
,r-, '  . 

/ - ;.. „ 

CRT-AIDED SEMI-AUTOMATED MATHEMATICS 

Bennett, James H. 
Guard, James R. 
Haydock, Roger 
Oglesby, Francis C. 
Paschke, William L. 
Settle, Larry 6. 

APPLIED LOGIC CORPORATION 
ONE PALMER SQUARE 

PRINCETON, NEW JERSEY 

Contract AF F-19628-67-C-0100 

D D C 

r    N0V2 7 MB 

B ' 

FINAL REPORT 

Period Covered: 1 October 1966 through 31 May 1966 

July 1968 

This research was sponsored by the Advanced Research 
Projects Agency under ARPA Order No. 700 

Contract Monitor: Timothy P. Hart 

Distribution of this document is unlimited 

Prepared 

for 

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES 
OFFICE OF AEROSPACE RESEARCH 

UNITED STATES AIR FORCE 
BEDFORD, MASSACHUSETTS 01730 

Reproduced by the 
CLEARINGHOUSE 

(or Federal Scientific & Technical 
Information Springfield Va. 22I5I 

ilhU documfot IK-*) SMS 
whaw ('",<i aal»r to 

opproraw 

on f» .».-»«—f*v» 

41 



CRT-AIDED SEMI-AUTOMATED MATHEMATICS 

Bennett, James H. 
Guard, James R. 
Haydock, Roger 
Oglesby, Francis C. 
Paschke, Wi11iam L. 
Settle, Larry 6. 

APPLIED LOGIC CORPORATION 
ONE PALMER SQUARE 

PRINCETON, NEW JERSEY 

Contract AF F-19628-67-C-0100 

FINAL REPORT 

Period Covered:  1 October 1966 through 31 May 1969 

July 1968 

This research was sponsored by the Advanced Research 
Projects Agency under ARPA Order No.  700 

Contract Monitor:  Timothy P. Hart 

Distributior. of this document is unlimited 

Prepared 

for 

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES 
OFFICE OF AEROSPACE RESEARCH 

UiMTED STATES AIR FORCE 
BEDFORD, MASSACHUSETTS 01730 



TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS i 

PERSONNEL ii 

ABSTRACT 11 i 

SUMMARY iv 

Section I   Improvements in AUTO-LOGIC 1 

Section II  Control, Input/Output 9 

Section III  Applied Mathematics and SAM 19 

Section IV  Boolean Manipulation and Circuit 

Design 24 

BIBLIOGRAPHY 29 



ACKNOWLEDGMENTS 

The authors wish to acknowledge the encouragement 

given during every phase of the work by their technical 

monitor, Timothy P. Hart, and by Robert Taylor of the 

Advanced Research Projects Agency. 



PERSONNEL 

Tne authors wish to express appreciation 

for the whole-hearted efforts on the part 

of the following Applied Logic personnel: 

Thomas F. Droege 
William B. Easton 
John N. Henness 
Theodore A. Hess 
Thomas H. Mott, Jr. 

11 



1 ' 

ABSTRACT 

This report describes the status of the sixth in 

a series of six experiments in semi-automated mathe- 

matics.  This effort extended from October 1, 1966 

through May 31, 1968.  These experiments culminated 

in large complex computer programs which allow a 

mathematician to prove mathematical theorems on a man- 

machine basis.  SAM VI, the sixth program, uses a cathode 

ray tube as the principal interface between the mathe- 

matician and a high speed digital computer.  An elaborate 

language and logical capability has been implemented in 

SAM VI.  These include I/O languages for expressing 

mathematical statements in a form suitable for both the 

mathematician and the machine to recognize and handle 

with ease and convenience, a language for expressing and 

handling sorts and range of symbols, and an auto- 

logic algorithm and matching routine.  The latter con- 

stitute the capability for handling, automatically, 

logic with equality.  This capability is particularly 

useful at an intermediate state of the proof when it 

is desired to have the machine try to verify auto- 

matically a given portion of the proof. 
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SUMMARY 

Semi-automated mathematics is an approach to 

theorem-proving which seeks to combine automatic 

logic routines with ordinary proof procedures in such 

a manner that the resulting procedure is both efficient 

and subject to control and direction by human inter- 

vention.  Because it renders the mathematician an 

essential factor in the quest to establish theorems, 

this approach departs from the usual theorem-proving 

attempts in which the computer unaided seeks to find 

proofs.  For obvious reasons the term "semi-automated 

mathematics" is employed to describe this new approach, 

since it views the basic role of the computer primarily 

as that of providing as much assistance as possible to 

the mathematician. 

As experimental tools for studying techniques in 

semi-automated mathematics, a series of six computer 

programs, called SAM I through SAM VI, have been devel- 

oped.  In this report we describe the status of ^.AM VI. 

However, for the reader unacquainted with the background, 

let us briefly summarize the language and logic capa- 

bilities of the preceding SAM programs.  A fuller 

account of these programs can be found in our earlier 

reports. 
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The first program, SAM I, implemented the pro- 

positional calculus in a framework of natural deduction; 

the goal of man-machine interaction in SAM I was to 

obtain proofs of minimal length.  SAM II dealt with 

quantifier-free first-order axiom systems of mathe- 

matics.  SAM II was adequate to investigate elementary 

mathematical theories including geometry and elemen- 

tary set theory.  The program left the entire burden of 

proof generation with the user.  SAM II was responsible 

for checking the validity of steps and generating con- 

sequences by the basic rules.  SAM III saw the beginning 

of the development of AUTO-LOGIC, which contained the 

capability for automatically handling predicate and 

functional logic containing equality.  The capability 

is particularly useful at an intermediate stage of a 

proof when it is desired to have the machine attempt 

to verify a portion of a proof without requiring the 

user to supply al1 the elementary steps in the deri- 

vation.  The years have seen continual increase in the 

power of AUT0-10GIC to verify i» itomatical ly the truth 

of complex deductions.  SAM III initiated development 

of sophisticated input/output techniques and contained 

the first general-purpose languages for expressing 

mathematical statements in suitable form for both 

mathematician and machine. 



The programs, SAM I, II, and III, were imple- 

mented on a small scientific computer, the IBM 1620. 

SAM IV expanded the capability of SAM III in a number 

of directions and was implemented on an IBM 7040, a 

medium scale scientific computer.  The improvements 

were primarily in AUTO-LOGIC and in the use of SLIP 

(a list processing language) as the underlying frame- 

work for the program. 

SAM V saw advances in AUTO-LOGIC with respect to 

the »eml-automatic handling of equality and the alge- 

braic aspects of mathematical theories.  It also 

Included the implementation of a CRT display as the 

primary interface between man and machine.  This is a 

most convenient and flexible means of interaction and 

the first allowing truly real-time communication 

between man and machine at a rate that is efficient 

for the user. 

SAM VI is oriented primarily toward advanced im- 

provements in the AUTO-LOGIC routines of SAM and in 

experimenting with flexible control and input-output 

features.  These latter include improvements in the 

CRT routines, experimentation with voice control, and 

a new "SN0B0L front end" which give Lhe user (in par- 

ticular, the non-programming user) a fairly natural mode 

for input and output of formulae and the ability easily 
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to  modify  and  control   the AUTO-LOGIC   routines.     The 

programs,   SAM V  and VI, were  implemented on  a  PDP-6, 

a  large-scale  computer with  a  time-sharing  system. 

This report summarizes and brings up to date the 

material contained in [2], [3]. Familiarity with our 

previous   final   report  [1]   is  assumed. 
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SECTION I 

IMPROVEMENTS IN AUTO-LOGIC 

AUTO-LOGIC is our name for the collection of algo- 

rithms which enable SAM to generate (hopefully) interesting 

consequences from a finite set of pseudo-disjunctions 

(PSD's).  It embodies four processes called reduction, 

expansion, digression, and contradiction, which it applies 

to the set of PSD's to generate new ones and then eli- 

minate or simplify whichever of these it can.  PSD's 

are allowed to remain in the set only if they can not 

be reduced by reduction or deleted by contradiction, 

while expansion and digression serve to generate new 

PSD's for the set.  (For details, see Section II of 

[1].) Our experience with SAM in exploring various 

theories has shown us that no single detailed procedure 

performs optimally in all cases. The basic design of 

AUTO-LOGIC has been adequate for all of our work, b'it 

we have found it convenient to modify certain parts of 

the algorithms each time our research takes a new tack. 

In making improvements to AUTO-LOGIC, therefore, the 

tendency has been to add on options whose strength of 

application is under the control of the user. The two 

principal additions to AUTO-LOGIC during the period co- 

vered by this report were multiple digression and 



extended expansion, which we now describe. 

Multiple Digression 

Digression is an attempt to use the strategy of 

temporarily complicating a proof in order to gain some 

later simplification.  More specifically, digression as 

we have implemented it In SAM uses an equality b=c to 

expand a formula P by replacing an instance of the "sim- 

pler" term c in P with the appropriate instance of b. 

(Recall that AUTO-LOGIC orders equalities in such a way 

that the "size" of the right-hand side is less than 

that of the left.)  When the result of this digression 

is brought up from the list of expansions, its pro- 

genitors, in particular the equality b=c, are not used 

in reducing it.  If no other PSD's reduce the digression, 

it is deleted.  If some reduction by a PSD other than 

b=c is possible, the digression is kept and the main 

algorithm continues as usual. 

We were able to improve on this process by intro- 

ducing a technique which we call multiple digression. 

PSD's produced in the manner indicated above become 

"one-step" digressions; for any n, if no PSD on the 

list of reductions (other than progenitors) can reduce 

a given n-step digression which has been brought up 

from the list of expansions, then, using each equality 



on the list of reductions, the digression procedure 

above is applied to the n-step digression and n+l-step 

digressions are generated.  The original n-?tep dig- 

ression is then deleted.  On the other hand, if some 

reduction by a PSD other than an immediate predecessor 

is possible, the n-step digression is kept and the main 

algorithm takes over.  In our implementation of it, mul- 

tiple digression is quite flexible in that the user can 

specify the maximum number of digression steps AUTO- 

LOGIC is to use (including none at all).  This number 

must be chosen judiciously; in our experimentation 

with SAM we have come across many examples of interesting 

PSD's which in all likelihood would not have been gen- 

erated without multiple digression, but it is clear that 

the process can consume a great deal of computer time 

and storage soace if given too much latitude. 

Extended Expansion 

Most digressions lead nowhere, but some prove very 

fruitful.  In hopes of achieving greater selectivity, 

we have extended multiple digression to a more general 

procedure which we call extended expansion.  Roughly 

speaking, extended expansion attempts to apply matching 

and digression discriminated to certain parts of for- 

mulae, leaving other parts unaltered.  Given a formula 



P, an equality b=c, and a set S of equalities (the 

"digression set"), extended expansion tries to construct 

sequences Q-) .Q? »• • • »Qm 
0^ formulae satisfying 

(1)   QT is P. 

(ii)  Q^+i is obtained from Q. by applying a 

(one-step) digression using an equality 

from S to some term of Q^ . 

(iii)  Qi+i ^as a term which is "closer" to matching 

b than any term of Q-j . 

(iv) Qm contains a term which matches b.  If such ^m 

a sequence is found, Qm is expanded (in the 

usual sense) by b=c; otherwise, no PSD is 

generated.  In practice, the user must set 

an upper limit on m to keep extended ex- 

pansion from consuming too much time. 

Our current definition of "closer" in (iii) in- 

volves a concept of "level in b" (where b is the left 

hand side of our given equality).  Occurrences cf sub- 

terms of b are assigned levels in b as follows: 

1. b has a level 0 in b. 

2. If g(t,,...,t ) has level n in b, then each t-j 

has level n+1 in b.  It t is any term which 

matches a subterm of b of level n in b, we 

then say that t matches b at 1evel n.  Terms 

of a formula Q matching b at a level n which 



is less than or equal to the level at which any other 

terms of Q match b are called least-level matches of b 

in Q, and n is called the b-level of Q.  The lower the 

b-level of a formula, the "closer" it is to containing 

a matching term for b.  In applying rule (ii) above, ex- 

tended expansion restricts digression to those terms of 

Qj which contain a least-level match of b.  The net effect 

of this procedure, if it is successful, is to construct 

a matching term for b within the given formula P,  How- 

ever implemented, a capability tor this sort of manipu- 

lation is important for much of the work we have been 

doing recently, particularly our work with logical cir- 

cuit design. 

Skolemization of Equalities 

In addition to experimenting with multiple dig- 

ression and extended expansion, we have made an improve- 

ment in the way in which AUTO-LOGIC handles proof by 

contradiction.  There are two modes of operation for 

AUTO-LOGIC; in the positive mode AUTO-LOGIC generates 

new theorems from an initial set of PSD's, whereas in 

the negative mode the user has a particular formula A 

in mind which he would like to prove to be a consequence 

of the original set of PSD's.  In this latter mode the 

original list is augmented by the PSD's representing the 



logical negation of A and it is hoped that AUTO-LOGIC 

will obtain FAL as a consequence of this augmented set. 

We have noticed that when using the negative mode 

of operation one is much more likely to be successful 

if A is not a simple equality.  For example, we may 

have defined a relation R(X,Y) in some algebraic theory 

and now wish to show that the transitive law 

R(X,Y) AND R(Y,Z) IMP R(Y,Z) 

holds.  The logical negation of this law involves in- 

troducing three new constants X2J8, Y20, and Z20 satisfying 

1. NOT((R(X20,Y20) AND R(Y20.Z20)) IMP R(X20,Z20)) 

Since 1. is not in PSD form, SAM Skolemizes it 

into the logically equivalent 

2. R(X20,Y20) AND R(Y20,Z20) AND N0T(R(X20,Z20)) 

which is added to the list of reductions as three 

separate PSD's 

R(X20.Y20), R(Y20,Z20), and NOT(R(X20,Z20)) 

The chances of AUTO-LOGIC obtaining FAL in this 

case are very good (provided that the transitity of 

R does indeed follow from the original axioms). 

The reason for this is that AUTO-LOGIC can easily 

expand each of the separate PSD's with PSD's on 

the list of reductions, thereby obtaining further 

consequences involving X20, Y20. and Z20 in terms 

of the relation R and whatever is used in defining it. 



On the other hand, we might attempt to show that a 

certain function S(X,Y) is commutative.  If AUTO-LOGIC 

tried to work with the formula 

3.  NOT(S(X20,Y20)=S(Y20,X2{;) ) 

the chance of expansions or digressions involving 

X20 and Y20 being generated would be slight, and 

thus a contradiction would probably not be obtained. 

Loosely speaking, SAM generally does not have much 

motivation to work with negated simple equalities 

like 3.  which involve only constants. 

Analysis of the earlier example concerning the 

transitive law suggests a way by which the necessary 

motivation can be introduced.  Suppose N0T(B*=C*) is the 

logical negation of B=C (where B* is the formula B with 

all variables changed into constants of the appropriate 

sort, similarly for C*).  If we wish to use the negative 

mode to prove B=C from the original list of PSD's, we 

add the three PSD's B*=k1, C*=k2, and N0T(k1=k2), where 

k-j and k« are new constants of the appropriate sort, 

instead of the single PSD N0T(B*=C*).  (Of course, if 

B* is already a constant, we do not introduce k^ and simi 

larly for C*.)  This procedure gives AUTO-LOGIC a much 

better chance of obtaining expansions and digressions 

involving the constants and terms of B* and C*. 

Our method of breaking down negated equalities is 



applicable not only to the case cited, but also to any 

instance in which the Skolemization of the logical nega- 

tion of the formula leads to a PSD of the form N0T(B*=C*). 

For example, the proposition 

R(2.y) TMP (D{Z,C(Y,X))=C(D{Z,Y),X)) 

has a logical negation expressed by the PSD's:  R(Z20,X20), 

D(Z2|8,C(Y20,X20))=D20,C(D(Z20,Y20),X20)=C20, and 

Not(D20=C20). 

This modification in the Skolemization of equalities 

has been implemented in SAM, and has been found to increase 

greatly the power and ranye of application of the negative 

mode of operation. 



SECTION II 

CONTROL, INPUT/OUTPUT 

The Front End. 

Our work with SAM has necessitated the creation of 

numerous control and debugging routines which now provide 

the user with an extensive repertory of interactive 

techniques.  There are, for example, routines for creating 

and manipulating formula libraries, changing weight 

functions, setting program parameters, and outputting 

diagnostic information.  Until recently, however, these 

routines were inaccessible to anyone unfamiliar with 

the inner workings of SAM.  The functions which they 

perform have turned out to be important for the operation 

of SAM, so for the sake of non-programming users (and 

our own convenience) we have implemented a comprehensive 

control package which will, we hope, greatly facilitate 

their use.  This "front end" as we call it, will also 

permit remote users without a CRT to operate SAM in a 

fairly natural manner. 

SAM's front end is basically an interpreter for a 

simple command language.  Commands are entered from the 

user's Teletype and have the general format:  VERB 

(SWITCHES) TONAME [CONDITIONS] FROMNAME.  At present. 



VERB can be any of 19 imperatives.  Depending on which 

of these is used, modification of the desired action can 

be specified by one of 14 available switches.  If the verb 

calls for movement of formulae of formula libraries, origin 

and destination are specified by FROMNAME and TONAME.  The 

action of a command can be limited to those formulae in a 

list or library meeting certain conditions by inserting the 

conditions between square brackets when typing in the command 

Tiiese conditions may be anything expressible as an arithmetic 

or Boolean relationship among the nine quantities in the 

"analysis" of a formula.* Thus, the condition [NUM 5 200 

AND DEP>-5] is intelligible to the interpreter and would 

indicate that the command in which it appeared was to be 

applied only to formulae with numbers^200 and at a depth 

greater than 5 from *:he   axioms.  The list of verbs includes 

several entries which allow the user to initiate and control 

routine housekeeping procedures.  These permit 

♦Each formula considered by AUTO-LOGIC has attached to 
it several data words in which the following items are stored 
formula number, contradiction bit (set if formula is a 
consequence of the logical negation of something we are 
trying to prove), heredity bit (if set in a given formula, 
will also be set in each of that formula's descendents), 
heredity depth (depth from a formula in which heredity bit 
was set originally), formula numbers of major and minor 
antecedents, type (0 if reduction, 1 if expansion, n+1 
if n-step digression), weight, and depth from axioms.  This 
information constitutes the analysis of a formula. 
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formulae to be assembled into libraries, input, output, 

saved on the disc, gotten from the disc, appended to or 

deleted from other formula lists, and displayed on a CRT. 

Formerly, most of these things could only be accomplished by 

painstaking manipulation via the PDP-6 debugging language, 

DDT. 

Another great convenience afforded by the front end is 

the ease with which program parameters may be set and saved. 

About 30 of the most important of these have been collected 

into a single file which is read by the main program; tne 

front end provides easy access to this file.  Among the 

items saved in the parameter file are:  upper and lower 

windows (used for throwing away PSD's with weights outside 

a desired range), maximum number of steps for multiple 

digression, instantiation and matching timers, tables of 

special symbols, lists of associative and commutative 

functions, and sort structure.  The user can thus save 

his job at the end of a session at the Teletype by saving 

the parameter file along with his formula lists, sparing 

himself the necessity of resetting all the parameters when 

he goes back to work again.  We have also found it con- 

venient to regard the weighting function as a set of para- 

meters.  Specifically, we now consider the following factors 

in computing a weight for a formula; length (number of 

symbols in formula), number of disjuncts, variable density 
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(number of symbols present divided by number of variables), 

symbol density (number of symbols present divided by 

number of representatives from a specified set of symbols), 

and all of the analysis items.  The weighting function may 

be any linear combination (with integer coefficients) of 

non-negative inteper powers of these factors, input from 

the user's Teletype via the front end in the form 

coeff-] (namei**exp,) 

coeff (name **exp ) 
n    n    n 

where each name.,- is one of the abovementioned weighting 

factors.  Coefficients and exponents are saved in the 

parameter file for referencing each time a formula needs 

to be weighted.  (The command REWEIGHT, with appropriate 

arguments, will cause new weights to be computed for a 

specified collection of formulae after the weighting 

function has been changed. This means that the user can 

have SAM explore a theory stage by stage, giving precedence 

to different types of formulae at each new step.  We 

have found this flexibility most helpful in our experi- 

mentation. ) 
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The front end also embodies a few routines which 

"pre-massage" formulae for AUTO-LOGIC.  Skolemization 

need no longer be done with paper and pencil but instead 

is accomplished automatically during an INPUT command. 

Formulae typed in after this command is given are trans- 

formed into PSD's by a routine based on the algorithm 

in [1], pp.4-6.  Use of the switch (NEG) with the INPUT 

command causes subsequently typed formulae to be negated 

and Skolemized with all variables replaced by terms of 

the appropriate sort.  This is useful in setting up 

proofs by contradiction, as explained in Section I of 

this report.  (A positive copy of the original formula 

is kept for later use should a contradiction be obtained.) 

These two features can frequently save the user a great 

deal of bothersome computation, and at the very least 

help improve the appearance of formulae input to SAM 

by allowing them to be cast in a form more natural to 

mathematicians.  For this latter purpose, the front end 

recognizes formula symbols consisting of more than one 

letter (so a particular group homomorphism in an 

algebraic theory might be denoted HOM instead of H or HI). 

There is also a facility whereby certain functions can 

be declared infix and interpreted as such when formulae 

are input or output. 

Below we give some examples of commands which can 
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bii  typed to the front end: 

OUTPUT (HIS) SAVFIL [NUM £200 AND DEP>5] 

(creates ASCII disc file, SAVFIL, containing copy of 
PSL s from list of reductions satisfying the condition; 
presence of (HIS) switch indicates that command will 
also be applied to all descendents of these PSD's on 
either the list of reductions or the list of expansions.) 

REMOVE (HIS) [NUM v3] LR 

(removes from list of reductions and list of expansions 
all PSD's, along with their descendents, satisfying the 
condition.) 

SAVE FILNAM 

(creates three ASCII disc files:  FILNAM.LR, FILNAM.LE, 
and FILNAM.PAM containing copies of current list of 
reductions, list of expansions, and parameter file infor- 
mation, respectively.) 

TYPE PAMSAM SORTS 

(outputs current sort formula on Teletype.) 

INPUT (NEG) LR [NUM ■ 3] LIBRARY 

(inputs to list of reductions at LOW pointer the PSD's 
obtained by Skolemizing the logical negation of formula 
#3 in ASCII disc file LIBRARY.) 

Work continues on the implementation of routines 

which will mediate between the mathematical symbolism 

of the experimenter and the algorithms of AUTO-LOGIC. 

It is safe to say that much of this would not be feasible 

without SNOBOL, the string-processing language in which 

the front end was wrttten.  Because of the flexibility of 

SNOBOL coding, we will be able to build new features into 

it with a minimum of bother; the present version of the 

front end should therefore be considered a preliminary one. 
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A complete user's manual for SAM, including a detailed 

description of the front end, will be written in the n^ar 

future and included in our next report. 

Drum Input/Output 

One of the main problems encountered in attempting to 

improve the efficiency of SAM has been that of handling 

and storing the large numbers of PSD's generated by the 

expansion process.  In the development of SAM V and VI, 

we have endeavored to solve this problem on two levels. 

Internally, the use of "windows" and sophisticated 

formula-weighting techniques helps to weed out unimportant 

formulae before they can overwhelm SAM's storage facilities 

Frequently, though, this is not enough, since many 

theories tend to generate great quantities of PSD's 

which should not be discarded right away.  In SAM 

VI procedures to store formulae externally on the million- 

word drum have been implemented. 

The drum I/O routine divides the list ot expansions 

into three parts.  The first part is a large drum file 

(DRMBIG) which contains all PSD's with weights in excess 

of a computed value.  During the generation process, 

PSD's of this or larger weight are added directly to the 

end of DRMBIG.  The second part is a small drum file 

(DRMNXT) which contains all the PSD's of weight less than 
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the computed value that are not in core.  The third 

part is the in-core list of expansions (LE).  When 

SAM is operating new expansions are either appended 

to DRMBIG or melded into LE.  If LE becomes empty a 

number of PSD's are moved from DRMNXT to LE.  If DRMNXT 

is exhausted, DRMBIG is sorted and a new LE and DRMNXT 

are created.  The sorting process is also used to reorder 

DRMBIG whenever the operator desires to change the 

weighting function. 

Space Allocation 

The I/O capabilities have been further extended by 

allowing the user to make maximum use of the internal I/O 

routines to do housekeeping and create temporary files 

at the user's direction.  This feature requires a 

dynamic allocation of I/O buffers.  The SNOBOL coding 

which has been added also requires dynamic storage.  To 

solve these demands for space allocation a general 

dynamic space allocator has been written which has calls 

to:  get new space, extend existing space, return space 

(even if not allocated), and clean up space.  Internal 

logic has also been added to SAM to control the size 

of the core image as a function of the state of the problem 

that SAM is working on.  This is necessary to prevent 

unstable situations where the core would be extended 

16 



to the limit. 

Auxiliary I/O Capabilities 

Work continues on the development of more sophisticated 

I/O techniques for SAM.  During this reporting period 

we experimented with the hardware and software components 

of what will eventually oecome a system for voice control 

of the CRT display.  SAM already has routines which, in 

effect, permit augmentation of the standard CRT character 

set by tables of special symbols (Greek letters, 

mathematical punctuation, etc.); these are being improved 

upon, as are the routines which enable the user to 

output formulae with special symbols to the plotter. 

SNOBOL 

Well before actually writing the front end, we 

realized that we would need some sort of string processing 

language for building new I/O capabilities into SAM. 

SNOBOL, developed by Farber, Griswold, and Poalnsky at 

Bell Telephone Laboratories, seemed to meet our 

requirements, so a compiler for it was written and 

tested.  We have continually improved our implementation 

of SNOBOL since then, and it now provides many features 

not available in SN0B0L3, the original Bell Labs version. 

A complete (but slightly outdated) description of our 
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version of SNOBOL may be found in Section III of [3] 
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SECTION III 

APPLIED MATHEMATICS AND SAM 

By October 1966, we were for the most part satisfied 

with SAM's performance in handling theories which admit 

a simple, natural axiomatization.  A group, for example, 

can be described by means of three short equalities 

and SAM proved itself capable of generating all interesting 

consequences of them in the space of a few minutes. 

Experimentation with modular lattice theory (which cul- 

minated in the proof of SAM's Lemma) demonstrated SAM's 

proficiency with somewhat larger axiom sets consisting 

mostly of simple equalities.  These successes convinced 

us that our AUTO-LOGIC algorithms were basically sound 

and efficient, and that we had implemented them properly 

in SAM.  Further major improvements could be motivated 

only by results obtained from the investigation of more 

complicated systems.  Bearing in mind our original 

concept of SAM as a tool for anyone who does mathematical 

work, we decided to experiment with the sort of mathematics 

that finds widespread application in the physical sciences. 

In particular, we wanted to attempt a fairly sub- 
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stantial axiomatic description and investigation of linear 

algebra.  Our immediate goal was to discover a set of axioms 

which would describe not just one vector space (in a 

manner analogous to our much-belabored three-axiom 

treatment of group theory), but an entire universe of 

vector spaces, all over the same field.  For concretness 

we considered our ground field to be the complex numbers, 

but since our axiomatization could convey no topological 

information, it actually described any field of degree 2 

over a distinguished subfield.  Fortunately, we had already 

gleaned a good deal of information from previous work 

with fields, begun late in 1965, and were aware of some 

of the difficulties we would encounter in exploring linear 

algebra.  Our original axiomatic description of a field 

had involved a great many pseudo-disjunctions--propositions 

of the form:  (not P]) or (not P2) or... or (not Pn) or 

Q, logically equivalent to:  (P] and Pp an(^ ••• an^ pn^ 

implies Q--which created difficulties previously unnoticed 

in the investigation of simpler theories.  The tendency 

was for SAM to be swamped by the many trivial results 

obtained from combinations of the axioms, a problem which 

persisted despite improvements in the pseudo-disjunct 

algorithms and the great increase in formula storage space 

made possibly by our acquistion of a million-word drum 

in the spring of 1966.  Our first foray into linear algebra 

20 



involved a 36-axiom representation which was basically 

an extension of the system of 20 axioms we had used to 

investigate fields.  Again, complicated pseudo-disjuncts , 

arising mostly from the need to identify variables as 

vectors or scalars, or whatever, predominated over 

equalities and SAM failed to produce anything of much 

interest despite the improvements we had made in it. 

Further development of SAM encouraged us to make another 

try, this time with a somewhat more ambitious theory 

employing a cleverer sort structure.  Our axiomatic rep- 

resentation, however, was still a "straightforward" 

one which relied heavily on the use of disjuncts, and 

the same old problems recurred. 

In January of 1967, we tried a different approach 

to the problem of representation.  It was observed that 

all but one of the disjuncts in our axioms (that one 

being the disjunct forbidding divisors of zero in the 

scalar field) served to place variables in the spaces 

to which they belonged.  Disjuncts like these can be 

eliminated by an elaborate variable sort procedure, 

but only a rudimentary sort theory was implemented in 

SAM V, then the current SAM program.  Roger Haydock 

discovered that the same results could be obtained by 

representing the theory in terms of a powerful but rather 

non-intuitive logical function having little to do with 
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linear algebra specifically.  Details and examples 

may be found in [2], pp.  13-17, but the basic idea 

was to define a three-argument function A which applies 

an operator (first argument) to an element of a space 

(secono argument) to take its value in the space named 

by the third argument.  Thus, if J is an operator on 

a space, K a vector in the domain of J, and W the range 

space of J, we may read A(J,K,W) as "the results of 

applying J to K to obtain a vector in W."  This enabled 

us to sort variables and identify what would normally 

be functions automatically from context.  In our new 

representation of the theory which we called "elementary 

generalized graded algebra" (EGGA) only 17 separate 

axioms were required, a net reduction of 19 over the 

previous "straightforward" representation.  Practically 

all of the new axioms were equalities and contained no 

multiple disjuncts--thus making them quite palatable to 

SAM--but they also tended to be quite long and complicated 

in appearance.  (See [3], pp.  30-33, for a complete 

list of axioms for EGGA.) 

This seemingly artifical construction bypassed all 

the weaknesses of SAM which had held back development 

previously.  With the advent of the representation which 

it permitted, the elementary sort capability already 

incorporated in SAM became genuinely useful.  Interesting 
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results appeared almost immediately and a number of 

unsuspected bugs were eliminated from the coding.  In 

addition to directing us along new avenues in our search 

for ways to improve SAM, our experience with more soph- 

isticated algebraic systems encouraged us to believe 

that SAM might one day prove useful in performing the 

complicated symbolic manipulations required by contem- 

porary physics. 



SECTION IV 

BOOLEAN MANIPULATION AND CIRCUIT DESIGN 

In July of 1967, we began to study the feasibility 

of applying SAM to some of the computational problems 

which arise in the design of complex logical switching 

circuitry.  Roughly speaking, every logical circuit has 

an algebraic representation in terms of Boolean primitives 

("and" "or" "not") and truth-valued variables.*  Computa- 

tion of logically equivalent representations in effect 

"redesigns" one's original circuit by producing others 

which will do the same job, but in a different way.  For- 

mally, a logical circuit with inputs X], X2....t Xn and 

outputs Ei, E2. ..., Em can be represented by the equations 

G] " H^ (Xj , .. ., Xn) 

Gr 
= Hr(Xi, 

Fl^l' 

» ^n »^1 »^9 »  • • • » G»._l ) 'n*ul'u2 

• •» Xp(G-j, ...» GyJ 

r-1 

'm Fm(Xl' • • Xn'6l' • • > Gr) 

*We did not consider circuits which involve a time delay. 



where the F^-'s and Hj's are Boolean functions. 

(The Gj's represent the possibility of an intermediate 

or final output of a circuit being used in more than one 

place.  The inductive nature of their definition elimi- 

nates ambiguities due to feedback.) 

These expressions can be written down immediately 

once we know how the circuit is supposed to behave.  Now 

the problem is to optimize our representation in some 

sense or another. We might, for instance, insist that 

our circuit be made up solely of certain predefined 

logical elements (representable by Boolean functions as 

"subclrcuits" in the same manner as the big circuit), 

and that it use as few of these as possible.  Additional 

requirements, e. g., that such and such a circuit ele- 

ment be "nested" only so and so many levels deep, may 

also be Imposed in practice.  Computations can thus 

become quite Intricate, and numerous attempts have 

been made to perform them by machine.  A precise, 

efficient, and universally applicable algorithm for 

optimizing circuit representations with respect to 

criteria which may change from time to time would be 

difficult to devise, so a more open-ended approach may 

be useful, the sort of approach which is embodied in 

SAM. 

Our experience with SAM has always been that it 
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excelled at Boolean algebra and similar theories; in 

this case, the symbolic calculations associated with 

circuit design seemed like natural ones for SAM to handle 

Here, our goal was different from that of our previous 

experimentation in that we were not interested in ex- 

ploring the development of a theory from a collection 

of axioms.  We wished rather to be able to input a 

system of complex logical formulae to SAM and have it 

produce a system equivalent in function to the given one 

but "better" in terms of previously selected design 

goals.  In outline, our procedure was as follows:  We 

first gave SAM a short, simple axiom set for Boolean 

algebra and allowed it to generate a sizeable list of 

reductions therefrom.  (Since we were not worried about 

logical independence of the axioms, we felt free to 

throw in a few useful but hard-to-derive formulae in 

order to facilitate computation.  Our axiom set also 

included the definitions of whatever circuit elements 

we wanted to work with.)  This list of reductions was 

then edited by deleting all obviously cumbersome and 

useless conspquences of the axioms, and saved in the 

usual manner.  We next selected the criteria by which 

the circuit representations were to be manipulated 

and modified SAM's weighting function accordingly, 

so that it would assign the lowest weights to those 
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formulae which came closest to meeting the criteria. 

SAM, with its new weighting function, was saved as a 

dump file.  To do our computations, we could then 

bring SAM into core, read in the previously saved list 

of reductions and append to it the formulae to be 

massaged via the "INSERT" command. 

We investigated several different types of mani- 

pulative problems this way, with varying degrees of 

success.  Where the goal was merely to simplify the 

original representation as much as possible, SAM 

generally performed quite well.  Work on the more general 

problem of changing the original representation into an 

equivalent representation made up entirely of specified 

circuit elements and then reducing the total weight 

of the system (weight being some function of the number 

of times each component is used) yielded results of a 

more ambiguous character, but on the whole we were 

encouraged. 

In one experiment, we gave SAM the definitions 

X nand Y = not (X and Y) 

N3(X,Y,Z) = not (X and Y and Z) 

and allowed it to generate theorems about the functions 

nand and N3.  We next inserted a representation of an 

"adder" circuit with inputs X-j^.X^ and outputs E], Eo, 

namely 
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E]   =   (X] and X2) or (X2 and X3) or (X3 and X]) 

E2 = X] xor X2 xor X3 

(where xor denotes the "exclusive" or:  X xor Y = 

(X or Y) and (not(X and Y)) ).  SAM was given a weight- 

ing function which caused it to compute E-) and E2 in 

3 
terms of not, nand, and N , and then simplify the re- 

sulting expressions as much as possible.  SAM's final 

simplification looked like 

E] = N3{x1 nand X2, X2 nand X3, X3 nand X]) 

E2 = ((Gi nand G2) nand (not X3)) nand N3{G1,G2,X3) 

where 

G-] = (not X] ) nand X2 

G2 = (not X2) nand X] 

A few minutes of paper-and-penci1 computation shows that 

this is not a particularly easy problem.  We tried others 

of an even more difficult nature, but with less success. 

Whatever the immediate results it produced, all of this 

experimentation was helpful to us in that it motivated 

the improvements we made to the expansion and digression 

procedures in AUTO-LOGIC.  We hope that our efforts will 

one day make SAM into a genuinely useful tool for doing the 

sort of open-ended symbol manipulation discussed here. 
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