
i ;

rnmm m
■±. .. :;*■*■.

t»«t» H. Mwlr
T. I. Ctttiwi. Jr. (Cwipiiw AM«|4t i

Otvitf J. f'wW (Komi) J
E4»^ kkfMoff (RADC) j

Kirk SMtl«r (C«npiMr Amoc.)

TiCHNICAL REPORT HO. RAOC-TR-4l>34T
^ Novmbcr 19M

Thta Jar—rt has bcM appiovd
lot pdbllc ivlMM aad Mto; Its
4iMtB)atlon is ullialtod.

-3®

iil®'

, Rk M Air D«v«lppm*nt C«nt«
Air F«re# Syit«m« Commond

RHf^ Air Fore# Bo##, N#w York

Reproduced by iKe
CLEARINGHOUSE

lo^ fede^af Sc*enttf'C & Technical
Information ‘ipnngtieid Va 2?15l

^„,onr' n(^

-L^

PROGRAM TRANSFERABILITY STUDY

George H. Mealy
T. E. Cheatham, Jr. (Computer Assoc.)

David J. Färber (Rand)
Edward Morenoff (RADC)

Kirk Sattley (Computer Assoc.)

This document has been approved
for public release and sale; its
distribution is unlimited.

MAINLINE 11-68

FOREWORD

This report, accomplished under Project 5581, Task 558102, is the result of a
series of two-day meetings over a six-month period among a group of consultants under
contract to Rome Air Development Center, a representative of the Rand Corporation,
and a representative of RADC. The chairman of the group, George H. Mealy, is an
independent consultant; T. E. Cheatham, Jr. , and Kirk Sattley are with Computer
Associates; David J. Färber is with the Rand Corporation; and Edward Morenoif is with
the Information Processing Branch of RADC.

This group was formed at the request of the Department of Defense (DDR&E), Dr.
James Ward, for the purpose of determining what action, if any, could be taken in the
immediate and far future to reduce the problems associated with transferring computer
programs among computers of different size and manufacture. The study devoted
itself only to the software aspects of transferability. There is a hardware aspect which
has yet to be addressed and where some promising approaches need investigation.
This effort was motivated by the continued interest and encouragement of Dr. Ward.

The responsibility for the content of this report remains solely with the members
of the study group and does not necessarily reflect the views of their respective or¬
ganizations. The authors wish to acknowledge the early contributions of Joseph W.
Smith and Stephen Warshall to the study group. Minor editing of the report was ac¬
complished at RADC without specific concurrence of the authors.

This report was presented in June 1968 at a Department of Defense meeting at¬
tended by representatives of DDR&E, DCA, ARPA, Army, Navy, Air Force, Marines,
Joint Chiefs of Staff, and the Intelligence Community.

This technical report has been reviewed by the RADC Foreign Disclosure Policy
Office (EMLI) and the Office of Information (EMLS) and is releasable to the Clearing¬
house for Federal Scientific and Technical Information.

This technical repo« has been reviewed and is approved.

Chief, Info Processing Branch
Intel & Info Processing Division

Approved:
yfjmLZ J. DIMEL, Col JATES J. DIMEL, Colonel, USAF

Chief, Intel and Info Processing Div

FOR THE COMMANDER:
irvinOtgabelman
Chief, Advanced Studies Group

ABSTRACT

This report treats the problem of transferring programs from one operating
environment to another with the expenditure of a small fraction of the initial program¬
ming development time and cost. Programs considered range from quite small ones,
such as routines for evaluating arctangents, to large and complex systems, such as
compilers, data management systems, or command and control systems. The initial
and final environments may be slightly or highly dissimilar with respect to machines,
machine configurations, or operating systems and languages used.

The problem stated above is not solved by the current technology, even when the
initial program development makes use of a standard version of a single, higher level
language. Current languages and operating systems are such that in order to adapt n
program to a change in environment it is necessary to make changes in the initial form
of the program itself rather than merely to recompile it. The two principal reasons
for the necessity of making such changes, which may require very significant expendi¬
tures of time and programming effort, are:

• The current technology encourages, and usually forces, the programmer to
make implicit in the form of his program many details of its initial environ¬
ment, such as word length, character code, services performed by the
operating system, and the like.

• The structure and representation of the data accessed by the program is
describable in machine-processable form only to a small degree. Again,
the programmer is encouraged or forced to make this description implicit
in the form of his program.

In order to transfer a program from one environment to another, reprogramming
is required to the extent that differences in the two environments must be reflected in
changes to the program. Particularly in the case of larger, more complex programs,
such changes can currently amount to an almost complete reprogramming effort.

Despite th*s situation, the current sttte-of-the-art permits an attack on the trans¬
ferability problem on several levels:

• By the use of appropriate methods of administrative control of the program¬
ming process (including documentation), programs to be written using exist¬
ing languages and systems can be transferred with materially less effort
than is typically required at present.

Ui

• Based on the current 'Third Generation" systems, languages, and program¬
ming technology, extensions can be developed in such a way that programs
written for the resulting systems can be transferred with significantly less
effort than would be the case using purely administrative control.

• By relaxing the above restriction requiring the use of the existing base of
operating systems and languages, a programming and operating environment
can be created which will substantially eliminate, for most cases of practical
interest, the problem of program transfer.

This report makes recommendations on all three levels.

iv

TABLE OF CONTENTS

< ,
N:* , , ,, ,,,,

Section Page

I. THE PROBLEM . 1

1. Direct Program Transfer. 2

2. Use of Higher Level Languages. 3

3. Administrative and Management Solutions. 5

U. THE INADEQUACIES OF THE CONVENTIONAL APPROACHES. 7

1. Explicit versus Implicit Specification. 7

2. Regularizing the Behavior of Programmers. 8

3. Degree of Representational Commitment and Other Kinds
of Binding. 9

4. Programming Technology. 11

ID. PROPOSED TECHNICAL APPROACH. 13

1. Attack Level A: Administrative Control. 13

2. Attack Level B: Extensions to the Existing System Base. 15

3. Attack Level C: Advance^ Transferability Environment. 17

IV. SCOPE OF PROPOSED EFFORT. 21

V. CONCLUSIONS AND RECOMMENDATIONS. 23

Appendices

I. FACTORS INFLUENCING DIFFICULTY IN TRANSFERABILITY. 25

U. DATA DESCRIPTION. 27

HI. DATA META-DESCRIPTIONS. 29

IV. OPERATING SYSTEM INTERFACE. 31

v/vi

I. THE PROBLEM

The problem addressed in this report is that of transferring programs from one
computer system or operating environment to another at a fraction of the initial pro¬
gramming development time and cost.

The programs considered range from simple mathematical routines such as those
for the elementary functions to application programs written in some higher level
language like FORTRAN or COBOL, and on to complete sub-systems or operating sys¬
tems such as compilers, data management systems, command and control systems,
and the like.

The initial and target computer systems and operating environments might be
slightly to highly dissimilar with respect to machines, machine configurations, or
operating systems used. Thus the transfer of programs from some particular com¬
puter system to another within the same "family," which differs in such features as
the amount of directly accessible high speed memory, speed of central processor,
types of peripheral equipment, and so on will be considered. The report also will
discuss the transfer of programs between completely different computer systems
where, for example, even the means of representing information might be different
(e. g. , binary 36-bit "word" to binary 24-bit "word," or to decimal 10-digit "word, "
or to 8-bit ''byte, "). *

There are other problems in the development of programs and programming sys¬
tems which are directly related to the problem of transferring programs but which are
of a somewhat smaller degree of difficulty. For example, the problems of modifying
and extending some extant program, as well as the problems of maintaining and up¬
dating a program system, are very strongly related; facilities which will ease the cost
of transferring programs should also significantly affect the cost of program mainte¬
nance and updating, as well as modification and extension. Updating, here, refers
to both software and hardware updating. Software updating might include changes to
algorithms or data representations to improve performance, adjustments to software
to match hardware field modifications, and so on. Hardware updating might include
replacement of components with faster or more reliable components, addition of more
high speed memory, addition of new kinds of peripheral devices. It is also noted that
facilities which provide for the inexpensive transfer of programs will also facilitate the
initial design and development of program systems and should result in decreased time
and cost for this activity as well, especially for large program systems.

Th.- |>rin<'ipal fac-lorn whirh operate to imped«- tranuferabilily are linted in Appt-ndi I.

1

There follows in the remainder of this section a discussion of a number of attempts
to solve or at least alleviate the problem of program transfer; in the next section we
will consider the basic inadequacies in the facilities available: the basic reasons why
the current programming technology does not "solve" the problem.

There have been three basically different approaches to solving this problem:

• One approach is to attempt to transfer "ones and zeros," that is, to somehow
"decompile" a binary, decimal, or even symbolic machine language program,
and to generate coding for some new system either automatically or semi-
automatically.

• A second approach is to insist on the use of some higher level language with
the expectation that by moving a compiler onto the new system, other programs
can be transferred to it merely by recompiling them.

• The third approach is the administrative or management solution which ranges
from the insistence on replicating functionally identical hardware configura¬
tions to so constraining the behavior of programmers that their programs are
easily transferable.

These will now be considered in somewhat more detail.

1. Direct Program Transfer

There have been a number of attempts to develop "recompilers," that is, pro¬
grams which take a binary, decimal, or symbolic program for one computer system,
"decompile" it, and then generate coding for some other system, either completely
automatically or semi-automatically, with the expectation of programmer intervention
to handle certain ,fhard" cases. With the exception of certain small or rather special
programs (e. g. , those generated by a compiler from a higher level language version
in the first place) this attempted solution has not met with much success.

This, of course, is not surprising since, v/ith the exception of certain highly
restricted situations, this solution is theoretically impossible. The behavior of
certain components which depend upon timing constraints or run-.lme data values
cannot be determined a priori, thus clearly denying a complete solution.

Nor has this solution proved feasible in a practical sense. If one attempts to
model the two computer systems at the gate level, the combinatorics get completely
out of hand. Further , there is no effective theory of systems which might provide a
host formalism permitting some practical or partial solution to this problem. Current
formalisms do not effectively contend with such issues as timing, the finite nature of
computers, hierarchies of storage, and so on.

2

.1

2. Use of Higher Level Languages

This "solution" has enjoyed considerable appeal; however it has not lived up to the
expectations advertised for it. Some difficulties have arisen from the fact that in most
cases a completely standard or universal language (and language processor) is lacking.
This, in turn, is related to the fact that there exists no effective theoretical framework
to permit formalizing the structure (syntax) and meaning (semantics) of programming
languages, thus denying the possibility of any precise standard language model. Other
difficulties arise from the fact that each of the higher level languages available ac¬
comodates only a narrow band of the spectrum of programs to be transferred. Let us
consider briefly three higher level languages which have been implemented for a num¬
ber of computers and for which there are "standard" versions: COBOL, JOVIAL (J-3),
and NSA-ALGOL.

COBOL

The development of the COBOL language and the development of processors
for COBOL programs on virtually every major computer system must be viewed
as a very significant achievement. COBOL was one of the first language systems
to provide separate facilities for the description of data and data structures ar d
for the manipulation of these data and structures. This separation is of signi icant
importance in that it encourages the explicit description of data rather than the
implicit description which is inherent in most programming languages. COBOL
is still about the only language system which permits any kind of environment
specification. It seems clear that the use of COBOL has pexmitted the develop¬
ment of a number of application programs and even a few program systems which
do enjoy machine independence and which are thus transferable. The only real
objection to COBOL is that it is relatively limited - the problems to which it is
applicable fall into a rather narrow band of the spectrum: typically problems which
trace their origins to unit record equipment. It must be remarked, of course,
that even though the band is narrow there are a relatively larger number of actual
applications for which COBOL is quite appropriate. No criticism of COBOL for
its "narrowness" is intended. This was, after all, a specific and quite reason¬
able design goal. Indeed, COBOL would probably not have achieved the level of
machine independence which it has, had its designers attempted to make the
language more general than it is.

JOVIAL

JOVIAL has been offered as a language which is appropriate for a larger class
of application programs than COBOL and, indeed, as a language appropriate for
programming complete systems. JOVIAL also has facilities which permit the
separation of data description and data manipulation, although these facilities are
rather more awkward am. in many ways less general than those available in
COBOL. JOVIAL, however, has only a primitive facility for dealing with the
environment in which a program might run, that is, one can specify the other

programs and data which will silways be available when a given program is to run.
The standardization of JOVIAL, in the sense that it permits a truly machine-
independent program specification, has not been as successful as has been the
case with COBOL, primarily because its COMPOOL facility is not a part of
standard (J-3) JOVIAL. It seems clear that part of the reason for this is that
JOVIAL attempts to cover a wider spectrum of problems. It does in fact do this
in the sense that there are more data types and a better ability to "manipulate
bits"¿ it is exactly this generality which considerably weakens its ability to permit
explicit specification of the environment. This specification thus tends to be
implicit. Further, whereas COBOL does have a facility which amounts to provid¬
ing for explicit storage management, JOVIAL has relatively little except for some
rather primitive provisions for program and data overlay. It is often in this area,
where the specification becomes essentially implicit, that the inability to transfer
programs derives.

NSA-ALGOL

NSA-ALGOL is an interesting case, as it is a language which was developed
specifically to be machine independent. Indeed, in the original implementation of
the language there were two different machines, either of which could be chosen
as the compiling machine for a program written in NSA-ALGOL and, at Uie time
of compilation, any one of four quite dissimilar machines could be chosen as the
target machine which is to execute the compiled program. The target machines
vary in word size as well as in other characteristics.

Like COBOL, NSA-ALGOL was developed with a narrow band of the complete
spectrum of programs in mind, in this case programs primarily concerned with
numeric computation. As basic entities the language has only numeric and boolean
quantities plus arrays of them. Experience has shown that for "ordinary" numeric
computations NSA-ALGOL does indeed provide machine independence so long as
the accuracy of the results is not critically dependent upen the word size of the
target computer, the radix in which numbers are represented, or the technique
employed for round-off.

NSA-AIX30L also has a fairly primitive data description facility through its
provisions for "table" declarations. Theeo include the packing of several fields
of a table into one computer word. However, because the declaration facility is
relatively weak, programmers resort to techniques such as defining what the
compiler thinks are two different tables and then basing these two tables at the
same location, hoping thereby to have an item in one of the tables really be an
n-tuple of items of the other table. However, the table item allocation mechanisms
employed for the four different target compxiters are of necessity somewhat dif¬
ferent, and will often result in differences in the actual overlaying of items, thus
inducing differences in the behavior of programs referencing o\erlayed tables.
That is, the table declarations do not provide a true extension to the language

4

which permits it to deal with n-tupies. Programming "tricks" which attempt to
endow it with this ability often lead to machine dependence.

The preceding discussion of three languages illustrates their particular short¬
comings from the point of view of transferability. Such defects also appear in other
languages, e.g. , NELIAC and PL/I. The next section will discuss more basic issues:
It will develop that these cannot be resolved by mere addition of features to languages
of the current varieties.

To summarize: The approach of using some higher level language and expecting
automatic transfer of programs by simply compiling them for a new machine does not
provide a solution to the problem. While there are several languages which permit
relatively simple kinds of programs to be transferred, these languages do not cover a
sufficiently wide band of the spectrum of programs.

3. Administrative and Management Solutions

One kind of management solution to the problem of permitting transferability of
programs is that of insisting on duplicating, at least functionally, a given hardware
configuration. Indeed, on the surface this seems to be a simple and complete solu¬
tion. However, this "solution" has a number of subtle problems in addition to the
rather obvious problem of favoring one manufacturer, an important factor in cases of
large procurements.

First, it turns out to be surprisingly difficult to obtain and maintain truly identical
configurations. Field modifications, slight differences in behavior due to variations
in timing, differences in mechanical devices, and the like all induce differences in a
given configuration. These can usually be gotten around by careful administrative
control and an insistence on programming techniques which do not "push the equip¬
ment to the limit," but depend only upon expected or average performance.

A more serious difficulty is that many installations have a certain percentage of
their problems which are "standard" with the remainder being problems which are
iminue to them. These unique problems in turn often require rather different hard¬
ware configurations than those required for the "standard" problems. Indeed, some¬
thing as simple as adding one peripheral device to a "standard" configuration can
induce considerably more in the way of change to that configuration than is obvious
on the surface. For example, to deal with the new device the operating system will
require extra core memorj space for the "books" it must keep relative to the device.
This, in turn, induces differences in the operating system's allocation to memory,
which, in turn, induces differences in the memory actually available to user programs.

The notion of a "family" of computers with models ranging over a couple of orders
of magnitude in price and somewhat more in performance, but with "upward" or "down¬
ward" or "complete" compatibility has also proved to be less of a panacea than was
expected a few years ago. Things like basic cycle time, basic core sizes, availability

of drums, discs, or just tapes as back-up stores, and such, have, with conventional
programming techniques, led to radically different strategies of program construc¬
tion (particularly for "system programs"). The resulting differences render programs
non-transferable in any practical sense. For example, a data management system
using tapes only will very probably have a strategy of employing secondary storage
which would be highly inefficient if utilized directly with a drum and discs replacing
the tapes.

Another kind of management solution which has often been attempted is that of
setting standard specifications on programs so constraining the behavior of program¬
mers that their products will be completely modular with very precise functional
specifications and clean interfaces. The successful application of these standards is
clearly useful in increasing the ease with which programs can be transferred. It does
not, however, solve the problem due to a number ii reasons. The successful applica¬
tion of a complete set of standards implies that they be documented and rigidly enforced
throughout the program development, debugging, ani improvement. It should be
realized that even if such standards are enforced, the difficulty of transferring will
stil1 be serious.

II. THE INADEQUACIES OF THE CONVENTIONAL APPROACHES

In the previous section the problem was discussed and several specific approaches
which have been tried in the past were described. In this section, in general terms,
the basic reasons why the current programming technology does not permit a "solu¬
tion" to the problem will be presented. We will discuss four basic kinds of difficulties
and suggest, in a general way, the kinds of language and/or system design, language
and/or system development, and in some cases, research needed to overcome them.
The detailed proposals which form the conclusion of this report appear in later sections.
The four areas of difficulty are: (1) the lack of facilities for explicit specification;
(2) the lack of constraints which would serve to regularize the behavior of program¬
mers; (3) the level and degree of representation commitments and binding required by
current languages and systems; and, (4) the lack of specific elements of programming
technology or failure to properly utilize the available technology.

1. Explicit versus Implicit Specification

The fact that the specification of many entities is implicit rather than explicit is
one of the most important single factors making transfer of programs either difficult
or impossible. For example, using machine language to program a function concerned
with manipulating the elements of some data set requiring only a few bits for their
representation, in the interests of storage efficiency such items are often packed
several per word, with the result that the specification of these items ends up being
implicit in the shift constants and masks used to fetch or store them. This kind of
implicit specification of the allocation and accessing of data, even with excellent
program documentation, generally oroduces a nightmare if modification of item sizes
or transferal of the program to another computer is desired later.

Of course there are many languages and/or systems which have explicit data
declaration facilities and which handle the fetching or storing of data values via an
assembler or compiler generating the detailed coding from explicit data descriptions.
With such facilities, changes in data descriptions can be reflected in programs by
simple re-assembly or re-compilation. However, even with respect to data, the extant
facilities in languages and systems such as COBOL, JOVIAL, PL/I, NSA-ALGOL,
CL-I, CL-n, and the like do not provide anything approaching a complete solution.

First, there is the question ofthe generality of data structures which can be
handled. COBOL really only knows about files, records, and fields of records;
JOVIAL and NSA-ALGOL only know about "tables" and "arrays"; PL/I has the defini¬
tion of a data structure within a program rather than as l separate component.

Second, there are many other "facts" about data required bj certain programs
which almost always end up being handled implicitly. For example, a given data set

generally has many different representations. It might appear on one or more input
media: cards, tapes, teletype, and so on. It probably has several internal representa¬
tions: high speed core, back-up store, disc file, and so on. Also, it probably has a
number of output representations: printer report, various forms of dumps, a graphical
display, and the like. All these forms must be specified explicitly if all the processors
which transact with the data set in its various forms are to be transferable. For each
representation of a data set there may be a variety of methods of access to a given
element. However, present data description facilities generally permit only one access
method; the programmer needing (for reasons of some actual or imagined efficiency)
other methods of access must arrange for diese implicitly using tricks like that of
overlaying "two" tables as discussed before with NSA-ALGOL. There is also the
question of the data description Itself. Clearly, to a data input mechanism, or to a
compiler, or to a file maintenance mechanism, this description is data and thus re¬
quires a description.

The purpose here is not to write an essay on data and data descriptions. The in¬
tention has been to indicate, using data as an example, what is meant by implicit
versus explicit description. Indeed, there are numerous other facilities and entities
which must enjoy explicit specification. For example, the specification of programs
must be explicit so that the compiling of references to them and the linking of programs
to other programs and data can be specified and handled. There are also such things
as "messages" which are passed between programs, these must be identified and
handled explicitly. These "messages" include interrupt signals, various communica¬
tions with the monitor or the user, program or data status information, and so on.

Summarizing, provision for explicit specification of data, programs, actions,
messages, linkage, and the like is a prerequisite for reasonable program transfer-
ability. Languages and systems must be constructed in such a way that such explicit
specification is possible, but no current languages and systems are entirely success¬
ful in meeting this requirement. However, current technology could host such facili¬
ties, if the proper point of view or strategy were employed. The betterment of current
languages and systems in this regard is primarily a development project. While re¬
search in this area is needed, particularly in gaining a better understanding of explicit
handling specification of such things as program status, interrupt signals, simultaneous
or parallel program execution and control, much could be accomplished within the
current state-of-the-art.

2. Regularizing the Behavior of Programmers

The second area for discussion pertains to the excessive complexity and gen¬
erality of present languages and, particularly, operating systems. It should be noted
that this is really more another point of view regarding the first area, that of pro¬
viding for explicit specification, than a different topic, but exploration of the issue in
this way could be fruitful.

\

In a very real sense, a programmer setting out to prepare a complete program or
some part of a larger program has entirely too much freedom. In particular, if a
higher level language has been chosen for his use, he is constrained to some degree,
since, for many programming tasks, each language induces a "style" to which the pro¬
grammer might be expected to adhere. In other words, the programs resulting from
two different programmers given the same task should be reasonably similar. How¬
ever, for those parts of the problem for which the language has no explicit facilities
or for which the explicit facilities are too general, different programmers often pro¬
duce entirely different programmatic solutions to the same problem. This difference
is strongly correlated with the difficulty of transferring the programs.

The latest round of operating systems is to be particularly noted in this regard.
Such systems as OS/360, EXEC-8, and the like are extremely powerful systems,
and utilized properly, permit rather complete control of a computer's resources in a
large variety of ways. Unfortunately this generality is also attended by complexity,
and the result is a system beyond the capacity of all but very knowledgeable program¬
mers to maintain or modify. The casual user, including almost all programmers,
typically contents himself with those few facilities with which he is familiar, bending
them in whatever v ay he can to "fit" his current problem. If the subset he "knows"
differs from the subset another programmer "knows," programs produced are likely
to be quite different. In some way operating systems or detailed data representation
and manipulation must be arranged so that there is an explicit "way" to accomplish
any particular task.

3. Degree of Representational Commitment and Other Kinds of Binding

Current programming languages mirror very closely many of the facilities avail¬
able in actual hardware. In one sense this is good, since it might then be expected
that programs would "fit" the hardware and enjoy the attendant efficiencies. How¬
ever, there are also certain bad effects. One is that current languages dema.d a
commitment to data representation before one can even start programming. Once
the programmer has decided on a particular representation, be it integers, floating
numbers, characters, or arrays of characters, he then has a small repertoire of
operations with which he can manipulate these quantities. However, a large portion of
many programs have nothing to do with the kinds of quantities which are "natural" to
most computers. For example, one fairly common kind of program is best thought of
as dealing with "objects," properties of objects, and relations among objects or prop¬
erties. The "objects" might be programs with "properties" like name, length, status,
and such, and "relations" like a sub-program of, calls as a sub-program, and ref¬
erences the data set, for instance. A program concerned with these might be expected
to transact with the properties and relations, establishing new relations, inquiring
about properties, and so on. If the programmer has to use integers or characters
to model these objects, properties, and relations, and to use the ordinary arithmetic
and logical operators to specify his transactions, he might be at a serious disadvantage.
The necessity of making a commitment to some particular representation, like inte¬
gers, before he can start "programming" may seriously affect the quality or even the

9

"do-ability" of a program. If the programmer (unusually but wisely) rejects the use
of conventional languages and systems and attempts to initially "solve" his problem
in terms of the units of data and unit transactions natural to it, he is still eventually
faced with the programming task. His "solution" can’t be run and must be considered
as, at most, a guide to the "real" solution.

An alternative approach might be to supply a programmer with data and opera¬
tions not so closely tied to computer representations, such things as "objects, prop¬
erties, and relations," or "set quantities and operations," etc. , and permit him to
"breadboard" a solution. Once he had a demonstrable solution he could then attend to
the problem of "packaging" his solution, contending with the need for a "real computer"
as the basic host medium. The results of his "tuning" and "tailoring" operations could
also be run and evaluated. In a sense he could view the task of taking what is agreed
to be a correct solution and make the "solution" efficient, confident that at all stages
he could verify he still had a solution. Parenthetically it should be noted that languages
such as AMEIT/G* and language features such as Floyd's Non-Deterministic
Algorithms**, if implemented appropriately, might provide such a facility for certain
kinds of problems. AMBIT/G permits description of various objects and their prop¬
erties and relations and prescription of manipulations of them. The specific means of
computer representation is deferred. Floyd's Non-Deterministic Algorithms provide
a facility which permits deferring the detail of how some particular choice (or move
in the play of some "game," of I/O unit, etc.) is to be made. If a particular choice
leads to "failure," the program will automatically "backup" and a different choice
may lead to "success. "

Along with the question of the representational commitment which most current
languages and systems demand, there is the related question of the kinds of binding
allowed and the times at which binding is permitted.

Typically, most languages and systems restrict quite rigidly the time that various
kinds of binding of meaning or value to various entities is permitted. For example,
the "meaning" of a procedure to be called (i. e. , the number and types of arguments
and the number and types of results returned), must be bound at "compile-time" while
the "value" (i. e. , the actual coding plus any required linkage) is bound at "load-time"
or "block-entry" time. Similarly the meaning of a variable (its type, dimension, means
of access) is bound at compile time and its value is subject to change dynamically.
Getting around the restrictions imposed by rigid bind times is a significant source of
"implicitness" in many programs. This rigidity typically derives from some imagined
hierarchy of "function" in a system. If the notions inherent in the Extensible Machine***
concept were employed properly, such artificial restrictions would disappear.

* ChrifttenMen, Carlo«, "An Example of the Manipulation of Directed Graph« in the AMBIT/G Programming
Language," Computer Annociate«, Inc., lakefield, Mas«., CA-67Í1-1511, 15 November 1967. (To appear in
the F*roceeding« of the Symposium on Interactive Syatema for Experimental Applied Mathematic«, held
26-28 Aug. 67).

•* Floyd, Robert 1., “Non-Peterminiatic Algorithm«,” j.ACM, Vol. 14, No. 4, Oct. 1967, pp. 636-644.

•••Goodroe, John R., and léonard. Gene F ., “An Environment for an Operating Sy«tem," Proo. ACM 17th
Nat. Conf. 1964.
Leonard Gene F'., and Goodroe, John R., "More on Extensible Machine*," Comm. ACM, Vol. 9, No. 3,
March 1966. pp. 183-188.

10

4. Programming Technology

Programming, both as a science and as an engineering discipline, is in its infancy.
There are a reasonably large number of elements of programming technology which
have developed, but there is a general lack of any unified theory or even unified treat¬
ment of these existing elements of the technology. A great deal of this is, of course,
due to the fact that programming is a relatively new field. Also its rather strong
interdisciplinary nature, that is the lines between programming and mathematics,
operations research, control theory, logic, and so on, are not well understood. It
is most revealing that there are few, if any, manufacturers of computer systems
which have a department of programming research. They very likely have depart¬
ments of research devoted to mathematics, electronics, and solid state physics, and,
in some cases, even such specialized fields as cryogenics and magnetohydrodynamics.
However, programming research is not yet fashionable, it is typically a sub-depart¬
ment of mathematics. This general situation also carries over into universities and
government laboratories and government-supported computer activities. It is only
very recently that doctoral programs in programming as such have been established;
it is still the case that a far higher proportion of research and development funding
is devoted to "hardware” than to "software. " This is in spite of the iact that there
is now a general understanding that the cost of the software for any particular system
is likely to be higher than the cost of the hardware.

It is not within the scope of this report to consider this aspect of the problem in
any depth. But the lack of a unified technology for programming is doubtless a
principal cause of the difficulties and this situation is not improving very rapidly.

There are a few specific areas where research and development would have a very
direct influence on the problem of program transferability. These include:

• The optimization of programs

• Formal models for the syntactic and semantic specification of programming
languages

• A theory of systems

• Extensible programming languages

• Extensible operating systems

11/12

.
.
.

■

III. PROPOSED TECHNICAL APPROACH

The current state-of-the-art permits an attack on the transferability problem at
three different levels:

A. Appropriate methotis of administrative control and documentation for
programming development using current languages and systems.

B. Development of extensions to the current language and system base.

C. Creation of a new programming and operating environment.

The payoff at each of the three levels, in terms of cost savings in program transfer,
can be estimated only qualitatively - certainly it is least at level A and greatest at
level C. Indeed, at level C the problem of program transfer can probably be substan¬
tially eliminated in most practical cases.

The next three subsections describe the three levels of attack, followed by a dis¬
cussion of the level of effort and time frame in which worn might be accomplished at
each level.

1. Attack Level A: Administrative Control

Since no immediate panacea exists for the problem of program transferability, it
is necessary to consider, in this section, what can be done administratively with pre¬
sent systems and languages. The heart of the conclusion reached is to exercise strict
control through the adoption of standard practices. It is realized that many of the
practices advocated will increase to some degree the cost of producing and running
programs. The extent to which these practices minimize transferability cost, balanced
against the cost of applying them, will determine which practices merit use in a par¬
ticular programming endeavor.

These standard practices include such areas as the control and quality of the
documentation effort, and the setting of specific and standardized communication
conventions between programs, and, for that matter, between programmers. Admin¬
istrative control must be applied to guarantee that the documentation is both complete
and meaningful, and that standardized conventions are observed.

There is a set of administrative constraints that can be applied to the interaction
of the program and the operating system. These constraints deal with features of the
operating systems which are not available throughout the spectrum of systems on which
the program is to run, and might include elaborate filing structures and exotic dynamic
loaders or access methods. One technique of enforcing such constraints is to delete

13

from the system manuals all references to the undesirable features and, further, to
guarantee that the system report any programs which use such features. Again it is
realized that such prohibitions may be costly in both programming time and efficiency.
However, it is felt that such techniques would result in appea.^ to management by pro¬
grammers who wish to use these "forbidden" features, thus serving to identify and flag
these potentially problem uses.

A somewhat similar constraint can be applied to programming languages. Control
must be established over the use of language features which are either non-standard or
non-transferable. The latter includes assumptions about word size, character repre¬
sentation, and numeric abnormalities. The operation must select that subset of the
programming language which is common to the set of machines he wishes to run on,
ensuring, however, that this subset represents a useful programming language. Again,
the economic pros and cons of including features which are not universally implemented
must be considered. In addition, a set of features must be isolated which should be
avoided because of either machine-dependent characteristics or non-uniformity among
implementations. A prototype of such a list has been prepared for the COBOL language. *
(A note of warning: Because a standard exists for a programming language, it should
not be assumed that a similar standard exists for the semantics of the language, or for
that matter, that specific compilers conform to the standard or are "bug-free. ")

Another area which must be controlled is that dealing with the description of the
data used by programs. Data description conventions, adequate for the majority of
areas, must be developed or borrowed and must be adhered to in all programs which
are candidates for transferability. In the future this documented data description will
serve as part of the documentation body and, in addition, may form the basis for
"automated transferability. "

Many of the numerical algorithms used in programming are sensitive to such things
as precision, round-off, and truncation, and thereby give rise to a major source of
transferability difficulty. Further difficulties ar'se from the fact that the standard
mathematical functions are not uniformally implemented among operating systems. The
union of these two problem areas causes much difficulty in the transference of complex
numerical procedures.

One way of alleviating this problem is to establish standards for the basic mathe¬
matical functions such as SIN, COS, and so forth. These standards should impose con¬
straints on precisions and the behavior of these routines in limiting cases.

With respect to the precision, truncation, and round-off problems a study should
be undertaken to categorize, catalogue, and even develop algorithms which are in¬
sensitive to these problems within broad bounds. Such a study could result in

• VrMtinnhouHe Klwlrlr Cocfmriition.
MHiOI. I’rnummmin* Tip«.
IpwtinRhfHi«* H reírle < :ficp«>f«tion Management Syniem« Department, April, IV67.

14

recommended approaches to particular algorithms for given ranges of precision. In
some fields of mathematics there already exist known algorithms which exhibit such
insensitivity. Further research should also be undertaken to investigate the effects of
round-off on the classic numerical procedures.

This is not necessarily an exhaustive list of controls which can be applied. How¬
ever, they are the most essential ones. It is important to emphasize that to be useful,
such controls must be unconditionally and continuously applied, they must be adhered to
even in the midst of last-minute schedule panics, and must be continuously updated
during the debugging and improvement stages of the program's development.

2. Attack Level B: Extensions to the Existing System Base

Several operating systems currently, or soon to be, in use can be extended in such
a way that ease of program transfer is significantly enhanced. Among these systems
are: CL-H (IBM 7090 and 7094), AOSP (Burroughs D825 and D830), MCP (Burroughs
5500 and 8500), MULTICS (GE 645), and OS/360 (IBM/360). The details of extension,
and the amount of development effort and time required, will depend strongly on
whether one or more and which of the existing systems are used as a base, or whether
an oj»erating system is to be developed from scratch. In any case, the resulting sys¬
tem* includes the following facilities and features:

a. Stored Data Descriptions

Data sets stored in the filing system, as well as data existing in storage only
during execution of a program, conform to data descriptions which exist in
the filing system and are accessible to any program executed by the system,
at any time. The description facilities combine description at the data item
or field level (as in the CL-n system or in COBOL, but further elaborated),
the record level, and at the data set level (as in OS/360). **

b. Derived Descriptive Information

While the stored descriptive information will be explicit to a much higher
degree in current systems, this need not place an increased burden on the
users of the systems. To the greatest extent practicable, fiescriptive infor¬
mation will be derived by the system from information normally in source
programs and by extensive provision of facilities for declaration by default
(that is, standard assumptions will normally be made by the system in the
absence of explicit declarations by the user). ***

♦ Hher«- ih«- wo«! ‘‘inywtcm” ih uh«*d below, it UHUally refer* to the eommon eharacterintie* of « number of
environment* between whieh program* may be transferred with relative impunity.

** See Appendix II for a more detailed diseusHion of data deweription.

Deweription of the data deneription* themselve* - “data mela-de*eription" - is a feature to be treated at

level C <*nly. This subjeet is diseussed in Appendix III.

15

c. Use of Data Descriptions by Compilers

The compilers in the system will use the stored data descriptions (either by
use of a preprocessor or by extensions to the existing compiler, as appro¬
priate) rather than require that descriptive information be submitted as part
of the program to be compiled.

d. Other Uses of Data Descriptions

Since the data descriptions are stored in the filing system, they are available
for use at other than compile time. The system contains programs which use
the data descriptions for converting data between its external and internal
forms, and between different internal or different external forms. These pro¬
grams provide, or can be extended to provide, a rather general data conver¬
sion and reporting facility.

e. Mechanized Facilities for Administrative Control

Descriptive facilities within the filing system satisfy the requirements for
administrative control of programming development efforts at the level of the
best current practice. This is based on the ability to store, process, and
retrieve information used both for project control and for documentation pur¬
poses.

f. Program and Text Editing

Facilities will be provided for both context and line editing of programs and
arbitrary character text (e. g. , program documentation). Line editing refers
to the ability to insert, add, delete, or replace one or more lines (or records)
using line number references for control of the scope of each action. Context
editing has more recently appeared in interactive systems; control of the scope
of an action is exercised by searching the text for occurrences of some frag¬
ment of text (e. g. , insert following the first occurrence of the word "apothegm").

g. Operating System Interface

The functional capabilities of the language included will imply, in turn, that
certain functions be provided by the operating system. The operating systems
used must be made uniform in this respect by definition of a standard functional
interface and extension of the systems to meet that interface where necessary.
A representative set of functions is contained in Appendix IV.

h. Minimum Hardware Standard

At least in the area of amount of main storage and direct access storage, min¬
imum hardware configuration standards must be set to permit transferability
at acceptable performance levels.

16

This effort will produce an actual operational system which offers a workable,
though partial, solution to the problems of transferability. But it will not afford a
complete solution, nor a long-term one. Given the inevitable growth in size and com¬
plexity of computing systems and the problems assigned to them, the replacement of
present systems as they become obsolete will still be a major task.

3. Attack Level C: Advanced Transferability Environment

Thoughts in the preceding sections have been bound by consideration of using exist¬
ing operating and /or language systems as a base. In this section this restriction is
eliminated.

An environment is considered herein in which attention is focused on first princi¬
ples needed to guide the design and development of operating environments directly
conducive to eliminating transferability as a significant problem. This essentially
comprises adherence to the software technology and its application in an engineering
sense to this problem.

To mount a long-term attack on the problems of transferability, the development
of an Advanced Transferability Environment is proposed, to produce a running proto-
tjpe during the life-time of the operational systems discussed in the previous sections,
and to eventuate in the production of new operational systems.

In essence, the Advanced Transferability Environment will be available for gen¬
eralizing, extending, and combining the best of today's thinking of its component parts
(executive programs, filing systems, language processors, etc.). The requirements
for transferability are not very different from the present tendencies of advanced pro¬
gramming systems. Transferability requires no great new inventions (they will be
welcome, if they occur), but rather a thoroughgoing, consistent application of good
design principles.

It follows from this position that transferability itself is not expensive when ap¬
proached in this fashion. Those things which abet transferability: programming sys¬
tem facilities, styles of programming, universes of discourse, each have value in
other aspects of the whole programming process.

The precise structure of the Advanced Transferability Environment would be deter¬
mined during a design study. This effort should be started concurrently with, or within
a few months of, the design work of the previous phase. The Advanced Transferability
Environment designers should maintain an alert awareness of the history and results
of the previous levels. This sub-section discusses some of the general properties of
this environment.

The Advanced Transferability Environment will be manageable in size, i. e. ,
"small. " It will not be designed as a test bed for every possible software idea, but
will strive to be an elegant configuration of the selected designs. Though it will include

17

multi-programming and interactive access as a matter of course, the design will not
be deformed by any necessity to service a large number of terminals with severe time

constraints.

It will make extensive use of descriptions. To every object in the system there
will correspond a description also in the system. When appropriate, these descrip¬
tions will be produced automatically as a by-product of input processing, but where
necessary or desirable, the user will be required to produce them. The role of
thoroughgoing explicit descriptions in transferability has already been discussed. The
previous sections have mentioned the uses of data descriptions in compiling, I/O opera¬
tions, run-time linkages, symbolic debugging, and the like. Thus any "overhead"
associated with the maintenance of descriptions is chargeable only in small part to the
transferability requirement.

Further, the system will be especially intended to develop and experiment with
techniques of meta-description. (See Appendix in for a more technical discussion of
the use of descriptions in transferability). Within a system using descriptions, the
description of an object includes information about the object's type, allocation require¬
ments, binding requirements, accessing procedures, and so forth; but the way in which
the description contains - encodes - this information remains implicit in the logic of
the processes which employ the descriptions. The purpose of meta-descriptions is to
make explicit the rules for interpreting descriptions in line with the general principle
that the way to program transferability lies in the direction of rendering explicit and
processable many aspects of programming which today remain hidden. It would be
impractical and undesirable to require all systems to use identical object description
formats and conventions, it is much more feasible to allow any description technique
to be used, provided that it can itself be described in a standard fashion.

It will be highly articulated: the system's armamentarium will not consist of a
few large self-contained pieces (compiler, filing system, I/O handler, etc.) which
live in different worlds, but rather of many smaller, better-defined packages which
will be brought together as required to meet a particular requirement.

The structure of the executive will follow the design principles of the Extensible
Machine*, consisting of an irreducible core surrounded by an ever-growing number

of service functions.

The language processors will "know" about the executive services and how to use
them. They will no longer have to "compile around," or duplicate the functions of

the executive.

• John H., nnd Leonard. Lene I" .,

Nat. Coof. 1964.
Leonard, One F., and Loodroe John IL,

March 1966, pp. UW-IHH.

“An Environment for an Operating Syalem," I’roo. ACM 17th

“More on F*ten*ible Machines,” Comm. ACM \ ol. 9. No. 3.

18

A "compiler" will be essentially a driver routine, summoning whatever constella¬
tion of task-handlers is required to process the particular source language.

All languages employed within the system (e.g. , for job control, problem state¬
ment, console transaction, etc.) will be derived from a common base language by a
process of explicitly-defined extensions. *

Again, these features are in the direct line of current development, and involve
no excessive overhead attributable to transferability.

* < hi-Mtham, I.E., Jr., “On ihr Hsmih for h'l.F — An Kxlpntiiblr l.anpuagr Facility,“ Computer AnHocialrM.
Inc., fakefjrld. Ma*N. (Submitted to l<>6H l all JCC).

1’ ¡»«•her. Alice F., and Jorrand, I’hilippe, "IIASFI.: I hr Huhc Lannuaj-r for an FxtcnHiblc Lanpiag«-
haiility,*' Computer ANNwiate», Inc., Wakefield, Ma»». (Submitted to I Will I all JCC).

19/20

IV. SCOPE OF PROPOSED EFFORT

In the preceeding section, the approaches recommended at levels A, B, and C
have been discussed. In this section, the corresponding manpower and cost estimates
are presented.

The objective of work at level A is to generate administrative control procedures
and doctrines which must be strictly adhered to by all people associated with designing
and implementing a program or programming system. These controls must be en¬
forced by a czar who has final approval rights over the contracts under which the pro¬
gramming is sponsored.

A group of from six to twelve people working for a total of twelve months can pro¬
duce such a set of control procedures for three different computers and operating sys¬
tems and two different higher level language systems. Nine of these twelve months
are required for design specification. Six months are required for review and revision
of the ensuing specifications although three months may be overlapped with the design
period. Within an additional three-month period, the services of three people would
result in the formulation of a pattern which could be applied to other similar problem

environment,

COBOL and JOVIAL are the recommended languages for the attack at level A. The
IBM 360/50 using OS/360, the Burroughs D830 using AOSP, and the UNIVAC 1108 us¬
ing EXEC8 are the recommended host systems. In the event that more specific guid¬
ance could be provided about particular military operational environments other equiv¬
alent machine and/or languages could be substituted.

The objective of the work at level B is to generate a transferability environment
through the extension of the existing operating system/larguage system base by identi¬
fying deficiencies with respect to particular existing systems, defining how these de¬
ficiencies may be eliminated, and then implementing the resulting changes.

Part of the design problem at this level is to identify which extensions can be
incorporated into any system with a high probability of success within a two-year
period from the time they have been defined. Extensions not falling within this cate¬
gory should be deferred for consideration to level C. Considering the same three host
machines and two higher level language systems as at level A, the design phase will
require the services of three people for three months in identifying the deficiencies to
be corrected, and of sLx people for six months to define the necessary extensions by which
the corrections may be effected in particular systems. The cost of implementing the
extensions to a particular system can be reliably estimated only at the conclusion of
the design phase. This is primarily a result of the very considerable variations in the
extent to which any existing operating systems already supports the level B features.

21

i

The objective of the work at level C is the development of an operating prototype of
the Advanced Transferability Environment which will be exercised in a test environ¬
ment to evaluate the success of higher risk and/or longer term concepts and ideas re¬
quired to eliminate the problem of program transferability. The services of ten people
working for a total of 36 months are required for the development of the operating pro¬
totype: four people for the design phase and six people tor the implementation phase of
the effort.

A suitable machine facility must be provided exclusively for purposes of the Ad¬
vanced Transferability Environment. This facility must be a clean, contemporary
computer system, including peripheral equipment. The estimated cost of a system
suitable for this work is $350,000.

Co-ordination and direct control of the efforts at levels A, B, and C should be
effected by a small steering committee of people with nationally recognized systems
and/or language expertise.

22

V. CONCLUSIONS AND RECOMMENDATIONS

The current state-of-the-art in programming technology has advanced to the point
at which it is feasible to successfully attack the problem of program transferability.
Three levels at which such transferability can be realized have been identified.

The degree of possible transferability is related to the restrictions that one im¬
poses, that is, restrictions to:

A. current operating systems,

B. extensions to the current system and language brse,

C. re-engineering of operating systems and languages.

Effort should be started at each of these thrac levels as discussed in the previous
section of this report.

Work at level A is of particular significance only when: (a) a specific environment
is identified in which the energies of the available people with the proper talent can be
focused on the details of the defined problem; and (b) the time frame is such as to re¬
quire interim gains before the results of work at levels B or C can be realized.

The importance of undertaking work at both levels B and C should be emphasized.
The extended system envisaged at level B contains features which have proven value
and which are well within the state-of-the-art to implement. Hence, this system would,
in effect, remain available for continued production use as extended facilities are added
to the existing operating environment. Work at level C, on the other hand, should be
undertaken in order to provide a vehicle for making a significant departure from the
current system base. This would lead to an operating prototype rather than a produc¬
tion system. Experience in its use would result in a production system for replace¬
ment of the level B system. Hence level C provides a longer term operational solution
to the problem of program transferability.

23/24

APPENDIX i

FACTORS INFLUENCING DIFFICULTY IN TRANSFERABILITY

There are many differences in environment that can impede program transfer.
The principal difficulties may be grouped into the following broad categories:

1. Differences in amount of main and auxiliary storage available with different
systems and in different installations.

2. Differences between representations of different generic data types (e.g.,
floating scale representations of real numbers).

3. Differences between monitor services and interfaces.

4. Differences in library content (availability of different programs and differ¬
ences in algorithm, e.g. , elementary mathematical function evaluation
routines).

5. Existence of local system extensions and modifications.

6. Differences in organization and representation of data sets intended for use in
inter-system communication.

7. Other machine differences affecting data organization and representation,
e.g., the data alignment restrictions in IBM System/360 and word length
differences.

BLANK PAGE

APPENDIX II

DATA DESCRIPTION

Data descriptions are in use now, but in a less sweeping way than we contemplate,
e.g., the COBOL Data Division, the PL/I DECLARE statement, the JOVIAL COM-
POOL, data descriptions in CL-I (OSO) and C L-II (ODES) and in OS/360 (DSCB), as
well as elsewhere. In particular, CL-II has a quite detailed description below the
logical record level while OS/360 has no detail here but quite a bit above this level.

^he study group’s discussions concerning data description are summarized in the
following apothegms:

• What are transferred are sets of programs and data (not just programs).
Source programs have information which is consumed by the compiler and
does not appear in their object form. In addition, there is yet other informa¬
tion which is not explicit in the source form.

• Query: Will there always be, even in principle, an undescribed, implicit
level of structure (and/or semantic content)? The group feels that this is the

case.

• A good example of explicit vs. implicit data description: The data is divided
by the constant 2688. Implicit in the program is the knowledge that it is being
convergea from furlongs per fortnight to miles per hour. An explicit descrip¬
tion would have stated the units or a scale factor.

• How compulsory should it be for a programmer to use explicit description,
when there is a choice? The principle to be followed here seems to be that
the system should make it easy for him to do the "right thing, rather than
impossible to do otherwise. This implies, of course, a substantial amount of
explicit description supplied by the system by default.

• Future languages and systems should make much more use of explicit data
descriptions, stored separately from the data. This follows from the tenor
of the discussion at the group’s meetings, and a mounts to adopting the philos¬
ophy of the CL-I and CL-II systems.

• Data descriptions must be transferable. This follows from the first apothegm.

• Query: Should data descriptions be described? Yes, and this follows from
the points developed below.

27

!

A data description is itself data.

There must be different representations for a data description. For instance,
tape labels on 7 and 9 track tape and disk pack labels will be different repre¬
sentations. There may also be distinct external and internal representations
of a given data description, e.g., the DD statement, DCB macro and DSCB
in OS/360, the latter being the internal form.

It will be important that a system have an encoded, internal representation
for reasons of efficiency. The representation should be, however, standard
within a given system.

The proper route toward transferability of data descriptions is via a single
standard meta-description (that is, the data description of data descriptions).
(See Appendix III). The two possibilities of an implicit meta-description or
of a single standard data description were dismissed on the basis of previous
propositions.

28

APPENDIX III

i

DATA META-DESCRIPTIONS
r

The notation adopted here is that of CL-I; the notation "A/B" is the name of in¬
stance B of data set A. All instances of A have the same description, and this is the
instance A of data set OSO (for "Object Specification Object"). OSO/A is the data de¬
scription of data set A. In particular, OSO/OSO is the meta-description, or descrip¬
tion of data set OSO.

Suppose there are two systems, OS| and OS2, and two instances of HENRY pro¬
duced on OSj. Then,

0S01/HENRY1

HENRYj/1

and HENRYj/2

exist. The following types of transfer can be contemplated:

1. Transfer OSOj/HENRYj to OS2 in order to produce future instances of HEN¬
RY - i.e., HENRY2/3 ff.

2. Transfer current instances of HENRY to OS2 for input.

In the first case a way is required to get OSO2/HENRY2, and this involves the use
of OSO/OSOj, according to our doctrine calling for a standard meta-description, to¬
gether with 0S0/0S02 and a program run on some system which understands the
standard meta-description OSO/OSO.

In the second case, there are two possible routes:

a. Translate (e.g.) HENRYj/l toHENRY2/l, cr

b. UseHENRYj/1 interpretatively on OS2.

2(a) might be a direct translation or a double translation via a "standard" form of the
data, described by OSO/HENRY. 2(b) would imply interpretative use, on OS2, of the
description 0S02/HENRY. This description, as was the case with the data instance
in 2(a), might go through a double translation:

OSOj/HENRYx to OSO/HENRYx to 0S02/HENRYx

29

Which one of the above methods of transfer should be used depends, no doubt, on indi¬
vidual circumstances.

OSO| and OSO2 have more information that OSO - in terms of our previous dis¬
cussions, they have made commitments to specific representations on the two systems,
whereas OSO has no such commitment (except to a pseudo-computer which "under¬
stands" the standard form of descriptions and data). Thus, where a piece of data is
described simply as

ITEM INTEGER;

in OSO/HENRY, additional description of "INTEGER" is required for various systems.
For instance, we might see descriptions like:

INTEGER TYPE ^ADK(2) SIGN(COMP, 2) LEFT(31) RIGHT(O) ;

INTEGER TYPE RADIX(2) SIGN(MAGN) LEFT(35) RIGHT(O) ;

or INTEGER TYPE RADIX(IO) SIGN(COMP, 9) LEFT(ll) RIGHT(O)
DIGITS(0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100);

for the System/360, 7090, and UNIVAC I, respectively. That is, even in the "stand¬
ard" meta-description, there is some level of description which is implicit (although
not necessarily that level implied by this example) in the design of the interpreter of
that description. We believe this to be inescapable, and no disaster at all.

Another note to be made is that descriptions will, in general, require procedural
elements - for instance, to describe various storage mapping functions.

30

APPENDIX IV

OPERATING SYSTEM INTERFACE

This Appendix lists a set of operating system interface functions obtained by
comparison with those in the Burroughs MCP (B5500), the IBM OS/360 (System/360),
and tin RCA YDOS (Spectra 70). This is intended to be a representative list, and not
necessarily precisely the set that would appear in the attack at level B.

• CALL is the function which causes a procedure to be executed against a given
argument list. Two options exist: TASK causes execution as a subtask of the
task invoking CALL, while ON requests deferred execution, in the style of
the PL/I ON statement or the OS/360 "type 3 exits."

• RETURN causes exit from a procedure.

• TERMINATE causes termination of the referenced task.

• SIGNAL signals the occurrence of an event, thus causing triggering of a CALL
with the ON option.

• WAIT causes the task issuing it to suspend execution until some specified
event, or combination of events, has occurred.

• POST specifies that a given event has occurred, releasing any WAITS which
are thus satisfied. (Query: Are SIGNAL and POST not essentially the same
function?).

• PRIORITY changes the scheduling code for the specified task. (Simple pri¬
ority scheduling is not necessarily implied here).

• PURGE causes execution to be cancelled at all levels of control up to (but not
including) the one which set the stated ON condition.

• ENQUEUE and DEQUEUE force sequential, non-current access (by tasks) to
a given system resource, usually data, by suitable use of the WAIT and POST
functions.

• CHECKPOINT and RESTART allow a task, or group* of tasks, to be check-
pointed for possible later restart.

• Many »y»lm»*, including CL*II, MtJLTICS, and 08/360, allocate My»tcm rcMourccN to a group of taxIiM
rather than to each tank individually.

31

• ALLOCATE is a storage (main or auxiliary) space request, matched by FREE.

• ASSIGN and UNASSIGN allocate and free input/output devices and request the
operator to do volume mounting and dismounting.

• CATALOG and SCRATCH enter and release data sets into or from the filing
system.

• DATE and TIME report system data to the calling task. TIME may be abso¬
lute or elapsed execution time.

• INTERVAL sets a timing interval, either real time or relative to task execu¬
tion time, as an ON condition for the invoking task.

• OPEN and CLOSE are the primitive form of the functions preparing for use of
a data set on auxiliary storage and later releasing it from use.

• INOUT is the primitive form of an input/output request; its completion is sig¬
nalled by a POST issued by the operating system.

»

The input/output functions should be specified at a higher level than INOUT; the
latter typically is extremely mac hi ne-dependent in its detail. Many systems, in fact,
establish interfaces at both the physical block and logical record levels as well as at
the INOUT level. It may further be noted that INOUT is merely a disguised form of
CALL with the TASK option. The difference is essentially that a different processor
class (input/output channel rather than CPU) is being invoked.

The functions allowing the filing of data set descriptions and access to them are
included, in a disguised form, in the CATALOG/SCRATCH, OPEN/CLOSE, and IN¬
OUT functions above.

Finally, it must be noted that although the above lists operating system functions
in an essentially environment-independent manner, their exact expression in any given
system will be at least somewhat different from that in another system. In order to
provide transferability at the operating system interface 1evel, it will be necessary to
absorb such variations in the way code is compiled for each environment.

. UNCLASSIFIED

S^urttJ^ClMtlficiiUon

DOCUMENT CONTROL DATA . R & D
(Security Jon of tltlo, body oi abstract and Indanlng annotation muat bt antarad whan tha ovarall raport la ctaaalfladj

1 ORIOIRATINO activity (Corpormtê author;

Rome Air Development Center (ôíIIF)
Griffiss Air Force Base, New York 13hk0

2«. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

Zb. GROUP

N/A

i REPORT TITLE

PROGRAM TRANSFERABILITY STUDY

A DESCRIPTIVE NOTES (Typ» ol report and Inclualva data*)

In-House
B AUTHOff(S) (Flral nama, tniddla Initial, laat nama)

George H. Mealy Edvard Morenoff (RADC)
T.E. Cheatham, Jr. (Computer Assoc.) Kirk Sattley (Computer Assoc.)
David J. Färber (Rand)

ft REPOR TOATE

November 1968
7a. TOTAL NO OF PACES 7b. NO OF REFS

32 6

Sa. CONTRACT OR GRANT NO

N/A
t>. PROJEC T NO

5581
c.

d.

9«. ORIGINATOR’S REPORT N U M B E R1S >

RADC-TR-68—3U1

9b. OTHferx REPORT NO(S) (Any other numbers that may be assigned !
this report)

10 OISTRI BUTION ST A TEMENT

This document has been approved for public
is unlimited.

release and sale; its distribution

11 supplement ary notes 12 SPONSO RING Ml LI T AR V ACTIVITY

Rome Air Development Center (EMIIF)
Griffiss Air Force Base, New York 13^0

3 abstract

This report treats the problem of transferring programs from one operating
environment to another with the expenditure of a small fraction of the initial
programming development time and cost. Programs considered range from quite small
ones, such as routines for evaluating arctangents, to large and complex systems,
such as compilers, data management systems, or command and control systems. The
initial and final environments may be slightly or highly dissimilar with respect
to machines, machine configuration, or operating systems and languages used.^1

The report is the result of a series of two-day meetings over a six-month
period among a group of consultants under contract to RATC, a representative of
the Rand Corporation, and a representative of RADC. This group was formed at the
request of the Department of Defense (DDRib), Dr. James Ward, for the purpose of
determining what action, if any, could be taken in the immediate and far future to
reduce the problems associated with transferring computer programs among computers
of different size and manufacture. The study devoted itself only to the software
aspects of transferability. There is a hardware aspect which has yet to be addressed
and where some promising approaches need investigation. This report was presented
in June I968 at a Department of Defense meeting attended by renresentatives of
DDR&E, DCA, ARPA, Army, Navy, Air Force, Maxines, Joint Chiefs of Staff, and the
Intelligence Community.

DD 1473 UNCLASSIFIED
Security Classification

