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ABSTRACT 

The theoretical study presented is concerned with predicting the flow 
details in the region immediately behind a slender wedge moving at supersonic 
speed.   An asymptotic solution is obtained for the laminar near wake, which is 
valid in the limit as Reynolds number based on external flow properties tends 
to infinity, with the external Mach number held fixed.   In this limit, the interi- 
or of the recirculating flow is approximately incompressible and inviscid;   the 
viscous layer is a continuous th.'n layer with large transverse velocity gradient; 
and the typical velocity of the recirculating flow must be of the same order as 
that of the external flow, although numerically it is small. 

For the inviscid core, it is shown from consideration of the dissipative 
terms that the temperature and vorticity are nearly constant.   These results 
demonstrate the fact that, even though the core flow i    inviscid and nonconduct- 
ing, and the primary effects of diffusive exchanges are limited to the continuous 
viscous layer enclosing the recirculating flow, the accumulative effects of very 
small diffusive exchanges are experienced throughout the entire recirculation 
region. 

There exists an equilibrium vorticity for the inviscid core so as to satisfy 
the condition of conservation of angular momentum for the recirculating flow.   At 
the rear stagnation point, a tentative reattachment condition similar to Chapman's 
is used but based on the minimum pressure increase attainable at the rear stag- 
nation point from the turning of a streamline in the shear layer to a direction par- 
allel to the wake center line.   Based on these two conditions, a unique solution 
for the near wake flow can be obtained for a given upstream flow condition.   Nu- 
merical results are in general agreement with the available experimental data. 
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THE LAMINAR NEAR WAKE BEHIND A SLENDER WEDGE 
AT SUPERSONIC SPEED AND HIGH REYNOLDS NUMBER* 

I 

INTRODUCTION 

Renewed effort has been directed recently to the theoretical and experi ■ 

mental investigation of the wake behind a body moving at high speeds through 

air.   Considerable progress has been made in analytical studies of both the 

laminar and turbulent far wake (e.g., see the review paper of Lykoudis ).  How- 

ever, accurate prediction of the far-wake flow properties requires knowledge 

of diese same properties at a distance of a few body heights behind the body. 

Because of the extreme complexity of the flow in the near-wake region, the 

attempts to obtain satisfactory analytical results have been only partially suc- 

cessful .   Accordingly current studies are focusing on the near wake in the hope 

that an adequate analysis of the complex coupling processes occurring within 

this region can be carried out.   The present investigation is concerned with the 

laminar near wake of a slender wedge at low supersonic Mach numbers and high 

Reynolds numbers. 

Knowledge of experimental results is essential to the developing of a 

mathematical model, both as a guide for the choice of approximations and for 

a check on the accuracy of the results predicted using the model.   At the base 

of the wedge it is known that the external flow expands to a lower pressure, 

through a Prandtl-Meyer expansion.   The boundary layers along the wedge sur- 

faces separate and form free shear layers which enclose a region of steady re- 

circulating flow.   These results are evident, for example, in the experiments 

• This report is based on a dissertation submitted in partial fulfillment 
of the requirements for the degree of Doctor of Philosophy at The University 
of Michigan, 1968. 
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2 
carried out by Hama , for various Mach numbers between about 2.0 and 4.0, 

and for a range of Reynolds numbers such that the free shear layer was lami- 

nar at the lower values.   Among the results, it was shown that die pressure 

is almost constant on the base; the dividing streamline is nearly straight over 

most of its length from the base to the rear stagnation point; and a "lip shock" 

originates in the shear layer, very close to the comer.   This lip shock may 

have considerable strength for flows with a large expansion ratio at the corner, 

but remains weak for flow over a slender wedge at low supersonic Mach num- 

3 4 o 
bers . Batt   has made measurements in the wake behind a 20 wedge at M^ = 6 

and at various Reynolds numbers such that the free shear layer is laminar. 

The results indicate that the location of the rear stagnation point is not very 

sensitive to the variation in Reynolds number, and that the recirculating flow 

has a very low density.   Martellucci   et 41.   have studied the turbulent near 

wake of a cone at M^   ■ 6.  Their results show that the pressure at the base is 

nearly constant.but the velocity at the axis in the recirculation region may cor- 

respond to Mach numbers as high as 0.8.   For a Mach number equal to 16 

Todisco and Palione   found that a region of constant temperature exists in the 

recirculating flow of the laminar near wake behind a slender wedge or cone. 

These and other experimental results therefore suggest that the near 

wake of a slender body can be divided into regions of different physical charac- 

ter. An external invlscid flow results from the comer expansion of the flow 

outside the boundary layer.   A free shear layer is formed by the expanded 

- . 
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boundary layer which mixes witf the relatively low-speed recirculating flow. 

The velocity gradient is large m tr the dividing streamline, which separates 

the recirculating fluid from the flu.d which passed over the wedge.   Since the 

flow near the dividing streamline is directed toward the wake center line, an 

increase in pressure occurs in the vicinity of the rear stagnation point, in or- 

der that the flow may be turned.   The fluid with total pressure higher than on 

the dividing streamline escapes downstream and forms the far wake, whereas 

the fluid with lower total pressure turns back toward the base and constitutes 

the recirculating flow.   The shear stress along the dividing streamline drives 

the recirculating flow against the retarding force along the base of die wedge. 

Since the near-wake flow field is determined by a complicated inter- 

action between the flow in the shear layers, the inviscid external flow, and the 

internal recirculating flow, analytical descriptions have only been obtained by 

some rather rough approximation or through a semi-empirical formulation. 

Several simplified near-wake models have been proposed. 

7 8 9 
The Chapman '   '    dividing-streamline model is based on the conserva- 

tion of mass within the recirculating-flow region.   The mass flow in the shear 

layer below the dividing streamline is balanced by the mass flow reversed by 

the pressure rise through the recompression zone near the rear stagnation 

point.   The base pressure is determined by requiring that the total pressure 

along the dividing streamline be equal to the final static pressure, and the total 

pressure is assumed to be fully recovered at the rear stagnation poirr .   It is 
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assumed that the viscous shear layer has zero initial thickness.   The external 

flow mixes with the recirculating flow, which is considered to have zero veloc- 

ity, and it is assumed that the thickness of the viscous shear layer remains 

small in comparison with the dimensions of the recirculation region. It is fur- 

ther assumed that the dividing streamline is straight and that the boundary- 

layer equations may be employed to solve the shear-layer problem.   Baum, 

King and Denison     improve on Chapman's model by considering a nonzero ini- 

tial viscous-layer thickness'l"   They propose that the separated shear layer is 

a thin mixing region between the outer flow and the essentially stagnant recir- 

culating flow with the suction of fluid along the inner edge of the shear layer 

made up by a source introduced at the rear stagnation point.   Toba     makes a 

further improvement by taking into consideration not only the finite initial vis- 

cous-layer thickness but also the trailing-edge expansion.   The shear layer is 

regarded as consisting of an outer shear layer where inertia eflects are domi- 

nant and an inner mixing layer where both viscous and ineitia forces are im- 

portant.   The velocity at the inner edge of the shear layer is again assumed 

zero. 

12 
A different model is used by Reeves and Lees     to analyze the near 

wake of a circular cylinder.   The boundary-layer assumptions are regarded as 

13 
valid for the flow in the near wake. Stewartson's reverse-flow profiles,     ob- 

tained by an extension of the Falkner-Skan similar solutions, are adopted to 

describe the region with reversed flow.   In this application the profiles are 

• 

'. 
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characterized by two length scales, the base height and the boundary-layer 

thickness at separation.   A two-moment integral method is used to obtain the 

14 
flow properties.  Golik, Webb, and Lees    extend the method to study the near 

wake behind a wedge.   A three-moment integral method is employed, in order 

that i ne more degree of freedom may be available in representing the flow, and 

the axis velocity is uncoupled from the Stewartson profiles.   It is discovered 

that only one value for the base pressure allows the integral curve of the solu - 

tion to pass through a saddle point of the system.   The requirement that the 

solution curve pass through this critical point is regarded as a uniqueness cri- 

terion for the near wake. 

Dean     and Oswatitsch     employ a double power- .«eries expansion of the 

stream function about the separation and reattachment points for the study of the 

local behavior of incompressible and viscous flows near these points.   These 

17 18 
local solutions are extended by Reeves and Buss    '     to the study of the near 

wake of a slender wedge, which is regarded as controlled by a thin shear layer 

of relatively low energy fluid.   The stream function is expanded about the rear 

stagnation point and the coefficients of die series can be determined by substi- 

tuting in the full Navier-Stokes equations, satisfying suitable conditions at sep- 

aration and at the rear stagnation point, and matching with the downstream flow. 

Accordingly it is found that the geometrical and dynamical properties of the near 

wake are determined by the local Reynolds number and the velocity profile at the 

rear stagnation point. 
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19 
Weiss     suggests a model which consists of three coupled regions:  a 

vortical outer flow, which results from an approximately inviscid expansion 

of the boundary layer at the trailing edge of die wedge, is treated by the meth- 

od of characteristics;   the flow in a thin viscous layer above the dividing 

streamline, which has large velocity gradient and can be described by the 

boundary-layer equations, is solved by a modified Oseen linearization tech- 

nique; and the recirculating flow, which contains flow of relatively low veloc- 

ity and is described by the full Na vier-Stokes equations, is solved by a finite- 

difference technique. A numerical iterative scheme is proposed such that the 

flow properties at the boundaries of the coupled region are properly matched. 

These conditions are obtained by demanding that velocity, shear, pressure, 

temperature and heat transfer be continuous for any given base pressure. 

90   91 
Prandtl    '    suggests that, in steady incompressible laminar flows with 

closed streamlines at large Reynolds number, viscous effects can be disre- 

garded wherever there are no large velocity gradients   or accumulative effects. 

Thus the viscous effects are limited to narrow regions in the vicinity of bound- 

ary surfaces which enclose the recirculating flow.   Since the net work done on 

a fluid particle moving along any closed streamline must be zero for a complete 

cycle, the vorticity can be shown to be distributed uniformly in the interior of 

the recirculation region of a two dimensional flow where convective effects are 

22 23 
dominant. Batchelor    '     obtains this result in essentially the same way, by 

taking the line integral of the complete equation of motion around a closed 
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streamline.   He presses that the value of vorticity may be determined by the 

condition that the boundary layers enclosing this recirculating flow must also 

be in steady motion.   This implies that in incompressible and inviscid wakes 

behind two-dimensional bodies the vorticity must take such a value that the 

relative momentum of the viscous layer enclosing the recirculating flow is in- 

creased over part of its path and decreased over other parts, the net effect be- 

ing to allow the viscous layer to have a steady motion.   It is implied that as 

Reynolds number becomes large the velocity in the recirculation region re- 

mains of the same order as the velocity in the external flow. 

24 , 
Lenard     applies Batchelor's idea to the near wake of a slender cone at 

large Reynolds number and supersonic Mach number.   The near wake is divid- 

ed into the inviscid core region, the corner-expansion region, the external in- 

viscid-flow region, the recompression region and thr viscous-layer region, 

which in turn is subdivided into the base boundary layer and the free shear 

layer.   The base boundary layer on the base surface of the cone is represented 

by an axially symmetric stagnation point boundary layer with highly vortical 

outer flow.   The free shear layer which grows into the inviscid external flow 

and inner recirculating flow is described by the von Mises form of the bound- 

ary layer equations.   The external flow ic considered as an isentropic expan- 

sion of the flow upstream of the comer to the base pressure.   The inviscid in- 

ner recirculating flow is regarded as having constant properties along stream- 

lines.   The integral relations which are obtained by integration of the govern- 
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ing differential equations along a closed streamline lying entirely within the 

viscous layers provide the necessary conditions for a unique solution.   A nu- 

merical procedure is suggested for obtaining a solution to the equations. 

25 
Gudedey and Greene     adopt Batchelor's proposal for the study of 

steady compressible swirl flow with closed streamlines at high Reynolds num- 

ber.  Some special conditions, which are determined bv the dissipative terms 

and are deduced from the mathematical conditions for solvability of the equa- 

tions for approximations of a higher order, can be obtained for the inviscid 

core flow.  These conditions have the physical meaning of conservation of mo- 

mentum, energy, and entropy for any control surface generated by rotating a 

streamline in the recirculating flow around the axis of symmetry. 

14 
The methods proposed by Golik, Webb, and Lees,     by Reeves and 

17 18 19 
Buss,    '     and by Weiss    have all provided results which compared favorably 

with experiment for one or more combinations of Mach number and Reynolds 

number.   However, a difficulty remains in each case because there is no obvi- 

ous procedure for estimating the error or for systematically improving the 

approximation.   Therefore it appears of interest also to study asymptotic 

approximations for large Reynolds number which in principle can be extended 

to include higher-order terms.  If a complete solution could be obtained in this 

manner, it is expected that the flow details would be predicted more accurately 

than by the solutions obtained in a more intuitive way.   The range of validity of 

an asymptotic solution would probably be smaller, but the solution could pro- 

» 
> i 
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vide a useful standard of comparison for solutions obtained by the other meth- 

ods quoted. 

23 In the present study the idea proposed by Batchelor     for imcompress - 

24 25 
ible wakes is adopted, in the manner of Lenard    and Gudoley and Greene, 

to provide a model for the near wake behind a slender wedge at supersonic 

speed.   That is, an attempt is made to obtain an asymptotic solution for the 

laminar near wake, which is valid in the limit as the Reynolds number based 

on external flow properties tends to infinity, with the external Mach number 

held fixed.   Terms considered to be of higher order are not obtained here, but 

it is pointed out that a complete understanding of the problem requires know- 

ledge of additional terms in the asymptotic expansions.   It is important to em- 

phasize that a solution obtained in this limit is not expected to describe effects 

associated with high Mach number.   The solutions, of course, are to be used 

not at arbitrarily large Reynolds numbers but at Reynolds numbers such that 

the flow actually is laminar. 

As suggested by Batchelor, it is expected that as the Reynolds number 

becomes large the velocity in the recirculation region remains of the same 

order as the velocity in the external flow, although numerically smaller.   In 

this limit, therefore, the Reynolds number based on typical properties for the 

recirculating flow will also approach infinity, although in any application the 

numerical value will be far smaller than the Reynolds number based on exter- 

nal flow properties.   It is believed nevertheless that the results will provide a 



- 10 - 

useful approximation at the larger values of Reynolds number for which the flow 

remains laminar. 

Since experiments suggest that the Mach number in the recirculation 

region may not be very large, the recirculation region is assumed to have con- 

stant density, and an estimate is made to show that the effects of nonzero Mach 

number may reasonably be neglected.   Ic is therefore also assumed that the 

dividing streamline is straight and that the pressure is nearly constant except 

in regions near the corner and near the rear stagnation point.   In the limit it 

is assumed that the dimensions of these regions approach zero.  Since the size 

of these regions will increase with increasing Mach number, it seems clear 

that the hypersonic problem would have to be studied by some different limit 

process such that the Mac   number also approaches infinity and the size of 

these regions does not approach zero.   Finally, for simplicity zero heat trans- 

fer to the wedge surfaces is assumed, and the Prandtl number is taken equal to 

one. 

Solutions are derived for the recirculating flow, for a shear sublayer 

and for the outer part of the free shear layer, and for the base boundary layer. 

Two constants remain undetermined in these solutions, namely the base pres- 

sure and the vorticity of the recirculating flow.   Therefore two additional con- 

ditions are needed.   A balance is imposed between the torques exerted on the 

recirculating flow by the shear stress along the dividing streamline and the 

shear stress along the base.   At the rear stagnation point a criterion similar 

■ 
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to Chapman's is used, but based on flow conditions for a particular streamline inside 

the shear layer, rather than on conditions outside uie shear layer.   It is pointed 

out that these conditions are considered as tentative, since they are not derived 

from the solutions obtained.   If second approximations could be obtained in the 

asymptotic expansions of the flow properties for large Reynolds number, it is be- 

lieved that these or similar criteria could be proposed with greater confidence. 

Numerical results are given for some of the cases studied by Hama, and rather 

good agreement is found between predicted and measured values of the base 

pressure. 



II 

DESCRIPTION OF THE PHYSICAL PROBLEM 
AND PROPOSED MODEL FOR ANALYSIS 

I.     General Description of ttic Near Wake 

The flow m thr in-ar wake of a slender wedge is shown in figure (1). 

At the vertex the unlfo*-     NUperHonlc stream on each side of the wedge is turn- 

ed through anangk  d . through anohilqueshock. Boundary layers are formed 

on the top and bottom surfaces of the wedge.   At the base of the wedge, these 

boundary layers expand rapidly, and in a complex manner, to a low pressure. 

The separation point is believed to occur on the base at a small distance from 

2.26 
the corner.      For low supersonic Mach numbers, the acceleration and pres- 

sure gradient are very large in a relatively small region near the separation 

point.   Hence it is expected that the expansion process may be treated as an 

isentropic expansion and the flow may be regarded approximately as an invis- 

cid rotatioiial flow.   In order that the no-slip condition along the wedge surface 

be satisfied as the flow approaches the trailing edge, there exists a viscous 

sublayer, having steep velocity gradient and with thickness small compared to 

the boundary-layer thickness.   The effect of the sublayer on the outer part of 

27 
boundary layer is small    .   Since the flow is actually overexpanded and then 

2 
recompressed by a lip shock, deeply embedded within the shear layer , the 

expansion processes at the trailing edge are further complicated.   The strength 

of the lip shock is small only if the ratio of the base pressure to wedge surface 

pressure is not too small.   Therefore, for flow over a slender wedge at low 

- 12 - 
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supersonic Mach numbers the lip sho^k is rather wr ak and the accompanying 

3 
entropy changes may be neglected  . 

The expanded boundary-layer flow, separating from the wedge, mixes 

under nearly constant pressure with the relatively low-speed recirculating 

2 4 
flow '   .   Viscous effects are important primarily near the dividing stream- 

line, where the velocity gradient is large.   For most of the distance from the 

base to the rear stagnation point, the dividing streamline has small curvature. 

The shear layer remains rather thin provided, again, that the wedge is slender 

and the Mach number is not very large.   Eventually the shear-layer flow ap- 

proaches the wake center line at the rear stagnation point, which is located at 

a distance of a few body heights downstream of the base of the wedge '   . 

In the vicinity of the rear stagnation point, the flow outside the divid- 

ing streamline is turned to a direction approximately parallel to die wake 

center line.  This fluid has momentum larger than the momentum at the divid- 

ing streamline, and therefore moves downstream to form the far wake.   A 

compression accompanies the turning of the flow, and the compression waves 

coalesce to form the wake shock.   A fluid particle along the dividing stream- 

line is brought to rest at the rear stagnation point, since it has a total pres - 

sure just large enough to sustain the recompression.   The fluid with lower 

momentum turns back to the base region and recirculates.  The velocity of the 

recirculating flow is relatively small compared with the velocity of the external 

flow. The shear force acting or the recirculating flovv along the dividing stream- 
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line produces an accelerating torque, whereas the shear force acting along the 

base of the wedge produces a retarding torque.   The net effect of the acceler- 

ating and retarding torques is to allow a steady motion in the recirculation 

region. 

2.    Motivation, Assumptions and Description of the Present Model. 

As suggested before, the near-wake flow comprises three flow regions 

of different physical character, each described by approximate flow equations 

of a different mathematical type.   These regions are the inviscid external flow, 

the viscous-layer flow, and the recirculating flow, and are described approxi- 

mately by pure hyperbolic equations, parabolic equations and elliptic equations 

.respectively.   A description of the interactions between the regions will be an 

' essential part of any analysis of the near-wake flow field.   However, it seems 

clear that the solution of the problem depends largely on the success in formu- 

lating essentially separate problems for die different regions which may be 

studied independently, and dien using some matching procedure to obtain a 

unique solution for the whole near-wake flow. 

23 
In the study of the recirculating flow the idea proposed by Batchelor 

24 
for incompressible laminar wakes is adopted, in the manner of Lenard     and 

25 Guderley and Greene   .  That is, an attempt is made to obtain an asymptotic 

solution for the recirculation region which is valid in the limit as the Reynolds 

number based on external flow properties tends to infinity, with the external 

Mach number held fixed.   Because the Reynolds number is large the viscous 

■ 
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forces acting on the fluid are small everywhere except in the neighborhood of 

certain surfaces where the velocity gradient is large    These surfaces enclose 

the recirculating flow.   The region where the viscous effects are not negligible 

becomes smaller and smaller as the Reynolds number increases.   Thus, in the 

limit, the flow in the interior of the recirculation region may be regarded as 

inviscid.   The solution, of course, is to be used not at arbitrarily large Reynolds 

numbers but at Reynolds numbers such that the flow actually is laminar. 

2 4 
From experimental evidence '   ,  it is clear that the length of the vis- 

cous layer which accelerates the fluid in the inviscid core is greater than the 

length of the viscous layer which decelerates this fluid.   It is expected, as pro- 

23 
posed by Batchelor    , that as the free-stream Reynolds number becomes large 

the velocity in the recirculation region is of the same order as the velocity in 

the external flow, although numerically smaller.   In the limit, therefore, the 

Reynolds number based on the typical properties for the recirculation region 

will also approach infinity, although in any application the numerical value will 

be considerably smaller than the Reynolds number based on external flow prop- 

erties .   However, it is believed that the results will provide a useful approxi- 

m£*:on at the larger values of Reynolds number for which the flow remains 

laminar. 

Since experiments suggest that the thermal energy of the fluid in the 

recirculating flow is of the same order as the kinetic energy in the external 

flow, which is numerically considerably larger than the kinetic energy of the 
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recirculating flow, the Mach number based on typical properties for the recir- 

culating flow may be assumed small.   This assumption implies that the recir- 

culation region may be treated approximately as an inconpressible rotational 

flow.   The effects of nonzero Mach number may be shown to be rather small. 

20 If the energy and momentum equations are operated on in the manner of Prandtl 

22 
and Batchelor    , one may obtain the result that the flow in the interior of the 

recirculation region is inviscid and incompressible with constant vorticity and 

temperature. 

In order to study the complex flow outside the dividing streamline cer- 

tain simplifications are needed to provide a simple but meaningful solution. 

The most important omissions are the details of the flow near the trailing-edge 

stagnation point, where the lip shock is formed, and the details of the flow near 

the rear stagnation point, where the \«ike shock originates.   Experiments sug- 

gest that for a slender wedge at low supersonic Mach number the lip shock is 

3 
rather weak , and in the limit of large Reynolds number the dimensions of 

* 

these omitted regions are of higher order than the wake length.   Therefore,! the 

expansion near the trailing-edge stagnation point and the recompression near 

the rear stagnation point may be assumed to be shock-free and may be replaced 

by isentropic processes.   It is also assumed that the dividing streamline is 

straight and that the pressure is nearly constant except in the omitted regions. 

Finally, for simplicity it is assumed that there is no heat transfer to 

the wedge surfaces; the Prandtl number is unity; the product of density and 

» 
▲ 
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viscosity is constant throughout the viscous layers; and the velocity profile 

prior to the corner expansion is a Blasius velocity profile in suitable trans- 

formed coordinates. 

Based on the simplifications and approximations mentioned above, the 

configuration of the present model of the near-wake flow field is shown in fig- 

ure (2).   The thin boundary-layer flow separating from the trailing edge of the 

wedge expands rapidly and isentropically to a base pressure.   This expanded 

boundary-layer flow then mixes under nearly constant pressure with the rela- 

tively low-speed recirculating flow, confined in a right triangular region with a 

wake angle 60 between the dividing streamline and the wake center line.   The 

mixing is limited to a narrow band around the dividing streamline which has a 

negligible curvature.   Eventually this shear-layer flow reaches the wake center 

line, and as it begins to turn compression waves are emitted.   The low-momen- 

tum fluid below the dividing streamline is turned back and recirculates in the 

recirculation region.   The high-momentum fluid above the dn-iding streamline 

escapes downstream and constitutes the far wake region.   The compression con- 

tinues until the external flow turns parallel to the wake center line.   The flow 

in the right triangular region may be regarded as incompressible and inviscid 

with constant vorticity and temperature.   Since the no-slip condition must be 

satisfied at the base, a base boundary layer is formed at the base of the wedge. 

This base boundary layer is thin in the limit of large Reynolds number, and 

produces resistance to the recirculating flow against the driving force of the 
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shear layer. 

3.   Criterion (or a Unique Near-Wake Solution. 

Since a fluid particle in the recirculation region undergoes a laminar 

steady motion along closed streamlines, the net gain in angular momentum of 

each fluid particle, as it moves through a complete cycle, must be zero.   Thi« 

condition should be true for all particles in either the inviscid core flow or in 

the continuous viscous layers enclosing the recirculating flow.   When a stream- 

line is taken as a control surface, then the abcve condition implies that the 

angular momentum of the fluid bounded by this control surface must be con- 

served.   For convenience the control surface may be c 'osen as the streamline 

enclosing the whole recirculation region, which consists of the dividing stream- 

line, the wake center line and the base of the wedge.   The shear along the di- 

viding streamline produces an accelerating torque whereas the shear along the 

base of wedge produces a retarding torque.   Since the wake behind a symmetric 

wedge is symmetric with respect to the wake center line, there is no shear 

along the wake center line.   Therefore, the accelerating torque from the shear 

layer should always be equal to the retarding torque from the base boundary 

layer, because there should be no change in total angular momentum of the re- 

circulating flow.   This implies that for a given flow condition before the trail- 

ing edge expansion and for a given wake angle there exists an equilibrium vortidty 

in the core flow so as to satisfy the requirement of conservation of angular mo- 

. 



-19- 

mentum for the recirculation region. 

When the shear-layer flow approaches the wake center line it starts 

to turn and the pressure begins to increase.   The recompression has been 

assumed to take place in a region having dimensions of higher order than the 

wake length.   In this region the pressure and inertia effects are much larger 

than the viscous effects, and so rhe flow near and on the dividing streamline 

may be assumed to be recompressed approximately isentropically.   A fluid 

particle along the dividing streamline is brought isentropically from a large 

velocity, corresponding to the condition prior to the recompression, to rest 

at the rear stagnation point.   Accordingly, its static pressure increases from 

the base pressure to the stagnation pressure.   Experimental results show that 

2 
at the rear stagnation pointthe flow is partially recompressed ,and  "le turning of 

the external flow to the direction parallel to the wake center line is not yet com- 

pleted.   Hence, further recompression is required downstream of the rear 

stagnation point until the external flow is parallel to the wake center line. 

If a uniform supersonic flow is turned through a given angle from a 

specified initial static pressure, the final value of the pressure depends on the 

initial value of the Mach number, and it is known that the final pressure has a 

28 
minimum value for a particular Initial Mach number.   Near the rear stagnation 

point, for a streamline just outside the dividing streamline    , the velocity of a 

fluid particle is decreased and the flow is turned to a direction almost parallel 

to the wake center line.   Since the turning actually is completed downstream of 
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the rear stagnation point, the pressure rise would be overestimated if it were 

assumed that the streamline becomes parallel to the center line at a point very 

close to the rear stagnation point.   To compensate partially for this error, the 

streamline having a minimum pressure rise is considered.   It is assumed that 

this streamline is turned through a simple wave to a direction parallel to the 

wake center line, and that the pressure thus attained is equal to the pressure 

at the rear stagnation point.   This requirement will be referred to as the re- 

9 
attachment condition.   It is similar to Chapman's criterion of reattachment 

but is based on flow conditions for a particular streamline inside the shear 

layer rather than outside the entire shear layer.   Since for a given flow con- 

dition before the trailing-edge expansion, the shear-layer velocity distribution 

is dependent both on the vorticity of the inviscid core flow and on the wake angle, 

the reattachment condition must also be dependent on the same factors. 

For a given flow condition before the trailing-edge expansion, the shear- 

layer velocity distribution varies with the change in both the inviscid flow velo- 

city at the inner edge of the shear layer and the external-flow velocity; in other 

words, it depends on the vorticity of the inviscid core flow and on the wake 

angle.   The velocity distribution in the base boundary layer is determined by 

the velocity distribution at the outer edge of the base boundary layer which is, 

in turn, a function of the wake angle and the vorticity of the inviscid core flow. 

Hence, if the wake angle and the vorticity of the inviscid core flow are obtain- 

able, the near-wake flow properties may be determined.   Therefore, two inde- 

-*    ' 
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pendent conditions, which involve both the wake angle and the vorticity of the 

inviscid core flow, are needed to provide a unique solution for the near-wake 

flow.   These independent conditions are the conservation of angular momentum 

for the recirculatlon region, and the reattachment condition at the rear stagna- 

tion point.   It should be pointed out that the reattachment condition is considered 

ar tentative, since it is not derived from the solutions obtained.   In the present 

context, solutions for the flow details near separation and near the rear stagna- 

tion point are regarded as part of a higher approximation.   A solution valid near 

the rear stagnation point, and perhaps other parts of the next approximation, 

would have to be studied in order to devise some sort of reattachment condition 

in a systematic way.   Presumably it could then also be shown that the error 

really is of higher order in the present formulation of the condition that angular 

momentum must be conserved. 



Ill 

GENERAL RESULTS FOR RECIRCULATING FLOW WITH LARGE 
LOCAL REYNOLDS NUMBER AND SMALL LOCAL MACH NUMBER 

1 .    General Remarks and Formulation 

20 21 22 23 
The arguments given by Prandtl    '     and by Batchelor       '  for incom 

press ible flow are extended here for the steady flow at large local Reynolds 

number in the confined region behind a blunt-based body immersed in a um- 

, 24 
form supersonic stream.   The deiivation is also an extension of Lenard s 

work, because an estimate is obtained to demonstrate that the effect of nonzero 

Mach number in the recirculating flow is probably quite small. Diffusive ex- 

changes are supposed to be so small that they may be disregarded wherever 

there are no large velocity and temperature gradients   or accumulative effects . 

That is, for steady laminar motion along closed streamlines at large local 

Reynolds number, viscous forces acting on a fluid element and thermal ex- 

changes between die element and its surroundings are small everywhere except 

in thin viscous layers where large gradients in flow properties are encountered. 

Such thin layers enclose the recirculating flow behind the blunt-based body. 

Hence, for large local Reynolds number, the flow in the interior of the recircu- 

lation region may essentially be considered as inviscid and nonconducting.  The 

assumption of small diffusive exchanges implies that thenondimensional forms 

of the viscous forces and of the thermal exchanges are small compared with 

unity, provided that the characteristic values used in the definition of local 

- 22 - 

\   ■ *    * \ 
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Reynolds number and local Mach number for the recirculating flow are chosen 

as typical values for nondimensionalization. 

For the present model, it is assumed that the Reynolds number Re , 

based on the external-flow conditions and the wake length,  is large, and the 

flow is laminar.  Thus as Re   approaches infinity as a limit, the thickness of the 

laminar viscous layers, at the wedge surfaces and the boundary surfacesof the 

wake, is calculable and is of order Re     . In the limit Re   - 00, these viscous 
e e 

layers reduce to a number of singular stream surfaces of the fluid. Across such 

singular stream surfaces the flow properties may be discontinuous.  For the lam- 

inar wake of a wed^e, the portion of the wake boundary which yields resistance to 

the recirculating flow is shorter than the portion of the boundary which produces 

driving forces, and thevorticity of the inviscid core flow must take up an equi- 

librium value such that the flow is steady.   Therefore, the typical velocity of 

the recirculating flow must be fairly high.   In the limit of large Re , the typi- 

cal velocity of the recirculating flow must be of the same order as that of the 

external flow, although numerically it is smaller. Since the flow properties in 

the recirculation region differ from those of the external flow primarily through 

factors involving powers of the Mach number M , based on external flow proper- 

ties, then the Reynolds number Re , based on the typical flow properties of the 

recirculating flow, differs from Re   through factors involving powers of M  . 

In the limit Re   "* * with M   held fixed. Re   will also approach infinity. 

Let the typical length, velocity magnitude, temperature, density, pres- 
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sure and total enthalpy for the recirculating flow be denoted by L . q, T , p . 

p   and H     =  c   T   respectively.   The coefficients of viscosity and thermal 

conductivity corresponding to the typical temperature T   are p   and k   respec- 

tively.  The following is a list of nondimensional variables for therecirculation 

region: 
2 

q=^:T=i;P=^:p = Er;H=  T+[(Y-l)Mr
23  \- 

^r r r pr 

c 
^- t :  /  -f  ; k- t ; S-   .Sr; Y.   J> 

u       r u k c c 
r rT T v \ 

where M    =   /~"^fr~     =  reference Mach number for the recirculation region. 

The bar above any symbol denotes a dimensional quantity.   The first and sec- 

ond viscosity coefficients are denoted by p and p    respectively, and S is the 

specific entropy.   The spatial coordinates are made nondimensional by the typi- 

cal length L   which is taken equal to the base height.   Later it will be clear that 

the obvious choice for a   is 1 to  L /2 | , where w   is the reference vorticity 

in the inviscid core flow. Also T   is the stagnation temperature of the free 

stream, p   is the pressure after the trailing edge expansion, and P  is the den- 
_ c   p" 

sity corresponding to T . It is assumed that the Prandtl number Pr =  -**—   is 

equal to one and the specific heats are constants.   In a later part of the deriva- 

tion the coefficients of viscosity and conductivity will be taken to be linear func- 

tions of temperature, and so p   and k   are proportional to T . 

The nondimensional equations which describe the laminar motion can 

"i 
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be derived fron the general form of th^se equations given by Lagerstrom 
29 

7    (pq)  =   0 (IIM) 

P q   X (7 X q )   = 
* \       r — 

YM 

- _2 + 2V [p(V ■ q ) ]   +  7(q   • Vp) - q  V   M 

+ ( VM) X (7 X q) - (V • q ) (^(i) - V X 7 X (pq ) } 

2 (in-2) 

i   r i   (Y-1)Mr r    r / -     - Pq   •7H " ST [7(MVH)J+   —^— |V[M    q(Vq ) 
r r 

+ MV(iq2)+ M(^ X q)X q ]} (III-3) 

V    r 1 1    Y(Y-I)M*        /       _ 2 

+ ^V(qq)+^7^(7Xq)xq 

2q   •  7(7    q )+ | 7X q  |2]}       (III-4) 

E_   =   ^S 
(III-5) 
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where Re    =    =  =   Reynolds number for the recirculation region, 
r             Mr         S 

AS  =  S - S , and S    =    =   the typical entropy for the recirculation region 

-^  Cv    - 4 2 corresponding to T , p   and p  .   When Re   is O(10 ), then Re   is 0(10 ), as 

will be shown later when the numerical results are presented. 

In the limit Re  -• • ,   following Prandtl     and Batchelor    , the non- 
r e, 

dimensional equations (II1-2) to (III-4) valid for the interior of the region of 

recirculating flow become 
2 

pqxvxq   = -^vp + pv^     (lii-6) 
YM 

1 ä_ 

pq      vH  =  0 (III-7) 

pq   • VS  =   0 (III-8) 

Thus in the interior of the recirculation region the flow is regarded as inviscid 

and nonconducting.   However, since the gradients in flow properties are large 

near the boundary surfaces which enclose the recirculating flow, the viscous 

effects are important in thin layers adjacent to these surfaces.   As the local 

Reynolds number grows, these layers become thinner, and the typical length in 

the direction normal to the flow direction is not L   but should instead be of the 
r 

order L /Re   .  Therefore in the limit of large local Reynolds number the appro- 

priate viscous -stress terms may be retained and these regions are described 

by boundary-layer equations. 

Nondimensional orthogonal streamline coorumates £■   and ^ are now 

v 
^ _ 
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•ntroduced. where ^ is measured in the streamline direction and il> is measured 

normal to the streamline direction.   The elements of length in the direction of 

increasing ^, 0 areh  d^, h dj/j respectively. 

The integral conditions which arise from the effect of diffusive ex- 

changes, and which are valid no matter how small the coefficients of viscosity 

and thermal conductivity may be, can be derived from the energy equation and 

the momentum equation.   The operations applied to these equations should be 

performed in such a way that the contributions from all terms other than the 

terms involving diffusive exchanges vanish identically. Such an operation is to 

take the line integral around a closed streamline in the two-dimensional flow. 

Since experimental results show that M   is fairly small, it will be 

2 
assumed that the flow variables can be expanded in power series of M , as in 

30 
the Janzen-Rayleigh method (e.g., van Dyke    , 1964): 

-.      -. .2 - 
q  ~ q   + M   q, + ... 
^      ^o        r M 

T ~ T  + M2 T, + ... 
o        r   1 

2 
p ~ n   + M  p, + ... r     po       r rl 

p ~ p   + M  p. + . . . 
o        r  1 

H~ H   + M2H1 +  ... 
o        r    1 

2 
u ~ u  + M u   + ... o        r rl 

2 
u' ~ u'  + M u, + ... ro r   1 

TTie effects of compressibility may, in principle, be studied by perturbing a 

basic solution for incompressible flow.   The first order corrections are pro- 
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portional to the square of the typical local Mach number M , and higher approx- 

2 
imations proceed by successive powers of M   . 

2.    Integral Condition Obtained from Energy Equation. 

The integral condition arising from the distribution   f thermal energy 

within the recirculating flow is now considered.   The energy equation (III-3) 

may be rewritten in the following form: 

(RTYP^) {V   tovH> + <Y-l)Mr
2 V • [V q ( V • q ) + M(q • *) q ] } -qVH=(A.\A\\ 

(III-9) 

where i is a unit vector along a streamline and q may be replaced by q i . 

Integration of equation (III-9) around a closed streamline inside the recircu- 

lation region gives 

$>[Tq. VHjhjd«   =^(-^{7 .M7H+ (Y-,)MrV [p'q^V .I) 

+ M(q    ^)q]}h1d^ (111-10) 

The left-hand side of this equation may be written aso) VH i • h d^ , which 

vanishes because H is a single-valued function of position.   Then the exact in- 

tegral condition to be satisfied for every closed streamline is 

+ H(q • ^JJhjd« (in-ll) 

'. 
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2 
Substitution of the expansion in powers of M    into this equation gives 

^0)b
{^vh^ 

+ [Mr2J^)(V^07Hl>^   ^7Ho)-(To  +P7)V(VH0> 

hjd^   =  0(M*) + <Y-1)7[^V7Jo)+^0(VV)<o] 
(III-12) 

Therefore the integral condition from the energy equation may be written as 

H^^^cfW*   =0(Mr2) (IIM3) 

when Re   is large, the energy equation^III-7) for the inviscid core flow can be 

reduced to 

H =  H(^) =  HQ{^)+ M'Hjij)* ... (111-14) 

This means that total enthalpy is constant along a streamline.   If equation (111-14) 

is substituted into equation (111-13), the resulting integral condition from the 

equation for the inviscid core may be rewritten as 

feX4)[MM^ 
hj      dH0(^) 

hi VMoi h2     dti hjd^  = CKM^       (111-15) 

From the definition of the stream function it follows that 
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D0q0h2 =   1 

Hence the operator  —   may be taken outside the integral, and equation (III-15) 

becomes 

d UdHo(^\ 
^f^-d^rj 0oVohi d^   =  0 

Integration with respect to 0 gives 

dH0(^) 

~~d$~  TD0q0M0h.ld^    =  constant (111-16) 

Equation (III-16) should be valid for any streamline lying entirely in the invis- 

cid core flow, including streamlines arbitrarily close to the center of rotation, 

where q   =   0.   This indicates that the constant in equation (III 16) can only be 

zero.   Because 

<Kvohid^ ^ 0 

except for q„  =  0, equation (III-16) becomes 

dH0(^) 
=   0 (111-17) 

Th* is, Hn =   constant, or 

i 
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T    =   constant (III-18) 

From the definition of T , one eets T„  =   1.   This condition states that in the 
r 6 0 

limit Re   -• ^ the contribution from the diffusive exchanges to the rate of 

change of enthalpy in the inviscid core of the recirculating flow must be zero 

2 
when terms of order M   are neglected. 

The existence of a constant temperature region in the wake of a body 

is evident both from theoretical analysis and from experimental results. 

31 
Burggraf    , in a study of the structure of the two -dimensional flow inside a 

square, has solved the Navier-Stokes equations numerically for a constant- 

density fluid.   The highest Reynolds number for which results are presented 

is 400, which is comparable to values anticipated for Re   in the present analy- 

sis ,   Both vorticity and temperature are found to be approximately constant in 

an inviscid core flow.   The result of constant temperature in the inviscid core 

is obtained by taking the integral of the constant-density energy equation around 

a closed streamline.   Todisco and Pallone   have made near-wake flow field 

measurements, and found the existence of a temperature plateau in the recircu- 

lating flow. 

3.    Integral Condition Obtained from Momentum Equation 

The integral condition arising from the velocity distribution may be 

obtained by integrating the momentum equation around a closed streamline in- 

side the recirculating flow.   For convenience the momentum equation (III-2) 
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can be rewritten as 

J,(..?,.(^)^+V(V)-(^)K V ■ q ) 

+ ( V • 2\iv) q  + V X (MV X J) J 

The integration of the above equation around a closed streamline gives 

^q-M.xq-,].hld?^[^].hl<ie-+f[v(v)l.hl d? 

(4)*PLT<M' 
-». "I 

Vq)+(V-2pV)q  +7  X(p7Xq)   ihd^ 

(111-19) 

The integral p|q  x(7Xq)|,hdf   vanishes, because the contour of integra- 

tion is a streamline.   Th   second term on the right-hand side vanishes since 
2 

%- is a singje-valued function of position.   Then equation (111-19) becomes: 

fe^H-' vq) + (v-fyv) q 

+  VX(MvXq-')]-h1d?   -/JjU^].^ df 

(111-20) 

Wien the expansions in powers of M   are substituted into the above equation, 

there results: 

•  r- 
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Rr)f^ [y x ^o(V x %)+ 7^ov- V + ^^o^oJV* 

(Mr2)f^[    ^M^VXq^.V^V.q^ ) + (V-2M1V)q0 

JO * x ^V x ^ ^ ^o7-V -(y<7^ov)^o 
+ ^ x M0(^X q1)+ V(M0 QVqi) + (7.2M0V)qi:J.h1d4 

+ 0(M  ) 
r 

■=fe> 
?-:« (111-21) 

For tfie interior of the recirculation region, an estimate of the variation in en- 

tropy along a closed streamline can be derived from equation (III-4) and the 

condition of constant temperature in the inviscid core: 

M 

»r(AS,-0lir (111-22) 

Now the estimate of the right-hand side of equation (111-20) may be obtained by 

substituting the estimate of the entropy variation from equation (111-22) into the 

equation of state (111-5).   Because equation (111-5) can be expandrd as 

P l/Y V Y / 
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+  - / AiJ  -j-V O [(AS)2] (III-23) 

the right-hand side of equation (III-20) has the following expansion: 

hjd« 

d)      : —^    AS   jh.dC   +0[(AS)   ] (111-24) 

The first term on the right-hand side of the above equation is zero.   By sub- 

2 
stituting the expansions in powers of M    and the estimate of equation (III-22) 

into equation (III-24), one finds 

f(^)v-o|(S[f(?)vr 
+ (M 

1 / ^P. P   Vn,« 
+... (Ill-25) 

Since T«  =   I, and S a constant along a streamline, it follows from the equa- 

tion of state and the relation between S and -*- that pn and Pn are constant along a 
PY 

streamline.   From the component of the momentum equation normal to stream- 

2 
lines it is found that the changes in pressure normal to streamlines are 0(M  ). 

Therefore pn and pn are constant throughout the core region.   Hence one ob- 

tairs 

■ 

• 





,, 

- 36-

-o 

culuting flow, the right-hand side is identically zero, because w is always 

-o 

perpendicular to q . Thus it follows that 

w 
- 0(1/J) p 

Let the expansion of vorticity in powers of M 
2 

be defined by r 

and 

hen 

hen the above result is applied to equation (III-28) there results 

(III -30) 

.... -o -o 

where i w is the unit vector normal to the plane of the flow and w = w i w . 

Since p
0 

is a constant, equation (III-30) can be rewritten as 

(III -31) 

Since ~ Cio h 
1 

d ~ 1- 0 except when q0 = 0, the ~ondition obtained from the mo-



- 37 - 

mentum equation for the inviscid core flow can be written, to order one, as 

w   = constant or n    = constant (III-32) 

From the definition of | a;   | , w   must be equal to -1.   This condition states 

that in the limit Re -♦ « the contribution from viscous forces to the rate of 
r 

change of vorticity in the two-dimensional recirculating flow must be zero 

2 20 22 
when terms of order M   are neglected.   Prandtl     and Batchelor    have found 

that for incompressible flow with closed streamlines the vorticity is uniformly 

distributed in the inviscid core flow.   Since the conditions u    = constant and 

T    = constant for the inviscid core flow are obtained by studying the dissipa- 

tive terms, they demonstrate the fact that even though the core flow is inviscid 

and nonconducting, and the primary effects of diffusive exchanges are limited 

to the continuous viscous layer enclosing the recirculating flow, the accumula- 

tive effects of very small diffusive exchanges are experienced throughout the 

entire recirculating region.    In other words, the reason for the existence of 

these integral conditions are that, in the exact steady motion, the net effects of 

diffusive exchanges must be exactly zero.   Therefore, for two-dimensional 

flows with closed streamlines, the fluid motion cannot be exactly steady until 

the effects of the small but persistent diffusive exchanges have evened out any 

variation of temperature and vorticity that may have been present initially. 

4.   Discussion of Errors in the Incompressible-flow Approximation for the 
Inviscid Core. 

The solutions obtained in the preceding sections are based on the 

assumption that the density of the recirculating flow is approximately constant. 

I 
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Tne errors resulting from this approximation depend on the magnitude of the 

reference Mach number M   for the recirculation region, which is known tobe 

numerically small.   Accordingly the higher-order terms in M , which have 

been neglected in the previous incompressible-flow analysis, should be exam- 

ined so that an estimate of the compressibility effect on the recirculating flow 

can be obtained. 

2 
If terms of order M    are retained, the next approximation to the inte- 

gral condition from the energy equation can be obtained from equation (III-3): 

f(p^)['<VH,'jV« 

(rDO f(vo)rW^ + v'»). 
(III-33) 

Since H    =   H (^ ) for the inviscid core flow, the left-hand side becomes 

."0% )l>-<Mo7H,>jV« 

ä*\ h2      ii hjd? 

■ "of^jfallw, dir)] V« 

where pnqnh    =   1.   The rig^it-hand side of equation (111-33) may be rearranged 

ü 
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as 
2 

(Y"14(pfi)^^o(7.T + V^)]}hid^ 
•   \    U   U ' 

2 2 
qn/2 \     ^n 

= -(v hjd^ 

where ttL = 
1       ^1^ 

'0 "     h h 94) 
.   Hence equation (111-33) can be written as 

•   _ 

J   L 
s^fsff«^» ̂  'o2) Wi^ 

■ [<^)^]*p^ hld« (III-34) 

Integrating equation (III-34) with respect to 0 , 

|fe(H
1
(*>+1r%)]poqohi <u 

■ ;<vi)'"ojl^hia5d* 

Changing the order of integration on the right-hand side term and using 

P0q0h2 =   1, 

(III-35) 
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where A( 4)) = J ^ —^-  hj cK cl0   »J^hhdCd*.   Hence A( 0) is the area 
poqo 

inside the closed streamline.   Also 

( Si 'o^o 
i/aqo 

% h^V"^ 

i 
h1h2 

Since Stokes' theorem gives 

\     W   I   XhJ     h2    ^\   2 

^hjd^   =   - woA(4)) 

then equation (III-35) can be reduced to 

dH^) 

w - ^'l) ?r h2ä* 2 
hjd^ 

[^oVi^l 
Integrating the above equation with respect to i/) and rearranging, 

2 

Ti -^^-D 

•r^Y 
i 

h^ (*■■! 
Jpoqohid^ 

(111-36) 

dl/) 

(111-37) 

In order to obtain the exact value of T., it would be necessary to eval- 

uate die second term on the right-hand side of equation (111-37).   Since the ex- 

act functional dependence of h   is not known, the value of the integral can not 

be obtained analytically.   However an estimate of the integral can be performed, 

so that the contribution of T. may be estimated.   The term in the curly bracket 
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of the integral of equation (III-37) will be estimated as 

^{h|)l^l 
r 
}po%hidi 

%\2  *(hi 

^^O<MJW^ 

%\2 

J Po%hidi 

2 
ari 

hj  5i\  2 typical of A((/)) 

therefore the integral of equation (III-37) will be estimated as 
2 

(Y-l) mi h2 ^5 \   2 hjd^ 

-1 

' \ 2 y L ^ J typical of 

I d$ 

typical of A( J/)) 

typical of A( 0) 

Ah 
1 

It is assumed that   -r-    =   1 ^»ence an estimate of T   may be obtained from 

equetion (111-37) as 

1 V    2^1^      Lq0 J typical of A(V)J 
(111-38) 

mm 

1 

m 
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From the solution for the inviscid core flow, which will be treated in (IV), one 

may show th«»^ q   is always less than unity.   Actually I t^J a 0.85, and 

so the quantity in the curly bracket of equation (111-38) must be always smaller 

than unity, with maximum value probably less than 0.5.   Furthermore, for 

2 
Y  =   1.4, the numerical factor is equal to 0.2.   Therefore, the term M    T 

is believed to be very small in comparison with Tn, and for all practical pur- 

2 
pose M   T. may be considered as zero. 

It is known that in the inviscid core flow pn       constant.   Thus the 

momentum equation can be written as 

'ohjVTif YP0 E^vn j 

hA ^   r   Q%'    Ypn HA ^ 

(111-39) 

(III-40) 

Solving these equations 

P,  ■   -Y ^T- + ^ - V 
(111-41) 

where $    = •=—•— , and  I ^  I is the mass flow per unit time between the 
c      q_ L c 

T:   r 
center of rotation and the enclosing boundary surface. Since a ^ ^nmax 

amt'Hlhe distance between the center of rotation and the location where 

q     =   q is approximately equal to L  /2  , the mean velocity between 

- 
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thesetwo points will be estimated as ^g .   Therefore 0   will be estimated as 

- 0.5.   By the definition of the typical values of density, temperature and pres- 

sure, it is clear that Pn =  Pn 
=   ^n =   l' and s0 t^e e<Juation 0^ state maLy 

be written as 

Pj =   Pj + Tj (111-42) 

Since T    ■ 0, 

r 2 

I"0 
'i =   HT c 

(111-43) 

or 

2 
By using equation (111-43) and the expansion of 0 in powers of M  , there results 

W    =   0    =   -l 

0 0      h2 1 

Wj * 01(^) + Y|-^ -(# -*C)J 

From the energy equation, the equation of state, and the results so far obtained, 

it has been shown that along a streamline the variation ir. entropy is AS = 

0|  ——  I and therefore (p(—£-jh  d 4   = CM  ■=—  I.   In the expanded integral 

condition (111-21) all but one of the terms of order M   are zero, and so the next 

approximation to the condition becomes 

K?K V«] 'V* = 0 (ni"44) 

Substituting the expression derived for co   into equation (111-44) one obtains 
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^^(♦H.J-hjdf =  -Y j>| vx[ q-| -(^ -0c)   T^jhjdf 

(111-45) 

which may be rewritten as 

dOt(#) 
% 

dl/j J- ^ohid^ ■ ^v1!^ -^[^o Mi]vid€ 

=   Y 

=   Y 

%hi^ 

After rearranging and then integrating with respect to (f), 

2 

0^) = Y 
(hj     &{   2/ %^i 

Khid^ 
'   dil)     (111-46) 

the integral of equation (III-46) will be estimated as 

[TJ   F^VT/J  typical of A^t)?^11!*14 

Khld€ 
oil) 

_»J. 
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/    2 \ 

\   2   /typical of A(^) 

A4) 
typical of A(^) 

Then equation (111-46) will be estimated as 

0    a 

ü)i  a Y 

i) typical in A( 4») 

2 \ 2   A typical in A( <!>) . -(*  -*) 
) 

Nearing the center of rotation, $ * $* and qn "* 0, and so c u 

u)   -   o 

Approaching tiie edge of the inviscid core flow, 0 -• 0 and 0 ^ q   < q 

a  0.85.   Since ^    a   - 0.5,   | U)   | might be as large as 0.5 near the stagnation 

points.   Elsewhere in the inviscid core flow,it would be expected that 1(0. |  is 

considerably smaller than 0.5.   Thoughout most of the region, therefore 

M   I co   I is believed to be quite small in comparison with I (*)   I . 
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THE INVISCID CORE FLOW 

1.    General Description and Formulation of the Problem 

The results from previous sections have shown that when the wake 

Reynolds number Re   is large and the wake Mach number M   is small, the 

20 22 
model proposed by Prandtl     and Batchelor     should correctly describe the 

interior of the recirculation region.   Accordingly two conditions, which im- 

ply uniform temperature and vorticity, have been deducted for this inviscid 

core flow. 

The static pressure in the near wake is known to be nearly constant, 

except in the vicinity of the trailing-edge stagnation point and the rear stagna- 

tion point.   However, the regions near these points are assumed to be small in 

comparison with the length of the wake, provided that the Mach number is not 

too large.   Away from the stagnation points, the curvature of the dividing 

streamline may be regarded as small.   Furthermore, since the wake Reynolds 

number is large, the regions near the enclosing surfaces, where the diffusive 

exchanges are large, can be considered small.   Consequently, the interior of 

the recirculation region, where the recirculating flow is inviscid and incom- 

pressible with uniform vorticity, may be approximated as a right triangle 

bounded by the base of the symmetric wedge, the wake center line and die di- 

viding streamline. 

It is convenient to work with a stream function ^ and to use cylindrical 

- 46- 

• 

». 
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coordinates 5 and r, with origin at the rear stagnation point and ? measured 

clockwise from the center line of the rec. culation region (see figure 3).   For 

plane incompressible flow the stream function is defined by 

d^ = äldr + tl 

where j-s and * ~ *•» are the velocity components in the 0 and r directions 

respectively.   Therefore the governing differential equation is the Poisson 

equation 

V20  =  üi (IV-1) 

where w = a)   and is a constant.   This equation expresses the physical fact 

that the flow is incompressible and inviscid with a uniform distribution in vor 

ticity.   The boundary conditions to be satisfied are 

/ r OM f      \ 
Hr.O) =   ^(r.ff ) = *)        °     ff

0.e J   =  0 (IV-2) 
0 \      cos Ö / 

where r   is the length of the dividing streamline and B  is the wake angle. 

These boundary conditions indicate that in the triangular region die mass is 

conserved; that is, there is no mass exchange with the surroundings. In order 

to nondimensionalize and normalize the governing differential equation and 

boundary conditions, new variables are introduced in the following manner: 
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--2     '   r  "    r     '  e   ~ F 0) r o o 
o 

Then the nondimensional form of equations (IV-1) and (IV-2) can be written as 

ik * i AL* +   »    »k . , (iv-3) 
»r2      r    är        r292     iie2 

o 

/ cos 9 \ 
^•(r.O) = ^»(r.l) = ^  cos7

0 e)   . ej    =  0 (IV-4) 

2.    Method of Solution 

In this problem a particular integral of the differential equation (IV-3) 

can be obtained by defining 

ir(r,e;8o) = *(r. e;eo) + x(r(e;eo) (IV-5) 

where >Wr, 8; 6 ) is the particular integral and satisfies the following differ- 

ential equation and boundary conditions: 

-2 + 7   TF+T-2-2-1 <IV-6> ar2    r   ar    r2e2   ae2 

^(r.O; eo) = *(r.l; 6^ = 0 (IV-7) 

A solution of equations (IV-6) and (IV-7) is 

^%>. 
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^r.e; eo) = 
4 sin 26 

(sL'iC2e(l-e)] +sin[2e 8]  -sin[2e ]| 

(IV-8) 

If equations (1V-5) and (IV-8) are substituted into ecation (IV-3) and boundary 

conditions (IV-4). the differential equation becomes 

ar2    7ar   r2e2  ae2 

o 

=   0 (IV-9) 

and die boundary conditions reduce to 

X(r.O; eo) = x(r,l; 6^ =  0 (IV-10a, b) 

cos 9 

cos(d 6) ' e; 0o 
o 

cos  9 
o 

4sin 29 cos2(9 9) 
o o 

{8in[29o(l-9)] 

+ sin [2^9]- sinr29o]| 
(IV-10c) 

Although it may be possible by standard methods to obtain a solution which sati- 

fies (IV-9) and (IV'-IO) to any desired degree of accuracy, it appears that any 

such solution would be very complicated.   Since the wake angle 9 is known to 
c 

be rather small, a further simplification can be made by expanding ^ in a pow- 

er series in 9 .   Equation (IV-8) has the following series expansion in 9 : 

*(r. 9; 9 ) = öS.fr, 9)+ 9^ *,(r. 9) + 0(9^) 
O O    1 o    d o 

' 



* __.— 

5ü 

= ^[(e2.e)^[ + e^[(e-2e3
+e4)VJ+o(e^) 

(IV-ll) 

TTie solution for x must satisfy equations (IV-9) and (IV-10).   Since 

the boundary condition given by equation (IV-10c) may be approximated by a 

Fourier sine series, the method of separation of variables can be employed 

The largest term of the solution is of the form 

32 

.*/0o sinTT 6 

where n /6 » 1 because 0 <   6  « 1.   Therefore the solution decays fairly 
0 ö 

rapidly as (1-r) increases.   Consequently, the contributijn of x(r, 9; 9 ) to j/)* 

may be considered as limited to the region where (1-r) LS small.  Since 
M ■ _ 

r    ^ ~ - exp [-7r(l-r)/9 ] as r- 1, it appears that, for 9 - 0, x is a function 

of the stretched coordinate 

r* = 
1-r r 

o 

With this new independent variable, the expansion of x(r, 9; 9 ) is 

X(r.9:9) = 9fx,(r*. 9) - 93 x9(r*,9) + Ö^xJr*^) + 0(9^) 
ool o   2 o  3 o 

(IV-12) 

Hence the expansion of ^* is 

^%>. 
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^er,^.^]^^ 

When equation (IV-I2) is substituted 

there results 

(IV-13) 

into equation (IV-9) and (IV-lOa.b. c). 

yir*r*+ ^ + % tx2r.r,-Xlr, + X^+lrX.t ] + ...   =  0 

Xjif o)+ eoX2(r\o)+ ... . o 

X1(rM) + eox2(rM) + .   =   0 

(IV-14) 

(IV-15a) 

(IV-15b) 

x1(o.e) + eo[x2(o(e)+i(i-e2)Xi^(0ie)- 

oL3 s     xir*r*(ü>8)+"2    x2r#(o, e)J+ 

l J      o L   3° +*0    +6
e   "JO  J + ...    (IV-15c) 

3     T^e Solution for the Invlscid Core Flow 

From equations (IV-14) and (IV-15a( b. c). d.e governing differential 

equation and boundary conditions for ^(r. 6) can be written as ' 

;> 

XIT*T** xiee = 0 
(IV-16) 
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XjOr'.O) =  XjdrM) = 0 (IV-17a.b) 

x^o.e) = |<i - e2) (IV-17c) 

The above differential equation and boundary conditions describe inviscid in- 

compressible flow in a semi-infinite strip bounded by walls at 6   = 0 and 9   = 1; 

the boundary condition at r*  =  0 is prescribed by equation (IV-17c); the other 

condition needed for the solution of the above problem can be obtained by the 

requirement that the solution must be bounded as r* -• » .  Since the boundary 

condition at r*  =  0 has the Fourier series expansion 

ir 

a» 

*3    ft     (2n+l)2 
sin(2n+l)7re (IV-18) 

and since the method of separation of variables can be applied, the solution 

forx^r*. 6)18 

*!<»•••>■ fa   I' 1 

(2n+l) 

ö2 

» e>.p [-(2n+l)7rr* ]hsin(2n+l) 7r0 

(IV-19) 

Therefore the solution to order 6   can be written as o 

r(r.e:eo) = ^2 r|2(e2-e) + ^ " 

f o(i5 

fexp[-(2n+lXl-r)7r/eo] 

1 L 
t     oL(2n+ir 

sin(2n+l)7r0 

(IV-20) 

•♦A 
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For small values of the wake angle 9 , this solution is equivalent to the so- 

lution for the flow in a circular sector with angle 0 and radius r  .   The flow 
^o o 

in the circular sector with constant vorticity would be described approximately 

as follows: 

<r(r o       [2 (9 - e2) 8o
2 +Xl(r,J) + n3) 

A,    , ax,      , A, 

X^r.O)  =  XjOr. 1 ) =  0 

Xjd.Ö) =   i(0  - 61 

and x^r. 0) would be obtained by using the method of separation of variables 

The solution is 

0* = 02 
o 

r2    2            4  r rC<aH-1),r/ro3 

L-i^~e)+ ^yT- r—2-   sin(2n+l)ff0 
jr    ^       (2n+l) 

+ 0(f3) 

Since the contribution from the series terms diminishes as (1-r) grows and 

/ On i  I\ _ ? 

since the powers of the nondimensional radius r o for (1-r) small may 

be approximated by the exponential form e ,  the above solution 

may be approximated by equation (IV-20) or vice versa. 

J 
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The differential equation and boundary conditions for x9 can be ob- 

tained from equations (IV-14) and (IV-15) and the solutions for \ (r*, 9): 

X2r*r*+X2ee   =  hr* ' ^heB (IV-21) 

X2(r*,0)  =  x2(rM) =  0 (IV-22a.b) 

X2(0. 6)=   -i(l-82)xlr^(0. 6) (IV-22c) 

_2 

ff 

CO 

I (1 -e2)y     ^sin(2n+l)Jri 
Ü   (2n+ir 

In this problem a particular integral that accounts for the terms on the right- 

hand side of the differential equation can be expressed in terms of the known 

solution x^r*. 6),   Let 
1 . • 

X2 =  X^ +X(
2
C) (IV-23a) 

where x , and x 9    denote the particular integral and the complementary solu- 

tion for equations (IV-21) and (IV-22) respectively.   A particular solution is 

given by 

x<2>=   ^V (IV-23b) 

A ' 
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Since x«   satisfies homogeneous boundary conditions, x      satisfies the foJlow 

ing differential equation and boundary conditions: 

^♦r' + x(2Cee ■ 0 W'*> 

X(
2
c)(r:e) =  X(

2
c)(rM) =  0 (IV25a,b) 

OD 

tr (211+1)' 
X(

2
C)(O>0)= -|(l-e2)^  i—y 8in(2n+l)7re (IV-25c) 

The other boundary condition is die condition that the solution must be bounded 

as r*-» •. 

(c) 
The boundary condition for x     (r*.0 ) at r* =  0 is expressed as the 

ft 

product of a polynomial and an infinite sine series. This sine series is known 

to converge uniformly in the region 0 i 9 i 1, because the coefficients are 

0(l/n J as n - • . Equations (IV-24) and (IV-25) can be solved by the method 

of separation of variables provided that an appropriate Fourier series repre- 

sentation of the boundary condition at r* = 0 can be obtained. Since the 

boundary condition is epxressed by a uniformly convergent series which con- 

verges fairly rapidly, only a small number of terms are needed to provide a 

(c) quite good approximation.   If the sine series appearing in \     (0, 6) is approxi- 

mated in this manner, a number of ways might be suggested to expand the 

resulting expression in Fourier series.   However, for a good fit with a small 
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number of terms, with term-by-term differentiation permitted, a Fourier series 

which converges rapidly is desirable.  The procedure adopted here will provide 

a series with coefficients which are 0(l/n ) as n-» • 

(c), For the present purpose the boundary condition x9   (0. 6) may first 

be approximated quite accurately by a fourth-degree polynomial in 6: 

x(2
c,(( ■ e> • i v" 

Its coefficients are determined by solving a set of five algebraic equations 

J   =   0,  1 4 

The resulting approximated boundary condition may be written as 

x(2
c)(o, 6) =   -^ [4.596 - 7,83e2 + 2.49e3 + 0.75e4] 

which can be expressed by a Fourier sine series 

x(2
c)(o,e) = i-2< 7.4 36 +    - 

(2n+l)3jr3      (2n+l)5jr5 J 
sin(2n+l)7r6 

te , 
23.9 

(2n7r)   J 
sin 2n7re \ (IV-26) 

. 
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Consequently the problem of equations (IV-24),(lV-25a,b) and(IV-26) 

can be solved by the method of separation of variables.   The solution is 

00 r ' - 1 
X(,C)(r*.e) = ±1  ( ^^r-H —^ =W[-(2n+l)Tr*Jsin(2 

*    T)[\[(2n+l)7rr       [(2n+l)1r]7 J 
n+l)7r0 

+ —^ 
00 

\(2nir)'J / 
irr*] sin 2 n irS (IV-27) 

Thus the solution for x~(r*, 6) is expressed by 

X2(r\ 8) = i I r*2 7.4 
+ — 

2(2n+l)2       (2n+l)3jr3 

exp[-(2n+l)irrj 8in(2n+l)7r9 
36       \ 

(2n+l)5/r5/ 

Y  I :—, WP C'2"'1*] sta2nire (1V-28) 

Because of the presence of terms involving sin Äi TT 0 , die solution x9(r*, 9) is not 

symmetric with respect to the line $ - $B .   The complete solution for the invis- 

cid core flow may be written an 

2 » /exp[ -(2n+l)(l-r)ff/e 

0L2 IT3  fe\      (2n+l)3 

"I  T2  0L\   2(2n+l)2e2     (2n+l)3jr3 

sin(2n+l))re 

36 

(2n+l)  ir 
5-5|expC-(2n+l)(l-r)ff/8o] sin(2n+l)ff 6 

1   7   (-^^ lexp[-2n(l-r)ir/ejLin2nireff(^ 
(IV-29) 
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The velocity component in the 6 direction is 

P = i?  8   ,   r(02   6)6  +^f ar r  o  o o       1 L 

exp[-(2n+l)(l-r)7r/6o ] 

TT     o L (2n+l) 

7.46 

sin(2n+l)7r6 

(2n+ 

00 

^1 

(l-r)7r        (l-rrTr 
(2n+1)2        %^Wo       ^2^2 

366      \ 
—j—     exp[-(2n+l)(l-r)7r/6]   sin(2n+l)7r6 
fl)V/ 0. 

23.96 
^ exp[-2n(l-r)7r/6o] 

ir      j L\(2n TT) 

The velocity component in the r direction is 

sin 2n7r6 

(IV-30) 

=- Ht   =-ui r 6 r  36 r o o 

2 ^ r 
t     0 

366 

00 

4   V 1 5(28-1)+- 2.^ 
IT       0 

(1-r)   TT o 
2(2n+l)6' 

expC -(2n+l)(l-r)7r/6 ] 

(2n+l)i 
cos(2n+l)7r6 

2   2 
b       (2n+l)  TT 

+    f-;  I exp[-(2n+l)(l-r)7r/6o] 
(2n+l)  TT 

2  Lx 
*     1 

cos(2n+l)7r6 

23.9 6 

U2n7r) 
.    •lexp[-2n(l-r)7r/6o] cos 2n ir 6 

(1^-31) 

From the boundary condition specified by equaticn (IV-15c) it has been shown 

that the higher-order terms involve the radial derivatives of x/r*. 6), which are 

'- 
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represented by infinite series.   For reasons already mentioned these infinite- 

series representations are approximated by polynomials in 0. If these polynom- 

ial approximations are to bf fairly accurate at every point, it is necessary to en- 

sure diat the original series be uniformly convergent.   Since x,  , # evaluated at 

r* =  0 has the following series expression 

'W<0'f)- ^lü^Tj81*2"^0 

then Xlr«r,(0. 6) =   1        0 <   6  <   1 

but if 6 is set equal to zero or one, the series gives 

xlr,r.(o,o) = xlr^(o.i) = o 

Obviously the series expansion of x,  * «(0. 9) does not converge uniformly at 

0   =  0 and 0   =   1.   For the third or higher order radial derivatives of x., the 

resulting series expressions evaluated at r* = 0 are no longer convergent series, 

Therefore the approximate polynomial representation of the boundary condition 

can only be applied to x.  ,(0, 0) with sufficient accuracy. 



BASE BOUNDARY LAYER 

1.    Formulation 

As the wake Reynolds number approaches infinity, for a first approxi- 

mation the recirculation region can be divided into the inviscid cor«, ilow and the 

viscous-layer flow.   Since the wake Mach number is small, the recirculating 

flow may be regarded as incompressible.   The inviscid core flow has already 

been studied in (IV).   The viscous layers enclosing the inviscid core flow form 

a thin continuous layer for large Reynolds number. In order to obtain an approxi- 

mate solution, it is necessary to break up this continuous layer into separate 

sections which may be solved approximately.   These sections are the shear lay- 

er which separates the external flow from the recirculating flow; the base bound- 

23 
ary layer along the base of the wedge; and, as mentioned by Batchelor    , the 

viscous layer along the wake center line between theupper recirculating flow and 

the lower recirculating flow (which will not be studied here). 

In studying the base boundary layer near the wake center line, the velo- 

city distribution of the flow impinging on the base may be approximated by the 

velocity of the inviscid core flow, because as the Reynolds number grows the vis- 

cous layer along the wake center line becomes thinner, and because the velocity 

gradient across this layer decreases as the fluid moves toward the base.   In the 

vicinity of the stagnation point at the center of the base, the velocity components 

- 60 - 

v 



- 61 - 

parallel and perpendicular to the base for the  nviscid core flow are linear func- 

tions of the distance from the wake center line and the distance from the base of 

the wedge respectively.   This type of flow is therefore a two-dimensional stag- 

33 34 nation-point flow for which the solution is known    '     .  The pressure in the in- 

viscid core flow is given by the Bernoulli's equation for rotational flow.  For the 

stagnation-point viscous-layer flow the component of the momentum equation in 

the direction parallel to the base is independent of the component normal to the 

base, and is the same as the boundary-layer equation for incompressible flow. 

Since the base is flat and the boundary-layer assumptions are satisfied in the 

viscous layer everywhere along the base except very near the stagnation point or 

the point of separation just below the corner, the governing differential equations 

for this layer are identical to the flat-plate boundary-layer equations for incom- 

pressible flow: 

äh^ ■ ° 

0 • 

where U, V are velocity components parallel and perpendicular to the base re- 

spectively? X, Y are the coordinates parallel and perpendicular to the base, and 

are measured from the wake center line and the base of the wedge respectively; 

and q.  is the velocity in the inviscid core flow evaluated at the base.   Because 
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the no-slip condition must be satisfied at the base, and the flow velocity at the 

outer edge of the viscous layer approaches the inviscid-flow velocity evaluated 

at the base, the boundary conditions can be written as 

Ü=V=0 atY=0 

U »  a at rhp outer edge of viscous layer 

(V-3) 

This system of governing differential equations for a plane, incom- 

pressible, laminar boundary layer may be transformed by introducing the appro- 

35 
priate form of the Dorodnitsyn variables    ' ; 

X TRT 

d(iu   -n 
II U Bl /     V 1 b    V   U I       (i 

%        K % ^  qb r 

One then obtains 

i 

»X SY      qb JY2 

^b 
where q.   =   ^r  •   The boundary conditions are transformed to 

b       dX 

U=W=0 atY=0 

U -•    1 as Y -•   » 

'. 



■ 

63 

Hence in the Dorodnitsyn variables the boundary conditions are normalized. 

35 
The method of integral relations     is employed to solve the system of 

transformed boundary-laj'er equations.   This method converts the system of 

partial differential equations into a sjstem of ordinary differential equations and 

permits the use of well-developed numerical methods of solution of ordinary 

differential equations. In order to apply the method of integral relations, the 

system of partial differention equations is integrated across the layer, after 

multiplication by appropriate weighting functions. Hence the partial derivatives 

with respect to one variable are eliminated, and in the resulting ordinary differ- 

ential equations there appear only integrals of functions of the dependent variables. 

These functions are approximated by suitable interpolation formulas. 

2.    Integral Relations 

35 
To obtain the integral relations for the system of transfornied equations    , 

equation (V-4) is multiplied by a weighting function F(U) which aprroaches zero 

sufficiently rapidly as Y -•   « , equation (V-5) is multiplied by , and the 

resulting equations are added: 

ii[uF(u)] + 5i[ww)]3fu.(,üVffla^ 
D 0 Y 

(V-6) 

After integrating the above equation with respect to Y from 0 to •, one obtains 

the integral relation 
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_d 
dX J 

q       os 

"«")«•?! T»^-^IT qb J0   dU   v        '       dU     aY   |Y=0 

- C ^ (^ * 
This equation is rewritten in terms of the quantities 

■{{?) •"d      ^•■(iT-)1   Y-o        <v-8) 

Changing the variable of integration from Y to U then gives 

dx J0   ur^u;au     qbJ0
odU   V1 u ^ e0   du    |u=.o 

r1 i A(u) dU (v.9) 
J0  ^      dU2 

It is clear that Ö approaches infinity as U -•   1.   From the Blasius solution for a 

flat-plate boundary layer with no pressure gradient, evaluated as the similarity 

34 27 
variable approaches infinity    , one obtains a singularity of the form 

|^)     -   constant^ [-log(1-U)] 
l 

0 = 1 fe- j     ~   constant 77-77» I - log(l-U)  | as Y -•   «o 

In most previous applications of the method, this form is simplified by omitting 

• 

v 
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the logarithmic factor and so, for U -•   1,   6 is approximated by 

6 = OC(l-U)'1] asU-   1 

If the same behavior ftr assumed in the present case, then an obvious simple 

choice for the weighting functions is 

FK,I(U) =  (1"U)I (V'10) 

As in other applications, the functions 6and 1/9 in the Kth approximation are 

represented by the following expressions 

6  "(Tu)  (A0+A1U+... + AK.1U
K-1) (V-ll) 

e"1  = (l-UX^+Bjü* ... + BK 1U
K"1) (V-12) 

The coefficients A-, A.,  ...; B-, 8   ... are functions of X and are related by 

the condition that for 

U = V  K 

where J = 0, 1, 2 K     1, the representation of e and 6    should be con- 

sistent: 



, 
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K-lv-1 
(A0+ A1UJ+-+AK-1UJK"1) "   (B0+B1UJ+    •+B

K-1U}C'1) 

(V-13) 

When K  =   1 the approximate expressions for 6 and 6     are 

eo(x) -1        -1 e ■ -pü  .    e    = e^xxi-u) (V-14) 

if 

dF (U) d F (U) 
F (U) = (1-U)  ,    —^—   =   -1    .     4-   =  0 (V-15) 

1 dLI dU2 

then equation (V-9) becomes 

%^ ~ J ue du - -? I' (H-U)G dU4 - dx J0    o qb J0 o        e0 

The resulting approximate differential equation is 

dX     \   0 " eo 
(V-16) 

which may be integrated directly.   The solution can be written as 

.       ^6      ^ eo = i[I<-] 
"b 0 

(V-17) 

•• 
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Substituting equations (V-14) and (V-17) into equation (V-8) and rearranging, 

one obtains 

IS-WWJ^«]1}"1 (V-18) 

Integrating the above equation with respect to Y for fixed X, there results 

U =  I - exp 
<* 

i 
(V-19) 

From the solution of the inviscid core flow the velocity component in 

the 6 direction is r^ and is given by equation (IV-30).   In nondimensional form 

it can be written as: 

rr 
qr   dr 

exp[-(2n+l)(l-r)ir/0 ] 

(2n+l) 
sin(2n+l)7re 

»     0 

(l-r)ir        (1-r)  TT  o_ 
,.     ,,2      2(2n+l)F        /0     1X2   2 (2n+l)       ^ 0       (2n+l)  JT 

366 

4   4 
(2n+l) » . 

exp[ -(2n+l)(l-r)jr/0o ] sin(2n+l)jr0 

'     l 

23.90 

L(2n7r)^J 
exp [-2n(l-r)7r,0o] sin2n ff0 

(V-20) 

The velocity of the inviscid core flow along the base can be evaluated by setting 

—2 2 
r =   1-0 (1-0 )/2, and is given by the expression 

o ' • 
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%  = 2eo(e2-e)+^ V 
»    o -41 (2n+irJ 

sin(2n+l)7r9 

^1 
»      0 

7.49 366 Tre 

/">nxn2   2      z^^n4   4      2<2n+1> (2n+l)  TT (2n+l)   n 
sin(2n+l)7rG 

-II 
23.96 

TT     i L(2n7r) 
sin 2n TT 6 (V-21) 

For 6  sufficiently small, X can be approximated by r  6.   Since also r  6   ^L , 
o ' rr J  o o o        r 

X 
I ■Cvd) 

e 

■J0v (V-22) 

Since 6  is small, Y « r   - r .   Then 
o o 

yRe" 
Y ■ rr V?o -^ 

o  o 

/Re 
qb(l-r) (V-23) 

From equations (V-19) through (V-23). the solution for Ü can be written as: 

U  =   1 - exp 
V/RT 

T"(1-r)qb UA**] ■\ (V-24) 
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-1 
When K =   2 the approximate expressions for G and 0    are 

e = (TÜ)[eo(1-2U)+eiu] (V-25a) 

e'1   =  (i.u)[^-(l-2U)+|- 4U] 
(V-25b) 

dF (U) 
Fl   "  (1-U)'   -dü- 

9     dF(U) 
F2  "  (1-U)  •    10- 

d2F (U) 
1.      ^    =   0 

dU 

=    2(1-U). 
d2F2(ü) 

(V-26a) 

=   2       (V-26b) 

then equation (V-9) becomes 

dlLu[Go(1-2U)+eiu]du 

-J (i+ü)[e0(i.2ü) + e1u]du + ^: (V-27) 
»b    0 

£ J ud -u) [e0( i -2U) + ^ u ] du 

2q.    ,1 
'% -^ J (i-u2)[e0(i-2U)+ el u]du 
»b      0 

*k-2iw[^*4i] dU (V-28) 
0 "1 
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The resulting approximate system of differential equations is 

de0 % 34       32 

dX    =   -qf <9V7ei>+V^ ^"^ 

dG        q 

s ■ rb 
,4eo+ ^ f - ^ (v-30) 

Since q, and &   can be obtained from the solution for the inviscid core flow 

evaluated at the base of the wedge, the above systems of ordinary differential 

equations can be integrated numerically to give G (X) and ©.(X), provided that 

the initial conditions can be obtained.   Since the first of equations (V-25) can 

be rewritten as 

dY = [<6r2eo)(iJD)teo(iJir)]dU      <v-31> 

then for X fixed the above equation can be integrated to give 

Y =   - ( ^ - G0) £n(l -U) - ( ^ - 2e0)U (V-32) 

In order to provide initial conditions for the systems of approximate 

equations, it is necessary to examine the behavior of these equations near the 

wake center line.   For 6 sufficiently small the velocity of the inviscid core flow 

along the base, given by equation (V-21), possesses a power-series expansion in 

' 
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6 and has the following form: 

qb=   C1Ö  +C202 + 

»  C 6 for 9 very small 

Hence from equation (V-22) 

X a iCj e2;   (^  s /IcjX (V-33) 

qh 1 
—   s  ^ for 6 very small (V-34) 
qb 

For this value of q./q.. the approximate system of differential equations, which 

possesses a singularity at X = 0, can be shown to yield an exact solution of the 

form 

e   =  D Jx forX«l (V-35) 

The constants D. are determined by the solutions of the algebraic equations which 

are obtained by substituting equation (V-35) into the original approximate system 

of differential equat ons.   For K = 1, then 

. 
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e0 - D0yx- 

D0  =   1 ;   G0  = JTC for X « 1 (V-36) 

ForK =   2, then 

VV* ; ei = Diy*' 

,ODo+ ^i = F0 ■ 5; <v-37> 

«o^i-^-F, <v-38> 

Solving the above system of algebraic equations, one obtains 

D0  =   1.147    ;    D     =   1.822 

e0 =   1.147^   ;    Ql   =   1.822 Jx      fcr X«l     (V-39) 

The solution given by equation (V-39) provides the initial values for the quantities 

0n and 0 , if evaluated at very small X.   Numerical integration of the systems 

of ordinary differential equations can now be carried out. 

v 
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LAMINAR FREE SHEAR LAYER 

1.    General Description and Formulation 

The simplified model of the shear-layer flow, which retains the main 

physical features of the exact flow, is described here.   The inviscid supersonic 

flow expands at the trailing edge of the wedge through a centered Prandtl -Meyer 

expansion fan to the base pressure.   The boundary-layer flow along the wedge 

surface separates at the trailing edge of the wedge and expands isentropically 

to the base pressure in a very short distance.   Subsequently it mixes under 

nearly constant pressure with the relatively low-speed recirculating flow.  The 

expanded boundary-layer velocity profile forms the upper part of the initial velo- 

city profile of the shear layer. The remaining part of the initial velocity profile 

is given approximately by the similarity profile obtained by assuming a mixing 

between a uniform stream, with velocity equal to the velocity at the inner edge 

of the expanded boundary layer, and a stagnant region.   The velocity in this 

portion of the profile is evaluated at a very small distance from the trailing edge 

of the wedge.   Near the dividing streamline, which separates the recirculating 

flow from the expanded boundary layer, the velocity gradient is considerably 

larger than the velocity gradient in the remaining part of the profile, over the 

entire length of the shear layer. The thickness of the shear layer is of higher 

order than r , and the curvature of the dividing streamline is small except near 

the stagnation points. 

- 73- 
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From the description of the simplified shear-layer model, the rela- 

tive orders of magnitude of individual terms in the Navier-Stokes equations are 

estimated in the same manner as in the derivation of the boundary-layer equa- 

tions.   For the two-dimensional case the resulting düx'erential equations are 

identical to the flat-plate boundary-layer equations with pressure gradient: 

^+   ^   =   0 
flx ay 

(VI-1) 

— au, — au       dp    a / -au \ /,„ „\ pu  -=. + pv —=- =--£■ + —    ii — (VI-2) M    ax     M   ay        dx     ay^r ay / 

— au"    —ah     -dp     a /raT\   -/aü\2 ,„„ 0. pu-= + pv^^.=   UT-b  + r=:   k r^.   + u    5-=- (VI-3) 
ax ay dx      ay\   Sy /      \ ay / 

where x is measured along the dividing streamline and y is measured normal to 

the dividing streamline.   The dividing streamline is really slightly curved, but 

the curvature affects only the higher approximations to the equations for the 

mixing region.   To simplify the problem further, it is assumed that p|i is con- 

stant across the shear layer and Pr = -*■-  is equal to unity.   The stream 

function ^ is defined in the usual manner by 

PU-   Pef- PV=    -Dei| 

34 
and a modified Howarth transformation     is introduced as follows: 

• 
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P   ■ 

*    = 

x   = 

t-' T        ~           p 
= T   :   P   = - -2 ; 

Pe"e 

ff = h
2   :   S 
e 

H 
-2 
u 

e 

^Re| 

e o 

~     u     a^T      ~ 
U     =    =   =   TTÄ-      ;     v 

U         öy 
e      ~ — 

e -H 
x        ~ 
r ; y 

o 
■ --* J   p dy 

o     0 

When this transformation is applied to equations (VI-1), (VI-2) and (VI-3), 

there results a system of equations similar in form to the incompressible 

boundary-layer equations: 

^   +   ^   =   0 (VI-4) 

~ ou      ~ 3u 1 dp       o u 
UäS' + Vä?=   -^dl'+   -Z2 By 

-ah     ~ah        Jh        /ou\        l~dp 
a5c       ay     a~2     V ayy     gr   dx 

(VI-5) 

(^/I-6) 

Assuming that H   = constant in the initial profile, a solution of equation (VI-6) 

is 

~2 ~       ~     u 
h   = H -^- (VI-7) 

which reduces equation (VI-6) to (VI-5).   This result implies that the energy 
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equation is automatically satisfied once the momentum equation is satified. 

The density in the shear layer can be written as: 

■(*:)[ 
2  /- n -i 

Since p lias been defined as the pressure immediately after the corner expan- 

sion has been completed, the Bernoulli equation for the boundary 6 = 9 of the 

inviscid core flow can be written as 

Pe  =   P+io^qf 
or 

"r p.-b-i?.{^U 
yM 

r\ u   /    's 

where q   is the nondimensional velocity of the inviscid core flow evaluated at 

6 =  0.   Hence the density in the shear layer can be rewritten as 

P   = 
O-^qf) 

(Y-l)Ivr(H 

2   2 
rqs 

2,-    02 (VI-8) 

The momentum equation (VI-5) is therefore independent of the energy equation 

(VI-6). 

An integral method of the Karman-Pohlhausen    '      type is applied to 

analyze the shear layer, because it is simple and permits the treatment of the 

J>44 
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case when the shear layer is not thin and has non-zero inner-edge velocity. 

TTiis method involves approximation by polynomials with undetermined coeffi- 

cients for the velocity profiles.   The boundary conditions, continuity conditions, 

integrals of the momentum equation, momentum equation along the dividing 

streamline, and momentum equation along the inner edge of the outer shear 

layer yield a sufficient number of conditions for the complete determination of 

the profile coefficients and thicknesses. 

2.     Velocity Profile 

The shear layer will be divided into an outer shear layer and a shear 

sublayer.   The outer shear layer is the portion of the shear layer where the 

kinetic energy of the fluid is large and the velocity gradient is not too large. 

Tht initial velocity profile is determined by the boundary-layer velocity pro- 

file after the corner expansion.  This portion of the shear layer grows into the 

inviscid high-speed outer flow, and flows downstream of the rear stagnation 

point to consitute a part of the far wake.   The shear sublayer h the portion 

of the shear layer with larger velocity gradient, in the vicinity of the dividing 

streamline.  The sublayer flow above the dividing streamline diffuses into the 

outer shear layer and flows downstream of the rear stagnation point forming a 

part of the far wake. The sublayer flow below the dividing streamline grows in- 

to the relatively low-speed inviscid recirculating flow, and in the vicinity of the 

rear stagnation point it turns back toward the base of the wedge.   Tht initial 

velocity profile for theshear sublayer is given by the similarity profile resulting 
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from the mixing of a uniform flow with fluid at rest. 

Obviously the velocity profile has different character in the different 

parts of the shear layer and the dominant factors influencing the change of veloc- 

ity profile are not the same.   Hence it is difficult to describe the shear-layer 

velocity profile as a whole by a single expression.   In the study of mixing be- 

tween a separated boundary layer flow and a fluid at rest, Kubota and Dewey 

represent the shear-layer velocity profile by two polynomials, one used above 

and one below the dividing streamline, because the initial velocity profile is 

noticeably different from the subsequent profiles.   Similarly the shear layer 

discussed here will be divided into three layers, two above and one below the 

dividing streamline.  They are the outer shear layer, the upper shear sublayer, 

and the lower shear sublayer.  Each layer is represented by a polvnomial with 

undetermined coefficients as functions of the coordinate measured along the 

dividing streamline. 

Since the velocity profile for the shear-layer flow always possesses an 

inflection point, a polynomial of at least third degree must be employed to repre- 

sent the portion of the velocity profile where the inflection point is most likely to 

37 
occur    .   It is known that there is no point of inflection in the initial velocity pro- 

file for the outer shear layer.  Since the small pressure variation induced by the 

recirculating flow and the relatively small viscous force have little effect on the 

outer shear layer flow where the kinetic energy is very large, the point of in- 

flection will occur in the shear sublayer. 

v 
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For simplicity the outer shear layer may be approximately represented 

by a second-degree polynomial.   To achieve sufficient accuracy where the veloc- 

ity gradients are large, the shear sublayers are represented by fourth-degree 

polynomials.   The velocity profile for the outer shear layer is expressed as 

u   = g(C) =  »o+ÄjC +a2?r2 (VI-9) 

where ^  = 4P  " ^n and "  is the thickness of the outer shear layer.   It is con- 

venient to introduce the quantity Cn because of the small displacement effect of 

the shear sublayer.   It will be shown in section 5 that Cn should be taken to equal 

6* ./6 , where 6* . is the displacement thickness of the upper shear sublayer 

measured in terms of the y coordinate.   The upper shear sublayer is repre - 

sented by 

where C  .  = »-     and 6.   v is the thickness of the upper shear sublayer.   The 

lower shear sublayer is represented by 

o 

where t- «  = w~    and 6. . is the thickness of the lower shear sublayer. 
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The profile coefficients a0. a  . a . b . bj, b , b , b , c-, c  . c , c , 

c  , and the layer thicknesses  " ■ ^    v ^/ \ are a^ functions of x .   They are 

determined by the boundary conditions at the inner and outer edges of the shear 

layer, the continuity conditions between the layers, and appropriate differential 

equations. 

Since at the outer and inner edges of the shear layer the velocity must 

be continuous and the first derivative of velocity with respect to y must be zero 

(in the approximation of boundary-layer theory), the boundary conditions are 

g(l)  =   1 (VM2a) 

lid)  -   0 (VI-12b) 

and the boundary conditions at y   =   - & v are 

■H01' = (i)(iW <VI-13a) 

TT^ (-0 =  0 (VI-13b) 3V) 

In order to have a smoother fit at the inner edge of the shear layer the second 

derivative of the velocity with respect to y  is also required to be zero.   Hence 

an additional boundary condition at y   =  0      is 
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=   0 (VI-13c) 

For a reasonably smooth fit between the layers, the velocity and its first and 

second derivatives with respect to y  must be continuous.   The continuity con- 

ditions at y   =0 are 

8(+)(0> '  S^)«" (VI-14a) 

<)<0>=^^)<0> <VI"14b) 

—r1 <ü> ■ rr^    —V2 <ü> (vi-i4c) 

It does not seem evident whether or not the shear sublayer will remain 

negligibly thin compared with the outer shear layer for the entire length of the 

shear layer.   Therefore the conditions at the outer edge of the sublayer are not 

imposed at C   =   0 but at a presumably rather small positive value of C .   As 

will be shown later, through the requirement of equalization in pressure across 

the shear layer to order Re    , the dividing streamline must be displaced rela- 

tive to the outer shear layer by an amount equal to the displacement thickness 

of the upper shear sublayer.   Therefore the matching point between the upper 
t 6 

V (+) V (+) shear sublayer and the outer shear layer is not at C    =   TF-  but at Q =   K ■»»- , 
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where 

V) 

A4 
As noted previously, the coordinate y  is measured from the dividing stream- 

line but C is defined by t   = Tr - C«.   It will be shown in section 5 that C„ ^ ~0        0 0 
0 rr 

can be related to K by Cn = "T^ (1 " *) ■ "T" • 

Since the inner edge of the outer shear layer is not really at y   =0 and 

the upper shear sublayer is assumed rather thin, Taylor expansions about 

y   =  0 for the outer shear layer may be used to provide approximate conditions 

at the matching'point.   Therefore the continuity conditions between the upper 

shear sublayer and the outer shear layer can be approximated by 

~ 1 
g(+)(1)~ P) 

% 

So)+« (-^jifw (VI-15a) 

C/^fkWIff^-i^jyi 

(+> ^(0) 

(VM5b) 

(VI-15c) 

From the assumed form of the velocity profile given in this section, it is 

clear that an essential feature of the shear-layer analysis adopted here is the 

division of the shear layer into three parts.  Since separate quartic profiles are 

■ 
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used to represent the velocity profiles in the upper and lower shear sublayer, 

and a quadratic profile is employed to express the outer shear layer, there 

are altogether sixteen unknown profile coefficients and thicknesses.   The boun- 

dary and continuity conditions supply eleven relations among them.   However, 

since the total number of relations must be equal to the number of unknown 

quantities appearing in the shear-layer velocity profile, five more relations 

are needed so that the velocity profile may be determined uniquely. 

3.    Momentum Integral Method 

An integral method of the Karmin-Pohlhausen type is employed to furnish 

some of the remaining relations required for determining the unknown coeffici- 

ents in the assumed representations for the velocity profile.   Three relations 

may be obtained by taking the zeroth moment of the momentum equation for each 

of the three layers, i.e., by integrating the momentum equation over the thick- 

ness of each of the three layers. 

In the derivation of an integral condition for the o iter shear layer y  is 

temporarily replaced by y  + Cn0  and v  is replaced by v + u Cn -s, •   When 

expressed in these transformed variables, equation (VI-5) has the same form 

as before, and is to be integrated from 0 to 6 : 

(u u~)dy +      (v u~)dy   =   - ^-        * dy +       (u^^)dy 
J0        x Jo y dx    J0 ? Jo     y y 

(VI-16) 

At the inner edge of the outer shear layer the new v component of velocity is 
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very small, as shown in section 5, and is assumed to be zero.   Then integra- 

tion by parts, by using equation (VI-4), gives the following result: 

.6/   ~ 

io(^>--i0(^-jo("|IK (VI-17) 

Substituting equation (VI-17) into equation (VI-16). there results 

6 
1   (u    - uW dy    = 
0 X 

dp   r     !   j^ j   3U 
(VI-18) 

From equations (VI-9), (VI-12b) and (VI-18) the zeroth moment of the momentum 

equation for the outer shear layer can be written as 

_d 
d5r 

{?JV-J>?} --*£<«)-fsYu (vi-w, 

By using equation (VI-8), p    =   p (x), and the Bernoulli's equaücn for the boundary 

6  =  0  of the inviscid core flow, equation (VI-19) is reduced to 

^{?j;[?2-i]d?}=^if«') 
dq       I 

(T-l)<q,  -aP 

2      THS 

(VI-20) 

For the upper shear sublayer, equation (VI-5) is integrated from 0 to o.   . 
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J (+)(u u~)d7 + f (+)(vu~)d7 
0 0 y 

= "7»        « dy +       (u—)dy d^ J 0    ?   '    J0      yy 
(VI-21) 

where y and v are again measured relative to the dividing streamline.   Since 

v  =  0 along the dividing streamline, integration by parts, using equation (VI-4), 

gives the result 

Jn  lv wY' 
ö        ~ 6 
(+) au ,*~    r (+)f ~ *« \ Ar. 

u J0     ax 
Ü 

Sridy 

(VI-22) 

where u   is the velocity at the outer edge of the upper shear sublayer.   Substi - 

tuting equations (VI-8) and (VI-22) into equation (VI-21) and using Bernoulli's 

equation as before, then 

r'l^v^H- au 
ay 

(+) 

(Y-l)M^qc
dqs 

r sdy 

2    rHs 

' (+) (H   - iu^d^ (VI-23) 

which may be rewritten as 

(+) 
0 

~  \21 u    1 
J*). 

,~ 1     dg 
x,

d''+ SO)at .0 i0H(fJJ 
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.- 1        >   /     u y     m ay I g(0) 
(+) 

(,-l)Mr
2^s    q 

r d5r   s 

Y     2   2 Jo    |J2(0)    Hw) 
dy 

(VI-24) 

As implied by the definition (VI-9), g(0) represents the approximate velocity 

profile for the outer shear leyer evaluated at t   =  *   =0, and is a function of 

x .   From equations (Vl-9). (VMO),  and (Vl-24) and through tie application of 

the Leibnitz rule, the zeroth moment of the momentum equation for the upper 

shear sublayer can be written as 

d5r 

1 * 1 \ 

(i) I/wdV)) -W'^W^W 

■(■ 

ag/ ^ mu0[^u^<)* tp*'^ 
*«. 

'r^rSsr^t) 
i-Wq

2 
2    r ns 

J0[^0)-^l,]"V,   <—' 

to 0: 

For the lower shear sublayer, equation (VI-5) is integrated from -0 
() 

0 0 
J -  (uu~)dy + (v u ~ ) dy 

-y      y 

(-> 

0   ,      ^o 

-   (-) 

^ r   i 
d5r if   fir (VI:26) 

■ 
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Again since v   =   0 along the dividing streamline, the integration by parts, by 

using equation (VI-4), gives the following result: 

p0/~au\.~      (%]   r0   »u H~   P
0/-au v- 

j 

(-) (-) 6( > (Vl-27) 

Substituting equations (VI-8) and (VI-27) into equation (VI-26) and using Bernoulli's 

equation as before. 

'0 

J-'ff 
(-) 

(^x Irj ^x 

au 
ay 

(-) 

2    dqs 
<*-1)Mr\d# 

2   r\ 

(H-iu^d^ 
-6, 
() (Vl-28) 

which may be rewritten as 

J-6 ili^0)/!- \TJ\^)) [\mJl~ dy 

SO) dx   t [2[ml \n Am)\Wö)j\ dy 

2 -l'- 

1 - V q2 
2    r Ms 

+ {mj*y{m) 

[• 
(-> 

-   \2 

g2(0) 2^0>^ 
dy 

Ü 

(-) 
(VI-29) 

From equations (VI-9), (VI-U), (VI-13a,b) and (VI-29) and through the applica' 
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tion of the Leibnitz rule, the zeroth moment of the momentum equation for the 

lower shear sublayer can be written as 

Ä(V)i./HdV))A#e)(^))Ä(V)i,./(-)dV)) 

85)    d*- ̂ v.r.N.^x^-j'v)) 
2        d%   ~ 

l-iM2
q

2 

2     T Hs 

-üMdt 2  6(-) 

\W) 
ag(-) \ 1° 

(-) 

(VI-30) 

Each of the preceding integral conditions requires an overall momentum 

balance in one of the three parts of the shear layer.   Two more conditions are 

obtained by requiring that the momentum equation also be satisfied at particular 

locations in the shear layer.   Along the dividing streamline the momentum equa- 

tion (VI-5), withu(x, y) replaced by g(0)g.   .(0) according to equation (VI-10) 

becomes 
dg(t)(0) >2~ 

(+) 

2      dqs 
(Y-l)M   q   -r^ 

l-lMr
2qf 

2 y ar2 (0) 

/   H      1 ~2  .m   \      1 

(Vl-31) 

The flow along the inner edge C    =   0 of the outer shear layer is also required 

to satisfy the momentum equation.   Then from equation (VI-5) and (VI-9) one 
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obtains 

dg(0) 
'^^•^ g(0)V^  ac 

2      d% 

[    H  * ^2<0) ]   ffe »0) 
(VI-32) 

In addition to the eleven relations already obtained from the boundary 

and continuity conditions, the ordinary differential equations (VI-20), (VI-25), 

(VI-30), (VI-31) and (VI-32) are used to supply the required independent rela- 

tions for the complete determination of the velocity profile in the shear layer. 

However, it is also necessary to provide the initial velocity profile in the shear 

layer. 

4.    Trailing-edge Expansion and Initial Development of Shear Layer 

The expansion process at the trailing edge of the wedge is assumed isen- 

tropic and the total enthalpy is regarded as constant throughout 'he boundary 

layer.   It can be shown that the velocity after corner expansion is 

^|2Hf,.(M^L(^:%vf:2f (VI,3) 

where f   is the Blasius solution for an incompressible flat-plate boundary layer 

and the subscript c refers to the condition at the trailing edge of the wedge and 

at the outer edge of the boundary layer. 

If the length of the wedge surface is denoted by L , then the Blasius 

similarity variable evaluated a very short distance upstream from the trailing 

edge of the wedge may be represented by 
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(VI-34) 

where y   is the y coordinate before the expansion, just upstream from the trail- 

ing edge of the wedge.   Since there is no pressure gradient across the boundary 
~2 

layer, and H   =  h + — , the relation between y   and rj   is 
2 'c 'c 

dyc. 
I2v  L 

c c 1 r 
c 

/ u    \2     o 
dTJ. (VI-35) 

where f    =  i'j.y\ ).   Since the total mass in the boundary layer immediately 

before and after the comer expansion must remain the same, the relation be 

tween y   and n   is 
e 'c 

dye ■ 
2i/   L    / p      ,    u 

c   c I    c    1      c 
p    IT  u 
e    c    e   •• 

(s-p 
u 

d^ (VI-36) 

where y   is the y coordinate measured from the dividing streamline after the 

expansion a very short distance downstream from the trailing edge of the wedge 

Hence the relation between the transformed coordinate and the similarity vari- 

able is 

/ 2Re   U/L     p    u    \  f' 

'      c o     e    e 
(VI-37) 

where Re    =  u  L /U .   From equations (VI-33) and (VI-37) the velocity profile 

. 
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after the trailing-edge expansion may be obtained in transformed coordinates. 

The boundary-layer flow immediately after the trailing-edge expansion 

mixes with the flow below the dividing streamline which is virtually stagnant 

when x is very small, i.e., very close to the wedge base.   Hence the govern- 

ing differential equation is the same as equation (VI-5), except that no pressure- 

gradient term is present, and can be written in terms of the stream function as 

if ^r . l| jff   »f£ (VI.38) 
ay  hxhy       ix      ~2        ~3 

Sy iy 

For the outer shear layer the stream function is 

f 3 ^(y) 

where ^(y) ■ Y a (0)1 J^-) .   Then a (0). a (0), a (0) and ^(0) are obtained 

o n    ^      ' 
by fitting a polynomial to the velocity profile after the corner expansion.   For 

the flow near the dividing streamline the viscous stresses are very large and 

the flow is described approximately as the mixing of a uniform flow with fluid 

at rest.   Hence it is assumed that the solution has the approximate form 

JT   ~  y2a0(0)x yn) (VI-39) 
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(VI-40) 

nie solution is obtained from the following differential equation and boundary 

conditions 

fo" + VÖ  - 0 (VI-41) 

f
o<*) "■  1: ^""^ 0: fo(0) = 0 (VI'42) 

Therefore for a fixed small positive x  and for TJ  a   0, 

^)(r<+)) "i* (v,-,3) 

Mt 
Similarly for tj    ^   <>. 

V)(r(-))   3fo(Ji:) (VI-44) 

Initial values are provided for the profile parameters of the upper and lower 

shear sublayer by fitting polynomials to the upper and lower parts of f'{T}). 

S.    The Location of Dividing Streamline 

Since the velocity in the inviscid core flow is not exactly zero, the pres- 

sure is not exactly constant, and therefore the shear layer is not exactly straight. 

In a first approximation the curvature of the shear layer will be such that the 

pressure in the external flow balances the pressure in the recirculating flow. 

The velocity in the inviscid core flow is -s-  =  0(M ) and so the nondlmensional 

2 Ue 

shear-layer curvature is 0(M ).   If die pressure gradient is known from the 

solution of (IV), the shear-layer curvature can be calculated ID this order. 

' 
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The pressure variation across the shear layer must be zero not only to 

2 38 
order M   but also to higher order in Reynolds number.   Lock    , in his study 

of the mixing of parallel streams, notes that the dividing streamline is not nec- 

39 
essarily straight.   Ting    shows that for the mixing of a uniform supersonic 

stream with a parallel uniform subsonic stream the dividing streamline is dis- 

placed toward the subsonic portion of the flow by an amount equal to the dis- 

placement thickness of the viscous layer above the dividing streamline, so that 

the pressure is kept the same across the mixing layer up to an appropriate or- 

der of magnitude.   The location of the dividing streamline is important in the 

study of the shear layer in the wake, because it has an influence on the shear- 

stress distribution and velocity distribution. 

Since the velocity distribution in the outer shear layer and in the recir- 

culating flow is very complex, it seems necessary to retain the approximation 

«hat M   is small. It is assumed that the outer shear layer may be approximated 

by a uniform shear flow at supersonic speed 

u  =   u   + ft) 
u 

where l) is the vorticity and is a constant.   This approximation is consistent 

with previous assumptions, since only the portion of the outer shear layer near 

y =   0 needs to be correctly represented here. The recirculating flow is assum ■ 

ed to have zero velocity.   Since the recirculating flow will actually have velo- 
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city  as-   -   0(M ), then p=   p   [1 + 0(M  )]  in the recirculation region, and 
ill G T 
e 

the velocity at the inner edge of the outer shear layer will actually be 

u  =  u   [ 1 + 0(M ) ] .   The nondimensional variables for the uniform shear 
u r 

flow are defined as 

r r 
o o 

7                  - -                Or 
jj         4) . /^ _    u ^     ^_ . M      2 

ü r '           ü '           ü '           ü 
u o                u u                 u 

The nondimensional variables for the recirculating flow are defined as 

x y x   =   —- ;   y  =   «*- 
r '       r o o 

j, I u v 
u  r u u 

u o u u 

The nondimensional variables for the mixing layer are defined as 

/Re u 
+ x +       J u -      _ u  D XT    =  a»-   ;   y*   =   ——— y  ;  Re    =  w- Re 

r                        r u      u        e o o e 

^ t   =  X    ;  ut   =  ^   ;  vt   = ^ 
u r u u 

u o u u 

" 
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Following the same procedure as for the mixing of two parallel streams 

39 
given by Ting    , the flow variables may be expanded as 

i ~ $ + «<,+ .. • 

0 ~ V •V- . 

0 - fv   + 
<\* • 

p Pe 
-2 Po+ cPi + 

p   u 
Ml    u 

(VI-45) 

u  ^ 

v ~ 

^0+ c^i+.. 

u0+ €u1+.., 

«v1+«2v2 + 

P-Pe 

Z-I*    ~ Po+ cPi + 

0   u 
^u   u 

L        (VI-46) 

ut 

vt 

~   ut   + «ut   + 

~   Cv| + <  vj 

p -p. 
=-=2   -   Pj+«Pl+- 

(VI-47) 

P  u 
^u   u 

where €   = Re     ,   p   is the density of the uniform shear flow, and p. 
u u 0 

=  0(M*). 

P0(x) 
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Substituting equation (VI-47) into the Navier-Stokes equations and collect- 

ing coefficients of like powers of € gives the following form for the yt com- 

ponent of the momentum equation: 

cp/      + ... = o(c2) 

The matching conditions for the pressure at the outer and the inner edge of the 

mixing layer give 

pt(x. -)  =  ^(5.0) 

p^x.  -«)  =   PjCx.O) 

There results a compatibility condition 

^($.0) =   p^x.O) (VI-48) 

Equation (VI-48) states that the pressure difference across the mixing layer 

should be 0(< ).   This condition is used at a later stage for the determining of 

the location of the dividing streamline relative to  ne outer shear layer. 

The nondimensional Navier-Stokes equations for incompressible flow may 

be written as 

*    ^    ■  *    rMv2^   =  C272V% (VI-49) ^y ax     'x ay y 

^ . 

-• 
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2/v A 
7 V0 =   N =  constant (VI-51a) 

Since the following boundary conditions must be satisfied 

fyt.O) =  0 

upstream (VI-51b) 

(VI-51c) 

the solution is 
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From equations (VI-45) and (VI-49) the following set of equations can be 

obtained: 

(*o?Ä-*o*Ä)'V(* 
5     i     a \ 2 

ly ax 

(VI-50b) 

Equation (50a) can be reduced to 

Ä    .A    A. A N  /\2 ^(x.y)  =   y+ -y (VI-52) 

As noted previously, terms 0(M   ) in the coefficient of $ have been neglected. 

Substituting equation (VI-46) into equation (VI-49), there results a set of 
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differential equations 

a   \ _2 
(V  ^   "  ^Ox   ^ ) ^0 =   0 (VI-53a> 

(VI-53b) 

Sir.ce •=-  =  0{M ) in the recirculation region, equation (VI-5Ci) can be written 
e 

as 

Since 

v2ji)0 =  0(Mr) (VI-54a) 

i/;0(x.O) =   0 (VI-54b) 

in the present approximation the solution will be estimated as: 

*0(x,y)  ■   0(Mr) (VI-55) 

Substituting equation (VI-47) into equation (VI-49), there results a set of 

differential equations 

äM^ytytyt ^xt ^lytyt ' ^yt ^xtyt ) = 0 

(VI-56a) 

ä^(  ^^tytyt   ^ixt^yfyt   "   ^lyt ""^tyt 

+   ^Sxt^lytyt    ^V^lxtyt    )    =   0 (VI-56b) 
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The matching condition as yt -• »   and y "• 0 is 

^V5^ = S(x'0) 

The matching condition as yt -•  - • and y  0 is 

^lyt^'   '^  =  %{X'0)  =   0 

Hence the following asymptotic relations are obtained 

^(xt.yt) ~  yt0^(5,0) + o(yt) as yt - 

J/Jt^xt.yt) ~   o(yt) 

(VI-57a) 

as yt   -• 

(VI-57b) 

By using equation (Vl-57). equation (VI-56a) can be reduced to 

^lytytyt^lxt^lytyt    -^lyt^lxtyt    -  -V^0^^^ 
(VI-58) 

Since tf)n(x, y) is a function of y alone, equation (VI-58) can be reduced to 

^lytytyt +^ixt «Vy^ "^V^ixtyt   " 0 

(VI-59) 
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Two of the boundary conditions are 

t\ t(xt. •)  =   1 (VI-60a) 

^t. t(xt.  -•)  =   0 (VI-60b) 

Equations (VI-59) and (VI-60) have a solution of the form 

ftj -ySf^t). rjt  =^ 

where f(tfi) satisfies the differential equation and boundary conditions 

f'"   + ff"    =0 (VI-61a) 

f'(«) -   1 (VI-61b) 

f^-») =  0 (VI-61c) 

Equation \VI-58) actually applies to the mixing layer with the stream- 

line ij)     =0 slightly displaced relative to the outer shear layer.   Let xt and yt 

be measured along and normal to ^       =0 respectively.   Then, since the curva- 

ture of the line «iit   =  0 affects only the higher approximations to the equation 

for the mixing region, equation (VI-59) remains unchanged.   A third boundary 

condition is obtained from the requirement that the pressure difference across 

' 
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2 
the mixLig layer be of order *  .   Therefore, the velocity profiles in the first 

approximation of the mixing region should be so oriented that the pressures in- 

duced in the inviscid stream by the effect of displacement thickness are balanced 

•cross the mixing layer.   Since equations (VI-61a,b,c) are invariant under the 

transformation 

T?t -   ijt  + /jt 

the third boundary condition may be assumed as 

* 

f(0) =   0 (VI-61d) 

The solution obtained by using boundary condition f(0)  =  0 differs from those 

using f(/3t) =  0 only in the location of the line 4)*    =  0.   The solution of equa- 

tions (VI-61a,b,c,d) for Tjt -• • is 

f(»?t) ~ (rjt  + ßf ) + exponential (Vl-62) 

Where /3t  is proportional to the displacement thickness of the upper part of the 

shear sublayer which is measured from j/jt   =0.   Similarly die solution for 

77t -•   -öD   is 

f(T?t) ~  (n^ + ß\)+ exponential (Vl-63) 

, 
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where ß't is proportional to the displacement thickness of the lower part of the 

shear sublayer, which is measured from ^t    =0. 

By using equations (Vl-53b), (VI-54a) and (VI-63) the flow below the mix 

ing layer due to displacement thickness is described by 

72^    =   0 (VI-64a) 

^(x.O) =   -^-/äT forx   >   0 (VI-64b) 

From Bernoulli's equation p. may be expressed as 

Pj  =   -UQUJ (VI-65a) 

Since C^     fu   and €v. are of order c  and un is of order M ,  cp, will Le esti- 

mated as 

CPj  = 0(MrO 

=  o(€) (VI-65b) 

Tlierefore one gets 

Pj^O) =  p^x.O) =  ptjfct.yt) =  0 (VI-66) 

if terms of order M   are neglected compared to unity. 

For the uniform shear flow, the next approximation is governed by the 

- 
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28 
linearized equations     for irrotational supersonic flow: 

= o (VI-67a) 

d + N^Q^+ÄOj = -0lft (VI-67b) 

U + N(»OIS= -^ (VI-67c) 

From equation (VI-66) one obtains p A 

become 

»•^ 
=   0.   Hence equations (VI-67a,b,c) 

a01      301 
= o (VI 68a) 

(l + N^G^+NOj   =  0 (VI-68b) 

From Bernoulli's equation, p. may be expressed as 
2* 

».--V. (VI-69) 

Since $    =   0 and u    ^   0, there results 

Ul  "   0 (VI-70) 
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Hence equation (Vl-6hb) reduces to 

NOj   =  0 (VI-71) 

A 

3<nce N =  constant, it is required for the uniform shear flow at supersonic 

speed that 

Oj^) =  ^a.O) =  vt^xt.») =  ü (VI-72) 

This relation means that the line ^t    =   0 is displaced by an amount equal to the 

displacement thickness of the upper shear sublayer.   In other words, it is re- 

quired that there be no effect of displacement thickness on the uniform shear 

flow.   If this result is applied to the problem discussed in the previous sections, 

one can make the approximation that for y measured from the dividing stream- 

line, the inner edge of the outer shear layer is at y   = Cn6, where J,    = Z*   /6 , 

and the v  component of velocity is negligibly small at the inner edge of the outer 

shear layer. 

It is evident that the approximation (VI-72) is not highly accurate, be- 

cause the error is 0(M ).   However, the only purpose here is to obtain an esti- 

mate for K , which in turn will be used to estimate the effect of nonzero sublayer 

thickness on the outer shear layer.   Since this effect is expected to be small, it 

is not necessary that the value of K be extremely accurate. 



VII 

NUMERICAL SOLUTION 

1.    The Derivation of the Equations for Computation 

In the discussion of the conservation of angular momentum for the en- 

tire recirculating flow, it was observed that for a steady motion the accelerating 

torque from the shear layer should always be equal to the retarding torque from 

the base boundary layer.   In order to determine these torques it is necessary to 

find the distribution of the shear stress both along the base of the wedge and a- 

long the dividing streamline. 

Since the distribu-ion of the shear stress along the base of the wedge 

can be determined by die solution of equations (V-l) and (V-2) for the base 

boundary layer, the solution of the system of approximating ordinary differ- 

ential equations (V-29) and (V-30) is needed.   For fairly good accuracy the 

velocity of the inviscid core flow evaluated along the base of the wedge can be 

approximated by 

% 2eo(8
2-6)+-|f 

»        0 

1 

i(2n+ir 
sin(2n+l)7r8 

^i 
ü 

7.40 366 

8     M   23-9eo 
+   ~2    A       2 r       1 I  (2nnr 

sin2n jrö 

e 

KW*2    (W/   2(2n+'> sin(2n+l)7r8 

(VIM) 

105 



- 106 - 

because the series in a  converge quite rapidly.   The transformed coordinate 

along the X direction, given by equation (V-22), can be approximated by 

X ^       q^e.   Hence 
0 

• ^b 1    dqb 
% = dir = ^ de- (VII-2) 

Equations (V-29) and (V-30) can be rewritten as 

den 1    d% 
r-^r(9^+7e,)+(=-^)a (VII-3) 

^ .      / 34      32 
dB qb    do  v     <i j        I . .      I  'j 

These equations are ordinary differential equations with e as the independent vari 

able.   The initial conditions for G  and 0  can be obtained by substituting X^ ^C. 6 

into equation (V-39).   Then, for e fixed but small, the following approximation is 

obtained 

e0 s  0.815 v^e (VII-5) 

6     s   1.292/Cje (VII-6) 

where C. may be obtained from the Taylor expansion of q   about 6=0, and 

2 

■ 
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cM-2v,äi(2£T,+Jsi((- 
L 0 »     0 

366 \       0      5      23.96 
o      \    _8_  Y    2 

r   /o_   ,v3   3 j +    2    A        2n7r 
(2n+l)   TT    /      TT       i 

7.46       rt2en o o 

Hence the Runge-Kutta method can be used to provide solutions for G  and 6 

Since   

av |Y = o 

the shear stress along the base of the wedge, T , can be written as 

TV  = 
-  au I 
Mr  äY   '¥=  0 

^r^/^r     % 
0, (VII-7) 

0 

the local skin-friction coefficient along the base of the wedge, C  , has the form 
r 

2r 
CF=' 

2_       1 (vn-8) 

The distribution of the shear stress along the dividing streamline can be 

obtained from the solution of the shear-layer equations (VI-1), (VI-2) and (VI-3). 

^■r   • 
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An integral method of the Karman-Pohlhausen type is used to reduce this set of 

partial differential equations to a set of approximating ordinary differential equa- 

tions .   The velocity profiles are approximated by polynomials with undetermined 

coefficients, given by equations (VI-9), (VI-10), and(VI-ll).   Since 

e     r' ~   - ~      u   au o     0( 
y   "     ^=  pdy, u==-^&~      A

=
 r~~   >y     (0) ro    Jop "e-^ 'y =0 V) ^V) 

the distribution of the shear-stress along the dividing streamline, T , can be 

written as 

d '   Me ay 'y-O 

p   u   Re^     anb 
. i-4-1.  i-S (vn-9) 

o (+) 

The local skin friction coefficient along the dividing streamline,c , has the form: 

2rd 
f n   -2 

P  u e  e 

c, = 

2 a0bl Ar T:, <VI1-10) 
e ( + ) 

where an, b , and 0        are given by the solutions of the system of equations 

(VI-20). (Vl-25), ('/I-30), (Vl-31) and(VI-32) with the boundary and continuity 

.♦A 
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conditions (VI-12) through (VI-15). 

Since, in the continuity condition between the outer shear layer and the 

upper shear layer, the location of the outer edge of the shear sublayer is need- 

ed, the location of the dividing streamline must be determined.   It has been shown 

that the dividing streamline is displaced by an amount equal to the displacement 

thickness of the upper shear sublayer.   This satisfies the requireTient of zero 

pressure gradiert across the shear layer to order (Re    ). 

The displacement thickness for the upper shear sublayer, 0 is ex- 

pressed as 

6* 

V)        J0    ^      Uu  ^     (+) 

J
0   \     ue    Uu     ud/ 

Jn   \ ft* A)      '    \+) 

Lbo + y+r + r+r. 
a _ iK       i. 

[l -(l-a0)(l-A)2] 
(VII-11) 

where u    =  u  g(0) is the velocity at the outer edge of the upper shear,u   = u g (KA) 

is the velocity at the outer edge of the upper shear sublayer,    A   =       (+)/ö 

The outer edge of the upper shear sublayer is at 

C    =  «A (VII-12) 
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V)> 
% dl 6(V 

TF^-'  1    lince^-7  can be shown to be nearly constant, -^J   «J— 
(+) -^ -(+)' 

may be assumed negligibly small in the computation.   This will simplify the compu- 

tation and is within the accuracy needed.   Hence equations (VI-15a.b, c) can be re- 

written in the following form: 

W0 ' 1 + 
2* A(l-a0) 

»i (+) (1)   s   A 
OV(+) 

■ 2(1-a0)    KA(l-a0) 

(i) ■ - A^(l-a0) 

For simplicity, define 

2« A(l-a0) 
(VII-13) 

r.      =   K 
'<oa 

1 0        2 
(VII-14) 

K2  =   -KQA (VII-15) 

1l   ."* 
3  "   K0 ' 2    +  12 

(VII-16) 

1 + A 
(VII-17) 

v 
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K4A 

tti) 
(VII-18) 

(VII-19) 
1+A 

These quantitiea are functions of an, 6, 6-   v 6, . and q  .   The velocity of the 
u v+/     \-) s 

inviscid core flow evaluated along the dividing streamline can be approximated 

%  '< 
(1-x) - 

8 1'x l\[(^ 
TT X 

,,2       29 (2n+l) 
1) o 

7.46 366 \ 
+    r^-+    I-T     exp[-(2n-H) TTX/S ] 

(2n+iy2
ff

2        (2n+l)
4/  /        i oJ 

23.96 

l(2n7r) 

.exp(-2nirx/6o) (VII-20) 

Therefore, based on the boundary and continuity conditions, the profile 

coefficient can be expressed in terms of a«, b , 6,6.   . and 6     : 

al   =   *l-*<) 
(VII-21) 

a„ = -(l-a0) (VII-22) 

b26 
b0 =   l-\-—   +K3-K4 

(VII-23) 
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1=   2K6 + (T)<6-1)+2% 
(VII-24) 

b(6 + l) K2 

b3=   -2K6--T-  +K1-'T   -2K4 
(VII-25) 

b2(2+6)     KI      K2 

b4=   K6+^6— ■  t+T + K4 
(VII-26) 

b26 
C0=   l-K6'-r + K3'K4 

(VII-27) 

b 6(6-1) 
Cl=   2K66   +-3— +2K5 

(VII-28) 

e, = b26 (VII-29) 

c3=-2«66+b2 (•M)- 2K (VII-30) 

c4 -   -K66  +b2 (?*!)■■ (VII-31) 

where 6   = •«>—*   . 
V) 

Substituting equations (VII-9), (VII^21) and (VII-22) into equations (VI-20) 

and (VI-31), there results 

d6  ■ 1 Ur o   ao-2 M^)+m 2(i-y 

v iH - -a—}\ (VII-32) 
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It« _ ~ _    (l-a0) o      r H    ,   -i x 

ö2a. 
(VII-33) 

,2      ^s 
(Y-l)M    q   -r£- 

where K     =     —-^  .   Equations (VI-32) and (VI-33) are two differential 
1 -JM   q 

equations in two dependent variables.   The initial value for 6  and an can be approxi • 

mated by appropriate curve fitting of the expanded velocity profile, which is found 

by assuming an isentropic expansion to the base pressure of die Blasius profile 

evaluated at the trailing edge of die wedge.  This expanded velocity profile can be 

obtained from the solution of the following equations: 

df 

drj 
c 

<■<"> 
 c_ 

df<2> 

£_ = ,(» 

•l, 

u   = 

to. 

= - f f<2> 
c c 

(VII-34) 

(VII-35) 

(Vn-36) 

-1-2 4wmk 
\Rec/   Vro   0e   Ue/  ' 

i 
c(l)2 

(1) 
c 
tr 

(VII-37) 

(VII-38) 

Equations (VII-34), (VII-35) and (VII-36) are obtained from the Blasius equation. 

Equations (VII-37) and (VII-38) are obtained from equations (VI-33)thrc*gi(VI-37) 
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yc 
and y =-- . The initial conditions for the system of differential equations (VII-34), 

c   Lc 

(VII-35). (VII-36) and (VI1-3«) are 

f (0) =  f(1)(0) =  0 
c c 

f (2)  =   0.4696 
c 

y(0) = o 

Hence the Runge-Kutta method can be us 2d to provide solutions for u (TJ ) and 

y(T7 )•   A plot of u(y) gives the expanded velocity profile in the coordinate 

system of the modified Howarth transformation.   For x   =  0, it is assumed 

that 

«(?)■  l-(l-a0(0))(  1-^) (VII-39) 

Therefore aJO) and o(0) can be determined approximately from the plot of the 

expanded velocity profile.   The system of ordinary differential equations (VII-32) 

and (VII-33) can be solved numerically by using the Runge-Kutta metho^.   , 

Substituting equations (VI 9), (VI-10) and (VI-11) into equations (VI-25), 

(VI-30) and (VI-32), there results 

Ä {V> [ "O + Vl ♦ j(»0bJ+bi') +Hb0b3+ blb2) + 

+
 i(2b0b4 + b2 + 2b

1
b3) + i(blb4 + b2b3) 

+ ?(b32+2b2b4) + 7b3b4+rb4: 

  

'. 
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( 
i  Ü5? 
r0 d? c(t) 
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2bo + 2boVf (2boVbi2) 

+ (b0b3 + blb2)+l(2b0b4 + b2 + 2blb3) 

+ 3 ( "i^ + b2b3 ) + 7 ( b3 + 2b
2
b

4> ib3b4 + 9 b.. 

Vi[bo2 + böVi(2boVbi2) 
[ao       I- 

+ K76i+)] 

^(bOb3 + blb2)   +H2bOb4 + b2b3)+Kb32+2b2b4) 

+ ib3b4 + |b42 (vn-40) 

(+) co - C0C .*i( 2c0C2+Cl2) 

HC0C3+C1C2)+H2C0C4 + C22+2C1C3  ) 

HC1C4 + C2C3 )+7(C32+2c2C4  )-?C3C4 + ^C42]| 

-(r)(qr0)dllV)(co-f + T -T + f)j 
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=  -(4   ^   V))[2c02-2c0Cl + K2C0C2+Cl)-(C0C3 + ClC2) 

+ f (2c0C4+C22+2clC3)-3(ClC4 + C2C3)+f(C3>2c2C4) 

-ic3c4+1c42J ■ [\TAi:/V)J (co*T+ ^-T + f) 
e' x  0 

■II M ^VT)        7  <"« ^    '2 |c0 -C0Cl + 3 (2C0C2+C1  j 

■i(C0C3+ClC2) + i (2c0C4 + C22+C22+2clC3)-j(ClC4 + C2C3) 

7(C32+2C2C4)  ;7C3C4 + ?C4J| 

dbo b_o   dao 
a0     d^ 

/   H b0\ 

(VII-41) 

(VII-42) 

By using equations (VII-13) through (VII-33) equations (VII-40), (Vn-41) 

and (VII-42) may be reduced to a system of three ordinary differential equations 

with dependent variables b ,  6.  ., and 6. ..   Since this system of ordinary dif- 

ferential equations involves all the profile coefficients and thicknesses and their 

derivatives with respect to x  in a very complicated manner, these equations 

will be rearranged so that the numerical solution can be conveniently obtained 

by using a digital computer.   In general equations (VII-40), (VII-41) and (VII-42) 

can be written as 
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db d6 d6 
Qll dF + Q12 dF1 + Ql3   dT 

(-) 
■ QT 

(VII-43) 

db, 

^21 dx 
+ ^22 dT + Q-  -.^   ^  Q 

dV} - 
23    dST       "   ^2 

(VU-44) 

db0 .   <&.  . do, , 
Q33 dx   + Q32 dx     + Q' 33     dir    =   Q3 (Vn-45) 

where the 0     s are functions of b„, Ö,  v, 6. v, a-, 6, and q , and the O    s are 
Tnn 2     1+)     (-)     U s Tn 

^ ^ Ga'     vciq 
functions of b2, 6.   ., Q.y aQ. 6, q8,  -^cr , ^  .   The C^JJ'S are giyen in the 

Appendix.   Defining 

11 
Ql2 

Q u 
^22 

^21 

12 
21 ^23 

^21 

G    -    ^ i 
1 Q: l Q <il 21 

21 
^22 

Q21 

*32 

Q31 

22 
^23 

^21 Q31 

'21 ^31 
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then one can obtain 

P. 0"1       0> 

i0^ «y 

5   !u1 

ffj. fill 
*At)     1G12 G2J 

iS Si 
LG12 G22J 

^- 

dJy=,lGu     G2i, 
il      ^2  I 
.GU      G21  J 

22 
32I 

(VII-46) 

(VII-47) 

(Vn-48) 

Jhe initial values for b , 6.  ., and L » may be approximated by appropriate 

curve fitting of the similarity velocity profile, for the mixing between a uniform 

stream and a fluid at rest, evaluated at a fixed but small x   = x..   Therefore, 

for y    i   0, equation (VI-43) can be written as 

k-V (4J r t (/? r) 
for y   «    0, equation (VI-44) can be written as 

{.*(£;.<(/?*) 

% - 
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Since b (xjandc (x) are given by equations (V!i-13) through (VII-31), which 

are functions of b (x ), 6/  .UA Km\(*f)' a(/0^ and *W' an^ since 

/ I    fid®   ~ ^ fn \   / "SV   V  i • an^' and ^0) are known, b  (xn;, 81.%ÄJ, and u W   25r0       /     0 2    0     (+)   0   -^  ^ v 

6. .(x ) can be determined approxim?tely from the plot of f'  j    /    ^      y   I  . 

Hence the system of ordinary differential equations (VII-46), (VII-47) and (VII-48) 

can be solved numerically by using the Runge-Kutta method. 

Since the shear stress distribution along the base of the wedge and the 

dividing streamline can be determined, and since the dividing streamline is 

assumed straight, the conservation of angular momentum of the recirculation 

region requires that 

(i/v^k- (f^'K      <v"-49' 
«.' 0 

where IL and R are the perpendicular distance from the base of the wedge and the dividing 

streamline to the center of rotation respectively, which, for a given wake angle, 

can be determined from the solution of the inviscid core flow.   From equations 

(VII-7) and (VII-0), the above equation can be rewritten as 

dX f ^eU~eRee *d  ) r1  Vl     H        / ^r \ Rer  S ] T1  % 

(VII-50) 
L 

By using the linear viscosity law,   s-a 6 , Pt~f   ■ 0(Or and the equation 
o 

of state, the above equation reduces to 
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'" '*,)Wg 1 

•'   a0bl 
r.       dx 

0   V> 

Jo e0 « 

-   3/2 u 
e 

(VII-51) 

Since q    -  cü   L /2 and w    =  cün, the equilibrium rate of rotation for the in- 

viscid core fluid can be obtained for a given wake angle: 
r .i »„b, 

-(dycj'iy I    qb    dX 
u 

e 

(VII 52) 

Accordingly, for a given 0 , there exists an equilibrium con which in turn pro- 

vides a velocity profile for the shear layer at x =   1.   Hem e the pressure at the 

rear stagnation point can be obtained from the local Mach number at x =   1 and 

y =  0.   Sinceu = a0(l)b(l)u     and T =   "f   [ff - ^ a^l) b^ 1)1, then 

L     d   o Jx =1 f. 

an(l)b0(l) 

/(V-l)(ff -ia^(l)b0
2(l)) 

(VII-53) 

and the recompression ratio for the dividing streamline is 

stagnation 

P.. •♦¥[ M^0 )1|2 ,? d    o   Jx=l 
Y-l 

(VII-54) 
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2.    Evaluation of Results and Comparison with Experimental Data 

The theoretical model studied previously concerns the laminar near wake 

behind a slender wedge as Re   ■• • .   However, for finite but relatively large R 

with a laminar near wake, this model should provide reasonably accurate results. 

Computation have been carried out for the flow over a wedge with 9=6   and L 
c c 

=   0.399 under the following upstream conditions: 

M     =2.61 and 3.51   ;  Re    =   2 X 105 
00 Q 

For these given conditions, the experimental results show that the near wake is 

laminar but very close to die transition range;  the wake angle is quite small; the 

lip-shock strength is relatively small;   the recompression region is not too long 

and the boundary-layer thickness is still small.   Above all, the prevailing rea- 

son for choosing these upstream conditions is that these are the available experi- 

mental conditions closest to the thecretical model, and a comparison can be made 

between the theoretical and the experimental results.   Based on die above given 

conditions, it can be shown that, for a flow with total temperature equal to 1000 R, 

the flow properties after the wedge shock are 

M    =2.34,     f   =  477.30R    ,   ö   =  0-678 x 10"4    slug/ft3 

c c *c e 

u    =   2500 ft/sec,    ü   =   0.338 X 10"6 lb-sec/ft2 for M     =   2.61 
c c eo 

M    =  3.14,    f   =  336.50R,    P   =  0.422 X 10'4   alug/ft3 

u    =   2810 ft/sec,    M    =   0.236 X 10'6 lb-sec/ft2 for Mm  =  3.51 
c c ■ 

The flow properties corresponding to the conditions at the outer edge of the shear 

layer and the recirculation region may be obtained provided that the wake angle 
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is known.   TTie flow properties after the corner expansion are 

M    =  3.01,    f    =   3560R,     Ö   =  0.323 x 10'4    slug/ff 
e e r'e 

ü    =   2780 ft/sec,     u    =   0.25 X   10'6 lb-sec/ft2 

e '     re 

Re    =   0.998 X   105 

for M 
oo 

■ 2 61 

9o 
= H 7° 

M    =  4.28,     T    =   2110R,    n    •  0.133 X   10'4  slug/ft3 

e e pe 

u    =  3074 ft/sec,    \x    =  0.15X   10"6 lb-sec/ft2 

e e 

Re    =  0.602 x 105 

e 

The flow properties in the recirculation region are 

and 

T    =   1000OR,     p    =   0.71 X   10'6 lb-sec/ft2 

r ^r 

p    =  0.115 x  10"4  slug/ft3 

p    =  0.281 x   10"5  slug/ft3 

for M     =   2.61 

for M     =  3.51 
eo 

for M 
« 

=  3.51 

=   10.7 
o 

Since the complete solution for the inviscid core flow is given by equation 

(IV-29), the streamlines in the inviscid core flow for 6    =   10 are drawn. Figure 

(4a) shows the streamline pattern when coordinates are nondimensionalized by the 

wake length.   Figure (4b) shows the streamline pattern with the abscissa normaliz- 

•d by the length of the wake and the Ordinate normalized by the base height.   Tlie 

flow velocity is relatively high in a region within a distance equal to the base 

height from the base of the wedge, and decreases gradually toward the rear stag 

nation point.   It can be shown that the distance between the center of rotation and 

the base of the wedge increases as 0   increases. 

Figure 5 through figure 8 are drawn for M     =   2.61, Re    =   2 x   10 , 
oo c 
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and for 0    =   8.7  .   This 9  satifies the reattachment condition and the require- 
oo 

ment of conservation of angular momemtum in the  reclrculation   region. 

For a given 6 , equations (VII-1) through (VII-6) can provide a numerical solution 

for the base boundary layer.   The shear stress along the base of the wedge i«? 

shown in figure 5.   This increases verv rapidly with 9  for 9  <  0.2, because 

the inviscid core flow has a large acceleration for r =   1 and 9   <  0.2.   Since 

the inviscid core flow decelerates for r =   land 9   > 0.5, the shear stress di- 

minishes rather rapidly and approaches 7ero near 9   =  0.8.   Figure 6 shows 

the velocity profiles at 9   =  0, 0.15, 0.30, 0.45, and 0.60.   The boundary- 

layer thickness grows gradually for 9   s   0.5 but increases very fast for 9 > 0.5. 

The integral method used appears to predict separation, which may occur near 

9   =  0.8.   The stagnation-point velocity profile obtained from the similarity 

solution is also shown in order that a comparison can be mads between the 

similarity solution and the solution from the method of integral relations for 

9   =  0.   It is evident that the method of integral relations gives a fairly accur- 

ate velocity profile for U < 0.9.   The accuracy will certainly be improved, if 

the order of approximation K in (V) is increased. 

When 9  is given, the    'tial velocity profile for the shear layer can be 

determined.   Therefore the numerical solution can be obtained for the shear 

layer equations (VII-46) through (VII-48).   Figure 7 shows the shear stress dis- 

tribution along the dividing streamline.   Initially the shear stress is very large, 

because the inviscid core flow velocity is very small, at 9   =   1 and for r -• 1, 
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and the shear sublayer is extremely thin.   Since the inviscid core flow has large 

acceleration for 9   =   1 and r > 0.85 (or —   <  0.15), and since the thickness 
o 

of the shear sublayer grows fairly rapidly for r > 0.85, the shear stress along 

the dividing streamline declines rather quickly.   The shear stress decreases 

slowly for r <  0.85, because the shear sublayer grows rather slowly and the 

velocity of the inviscid core flow decreases gradually.   Figure 8 gives the velo- 

city profiles for the shear-layer at x =  0.05, 0.2, 0.45, 0.7, and 1.0.   For 

x small the change in velocity profile is large near the dividing streamline.  As 

x increases this change in velocity profile spreads out to a larger region on each 

side of the dividing streamline.   The velocity profile for the portion of the shear 

layer with high kinetic energy changes fairly slowly throughout the whole near- 

vake region. 

Figure 9 shows the curves used to obtain fhe wake angle, which in turn 

«determines the base pressure.   The solid curve is obtained from equation,(VII 54), 

which furnishes the recompression ratio along the dividing streamline for M = 

2.61 and for an equilibrium rate of rotation for the inviscid core flow.   When a 

uniform supersonic flow is turned through a given angle from a specified initial 

static pressure, the final value of the pressure depends on the initial value of 

the Mach number, and the final pressure has a minimum value for a particular 

initial Mach number.   Hence a minimum compression ratio can be determined 

and,is shown by the dotted line.   The intersection between the solid and the 

dotted curves provides an appropriate wake angle and recompression ratio, 

•.    - 
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which in turn gives the base pressure.   This intersection point satifies the re- 

attachment condition.   Since figure 9 ßives  Ö   =  8.7 , and p/p!    =   1.52, the 
o b 

corresponding equilibrium rate of rotation for inviscid core flow is aJn = 

-60000 rad/sec., and p/p^   =   0.538.   Hence q    =  1250   ft/sec, Re    = 

3 
0.844    X 10 , M    = 0.806.   The experimental results given by Hama for 

Re    =   2 X 106andM     =   2.61 show that 8   s' 7,5°;  R/p    m  0.56and 
c » o rb    « 

the lip-shock strength is approximately equal to 1.25.   Consequently, the 

computed and the experimental results agree fairly well for this case. 

For Re    =   2 X 10   and M      =   3.51, the theoretical model predicts 

that 8  ■ 10.7°, p./p     =  0.36, q_  =    1190  ft/sec, and Re    = 0.196 X 103 

O D     • T 

and        M    =     0.78-   The experimental results given by Hama show that 

8    s  8.5 , P./P^   =  0.45 and the lip-shock strength is approximately equal 

to 1.4.   The predicted results are less accurate for this case. 
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CONCLUSIONS 

A theoretical description has been presented for the flow in the laminar 

near wake of a slender wedge at supersonic speed and high Reynolds number. 

This study consists of separate analyses for the various near-wake regions hav- 

ing different physical character.   The solutions for these regions must be match- 

ed through the condition of the conservation of angular momentum for the recir- 

culation region and the proposed reattachment condition, so that the near-wake 

flow is uniquely determined. 

As the Reynolds number approaches infinity as a limit, the thickness of 

the laminar viscous layers enclosing the recirculating flow is of order Re     , 
G 

and the flow in the interior of the recirculation region may be considered as in- 

viscid and nonconducting.   The typical velocity of the recirculating flow must be 

of the same order as that of the external flow, although numerically it is con- 

siderably smaller.   The Reynolds number Re   for the recirculation region dif- 

fers from Re   through factors involving powers of M .    -herefore, in the limit 

Re  -• • with M   fixed. Re   will also approach infinity.   Since M   is fairly 

small, in the zeroth-order approximation the recirculating flow may be re- 

garded as incompressible.   The inviscid incompressible recirculating flow 

has constant vorticity and constant temperature.   The effect of compressibility 

is estimated to be rather small. 

The inviscid incompressible recirculating flow in the right triangular 

region is characterized by the small wake angle 9   .    Hence the stream function 
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4) may be expanded in a power series in 9 , and an approximate solution may be 

obtained analytically. The zercxh-order solution for ip is synmetric about    = 

the first-order solution for 0 does not have this symmetry.   It is not possible 

to obtain a second-or higher-order solution, because the representation for 

one of the boundary conditions is not a uniformly convergent series.   The flow 

velocity is high in a region within a distance of the order of the base height 

from the base of the wedge.   The maximum flow velocity is approximately 

0.85 q    =   0.85 (u)  L /2), and the distance between the base of the wedge 

and die center of rotation increases as 6 increases,   It should be mentioned 
o 

that the formulation in terms of a right triangular region assumes that sec- 

ondary eddies either do not occur or have negligible effect. 

In general the shear ttress along the base is large for 6 <  0.5, be- 

cause the flow is accelerating.   TTie shear stress declines rather rapidly fcr 

6 > 0.5 due to the adverse pressure gradient.   The boundary-layer thickness 

grows gradually for 9 < 0.5 and more rapidly for 9 > 0.5.   Although the in- 

tegral method predicts boundary-layer separation near 9   =  0.8, it is believed 

that, due to the suction effect of the shear layer near the trailing edge of the 

wedge, the separation will be delayed. 

The development of the shear layer is investigated by including the 

effects of the finite initial thickness, the trailing-edge expansion, the nonzero 

inner-edge velocity, and the equalization of the pressure across the shear layer 

up to 0(Re    ).   However, it is not necessary to consider the details of the cor- 
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ner expansion, because only a small distance is required for the completion of 

the expansion, and because the lip-shock strength is rather small (pressure 

ratio 1.25 for M^  =   2.61 and 1.40 for M     =  3.51).   The portion of the vel- 

ocity profile with high kinetic energy remains nearly unchanged throughout the 

near-wake region, but the portion of the velocity profile near the dividing 

streamline is changed greatly.   These results suggest that it is indeed appro- 

priate to divide the shear layer into an outer shear layer and a shear sub- 

layer, and that the changes in the outer shear layer actually could have been 

neglected.   Initially the thickness of the shear sublayer grows rapidly, and 

the shear stress along the dividing streamline declines rapidly. 

The proposed reattachment condition is based on the minimum pres- 

sure increase attainable at the rear stagnation point from the turning of a 

streamline in the shear layer to a direction parallel to the wake center line. 

This condition and the requirement that angular momentum be conserved in 

the recirculation region are used to obtain a unique solution for the base pres- 

sure and hence for the near-wake flow.   For M     =2.61 and Re    =   2 X 10 , 
oo c 

the predicted values for 6 and P./Po, are fairly close to the experimental 

2 ä 
results".   However, for M     =   3.51 and Re    =   2 X 10 , the predicted val- 

ues are less satisfactory, because of the smaller value of Re  . 

The deviation of the predicted values for M     =2.61 from the experi- 

mental results is probably caused mainly by the inadequacy of the proposed re- 

attachment condition.   The experimental results show that the flow is only 

'„        ' 
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partially recompressed at reattachment.   The theoretical reattachment condition 

9 
proposed by Chapman   assumes that the recompression is completed, and is 

bound to result in disagreement between the predicted and the measured values 

of the base pressure.   The present reattachment condition is intended to remedy 

tnis inadequacy.   However, since the predicted base pressure is too low it 

seems that this reattachment condition does not provide sufficient recompression. 

By requiring tha: a different streamline be turned to a direction parallel to the 

vake center line, one can obtain values of Q    and p • p   which are significant- 
o b     «o 

ly closer to the experimental results. 

It is known that the separation along the base occurs somewhere below 

the trailing edge, that the dividing streamline is slightly curved, and that the 

center of rotation is displaced because of the base boundary layer.   The errors 

which result from neglecting these effects will influence the geometry of the in- 

viscid recirculating flow.   The corresponding changes in Q" and p   arise  pri- 

marily from a change in the length of the near wake, and can be shown to be 

quite small, of the order of a few per cent. 

For M     =2.61 and Re   = 2 x 10 , the thickness of the base boundary 
oo c ' 

layer at a distance of half the base height from the wake center line is approxi- 

mately 0.07 " , and the thickness of the lower shear sublayer at x = ^ is approx- 

imately 0.05 ".   Since the base height is 0.5 ", these values indicate that there 

exists a quite large region of inviscid recirculating flow.   Even for M     =3.51 
CO 

and Re   = 2 x 10   a significant portion of the recirculating flow may be des- 
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cribed as approximately inviscid.   Therefore, for a relatively large Reynolds 

number the present model does give a fairly good representation of the actual 

flow.   For large M   , however, the trailing-edge expansion region and the re- 

compression region are no longer small, the lip shock is stronger, the wake 

Reynolds number is smaller, and the wake angle is larger.   These Icaiures 

19 
are all incorporated in the analysis carried out by Weiss. 

In order to understand the near-wake flow more thoroughly it would be 

necessary to study the recompression and the trailing-edge expansion regions. 

As mentioned before, the present reattachment condition does not give suffi- 

cient pressure recovery.   To obtair. a more accurate reattachment condition 

and to verify the assumption of istmtropic recompression within a narrow 

region, It would be necessaxy to study the recompression region in more de- 

tail.   The separation processes, the behavior of the base boundary layer 

approaching the separation point, and the formation of die lip shock could 

be better understood through the investigation of the trailing-edge expansion 

region.   The dependence of p   and 6  on Reynolds number ioes not appear 

in the current approximation.   A first approximation for this dependence 

could presumably be derived after studying the recompression region and 

the trailing-edge expansion region. 

\ 
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(a) Streamline Pattern Drawn to Scale 

(b) Streamline Pattern with Stretched Vertical Coordinate 

Figure 4: Streamlines in the Inviscid Core Flow 
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COEFFICIENTS OF THE SHEAR-LAYER EQUATIONS 
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hind a slender wedge moving at supersonic speed.   An asymptotic solution is obtained for the laminar near wake, 
which is valid in the limit as Reynolds number based on external flow properties tends to infinity, with the ex- 
ternal Mach number held fixed.   In this limit, the interior of the recirculating flow is approximately incompres- 
sible and inviscid: the viscous layer is a continuous thin layer with large transverse velocity gradient: and the 
typical velocity of the recirculating flow must be of the same order as that of the external flow, although numer- 
ically it is small. « 

For the inviscid core, it '.s shown from consideration of the dissipative terms that the temperature and 
vorticity are nearly constant.   These results demonstrate the fact that, even though the core flow is Inviscid and 
nonconducting, and the primary effects of diffusive exchanges are limited to the continuous viscous layer enclos- 
ing the recirculating flow, the accumulative effects of very small diffusive exchanges are experienced through- 
out the entire reclrculation region. 

There exists an equilibrium vorticity for the Inviscid core so as to satisfy the condition of conservation of 
angular momentum for the recirculating flow.   At the rear stagnation point, a tentative reattachment condition 
similar to Chapman's Is used but based on the minimum pressure Increase attainable at the rear stagnation 
point from the turning of a streamline In the shear layer to a direction paralk-l to the wake center line.' Based 
on these two conditions, a unique solution for the near wake flow can bo obtained for a given upstream flow con- 
dition.   Numerical results are in general agreement with the available exp'rimental data 
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