0e . 

The particle displacement direction given in direction cosines and electro¬ 

mechanical coupling constants are calculated using the equations 

derived in the previous section. Also shown in Table I are the measured 

values of velocities. The velocities are measured by the usual pulse 

echo technique 0 and Bragg diffraction technique. 

In the pulse echo measurement the oriented LiNbOj crystals (x-cut, 

y-cut or z-cut) are mounted in a re-entrant cavity as shown in Fig. 2.2. 

The acoustic waves generated in the end surface of the crystal depend on 

the electric field configuration at the surface of the crystal In Fig. 2.2, 

the electric field in the surface of the center post is normal to 

- 28 - 



Table I(a) 

Constants of Lithium Niobate21 

Density (kg/m2) p = 4.7 x 103 
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the surf ¿re while there are tangential fiemas ir. tne circulai gap between 

the center post smd the gap of the cavity. Tne velocities are measured 

in the usual way by measuring the round trip times between delay echoes 

of each, acoustic wave in the crystal. These values are listed in the 

first column of the measured veloci ies. The values in the second 

column of the measured velocities are measured by Bragg diffraction 

technique; in Chapter TV we discuss the measurement technique. It 

will be anowri that the position of the diffracted Light spot critically 

depends or the Bragg condition 

X 

sin 0. — f 

B 2v 
s 

which is related to the velocities of the acoustic waves. By measuring 

the Bragg angle we can determine accurately the velocity of the 

wave. Also the optical probing technique provides a direct observation 

of the acoustic energy distributions of the acoustic waves generated by 

the applied electric fields. We will discuss the optical probing in 

detail in Section 4.3 The measured values of the velocities are shown 

in column 3 (pulse echo measurement) and column 4 (Bragg diffraction 

technique). 

It is noted that the measured velocities for tne waves excited by 

the normal fields agree satisfactorily with the calculated values in 

column 1 (tne medium is piezoe.iectri~aLly stiffened) and the measured 

velocities for the waves excited ty tne parallel fields check with the 

calculatel values in column 2 (the meal urn is piezoeiectrically unstiffenedj. 

These have rot been explained satisfactorily yet. Tne study of the parallel 

field excitation of acoustic waves in LiNbO, is still underway. 

The electromechanical coupling constants are related to the 

conversion efficiencies^ widen can be easily measured experimentally by 

pulse echo measurement. The conversion efficiencies aie shown in (2.33) 

as a function of , , A , and the effective volume V of 

the stored electric energy in the cavity and the crystal. The typical 

- 31 - 



value of cavity Qq is 1200. The cross section A of the acoustic 

beam car. be determined by a laser probe which will be discussed in 

Section 4.3. For normal field excitation in a re-entrant cavity, the 

A is found to be equal to the cross section of the center post. 

Unfortunately there is no easy way to determine accurately the effective 

volume V of the stored energy. However, the ratio of conversion 

efficiencies of two acoustic modes that both are excited by normal fields 

in the re-entrant cavity at the same frequency will be independent of 

A/V . From Eq. (2.33), the ratio of the conversion efficiencies for 

the acoustic wetves at the same frequency is 

,(i) k2 v(i) 

73T “ • (2-58) 
J 

We have measured the conversion efficiencies for the waves excited 

by the normal fields in a re-entrant cavity by pulse echo measurement. 

The measured conversion efficiencies are listed in Table I. If we assign 

the measured value -10 dB for the shear waves being excited by E1 and 

propagating along the x^ - axis to be equal to the calculated conversion 

efficiency, all the other calculated values [from Eq. (2.58)) of the con¬ 

version efficiencies for other waves are within 1 dB of the measured 

values as shown in Table I. Based on these values, the filling factor 

V/A is found to be 0.45 cm from Eq. (2.33), which is a reasonable 

value for a (5 X 5 X 10 am) crystal mounted in a re-entrant cavity 
with A = 60 mils center post. 

2.4 INTEGRAL DEIAY LINES USING DIEIECTRIC RESONATORS 

The high Q cavity used in Section 2.3.2 as shown in Fig. 2.2 is 

to step up the electric fields and to increase the conversion efficiency 

for the generation of acoustic waves in piezoelectric media. The function 

of a metal cavity can be replaced by a dielectric resonator.31 In this 

section the scheme of using a dielectric resonator to increase the electric 

field and excite acoustic waves in the surface of a piezoelectric medium 

will be discussed. Preliminary experimental results will be shown to 

confirm the theoretical predictions. 
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2.4.1 Theory 

Recently developed single domain crystals of LiNbO^ have unusually 

large piezoelectric constants e . In audition to this, LiNbO- has 
^ QO ^ 

relatively high dielectric constants and smalt loss tangent, and thus 
33 can be used to construct high Q dielectric resonators. The resonant 

frequencies are determined by the dimensions of the resonators. When 

the resonators are coupled to electromagnetic waves in a waveguide or 

coax line, the field configurations in the resonators can be determined. 

Usually the lower order modes in the resonators are used. For a rectangular 

parallelpiped the lowest mode TEjjq i'03' one particular crystalline 

orientation is shown in Fig. 2.3a. The rf electric field encircles the 

direction of the magnetic field, which is chosen to coincide with the 

axis (c axis) of the (3m) crystal. The electric field has components 

tangent to the four boundary surfaces which are parallel to the direction 

. of the magnetic field. 

If the above resonator is cut into two halves and mounted on a metallic 

surface as in Fig. 2.4a then, because of the mirror effect of the metallic 

* surface upon the electromagnetic field, the resonant frequency of the half 

resonator remains the same as that of the original whole resonator. How¬ 

ever, the electric field in the bottom surface is now normal to the surface. 

A typical value of Qq is about 3000 for the whole resonators. For half 

resonators, the is lower, about 2000, because of the additional rf 

loss in the metallic base. 

The large piezoelectric constants and the electrical and acoustic 

Q of the LilibO^ resonators make it possible in principle to efficiently 

generate acoustic waves at the surface of the resonators at high micro- 

wave frequencies. The acoustic waves can then propagate through the 

resonators as delay media and recon\|ert to electromagnetic waves at the 

surfaces. 

The generation of the microwave acoustic waves in the surfece of 

* the resonators is due to the surface excitation as discussed in Section 

2.3. For half resonators, the excitation fields are normal to the 

surface, while the whole resonators have parallel field excitations 

* where the electric fields are tangent to the surface. The field 
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î 
H 

Dimensions 

a = 0.H90" 
b » O.4573» 
c = 0.3254" 

FIG. 2.3(a)—Field configuration in a whole LiNb0o 
resonator. 3 

Conversion eff. = -■ * 21 » 29.75 dB 

Velocity of the shear wave along the y-axis 

1.14 cm , * 

= 2TB4 ^sec “ 4*02 x loP cm/sec 

FIG. 2.3(b)—Pulse echo pattern of the shear wave S 
12 ‘ 
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IlfeflÜ riMM • 'tWIP1 .. ! il fpp\t 

FIG. 2.4(a)—Field configuration in a half LiNbO^ resonator. 

Resonant frequency = 3^75 Mc 

Conversion eff. - ^ ~ ~ * 29 dB 

Velocity of longitudinal wave along the z-axis 
2 X 0.743 cm _ .5 . 

= ~I Isíc * T*0? * 10^ cm/^ 'sec 

FIG. 2.4(b) Pulse echo pattern of 
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V 

fV, I 

distribution of a lowest order mode for a whole resonator under the 

perfect open circuit condition31 is shown in Fig. 2.3a. The perfect 

open circuit condition requires infinite dielectric permittivity for 

the dielectric resonators. For LiNbO^ resonant at S band frequencies 

the relative dielectric constant is of the order of 50 when normal to 

the c-axis of the crystal and of 25 when parallel to the c-axis. These 

high dielectric permittivities permit most of the input energy to con¬ 

centrate in the dielectric resonator. As shown in Fig. 2.3a, the E-field 

configuration in the x^ plane for the lowest mode TE^ in the 

resonator can be expressed approximately by 

E 

E 

E»v 8ln ? xi cos r *0 mx^ a 1 b 2 

E cos 7 X. sin 7 X- 
nXg a 1 b 2 

(2.59a) 

(2.59b) 

where Kmx1 404 Enx2 the electrlc fields at the surfaces of the 

resonator. It is assumed that there is no variation of the electric 

field along the x^ - axis for the lowest mode. The input power P 

to the resonator is defined as 

in 

oH 
(2.60) 

where Q, is the measured Q0 of the resonator under the critical 

coupling condition, tx> is the frequency, and W is the total stored 

energy in the system. When the dielectric constant of the resonator 

is finite, the total stored energy W is given by 

V, ♦V . 
in out 

36 - 

(2.61) 



where is the stored energy inside the resonator of a volume V 

and Wout is the stored energy outside the resonator. In order to 

make an order of magnitude estimation of the ratio W ,/W. consider 
out' in 

the experimental set-up of the integrai delay line. For the coupling 

of the electromagnetic fields into the resonator, the resonator is 

usually placed at the axis of a waveguide, -'hich has a movable short 

in one end. The movable short produces a standing wave pattern in the 

waveguide. By adjusting the position of the resonator inside the wave¬ 

guide, the coupling condition can be over-coupled, critical coupled and 

under-coupled as shown in Fig. 2.5. The discussion on the coupling to 
31 

TÍO2 and SrTiO^ resonators have been given by Yee. It has been found 

that the critical coupling position is located in the weak H-field and 

strong E-field region as shown in Fig. 2.5. Due to the continuity of 

tangential electric fields on the surfaces of the resonator, the maximum 

waveguide electric field is assumed to be equal, to E . The 
raxi 

electric field in the waveguide with a short in one end can then be 

expressed as 

(2.68) 

where d^ is the width of the waveguide ana dg " a/2 is the distance 

from the short. The energy stored in the waveguide is found by inte- 
.0 

grating over the volume V 

(2.63) w 

where * dgd^h is the volume of the waveguide between the resonator 

and the short. The energy stored in the resonator is readily obtained 

from Eqs .(2.59a and b) as 

W 
in 

(2.64) 
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where V = abc is the volume of the resonator and is the relative 

dielectric constant,, i.e.; = . From Eqs. (2.63) and (2.64), 

we have 

W 
(2.65) 

w 

by letting = E^ • In generaly, for an S-band LtNbO^ resonator 

we have = 50 and V/V^ = l/4o . We can see the is comparable 

to Win . Let the total energy of the system W be 

(2.66) w = ß w 
in 

where ß > 1 is a factor to include the energy stored outside the 

resonator. 

After determining the energy stored in the system, the conversion 

efficiencies of the acoustic waves generated can be calculated following 

the argument of Section 2.3. It is shown in Table I that the tangential 

electric field in the surface normal to the Xg - axis will excite a 

shear propagating along the Xg - axis with velocity v^g • The 

whole resonator as shown in Fig. 2.3a has a field component E [given 

in Eq. (2.59¾)) tangent to the surfaces normal to the Xg - axis. The 

acoustic power of is found to be [from (2.30)) 

P 
ac 

1 
(2.67) 
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The conversion efficiency for generating Sl2 by the parallel field 

excitation Ex is then 
'1 

2 

(2.68) 

'2 1 

where 

2 

is the electromechanical coupling constant for Sl2 wave; A12 is the 

wavelength of the Syp wave; b is the distance that S^2 wave propagates 

along the Xg-axisj p is the factor discussed in Eq. (2.66). The factor 

of 2 la due to the two surfaces which generate Sl2 waves. The conversion 

efficiencies for other acoustic waves excited by the parallel field in the 

surface of a resonator can be obtained in the same manner. 

For half resonators^ the excitation fields are normal to the surface 

next to the metallic base as shown in Fig. 2.1*a. Taking a x^-cut (z-cut) 

half resonator for example, the field distribution in the x^ plane are 

given by 

XX. nx- 
ï! sin —— sin —^ mx, _ _ 

E. (2.69a) X. 1 

(2.69b) 
3 3 

and there is no variation along the Xg-axis. The conversion efficiency 

for the longitudinal wave propagating along the x^-axis excited 

by the normal field E is found to be 

,2 
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i,,,,. 

where is the acó.'Stic wavelength of the wave and c is the 

distance that travels in the crystal. 

2.4.2 Experimental Results 

The experimental setup for demonstrating the integral delay line 

application of LiNbO^ resonators is similar to that of the usual pulse- 

echo measurement. However, the coupling of the delay line to the 

electrical circuit is much simpler,, as the rectangular LiNbO^ resonator 

is simply placed approximately in the center of a standard waveguide or 

put in the vicinity of a coupling loop attached to a coax line. We 

first use a sweep oscillator and observe the reflected signal on a 

scope, to locate the resonant frequency of the lowest mode of the 

resonator and to optimize the coupling by adjusting a movable short 

in the end of the waveguide or rotating the orientation of the coupling 

loop. We then apply a 1 psec at a level of a few mw rf power to the res¬ 

onator and detect the delayed echoes by a standard microwave receiver. 

Figure 2.3b shows a typical echo pattern for a whole resonator, 

while Fig. 2.4b is for a half resonator. The acoustic wave echoes 

shown in Fig. 2.3b are due to shear waves having strains polarized 

along the x^ - axis and propagating along the y-axis. The shear waves 

are generated by the piezoelectric constant e^g , and the tangential 

electric field of the resonator normal mode at the surface normal 

to the Xg - axis. The waves then travel with the shear wave velocity 

and appear as echoes in the receiver. The velocity of the shear waves 

along the y-axis, calculated from the aistance along the y-axis and the 

delay time measured between echoes, is about 4.02 x 10^ cm/sec which is 

close to the known shear wave velocity aiong the y-axis. 

The acoustic echoes shown in Fig. 2.4b are produced by longitudinal 

waves propagating along the x^-axis. The longitudinal waves, which are 

generated by the normal field at the surface next to the metallic 

base, through the constant e^ } have to travel a round trip from the 

bottom surface to the top surface ana back to the bottom surface to produce 

an echo. The measured velocity of the longitudinal waves in this case is 

about 7*15 x 1CT cm/sec , which also checks with the known value. 
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The calculated and measured values of the velocities and conversion 

effects for the whole resonator and half resonator are listed in Table II. 

It is noted that the measured conversion efficiency of in the x^-cut 

half resonator checks closely with the calculated value, but the measured 

conversion efficiency for Slg in the whole resonator is about 10 dB 

lower than the calculated value. This may be due to the critical surface 

condition over a large area (the wavelength of Sl2 is of the order of 

10 cm). If the surface that generates the Sl2 wave is not flat 

within one wavelength, interference effect will occur and cancel some 

of the waves generated. Also the acoustic inhomogeneity is a problem. 

An acoustic probing device which may resolve the surface flatness and 

acoustic inhomogeneity is under development. Resonators of this kind 

are found to constitute a very simple, compact and rugged microwave 

delay line which couples easily to standard transmission circuits with¬ 

out the critical tolerances on location and alignment within the coupling 

circuit which are encountered with other types of delay lines. 

2.5 LINbQj DISK TRANSDUCERS 

We have shown in Sections 2.3 and 2.4 that LiNb03 crystals can 

efficiently generate microwave acoustic waves. The conversion effi¬ 

ciency as given in Eq. (2.33) íb inversely proportional to the effective 

thickness, which is defined as the ratio of the volume of stored energy v 

to the cross section of the acoustic beam A , i.e., t * v/A . This is the 

so-called filling factor. In the surface excitation in LiNbO^ crystals 

as discussed in Section 2.4, the filling factor extends to the length 

of the crystal used which is in the order of 0.5 cm. In order to decrease 

the effective thickness, and hence increase the conversion efficiency we 

have fabricated thin disk x-cut and y-cut LiNb03 transducers. Also the 

thin disk transducers can be bonded to any delay media and generate 

acoustic waves therein. However, the bonding techniques, especially 

for shear waves, have always imposed some problem. We will discuss the 

studies of shear wave bonds in Section 4.4. 
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The LiNb03 disk transducers are cut and polished in disk shapes of 

5 mils in thickness and 100 mils in diameter. The disk is then bonded 

bo a delay medium (single crystal rods with low acoustic attenuation 

at microwave frequencies such as sapphire, YAG, quartz and rutile rods, 

which have been optically polished and made parallel in two ends). 

Surprisingly, we have discovered that phenyl benzoate provides a con¬ 

venient and satisfactory bond for the shear wave transducers. Phenyl 

benzoate is a compound with a melting temperature of 70°C. It will 

crystallize to form a solid bond when cooled to room temperature. The 

end of the delay medium, which is to be bonded to the transducer, is 

coated with a thin layer of gold (1000 Æ). The assembly of the trans¬ 

ducer and the delay medium is then mounted in a high Q re-entrant 

cavity as shown in Fig. 2.6. The gold layer serves as an electrode to 

terminate the E-field which is concentrated in the gap between the 

center post of the cavity and the gold layer and so reduce the effective 

thickness. The re-entrant cavity is tunable in the frequency range 

0.8 - 2 GHz. Typical values of the of the cavity are of the order 

of 1000. It provides a step-up transformer for the applied electric 

field in the cavity gap and a frequency selector by tuning the cavity. 

The acoustic impedences of the LiNbO^ disk and the delay medium 

are usually of the same order of magnitude. The acoustic impedance of 

the bonding material between the transducer and the delay medium may be 

much smaller than the inqpedance of the disk transducer and produce an 

acoustic mismatch for the disk transducer. In Section 4.4 the acoustic 

impedance of the phenyl benzoate bond and the effect of the friction at 

the interfaces between the bond and delay medium will be discussed. If 

there is a large acoustic mismatch between the disk transducer and the 

phenyl benzoate bond, the disk transducer will be acoustically resonant 

In thickness vibration modes. 

Tiersten obtained the equation which determines the overtone fre¬ 

quency of a piezoelectric plate,25 e.g., 

Tan k t s (2.70) 
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FIG. 2.6—Assembly of a disk transducer bonded on a delay 
line and a re-entrant cavity. 
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where kg is the wavenumber of the acoustic wave, t is the thickness 

of the plate, and is the electromechanical coupling for the acoustic 

wave. The overtone frequencies as shown from Eq. (2.70) are not integral 

multiples of the fundamental frequency of the plate. However, at high 

frequencies the overtone frequencies are expected to be close to the 

multiple integrals of the fundamental. At the frequency of 1 GHz, the 

overtone frequency is close to the 3lst harmonics for a 5 mil x. - cut 

shear wave transducer. At the odd overtone frequencies, where the disk 

transducer is acoustically resonant, the power absorbed by the disk 

transducer from the input circuit reaches a peak. When the disk trans¬ 

ducer, which is bonded to a aelay medium, i. mounted in a re-entrant 

cavity as shown in Pig. 2.5, the resonant absorption lines of the 

transducer modes as well as of the re-entrant cavity c an be observed 

experimentally. Typical absorption lines of the transducer modes and 

the cavity are shown in Fig. 2.7a. It is noted that the resonant 

absorption lines of the transducer modes are sharp, indicating high Q 

resonances. If the cavity frequency is tuned to coincide with one of 

transducer resonant modes, a typical double humped resonance curve for 
35 

two strongly coupled resonant circuits ^ can be observed. The resonance 

curve of the coupled transducer and cavity is shown in Fig. 2.7b. This 

shows that we have to calculate the acoustic power generated in the 

transducer under conditions of acoustic resonance. 

The theory for the particle displacement and the acoustic power 

generation under acoustically resonant conditions in a disk transducer, 

which is cut from anisotropic piezoelectric crystals with high piezo¬ 

electric constants, is not available. The theoretical discussion of the 

acoustic power generation in Section 2.3 is for single surface excitation 

in anisotropic piezoelectric crystals with high piezoelectric constant«!, 

in which there is no acoustic resonance involved. In this study, no 

theoretical calculation for the acoustic power generation in a thin 

disk transducer under resonant conditions will be attempted. Only 

experimental results of measured conversion efficiencies of the acoustic 

waves generated in a disk transducer, which is bonded to a delay medium, 

will be discussed. 
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AND CAVITY

fQ= I070MC 2Mc/cm

FIGURE 2.7 

. 1*7 -

3



■n 

The experiment was performed in two parts. Figure 2.8a shows the 

schematic diagram of the experimental set-up for observing resonance 

curves of the coupled cavity and transducer mode. Typical resonance 

curves were shown in Fig. 2.7. From these curves, the resonance fre¬ 

quency fg of the transducer mode, the unloaded Q of the cavity, the 

Qq of the transducer mode with acoustic loading and the frequency 

separation between two humps of the resonance curve for the coupled 

cavity and transducer mode can be measured. The conversion efficiencies 

of the transducers are measured by pulse echo measurement using the set- 

.<P shown schematically in Fig. 2.8b. Table III lists the expevimental 

results for the conversion efficiencies of x-cut and y-cut LiNb03 disk 

transducers bonded to a delay medium. The results of this investigation 

of dfsk couplers, which have succeeded in producing efficient shear wave 

generation, are employed in experiments described later. 

2.6 EFFICIENT MICROWAVE SHEAR WAVE GENERATION BY MODE CONVERSION^3 

This section is concerned with surface conversion of longitudinal 

waves to shear waves, through which virtually the full efficiency available 

for longitudinal wave generation can be applied to shear waves. 

It is well known that mode conversion occurs when a plane acoustic 

wave in a solid strikes a plane boundary surface at an angle,36 and the 

use of this process co convert longitudinal waves to shear waves at 

ultrasonic frequencies has been reported.37 We have extended this process 

to the microwave range, and find that single-crystal YAG is capable of 

very efficient surface conversion. 

In Fig. 2.9 an incident longitudinal wave in an isotropic medium, 

making an angle ß with the normal to a free boundary surface in the 

x,y plane, produces a reflected shear wave at angle a and a reflected 

longitudinal wave at angle ß , such as to satisfy the c ndition 

sin a/sin ß = vß/v^ , where vs and v^ are the velocities of shear 

and longitudinal waves, respectively. The reflected wave amplitudes are 

functions of the incident angle ß , and there is a particular angle 

for which the reflected longitudinal wave is zero and the total energy 

of the incident wave appears in the shear wave. For the special case 

- kQ - 



FIG. 2.8(a)--Experimental arrangement for observing resonant 

absorption lines. 

Circulator 

FIG. 2.8(b)—Experimental arrangement for pulse echo measurements. 
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Vv8 ‘ VT1 , the theoretical input angle ß for total conversion 
is 6o° , and furthermore ß + a = 900 . 

YAG is a cubic crystal with an isotropy factor38 2Cl+4/(c -c ) 

of 1.03, so that we can reasonably apply the isotropic analysis. Using 

the published velocities38 for YAG, we have = I.70 , and we 

calculate that ß + a = 900 when ß = 59° 34.5 minutes. This is so 

close to the total-conversion angle that the theoretical intensity of 

the reflected longitudinal wave is 26 dB below that of the input 

longitudinal wave when this value is used for the incident angle. Thus, 

YAG has the property that both the longitudinal and shear waves can 

propagate along cube edge axes, if desired, and at the same time closely 
satisfy the conditions for total conversion. 

Experiments were carried out using a parrallelopiped sample as 

illustrated in Fig. 2.10. A ZnO disk transducer was used in a re-entrant 

cavity in the usual way23 to generate a longitudinal input wave. The 

ZnO transducer has an insertion loss of 12 dB, but film transducers of 

higher efficiency could be readily substituted. This longitudinal wave 

converts to a shear wave at the right-hand inclined surface. Reflection 

from the top surface produces an echo which retraces this path back to 
the transducer. 

Clearly, if the right-hand face of the YAG crystal were cut normal 

to the top and bottom faces, and thus perpendicular to the shear-wave 

direction, the shear wave could be reflected back from that face without 

mode conversion, or, alternatively, the shear wave could be transmitted 

into some other material bonded to the right-hand face. These configurations 
are of interest for applications of shear waves. 

In the present experiment, to simplify testing the surface conversion 

process, the shear-to-longitudinal conversion at the right-hand surface 

was included so that echoes could be received at the input transducer even 

if the angle between the shear wave and the input longitudinal wave were 

not exactly 90 . Also, it was simpler to make surfaces mutually parallel 

than to make them mutually perpendicular. Parallelism between the top 

and bottom faces, and also between the two inclined faces, was held within 

fou’- seconds of arc, and the flatness of all faces was held to one-tenth 
wavelength of mercury light. 
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0
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 ) 



Figure 2.11 shows a pulse echo train observed at the input trans¬ 

ducer at a frequency of 1^6l MHz. The first pulse on the left is the 

transmitter leakage pulse. Note that each echo pulse has undergone 

four mode conversions in its transit through the crystal. The time 

separation between successive echoes is 6.1 microseconds, which agrees 

with the calculated value of 6.15 microseconds for the round-trip 
ug 

transit time through the crystal, obtained by applying the values 

for vs and to the appropriate portions of the wave path in 

Fig. 2.10. The small spurious pulses which can be seen at the right end 

of Fig. 2.11 are 48 dB below the first echo pulse. 



TIME 5 /i; sec / d iv

FIG . 2.11—Pulse echo train of the mode converter.
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CHAPTER III 

LIGHT DIFFRACTION BY MICROWAVE SHEAR WAVES 

3.1 INTRODUCTION 

Transverse acoustic waves have very interesting properties and 

potentially important applications. These arise because of their low 

propagation velocity, their polarization properties, and their inter¬ 

action with other types of waves in solids. They have, however, 

received less attention than longitudinal waves at microwave frequencies. 

It has been known for a long time that acoustic waves can produce dif¬ 

fraction of optical beams. This process has been studied for the case 
3 

of microwave longitudinal waves and found to be important for the ex- 

39 
perimentol probing and analysis of longitudinal wave propagations in 

1*0 3 39 
liquiis and solids. ^ It has also been found that there are potential 

applications for microwave devices by using light diffraction of microwave 
1*1 

acoustic waves. Diffraction of light by microwave shear waves has not 

been studied extensively. In this chapter we will discuss the theory of 

the shear wave diffraction of light, (in the next chapter we will de¬ 

scribe the experiments of the shear wave diffraction of light.) 

It has been shown that the Bragç diffraction of light by microwave 

11 34 
acoustic waves is a parametric interaction process. * The coupling 

between the light waves and acoustic waves is through photoelastic effect. 
1*2 

Under the normal experimental conditions the Bragg diffraction can be 

simplified to a three wave parametric interaction involving the incident 

and diffracted light waves and the strain waves in the crystals. This 

is called the first-order Bragg diffraction. The theory for the first- 

order Bragg diffraction by longitudinal waves has been investigated and 

demonstrated experimentally. The calculation of the Bragg diffraction 

by microwave shear waves is complicated by the polarization effect of 

both the light waves and strain waves. This polarization effect, which 

is a unique property of transverse waves, is the basis of the theory 

and application of the shear wave diffraction. 
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A brief review of the photoelastic effect based on Nye will be 

given in Section 3.2 to discuss the coupling mechanism of the parametric 

interaction. In Section 3-3 a formulation of the first-order Bragg dif¬ 

fraction by the coupled wave equations for the incident and diffracted 

lights is discussed and a solution for the field components of the dif¬ 

fracted light under the weak diffraction limit is given. The diffracted 

field components are essentially determined by the induced displacement 

vectors in the crystal. In Section 3*^ & calculation of induced dis¬ 

placement vectors for shear wave diffraction in yttrium aluminum garnet 

crystals (YAG) is given. This illustrates the important characteristic 

of shear wave diffraction theory. 

3.2 PHOTOELASTIC EFFECT 

Photoelastic effect describes the change in optical properties in 

crystals in the presence of elastic waves. In this section we will use 

Nye's approach to derive quantitatively the relations that exist 

between the elastic and the optical constants of crystals. 

The elastic properties of a crystal under normal condition are 

characterized by linear Hooke's Law, 

(3.1) 
TiJ * Cijgh Sfeh 

(i, = 1, c f 3) 

is the elastic 

constant tensor. The optical properties of the crystal are usually 

specified by the indicatrix, 

(3.2a) 

(U = 1, 2, 3) 

where » €0 (òE^/ÒDj) is the impermeability of the crystal and €Q 

is the dielectric constant in vacuum. The indicatrix is an ellipsoid 



of wave normals whose coefficients are the components of the relative 

dielectric impemeability tensor at optical frequencies. If 

coordinates are referred to the principal dielectric axes of the crystal, 

Eq. (3.2) becomes 

Bllxl + B22x2 + B33X3 “ 1 (3.2b) 

and (1 * l#2*3) where is the relative dielectric 

constants along the principal dielectric axes. 

The photoelastic effect, which results in a small change of 

electrical susceptibility in the presence of an elastic strain (or 

stress), can be described as a small change in the shape, size, and 

orientation of the indlcatrix. This change is most conveniently speci¬ 

fied by giving the small changes in the coefficients B^ . Let the 

coefficient of the indicatrix of the strained crystal be B' and 

• By + ABy (1,J - 1, 2, 3) (3.3) 

The changes AB^ in the impermeability is assumed in the first order 

approximation to be linearly related to the six strain S,. (or stress) 

components with photoelastic constants p44 . which characterize this 

^ij “ pijgh Sgh Ufdi&fc « 1, 2» 3) (3 A) 

¿¡quation (3*^) is the photoelastic effect due to the strain components 

in the crystal. A similar relation holds for the stress components in 

the crystal. If we use the standard matrix notation for symmetrical 

tensors in which the single subscript m (m » 1, 2,.. .6) represents 

the double subscript ij with i,j » 1,2,3 , Eqs. (3-3) and (3.4) 

can be written as 

(3.5) 

^m * pmn Sn (m'n “ ^ 2> .6> (3.6) 
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where the photoelastic constants P fora a 6 x 6 matrix and the 
mn 

S constitute a 1x6 matrix, 
n 

The indicatrix is the geometrical representation of the optical 

properties of the crystal. It has the following important property. 

Draw through the origin of the ellipsoid a straight line parallel to 

the incident light propagation direction as shown in Fig 3*1* Draw 

the central section of the ellipsoid perpendicular to the straight 

line. The central section will be an ellipse with two semiaxes that 

are related to the refractive indices of the two waves that may be 

propagated through the crystal. The direction of the displacement 

vector D induced in the crystal by the incident E-field may also be 

found from the ellipse. Draw a line through the center of the ellipse 

parallel to the incident E-field. At the intersection of the line with 

the ellipse draw a normal to the ellipse at the intersect point. The 

direction of the normal is parallel to the D-vector induced by the 

incident E-field. 

The dielectric constants €' of the strained crystal, defined as 
m 

the inverses of the B' coefficients, are given by 

m m + Ae_ m (3.7) 

The Aem represent the changes of dielectric constants of the crystal 

resulting from the acoustic waves. The Ae are the fundamental m 
coupling factors for the parametric interaction involved in light dif¬ 

fraction. In matrix notation, Ae are the element of a 3x3 
m 

dielectric tensor [Ae] 

3.3 THREE WAVES PARAMETRIC INTERACTION 

It has been shown that the Bragg diffraction of light by acoustic 
34 

waves is a parametric interaction process. The parametric coupling 

results from a periodical change in the electrical susceptibility of a 

material in time and space due to acoustic waves acting through the 

photoelastic effect. It has been shown that the medium in the presence 

of acoustic waves can be characterized by the relative dielectric 
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....-..^ ' 

tensor [€¿3 given in Eq. (3.7). The electric fields E , which exist 

in the strained crystal, can be obtained, in general, from the wave 

equation 

(3.8) 

with proper boundary conditions. As discussed by Slater,45 the solu¬ 

tion may consist of an infinite number of plain waves. In the case of 

first-order Bragg diffraction, only the incident electric field E , 

the diffracted electric field Eg and the strain waves given by S 

in the medium are important and one has a three wave parametric inter¬ 

action. Let 

î JK* -*!•£> 
(3.9) + c.c. 

(3.10) + c.c. 

J(œ t - k * r) S ~s ~ S S e 
n + c.c. (n * 1, 2, ...6) , (3.11) n 

where E1 and |2 are the vector amplitudes of the incident and dif¬ 

fracted fields, Sn are complex phasors representing strain ampli¬ 

tudes and c.c. designates the complex conjugate. For cu and wave 

vector k , the subscripts 1, 2 and 3 stand for the incident, the 

diffracted and the strain waves, respectively. 

In the presence of Sn , was shown in the Section 3.2 to be 

(n = 1, 2, .. .6) , 

where Aen is a function of frequency o>s and wave vector k 

The Aen can be written S 

Ae 
n + c.c. (3.12) 



where A?n is the amplitude variation of the dielectric constants due 

to r^otoelastic effect. 

In the case of first-order Bragg diffraction, the electric fields 

in the medium are given simply by | ^ + ^ and Eq. (3.8) gives 

7 X V X Mg) 

là2 1 â2 

* c2 a?tenl (Jl+l2) ‘ ' ?à?[A*"1<íl*l2) 

(3.13) 

Substituting Eqs. (3-9), (3.10), snd (3.11) Into Eq. (3.13) and equating 

the same harmonics in the resultant equation, one obtains two sets of 

coupled equations; the first set for the case + œg is 

2 2 

2 2 

VX^-JUnJEj . JidejE, 

(3.14a) 

(3.14b) 

The second set for the case ♦ <»8 is 

2 

7 X 7 X ^ (en] ^ 

2 

7X7X% 
w 

^ K> % (3.15a) 

2 

2 [K] h * (3.15b) 

In general, both and Eg have three-field components and are 

functionb of three spatial coordinates because of the coupling between 

~1 and ~2 10 E<18, (3.14) and (3.15). In principle, ^ and E 

could be obtained from (3.11.) or (3.15) with proper boundary conditions. 
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A special case of the three-wave interaction in a half infinite medium, 

when and Eg are coupled only in one coordinate, (and 

consequently, are functions of x0 only) has been formulated and 

analyzed by Eloembergen. For more general cases, when the interaction 

region is finite due to finite width of either the acoustic beam or the 

incident light beam, or both, the solutions for E^ and Eg ( which 

are functions of three spatial coordinates) will be complicated. 

However, for many practical cases the intensity of the diffracted light 

intensity is not substantially depleted by the diffraction process in 

which case E^ may be assumed constant during the interaction process. 

Equations (3*14) and (3.15) reduce to two independent inhomogeneous dif¬ 

ferential equations 

^ [AV h (3.16) 

for the case 
^ '“l 

+ to and 

-J (*!-£,)•£ 
£3. e e (3.17) 

for the case = ¢11^ - o>s . 

From the source term of the diffracted light in Eq. (3.l6) or 

(3.17) the field components of the diffracted light are essentially 

determined by the induced displacement vector D0 , which is the 

product of the induced dielectric tensor and the incident fields E^ , 

i. e., 

or 

% [A€ ] 
n ~1 

(for <4> = o)^ ♦ o)g) 

(for - (Jüg) 

(3.18a) 

(3.18b) 
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Here t^€n] or is a 3 X 3 matrix and has three components 

in general. Ey choosing the coordinate system such that the direction 

of the wave vector of the incident light ^ coincides with one of 

the coordinates, Eqs. (3*18) and (3*19) can be reduced to two dimensions. 

The solution of either Eq. (3.16) or (3.1?) can be readily obtained 

by Green's function technique. For example, the solution of the field 

component I^y in Eq. (3.16) is found to be 

/ (3.19) 

where V is the volume of the source region and the Green's function 

o(rr) 
-Jkgls -£'l 

5 

Ms - si 

(3.20) 

is the solution of the inhomogeneous wave equation 

(^ ♦ 1¾) Q(r . r') - - ö(j - £') . (3.21) 

In the far field region the following assumptions are valid: 

l£-r'| » R-n •£' 

where n is the unit vector along the direction of kg , R is the 

average distance from the source region to the observation point and 

» 

-dkgR ♦ J kg-r' 
g(s • s') * 5- 

4nR 
(3.22) 
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Equation (3*19) becomes 

dV' . (3.23) 

The diffracted field in Eq. (3.23) will be maximum when the phases of 

the waves involved are matched, i.e., 

k. + k - k = 0 
~1 ~s -¾ (3.24) 

should be recognized that Eq. (3*20) together with the equation 

~ are f^damental relations, the conservations of 

momentum and energy, for the three-wave parametric interaction. In 

general, the magnitudes of and kg may be different in aniso¬ 

tropic crystals. An important application due to the difference in 

magnitudes of ^ and kg will be discussed in the next chapter. 

In isotropic crystals magnitudes of ^ and kg are assumed to be 

equal. The slight change in the magnitude of kg due to the frequency 

change in the diffracted light (the frequency of the diffracted light 

0*2 is doppler shifted by the acoustic wave, i.e., = o^ ± a) ) is 

negligible since the acoustic frequency co, is 1C? lower than the 

incident light frequency o^ . Equation (3.24) can then be represented 

by an isosceles triangle as shown in Fig. 3.2b. A well known relation 

for Bragg diffraction is readily obtained from the triangle 

where 6 is the Bragg angle in the crystal measured from the acoustic 

wavefront, X]L is the wavelength of the incident light in the medium, 

and A is the acoustic wavelength. The phase mismatch in the waves 

can be represented by 

= k, + k - k„ 
^ ~1 ~s ~2 (3.26) 
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By knowing the volume of the source region V' , Eq. (3.23) can be 

integrated. For the case that the source region is a rectangular 

box with dimensions WUÍ, Eq. (3.23) becomes 

S • ^ ll>y ^ W3 . (3-27.) 

where 

sir àk (W/2) 
F. * -2- 

ûkx(W/2) 

sin Ak (L/2) 
F« - -- 

Aky(V2) 

sin Ak (H/2) 

F3 " ~Ak2(H/2) 

which are the well known pattern for the diffracted fields as 

the phases of the waves involved are not exactly matched.1+7 The Ak 
X ^ 

Aky and Akz are the components of ^kg given in Eq. (3.26). 

3.^ SHEAR WAVE DIFFRACTION IN CUBIC CRYSTALS 

In order to demonstrate the important characteristics of the shear 

wave diffraction theory, we will consider the case of an incident light 

beam diffracted by a column of shear wavea of width W at frequency 

o>8 propagating along one of the cubic axes in a cubic crystal. As 

shown in Fig. 3.2(a), the coordinates are chosen so that x1 , Xg and 

X3 are Parallel to the cubic edges of the crystal and Xg coincides 

with the propagation direction of the shear waves. The shear waves 

can be characterized by Eq. (3.11) using only two strain components 

Sl* ^ s6 * Here s4 represents the wave for which the direction 

(3.27b) 

(3.27c) 

(3.27d) 
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(b) 

FIG. 3.2—Bragg diffraction by shear waves. 
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of propagation is along the -axis and the particle motion is along 

the x^-axis while 8g correspond to the wave with the particle motion 

along the x^-axis • ïhe state of polarisation of the shear waves is 

specified by the amplitude and phases of and Sg . The incident 

light with a width L is incident at Bragg angle to the acoustic 

wave front (the x^-axis ). The diffracted light from the source region 

(defined by the intersection of the acoustic beam and the incident light 

beam) is reflected from the acoustic wave front at as required by 

the condition of Eq. (3.20a) for isotropic crystals. 

Now we proceed to calculate the dipole source for the diffracted 

litfit generated by strains 8^ , Sg and the incident light ^ in a 

yttrium alwinum garnet (YAO) crystal. The YAG crystal has excellent 

optical and elastic properties and we found that it has relatively large 

photoelastic constants for shear waves. The form of the photoeUstic 

tensor f^different classes of crystals can be found by synmetry 

argument. However, most of the constants have not been published in 

the literature. YAO belongs to the crystal class (m3m). The photo¬ 

elastic tensor has the following form: 

p12 P11 pl2 

P12 p12 P11 (3.28) 

YAO crystals, which are optically isotropic have an indicatrix of 

a YAO crystal in the Absence of external strains, given by a sphere 

defined in Bq. (3*2), 

\(xi + - 1 (3.29) 
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where B1 is the principal impemeatility of the YAG. In the presence 

of strains S4 and S6 , the indicatrix of the strained YAG crystal 

becomes 

Bl(xl ♦ ♦ X3) ♦ 2/,¾ XgXj ♦ 2ABg x^ « 1 , (3.30a) 

where and ABg can be found by the product of Eq. (3.28) and the 

strain wave in the crystal hiving the components and Sg as shown 

in Eq. (3.6)1 so that 

a P44 S4 (3.30b) 

s P44 s6 . (3.30c) 

The optical properties such as the index of refraction and the 

, direction of the displacement vector of the unstrained and strained YAG 

crystal can now be found from the indicatrices and the propagation 

direction of the incident light. Let the incident light beam be in the 

• x^Xg plane and at an angle with respect to the x^-axis° . Draw 

a line through the origin of the indicatrix of the unstrained crystal 

and parallel to the direction of the incident light beam. Draw a 

central section of the indicatrix nonnal to the straight line. The 

central section is a circle as shown in Fig. 3.3a, for the unstrained 

YAG crystal. This is why the YAG crystal is optically isotropic. For 

this case the direction of the displacement vector is always parallel 

to the electric field of the incident light. For the strained crystals 

the central cross section of the indicatrix seen by the incident light 

is an ellipse. The equation of the ellipse is found from Eq. (3.30a) 

and the direction of the incident light is 

(Bj. * 2^6 8in 20bK2 ♦ x'3 + SABj^ cos ôb X (3,3^ 
• ^ 

where Xg'xj and rotated axes of Xg and x3 with respect to the 

x^-axis . The angle rotated is 8g such that x¿ is along the propa- 

* gation direction of the incident light. Bragg angle W_ given by 
B 
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Eq. (3.25) is in the order of 2 degrees for shear waves at 1 GHz in the 

YAG crystal. Under normal experimentad conditions ABg is more than 

two order of magnitude smaller than B1 . The quantity 2ABg sin 20B 

is therefore negligible compared to B1 . For simplicity, we car 

assume in the calculation that the incident light is along the x^axis . 

Nevertheless, the small angle 0B must be satisfied by the incident 

light in order to observe Bragg diffraction. 

The direction of the induced displacement vector , in the 

strained crystal by a vertically polarized incident light |1 can be 

determined geometrically from the ellipse given in Eq. (3.31). As shown 

in Fig. 3*3b, the ellipse has principle axes rotated kj0 with respect to 
the Xg' and x~ axes; D1 is perpendicular to the ellipse at the 

intersection of the ellipse and and therefore D1 is not parallel 

to Ej. . It should be noticed from Eq. (3.31), that the optical proper¬ 

ties of the crystal seen by an incident light along the x^axis are 

effected only by the strain component but not by Sg . If the 

strain and AB^ changes sign, the ellipse will rotate 90° as shown 

in Fig. 3«2c; must rotate clockwise in order to remain perpendicular 

to the new ellipse. Due to (which is a sinusoidal function at 

frequency œfl ) the ellipse wobbles from Fig. 3.2b to Fig. 3.3c «t the 

frequency u>a . In Fig. 3*3d we sketch the directions of the induced 

displacement vectors by £^ in the strained crystal together. There is 

a horizontally polarized displacement Dg induced by the oscillating 

^’s which form the dipole source for the diffracted light. While D1 

vibrates at the frequency of the incident light , Dg vibrates at 

the frequency (o^ ± o)#) due to the modulation of . Similarly, if 

the incident light is horizontally polarized, a vertically polarized 

induced dipole Dg will be produced in the crystal strained by . 

If the incident light is rotated 90° and assumed propagating along 

the x^-axis , the same argument holds as for the case in which the 

There will be a cross polarized incident light is along the x^-axis 

dipole Dg produced in the strained crystal except that D, is now 
Û 

represents the strain 

l6 

induced by Sg instead of . Recall that 

wave with the particle motion along the x^-axis while S¿ with the 

particle motion along the x^axis. 
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So far we have discussed qualitatively the dipole sources for the 

diffracted light. Two important characteristics of the shear wave dif¬ 

fraction theory can now be concluded. First, the polarization of the 

diffracted light is rotated by 90° with respect to the incident light 

polarization. This feature has experimentil advantages. The diffracted 

light can be conveniently separated from the transmit light and all the 

scattered light by surface irregularities by a polarizer. The signal- 

to-noise ratio can be largely improved. Second, we notice that only the 

strain component which has the particle motion direction perpendicular 

to the incident beam axis contributes to the diffracted light; S^ 

diffracts the incident light which is along the x^-axis while Sg 

diffracts the incident light along the x^-axis . This polarization 

effect of the shear waves has important applications. 

In order to calculate the magnitude of the induced displacement 

vector Dg by the stràin waves, we need to know the relative dielectric 

constants of the strained crystal. The coefficients of the ellipse seen 

by an incident light along the x^-axis are given by Eq. (3-30a) can be 

written in a 2 X 2 matrix, 

According to Eq. (3-7) the dielectric constants which relate the in¬ 

duced displacement vector to the field components of the inc dent light 

along the x^-axis , are 

« 

« 

i 

♦ 
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2 
provided AB « which is valid in all the normal experimental condi¬ 

tions. The second matrix in (3-32) is the induced dielectric constants 

by . We have then 

where , E^z and Dgy. , Dg2 are components of the incident field 

and the induced Dg along the Xg and x^ axes, respectively. It is 

obvious from Eq. (3.33), that Dg is cross-polarized with respect to 

E1 . For a vertically polarized light having only E^z component, 

the induced dipole for the diffracted light is horizontally polarized 

with 

D2y * " €1 pl+4Sl+Elz (3.34a) 

Similarly, a horizontally polarized incident light gives 

D2z " -4%¾¾ (3.341)) 

Once the induced dipole gz is determined, the field components 

of the diffracted light can then be calculated from Eq. (3.19). For 

example, let the incident light have only an E component. The 
Iz 

induced displacement D is given by Eq. (3.33b). For simplicity 
Gw 

assume the incident light beam has a rectangular cross section with 

dimensions LH . Due to the negligible small Bragg angle 6_ , the 

source region at the intersection of the acoustic beam with a width W 

and the incident light beam can be assumed to be a rectangular box with 

dimensions LHW . The diffracted field Egy due to Dgy is readily 

found from Eq. (3.27a) to be 

e-jyt 

E2y " HI,,FlF2F3 > (3*35) 
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where , Fg , and are given in Eqs. (3.27b,c,d). The ratio of 

the intensities of the diffracted light beam to the incident light beam 

is 

Ig lEzyl2 * spot size of ½ 
(3.36) 

The spot size of Ig is determined by the far field diffraction pattern 

of Eq. (3-35) which is the sin x/x pattern of Fg and F^ . Most of 

the intensity in the diffracted light is seen within the area defined by 

the first minimum of Fg and F^ . It can be shown that the angle 

spread for the first minima of Fg is 

2« 

(3.37) 2 AS > 
hgl 

Similarly, the angle spread for F^ is 

(3.38) 2Atp * 
kgK 

The spot size of the diffracted light is then 

while the spot size of the incident light is HL . We have then, from 

Eq. (3.36), 

(3.39) 
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t 

The factor is the sin x/x pattern due to the mismatch 

and the acoustic beam width W . Similarly to the calculation of Ak , 

it can be shown that 

" V0 - 

where ùÿ is the angle spread of the k for a finite width acoustic 
s 

beam. In terms of the acoustic power density in the crystal, which is 

given by 

(3 AO) 

where is the elastic constant and vg is the shear wave velocity, 

Eq. (3*39) becomes 

2 cwvs ac \ ) 
(3 Al) 

where ^ is the index of refraction seen by the diffracted light, 

€1 “ nl • The diffracted light by shear waves is a function of the 

photoelastic constants and the power distribution of the acoustic waves 

inside the crystal. In addition, Bragg diffraction by shear waves 

predicts the important polarization effect for both acoustic waves and 

the light wave as we have discussed. In the next chapter, we utilize 

this polarization effect to probe the acoustic birefringence in YAG and 

to determine experimentally the orientation and ellipticity of shear 

waves generated from transducers. 
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CHAPTER IV 

EXPERIMENTAL RESULTS 

4.1 INTRODUCTION 

In this chapter the inportant properties of shear wave diffraction 

theory will he demonstrated experimentally. Optical probing techniques 

by longitudinal waves hare been used to probe the acoustic energy dis¬ 

tributions in solids,to measure the intrinsic acoustic attenuation 

of delay media, ^ and to study the acoustic harmonics generation and 

the effect of finite amplitude elastic waves in solids.Utilizing 

the unique characteristics of shear wave diffraction, the optical 

probing techniques will be extended to map the shear wave energy dis¬ 

tribution, to measure the shear wave attenuation, to determine the 

conversion efficiency of the longitudinal to shear waves mode convertor, 

to study the shear wave bonds, to probe the acoustic birefringence in 

solids and to determine experimentally the orientation and the ellipticity 

of the shear wave generated from cm experimental transducer. 

4.2 EXPERIMENTAL APPARATUS 

The experimental arrangement, shown schematically in Fig. 4.1, is 

similar to that used in longitudinal diffraction experiments.^ A Ne-He 

cw gas laser (6328 Ã Spectra Physics Model 130) was used for the incident 

light source. The quarter wave plate is oriented such that the laser 

beam, after passing through the quarter wave plate, becomes circularly 

polarized. The polarization of the incident light can then be rotated 

to any angle with respect to the crystal axes of the sample by a rotatable 

polarizer. 

The crystal bonded with an acoustic wave transducer used for the 

diffraction experiment is mounted in a re-entrant cavity, which is used 

as a step-up transformer to increase the electric field across the 

transducer and hence improve the conversion efficiency as discussed in 
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Chapter II. The cavity and crystal are mounted on a rotary table which 

permits rotation in a horizontal plane and three-dimensional translation. 

This table allows very accurate adjustments of the position of the crystal 

with respect to the laser beam. 

The microwave signal fed into tin cavity comes from a signal generator 

which can be pulsed or 1 Kc square-wave modulated. The reflected power 

from the cavity is detected by a standard heterodyne receiver and displayed 

on an oscilloscope. Standard pulse echo measurements are performed to 

determine the properties of the acoustic waves in the crystal and to 

measure the conversion efficiency of the transducer. 

A photomultiplier is used to detect the diffracted light. Since the 

light diffracted by shear waves is crossed polarized with respect to the 

transmitted and scattered light, a crossed polarizer is put in front of 

the photomultiplier to improve the signal-to-noise ratio. The same photo¬ 

multiplier with calibrated neutral density filters is used to measure the 

intensity of the transmitted light. 

4.3 OPTICAL PROBING OF ACOUSTIC WAVES 

As shown in Eq. (3.4l), the intensity of the diffracted light is a 

function of the proper photoelastic constants P , the acoustic power 
mn 

density Pac and the distance W that the incident light travels in the 

acoustic beam. In the following sections, we will apply the shear wave 

diffraction theory to map the shear wave column in the YAG mode converter 

discussed in Section 2.3, to measure the shear wave attenuation in YAG 

and to determine the mode conversion efficiency. 

4.3.1 Acoustic Beam Mapping 

The measured time separation between successive echoes, which agrees 

with the calculated value of the round trip time through the crystal 

obtained by applying the values for Vg and to the appropriate 

portions of the wave path in Fig. 2.10, is one of the evidences that 

there is a shear wave column generated in the YAG mode convertor. A 

second experimental verification of the existence of a shear wave column 

is by the Bragg diffraction technique. The change in polarization of 



the diffracted light is one of the unique characteristics of the shear 

wave diffraction. In addition to the polarization change the incident 

angle 0B for shear waves is different from that for longitudinal waves 

due to the difference in velocities. 

The incident angle 0B measured from the acoustic wave front, which 

is in the (001) plane, can be calculated from Eq. (3.25) to be 

0.6328 X 10'4 -1 0. sin B 

at a frequency of l46l Me. The Bragg angle is measured from outside the 

crystal so that there is a factor equal to the index of refraction dif¬ 

ference in the value calculated from Eq. (3.25). The diffracted beam 

deviates from the transmitted beam by 20fi and has its polarization 

rotated 90° with respect to that of the incident beam. 

Figure k.2 shows the result of mapping the shear wave acoustic 

column by a 0.020 inch-diameter laser beam probe, which was mechanically 

scanned transversely across the column at a cross section located near 

the excitation end of the YAG mode converter. The calculated curve shows 

scattered light intensity from a constant density column having an 

elliptical cross section with a major axis of 0.136 inches, which is the 

value predicted from the geometry of Fig. 2.10 when the input longitudinal 

wave circular column has a 0.080 inch diameter. Tne calculated curve also 

takes into account the effect of the finite incident beam diameter. We 

see good agreement between the experimental and calculated cross section 

of the shear wave column. 

4'^‘2 -hear Wave Attenuation and Mode Conversion Efficiency Measurements 

In YAG4^ 

Bragg diffraction of lignt by injected acoustic waves has been used 

to measure the intrinsic attenuation of longitudinal waves in quartz.15 * 

It was shown that the technique will avoid the difficulties of the pulse 

echo method of measuring acoustic attenuation. We have measured the 

shear wave attenuation in YAG and hence have determined the mode conversion 
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efficiency of the mode converter. We have also discovered the inhomogeneity 

of the acoustic attenuation in the ¥AG sample. The inhomogeneity caused by 

a strained center core as shown in Fig. 4.3 cam easily be seen under the 

polariscope. 

By introducing the attenuation constant Ct in the acoustic power 

density, 

where (Pac)Q is the acoustic 

O by measuring the diffracted 

the acoustic wave propagation, 

The procedure for measuring the ratio of the diffracted power ratio 

in order to obtain the attenuation in the YAG converter will now be 

described. Instead of using cw power, we excite the ZnO transducer with 

a 2 nsec rf pulse. The sample will contain a 2 nsec acoustic pulse 

traveling with the shear wave velocity while in the shear wave region. 

The incident light with a 0.020 inch beam diameter is applied to the 

shear wave region. As the acoustic pulse passes through the incident 

beam, part of the incident light will be diffracted and registered in 

the photomultiplier. Figure 4.4 shows the typical diffracted :i#it registered 

in the photomultiplier. The first pulse in the oscillogram represents 

the first pulse of the diffracted light as discussed previously. The 

second pulse is the diffracted signal from the return acoustic wave 

pulse which is reflected back from the far end of the sample. The thim 

pulse in the oscillogram is for calibration purposes so that we can 

measure the intensities in dB by a variable attenuator. By moving the 

incident beam or the crystal itself along the propagation direction of 

the shear waves and measuring the change in the intensity of the first 

diffracted light pulse, we can accurately measure the attenuation constant. 

^Pac^0 6 
-20tz (^.1) 

power density at z = 0 , we can determine 

powers at two points along the direction of 

i • e., 

* e 
-aaíz^Zg) 

(^.2) 
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1 ^lsec/cln

FJG U.l»—Echoes for diffracted light. The first pulse indicates the 
intensity of light diffracted by the forward acoustic pulse. 
The second pulse is by the reflected acoustic pulse. The 
third pulse is for the calibration purpose.
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The attenuation me;.di rements in the YAG converter are taken along 

four different paths in the crystal as indicated by (T) - 

© ' © , etc., in Fig. 4.3. The measured values for the 

shear wave attenuation in YAG along the different paths are: along 

- Qj) > a = 0.4 dB/cm ; along , 

0 = 0.32 dB/cm ; along (?) - (P) , a * 2.79 dÜ/an ; along 

“ Qo f a = 2.5 dB/cm . The inhomogeneity of the attenu¬ 

ation constants in the crystal suggested by the experimental results is 

verified by observing the residual strain in the crystal under the 

polariscope as shown in Fig. 4.5. The sample was cut such that the 

strained core of the grown crystal, extended partially into the region 

of the shear wave column, as indicated in Fig. 4.3. This explains the 

increase in the attenuation as the shear waves propagate closer to the 

strained region. This also explains the asymmetry in the measured 

curve for the diffracted light in Fig. 4.2. 

The mode conversion efficiency for the longitudinal wavts converted 

to shear waves or vice versa at the inclined surface of the '¿AG converter 

can be determined by measuring the difference in intensities between the 

first and second diffracted echoes as shown in Fig. 4.4. It should be 

noted that the difference in intensities between the first ind second 

diffracted echoes includes twice the shear wave attenuatior from the 

laser spot to the inclined surface, plus twice the mode corr/ersion loss 

and twice the longitudinal attenuation from the inclined surface to the 

bottom surface of the crystal. By subtracting the attenuation from the 

shear wave and the longitudinal wave region, the mode conversion loss 

will readily be obtained. Although no exact value of longitudinal wave 

attenuation has been measured by Bragg diffraction techniques, the 

reported elastic Q of longitudinal waves at microwave frequencies is 

within the same order of magnitude of the shear wave elastic Q 

Assuming the same attenuation for both longitudinal and shear waves, the 

measured mode conversion loss from longitudinal to shear waves or vice 

versa was less than 0.1 dB, which agrees closely to the predicted value. 



r
/«<?

STRAINED CENTER CORE 

IN THE YAG CONVERTER SEEN 

UNDER A POLARISCOPE

FIG. 4.5--YA.G converter under polarlscope.
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It is worth mentioning that in spite of the different shear wave 

attenuation values measured along the four paths in Fig. 4.3, the total 

loss in each path (which is due to twice the shear wave attenuation, 

twice the longitudinal wave attenuation, four times the mode conversion 

losses, and the loss in the transducer bond) remains constant and equal 

to the value measured (12 dB) by pulse echo techniques. 

4.3.3 Photoelastic Constants of YAG 

As shown in Eq. (3.45), the intensity of the diffracted light at 
the Bragg condition is 

2 C 

6 _2 
nl P44 

44 
ac (4.3) 

where kQ is the wave number of the incident light in vacuum; is 

the index of refraction seen by the diffracted light; is the 

appropriate photoelastic constant; is the elastic constant; vg 

is the shear wave velocity; W is the width of the acoustic column; 

s^d P&c is the acoustic power density in the crystal. For convenience, 

we have defined a C-factor which is the ratio of the diffracted light 

intensity to the incident light in dB for a 1 mw total acoustic power 

in a circular beam in the crystal: 

C-factor = 10 log ( -k . (4.4) 

W C44 vs / 

The C-factor for longitudinal waves in various materials has been 
50 

tabulated. The C-factor for the shear waves in the [lOO] YAG rod 

was measured to be -53 dB. The photoelastic constant P^ is then 

calculated from Eq. (4.4) to be 0.075. 



STUDIES OF SHEAR WAVE BONDS 

In this section we are concerned with a new technique of the optical 

probing to study the acoustic bonds between delay media. It is essential 

to have efficient acoustic bonds to cement the transducers on delay media 

or to Join two delay media together. Using an indium bond18 the bond 

loss for longitudinal waves has been reduced to a few dB, while the effi¬ 

cient bonds for shear waves are much more difficult to make. Recently 

an optical bond technique51 has been reported to have transmitted 90 

percent of the incident shear waves at I.5 GHz. Except for the optical 

bonds, the transmission efficiencies of the "cement" bonds are still 

poor at microwave frequencies. We have studied several bonding materials 

such as polystyrene, phenyl benzoate and phenyl salicylate, which are 

found to be convenient cements for bonding the shear wave transducers on 

the delay media. The transmission efficiencies of these shear wave bonds 

depend on the thickness of the bond and the surface conditions of the 

bonded media. Instead of discussing in detail the technique of shear 

wave bonds, we will present a technique to measure the bonding efficiency. 

It has been shown in Sections ^.2 and 4.3 that the Bragg diffraction 

technique is a convenient probe to measure the acoustic intrinsic attenu¬ 

ations and to map the acoustic energy distribution. This technique 

combined with the optical heterodyne detection52 can be used as a standing 

wave detector for acoustic waves to measure the magnitudes and phases of 

the reflection and transmission coefficients of acoustic bonds. 

As shown in Fig. 4.6(a) two delay media are bonded together by 

a shear wave bond of thickness £ . An incident shear wave pulse is 

propagating from the left. The quantities we are interested in are the 

reflection coefficient at Z = 0 and the transmission coefficient at 

Z - Z . Using a transmission line analogy, we can consider the shear 

wave bond between two delay media as a small section of lossy trans¬ 

mission line with the characteristic impedance corresponding to the 

acoustic impedance in the bond sandwiched between two half infinite 

transmission lines as shown in Fig 4.6(b). The impedances of the half 

infinite lines correspond to the acoustic impedances of the delay media. 
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The acoustic loss in the bond is taken into account by the Q of the 

lossy transmission line section. Also shown in Fig. 4.6(b) are two 

shunt impedances and Zg due to any slippage losses of the particle 

displacement at the interfaces Z = 0 and Z = -t between the bond and 

delay media. The reflection and transmission coefficients are calculated 

in Appendix A. 

We have demonstrated the measurement of reflection and transmission 

coefficients of phenyl benzoate shear wave bonds by the optical probing 

technique. A thin layer of phenyl benzoate was used to bond two x-cut 

LiNbO-j rods. One of the x-cut LiNbO^ rods was used as an input rod and 

mounted in a re-entrant cavity. A 2 usee pulse of shear waves was then 

excited in the input rod. The shear wave pulse propagated with the 

shear wave velocity toward the phenyl benzoate bond. Part of the incident 

shear wave pulse was reflected by the shear wave bond and became a 

reflected pulse. The remaining shear wave was attenuated in the medium 

of the shear wave bond and transmitted into the load rod as the trans¬ 

mitted pulse. The intensities of the reflected and transmitted pulses 

are the amptitudes of the reflection and transmission coefficients, 

respectively. The laser beam was incident in the input rod close to 

the bond with proper Bragg condition. The intensities of the diffracted 

light by the input and reflected shear wave pulses were measured. It has 

been shown in Chapter III that the intens^-y of the diffracted light is 

directly related to the acoustic power. Neglecting the small attenuation 

in LiNbO^ at the frequency range 1 to 2 GHz, the ratio of the reflected 

and input shear wave pulses io çqual to the reflection coefficient R . 

Similarly, by moving the laser in the load rod, we measured the diffracted 

light by the transmitted pulse and consequently the transmission coefficient 

T . Figure 4.7 shows the reflection and transmission coefficients of 

phenyl benzoate shear bond between two x-cut LiNbO^ rods as a function of 

shear wave frequencies. As the acoustic frequency is varied, the 

effective acoustic thickness of the bond varies. Analogous to trans¬ 

mission line theory the reflection coefficient becomes zero at the 

frequencies when the thickness of the bond is integer half wavelengths. 

Since the bond is lossy, there is no zero reflection coefficient 
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even at the frequencies of exact integer half wavelength. For the case 

shown in Fig. 4.7 the thickness of the bond at f = 150 Me is 1-1/2 

wavelength of the shear wave in the bond. The transmission is about 

0.35 and the reflection coefficient is 0.4. In order to match the 

measured curves of the reflection and transmitted coefficients by the 

transmission line model, the slippage losses of shear waves at the 

interfaces between the bond and the rods have to be included in 

addition to the bond loss. There is no information available on the 

velocity, the impedance and the attenuation of shear waves in phenyl 

benzoate. It is also difficult to measure the physical thickness of 

the bond. The calculated curve in Fig. 4.7 is obtained by adjusting 

three parameters: the acoustic impedance, Q of the bond and the 

resistance representing the slippage losses at the interfaces, in the 

theory given in Appendix A, to fit the measured curves. A self-consistent 

picture based on this calculation is as follows. The ratio of the 

acoustic impedance and the rod impedance Z^/Z^ = 0.1 . The Q of 

the shear wave bond is about 150 and the resistance of the friction loss 

at the interfaces is about 1.2 times the LiNbO^ impedance. It should be 

noticed that the losses at the interfaces are very large for the shear 

wave bonds. 

4.5 ACOUSTIC BIREFRINGENCE IN YAG PROBED BY A LASER BEAM53 

In this section we will discuss the essential characteristics of 

diffracted light by a column of transverse elastic waves at frequency 

ü)g propagating along the [lio] axis of a [lio] oriented YÄG rod. The 

reason for choosing the [lio] axis as the acoustic beam axis, which is 

one of three pure mode axes in cubic crystals, will become clear later. 

As shown in Fig. 4.8, the coordinates are chosen so that x^ , Xg and 

x^ are parallel to the cubic edges, rj coincides with the [llO] axis, 

I is parallel to the [llO] axis, and £ is parallel to the [OOl] axis. 

The transverse acoustic wave propagating along the rj-axis can be 

characterized as in Eq. (8) using only two strain components, and 

Sg . Here the subscripts 4 and 6 refer to the rotated coordinate 

system, so that SJ( represents the wave for which particle motion is 

- 91 - 



1(
00

0 

- 92 - 

F
I
G
.
 
U
.
8
—
R
o
t
a
t
e
d
 
a
x
e
s
 
f
o
r
 
t
h
e
 
[
H
O
]
 
Y
A
G
 
r
o
d
.
 



along the Ç - axis, and Sg corresponds to the wave for the partial 

motion along the | - axis. The state of polarization of the transverse 

acoustic wave is specified by the amplitudes and phases of and Sg . 

The [lio} oriented YAG rod is acoustically biréfringent when shear 
waves propagate along the rod axis. Analogous to optical birefringence, 

acoustic birefringence will occur if the waves involving and 

travel at different velocities in the crystal. Due to relative phase 

changes as the waves propagate along the crystal, the polarization of 

the composite shear wave undergoes periodic changes of ellipticity and 

orientation. In a [lio] YAG rod the velocity difference for shear waves 
polarized along [lOO] and [llO], respectively, is 8320 cm/sec.^ In 

addition to the small acoustic birefringence, YAG has excellent acoustic 

and optical properties, and we find that it also has large photoelastic 

constants for shear waves. 

An input linearly-polarized shear wave was generated from a y-cut 

LiNbO^ disk transducer of 5 mils thickness and 100 mils diameter, cement- 

bonded to the [llO] YAG rod with phenyl benzoate. The y-cut LiNbO^ 

transducer is capable of efficient generation of shear waves at micro- 

wave frequencies. The conversion efficiency from electromagnetic to 

acoustic energies can be as high as -12 dB at 1 GHz. 

Figure 4.9 shows the changes of shear wave polarization as the wave 

propagates along the [llO] YAG axis. The transducer was oriented so 

that the shear wave started out linearly polarized at ^5° to the ortho¬ 

gonal [OOl] and [llO] axes. As the waves progress, the polarization 

transforms progressively into right-hand circular, cross-polarized 

linear, left-hand circular, and back to linear with the original 

orientation. These transformations proceed with a "beat” wavelength 

Xg which is inversely proportional to the velocity difference of the 

[OOl] and [lio] shear wave components. 
A small-diameter laser beam was passed through the crystal, with 

incident angle equal to the Bragg angle measured with respect to the 

rfave front of the shear wave. Part of the incident light is diffracted 

at the Bragg angle. As discussed in Section 3-^, the strain component 

which is normal to the propagating direction of the light beam contributes 
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to the diffracted light, and the strain component parallel to the light- 

, beam axis produce no diffraction in a photoelastically isotropic media. 

The laser beam was mechanically scanned along the axial direction of 

the sample. As indicated in Fig. 4.9, the diffracted light intensity 

is maximum when the incident light axis is perpendicular to the linearly- 

polarized shear wave, and decreases to zero as the incident light becomes 

aligned with the linearly-polarized shear wave. Intermediate intensities 

of diffracted light are produced at intermediate locations. The intensity 

of the diffracted light, as a function of the incident laser beam position 

along the rod axis, is sinusoidal with a wavelength equal to the beam wave¬ 

length Xg . 

The calculation of the diffracted light intensity as a function of 

the incident laser position along the [lio] axis of the YAG rod is similar 

to the calculation in Section 3.4. The photoelastic tensor [p ' ] suitable 

• for the UlOj oriented YkG crystal can be obtained by rotating the photo- 

elastic tensor given in Eq. (3.28) by 45° with respect to the 

x3 * axis. The indicatrix, which describes the optical properties of 

« the strained [no] YkG rod by S^ and S6 , is found from Eq. (3.30a) 

to be 

^ (É2 + T)2 + l)2 + + 2¿B6 t) = 1 (4.5) 

with 

^4 = P44S4 

= 2 (pll " P12^ S6 

The dielectric tensor le'] of the strained [lio] oriented YAG rod, 

• which relates the induced displacement vector in the crystal to the 

« 
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incident field component, is then 

(‘‘.fi) 

vhere ^ is the unstrained dielectric constant of YÄG. The second 

term of Eq. (4.6) contributes the polarization dipole for the diffracted 
light. 

The induced displacement vector Dg as discussed in Section 3.4 is 

determined by the propagation direction of the incident light and the 

dielectric ellipsoid vith the dielectric tensor given in Eq.(4.6). 

Because the Bragg angle ®B is essential for phase but negligible for 

amplitude calculations, we assume that the incident light is along the 

l i plane (the acoustic wave front) in the following calculation for 

the amplitude of Dg . 

For the case that the incident light is along the 6 - axis [lío 

axis], Dg is found to be 

- 96 - 



The incident light propagating along the [lío] axis of the crystal has 

two polarizations. According to Eq. (3.39), the maximum diffracted 

light for the incident light along the [lïo] axis with vertical or 
horizontal polarization is 

(^.8) 

where ^ is the intensity of the incident light and W is the width 
of the acoustic beam. 

Similarly, for the case that the incident light is along the Ç 

axis [001 axis] we will find the D2 for the diffracted light to be 

( ( 
and the intensity is 

where indicates the intensity of the incident light propagating 

along the [00l] axis with either vertical or horizontal polarization. 

For the case that the incident light is incident at an azimuthal 

angle $ with respect to the 5 - axis [1Ï0 axis] in the 5-Ç plane 

as shown in Fig. 4.10, the Dg for the diffracted light is found to 
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» 

« 

be 

(*.11) 
with 

S 

pirpi2 
) 

where Ç' is the rotated axis from the Ç axis by an angle (f> . If 

the incident light is vertically polarized and has only a component 

Pl£'* ^2 diffracted light becomes horizontally polarized and 

has 

D2t) = ^ cos ^ sin ^ Eli' (U*i2) 

and 

*!, = - «AÃ 

.2 PU"P12 s 
h—--s6 
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Due to acourt!c birefringence and Sg have different phases as 

the shear waves propagate along the rod axis. Let 

i8. 

% * I y e 1 

is. 
S4 --= |S4I e 

(4.13) 

where 

2« 

1 

2« 
(4.14) 

where y is the distance measured along the [llOj axis, A1 and A 

are acoustic wavelengths of Sg and . Taking into account the 2 

polarization change in Eq. (4.58), we have the intensity of the diffracted 

light from Eq. (3.36); 

I2 = ^)1 cos 0 + IiIo sin2 ^ “ ^OOI1!^ Sin 008 6 

na 
sin — 

na 

\ 
Oi.l?) 

where l/A^ * l/A1 - l/A^ , and B = 2ny/^ is the phase difference in 

S4 and S6 at any point y along the rod axis. In (4.15) a is the diameter 

of the laser beam, and 

ira 
sin — 

na 

B 
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is the effect of the finite laser beam diameter or the diffracted light 

resulting from the averaging over the distance a along the rod axis; 

IqOi [given in Eq. (U.io] is the intensity of the diffracted light when 
the incident light is along the [OOl] axis and ¢-=0° ; [given 

in Eq. (^.8)] is the diffracted light intensity when the incident light 

is along the [llO] axis and 0 = 90° . 

Both and I^q are readily measurable quantities. For each 

incident azimuthal angle 0 , Eq. (4.15) predicts a sinusoidal curve 
with beam wavelength determined by the condition & = 2jr if the 

laser beam diameter a is smaller than the beat wavelength Xg . 

Figure‘4.11 shows a recorder plot of the intensity of the diffracted 

light as a function of the axial position y of the laser beam probe. 

The experimental results agree with the theoretical prediction. The 

measured beat wavelength A_. is in excellent agreement with the 

38 
calculated values based on the published values of the velocities. 

Figure 4.12 shows the measured and calculated values of Ag as a 

function of frequency. The beat wavelength has a value of 10 mils at 

the frequency of 1.3 GHz. This is a convenient value for the construction 

of acoustic quarter wave plates, which are the acoustic analog of familiar 

optical quarter wave plates. These [llO] YAG quarter wave plates have 

54 55 
been constructed and demonstrated for new microwave devices. > The 

beat wavelength measurement also provides an ex:client method of 

accurately measuring the velocity difference of two shear waves in a 

crystal. 

4.6 EXPERIMENTAL DETERMINATION OF THE ORIENTATION AND ELLIPIICITÏ OF 

SHEAR WAVES 

The optical probing of sheer waves diffraction has another important 

application. It provides 0. method to determine the ellipticity and 

orientation of the polarization of shear waves at any point inside the 

de]ay medium. On occasions it has been necessary to know exactly the 

ellipticity and orientation of the polarization of the shear waves 

generated by experimental transducers. Unusual pulse echo measurements 
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give only the indirect information of the shear wave polarization of 

the shear waves and is difficult to interpret. 

Ihe scheme can be used to detect the shear wave polarization 

either in acoustically isotropic or anisotropic media. For the purpose 

of illustrating the technique, consider an input shear wave linearly 

polarized at an arbitrary angle a with respect to the [llO] axis as 

indicated by the solid line in Fig. U.10. The strain of the linearly 

polarized shear wave has two components, |sj = | s| sin 3 and 

|S6I = Is| cos a , when |s| is the strain amplitude. The intensity 

of the diffracted light as a function of azimuthal angle 0 for the 

linear polarized shear wave can be easily obtained from Eq. (4.15) by 

letting a = 0 and 

na 
sin — 

na 
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By knwing the photoelastic isotropic factor of the crystal Pn"Pi2/2^Ul+ 

(the condition for photoelastic isotropy is p^-p^/Zp^ « l) , one 

should be able to determine the polarization angle Cl by measuring the 

ratio of Iqjj/IjJq • 

This technique has been applied to determine the particle displace¬ 

ment direction of x-cut LilîbO^ transducers. In Section 2.3 we have shown 

that there are two orthogonal shear wave modes excited in a x-cut trans¬ 

ducer. One has larger electromechanical coupling constant. As shown in 

Table I, the velocity of the large coupling mode is 4.9 x 10^ cn^sec and 

the direction of the particle displacement is (0: -0.636 : 0.771) which 

has a 40° angle measured from the z-axis. In order to check the calculation 

experimentally, the shear wave diffraction technique was used to probe 

the linear shear waves generated from a x-cut LiNbO^ disk transducer 

bonded to a [100] oriented YAG crystal. The [100] oriented YAG crystal 

is photoelastically isotropic so that the intensity of the diffracted light 

as a function of 0 is a direct measurement of the polarization of the 

shear wave. According to Eq. (4.l6), and (4.17),the intensity of the 

diffracted light as a function of 0 is proportional to cos (0-0() , 

where OL is the polarization angle. We have measured the diffracted 

intensities as a function of 0 from the linearly polarized shear waves 

in a [100] YAG rod. The x-cut LiNbO^ disk transducer, which was bonded 

to the YAG rod and generated the linearly polarized shear wave in the rod, 

has been x-rayed to determine the orientation of the y- and z-axes with 

respect to the crystal axes of the [100] YAG rod. The measured polarization 

angle in 40° from the z-axis as predicted in the calculation. 

If the medium is acoustically biréfringent, the state of the polariza¬ 

tion of the shear wave will change periodically with a periodicity of 

Ag along the rod axis. For each azimuthal incident angle 0 the 

intensities of the diffracted light as given i Eq. (4.15) vary sinu¬ 

soidally as the phase & changes along the rod axis. The situation 

is analogous to the standing wave pattern of electromagnetic waves in 

a waveguide with a mismatched impedance . The light beam works 

exactly as the standing wave probe does. Based on the same analogy, 

we can measure the standing wave ratio R as the ratio of 
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the MKimum to the minimum diffracted light intensities by moving the 

üser beam along the rod axis for a particular azimut.ml incident 

»ogle t . The standing wave ratio measurement has experimental 

advantages over the absolute intensity measurement in that the effect 

Of input power fluctuations can be minimized. 

Figure 4.13 shows the experimental results of standing wave ratio 

R together with the calculated value. The calculated curve is for 

the case that a = 470 , (p^p^)/^ « 0.3 and a - 4.7 mils . 

The location of maximum value of R can be found to be 

¿ .. P11"P12 
tan 0 » -- tan o . 

^44 

By knowing the anisotropic factor , the orientation 

of the linearly polarized shear wave can be determined by Eq. (4.18). 

Equation (4.18) can also be used to find the anisotropic factor by 

injecting a shear wave with known polarization. For the [lio] YAG 

sample, the input linearly polarized shear wave was generated by a 

y-cut LiRb03 transducer. The orientation was determined by x-ray. 

It was checked that a » 47° with respect to the [lio] axis. The 

anisotropic factor of YAG is calculated to be 0.3. The P.. 0f YAG 

was found in Section 3.4.3 to be in the order of 0.crjk¡ (p -p /2 

is then 0.022. ^ 

It is obvious that the incident beam diameter will affect the 

resolution of the standing wave pattern. Figure 4.14 shows the 

standing wave ratio R as a function of incident beam diameter a 

when the incident angle 0 * 4rj° with respect to the [llo] axis. 

This provides more evidence that the theory and experiments are in 

good agreement. 
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CHAPTER V 

CONTINUOUS DEFLECTION OF LASER BEAMS 

5-1 INTRODUCTION 

The development of methods of high speed, high resolution optical 

beam deflection has recently received considerable attention. Most of 

the high speed optical scanning devices employ the electro-optic effect56 

or acousto-optic effect.57 Fowler, et. al.,58 have recently reviewed 

the methods of laser beam deflection and the limitations of the present 

systems. It is clear that optical deflection systems do not yet compete 

with the electron beam for high speed scanning and recording of inform¬ 

ation. It is therefore worthwhile to consider alternative me«hods for 

the continuous scanning of light beams. 

Acousto-optic light deflectors which are capable of continuously 

deflecting a light beam through 200 spot diameters have been reported 

by Kbrpel, et al. ^ The light deflection was achieved by Bragg scat¬ 

tering of light from a steerable 30 Me sound column. The principles of 

acousto-optic deflection of light waves has been reviewed recently by 

Gordon. "Ríase matching" is a basic requirement of this process, and 

requires that the vector sum of the wave vectors of these waves with 

finite diameters add to zero, i.e., ¿g - ^ ± ks as discussed in 

Chapter III. Here kg is the wave vector for the sound wave, k]_ and 

kg are the wave vectors for the incident and’.diffracted light, 

respectively. The "phase matching" condition of Bragg diffraction is 

required both in isotropic crystals and in anisotropic crystals. Most 

of the acousto-optic deflectors have employed Bragg diffraction in iso¬ 

tropic crystals. Isotropic deflectors are limited in the range of the 

deflection angle and in the resolution of the devices. In this chapter 

we present a method of laser beam deflection based on the Bragg scat¬ 

tering of light from a sound wave in a biréfringent crystal. In sapphire 

we have been able to deflect a laser beam continuously through an angle 

of 4 by varying a single electric parameter - €he frequency of the sound 

- 109 - 



wave. In Section 5*2, we will discuss and compare the schemes of 

acousto-optic deflectors using both isotropic and anisotropic crystals. 

In Section 5*2.3> calculations on the deflected beam in sapphire will 

be given to check the experimental results. In Section 5-2.4, we will 

discuss the extension of these types of acousto-optic deflectors. 

5 *2 SCHEMES OF ACOUSTO-OPTIC DEFLECTORS USING BRAGG DIFFRACTION 

TECHNIQUES 

5*2.1 In Isotropic Media 

As discussed in Chapter III, the basic requirement for the first 

order Bragg diffraction are the conservations of frequencies and wave 

vectors : 

(5.1) 

¿2 * *1**8 (5*2) 

where the subscripts s , 1, and 2 stands for the acoustic wave, the 

incident and diffracted lights, respectively. In isotropic media, 

where IkJ - (kgl as discussed in Section 3-3, Eq. (5.2) can be rep¬ 

resented by an isosceles triangle as shown in Fig. 3.2. The Bragg 

angle 9 which is the angle of the incident and diffracted lights 

measured from the acoustic wave front because 

[as shown in Eq. (3.25)]. In (5*3) the acoustic wavelength A « — 

has been substituted for UJ « ^ scattering angle f 

measured from the transmitted beam is 29 . 

If the acoustic wave and the incident wave are infinite plane 

waves, the condition in (5*2) or (5*3) in isotropic crystals has to be 

satisfied exactly in order to observe the diffracted light. In the 

cases of finite acoustic and light beams, the phase matching condition 

is not so critical. We have calculated the amplitude of the far field 

diffraction for a rectangular light beam and finite acoustic beams as a 
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function of phase mismatch. The recuits, as shown in Eq. (3,27a), con¬ 

tained the well known pattern due to the phase mismatching. 

The angular spread of the diffracted beam is approximately given by 

ùct 
2« 

kgL 
(5.4) 

where ùa is the angular spread and L is the diameter of the incident 

light. The effect of the finite width of the acoustic beam W to the 

intensity of the diffracted light given by 

2 
/«in k8 ¿0 

IT 

in Eq. (3.45) can be represented by a wave vector of the acoustic wave 
which is no longer well defined but rather has an angular spread given 

by 

2« 

^ - — . (5.5) 
kW 

•fr* (5.5); k is the acoustic wave vector at frequency f . 
39 8 

Cohen and Gordon have considered the case of scattering with 

longitudinal acoustic beams of finite width and have measured the 

angular distribution or the far field diffraction pattern of the 

acoustic beams by rocking the crystal in the incident plane. They have 

come to the same results for the angular spread of the acoustic wave 

vector. 

For the purpose of beam deflection by acoustic Bragg diffraction 

in an isotropic crystal, we want to deflect the diffracted beam through 

an angle AO by changing the magnitude or direction or both of k as 

shown in Fig. 5.1. The parameter N , which describes the resolution 

of deflection devices, is defined by 

N - AÔ 

ACl (5.6) 
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S * ^n'n -n r 

* k0(2n°B)^ 

FIG.12(a)-The wave vector locus and orientation for acoustic deflection 
{*) an isotropic crystal, 
(b) an anisotropic crystal, 
(c) the vector triangle for an anisotropic crystal for the 

special case where the acoustic wave vector is tangent to 
the locus of the wave vector for the extraordinary ray. 
The optic axis is normal to the plane of the figure. A 
preferable orientation would be realized if the optic 
axis was in the plane of the figure and parallel to the 
acoustic wave vector. 
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where A9 is the angle through which the diffracted light can be varied, 

and MX given in &j. (5 .'O ic the a •. :ular spread of the diffracted beam. 

If the acoustic frequency is varied by an amount Af the change in the 

diffracted angle can be found from 32q. (5.3): 

X Af 
AÖ - - . (5.7) 

V COS Ö 
s 

The number of resolvable spots then, by (5.7), (5-4), and (5.6), is 

L A f 
N * - 

V cos 0 
s 

» A f T (5.8) 

where 

L 
T ■ . 

V cos 0 
s 

is the transit time of the acoustic wave across the light beam of a 

diameter. 

The maximum deflection angle AÖ in which the acoustic frequencies 

can be varied and the intensity of diffracted light still remains within 

-4 dB of the maximum intensity, is determined by the equivalent acoustic 

wave angular spread A0 given in (5-5)« By letting A0 - ¿0 , i.e., 

the maximum deflection angle AÖ is equal to the angular spread of the 

acoustxc wave vectors, we find that 

V cos 0 A 
A 4* ^ . 

where A is the acoustic wavelength and X is the optical wavelength 

inside the medium. 
57 

Gordon, in his review paper of acousto-optical deflection and 

modulation devices, has used the same result to point out that in order 

to increase the resolvable spots N , a narrow acoustic beam and a wide 

light should be used in deflectors. 



Bragg deflectors using isotropic crystals have the following limit¬ 

ations. In order to maintain the condition l^l ■ l^l in isotropic 

media, we see from Fig. 5-1» that to increase the angle of the output 

light beam it is necessary to change both the direction and magnitude of 

the acoustic wave vector or to narrow the acoustic beam diameter. In the 

past this has been accomplished in two ways: (l) by acoustic beam steering, 

whereby the acoustic column is launched from a transducer array which gen¬ 

erated an acoustic beam with a direction that varies with frequency, and 

(2) by using a focused acoustic column such that the acoustic beam contains 

k vectors convering a cone of direction. The acoustic "beam steering" 

technique has been reported by Koppel, et alThe technique becomes un¬ 

attractive when the frequency is increased because of the difficulty of 

fabricating the transducer array. In the second system the light is scat¬ 

tered by a different portion of the acoustic column as the Bragg angle is 

varied. The fraction of acoustic power available for deflection is equal 

to N*1 , and therefore the system becomes inefficient as N , the 

receivable spots, is increased. 

5.2.2 In Anisotropic Media 

The formulation of Bragg diffraction of light by acoustic waves in 

anisotropic media has been given by Dixon.The basic requirements for 

the diffraction process still remain the conservations of frequencies and 

of wave vectors as given in Iqs. (5*1) and (5*2). For the cases that the 

polarisation of the diffracted light is the same as that of the incident 

light, the Bragg condition can be reduced the same as that in isotropic 

crystals [Eq. (5•3)] • 
However, when the polarization of the diffracted light differs from 

that of the incident light, the optical birefringence requires JkJ + 1^1 

in order to satisfy the phase matching for the lights in the anisotropic 

crystal. Bragg diffraction with a change in polarisation involves the 

photoelastic constant p^, or p^ if the diffraction is from shear 

waves. The physical picture is similar to the isotropic crystal case as 

discussed in Chapter IV. Later, a simple description of the diffraction 

mechanism will be given in connection with the calculation of the intensity 

of the diffraction light. 

The Bragg diffraction with the change in polarisation can also 

result from longitudinal waves if some of the photoelastic constants such as 
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17 
p^l , p^2 are not zero in the crystal, Dixon has derived and verified 

experimentally the relation for the incident and diffracted angles as a 

function of acoustic frequency and indices of refraction in both quartz 

and sapphire. 

For the purpose of light deflection we wish to consider the special 

case of light diffraction by a shear wave column in an uniaxial crystal. 

The wave vectors of the acoustic wave, the incident and diffracted lights 

are illustrated in Fig. 5*lb. We have chosen the magnitude of the acous¬ 

tic wave vector such that it is tangent to the wave vector surface for 

the extraordinary ray. The sound wave and the diffracted light are nonnal 

to each other. From the triangle of Fig. 5*3« we see that 

»f . ICqV 2n°B , (5.10) 

' t', .. 

where kg = 2nfQ/vs is the acoiwtic wave vector at the center frequency 

f0 ' * 2n/^o is the °Ptical vector in vacuum and B is the 

birefringence of the crystal. The toalue of B can range from n° - ne 

for light waves traveling in a plane normal to the optical axis to zero 

for light waves traveling in a plane containing the optic axis. It is 

clear from Fig. 5.1b and 5.1c that a change in the direction of the 

deflected light vector from kg to can be obtained by a change in 

the magnitude of the acoustic wave vector from kg to k' . Thus we 

can deflect the optical beam by varying the frequency of a well-collimated 

acoustic beam which remains fixed in direction. 

The maximum deflection angle AO and the number of resolvable spots 
m 

for this deflection system can be found as follows. The basic mechanism 

for Bragg diffraction by acoustic waves either in anisotropic or isotropic 

crystals is identical. We car. use the same approach as discussed in 

Chapter III to calculate the intensity of the diffracted light. For 

simplicity, a two-dimensional case will be considered here. As shown in 

Fig. 5.2, a column of shear waves with a width W is propagating along 

the Xj-axis of an uniaxial ck^t|l. Let the shear waves be represented 

by the strain (emit the e * term) 

.j(kfl4Akg) xx 
(5.11) 
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FIG. 5.2—Shear wave diffraction in anisotropic media. 
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where kg = (Sn/v^f^ , and Aks indicates the change in kg as the 

acoustic frequency is varied from the center frequency f^ by an amount 

Af . The incident light with the electric field E1 polarized in the 

*1 " x2 P^ane incident at an angle with respect to the acoustic 

wave front. Omitting the e^ term, can be written as 

^1 e 

sinO^ cos01 x„ 
(5.12) 

where is the amplitude of E^ , k^ = (2jr/x)n° is the wave vector 

for the ordinary wave in the crystal. Under the small diffraction 

assumption as discussed in Chapter III, the dipole source for the dif¬ 

fracted light is determined by the product of the incident field 

and the change in the dielectric constant by the acoustic waves via the 

photoelastic effect. 

The induced dipole for the diffracted light in this case can be 

determined geometrically similar to that shown in Fig. 3.2. Due to the 

natural birefringence of sapphire, the index of refraction of the un¬ 

strained crystal seen by the incident light is an ellipse as shown in 

Fig. 5*3a. The direction of the induced dipole Dx in the crystal is 

shown parallel to the ordinary incident light field E1 . The applied 

sinusoidal function of shear waves at frequency Wg oscillates the 

ellipse of the index of refraction seen by the incident light as shewn 

in Fig. 5.3b. A cross polarized dipole Dg is then produced by the 

shear waves; Dg is the dipole source for the extraordinary diffracted 

light. Because of the natural birefr■ngence in sapphire, the wave 

vectors of the diffracted and incident light are required to satisfy an 

extra phase matching condition as illustrated in Fig. 5.1b. The calcu¬ 

lation for the change in the dielectric constant due to the shear wave 

component is identical to the isotropic case. It is found that 

A€5 " " €1€3 p55 s5 

The magnitude of the dipole source at a point (x',Xg') within the source 

region, which is the intersection of the acoustic beam and the incident 
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(a) Unstrained uniaxial crystal. 
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(b) Strained uniaxial crystal. 

3--Induced dipole in an uniaxial crystal by 
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light beam, can thus be written aj 

-j(ks+Aks)x' + jk1 sin©^^ - cosO^'g 

^ = "€1€3 p55 S0 e 

(5.13) 

In the far field region, the total field of the diffracted Eg , which 

is now polarized normal to the incident plane, can be calculated by 

integrating over the source region: 

2cos9, 

2cos9, 

w 
2 

f f dA2^Xl,X2^ 6 

w 
' 

.jkg sine2(x1-xp-Jks cosögixg-Xg') 

(5-14) 

where kg = (2«/x)ne is the wave vector for the extraordinary wave. 

Substituting (5*13) into (5.14) yields 

1¾ - V3 slAl 

2cosô. 

w 

2 

I 
-j(kc,+Akc-ki sinO^-kg sin9g)x^ 

dXg c 

2cos9. 

w 
2 

-3(^ cos91 - kg cos9g)xg 

Let 

-jkg sin9gX1 - jkg cos9g Xg 

• (5.15) 

k + Ak - kn sin91 - k^. sin9 =■ Nn sin9 
s s 1 1 c Z c 

(5.16) 

k^ 0089^ - kg cos9g =* Ak cos9g (5.17) 
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in Eq. (5•15) and we have 

E2 « A20LW 

sin(Ak sinög 2-q^q^) sin(Ak cosOg |) 

Ak sin9, 
2 2cosÖ, Ak cosO, 

2 2 

sin02x1 - jkg cosÔgXg 

(5.18) 

where = A1 is the maximum amplitude when the phase 

condition is exactly matched at center frequency f. , i.e., Ak » 0 
U S 

and so Ak * 0 . It should be noted that Eq. (5.I8) is similar to 

Eq. (3.27a). The spot diameter of the diffracted beam is determined by 

sin(Ak sinô, 
2 2cose -) 

Ak sinO, 
2 2COSQ, 

and the bandwidth of the diffracted beam is determined by 

sin(Ak cose2 

Ak cos^ 

where Ak is given by Eqs.’ (5.16) and (5.17) and has a geometrical 

representation as shown in Fig. 5.4. The bandwidth of the diffracted 

light can be calculated from this geometrical representation. From 

Fig. 5-4 at the center frequency fQ , we have 

‘s = ^ tan ®l (5.19) 

As the acoustic frequency increases to f. + Af k goes to k -f Ak 
u ^ s s 
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FIG. 5fleowetrical represenUtion of Eqs. (5.16) and (5.17). 
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where 

•Ince usually kg » ûk . Fran Eqs. (5-20) and (5.I9) we have 

U«lng ûkB/kB - Af/f0 and Eq. (5.19), Kq- (5-21) can be written a8 

In tenu of index of refraction and birefringence of the cryatal B , 

we have 

tan 0 

Equation (5*22) can finally be expressed as 
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From the far field diffraction pattern as shown in (5-1Ö)* it is known 

that the bandwidth of the diffracted light at the -4 dB point is deter¬ 

mined by the condition 

Ak cos 02 * » g- . (5.25) 

From Eqs. (5*24) and (5-25)» we obtain the bandwidth of the system as 

(5.26) 

Substituting fQ (v8/x0)V2n0Bl from (5.10) into (5-26) we find that 

2Af « 2 (5.27) 

It ia noted that the total amount of frequency change ùf is inde¬ 

pendent of fQ and is inversely proportional to . The improve¬ 

ment in the bandwidth for the anisotropic system over that for the 

isotropic system can be realized by taking the ratio of Eqs. (5.27) and 

(5*9)* Assuming the same acoustic beam width W for both systems, the 

ratio of bandwidth, becomes approximately 

(B«d»l4th)iiotroplc 

For a I.75 nm wide acoustic beam in sapphire, the bandwidth of scanning 

a Ne-He gas laser (Xq ■ 6328 X) has been improved by a factor of 12. 

In the next section we will demonstrate experimentally this scheme 

in a standard Bragg diffraction cellJ with shear waves in sapphire and a 

Ne-He laser as a source of light. 

• Y Uq A 
(5.28) 
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5.2.3 Experimental Resulta of Contlnuoua.Uaer Beam Scanning 

We have demonstrated the system of continuous deflection of laser 

beams in a standard Bragg diffraction cell as discussed in Section 4.2 

with shear waves in sapphire and a Ne-He laser as a source of light. 

Sapphire is a negative uniaxial crystal with n° * 1*765 and bire¬ 

fringence B = O.OO8. The shtar waves travel along the x^-axis of 

the crystal with a velocity of 5*05 - 10^ cm/sec which is the character¬ 

istic velocity of the slow shear wave.^1 The light ray was normal to the 

optic axis with the input wave as the ordinary wave (k^ » nQ kg) and 

the output as the extraordinary wave (kg = ng ICq) . The center fre¬ 

quency f0 of the shear waves as given in Eq. (5*10) is 1*56 Gc for 

sapphire. The angle external to the crystal of the input wave, as given 

in Eq. (5*19)> can be approximated to be 9* * n° n°B ; for sap¬ 

phire 0^ » 9*66° . The output angle external to the crystal of the 

diffracted beam at f0 is also with respect to the transmitted 

beam. The change in output angle ASg with respect to the change in 

frequency Af can be found from the relation that Akg = an<* 

n AÖ, 1, 
-Z—=- = — =» I.06 X 10 rod/Mc 
Af V 

s 

in sapphire. The experimental results are shown in Fig. 5*5 where we 

have plotted (a) the change in angle of the diffracted beam versus 

acoustic frequency with all other parameters held constant, and (b) the 

relative Intensity of the deflected beam. 

The measure value of neA0g/Af is I.07 X 10"^ rod/Mc. The ratio 

of l/l a„ is the intensity of the deflected beam relative to the maxi- max 
mum intensity obtained by adjusting the angle of incidence for the input 

light. The actual intensity of the deflected light did decrease with an 

increase in acoustic frequency, but this was a result of the decrease in 

sound intensity at the higher frequencies. The plot in Fig. 2 gives a 

measure of the scattering efficiency for a constant value of sound power. 

The ratio of the deflected light intensity to the intensity of the in¬ 

cident beam can be calculated from Eq. (5.I8). It depends on the 

material constants and upon the value of p^^ ; p^^ in sapphire* has 

been measured to be O.05. 
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Tne bandwidth of the system can be estimated from Eq. (5.26). With 

a beam diameter W = I.75 mm , which was measured by the optical probing 

technique as discussed in Section 4.4, we have 

2Af 

- ~ 0.4 

f0 

and 2Af = 625 Me which is slightly larger than the value shown in 

Fig. 5.5. The measured value for the bandwidth is 550 Me about the center 

frequency f0 = I.56 Gc. There we see that the acoustic frequency can be 

varied by ±275 Me without appreciable degradation of the diffracted 

light intensity. The value of N can now be calculated. Assuming that 

we can tolerate an acoustic attenuation of 3 dB across the light beam 

diameter D , D can be 1.2 cm since the attenuation in sapphire at 

16OC Me (room temperature) is approximately 2.5 dB/cm. From this we have 

T * 2.1 usee and it follows from (5.8) that N = II50 . 

The ratio of 2Af/f0 can approach O.5 or even more by reducing the 

acoustic beam width W . The bandwidth 2Af can be greatly increased 

if one can find a material with a high acoustic center frequency f 

Ignoring the limitation in the bandwidth of acoustic transducers, and 

assuming that 2Af = fjz and that the acoustic attenuation is 3 dB in 

a distance equal to the diameter of the optical beams, ve would like to 

consider the requirements for a material that would allow one to scan 

through 10 spot diameters. 

The constants for LiNbO^ have been measured with n° » 2.286 , 

B - .086 , and vs 3.6 x 105 cm/sec .62 The value of f is 3.6 Gc 

and therefore Af » 1.8 Gc . We require a r of 5-5 nsec, a length of 

1.8 cm and a loss O.55 dB/psec which is obtainable in LiNbO at 77°K.^ 

If we tilt the plane of the optical beams so that B is reduced to a 

value of 6.6 X IO'3 we find that fQ * 1 Go . lhe acoustic loss at room 

temperature is 0.3 dB/usec and the value of r for 3 dB total loss is 

10 psec. The crystal length would be 3.6 cm and the system would deflect 

the beam through 5000 spot diameters. 

One of the disadvantages in the acousto-optical deflection devices 

is that the intensity in the deflected beam is rather weak. For example, 
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the c-factor of sapphire, which is defined as the ratio of the inten¬ 

sities of the deflected and the incident lights for 1 milliwatt acoustic 

power in the crystal, is -55 dB. By increasing the acoustic power in 

the crystal to 1 watt, the intensity of the diffracted light becomes 

-25 dB below the incident beam. For sane practical application, this 

value may be acceptable. Another practical difficulty is the electron¬ 

ically tunable high Q circuit to drive the transducer, which remains to 
be solved. 

5.2.4 Two-Dimensional Deflection of Laser Beams 

A schematic diagram of a two-dimensional beam deflector Is shown 

in Fig. 5.6. Since the bandwidth Af is determined only by the width 

of the acoustic column that the light beam travels, the acoustic wave in 

the y-deflector can be a thin sheet which is wide along the x-direction 

to collect the deflected spots from the x-deflector. Figure 5.7 shows 

the relations of k2 , ks2 and k^ in the y-deflectors. The kg , 

which is the wave vector of the deflected light in the x-deflector, is 

the incident wave vector for the y-deflector and is scanning along the 

z-axis of the y-deflector crystal. The kg2 is the acoustic wave vector 

propagating along the y-axis of the y-deflector crystal as shown in 

Fig. 5.7* The k^ is the wave vector of the deflected light in the 

y-deflector. Hie resolvable spots for this two-dimensional deflector is 

N = (Af t)2 , 

where Af is the bandwidth and t is the transit time that the acoustic 

wave travels across the light beam. Using sapphire as a deflector N 

is in the order of 10 and t * 2 psec . Although the resolvable spots 

N and the transit time i are quite attractive, yet the intensity of the 

diffracted light is the major limitation for practical applications. 
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CHAPTER VI 

CONCLUSIONS 

In this study the theoretical and experimental investigations of 

microwave shear waves in solids have been described. 

The difficulty of generating efficient shear waves at microwave 

frequencies, which was one of the reasons that shear waves have not 

been extensively utilized in microwave acoustic devices in spite of 

their potentials, has been overcome. The generation and propagation 

of microwave acoustic waves in LiNb03 crystals, where the large piezo¬ 

electric effect has to be included, have been studied theoretically. 

The directions of particle displacements, the velocities and the 

electromechanical coupling constants for each of their propagating 

modes nave been derived. Experimental measurements of the velocities 

and the coupling constants on single surface excitations in LiNbO, 

rods and on thin disk transducers bonded on delay media have been 

carried out. The measured values were in good agreement with the 

calculated values based on published constants. A scheme of efficient 

microwave shear wave generation by mode conversion, through which 

virtually the full efficiency available for longitudinal wave generation 

can be applied to shear waves, has been discussed. 

Because of the ability to generate efficient microwave shear waves 

in solids, the experiments of Bragg diffraction of light from these 

waves have been successfully accomplished. The unique characteristics 

predicted by shear wave diffraction theory have been utilized to improve 

the optical probing techniques of acoustic waves in solids. The experi¬ 

mental results of acoustic beam mapping determined the acoustic energy 

profile and helped identify the type of acoustic waves generated in the 

surface of a LiNbO^ rod by normal or tangential electric fields. 
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The mode conversion efficiency of the YAG mode converter was measured 

by a laser probe. In addition, Bragg diffraction of light by shear 

waves has been used to observe directly the acoustic birefringence in 

a [llO] YAG rod. The techniques for experimentally determining the 

orientation and ellipticity of shear waves generated from an experi¬ 

mental transducer have been demonstrated. 

Finally a scheme of continuous laser beam deflection based on 

Bragg diffraction by shear waves in optically anisotropic media has 

been described. The experimental demonstration of the continuous 

deflection of a laser beam through an angle of 4° by tuning only the 

frequencies of a finite shear wave column in samphire has shown the 

possibility for high speed and high resolution optical deflectioif 

devices. The improvement of the bandwidth capacity of the anisotropic 

devices over the corresponding isotropic devices has been shown to be 

greater than two orders of magnitude. The possible schemes for two 

dimensional beam deflection have also been included. 
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appendix 

CALCU1ATI0NS ON SHEAR WAVE BONDS 

Using the transmission line model as shown in Fig. 4.6, we have 

derived the expressions for the reflection and transmission coefficients 

of shear wave bonds between delay media. The calculations are as 

follows. 

The acoustic load rod is represented by a resistor Z cor- 
L 

responding to its characteristic acoustic impedance for shear waves. 

The bond film itself becomes a lossy transmission with (complex) 

electrical angle 9 and characteristic impedance Zq . 

In the most general case, these shunt impedances are allowed to 

be parallel combinations of capacitive, inductive, and resistive ele¬ 

ments. Also the resistive elements are allowed to be frequency-dependent 

through a simple power law, 

R(œ) = R (-)7 
0 'oJq7 

When only the magnitudes of the reflection and transmission coefficients 

are of interest, the impedances Z1 and Z2 are taken to be purely 

resistive. 

The transmission line section itself has an electrical thickness 

9 = k -t 
s 

where ks is the acoustic propagation constant in the bond film. We put 

k. = ß - JO. 

132 - 

! 



The real part ß is given by 

* 

ß ) 

where v is the shear wave velocUy. For convenience, the imaginary 

part a is specified in terms of a Q (at ü>0 ) and a power law n , 

a 

The characteristic impedance of the transmission line is also 

complex and is given by 

ksC 

O) 

where C is the corresponding elastic stiffness constant. The imaginary 

part of Zq ) which is small i’' the case of high Q , may vary with œ 

The characteristic acoustic impedances Z and ZT are similarly calcu- 

lated from acoustic parameters C and v for the corresponding acoustic 

rods. In the rods, a equals 0 so that ZT and Z are real. 
L s 

The stress reflection and transmission coefficients are now easily 

0 for a stress wave incident found. The reflection coefficient at z 

from the left is 

r = 

z, - z 
in s 

z, + z 
in s 

- 133 - 



where is found by the usual impedance transformation, 
1 

? 
J0 

yZQ + J tan 9 

1 + J(Z^/Z0) tan 0 

with Zq,0 complex, and 

ZL Z2 

ZL+Z2 

The stress at z = -t is easily found by transforming from z * 0 

through the transmission line and is given by 

+ T 

where 

T 
± 

2 

±Jksi 

and Tinc is the value of the stress wave which is incident from the 

left of z = 0 , evaluated at z = 0 . The stress transmission 

coefficient at z = -t is 

T A 
Tinc 

♦ 

1 

i 

f 
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For the calculation of reflected and transmitted power (neglecting 
phase}, we have 

pB = H' 

pt = - M2 
ZL 

" re PB represents the fraction of the Incident power reflected at 

0 ; and PT represents the fraction of the Incident power transmitted 
to the acoustic load rod. 
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