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ABSTRACT

The theoretical study presented is concerned with predicting the flow
details in the region immediately behind a slender wedge moving at supersonic
speed. An asymptotic solution is obtained for the laminar near wake, which is
valid in the limit as Reynolds number based on external flow properties tends
to infinity, with the external Mach number held fixed. In this limit, the interi-
or of the recirculating flow is approximately incompressible and inviscid; the
viscous layer is a continuous thin layer with large transverse velocity gradient;
and the typical velocity of the recirculating flow must be of the same order as
that of the external flow, although numerically it is small. 3

For the inviscid core, it is shown from consideration of the dissipative
terms that the temperature and vorticity are nearly constant. These results
demonstrate the fact that, even though the core flow i: inviscid and nonconduct-
ing, and the primary effects of diffusive exchanges are limited to the continuous
viscous layer enclosing the recirculating flow, the accumulative effects of very
small diffusive exchanges are experienced throughout the entire recirculation
region.

There exists an equilibrium vorticity for the inviscid core so as to satisfy
the condition of conservation of angular momentum for the recirculating flow. At
the rear stagnation point, a tentative reattachment condition similar to Chapman’s
is used but based on the minimum pressure increase attainable at the rear stag-
riation point from the turning of a streamline in the shear layer to a direction par -
allel to the wake center line. Based on these two conditions, a unique solution
for the near wake flow can be obtained for a given upstream flow condition. Nu-
merical results are in general agreement with the available experimental data.
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THE LAMINAR NEAR WAKE BEHIND A SLENDER WEDGE
AT SUPERSONIC SPEED AND HIGH REYNOLDS NUMBER*

I

INTRODUCTION

Renewed effort has been directed recently to the theoretical and experi-
mental investigation of the wake behind a body moving at high speeds through
air. Considerable progress has been made in analytical studies of both the
laminar and turbulent far wake (e.g., see the review paper of Lykoudisl). How -
ever, accurate prediction of the far-wake flow properties requires knowledge
of these same properties at a distance of a few body heights behind the body.
Because of the extreme complexity of the flow in the near -wake region, the
attempts to obtain satisfactory analytical results have been only partially suc -
cessful. Accordingly current studies are focusing on the near wake in the hope
that an adequate analysis of the complex coupling processes occurring within
this region can be carried out. The present investigation is concerned with the
laminar near wake of a slender wedge at low supersonfc Mach numbers and high
Reynolds numbers.

Knowledge of experimental results is essential to the developing of a
mathematical model, both as a guide for the choice of approximations and for
a check on the accuracy of the results predicted using the model. At the base
of the wedge it is known that the external flow expands to a lower pressure,
through a Prandtl-Meyer expansion. The boundary layers along the wedge sur -
faces separate and form free shear layers which enclose a region of steady re-

circulating flow. These results are evident, for example, in the experiments

- This report is based on a dissertation submitted in partial fulfillment
of the requirements for the degree of Doctor of Philosophy at The University
of Michigan, 1968.
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carried out by Hamaz, for various Mach numbers between about 2.0 and 4.0,
and for a range of Reynolds numbers such that the free shear layer was lami-
nar at the lower values. Among the results, it was shown that the pressure
is almost constant on the base; the dividing streamline is nearly straight over
most of its length from the base to the rear stagnation point; and a "1ip shock"
originates in the shear layer, very close to the corner. This lip shock may
have considerable strength for flows with a large expansionratio at the corner,
but remains week for flowover aslender wedgeat low supersonic Mach num-
berss. Batt4 has made measurements in the wake behind a 20° wedge at M, =6
and at various Reynolds numbers such that the free shear layer is laminur.
The results indicate that the location of the rear stagnation point is not very
sensitive to the variationin Reynolds number, and that the recirculating flow
has a very low density. Martellucci et i.l.s have studied the turbulent near
wake of a cone at M, = 6. Their results show that the pressure at thebase is
nearly constant,but the velocity at the axis in therecirculation region may cor-
respond to Mach numbers as high as 0.8. For a Mach number equal to 16
Todisr.o and Pallone6 found that a region of constant temperature exists in the
recirculating flow of the laminar near wake behind a slender wedge or cone.
These and other experimental results therefore suggest that the near
wake of a slender body can be divided into regions of different physical charac-
ter. An external inviscid flow results from the corner expansion of the flow

outside the boundary layer. A free shear layer is formed by the expanded
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boundary layer which mixes wit! the relatively low-speed recirculating flow.
The velocity gradient is large nc ar the dividing streamline, which separates
the recirculating fluid from the flu:d which passed over the wedge. Since the
flow near . the dividing streamline is directed tcward the wake center line, an
increase in bressure occurs in the vicinity of the rear stagnation point, in or-
der that the flow may be turned. The fluid with total pressure higher than cn
the dividing streamline escapes downstream and forms the far wake, whereas
the fluid with lower total pressure turns back toward the base and constitutes
the recirculating flow. The shear stress along the dividing streamline drives
the recirculating flow against the retarding force along the base of the wedge.

Since the near -wake flow field is determined by a complicated inter-
action between the flow in the shear layers, the inviscid external flow, and the
internal recirculating flow, analytical descriptions have only been obtained by
some rather rough approximation or through a semi-empirical formulation.
Several simplified near -wake models have been proposed.

The Chapman ’
tion of mass within the recirculating-flow region. The mass flow in the shear
layer below the dividing streamline is balanced by the mass flow reversed by
the pressure rise through the recompression zone near the rear stagnation
point. The base pressure is determined by requiring that the total pressure

along the dividing streamline be equal to the final static pressure, and the total

pressure is assumed to be fully recovered at the rear stagnation poin*. It is

9 dividing-streamline model is based on the conserva-

oo 2
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assumed that the viscous shear layer has zero initial thickness. The external
flow mixes with the recirculating flow, which is considered to have zero veloc -
ity, and it is assumed that the thickness of the viscous shear layer remains
small in comparison with the dimensions of the recirculation region. It is fur-
ther assumed that the dividing streamline is straight and that the boundary-
layer equations may be employed to solve the shear -layer problem. Baum,
King and Denison10 improve on Chapman's model by considering a nonzero ini-
tial viscous -layer thickness- They propose that the separated shear layer is

a thin mixing region between the outer flow and the essentially stagnant recir-

culating flew with the suction of fluid along the inner edge of the shear layer

made up by a source introduced at the rear stagnation point. Toball makes a

further improvement by taking into consideration not only the finite initial vis-
cous -layer thickness but also the trailing-edge expansion. The shear layer is
regarded as consisting of an outer shear layer where inertia efiects are domi-
nani and an inner mixing layer where both viscous and inextia forces are im-
portant. The velocity at the inner edge of the shear layer is again assumed
zero.

A different model is used by Reeves and Lees12 to analyze the near
wake of acircularcylinder. The boundary-layer assumptions areregarded as
valid for the flowin the near wake. Stewartson's reverse -flow profiles,13 ob-
tained by an extension of the Falkner -Skan similar solutions, are adopted to

describe the region with reversed flow. In this application the profiles are

p
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characterized by two length scales, the base height and the boundary-layer
thickness at separation. A two-moment integral method is used to obtain the
flow properties. Golik, Webb, and Lees14 extend the method to study the near
wake behind a wedge. A three-moment integral method is employed, in order
that cnemore degree of freedom may be available in representing the flow, and
the axis velocity is uncoupled from the Stewartson profiles. It is discovered
that only one value for the base pressure allows the integral curve of the solu-
tion to pass through a saddle point of the system. The requirement that the
solution curve pass through this critical point isregarded asa uniquenesscri-
terion for the near wake.

Dean15 and Oswatitsch16 employ a double power - s eries expansion of the
stream function about the separation and reattachment points for the study of the
local behavior of incompressible and viscous flows near these points. These
local solutions are extended by Reeves and Buss”' - to the study of the near
wake of a slender wedge, which is regarded as controlled by a thin shear layer
of relatively low energy fluid. The stream function is expanded about the rear
stagnation point and the coefficients of the series can be determined by substi-
tuting in the full Navier -Stokes equations, satisfying suitable conditions at sep-
aration and at the rear stagnation point, and matching with the downstream flow.
Accordingly it is found that the geometrical and dynamical properties of the near
wake are determined by the local Reynolds number and the velocity profile at the

rear stagnation point.
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Weiss19 suggests a model which consists of three coupled regions: a
vortical outer flow, which results from an approximately inviscid expansion
of the boundary layer at the trailing edge of the wedge, is treated by the meth-
od of characteristics; the flow in a thin viscous layer above the dividing
streamline, which has large velocity gradient and can be described by the
boundary-layer equations, is solved by a modified Oseen linearization tech-
nique; and the recirculating flow, which contains flow of relatively low veloc -
ity and is described by the full Navier -Stokes equations, is solved by a finite-
difference technique. A numerical iterativescheme is proposed such that the
flow properties at the boundaries of the coupled region are properly matched.
' These conditions are obtained by demanding that velocity, shear, pressure,
temperature and heat transfer be continuous for any given base pressure.

2, 215uggests that, in steady incompressible laminar flows with

Prandtl
closed streamlines at large Reynolds number, viscous effects can be disre-
garded wherever there are no large velocity gradients or accumulative effects .
Thus the viscous effects are limited to narrow regions in the vicinity of bound-
ary surfaces which enclose the recirculating flow. Since the net work done on
a fiuid particle moving along any closed streamline must be zero for a complete
cycle, the '\n;l:ticity can be shown to be distributed uniformly in the interior of
the recirculationregion of a two dimensional flow where convective effects are

22,23

dominant. Batchelor obtains this result in essentially the same way, by

taking the line integral of the complete equation of motion around a closed
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streamline. He pro,oses that the value of vorticity may be determined by the
condition that the boundary layers enclosing this recirculating flow must also

be in steady motion. This implies that in incompressible and inviscid wakes

behind two -dimensional bodies the vorticity must take such a value that the
relative momentum of the viscous layer enclosing the recirculating flow is in-
creased over part of its path and decreased over other parts, the net effect be-
ing to allow the viscous layer to have a steady motion. It is implied that as
Reynolds number becomes large the velocity in the recirculation region re- =
mains of the same order as the velocity in the external flow.

I..enard24 applies Batchelor's idea to the near wake of a slender cone at
large Reynolds number and supersonic Mach number. The near wake is divid-
ed into the inviscid core region, the corner-expansion region, the external in-
viscid-flow region, the recompression region and th~ viscous-layer region,
which in turn is subdivided into the base boundary layer and the free shear
layer. The base boundary layer on the base surface of the cone is represented
by an axially symmetric stagnation point boundary layer with highly vortical
outer flow. The free shear layer which grows into the inviscid external flow
and inner recirculating flow is described by the von Mises form of the bound-
ary layer equations. The external flow i< considered as an isentropic expan-
sion of the flow upstream of the corner to the base pressure. The inviscid in-
ner recirculating flow is regarded as having constant properties along stream -

lines. The integral relations which are obtained by integration of the govern- l
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ing differential equations along a closed streamline lying entirely within the
viscous layers provide the necessary conditions for a unique solution. A nu-
merical procedure is suggested for obtaining a solution to the equations.

Gudedey and Greene25 adopt Batchelor’s proposal for the study of
steady compressible swirl flow with closed streamlines at high Reynolds num-
ber. Some special conditions, which are determined by the dissipative terms
and are deduced from the mathematical conditions for solvability of the equa-
tions for approximations of a higher order, can be obtained for the inviscid
core flow. Theseconditions have the physical meaning of conservationof mo-
mentum, energy, and entropy for any control surface generated by rotating a
streamline in the recirculating flow around the axis of symmetry.

The methods proposed by Golik, Webb, and Lees, a by Reeves and

17,18 and by We13519 have all provided results which compared favorably

Buss,
with experiment for one or more combinations of Maci1 number and Reynolds
number. However, a difficulty remains in each case because there is no obvi-
ous procedure for estimating the error or for systematically improving the
approximation. Therefore it appears of interest also to study asymptotic
approximations for large Reynolds number which in principle can be extended
to include higher -order terms. If a complete solution could be obtained in this
manner, it is expected that the flow details would be predicted more accurately

than by the solutions obtained ina more intuitive way. The range of validity of

an asymptotic solution would probably be smaller, but the solution could pro-
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vide a useful standard of comparison for solutions obtained by the other meth-
ods quoted.

In the present study the idea proposed by Batchelor23 for imcompress-

ible wakes is adopted, in the manner of Lenard24 and Guderey and Greene, 2

to provide a model for the near wake behind a slender wedge at supersdnic
speed. That is, an attempt is made to obtain an asymptotic solution for the
laminar near wake, which is valid in the limit as the Reynolds number based
on external flow properties tends to infinity, with the external Mach number
held fixed. Terms considered to be of higher order are not obtained here, but
it is pointed out that a complete understanding of the problem requires know-
ledge of additional terms in the asymptotic expansions. It is important to em-
phasize that a solution obtained in this limit is not expected to describe effects
associated with high Mach number. The solutions, of course, are to be used
not at arbitrarily large Reynolds numbers but at Reynolds numbers such that
the flow actually is laminar.

As suggested by Batchelor, it is expected that as the Reynolds number
becomes large the velocity in the recirculation region remains of the same
order as the velocity in the external flow, although numerically smaller. In
this limit, therefore, the Reynolds number based on typical properties for the
recirculating flow will also approach infinity, although in any application the
numerical value will be far smaller than the Reynolds number based on exter- 1

nal flow properties. It is believed nevertheless that the results will provide a
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useful approximation at the larger values of Reynolds number for which the flow
remains laminar.

Since experiments suggest that the Mach number in the recirculation
region may not be very large, the recirculation region is assumed to have con-
stant density, and an estimate is made to show that the effects of nonzero Mach
number may reasonably be neglected. It is therefore also assumed that the
dividing streamline is straight and that the pressure is nearly constant except
in regions near the corner and near the rear stagnation point. In the limit it
isassumed that the dimensions of these regions approach zero. Since the size
of these regions will increase with increasing Mach number, it seems clear
that the hypersonic problem would have to be studied by some different limit
process such that the Mac' number also approaches infinity and the size of
these regions does not approach zero. Finally, for simplicity zero heat trans-
fer to the wedge surfaces is assumed, and the Prandtl number is taken equal to
one.

Solutions are derived for the recirculating flow, for a shear sublayer
and for the outer part of the free shear layer, and for the base boundary layer.
Two constants remain undetermined in these solutions, namely the base pres-
sure and the vorticity of the recirculating flow. Therefore two additional con-
ditions are needed. A balance is imposed between the torques exerted on the
recirculating flow by the shear stress along the dividing streamline and the

shear stress along thebase. At the rear stagnation point a criterion similar
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to Chapman's is used, but based on flow conditions for a particular streamline inside
the shear layer, rather than on conditions outside ine shear layer. It is pointed
out that these conditions are considered as tentative, since they are not derived

from the solutions obtained. If second approximations could be obtained in the

asymptotic expansions of the flow properties for large Reynolds number, it is be-
lieved that these or similar criteria could be proposed with greater confidence. \
Numerical results are given for some of the cases studied by Hama, and rather

good agreement is found between predicted and measured values of the base

pressure.
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I

DESCRIPTION OF THE PHYSICAL PROBLEM
AND PROPOSED MODEL FOR ANALYSIS

1. General Description of the Near Wake
The flow in the near wake of a slender wedge is shown in figure (1).
At the vertex the unifor . supersonic stream on each side of the wedge is turn-
ed through an anglc dc' through an oblique shock. Boundary layers are formed {
on the top and bottom surfaces of the wedge. At the base of the wedge, these
boundary layers expand rapidly, and in a complex manner, to a low pressure.
The separation point is believed to occur on the base at a small distance from
the corner .2'26 For low supersonic Mach numbers, the acceleration and pres-
sure gradient are very large in a relatively small region near the separation
point. Hence it is expected that the expansion process may be treated as an
isentropic expansion and the flow may be regarded approximately as an invis -
cid rotational flow. In order that the no-slip condition along the wedge surface
be éatisfied as the flow approaches the trailing edge, there exists a viscous
sublayer, having steep velocity gradient and with thickness small compared to
the boundary-layer thickness. The effect of the sublayer on the outer part of
boundary layer is sma1127. Since the flow is actually overexpanded and then
recompressed by a lip shock, deeply embedded within the shear layer2, the
expansion processes at the trailing edge are further complicated. The strength ' |
of the lip shock is small only if the ratio of the base pressure to wedge surface . |

pressure is not too small. Therefore, for flow over a slender wedge at low |

-12 -
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supersonic Mach numbers the lip shork is rather wrak and the accompanying
entropy changes may be neglecteds.

The expanded boundary-layer flow, separating from the wedge, mixes
under nearly constant pressure with the relatively low -speed recirculating
ﬂowz' 4. Viscous effects are important primarily near the dividing stream -
line, where the velocity gradient is large. For most of the distance from the
base to the rear stagnation point, the dividing streamline has small curvature.
The shear layer remains rather thin provided, again, that the wedge is slender
and the Mach number is not verv large. Eventually the shear-layer flow ap-
proaches the wake center line at the rear stagnation point, which is located at
a distance of a few body heights downstream of the base of the wedgez' 4.

In the vicinity of the rear stagnation point, the flow outside the divid-
ing streamline is turned to a direction approximately parallel to the wake
center line. This fluid has momentum larger than the momentum at the divid-
ing streamline, and therefore moves downstream to form the far wake. A
compression accompanies the turning of the flow, and the compression waves
coalesce to form the wake shock. A fluid particle along the dividing stream -
line is brought to rest at the rear stagnation point, since it has a total pres -
sure just large enough to sustain the recompression. The fluid with lower
momentum turns back to the baseregionandrecirculates. The velocity of the
recirculating flow is relatively small compared with the velocity of the external

flow. The shear force acting or therecirculating flow along the dividing stream -
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line produces an accelerating torque, whereas the shear force acting along the
base of the wedge produces a retarding torque. The net effect of the acceler-
ating and retarding torques is to allow a steady motion in the recirculation

region.
2. Motivation, Assumptions and Description of the Present Model.

As suggested before, the near -wake flow comprises three flow regions
of different physical character, each described by approximate flow equations
of a different mathematical type. These regions are the inviscid external flow,
the viscous-layer flow, and the recirculating flow, and are described approxi-
mately by pure hyperbolic equations, parabolic equations and elliptic equations

-respectively. A description of the interactions between the regions will be an

*essential part of any analysis of the near-wake flow field. However, it seems
clear that the solution of the problem depends largely on the success in formu-
lating essentially separate problems for the different regions which may be
studied independently, and vhen using some matching procedure to obtain a
unique solution for the whole near -wake flow.

In the study of the recirculating flow the idea proposed by Batchelor23
for incompressible laminar wakes is adopted, in the manner of Lenard24 and
Guderley and Greenezs. That is, an attempt is made to obtain an asymptotic
solutior_1 for the recirculation region which is valid in the limit as the Reynolds
number based on external flow properties tends to infinity, with the external

Mach number held fixed. Because the Reynolds number is large the viscous
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forces acting on the fluid are small everywhere except in the neighborhood of

certain surfaces where the velocity gradient is large These surfaces enclose

the recirculating flow. The region where the viscous effects are not negligible

becomes smaller and smaller as the Reynolds number increases. Thus. in the
limit, the flow in the interior of the recirculation region may be regarded as
inviscid. The solution, of course, is to be used not at arbitrarily large Reynolds
numbers but at Reynolds numbers such that the flow actually is laminar.
From experimental evidencez' 4, it is clear that the length of the vis- .
cous layer which accelerates the fluid in the inviscid core is greater than the
length of the viscous layer which decelerates this fluid. It is expected, as pro-
posed by Batchelor23; that as the free-stream Reynolds number becomes large
the velocity in the recirculation region is of the same order as the velocity in
the external flow, although mumerically smal‘.ler. In the limit, therefore, the
Reynolds number based on the typical prope;'ties for the recirculation region
will also approach infinity, although in any application the numerical value will
be considerably smaller than the Reynolds number based on external flow prop-
erties. However, it is believed that the results will provide a useful approxi-
metion at the larger values of Reynolds number for which the flow remains
laminar.
Since experiments suggest that the thermal energy of the fluid in the
recirculating flow is of the same order as the kln'ét'i'c energy in the external |

flow, which is numerically considerably larger than the kinetic energy of the
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recirculating flow, the Mach number based on typical properties for the recir-
culating flow may be assumed small. This assumption implies that the recir-
culation region may be treated approximately as an incompressible rotational
flow. The effects of nonzero Mach number may be shown to be rather small.
If the energy and momentum equations are operated on in the manner of P‘randtl20
and Batchelor22, one may obtain the result that the flow in the interior of the
recirculation region is inviscid and incompressible with constant vorticity and
temperature.

In order to study the complex flow outside the dividing streamline cer-
tain simplifications are needed to provide a simple but meaningful solution.
The most important omissions are the details of the flow near the trailing-edge
stagnation point, where the lip shock is formed, and the details of the flow near
the rear stagnation point, where the wake shock originates. Experirients sug-
gest that for a slender wedge at low supersonic Mach number the lip shocl.< is
rather weaks, and in the limit of large Reynolds number the dimensions of
these omitted regions are of higher order than the wake length. 'lherefore.i the
expansion near the trailing-edge stagnation point and the recompression near
the rear stagnation point may be assumed to be shock-free and may be replaced
by isentropic processes. It is also assumed that the dividing streamline is
straight and that the pressure is nearly constant except in the omitted regions.

Finally, for simplicity itis assumed that there is no heat transfer to

the wedge s'irfaces; the Prandtl number is unity; the product of density and
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viscosity is constant throughout the viscous layers; and the velocity profile
prior to the corner expansion is a Blasius velocity profile in suitable trans-
formed coordinates.

Based on the simplifications and approximations mentioned above, the
configuration of the present model of the near-wake flow field is shown in fig-
ure (2). The thin boundary-layer flow separating from the trailing edge of the
wedge expands rapidly and isentropically to a base pressure. This expanded
boundary-layer flow then mixes under nearly constant pressure with the rela-
tively low -speed recirculating flow, confined in a right triangular region with a
wake angle —90 between the dividing streamline and the wake center line. The
mixing is limited to a narrow band around the dividing streamline which has a
negligible curvature. Eventually this shear-layer flow rzaches the wake center
line, and as it begins to turn compression waves are emitted. The low-momen-
tum fluid below the dividing streamline is turned back and recirculates in the
recirculation region. The high-momentum fluid above the dividing streamline
escapes downstream and constitutes the far wake region. The compression con-
tinues until the external flow turns parallel to the wake center line. The flow
in the right triangular region may be regarded as incompressible and inviscid
with constant vorticity and temperature. Since the no-slip condition must be
satisfied at the base, a base boundary layer is formed at the base of the wedge.
This base boundary layer is thin in the limit of large Reynolds number, and

produces resistance to the recirculating flow against the driving force of the

- —m—‘ g —
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shear layer.
3. Criterion for a Unique Near-Wake Solution.

Since a fluid particle in the recirculation region undergoes a laminar
steady motion along closed streamlines, the net gain in angular momentum of
each fluid particle, as it moves through a complete cycle, must be zere. Thie
condition should be true for all particles in either the inviscid core flow or in
the continuous viscous layers enclosing the recirculating flow. When a stream-
line is taken as a control surface, then the above condition implies that the
angular momentum of the fluid bounded by this control surface must be con-
served. For convenience the control surface may be ¢ ~osen as the streamline
enclosing the whole recirculation region, which consists of the dividing stream-
line, the wake center line and the base of the wedge. The shear along the di-
viding streamline produces an accelerating torque whereas the shear alung the
base of wedge produces a retarding torque. Since the wake behind a symmetric
wedge is symmetric with respect to the wake center line, there is no shear
along the wake center line. Therefore, the accelei‘ating torque from the shear
layer shonld always be equal to the retarding torque from the base boundary
layer, because there should be no change in total angular momentum of the re-
circulating flow. This implies' that for a given flow condition before the trail -
ing edge expansion and for a given wake angle there exists an equilibrium vorticity

in the core flow so as to satisfy the requirement of conservation of angular mo-
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mentum for the recirculation region.

When the shear-layer flow approaches the wake center line it starts
to turn and the pressure begins to increase. The recompression has been
assumed to take place in a region having dimensions of higher order than the
wake length. In this region the pressure and inertia effects are much larger
than the viscous effects, and so the flow near and on the dividing streamline
may be assumed to be recompressed approximately isentropically. A fluid
particle along the dividing streamline is brought isentropically from a large
velocity, corresponding to the condition pricr to the recompression, to rest
at the rear stagnation point. Accoidingly, its static pressure increases from
the base pressure to the stagnation pressure. Experimental results show that
at the rear stagnation pointthe flow is partially recompreswdz, and e turning of
the external flow to the direction parallel to the wake center line is not yet com-
pleted. Hence, further recompression is required dbwnstream of the rear
stagnation point until the external flow is parallel to the wake center line.

If a uniform supersonic flow is turned through a given angle from a
specified initial static pressure, the final value of the pressure depends on the
initial value of the Mach number, and it is known that the final pressure has a
minimum value for a particular initial Mach number.28Near the rear stagnation
point, for a streamline just outside the dividing streamline , the velocity of a
fluid particle is decreased and the flow is turned to a direction almost parallel

to the wake center line. Since the turning actually is completed downstream of

— “HN. ~
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the rear stagnation point, the pressure rise would be overestimated if it were
assumed that the streamline becomes parallel to the center line at a point very
close to the rear stagnation point. To compensate partially for this error, the
streamline having a minimum pressure rise is considered. It is assumed that
this streamline is turned through a simple wave to a direction parallel to the
wake center line, and that the pressure thus attained is equal to the pressure
at the rear stagnation point. This requirement will be referred to as the re-
attachment condition. It is similar to Chapman's criterion of reattachment9
but is based on flow conditions for a particular streamline inside the shear
layer rather than outside the entire shear layer. Since for a given flow con-
dition before the trailing-edge expansion, the shear-layer velocity distribution
is dependent both on the vorticity of the inviscid core flow and on the wake angle,
the reattachment condition must also be dependent on the same factors.

For a given flow condition before the trailing-edge expansion, the shear-
layer velocity distribution varies with the change in both the inviscid flow velo-
city at the inner edge of the shear layer and the external-flow velocity; in other
words, it depends on the vorticity of the inviscid core flow and on the wake
angle. The velocity distribution in the base boundary layer is determined by
the velocity distribution at the outer edge of the base boundary layer which is,
in turn, a function of the wake angle and the vorticity of the inviscid core flow.
Hence, if the wake angle and the vorticity of the inviscid core flow are obtain-

able, the near-wake flow properties may be determined. Therefore, two inde-
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pendent conditions, which involve both the wake angle and the vorticity of the
inviscid core flow, are needed to provide a unique solution for the near-wake
flow. These independent conditions are the conservation of angular momentum
for the recirculation region, and the reattachment condition at the rear stagna-
tion point. It should be pointed out that the reattachment condition is considered
ac tentative, since it is not derived from the solutions obtained. In the present
context, solutions for the flow details near separation and near the rear stagna-
tion point are regarded as part of a higher approximation. A solution valid near
the rear stagnation point, and perhaps other parts of the next approximation,
would have to be studied in order to devise some sort of reattachment condition
in a systematic way. Presumably it could then also be shown that the error
really is of higher order in the present formulation of the condition that angular

momentum must be conserved.
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GENERAL RESULTS FOR RECIRCULATING FLOW WITH LARGE
LOCAL REYNOLDS NUMBER AND SMALL LOCAL MACH NUMBER

1. General Remarks and Formulation

The arguments given by Prandtlzo' 21 and by Batchelorzz' 2 for incom-

pressible flow are extended here for the steady flow at large local Reynolds
number in the confined region bchind ‘a blunt-based body immersed in a uni-
form supersonic stream. The derivation is also an extension of Lenard's24
work, because an estimate is obtained to demonstrate that the effect of nonzero
Mach number in the recirculating flow is probably quite small. Diffusive ex-
_changes are supposed to be so small that they may be disregarded wherever
there areno large velocity and temperature gradients or accumulative effects.
That is, for steady laminar motion along closed streamlines at large local
Reynolds number, viscous forces acting on a fluid element and thermal ex-
changes between the element and its surroundings are small everywhere except
in thinviscous layers where large gradients in flow properties are encountered.
Such thin layers enclose the recirculating flow behind the blunt-based body .
Hence, for large local Reynolds number, the flow in the interior of the recircu-
lation region may essentially be considered as inviscid and nonconducting. The
assumption of small diffusive exchanges implies that the nondimensional forms
of the viscous forces and of the thermal exchanges are small compared with

unity, provided that the characteristic values used in the definition of local
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Reynolds number and local Mach number for the recirculating flow are chosen

as typical values for nondimensionalization.

For the present model, it is assumed that the Reynolds number Ree.
based on the external-flow conditions and the wake length, is large, and the
flow is laminar. Thus as Ree approaches infinity as a limit, the thickness of the
laminar viscous layers, at the wedge surfaces and the boundary surfaces of the

3

wake, is calculableand is of order Ree. . In the limit Ree -~ ® these viscous
layers reduce toanumber of singular stream surfaces of the fluid. Across such
singular stream surfaces the flow properties may be discontinuous. For the lam -
inar wake of a wedge, the portion of the wake boundary which yields resistance to

. the recirculating flow is shorter than the portion of the boundary which produces
driving forces, and the vorticity of the inviscid core flow must take up an equi-
librium value such that the flow is steady. Therefore, the typical velocity of
the recirculating flow must be fairly high. In the limit of large Ree. the typi-
cal velocity of the recirculating flow must be of the same order as that of the
external flow, although numerically it is smaller. Since the flow properties in
the recirculationregion differ from those of the external flow primarily through
factors im'rolving powers of the Mach number Me' based on external flow proper -
ties, then the Reynolds number Rer, based on the typical flow properties of the
recirculating flow, differs from Ree through factors involving powers of Me'

In the limit Ree = ® with Me held fixed, Rer will also approach infinity.

Let the typical length, velocity magnitude, temperature, density, pres -
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sure and total enthalpy for the recirculating flow be denoted by I_‘r' ar Tr' 51_.

P, and Hr = Ep Tr respectively. The coefficients of viscosity and thermal

conductivity corresponding to the typical temperature Tr are ;r and Er respec-

tively. The following isa list of nondimensional variables for the recirculation

region:
q=§—-’r=i-p=5 -p=E—'H=T+[(y-l)M2]qi
q T [ P’ r° 2
r r r
T T S M
'J '.T ’ }-1 p ’ = F'_ ’ - C— ’ Y = C
r r r v v
i
where'Mr = /y?r— = reference Mach number for the recirculation region.
r

‘The bar above any symbol denotes a dimensional quantity. The first and sec-
ond viscosity coefficients are denoted by H and E ! respectively, and S is the
specific entropy. The spatial coordinates are made nondimensional by the typi-
cal length I—..r which is taken equal to the base height. Later it will be clear that
the obvious choice for Hr is l 51_ I—..r/2| , where 51_ is the reference vorticity
in the inviscid core flow. Also fr is the stagnation temperature of the free
stream, Sr is the pressure after the trailing edge expansion, and 51_ is_thi den-
sity corresponding to i_. It isassu...ed that the Prandtl number Pr = % is
equal to one and the specific heats are constants. In a later part of the deriva-
tion the coefficients of viscosity and conductivity will be taken to be linear func-

tions of temperature, and so Hr and Er are proportional to Tr'

The nondimensional equations which describe the laminar motion can
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be derived from the general form of th2se equations given by Lagerstrom
v (p;) = 0 (111-1)

2
~ ~ 1 1 ,
pq x(vxq)= — Vp+pvl - — {9(p'v.q)
2 2 L
YM_

+2V[MV';)] +V(5'Vp)-qv H

F (I X (TXQ) - (73 )(TW -9 X7 X (uq) }

2 (111-2)
(y-1)M
a l r . ’ - .-0
Pq 'VH=§;[V'(PVH)]+ Re_ {V [P q(v-q)

+uvdd+nTx)xq ]} any

2
Y(Y'I)Mr )
T {B Y

Re_ {'r (v-q)

=

. =X (1.
Pq VS—Rer{Tv (uVﬂ}+
- - 2 -t -
+%V2(Q°Q)+—¥V'((VXQ)XQ

- 2q - v(v-q)+ |vxq |2]} (111-4)

P—\-{ £heas (111-5)
p
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P4 Ly

where Ro::r = T = _Reynolds number for the recirculation region,
r S

AS = S - Sr' and Sr = = = the typical entropy for the recirculation region

v
. = = = . 4 . 2
corresponding to Tr' pr and Py When Ree is 0(107), then Rer is O(107), as

(o]

will be shown later when the numerical results are presented.
. 20 22
In the limit Rer - o, following Prandtl™ and Batchelor ", the non-
dimensional equations (III-2) to (I1I1-4) valid for the interior of the region of

recirculating flow become
2

- - 1
pA XV Xq = —2vp+pv%— (111-6)
YM_
pq - VH = 0 (111-7)
pq ~9S = 0 (111-8)

Thus in the interior of the recirculation region the flow is regarded as inviscid
and nonconducting. However, since the gradients in flow properties are large
near the boundary surfaces which enclose the recirculating flow, the viscous
effects are important in thin layers adjacent to these surfaces. As the local
Reynolds number grows, these layers become thinner, and the typical length in
the direction normal to the flow direction is not Er but should instead be of the
order Er/Rer%. Therefore in the limit of large local Reynolds number the appro -
priate viscous-stress terms may be retained and these regions are described

by boundary-layer equations.

Nondimensional orthogonal streamline coordinates £ and { are now




- 27 -
‘ntroduced, where £ is measured in the streamline direction and  is measured
normal to the streamline direction. The elements of length in the direction of
increasing £, ¢ are hldg. hzdap respectively.

The integral conditions which arise from the effect of diffusive ex-
changes, and which are valid no matter how small the coefficients of viscosity
and thermal conductivity may be, can be derived from the energy equation and
the momentum equation. The operations applied to these equations should be
performed in such a way that the contributions from all terms other than the
terms involving diffusive exchanges vanish identically. Such an operation is to
take the line integral around a closed streamline in the two-dimensional flow.

Since experimental results show that Mr is fairly small, it will be
assumed that the flow variables can be expanded in power series of M:, as in

the Janzen -Rayleigh method (e.g., van Dykeao, 1964):

The effects of compressibility may, in principle, be studied by perturbing a

basic solution for incompressible flow. The first order corrections are pro-
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portional to the square of the typical local Mach number Mr’ and higher approx-

imations proceed by successive powers of Mrz.
2. Integral Condition Obtained from Energy Equation.

The integral condition arising from the distribution «f thermal energy
within the recirculating flow is now considered. The energy equation (III-3)
may be rewritten in the following form:
i vH =<R—21Xblq) 1o+ eDMZ v (W3 (9 0) + 8@ - 9T ]}
(I11-9)
wher‘e —i.q is a unit vector along a streamline and c-;. may be replaced by q-i‘q.
Integration of equation (III-9) around a closed streamline inside the recircu-

lation region gives

N 1 1 2 P -
. =f —— i cu9H - o .
@Dl}q vn]hldg (Ret)@(pq ){v WOH + (y-1)M l:p q(v-q)
+ (g -V)q]}hldg : (11I- 10)
The left-hand side of this equation may be written as@[vH] ° hlé'g , which

vanishes because H is a single-valued function of position. Then the exact in-

tegral condition to be satisfied for every closed streamline is

¢(5‘a)[v-(uvn)]hlde - -(y-l)Mfé(i){v’-[u’E (v°)

+u(@ - 9)q }hde (II-11)
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Substitution of the expansion in powers of Mr into this equation gives

¢($0)[V' (Hg7Hy) [n ¢

q e

r..27 1 1 ]
+ LMr JQS(DO—qO ){v- (pOVHl) + v -(pIVHO) (q—o + D—O—)v (vaHO)

+ (-1 [ Ba(9- €0>+p0<60-v>€0]}h1de = oM
(I11-12)

Therefore the integral condition from the energy equation may be written as

1 ) q o _
ﬂ‘%‘g> L7 tgvHQ [ndg = o) (111-13)

when Rer is large, the energy equation«III-7) for the inviscid core flow can be

reduced to
H = H(Y) = Ho)+ MPH () + ... (1I-14)
This means that total enthalpy is constant along a streamline. If equation (III-14)

is substituted into equation (III-13), the resulting integral condition from the

equation for the inviscid core may be rewritten as

h,  dH () ) -
1 1 3 1 0 _ )
ot ) [lro 062 ot - ood o

From the definition of the stream function it follows that

S



- 30 -

Pdghy = 1

Hence the operater 4 may be taken outside the integral, and equation (III-15)

dy
becomes
dH (¥)
d 0
d ( i ) PodpHoh dé = 0

Integration with respect to ) gives

dH (¢)
_24’— époqopohldg = constant (111-16)

Equation (II1-16) should be valid for any streamline lying entirely in the invis -
cid core flow, including streamlines arbitrarily close to the center of rotation,
where qO = 0. This indicates that the constant in equation (III 16) can only be

zero. Because

(?"oqo“ohldg # 0

except for q, = 0, equation (III-16) becomes

dH, ()
o 0 (I11-17)
Thet is, H, = constant, or

0
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T0 = constant (111-18)

From the definition of ?r' one gets T0 = 1. This condition states that in the
Iimit Rer - ® the contribution from the diffusive exchanges to the rate of
change of enthalpy in the inviscid core of the recirculating flow must be zero
when terms of order Mr2 are neglected.

The existence of a constant temperature region in the wake of a body
is evident both from theoretical analysis and from experimental results.
Burggrafsl, in a study of the structure of the two-dimensional flow inside a
square, has solved the Navier -Stokes equations numerically for a constant-
density fluid. The highest Reynolds number for which results are presented
.is 400, which is comparable to values anticipated for Rer in the present analy-
sis. Both vorticity and temperature are found to be approximately constant in
an inviscid core flow. The result of constant temperature in the inviscid core
is obtained by taking the integral of the constant-density energy equation around
a closed streamline. Todisco and Pallone6 have made near -wake flow field

measurements, and found the existence of a temperature plateau in therecircu-

lating flow.
3. Integral Condition Obtained from Momentum Equation

The integral condition arising from the velocity distribution may be
obtained by integrating the momentum equation around a closed streamline in-

side the recirculating flow. For convenience the momentum equation (III-2)

=y ;:iv_r-.lﬁ'“w“

-
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can be rewritten as

q x(vxq) == ‘19+v(93)-(—lxl)[v(p'v-€> .
(YM:>" 2] \Re Ap |

+(v-2pv)c_;'+ vx(pvxa)]

The integration of the above equation around a closed streamline gives

) met Al (5] et

- - 1 - 1
§iar i ]onst {
M
r
(X @lrv( 'v-ﬂ)+(v- 2pv)_°+v X (pv X ")_'-h dE
Rerprq 949 x@vxa)-hdg
(II1-19)
The integral @[q X (v x a)] ~hldE vanishes, because the contour of integra-
tion is a streamline. Th- second term on the right-hand side vanishes since

2

'q2_ is a single-valued function of position. Then equation (III-19) becomes:

r

(Rf‘_, %i[v(#'v-a)w‘(v'mv)a

+ v x (g X Q)]'hldi =(—2
YM

r

)4’[?’] by 4
(III-20)

When the expansions in powers of Mr2 are substituted into the above equation,

there results:
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(R%)l@ﬁla [V X By (9 % ;0)+ V(u(',V- qq) + (V-mov)ao]-hldﬁ

2 1 - B -
—_ . v v
+(Mr )ﬁpo[ VAP (VXq)+ Y(p V-qg) + (V2 )q,

Py - (P1) oo, Py o5 T
A — —_ L - = a

-t ’ -t —
+ VX p(VXaq)+ V(pOV'qu(V-ZPOV)ql:] +h dé

4 1 v = )
+ O(Mr)} =<——2 4)—‘09 'h & (111-21)
YM_

.For the interior of the recirculation region, an estimate of the variation in en-
tropy along a closed streamline can be derived from equation (III-4) and the

condition of constant temperature in the inviscid core:

3 Mr2
5 .
Now the estimate of the right-hand side of equation (III-20) may be obtained by
substituting the estimate of the entropy variation from equation (III-22) into the
equation of state (III-5). Because equation (III-5) can be expanded as
1 1
1

= _/Y(l+—AS+...)
op Y

RN

SRR
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1

x —

1 c 1 2 )
pl/Y ” (Au p)+ 0 [(as)”] (I11- 23)

the right-hand side of equation (III-20) has the following expansion:

v - v g
4,(—02) +h € =§<p—l%) ‘h dé

. (fl (lﬂ AS )-hldE + 0[(a9)%] (111-24)

The first term on the right-hand side of the above equation is zero. By sub-
stituting the expansions in powers of Mr2 and the estimate of equation (III-22)

. into equation (III-24), one finds .

g0t - of G2 ) ek

Vp, . p.Vp, 0

+ (M3 ( 1V L0y 4E ” (111-25)

r pO p2 1
0

Since TO = 1, and S = constant along a streamline, it follows from the equa-

tion of state and the relation between S and L that p, and P, are constant along a
pY 0 0
streamline. From the component of the momentum equation normal to stream-
. . . 2
lines it is found that the changes in pressure normal to streamlines are O(Mr)'

Therefore Po and P are constant throughout the core region. Hence one ob-

tains
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YPY.ph4f =0 M_r (II1- 26)
‘i’(p> 1 ~ T \Re_ ~

Since o = pO(TO), p(; = p(')(TO), and Po = constant, the resulting integral

condition from the momentum equation can be rewritten, to order one, as

gS[vx(v X E{O)]-hldg - _(io_%“_g_) @[V(V-EO)]-hldE
(111-27)

The term on the right-hand side vanishes because 9 - Qg = 0. Therefore
@[vx(vxqo)]-hlde =0 (I11-28)

It is clear that to order one the recirculating flow may be considered as in-
compressible because both T0 and P are constants. The result of equation
(III-28) may, of coursc. be obtained by operating on dl1e incompressible flow
momentum equation. In order to obtain a condition which is valid for the en-
tire inviscid core, rather fhan for a single streamline, equation (III-6) is used.

By taking the curl, and using V-(V X q) = Oand also p = P(p), equation (III-6)

can be reduced to the vorticity equation for inviscid flow

- e (@) -
(q-V)p—(p V)q (111-29)

w
= E l . For the two-dimensional recir-
r

where W = VX q and w =
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culating flow, the right-hand side is identically zero, because w is always

-

perpendicular to q . Thus it follows that

w
5—'0('1’)

Lct the expansion of vorticity in powers of Mr2 be defined by

2
w~w0+ Mr w1+

and
2
Q~ﬂo(lb)+ Mr Ql(lb)+
‘ hen '

w ~p () + (M2 [ p, B (¥) + gy (¥)] + ...

hen the above result is applied to equation (111-28) there results
o[ v poﬂo(lb)lw]'hldﬁ =0 (111-30)

! where lw is the unit vector normal to the plane of the flow and W = W W

L Since Py is a constant, equation (III-30) can be rewritten as
d
<q )] . -
g‘)[dlb (¥ Ja h dE = 0 (111-31)

Since @ qoh1 df # 0 except when qy = 0, the condition obtained from the mo-
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mentum equation for the inviscid core flow can be written, to order one, as

wO = constant or QO = constant (111-32)

From the definition of | c_ur | , w_must be equal to -1. This condition states

0
that in the limit Rer—o « the contribution from viscous forces to the rate of
change of vorticity in the two-dimensional recirculating flow must be zero
when terms of order M: are neglected. Prandtl20 and Batchelor22 have found
that for incompressible flow with closed streamlines the vorticity is uniformly
distributed in the inviscid core flow. Since the conditions wo = constant and
T . = constant for the inviscid core flow are obtained by studying the dissipa-

0

tive terms, they demonstrate the fact that even though the core flow is inviscid
and nonconducting, and the primary effects of diffusive exchanges are limited
to the continuous viscous layer enclosing the recirculating flow, the accumula-
tive effects of very small diffusive exchanges are experienced throughout the
entire recirculating region. In other words, the reason for the existence of
these msegral conditions are that, in the exact steady motion, the net effects of
diffusive exchanges must be exactly zero. Therefore, for two-dimensional
flows with closed streamlines, the fluid motion cannot be exactly steady until

the effects of the small but persistent diffusive exchanges have evened out any

variation of temperature and vorticity that may have been present initially.

4. Discussion of Errors in the Incompressible-flow Approximation for the
Inviscid Core.

The solutions obtained in the preceding sections are based on the

assumption that the density of the recirculating fiow is approximately constant.

———vd " ym,\mv
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Tne errors resulting from this approximation depend on the magnitude of the
reference Mach number Mr for the recirculation region, which is known tobe
numerically small. Accordingly the higher-order terms in Mr’ which have
been neglected in the previous incompressible-flow analysis, should be exam-
ined so that an estimate of the compressibility effect on the recirculating flow
can be obtained.

If terms of order Mr2 are retained, the next approximation to the-inte-

gral condition from the energy equation can be obtained from equation (III-3):
1 [ i
— v v
%(poqo ) (o 7Hy) “hlrde

2
- -1 1 v . (Vq_o ‘: )(_. h dg
= -G-D (Bg%) Fo\" 2 * %" 99 1

(1I11-33)

Since Hl = Hl(’b) for the inviscid core flow, the left-hand side becomes

1 \r 1
== V.(u.YH,) | h,d§
§(p0q0)|. o "1’d™M

] |
O-c O-c
—O ——
T VS

©
e S~
glo T
—
© N""IH
o —_~
S —
= Y
o.l %

—- D"I =
~—— L Rand
—_—

.= Q-I &

(=% [

Caad ~———
S e—

=

—

[N

Yy

where pO qoh2 =

1. The right-hand side of equation (III-33) may be rearranged
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as

-(Y-1)§>(p_;;0>{v'[vo< v éA + WoX g )]}hldg

2 2
12 2972\ %
=-<v-1)pj[>[——(p h ) Jh dé
of| b, %W 0%" Ty Pody ) 1

where W, = - 1 a—w-— . Hence equation (III-33) can be written as

e |6 —— n ag (I1I-34)
integrating equation ([II-34) with respect to ¥ ,
3 -1 2
fla (o2 ) e
2 1
3 [(Y'l) “o :H@;TOTO iy @3 L

Changing the order of integraticn on the right-hand side term and using

Podphy = 1.

2
2 99’2
(I1I1-35)




- 40 -

where A(Y) = §p¢_ h,d§ dy = J‘éh h,d€dy . Hence A(Y) is the area
0 0
inside the closed streamline. Also

Since Stokes' theorem gives

@ qohldg = - wOA(tb)

then equation (III-35) can be reduced to

2
qo 2 3 h
o [ [ (3 e

= - = -36)
a5 = O (1
[‘i’ Py 9% |
Integrating the above equation with respect to ¥ and rearranging,
2 .
=Xl 2. -
T, = 5= g5+ (v-1) ¥
.[ "oqohldg
(I11-37)

In order to obtain the exact value of Tl’ it would be necessary to eval -
uate the second term on the right-hand side of equation (III-37). Since the ex-
act functional dependence of h1 is not known, the value of the integral can not

be obtained analytically. However an estimate of the integral can be performed,

so that the contribution of T1 may be estimated. The term in the curly bracket
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of the integral of equation (III-37) will be estimated as
2

{6 T (3 e

.lr"oqohldg

2

9, 2 a(hlj »
] T\ 2 3
[(h1> o¥\ 2 rypicalofA(tb)gspoqo1

j Po9ph; 46
2

oV 2 (M
h) 3P\ "2 / | typical of A(Y)
therefore the integral of equation (III-37) will be estimated as

ib a%<*>]h .

.[poqo 19

RS
(G EI=E

= 1 27
B (LZ_) [qO J typical of A(Y)

R

(y-1)

dy

pxcal of A(Y)

It is assumed that < = ] hence an estimate of 'I‘1 may be obtained from
h

equetion (III-37) as 1

T = ( Y ){qo qu] typical of A(w)} | (111-38)

w‘-—“
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From the solution for the inviscid core flow, which will be treated in (IV), one
may show thar 9 is always less than unity. Actually | q0| e & 0.85, and
so the quantity in the curly bracket of equation (III-38) must be always smaller
than unity, with maximum value probably less than 0.5. Furthermore, for
Y = i.4, the numerical factor is equal to 0.2. Therefore, the term Mr2 T1
is believed to be very small in comparison with TO' and for all practical pur-
pose Mr2 T1 may be considered as zero.

It is known that in the inviscid core flow p0 - constant. Thus the

momentum equation can be written as

1 E"‘0)3. Y 1_(31'!) ]
q(,hl( TE) Tpy A3 (111-39)
.
d q /2) 3p
1 0 1 1 1
H2< /" “% " 7 yp, hz( % ) (H49)

Po%. Po%
P, = ‘Y[ : +w0(¢'-¢')] = 'Y[ 02 -(«b-«bc)-]

(III-41)

c
where kbc C-l—r-r , and |lbc| is the mass flow per unit time between the

center of rotation and the enclosing boundary surface. Since ar & &. 0max

dand'vdhe distance between the center of rotation and the location where

qO = Q) ax is approximately equal to L'r/ 2 , the mean velocity between
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these two paints will be estimated as }qr Therefore wc will be estimated as
-0.5. By the definition of the typical values of density, temperature and pres-
sure, it is clear that po = p, = T, = 1, and so the equation of state may

0 0

be written as

p, = P+ T, (I11-42)
Since T, = 0,
! 2
P, = y[% -y - wc>] (I11-43)

By using equation (III-43) and the expansion of € in powers of Mrz, there results

w = - -
0= &= -1

2
QW) - -v[q—g - (¥ -d’)] +w
1 2 c 1
or 2
w = ﬂl(tb)+y[i§ - (b -wc>]
From the energy equation, the equation of state, and the results so far obtained,

it has been shown that along a streamline the variation in entropy is AS =

M2 MO
O( fieﬁ )and therefore ?(App—)hl d§ = O( R—: ) . In the expanded integral
r

r
condition (III-21) all but one of the terms of order Mr are zero, and so the next

approximation to the condition becomes

cf;[vx wl'{w] -hldE =0 (1I1-44)

Substitutlng the expression derived for w_ into equation (III-44) one obtains

1
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2
@[vxnw'f]- E = \7x[qO -9 i ¢ h dE
(¥)iy, |hdg = -y - ~W %) i, hdé
' (III-45)

which may be rewritten as

dfd () 3
ﬁ éqohldg - Yg’qﬂhldg 'Yé[qo a_qa(.;]qohl‘]‘£

Y é qyh, dé -v§ [l (%)2 %(;)]qohldi
Y%[( :._;)2 %(t;)]qohldg

' After rearranging and then integrating with respect to ¥,

()7 3 (15)] e

é“ohl‘]‘£

Ql(lb) =y

dy  (III-46)

the integral of equation (III-46) will be estimated as

B[(2) 3(%)]aoma
éqohldg

2
% 3 (hl)
[(h—l)2 W\ 2 typicalofA(w)(.f’ qph, dé

@“ohldg




N (19)23("_) Ad
- hy/ ¥\ 2/ ] typical of A(¥)

Then equation (III-46) will be estimated as

2
qo) |
Q = Y('z_ typical in A(Y)

[ V)

2

[ (%) | ] }
LS Y{[ 2 *\Z Jypical in A(Y) 'W"ll’c)

‘Nearing the center of rotation, § - 4’(: and q, = 0, and so

Approaching the edge of the inviscid core flow, ¥ ® Oand 0 < q, < 93 max \
2 (0.85. Since l;'}c & -0.5, |w1 | might be as large as 0.5 near the stagnation
points. Elsewhere in the inviscid core flow,it would be expected that |wl | is
considerably smaller than 0.5. Thoughout most of the region, therefore

M: | wl | is believed to be quite small in comparison with |w0| .




IV

THE INVISCID CORE FLOW
1. General Description and Formulation of the Problem

The results from previous sections have shown that when the wake
Reynolds number ,Rer is large and the wake Mach number Mr is small, the
model proposed by Pra.ndt:l20 and Batchelor22 should correctly describe the
interior of the recirculation region. Accordingly two conditions, which im-
ply uniform temperature and vorticity, have been deducted for this inviscid
core flow.

The static pressure in the near wake is known to be nearly constant,

- except in the vicinity of the trailing-edge stagnation point and the rear stagna-
tion point. However, the regions near these points are assumed to be small in
comparison with the length of the wake, provided that the Mach number is not
too large. Away from the stagnation points, the curvature of the dividing
streamline may be regarded as small. Furthermore, since the wake Reynolds
number is large, the regions near the enclosing surfaces, where the diffusive
exchanges are large, can be considered small. Consequently, the interior of
the recirculation regior;, where the recirculating flow is inviscid and incom-
pressible with uniform vorticity, may be approxirnated as a right triangle
bounded by the base of the symmetric wedge, the wake center line and the di-
viding streamline.

It is convenient to work with a stream functioni;and to use cylindrical
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coordinates 8 and r, with origin at the rear stagnation point and 6 measured
clockwise from the center line of the rec.: culation region (see figure 3). For

plane incompressible flow the stream function is defined by

ay = a—b—rd;+% dd

where g—? and - % g are the velocity components in the 0 and r directions

respectively. Therefore the governing differential equation is the Poisson
equation

v2p = @ (IV-1)

where W = Z’r and is a constant. This equation expresses the physical fact
that the flow is incompressible and inviscid with a uniform distribution in vor-

ticity. The boundary conditions to be satisfied are

_ _ _ ;o cos§o )
$(r,00 = $(r,8) =d| ——5—8) =0 (1V-2)
where ;o is the length of the dividing streamline and 60 is the wake angle.
These boundary conditions indicate that in the triangular region the mass is
conserved; that is, there is nomass exchange with the surroundings. In order

to nondimensionalize and normalize the governing differential equation and

boundary conditions, new variables are introduced in the following manner:

-



Then the nondimensional form of equations (IV-1) and (IV-2) can be written as

2!‘!. ] 2 *
- 2 ‘% 'aadi ¥ 21—2 - wz =1 (IV-3)
r 90 Y]

or
cos@
) =0 (IV-4)

P00 = 42 1) = b o O
c

2. Method of Solution
In this problem a particular integral of the differential equation (IV-3)

" can be obtained by defining
(IV-5)

¥*(r,8;8) = Wr,0:8)+x(r,0:8)

where W(r, 6; 30) is the particular integral and satisfies the following differ-

ential equation and boundary conditions:

2 2
a——“; + % aa\z + 21_2 ( ‘1'2 = 1 (IV-6)
ar r 90 36

(IV-7)

Yr,0; ) = Ur,1; 8) = 0

A solution of equations (IV-6) and (IV-7) is
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2
. -_— _ ——-5— . = ) — ) s
Wr, 6; 90) -[4 Sinzeo]{sm ( 290(1 0)] +sin( 2909] sin [ 290 ]}
(1V-8)
If equations (1V-5) and (IV-8) are substituted into egnation (IV-3) and boundary

conditions (IV-4), the differential equation becomes

3 x lax _1 ?3ax _ .
2+rar+ =0 (IV-9)

and the boundary conditions reduce to

x(r,0; 8) = x(r,1; 9_0) =0 (IV-10a, b)
— 2—
cos@ : cos 8
(o] o~ (o) -_—
X ——,9;9)= - - sin[ 28(1-0)
(cos(GOG) ° 4sin290cos2(909){ [ ° ]
_— _ .
v SinL2909:l-sin [290:1} (IV-10c)

Although it may be possible by standard methods to obtain a solution which sati-
fies (IV-9) and (IV~10) to any desired degree of accuracy, it appears that any
such solution would be very complicated. Since the wake angle 5; is known to
be rather small, a further simplification can be made by expanding  in a pow-

er series in 60. Equation (IV-8) has the following series expansion in 60:

Wr,0:8) = 6§w1(r, 8) + 5:\113(1', 8) + o<§2)
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=2 2 r2 =4 [ 3 4 r2 =6
=9o ) -9)-2- +90 (8 - 26 +9)? +0(90)
(IV-11)
The solution for x must satisfy equations (IV-9) and (IV-10). Since
the boundary condition given by equation (IV-10c) may be approximated by a
Fourier sine series, the method of separation of variables can be employedf3 2
The largest term of the solution is of the form
r"/ % sin7 6
where 1r/§o > 1 because 0 < 50 <« 1. Therefore the solution decays fairly
rapidly as (1-r) increases. Consequently, the contribution of x(r, 6; 50) to P*
may be considered as limited to the region where (1-r) s small. Since

r”/e° ~ - exp [arr(l-r)/ao] as r - 1, it appears that, for 50 - 0, x is a function

of the stretched coordinate

With this new independent variable, the expansion of x(r, 6; -6; ) is

X(,8:8) = 8%, (%, 8) + B x (r*,0) + Box,(x*,8) + OF)
(Iv-12)

Hence the expansion of ¥* is
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By _ &2 =3 =4
W (r, 9,90) = 90[\I'l+ xl] + 90 [x2] + 60 [\I/3+x3] + ..

(IV-13)
When equation (IV-12) is substituted into equation (IV-9) and (IV-10a,b, c),

there results

Xipors® Xpgg + 6 [x

2r"‘r"-xlr" ¥ x299+ 2r‘x199 I+...=0
(IV-14)
X (r* 0) + 5ox2(r*.0)+ . =0 (IV-15a) 5 ;

0

X (% 1) + 5ox2(r‘. D+ ... (IV-15b)

400+ 8 [x,00 + Ju- 09y, (0,0) ]

2,2
=2 (1-6% (1-6% q
+ 90 [x3(0,9)+ 3 X) pa #(0,0)4 2 x2r.(0,9)_]+ i
27 =2r 1 2 1,3 1.4 §
- 5[9-9 ]+ L g0 +40%+ Lo -39 ]+ ... (IV-15¢)

3.

The Solution for the Inviscid Core Flow '

From equations (IV-14) and (IV-15a, b, c), the governing differential

L

équation and boundary conditiong for x l(r, ) can be written as

Xiptes * X109 = O (Iv-16)

—
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xl(r“,O) xl(r‘,l) =0 . (IV-17a,b)

X,(0,8) = }(6 - 6% (1V-17c)

The above differential equation and boundary conditions describe inviscid in-
compressible flow in a semi-infinite strip bounded by walls at® = Oand 68 = 1I;
the boundary condition at r* = 0 is prescribed by equation (IV-17c); the other
condition needed for the solution of the above problem can be obtained by the
requirement that the solution must be bounded as r*~ «. Since the boundary

condition at r* = O has the Fourier series expansion

4(6 - 62) = 13 % 1 3 sin(2n+l).1r9 (Iv-18)
4 (2n+1)

and since the method of separation of variables can be applied, the solution

for xl(r“, 6)is

4 of 1 "
X,(r* 8) = — exp [(+1)7rr* ]l‘sin(2n+l) n6
! e {)'{(Zn+l)3 J

(IV-19)

Therefore the solution to order 902 can be written as

_2_2(92_ 9) + 13 iFXP[-(2;1+le-r)"/eo]]sin(2n+l)1r6 }
T ol (2n+l)
+ 0(60% (1V-20)

¥¥(r, 8;8) = -9;2{
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For small values of the wake angle 50, this solution is equivalent to the so-
lution for the flow in a circular sector with angle 60 and radius ;o' The flow

in the circular sector with constant vorticity would be described approximately

as follows:

2 — -—
b*(x, 68 )= [’-2— (8 - 8% 902 +xr, e)] + 0(93)

2 2
ar2 r dr r2 352

xl(r,O) = xl(r,l ) =0

X168 = K6 - 6%

and xl(r, 8) would be obtained by using the method of separation of variables.

The solution is

[(2n+1)1r/§o]

(2n+1)3

=2
b =8

r

2 9 4 © -3
;—(a -0)+ —3% sin(zn+1)78 | + O(8)

n
Since the contribution from the series terms diminishes as (1-r) grows and

since the powers of the nondimensional radius r(2n+1) W/% for (1-r) small may
-(2n+1)(1-r) 7/8,

be approximated by the exponential form e , the above solution

may be approximated by equation (IV-20) or vice versa.
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The differential equation and boundary conditions for x o can be ob-

tained from equations (IV-14) and (IV-13) and the solutions for xl(r‘, 6):

Xopere ¥ Xogg = X0 " XX g el
XAr%0) = x(r*1) = 0 (IV-22a,b)
(IV-22¢)

2
X2(0. 8) = -4(1-6 )xlr‘(o’ 6)
- La- ez)z —1— sin(2+1)7 6
T (2n+1)

In this problem a particular integral that accounts for the terms on the right-

hand side of the differential equation can be expressed in terms of the known

solution xl(r‘, 6). Let

_ P (c) -
Xy = Xy +Xy (IV-23a)
(p) (c) denote the particular integral and the complementary solu-

where x 2 and x 2

tion for equations (IV-21) and (IV-22) respectively. A particular solution is

given by

D= gty (1V-23b)
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Since x(zp) satisfies homogeneous boundary conditions, x(zc) satisfies the follow-
ing differential equation and boundary conditions:
(c) () _ -
Xopsps *Xogg = 0 (1Iv-24)
x(zc)(rf 8) = X(?C)(r‘. 1) =0 (IV25a, b)

x(zc)(o, 8) = lz (1 -GZ)Z ——-l—? sin(2n+1)70  (IV-25¢)
. (zn+1)

The other boundary condition is the condition that the solution must be bounded
asr*- o,

The boundary condition for x(zc)(r‘,O )atr* = 0 is expressed as the
product of a polynomial and an infinite sine series. This sine series is known
to converge uniformly in the region 0 € 8 < 1, because the coefficients are
O(l/nz) asn = «. Equations (IV-24) and (IV-25) can be solved by the method
of separation of variables provided that an appropriate Fourier series repre-
sentation of the boundary condition at r* = 0 can be obtained. Since the
boundary condition is epxressed by a uniformly convergent series which con-

verges fairly rapidly, only a small number of terms are needed to provide a

(c)

quite good approximation. If the sine series appearing in x 2

(0, 8) is approxi-
mated in this manner, a number of ways might be suggested to expand the

resulting expression in Fourier series. However, for a good fit with a small
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number of terms, with term-by-term differentiation permitted, a Fourier series
which converges rapidly is desirable. The procedure adopted here will provide

a series with coefficients which are O(l/n3) asn- o,

(c)

For the present purpose the boundary condition x2

(0, 6) may first

be approximated quite accurately by a fourth-degree polynomial in 8

(c) i n
x2 (0, 8) = . AnO

Its coefficients are determined by solving a set of five algebraic equations

n 2] =
g 1-(1)] 1 1n(2n+l)1r(j—)
) 1r2[ 4] %(2114-1)2 ’ 4
0,

J = I, ..., 4

The resulting approximated boundary condition may be written as

(c) _ 2 i 2 3 4
X2 (0,0) = ”2 [4.599 7.836” + 2.496 +0.759:|

which can be expressed by a Fourier sine series

(c) 4 | o 7.4 36
X, '(0,0) = — Z[ + ]sin(2n+l)1r9
2 12 { (2n+l)31r3 (2n+1)5 1r5

o[ 23.9
+Z[ 5. 3]sin2n1r6} (1V-26)
‘(2n7)
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Consequently the problem of equations (IV-24),(IV-25a,b) and(IV-26)

can be solved by the method of separation of variables. The soluticn is

)(r‘ 0) = 12 Z[( + e S)exp[-(2n+l)7r ;’]sm(2n+ 1)7 6
0 [(2n+l)1r] [(2n+1)7]
4 [/ 23.9\ :
+ =5 Z [( 3)exp [-2n1rr‘]] sin2nr @ (Iv-27)
(2n7)

Thus the solution for x 2(1". 8) is expressed by

7.4
o3 ik
[ 2 A2n+ 1) (2n+l)31r3

36

(2n+1)° 1°

2[( )dp (- 2n7 r‘]] st 27 e} (IV-28)
(2n n)

Because of the presence of terms involving sin2n r 6, ‘the gsolution xz(r‘, 8) is not

+ ) exp[-(2n+l):rj]sin(2n+l)1re

symmetric with respect to the line 6= 550 . The complete solution for the invis-

cid core flow may be written a4

] .2 » fexp[ -(2n+1)(1-r)n/8
Y, 0) = ej[g 6-0)+ % Z( °]>sin<2n+1)7r9].

& (2n+1)°

® 2
4 (1-r) 7.4
+8 44— +
°{ . %[( 224128 (2041)°

36
+ —-—-S—S)Cxp [(2n+1) (1 r)1r/9 ]]sln(2n+l)1r 6
(2n+1)

4 <[ 23.9
+ — exp[-2n(1 r)!/90+h2n1rO}0(-4)
n? Z[(amr) ) Vv-m)
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The velocity component in the 8 direction is

5 - = | _ © [exp [ (2n+1)(1-1)n/8 ]
g—'-g- =wr 6 | r(6?- 9)90+122[ 3 2 Jsin(2n+l)1r6
T 0 (2n+1)
+_‘_1_ i (1-r)r (l-r)21r + 7'490
1r2 i (2n+l)2 K%+lﬂ: (2n+l)2'n'2
368 _
+ 'ﬁ) exP['(Zn+l)(l-r)1r/GO] sin(2n+1) 7 6
(2n+1) =
@ 2399
_45 z )eXP['ﬁi(l-r)n/ao]sin nrTh
T ] (2n1r)
(IV-30)

The velocity component in the r direction is

v-u;.-
O’IO’

_ ) e):p[ -(2n+1)(1-1r)7/8 ]
=-ar;0 eo{ %(29 - 1)+ ;45 %i«[ ° Jcos(2n+l)1r9

2 7.48
11 _(-r)« o o
r 2(21'|+1)50 (2n+l)21r2

(2n+1)2

4

2
T

+

of~-18

368
+ —%) exp[-(2n+l)'(l-r)1r/60]] cos(2n+1)7 6

(2n+1) =

. 2 23.99‘0 ' _
== (—Z—)exp[-Zn(l-r)n/Oo] cos2nr @
] (2n 7)

(IV-31)
From the boundary condition specified by equatian (IV-15c) it has been shown

that the higher-order terms involve the radial derivatives of xl(r‘, 6), which are

- Bl e— Y



- 59

represented by infinite series. For reasons already mentioned these infinite -
series representations are approximated by polynomials in 8. If these polynom -
ial approximations are to be fairly accurate at every point, it is necessary to en-
sure that the original series be uniformly convergent. Since x 1r*r* evaluated at

r* = 0 has the following series expression

1
(2n+1)

.(0,8) = sin(2n+1) 7 8

xlr‘r

A
o~1s

then xlr,r,(o, 6) =1 0< 0 <1

but if 8 is set equal to zero or one, the series gives

xlr.r.(O.O) = xlr.r.(o. 1) =0

Obviously the series expansion of xlr,r,(o, 0) does nof converge uniformly at

@ = 0and @ = 1. For the third or higher order radial derivatives of Xy the
resulting series expressions evaluated at r* = 0 areno longer convergent series.
Therefore the approximate polynomial representation of the boundary condition

can only be applied to xlr,(O, 0) with sufficient accuracy.

o

e

R,
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BASE BOUNDARY LAYER
1. Formulation

As the wake Reynolds numter approaches infinity, for a first approxi-
mation the recirculation region can be divided into the inviscid corc flow and the
viscous -layer flow. Since the wake Mach number is small, the recirculating
flow may be regarded as incompressible. The inviscid core flow has already
been studied in (IV). The viscous layers cnclosing the inviscid core flow form
a thin continuous layer for large Rcynolds number. In order to obtain an approxi-
mate solution, it is necessary to hreak up this continuous layer into separate
" sections which may be solved approximately. These sections are the shear lay-
er which separates the extcrnal flow from the recirculating flow; the base bound-
ary layer along the base of the wedge; and, as mentioned by Batchelorzs, the
viscous layer along the wake center line between the upper recirculating flow and
the lower recirculating flow (which will not be studied here).

In studying the base boundary layer near the wake center line, the velo-
city distribution of the flow impinging on the base may be approximated by the
velocity of the inviscid core flow, because as the Reynolds number grows the vis-
cous layer along the wake center line becomes thinner, and because the velocity
gradient across this layer decreases as the fluid moves toward the base. In the

vicinity of the stagnation point at the center of the base, the velocity components

- 60 -
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parallel and perpendicular to the base for the inviscid core flow are linear func-
tions of the distance from the wake center line and the distance from the base of
the wedge respectively. This type of flow is therefore a two-dimensional stag-

nation-point flow for which the soluticn is known33' 34

. The pressure in the in-
viscid core flow is given by the Bernoulli's equation for rotational flow. For the
stagnation -point viscous-layer flow the component of the momentum equation in
the direction parallel to the base is independent of the component normal to the
base, and is the same as the boundary-layer equation for incompressible flow.
Since the base is flat and the boundary-layer assumptions are satisfied in the
viscous layer everywhere along the base except very near the stagnation pointor
the point of separation just below the corner, the governing differential equations

for this layer are identical to the flat-plate boundary-layer equations for incom -

pressible flow:

U . av

S iy i (V-1
- - da -

=3U ., =3U _ - " -23U )

) SR G T G V-2

where G, V are velocity components parallel and perpendicular to the base re-
spectively; T(, Y are the coordinates parallel and perpendicular to the base, and
are measured from the wake center line and the base of the wedge respectively;

and ab is the velocity in the inviscid core flow evaluated at the base. Because

.
T R T AL Y g
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the no-slip condition must be satisfied at the base, and the flow velocity at the

outer edge of the viscous layer approaches the inviscid-flow velocity evaluated

at the base, the boundary conditions can be written as

U=V=0 atY = 0

U

"
]
)

at the outer edge of viscous layer
(V-3)
This system of geverning differential equations for a plane, incom-
pressible, laminar boundary layer may be transformed by introducing the appr.o-

priate form of the Dorodnitsyn variablesas’ ;

l — — ——
X = -—r dX ; Y = t—— Y
qr rJ.O 2 rqr 2
T v o1 %% _g -
U== ; W= =+ = Y = Re
£ (frg RTE)m
One then obtains
U AW
A oY _ 0 A
3 + > (V-4)
u:—0+w2;H x —(1 L12)+ai (V-5)
9, aY?
dqb

where c';b =X The boundary conditions are transformed to
U=w=20 atY = 0

u- 1 asY » o
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Hence in the Dorodnitsyn variables the boundary conditions are normalized.
The method of integral relations35 is employed to solve the system of
transformed boundary-layer equations. This method converts the system of
partial differential equations into a system of ordinary differential equations and
permits the use of well-developed numerical methods of solution of ordinary

differential equations. In order to apply the method of integral relations, the

system of partial differention equations is integrated across the layer, after
multiplication by appropriate weighting functions. Hence the partial derivatives
with respect to one variable are eliminated, and in the resulting ordinary differ -
ential equations there appear only integrals of functions of the dependent variables.

~ These functions are approximated by suitable interpolation formulas.

2. Integral Relations

UE—

To obtain the integrai relations for the system.of transforrmed equations35

equation (V-4) is multiplied by a weighting function F(U) which aprroaches zero

et g e i

sufficiently rapidly as Y = e« , equation (V-5) is multiplied by %l , and the

resulting equations are added: i

q
3 % drU) dr) 3%
a_x[UF(U)] + T[WF(U)] v AU e U .2

3Y
(V-6)

After integrating the above equation with respect to Y from O to «, one obtains

the integral relation
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-
q
dr SO 4EW) 3U
dX.]oUF(U)dY I “U) 3Y |Y=0
a2 F©) 2
j (aY) dy (V-7)
This equation is rewritten in terms of the quantities
-1 -1
- (28U - (Y -
9-<aY> and 90-<a ) \Y=0 (V-8)

Changing the variable of integration from Y to U then gives

l -
d %, F(U 1 dF(U)
£ | eUFrU)dU = =2 1-U )dU
ax .[0 % j ( 8, ‘U 0
1 2
.1 dFU .
I = du (V-9)

0 du

It is clear that © approaches infinity as U = 1. From the Blasius solution for a
flat-plate boundary layer with no pressure gradient, evaluated as the similarity
variable approaches infinity34, one obtains a singularity of the form27

-4

-1
I -1% LT - - e
0 = ( Y) ,constant(l_U)l: log (1 U)] as 'Y

o

In most previous applications of the method, this form is simplified by omitting
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the logarithmic factor and so, for U = 1, 8 is approximated by
-1
e = O[(1-U) "] asU~- 1

If the same behavior tw assumed in the present case, then an obvious simple

choice for the weighting functions is
= (1-u\ .
FK,I(U) = (1-U) (V-10)

As in other applications, the functions © and 1/6 in the Kth approximation are
represented by the following expressions

! K-1 .
S = gy Pt AU+ - +ALLUD) (V-11)

ol - (1-U)By+B, U + ... + B U~ ) (V-12)

The coefficients A, A., ...; B, B, ... are functions of X and are related by

0 1 0 1
the condition that for

=U. = 4
U=U;= §

where ] =0,1, 2, . .., K -1, the representation of © and e-l should be con-

sistent:

T
g
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(ag+ AIUJ+...+AK_1U;<'1) = (By*+B, U+ +B U

-1
When K = 1 the approximate expressions for © and © ~ are

6.(X)
0 -1 -1
0 = ﬁ . o = 60 (X)(I-U) (V'14)
if
2
dF (V) d”F (U)
FI(U) = (1-U) , - - -1, '—dUz— =0 (V-15)

then equation (V-9) becomes

1 q .l
d b 1
= Ue.dU = -— | (1+U)6,dU + —
dX JO 0 9 jO 0 60

The resulting approximate differential equation is

de q
0. .5 2
dx+3qb60--eo (V-16)
which may be integrated directly. The solution can be written as
X 3
2 6
o 3[[ wex]
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Substituting equations (V-14) and (V-17) into equation (V-8) and rearranging,

one obtains

% -
% awg (o[ el

Integrating the above equation with respect to Y for fixed X, there results

U=1-exp{ - X 6 3 (V-19)
ax
{29

From the solution of the inviscid core flow the velocity component in

= d
_the 8 direction is a—? and is given by equation (IV-30). In nondimensional form

it can be written as:

xp [ -(2n+l)(l-r)7r/5o ]I
sin(2n+1)7 6

®le
L 3 55 6%-0)+ —85 Z[
q, ° r

or (z:+1)2

, 8 8j{nr (1-r)% . 749,
2 Al (e X2DE, T 52,2
368 _ :
+ 7 a2 |exel-(+)(1-1)7/6 ] sin(2n+1) 7 6
(2n+1) =
8"” 23.960 _
+—2E 2 exp [ -2n(1-r)n/0 ]| sin2nw O
0 .
T 1ll(2n7)

(V-20)
The velocity of the inviscid core flow along the base can be evaluated by setting
r =1- 602(1 -92)/2, and is given by the expression

\?

G . AR = a s T )



- 2 8 - 1 i
q, = 290(6 -8)+ 7r—2 % 2J sin(Zn+1)7 0

(2n+1)
5 \g[ 7.48 365o "8 ]
s 2 + ] sin(2n+1) 7 6
= Slompled  (Gunyer 2ewl
I 23.98 .
% 2[ ]sin2n1r9 (V-21)
T (2117r)

For 50 sufficiently small, X can be approximated by ;o 8. Since also ;o 60 & I_“r'

)

e kol

<
"
o P

rqd<
0 b r

J

]

‘[0 9,48

(V-22)

Since 50 is small, vﬂ;o -r. Then

) Rer _
TR ah

v Re
r
= g 1"
(o)

(V=23)

From equations (V-19) through (V-23), the solution for U can be written as:

| v Re 6
U=1-exp [ = —FE (1-r) qg [‘[0 qg dG]-i (V-24)
)
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-1
When K = 2 the approximate expressions for © and © ~ are

ey U) [6(1 2U) + © U:\ (V-25a)

- (1-0)[%(1-2U)+ é_ 40]

] (V-25b)
If
2
dFl(U) d FI(U)
F = (1-U), o L (V-26a)
1 au e
, EU) d2F2(U)
F2 = (1-U)7, U C -1-U), 2 =22 (V-26b)
du
then equation (V-9) becomes
d 1
= Iou[eo(l-zu)+ elU]dU
4, .1 1
JEL: j (1+U) [90(1-20) +6U ] W+g  (V-2))
o
N
= ‘[o U(1-U) [90(1-20) +eu :| du
2
- qb j (1-U )[e (1-20) + € U | U
2 1-20  4U
+ = -2 (1-U)| =—=— + — |du (V-28)
Lo fan [, )

B

'_,J'.
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The resulting approximate system of differential equations is

de q
0 b 34 32
x - % © 90 + 791)+ 30 el (V-29)
de q
1 b 20 16
& 3 Ut 5 (V-30)

Since 9 and db can be obtained from the solution for the inviscid core flow
evaluated at the base of the wedge, the above systems of ordinary differential
equations can be integrated numerically to give GO(X) and el(X), provided that

the initial conditions can be obtained. Since the first of equations (V-25) can

be rewritten as

ay = [ (e, - 290)(%J )+ X (ilT)] du (V-31)

then for X fixed the above equation can be integrated to give
Y = -(91 -eo)fn(l-U) -(9l = 290)U (V-32)

In order to provide initial conditions for the systems of approximate
equations, it is necessary to examine the behavior of these equations near the
wake center line. For 8 sufficiently small the velocity of the inviscid core flow

along the base, given by equation (V-21), possesses a power -series expansion in
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8 and has the following form:

2
q = Cle + C29 + ...
= Cle for 8 very small
Hence from equation (V-22)

X = & qb ./2c (v-33)
<ib 1

— ¥ - for 6 very small (V-34)
qy 2X

For this value of c'lb/qb, the approximate system of differential equations, which
possesses a singularity at X = 0, can be shown to yield an exact solution of the

form
o - DIJY for X <« 1 (V-35)

The constants DI are determined by the solutions of the algebraic equations which

are obtained by substituting equation (V-35) into the original approximate system

of differential equations. For K = [, then
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90 = DOJx
D0 = 1; eo = /X for X < 1 (v-36)

ForK = 2, then

0 0 1
68 64

10D, + D, = = - = (V-37)
0 1
40 32

4Dy + 7D, = b_o - 31 (V-38)

Solving the above system of algebraic equations, one obtains

1.147 Dl = 1.822

O
n

1.147/X ; © = 1.822 /X far X<<1 (V-39)

(¢)
n

The solution given by equation (V-39) provides the initial values for the quantities

60 and 61, if evaluated at very small X. Numerical integration of the systems

of ordinary differential equations can now be carried out.
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LAMINAR FREE SHEAR LAYER
1. General Description and Formulation

The simplified model of the shear-layer flow, which retains the main
physical features of the exact flow, is described here. The inviscid supersonic
flow expands at.the trailing edge of the wedge through a centered Prandtl -Meyer
expansion fan to the base pressure. The boundary-layer flow along the wedge
surface separates at the trailing edge of the wedge and expands isentropically
to the base pressure in a very short distance. Subsequently it mixes under
nearly constant pressure with therelatively low-speed recirculating flow. The

"expanded boundary-layer velocity profile forms the upper part of the initial velo-
city profile of the shear layer. The remaining part of the initial velocity profile
is given approximately by the similarity profile obtained by assuming a mixing
between a uniform stream, with velocity equal to the velocity at the inner edge
of the expanded boundary layer, and a stagnant region. The velocity in this
portion of the profile is evaluated at a very small distance from the trailing edge
of the wedge. Near the dividing streamline, which separates the recirculating
flow from the expanded boundary layer, the velocity gradient is considerably
larger than the velocity gradient in the remaining part of the profile, over the
entire length of the shear layer. The thickness of the shear layer is of higher
order than ;o' and the curvature of the dividing streamline is small except near
the stagnation points.

S Ok

. 1.
o I.‘l Jf
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From the description of the simplified shear -layer model, the ref. -
tive orders of magnitude of individual terms in the Navier -Stokes equations are
estimated in the same manner as in the derivation of the boundary-layer equa-
tions. For the two-dimensional case the resulting di.ierential equations are

identical to the flat-plate boundary-layer equations with pressure gradient:

Bor 939% =0 (VI-1)
——du —-3du _ dp 3 (=3u ]
pU ST t PV " d:?+3§(pa?) (V1-2)
Y ay - Yax Tag\“3y )T H a7

where x is measured along the dividing streamline and ; is measured normal to

the dividing streamline. The dividing streamline is reaily slightly curved, but

the curvature affects only the higher approximations to the equations for the

mixing region. To simplify the problem further, it is assumed that EE is con-
c M

stant across the shear layer and Pr = -&— is equal to unity. The stream

function ¥ is defined in the usual manner by

o

—— = —_ -
pu'=pe_3§ pv='oea

<l
el

and a modified Howarth transformation34 is introduced as follows:
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'.5'=-_£':F=”F ;:—E—'
p L T-l __2'
e e pu
e e
- .} _
g S Y
(uero) Ug y
- x N Rez ;~ _
X :rr-' y:T pdy
o o O

[
=yl

(4]

e

When this transformation is applied to equations (VI-1), (VI-2) and (VI-3),

there results a system of equations similar in form to the incompressible

boundary-layer equations:

3u |, 3y
2 Tayg =0
~d .~ 14p W
¥X Ay P d¥ 3;2
St v = —7 +| 5= + Zu
? Yy 3;2 3? 3’
Assumingthatﬁ =
is
ST
h =H-—2'

which reduces equation (VI-6) to (VI-5).

(VI-4)

(V1-5)

(VI-6)

constant in the initial profile, a solution of equation (VI-6)

(V1I-7)

This result implies that the energy

e & Eo o
T 3 rw " =
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equation is automatically satisfied once the momentum equation is satified.

The density in the shear layer can be written as:

Since Ee has been defined as the pressure iminediately after the corner expan-
sion has been completed, the Bernoulli equation for the boundary 6 = 60 of the

inviscid core flow can be written as

e
or _
e B 5 ~ ql 2
p = 2 g/ 9%
yMe e

where q is the nondimensional velocity of the inviscid core flow evaluated at

0 = 60 . Hence the density in the shear layer can be rewritten as

(v-

The momentum equation (VI-5) is therefore independent of the energy equation

(VI-6).

An integral method of the !(z'n'mzin-f’ohlhausen3 4 type is applied to

analyze the shear layer, because it is simple and permits the treatment of the
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case when the shear layer is not thin and has non-zero inner -edge velocity.
This method involves approximation by polynomials with undetermined coeffi-
cients for the vclocity profiles. The boundary conditions, continuity conditions,
integrals of the momentum equation, momentum equation along the dividing
streamline, and momentum equation along the inner edge of the outer shear
layer yield a sufficient number of conditions for the complete determination of

the profile coefficients and thicknesses.
2. Velocity Profile

The shear layer will be divided into an outer shear layer and a shear
sublayer. The outer shear layer is the portion of the shear layer where the
kinetic energy of the fluid is large and the velocity gradient is not too large.
The initial velocity profile is determined by the boundary-layer velocity pro-
file after the corner expansion. This portion of the shear layer grows into the
inviscid high-speed outer flow, and flows downstream of the rear stagnation
point to consitute a part of the far wake. The shear sublayer i:.' the portion
of the shear layer with larger velocity gradient, in the vicinity of the dividing
streamline. The sublayer flow above the dividing streamline diffuses into the
outer shear layer and flows downstream of the rear stagnation point forming a
part of the far wake. The sublayer flow below the dividing streamline grows in-
to the relatively low-speed inviscid recirculating flow, and in the vicinity of the
rear stagnation point it turns back towaird the base of the wedge. The initial

velocity profile for the shear sublayer is given by the similarity profile resulting
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from the mixing of a uniform flow with fluid at rest.

Obviously the velocity profile has different character in the different
parts of the shear layer and the dominant factors influencing the change of veloc-
ity profile are not the same. Hence it is difficult to describe the shear-layer
velocity profile as a whole by a single expression. In the study of mixing be-
tween a separated boundary-layer flow and a fluid at rest, Kubota and Dewey36
represent the shear -layer velocity profile by two polynomials, one used above
and one below the dividing streamline, because the initial velocity profile is
noticeably different from the subsequent profiles. Similarly the shear layer
discussed here will be divided into three layers, two above and one below the
~ dividing streamline. They are theouter shear layer, theupper shear sublayer,
and the lower shear sublayer. Each layer is represented by a polynomial with
undetermined coefficients as functions of the coordinate measured along the
dividing streamline.

Since the velocity profile for the shear -layer flow always possesses an
inflection point, a polynomial of at least third degree must be employed to repre-
sent the portion of the velocity profile where the inflection point is most likely to
occur37. It is known that there is no point of inflection in the initial velocity pro-
file for the outer shear layer. Since the small pressure variation induced by the
recirculating flow and the relatively small viscous force have little effect on the
outer shear layer flow where the kinetic energy is very large, the point of in-

flection will occur in the shear sublayer.
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For simplicity the outer shear layer may be approximately represented ,

by a second-degree polynomial. To achieve sufficient accuracy where the veloc-
ity gradients are large, the shear sublayers are represented by fourth-degree

polynomials. The velocity profile for the outer shear layer is expressed as

T o= 3 = ag+ al'g + a22'2 (VI-9)

where 2 = g» - ?0 and (] is the thickness of the outer shear layer. It is con-
venient to introduce the quantity CO because of the small displacement effect of 4
the shear sublayer. It will be shown in section 5 that 20 should be taken to equal

3(" /3, where is the displacement thickness of the upper shear sublayer

+) %)

measured in terms of the y coordinate. The upper shear sublayer is repre-

sented by

o d

o~ n
o) ~ g(+)(2((+)) ) an %) SRR

where § = %— and &, . is the thickness of the upper shear sublayer. The
ORI R €

lower shear sublayer is represented by

70 = & (%) - %% % (VI-1D

where §, | = % and 8 . is the thickness of the lower shear sublayer.
(-) ) (-)

‘;':?_:.f
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The profile coefficients ag, a;. a,, bO’ bl' b2, b3, b4, o' 1 Cy c3.
Cyr and the layer thicknesses 3, 3(+), 5( 3 are all functions of x . They are

determined by the boundary conditions at the inner and outer edges of the shear
layer, the continuity conditions between the layers, and appropriate differential
equations.

Since at the outer and inner edges of the shear layer the velocity must
be continuous and the first derivative of velocity with respect to ;; must be zero

(in the approximation of boundary-layer theory), the boundary conditions are

g() = 1 (VI-12a)

a~

a—év(l) - 0 (VI-12b)
and the boundary conditions at ; = - 'q_) are

g (-1) = <_— = (VI-13a)
() u, /\ &0

g _
_tL)B (-1) = 0 (VI-13b)

In order to have a smoother fit at the inner edge of the shear layer the second
derivative of the velocity with respect to ; is also required to be zero. Hence

an additional boundary condition at ;; =8 ) is

(-

o e i e e



- 81 -

2~
78

BC(_)

=0 (VI-13c)

For a reasonably smooth fit between the layers, the velocity and its first and

second derivatives with respect to y must be continuous. The continuity con-

ditions at ; = Oare
g(+)(0) = g(_)(O) (VI-14a)
SAYS
(0) = (0) (VI-14b)
Tty ! 2%
2~ 2~ !
3¢ T \\2 2%
—E—‘;—’ 0) = ( = ) — (o) (VI-14c)
) SRS ,

It does not seem evident whether or not the shear sublayer will remain
negligibly thin compared with the outer shear layer for the entire length of the
shear layer. Therefore the conditions at the outer edge of the sublayer are not
imposed at E = 0 but at a presumably rather small positive value of E . As
will be shown later, through the requirement of equalization in pressure across
the shear layer to order Rej, the dividing streamline must be displaced rela-
tive to the outer shear layer by an amount equal to the displacement thickness

of the upper shear sublayer. Therefore the matching point between the upper

shear sublayer and the outer shear layer is not at ? = —g-) but at 2' = K -%t—) ,

et

L. ,)." ret-rmtne
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where
~¢
6(+)

S

As noted previously, the coordinate '; is measured from the dividing stream -

line but C is defined by T - * . It will be shown in section 5 that C
~¢
can be related to « byz _SL)(I-K) -'%'
Since the inner edge of the outer shear layer is not really at ')7 = 0and

the upper shear sublayer is assumed rather thin, Taylor expansions about
y = O for the outer shear layer may be used to provide approximate conditions
at the matching#point. Therefore the continuity conditions between the upper

shear sublayer and the outer shear layer can be approximated by

~ 841 ) 23
By = @(0)[8(0“ * ('éﬁ>%§"°’] SR

3g, 3' (] Yo
?

w0 ol #) o () o

(VI-15b)
p ~
g (6 ) 2~
(+) 1L 4) |2e
—2 (1) = = (0) (VI-15c)
27, LA [BTZ ]

From the assumed form of the velocity profile given in this section, it is
clear that an essential feature of the shear -layer analysis adopted here is the

division of the shear layer into three parts. Since separate quartic profiles are




e il dae- il

- 83 -
used to represent the velocity profiles in the upper and lower shear sublayer,
and a quadratic profile is employed to express the outer shear layer, there
are altogether sixteen unknown profile coefficients and thicknesses. The boun-
dary and continuity conditions supply eleven relations among them. However,
since the total number of relations must be equal to the number of unknown
quantities appearing in the shear-layer velocity profile, five more relations

are needed so that the velocity profile may be determined uniquely.
3. Momentum Integral Method

An integral method of the KAirmé4n-Pohlhausen type is employed to furnish

some of the remaining relations required for determining the unknown coefrici -

-ents in the assumed representations for the velocity profile. Three relations

may beobtained by taking the zeroth moment of the momentum equation for each
of the three layers, i.e., by integrating the momentum equation over the thick-
ness of each of the three layers.
In the derivation of an integral condition for the o.ter shear layer y is
. - TE ey d
temporarily replaced by y + CO and v is replaced by v + u o0& When
expressed in these transformed variables, equation (VI-5) has the same form

~

as before, and is to be integrated from O to 0 :

Jo(u ux)dy +I0(\7 u;;)dy T _[0 gdy + »[O(UVV)dy

(VI-16)

At the inner edge of the outer shear layer the new v component of velocity is

. — = T B I i
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very small, as shown in section 5, and is assumed to be zero. Then integra-

tion by parts, by using equation (VI-4), gives the following result:

~

g ~ 3’ 2 ~
~ 3\~ au ) .~ ~3u ).~ ]
I()(v a?)dy = -jo( a,’?>dy " I0<u = )dy (VI-17)

P a1~ a’Jr
Jo(u “u)~ dy = -dYIOEdy+a—,§’, 0 (VI-18)

From equations (VI-9), (VI-12b) and (VI-18) the zeroth moment of the momentum

equation for the outer shear layer can be written as
-‘1{3'}1 (27 -’“]d‘f} . L2 97 Xl La¥ (vi-19)
ax 1" J L& "8 R A 0P

By using equation (VI-8), ; = E(;)- and the Bernoulli's equation for the boundary

8 = 60 of the inviscid core flow, equation (VI-19) is reduced to

© AL - o

2 s 2
y-H)M q —=6 __ ~
| = | LF e o
1-2qus 0

For the upper shear sublayer, equation (VI-5) is integrated from O to 3’(

+)
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3’(+)~~ e 32+ -
‘[o (uu;)dy +j0 (vu;)dy
_ .dp W1 s ?") Ten) dv -21
I% ‘[o 5dY+\[0 (uyy)dy (Vi-21)

~

where ;; and v are again measured relative to the dividing streamline. Since
V=0 along the dividing streamline, integration by parts, using equation (VI-4),

gives the result

where ?;u is the_veloc'ity at the outer edge of the upper shear sublayer. Substi-
tuting equations (VI-8) and (VI-22) into equation (VI-21) and using Bernoulli's
equation as before, then

~

([ ~ (0
+Hr,~2_ =~ = = du | (+)
LS -SR-S 25
w-DMiq 3% |
nt dX [ @ -13H 67 (VI-23)
1-Lm? g2 0
2vr s

which may be rewritten as

o ([ L % (2
O LIEV] ()] bayy L9k e, &
]o {KE(_O))]; 20) 0)~}der o) a¥ [2(3"(0

> s

A
o

———



~

(S| A
R0\ F0/ ] T Fo 3V FD/ |,
q
+ [ (M r3x s 13'“)[__’;,_ _%(_—5)2] "
1-§qu: 0o [E40) %0

(VI-24)
As implied by the definition (VI-9), E(O) represents the approximate velocity
profile for the outer shear leyer evaluated at T - % = 0, and is a function of
X . From equations (VI-9), (VI-10), and(VI-24) and through t"e application of

the Leibnitz rule, the zeroth moment of the momentum equation for the upper

shear sublayer can be written as

’ _ d l~ \
(6(+).[ g (+)d (+)> ’g(+)“)d_'f(g(+).[0g(+)dz(+)/

| 3g,
1 dgo\ 1
< qO) a% (+)I [25%) - g<+)“)g<+)]d AN A TR AN
0
+ 1M l | [~2 M:\dt (VI-25)

For the lower shear sublayer, equation (VI-S) is integrated {rom -3'( 3

to O:

0 0
J~(UU~)dy+J (T ~)dy
-8 -3
(-) (-)
Q'E 0 1 ~ r ~ ~ .y
gl s e
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Again since V=0 along the dividing streamline, the integration by parts, by

using equation (VI-4), gives the following result:

u 0 .~ 0 ~
LS - (2 B[ (5 L)
” * 6(-) (VI-27)

o |

Substituting equations (VI-8) and (VI-27) into equation (VI-26) and using Bernoulli's

equation as before,

= e
(-) , 9
0 (y-1) M q == 0
= aTli ¥ * FR [ (H - %?;2) dy
? = -) 1 - %quz _3-'(-)
rs (VI-28)

1 dg) [° R ALY A v ~
20 50 [ [2() (2Xas) (3o 5
2 dq(s-)
SN
1 &\ |°
(70); v(at_m)l?f(_) V)

From equations (VI-9), (VI-11), (VI-13a,b) and (VI-29) and through the applica-

s O Al .
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tion of the Leibnitz rule, the zeroth moment of the momentum equation for the

lower shear sublayer can be written as

0
d [+ r d
d‘:‘((“(-)J g() ng) ax ()jr B9 ))
1 a5 [° [.~2 qr) ) ] }
T ['ﬁ» & 61-)[_1 .2g<->'(6_ (?;(0) g
dg_ .
2 S
L (Y'l)Mr qs rFa ) 0(i n Ez ) d‘z
1 -2 g J\3%o 2 O/ O
2 )lo i
¥ (g(om(_) 3¢, ) | (VI-30)

Each of the preceding integral conditions requires an overall momentum
balance in one of the three parts of the shear layer. Two more conditions are
obtained by requiring that the momentum equation also be satisfied at particular
locations in the shear layer. Along the dividing streamline the momentum equa-

tion (VI-S), with T;(;, ;;) replaced by E(O)E(+)(O) according to equation (VI-10)

becomes~
(Lg(_tﬁz s (0)( _gjg)) ( 1 ) 3g(+)()
dx (+) g0) do¥ E(_H(O)E(O)g( BZ(2+)
2 dqs
(y-DM qu H 1~2 © ) ot
. L 1320 rs
' (VI-31)
The flow along the inner edge E = 0 of the outer shear layer is also required

to satisfy the momentum equation. Then from equation (VI-5) and (VI-9) one
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obtains 9 dq
S
dg(0) 1 %% (y-DUM 9, 57 ~ | ~2 1
= —— 2L+ H - 4g (0)
d¥ 08?2 272 1 -Ym242 0)
g r 9 (VI-32)

In addition to the eleven relations already obtained from the boundary
and continuity conditions, the ordinary differential equations (VI-20), (VI-25),
(VI-30), (VI-31) and (VI-32) are used to supply the required independent rela-
'tions for the complete determination of the velocity profile in the shear layer.

However, it is also necessary to provide the initial velocity profile in the shear

layer.
4. Trailing-edge Expansion and Initial Development of Shear Layer

The expansion process at the trailing edge of the wedge is assumed isen-
tropic and the total enthalpy is regarded as constant throughout *he boundary

layer. It can be shown that the velocity after corner expansion is

- - _ 3
- p \LL p ]Y_'l !'u
v = }2H 1-( °> Y ]+(_—°> \_—C)z ¢ (VI-33)
P, c

» pC

where fC is the Blasius solution for an incompressible flat-plate boundary layer
and the subscript c refers to the condition at the trailing edge of the wedge and
at the outer edge of the boundary layer.

If the length of the wedge surface is denoted by Ec' then the Blasius
similarity variable evaluated a very short distance upstream from the trailing

edge of the wedge may be represented by




G -
_ C p - ’ -
dnc = 2—-—t—vC i ( 5C> dyC (VI-34)

where Y. is the y coordinate before the expansion, just upstream from the trail-

ing edge of the wedge. Since there is no pressure gradient across the boundary

~2
layer, andH = 1 + u? the relation between ;C and nc is
= 2;c Lc 1|~ Gc 2 2
—-— - — ' -
dyc— = [H %(G ) fc dnc (V1-35)
c c e

where fé = fé(nc). Since the totdl mass in the boundary layer immediately
before and after the corner expansion must remain the same, the relation be -

tween y and is
Ye nc

(VI-36)

where ;e is the )_r coordinate measured from the dividing streamline after the
expansion a very short distance downstream from the trailing edge of the wedge.

Hence the relation between the transformed coordinate and the similarity vari-

able is

ZRee % I?c 5c ;c fé
o] <R ) T AT )T I S
C (o] € e

where ReC = \TC Ec/vc. From equations (VI-33) and (VI-37) the velocity profile



-9] -

after the trailing-edge expansion may be obtained in transformed coordinates.
The boundary-layer flow immediately after the trailing-edge expansion
mixes with the flow below the dividing streamline which is virtually stagnant
when X is very small, i.e., very close to the wedge base. Hence the govern-
ing differential equation is the same as equation (VI-5), except that no pressure -

gradient term is present, and can be written in terms of the stream function as

LI S VO ) (V1-38)
dY 3X3Y X 3;2 3;3

For the outer shear layer the stream function is
b = y(y)

. ) n
~y ~ - K
where lbo( y) 2an(0) ( K(LO)) . Then aO(O), al(O), a2(0) and 0(0) are obtained
by fitting a polynomial to the velocity profile after the corner expansion. For
the flow near the dividing streamline the viscous stresses are very large and
the flow is described approximately as the mixing of a uniform flow with fluid

at rest. Hence it is assumed that the solution has the approximate form

T ~ Jal0x f(n (VI-39)
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ao(D) .

The solution is obtained from the following differential equation and boundary

conditions
teri ¢ _ .
f0 + fofo =0 (VI-41)
/ 4

Therefore for a fixed small positive ; and for ﬁ 2 0,

E(+)( zv(+)) = fo() R
Similarly for 4 < O,

% (%) = o™ bR,

Initial values are provided for the profile parameters of the upper and lower

shear sublayer by fitting polynomials to the upper and lower parts of f(')(n ).
S. The Location of Dividing Streamline

Since the velocity in the inviscid core flow is not exactly zero, the pres-
sure is not exactly constant, and therefore the shear layer is not exactly straight.
In a first approximation the curvature of the shear layer will be such that the
pressure in the external flow balances the pressure in the recirculating flow.

The velocity in the inviscid core flow is %— = O(Mr) and so the nondimensional
‘ e
shear -layer curvature is O(Mrz). If the pressure gradient is known from the

solution of (IV), the shear -layer curvature can be calculated to this order.
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The pressure variation across the shear layer must be zero not cily to
order M: but also to higher order in Reynolds number. Lock38, in his study
of the mixing of parallel streams, notes that the dividing streamline is not nec -
essarily straight. Ting39 shows that for the mixing of a uniform supersonic
stream with a parallel uniform subsonic stream the dividing streamline is dis-
placed toward the subsonic portion of the flow by an amount equal to the dis -
placement thickness of the viscous layer above the dividing streamline, so that
the pressure is kept the same across the mixing layer up to an appropriate or-
der of magnitude. The location of the dividing streamline is important in the
study of the shear layer in the wake, because it has an influence on the shear-
stress distribution and velocity distribution.
| Since the velocity distribution in the outer shear layer and in the recir-
culating flow is very complex, it seems necessary to retain the approximation
that Mr is small. It isassumed that the outer shear layér may be approximated
by a uniform shear flow at supersonic speed

u=uu+ﬁy

where § is the vorticity and is a constant. This approximation is consistent
with previous assumptions, since only the portion of the outer shear layer near
; = 0 needs to be correctly represented here. The recirculating flow is assum -

ed to have zero velocity. Since the recirculating flow will actually have velo -



-94-

city u_u_ = O(Mr)' then ;—) = ;e (1+ O(Ms) } in the recirculation region, and

e
the velncity at the inner edge of the outer shear layer will actually be

a4 = Gu 1+ O(Mg) ] . The nondimensional variables for the uniform shear

flow are defined as

X
==, 9=

r r

o (o]

— - - o1
i~ Q ~ u ~n v N 0
) === ;u= = ;% ==; N==

ur u u u

uo u u u

The nondimensional variables for the recirculating flow are defined as

- /Re u
t .22 t =V y £ -
x r 7 roy,Re ueRee

(@]
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Following the same procedure as for the mixing of two parallel streams

given by Ting39

vt~ ¢v‘[+ ¢2vg + ...

where € = Re

2
= O(Mr ).

A A
P~ $0+ ewl+

1~ 00+ ¢01+...

O~ €% + €% + ...

1 2

€
~ €
-sz p()+ pl+
puu

2
pt ~ @l Pt 4

ut ~ ua +¢uif + ...

PP

P Y
-4

u

=]
u

, the flow variables may be expanded as

~ p6+ ¢p11'+

v

g

(VI-45)

(VI-46)

(VIi-47)

) Eu is the density of the uniform shear flow, and Py = po(x)

e TP
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Substituting equation (VI-47) into the Navier -Stokes equations and collect-
ing coefficients of like powers of € gives the following form for the yt com-

ponent of the momentum equation:

The matching conditions for the pressure at the outer and the inner edge of the

mixing layer give

ph(X, =) = 9,0

p](X. -=) = p,(x,0)
There results a compatibility condition |
B,R,0) = p,(x,0) (V1-48)

Equation (VI-48) states that the pressure difference across the mixing layer
should be O(€). This condition is used at a later stage for the determining of
the location of the dividing streamline relative to .he outer shear layer.

The nondimensional Navier -Stokes equations for incompressible flow may

be written as

9 . 2 V2, . 2 .
(zby v a,y)vw €V vy (VI-49)
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From equations (VI-45) and (VI-49) the following set of equations can be

obtained:
A d A ) 2 _ -
(""093_:’2 "’oﬁi})v'zo‘o (VI-50a)
A 3 ? 2 . A ? 2 _
("bog'? 22 $0ﬁa—§) v+ ($19 2 Vi a_o)v =0
(VI-50b)
‘Equation (50a) can be reduced to
V2$0 = ﬁl = constant (VI-5la)
|
Since the following boundary conditions must be satisfied
A
{L)\O(Q,Q) =9+ }N;r\z upstream (VI-S1b) .
3 2.0 = 0 (VI-51c)
the solution is
A A Na2
Bx 9 = §+ 39 (VI-52)

As noted previously, terms O(M: ) in the coefficient of 9 have been neglected.

Substituting equation (VI-46) into equation (VI-49), there results a set of
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differential cquations

v gy = 0 (VI-52a)

[+ 2 ) 2 - D\ 2, _
Loy o wo,(ay)vwﬁ(wlyax Uiy o )vam 0

(VI-53b)
Since -%— = O(Mr) in the recirculation region, equation (VI-531) can be written
e

as

vy, = O(M) (VI-54a)

0 r

Since

Yox.0) = 0 (VI-54b)
:n the present approximation the solution will be estimated as:

’bo(x,y) = O(Mr) (VI-55)

Substituting equation (VI-47) into equation (VI-49), there results a set of

differential equations

2
st (Ul ytytyt H 00t Slpryr “ 0l 0ty ) = O

(V1-56a)

2
t b :
S (O oyt yryt F 0Tt ¥ yr - 810 Wy

t : - :
a8t W Mg ) = 0 (VDRI
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The matching conditionasyt = « andy = 0is

bl ct ) = gy (x,0)

The matching condition as yt = - ® and y~ O is

w‘rlyf (xt, - ®) = woy(x,O) =0

Hence the following asymptotic relations are obtained

Bt yh ~ @00 + otyt) asyt - o
(VI-57a)

wfl(xf,y‘f) ~ ofyt) asyt = -o
(VI-57b)

By using equation (VI-57), equation (VI-56a) can be reduced to

A A
w‘rlyf ytyt y ‘bfle w‘rlyf yt ) wflyf w‘rley‘f o -wOQ(Q'O)wO)}fr(Q'O)
(V1-58)

Since zbo(x, y) is a function of y alone, equation (VI-58) can be reduced to

Dligtytyt ¥ ¥t Vigryr TP e ¥Te g
(V1-59)
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Two of the boundary conditions are
bl toe) =1 (VI-60a)
szlyf (xt, -®) = 0 (VI-60b)
Equations (VI-59) and (VI-60) have a solution of the form
ot = /BT ), nt = e

where f(n1) satisfies the differential equation and boundary conditions

£ + 18" =0 (VI-6la)
f'(e) = 1 (VI-61b)
f'(-®) = 0 (Vi-6lc)

Equatio~ 1 VI-58) actually applies to the mixing layer with the stream -
line lbf = 0 slightly displaced relative to the outer shear layer. Let xt and yt
be measured along and normal to d’* = 0 respectively. Then, since the curva-
ture of the line yt = 0 affects only the higher approximations to the equation
for the mixing region, equation (VI-59) remains unchanged. A third boundary

condition is obtained from the requirement that the pressure difference across
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the mixiag layer be of order ¢2. Therefore, the velocity profiles in the first
approximation of the mixing region should be so oriented that the pressures in-
duced in the inviscid stream by the effect of displacement thickness are balanced
across the mixing layer. Since equations (VI-6la,b, c) are invariant under the

transformation

nt - nt + pt
the third boundary condition may be assumed as

f(0) = 0 (VI-61d)
The solution obtained by using boundary condition f(0) = 0 differs from those
using f(8t) = 0 only in the location of the line t = .0. The solution of equa -
tions (VI-6la,b,c,d) for Nt -~ @ is

f(nt) ~ (nt + afu) + exponential (VI-62)
Where ﬁfu is proportional to the displacement thickness of the upper part of the

shear sublayer which is measured from $t = 0. Similarly the solution for

nf-’ -o is

f(nt) ~ (nt + gt) + exponential (VI-63)
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where B'Fl is proportional to the displacement thickness of the lower part of the
shear sublayer, which is measured from $t = 0.
By using equations (VI-53b), (VI-54a) and (VI-63) the flow below the mix-

ing layer due to displacement thickness is described by

VZ’H =0 (VI-64a)
lbl(x.o) = 'BIVZX forx > 0 (VI-64b)

From Bernoulli's equation p, may be expressed as

P, = -uou1 (VI-65a)

is of order Mr’ (pl will Le esti-

Since (;pl, €u, and €v, are of order ¢ and Uy

mated as

(pl = O(Mr €)
= 0(() (VI'65b)
Therefore one gets
p(x,0) = p (x,0) = pt, (xt,yt) = 0 - (VI-66)

if terms of order Mr are neglected compared to unity.

For the uniform shear flow, the next approximation is governed by the

T g
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. . . 28 . .
linearized equations™ for irrotational supersonic flow:

30, aGl
—_ - =0 VI-67
39 ?{ ( a)
1+ N, + RO = -p (VI-67b)
12 1 18
A A = _ _
(1+ N{?)vl;E = 619 (VI-67c)
From equation (VI-66) one obtains 61)/2 = 0, 610 = 0. Hence equations (VI-67a,b,c)
become
a0 aol
W =] B_Q_ - 0 (VI~68a)
A,‘ o A
(1+N§) G+ N\')l =10 (VI-68b)

From Bernoulli's equation, p, may be expressed as

P -0 0 (VI-69)

. =0 (VI-70)

T PR

[4
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Hence equation (VI-68b) reduces to

A
Ny =0 (VI-71)
A
Since N = constant, it is required for the uniform shear flow at supersonic

speed that

01(2,9) = 01(2,0) = vt (xt, ) = 0 (VI-72)

This relation means that the line yt = 0 is displaced by an amount equal to the
.displacement thickness of the upper shear sublayer. In other words, it is re-
quired that there be no effect of displacement thickness on the uniform shear
flow. If this result is applied to the problem discussed in the previous sections,
one can make the approximation that for ; measured from the dividing stream -
line, the inner edge of the outer shear layer is at; = 203 where 20 = 3’{_’_)/’5,
and the v component of velocity is negligibly small at the inner edge of the outer
shear layer.

It is evident that the approximation (VI-72) is not highly accurate, be-
cause the error is O(Mr)' However, the only purpose here is to obtain an esti-
mate for «, which in turn will be used to estimate the effect of nonzero sublayer

thickness on the outer shear layer. Since this effect is expected to be small, it

is not necessary that the value of Kk be extremely accurate.



VII
NUMERICAL SOLUTION
1. ‘The Derivation of the Equations for Computation

In the discussion of the conservation of angular momentum for the en-
tire recirculating flow, it was observed that for a steady motion the accelerating
torque from the shear layer should always be equal to the retarding torque from
the base boundary layer. In order to determine these torques it is necessary o
find the distribution of the shear stress both along the base of the wedge and a-
long the dividing streamline.

Since the distribu‘ion of the shear stress along the base of the wedge
.can be determined by the solution of equations (V-1) and (V-2) for the base
boundary layer, the solution of the system of approximating ordinary differ -
ential equations (V-29) and (V-30) is needed. For fairly good accuracy the
velocity of the inviscid core flow evaluated along the base of the wedge can be

approximated by

= 29 (9 -0+ — i[ ]sin(2n+1)1r9
(2n+1)
3 i[ 3690 1r§o J
—_ + - sin(2n+1) 7 6
1r2 (21+1) 1r (211-!»1)41r4 An+1)
23. 99
% ‘i[ sin2n 78 (VII-1)
T 1 (2nvr)
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(’t-J !
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because the series in q;, converge quite rapidly. The transformed coordinate
along the X direction, given by equation (V-22), can be approximated by

6
X = joqbde. e

dq
. b _ 1 -
= T (VII-2)

Equations (V-29) and (V-30) can be rewritten as

de d
0 1 b 34 32
0 _ .1 bgg +76)+(—-—)q (VII-3)
) g, d 0 1 % 6 /%
doe dq
0 1 %% 20 16
3@ " g as 4% toee)+ ("é‘)% el
b 0

These equations are ordinary differential equations with 8 as the independent vari-
able. The initial conditions for €, and ©, can be obtained by substituting X = %Cl 62

into equation (V-39). Then, for 8 fixed but small, the following approximation is

obtained

6, = 0.815 JE'le (VII-5)
e, = 1.292@9 (VII-6)

where C | may be obtained from the Taylor expansion of 9y about 8 = 0, and



366 8 2399
RN
1

Hence the Runge -Kutta method can be used to provide solutions for €, and ©, .

0
Since
Re ==
r — o U -1 [-18]
Y = ‘w—w Y, U==, and® = — _
Lq % % aY [y = 0
the shear stress along the base of the wedge, ;b' can be written as
- - a_ _
T, = He 3Y 7= 0
M/ Re %
= _r_ e— 2 (VII"?)
T 0

the local skin-friction coefficient along the base of the wedge, CF’ has the form

2'rb

oo 2
p.(q.9)
2 1
o, VK, el

r

The distribution of the shear stress along the dividing streamline can be

obtained from the solution of the shear-layer equations (VI-1), (VI-2) and (VI-3).
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An integral method of the Karman -Pohlhausen type is used to reduce this set of
partial differential equations to a set of approximating ordinary differential equa-
tions. The velocity profiles are approximated by polynomials with undetermined

coefficients, given by equations (VI-9), (VI-10), and (VI-11). Since

/T{? y -~ a, 9

~ e ~ - A u au 0 (+)

y = = pdy,u == sz |~ _ 4% (0)
I jO u, 3y ly = 0 3(+) Bz(+)

the distribution of the shear -stress along the dividing streamline, Td' can be
written as
¥ g
Ta = He 3y |§= 0
Hou Re% a b
_ e e ‘e 01 (VII-9)
Yo Beh)

’1‘.‘
C = 2 d
f - =2
peue

a.b

2 01

= (VII-10)
VRe, T

o P 5(+) are given by the solutions of the system of equations

(VI-20), (VI-25), (VI-30), (VI-31) and (VI-32) with the boundary and continuity

wherea_, b,, and
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conditions (VI-12) through (VI-15).

Since, in the continuity condition between the outer shear layer and the
upper shear layer, the location of the outer edge of the shear sublayer is need-
ed, the location of the dividing streamline must be determined. It has been shown
that the dividing streamline is displaced by an amount equal to the displacement
thickness of the upper shear sublayer. This satisfies the requirement of zero
pressure gradient across the shear layer to order (Rej).

*
The displacement thickness for the upper shear sublayer, (3 is ex-

(+)
pressed as
~‘ _
6(+) f‘l u ~
R PO S AT
(+) 0 u
1 u, u -
= | (l'ﬁiﬁg %)dcu)
0 e u d
Y
- [ (1 0% ) 2
0 Ax 8) (+)
a b b b b
=1 - 0 [b s e 2 3,047
r 27 0 2 3 4 5 J
Ll -(l-ao)(l-A)_I
(VII-11)
where Ed = EeE(O) is the velocity at the outer edge of the upper shear,ﬁ'u = EeE(KA)

is the velocity at the outer edge of the upper shear sublayer, A = 3(+) / 0

The outer edge of the upper shear sublayer is at

T =«a (VII-12)
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»

5 (P 6*
(+) , (+) df “(+)
where ¥ = ( 1 - > ) Since can be shown to be nearly constant, 7( )
°+) Beo) R\ By

may be assumed negligibly small in the computation. This will simplify the compu-
tation and is within the accuracy needed. Hence equations (VI-15a,b, c) can be re-

written in the following form:

g(+)(l) '-‘—*[l +

2K A(l-ao)
.

0

dg [ Al-a) xA(l-a))
(+)(l) o A[ 0 0 ]

3T, 3 8,
2~
2By ) o [Aaeay
2’2 (1)
? (+) a,
For simplicity, define
2k A(l-ao)
K, 6= — (VII-13)
0 a
0
KOA
Fl = KO- 2 (VII-14)
K2 = - KOA (VII-15)
K K
1 2
Kg = Ko 5 + 15 (VII-16)
“3
K = — (VII-17)
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K. = K A (VII-18)

S
a

>
I
1
P
CIIH.DI
Pl
L
o
N——

6 e (VII-19)
1+4
These quantities are functions of a ., 3, 3’ ) g and q . The velocity of the
qua a ction a, @y %) q ty
inviscid core flow evaluated along the dividing streamline can be approximated
by
T x2
(x) - = -
(21+1) 260(2n+ 1)
7. 46
+ )2 + 4 3 exp[-(2n+l) wx/é-o]
(2n+l) = (2n+1) n
23.98, _
- < 3 )exp(-Znnx/Go) (VII-20)
(2n )

Therefore, based on the boundary and continuity conditions, the profile

coefficient can be expressed in terms of a b2, 8', % . and 3}_)

0 (+)
a; = Al-a) (VII-21)
a2 = -(l-aO) (VII-22)
b26
bozl-K6-T +K3-K4 (VH'23)




-112 -
b, )
('g‘) (6-1)+ 2K4

K

b2(6+1)
by = 2k~ =3 +x, 75 24,
b 6
b kK, + 2(2+)-'f—l-+K—2+K
4 6 6 2 4 4
b26
Co=l-K6--3—+K3-K4
b26(6-1)
cl=2K66+ 3 +2K5
c2=b26
- 2,8\
g = 2x66+b2(6 +3) 2x5
2
) 6 6)
4 = -x66 +b2(3 +6 KS
g- L[4

where 6 =

and (VI-31), there results

o 15 - da0 6a0 -1
@=- S\
& 3a0 - 30-2 -
2
8+4a.+3a
-k s’ }T ) 0 0
7 30

S

(VII-24)

(VII-25)

(VII-296)

(VII-27)

(VII-28)

(VII-29)

(VII-30)

(VII-31)

(+) '
Substituting equations (VII-9), (VII#21) and (VII-22) into eduatlons (Vi-20)




da ~ (1-a,)
0 H 0
ﬁ"‘7[£‘ 'iao] =2 (VII-33)
0 0 a
0
2 )
OOM 9 5%
where « 9 = B . Equations (VI-32) and (VI-33) are two differential
1-1Mm q
2 r’s ~
equations in two dependent variables. The initial value for 6 and a, can be approxi -

mated by appropriate curve fitting of the expanded velocity profile, which is found
by assuming an isentropic expansion to the base pressure of the Blasius profile
evaluated at the trailing edge of the wedge. This expanded velocity profile can be

obtained from the solution of the following equations:

(o
a@ o
. - L (VII-35)
(o .
(2)
df
— = ¢ (VII-36)
nc cC
= YY:_I = -1 = 2 3
u = 2!'7 1- I-JE N +(-P£)'T < f(l)
IJc IJc ue c
(VII-37)
G (RN (Lo, 5\
dy ~ (F) (?‘3‘ WA S (VII-38)
C (o} (o] e e

Equations (VII-34), (VII-35) and (VII-36) are obtained from the Blasius equation.

Equations (VII-37) and (VII-38) are obtained from equations (VI-33)through (VI- 37)
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Y
ad y T The initial conditions for the system of differential equations (VII-34),
c

(VII-35), (VII-36) and (VII-38) are
_ A1)

100 = £ =0

fc(z) = 0.4696

0

Y (0)
Hence the Runge -Kutta method can be us=d to provide solutions for :(nc) and
v( r,c). A plot of ?f(;) gives the expanded velocity profile in the coordinate
system of the modified Howarth transformation. For ; = 0, it is assumed

that
~ o 2
u(y) = 1-(1- a0(0))( 1 - 8%6)) (VII-39)

.Therefore ao(O) and §(0) can be determined approximately from the plot of the

expanded velocity profile. The system of ordinary differential equations ( VII-32)

and (VII-33) can be solved numerically by using the Runge-Kutta metho...
Substituting equations (VI-9), (VI-10) and (VI-11) into equations (ﬁ-25),

(VI-30) and (VI-32), there results

s TN TR
{(+)[b +b0b1+3(m)ob +b%) +2(bgby+byb, ) +

U‘I|v-
wp—-

(be +b +2bb3)

X (bb+bb-)

174 273

1 ) 41 1, 2
+ 3 (05 + 20, +4b3b4+9b4]}

(l1-a,)A b b b b
0 d 1 2 3 4
'(“2" % )d?[g(ﬂ(bo*?*?fr*s‘)]
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da
(.1 0 2 2
- ( : 3‘(+)){2b +2bb + 3 (2bob2+bl )

2 2
+ (bobs +byb, ) + 3 (2bgb, + by + 2, by )

2 2
3(b1b4+b2b3) 7( + 2b b4)+ 3bgb

~ " 1 2 2
+ .5 {— 7 | by +bgb, + 3 (2bb+bl)

+% (bob3+ blbz) + é( 2bb, + b2b3) + %( b32+ 2b2b4)

]
+%b3b4+%b42]} (VII-40)
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-g- (2c0c4+ c22+ 2c1c3) %(clc4+ c2c3)+%( 3?+ 2c2c4)

e @K (03324 0)

(]

! 3 H L[ 2 = (2 + )
a8 % 2 2| % o°1+3( €t 4
0°(-) a
-‘l'cc+c -1-(2 c, + 2-i-c2+2c )lcc+cc
2(03 1°2) 5 \“C0%% T2 7% 13 3(14 23
1.2 ) Lee +dc? S
+3 (c3 -i-2c2c4 1 c3c4+9 c4]} (VII-41)
To . P, (H D )
d¥ d% 7\ 2 2 ' :
0 aob0 )

By using equations (VII-13) through (VII-33) equations (VII-40), (VII-41)
and (VII-42) may be reduced to a system of three ordinary differential equations
with dependent variables b2, E( y and 6( -y Since this system of ordinary dif- '
ferential equations involves all the profile coefflclents; and thicknesses and their
derivatives with respect to ; in a very complicated manner, these equations
will be rearranged so that the numerical sol}xtlon can be conveniently obtained
by using a digital computer. In general equations (VII-40), (VII-41) and (VII-42)

can be written as
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db ds ds,
2 + -)
Q1 a7 t U2 d% * Q3 dé’. =

= Q (VII-43)
db ) d3
2 +) =) .
Uax T X T Qs ?1'%') Q, (VII-44)
db . d¥ dé
2 (+) (-) .
sax T Q237 T8 TX® Y (VII-45)

a 3', and qs, and the Qm's~are

where the an 's are functions of b2, 3(;!5), (d_zl, o’
~ s ' oA o S 5
functions of b2. 6(+), K(_). 8y 6, 9@ ¥ aw The q s are given in the
Appendix. Defining
Q
o - a2 %

Q
I
|
|

}
|
!
r

P SR T= . [TV PR SR AT

aggess
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then one can obtain

G %2] GG
db, ( }(Q ) C12 S22 | _(le Gy Gy =
& \q, (11 Ca Qu/[c_;;_g ) ?__zz\'
[ C12 Gy ¢ G
L Cugl
B4y 1S12  Cpy | W5
¥ [ m - ciw
L G13 Gy
16 Sy
dbﬁ:’ %1 Sy T
1 Sa

Jhe initial values for 32. 3'( y and 6( ) may be approximated by appropriate
curve fitting of the similarity velocity profile, for the mixing between a uniform
stream and a fluid at rest, evaluated at a fixed but small X = ;0. Therefore,

for ; 2 0, equation (VI-43) can be written as

el o/
. b(x)( )1 Ef Yy
(+) 2!

for ; € 0, equation (VI-44) can be written as

- ~ \n , aO(O) -
Sam () = al/ %9
L :

0

"
4 - a~ -
y B



-119 -

Since bn(;o) and c (fo) are given by equations (VIi-13) through (VII-31), which

are functions of bz(fo), (3

(+)(; ), '6‘(_)(3?0), a(0), and 8(0), and since

0

a (0)
' 0 ~ ~ ~ . A
fo ( —27(-)- y , 80(0), and 6(0) are known, b2(x0h 6(+)(i'0)v :nd
3‘( ) (;0) can be determined approximately from the plot of f’ ( Y y

0 2%,

Hence the system of ordinary differential equations (VII-46), (VII-47) and ( VII-48)

can be solved numerically by using the Runge-Kutta method.

Since the shear stress distribution along the base of the wedge and the
dividing streamline can be determined, and since the dividing streamline is
assumed straight, the conservation of angular momentum of the recirculation

region requires that

( L _ _)_ (Fo_ )_
L T 4% JR = j 7dx JR, (VII-49)

where.!—{band ﬁdare the perpendicular distance from the base of the wedge and the dividing
streamline to the center of rotation respectively, which, for a given wake angle,
can be determined from the soluiion of the inviscid core flow. From equations

(VII-7) and (VII-0), the above equation can be rewritten as

I, 0 °+) r 0o %
_ (VII-50)
L -—
By using the linear viscosity law, rrr_ = 90, pTi;;‘r = O(¢€), and the equation
)

of state, the above equation reduces to




32 [TV, MR : : dx
= _| e (9—) d 0 '(+) < 3/2
9 - T:_ () -K; ‘[1 q2 e
b
Liog dX | (VII-51)

the equilibrium rate of rotation for the in-

SmceqT = wr Lr/2 and wr = wo.

viscid core fluid can be obtained for a given wake angle:

1 aob1
) d
. ) ( 5/3(9-)-1/3(%)‘/3 jo 5+) X .
w 2 u
(t;') T o/ \K, J' B .
8, (VII-52)

Accordingly, for a given 50, there exists an equilibrium w which in turn pro-

0

vides a velocity profile for the shear layer at x = 1. Henre the pressure at the

" rear stagnation point can be obtained from the local Mach number atx = 1 and

2 .
y = 0. Sinceu = ay(b()u_ andT= "e [A -4a2(1)b3(1)], then

-
c
P

ag(Db(1)

M@y - - (VII-53)
[ d o]x-l (Y‘l)(H - 4 aj(1) by(1)

and the recompression ratio for the dividing streamline is

3 X

P 3 -

sgmation . {1+ Iz—l[md(eo)]il} v (VI-54)
b
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2. Evaluation of Results and Comparison with Experimental Data

The theoretical model studied previously concerns the laminar near wake
behind a slender wedge as Ree - o . However, for finite but relatively large Re
with a laminar near wake, this model should provide reasonably accurate results.
Computation have been carried out for the flow over awedge with Ec = 6 and fc
= 0.399 under the following upstream conditions:

M, = 2.61and3.51 ; Re_= 2 10°
For these given conditions, the experimental results show that the near wake is
laminar but very close to the transition range; the wake angle is quite small; the
lip-shock strength is relatively small; the recompression region is not too long
_and the boundary-layer thickness is still small. Above all, the prevailing rea-
son for choosing these upstream conditions is that thesc are the available experi-

mental conditions closest to the thecretical model, and a comparison can be made

between the theoretical and the experimental results. Based on the above given

conditions, it can be shown that, for a flow with total temperature equal to IOOOOR,

the flow properties after the wedge shock are

M =23, T =473 , p = 0.67x 104 slug/e

u = 2500 ft/sec, u_ = 0.338 X 10 1b-sec/tt® for M_ = 2.61

c
M, = 3.14, ?c = 336.5°R, Ec = 0.422 x 1074 gig/e’
Ec = 2810 ft/sec, Fc = 0.236 X 10.6 lb-sec/ft2 for M_, = 3.51

The flow properties corresponding to the conditions at the outer edge of the shear

layer and the recirculation region may be obtained provided that the wake angle

i = 3

N =
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is known. The flow properties after the corner expansion are

M = 3.0, T =356°R, o = 0.323 x 107
e e e

u, = 2780 fi/sec, B_ = 0.25x 10 Ib-sec/t’

Re_ = 0.998 x 10°

M =428 T = 21°R, p = 0.133x 107 stug/nt’
e e e

u_ = 307 ft/sec, u_ = 0.15 X 10" 1b-sec /tt2

Re_ = 0.602 x 10°

The flow properties in the recirculation region are

slug/ft:3

= - - 2
T = 1000°R, §_= 0.71 x 10 8 1b-sec/tt
and
- 4 3
P, = 0.115 x 10 ° slug/ft for M@ = 2.6l
o, = 0.281 x 107 slug/ft> for M_ = 3.51

for M
[- -

S

o

for M
(-]

D

Since the complete solution for the inviscid core fiow is given by equation

(IV-29), the streamlines in the inviscid core flow for 50

(4a) shows the streamline pattern when coordinates are nondimensionalized by the

= 2.61

= 8.7°

= 3.51

= 10.7o

looare drawn. Figure

wake length. Figure (4b) shows the streamline pattern with the abscissa normaliz-

od by the length of the wake and the ordinate normalized by the base height. The

flow velocity is relatively high in a region within a distance equal to the hase

height from the base of the wedge, and decreases gradually toward the rear stag-

nation point. It can be shown that the distance between the center of rotation and

the base of the wedge increases as 90 increases.

Figure 5 through figure 8 are drawn for Ma° = 2.61, Rec

5

2 x 107,
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and for 50 = 8.7°. This 60 satifies the reattachment condition and the require-
ment of conservation of angular momemtum in the recirculation region.

For a given 50, eguations (VII-1) through (VII-6) can provide a numerical solution
for the base boundary layer. The shear stress along the base of the wedge is
shown in figure 5. This increases very rapidly with 8 for 8 < 0,2, because
the inviscid core flow has a large acceleration forr = 1and 8 < 0.2. Since
the inviscid core flow decelerates for r = land 8 > 0.5, the shear stress di-
minishes rather rapidly and approaches zero near 8 = 0.8. Figure 6 shows

the velocity profiles at 8 = 0, 0.15, 0.30, 0.45, and 0.60. The boundary-

layer thickness grows gradually for 8 < 0.5 but increases very fast for 6 > 0.5.

. The integral method used appears to predict separation, which may occur near
8 = 0.8. The stagnation-point velocity profile obtained from the similarity
solution is also shown in order that a comparison can be made between the
similarity solution and the solution from the method of integral relations for
@ = 0. It is evident that the method of integral relations gives a fairly accur -
ate velocity profile for U < 0.9. The accuracy will certainly be improved, if
the order of approximation K in (V) is increased.

When 50 is given, the | -itial velocity profile for the shear layer can be
determined. Therefore the numerical solution can be obtained for the shear
layer equations (VII-46) through (VII-48). Figure 7 shows the shear stress dis-

tribution along the dividing streamline. Initially the shear stress is very large,

because the inviscid core flow velocity is very small, at @ = landforr =1,

e IR
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and the shear sublayer is extremely thin. Since the inviscid core flow has large

acceleration for 8 = landr > 0.85(cr i;— < 0.15), and since the thickness
of the shear sublayer grows fairly rapidly fo(;' r > 0.85, the shear stress along
the dividing streamline declines rather quickly. The shear stress decreases
slowly for r < 0.85, because the shear sublayer grows rather slowly and the
velocity of the inviscid core flow decreases gradually. Figure 8 gives the velo-
city profiles for the shear-layer atx = 0.05, 0.2, 0.45, 0.7, and 1.0. For
x small the change in velocity profile is large near the dividing streamline. As
x increases this change in velocity profile spreads out to a larger regior on each
side of the dividing streamline. The velocity profile for the portion of the shear
layer with high kinetic energy changes fairly slowly throughout the wholg near -
wake region.

Figure 9 shows the curves used to obtain the wake angle, which in turn
determines the base pressure. The solid curve is obtained from equatiqn,(VII*SO,
which furnishes the recompression ratio along the dividing streamline for M_=
2.61 and for an equilibrium rate of rotation for the inviscid core flow. When a
uniform supersonic flow is turned through a given angle from a specified initial
static pressure, the final value of the pressure depends on the initial value of
the Mach number, and the final pressure has a minimum value for a particular
initial Mach number. Hence a minimum compression ratio can be determined

and is shown by the dotted line. The intersection between the solid and the

dotted curves provides an appropriate wake angle and recompression ratio,
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which in turn gives the base pressure. This intersection point satifies the re-

attachment condition. Since figure 9 gives 90 = 8.7°, and E/Eb = 1.52, the
corresponuing equilibrium rate of rotation for inviscid core flow is ‘:’0 =
- 60000 rad/sec., and Eb/Sm = 0.538. Hence Hr = 1250 ft/sec., Re_ =
0.844 x 103, Mr = 0.806. The experimental results given by Hama for
Re = 2Xx10%andM = 2.61 show that § = 7.5°%; p./p_ = 0.56and

c © 4] b T
the lip-shock strength is approximately equal to 1.25. Consequently, the

computed and the experimental results agree fairly well for this case.

For Rec = 2X 106 and Me° 3.51, the theoretical model predicts

1190 ft/sec., and Re = 0.196 X 103

that 60 = 10.7, pb/pw = 0.36, q
and Mr = 0.78. The experimental results givenn by Hama show that

50 = 8 .50, Eb/Bw = 0.45 and the lip-shock strength is approximately equal

to 1.4. The predicted results are less accurate for this case.




VIII
CONCLUSIONS

A theoretical description has been presented for the flow in the laminar
near wake of a slender wedge at supersonic speed and high Reynolds number.
This study consists of separate analyses for the variousnear-wake regions hav-
ing different physical character. The solutions for these regions must be match-
ed through the condition of the conservation of angular momentum for the recir-
culation region and the proposed reattachment condition, so that the near -wake
flow is uniquely determined.

As the Reynolds nuinber approaches infinity as a limit, the thickness of
" the laminar viscous layers enclcsing the recirculating flow is of order Ree-%,
and the flow in the interior of the recirculation region may be considered as in-
viscid and nonconducting. The typical velocity of the recirculating flow must be
of the same order as that of the external flow, although numerically it is con-
siderably smaller. The Reynolds number Rer for the recirculation region dif -
fers from Ree through factors involving powers of Me' .herefore, in the limit
Ree - o with Me fixed, Rer will also approach infinity. Since Mr is fairly
small, in the zeroth-order approximation the recirculating flow may be re-
garded as incompressible. The inviscid incompressible recirculating flow
has constant vorticity and constant temperature. The effect of compressibility
is estimated to be rather small.

The inviscid incompressible recirculating flow in the right triangular
region is characterized by the small wake angle 50. Hence the stream function
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5 may be expanded inn a power series in 50. and an approximate sclution may be
obtained analytically. The zeroth-order soltion for ¥ is symmetric ot =
the first-order solution for 5 dces not have this symmetry. It is not possible
to obtain a second-or higher -order solution, because the representation for
one of the boundary conditions is not a uniformly convergent series. The flow
velocity is high in a region within a distance of the order of the base height
from the base of the wedge. The maximum flow velocity is approximately
0.85 ar = 0.85 (Br f.r/Z), and the distance between the base of the wedge
and the center of rotation increases as 60 increases. It should be mentioned
that the formulation in terms of a right triangular region assumes that sec-
. ondary eddies either do not occur or have negligible effect.

In general the shear ctress along the base is large for 6 < 0.5, be-
cause the flow is accelerating. The shear stress declines rather rapidly for
8 > 0.5 due to the adverse pressure gradient. The boundary-layer thickness
grows gradually for 8 < 0.5 and more rapidly for 6 > 0.5. Although the in-
tegral method predicts boundary-layer separation near 8 = 0.8, it is believed
that, due to the suction effect of the shear layer near the trailing edge of the
wedge, the separation will be delayed.

The development of the shear layer is investigated by including the
effects of the finite initial thickness, the trailing-edge expansion, the nonzero
inner -edge velocity, and the equalization of the pressure across the shear layer

: -1
up to O(Ree ). However, it is not necessary to consider the details of the cor-

g
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ner expansion, because only a small distance is required for the completion of
the expansion, and because the lip-shock strength is rather small (pressure
ratio 1.25 for M_ = 2.6l and 1.40 for Mm = 3.51). The portion of the vel -
ocity profile with high kinetic energy remains nearly unchanged throughout the
near -wake region, but the portion of the velocity profile near the dividing
streamline is changed greatly. These results suggest that it is indeed appro-
priate to divide the shear layer into an outer shear layer and a shear sub-
layer, and that the changes in the outer shear layer actually could have been
neglected. Initially the thickness of the shear sublayer grows rapidly, and
the shear stress along the dividing streamline declines rapidly.

The proposed reattachment condition is based on the minimum pres-
sure increase attainable at the rear stagnation point from the turning of a
streamline in the shear layer to a direction parallel to the wake center line.
This condition and the requirement that angular momentum be conserved in
the recirculation region are used to obtain a unique solution for the base pres-
sure and hence for the near-wake flow. For Mc° = 2.6l and Rec = 2 X 105,
the predicted values for 50 and Bb/B“ are fairly close to the experimental
resultsz. However, for M_ = 3.51 and Rec = 2X !05, the predicted val-
ues are less satisfactory, because of the smaller value of Rer.

The deviation of the predicted values for M@ = 2.61 from the experi-
mental results is probably caused mainly by the inadequacy of the proposed re-

attachment condition. The experimental results show that the flow is only
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partially recompressed at reattachment. The theoretical reattachment condition

proposed by Chapman9 assumes that the recompression is completed, and is

bound to result in disagreement between the predicted and the measured values

of the base pressure. The present reattachment condition is intended to remedy

tnis inadequacy. However, since the predicted base pressure is too low it

seems that this reattachment condition does not provide sufficient recompression.

By requiring tha' a different streamline be turned to a direction parallel to the

vrake center line, one can obtain values of 60 and Bb{ Bw which are significant- .
ly closer to the experimental results.

It is known that the separation along the base occurs somewhere below
the trailing edge, that the dividing streamline is slightly curved, and that the
center of rotation is displaced because of the base boundary layer. The errors
which result from neglecting these effects will influence the geometry of the in-
viscid recirculating flow. The corresponding changes in é; and Eb arise pri-
marily from a change in the length of the near wake, and can be shown to be
quite small, of the order of a few per cent.

For Mw = 2.6l and Rec =2x lOS, the thickness of the base boundary
layer at a distance of half the base height from the wake center line is approxi-
mately 0.07", and the thickness of the lower shear sublayer at x = 4 is approx-
imately 0.05 . Since the base height is 0.5 ", these values indicate that there

exists a quite large region of inviscid recirculating flow. Even for M = 3.51

S
and Rec =2x 10" a significant portion of the recirculating flow may be des-
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cribed as approximately inviscid. Therefore, for a relatively large Reynolds
number the present model does give a fairly good representation of the actual
flow. Fcr large M_, however, the trailing-edge expansion region and the re
compression region are no longer small, the lip shock is stronger, the wake
Reynolds number is smaller, and the wake angle is larger. These fcatures
are all incorporated in the analysis carried out by Weiss. 19

In order to understand the near -wake flow more thoroughly it would be
necessary to study the recompression and the trailing-edge expansion regions.
As mentioned before, the present rezttachment condition does not give suffi-
cient pressure recovery. To obtair. a more accurate reattachment condition
. and to verify the assumption of isentropic recompression within a narrow
region, it would be necessaiy to study the recompression region in more de-
tail. The separation processes, the behavior of the base boundary layer
approaching the separation point, and the formation of the lip shock could
be better understood through the investigation of the trailing-edge expansion
region. The dependence of Eb and é; on Reynolds number Joes not appear
in the current approximation. A first approximation for this dependence
could presumably be derived after studying the recompression region and

the trailing-edge expansion region.
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(a) Streamline Pattern Drawn to Scale
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(b) Streamline Pattern with Stretched Vertical Coordinate

Figure 4: Streamlines in the Inviscid Core Flow
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Figure 5: Shear Stress Distribution along the Base of the Wedge
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Velocity Profiles of the Base Boundary Layer



r,)

Td pe ue\/Ree/ o

-137-

0.3

0.25

o
N

o
—
wn

0.1

0.05

Figure 7:

0.2 0.4 0.6 0.8

Y

Shear Stress Distribution along the Dividing Streamline

1.0



10
8
6
4
I >
©
la 2
> o
)
| =~
~
[(}]
[\}]
[« 4
£,
]
-
-2
-4
-6

Figure 8: Velocity Profiles of the Laminar Free Shear Layer
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