
,r-, ' .

/ - ;.. „

CRT-AIDED SEMI-AUTOMATED MATHEMATICS

Bennett, James H.
Guard, James R.
Haydock, Roger
Oglesby, Francis C.
Paschke, William L.
Settle, Larry 6.

APPLIED LOGIC CORPORATION
ONE PALMER SQUARE

PRINCETON, NEW JERSEY

Contract AF F-19628-67-C-0100

D D C

r N0V2 7 MB

B '

FINAL REPORT

Period Covered: 1 October 1966 through 31 May 1966

July 1968

This research was sponsored by the Advanced Research
Projects Agency under ARPA Order No. 700

Contract Monitor: Timothy P. Hart

Distribution of this document is unlimited

Prepared

for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UNITED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

Reproduced by the
CLEARINGHOUSE

(or Federal Scientific & Technical
Information Springfield Va. 22I5I

ilhU documfot IK-*) SMS
whaw ('",<i aal»r to

opproraw

on f» .».-»«—f*v»

41

CRT-AIDED SEMI-AUTOMATED MATHEMATICS

Bennett, James H.
Guard, James R.
Haydock, Roger
Oglesby, Francis C.
Paschke, Wi11iam L.
Settle, Larry 6.

APPLIED LOGIC CORPORATION
ONE PALMER SQUARE

PRINCETON, NEW JERSEY

Contract AF F-19628-67-C-0100

FINAL REPORT

Period Covered: 1 October 1966 through 31 May 1969

July 1968

This research was sponsored by the Advanced Research
Projects Agency under ARPA Order No. 700

Contract Monitor: Timothy P. Hart

Distributior. of this document is unlimited

Prepared

for

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES
OFFICE OF AEROSPACE RESEARCH

UiMTED STATES AIR FORCE
BEDFORD, MASSACHUSETTS 01730

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS i

PERSONNEL ii

ABSTRACT 11 i

SUMMARY iv

Section I Improvements in AUTO-LOGIC 1

Section II Control, Input/Output 9

Section III Applied Mathematics and SAM 19

Section IV Boolean Manipulation and Circuit

Design 24

BIBLIOGRAPHY 29

ACKNOWLEDGMENTS

The authors wish to acknowledge the encouragement

given during every phase of the work by their technical

monitor, Timothy P. Hart, and by Robert Taylor of the

Advanced Research Projects Agency.

PERSONNEL

Tne authors wish to express appreciation

for the whole-hearted efforts on the part

of the following Applied Logic personnel:

Thomas F. Droege
William B. Easton
John N. Henness
Theodore A. Hess
Thomas H. Mott, Jr.

11

1 '

ABSTRACT

This report describes the status of the sixth in

a series of six experiments in semi-automated mathe-

matics. This effort extended from October 1, 1966

through May 31, 1968. These experiments culminated

in large complex computer programs which allow a

mathematician to prove mathematical theorems on a man-

machine basis. SAM VI, the sixth program, uses a cathode

ray tube as the principal interface between the mathe-

matician and a high speed digital computer. An elaborate

language and logical capability has been implemented in

SAM VI. These include I/O languages for expressing

mathematical statements in a form suitable for both the

mathematician and the machine to recognize and handle

with ease and convenience, a language for expressing and

handling sorts and range of symbols, and an auto-

logic algorithm and matching routine. The latter con-

stitute the capability for handling, automatically,

logic with equality. This capability is particularly

useful at an intermediate state of the proof when it

is desired to have the machine try to verify auto-

matically a given portion of the proof.

111

■

SUMMARY

Semi-automated mathematics is an approach to

theorem-proving which seeks to combine automatic

logic routines with ordinary proof procedures in such

a manner that the resulting procedure is both efficient

and subject to control and direction by human inter-

vention. Because it renders the mathematician an

essential factor in the quest to establish theorems,

this approach departs from the usual theorem-proving

attempts in which the computer unaided seeks to find

proofs. For obvious reasons the term "semi-automated

mathematics" is employed to describe this new approach,

since it views the basic role of the computer primarily

as that of providing as much assistance as possible to

the mathematician.

As experimental tools for studying techniques in

semi-automated mathematics, a series of six computer

programs, called SAM I through SAM VI, have been devel-

oped. In this report we describe the status of ^.AM VI.

However, for the reader unacquainted with the background,

let us briefly summarize the language and logic capa-

bilities of the preceding SAM programs. A fuller

account of these programs can be found in our earlier

reports.

iv

The first program, SAM I, implemented the pro-

positional calculus in a framework of natural deduction;

the goal of man-machine interaction in SAM I was to

obtain proofs of minimal length. SAM II dealt with

quantifier-free first-order axiom systems of mathe-

matics. SAM II was adequate to investigate elementary

mathematical theories including geometry and elemen-

tary set theory. The program left the entire burden of

proof generation with the user. SAM II was responsible

for checking the validity of steps and generating con-

sequences by the basic rules. SAM III saw the beginning

of the development of AUTO-LOGIC, which contained the

capability for automatically handling predicate and

functional logic containing equality. The capability

is particularly useful at an intermediate stage of a

proof when it is desired to have the machine attempt

to verify a portion of a proof without requiring the

user to supply al1 the elementary steps in the deri-

vation. The years have seen continual increase in the

power of AUT0-10GIC to verify i» itomatical ly the truth

of complex deductions. SAM III initiated development

of sophisticated input/output techniques and contained

the first general-purpose languages for expressing

mathematical statements in suitable form for both

mathematician and machine.

The programs, SAM I, II, and III, were imple-

mented on a small scientific computer, the IBM 1620.

SAM IV expanded the capability of SAM III in a number

of directions and was implemented on an IBM 7040, a

medium scale scientific computer. The improvements

were primarily in AUTO-LOGIC and in the use of SLIP

(a list processing language) as the underlying frame-

work for the program.

SAM V saw advances in AUTO-LOGIC with respect to

the »eml-automatic handling of equality and the alge-

braic aspects of mathematical theories. It also

Included the implementation of a CRT display as the

primary interface between man and machine. This is a

most convenient and flexible means of interaction and

the first allowing truly real-time communication

between man and machine at a rate that is efficient

for the user.

SAM VI is oriented primarily toward advanced im-

provements in the AUTO-LOGIC routines of SAM and in

experimenting with flexible control and input-output

features. These latter include improvements in the

CRT routines, experimentation with voice control, and

a new "SN0B0L front end" which give Lhe user (in par-

ticular, the non-programming user) a fairly natural mode

for input and output of formulae and the ability easily

vi

^

to modify and control the AUTO-LOGIC routines. The

programs, SAM V and VI, were implemented on a PDP-6,

a large-scale computer with a time-sharing system.

This report summarizes and brings up to date the

material contained in [2], [3]. Familiarity with our

previous final report [1] is assumed.

vii

SECTION I

IMPROVEMENTS IN AUTO-LOGIC

AUTO-LOGIC is our name for the collection of algo-

rithms which enable SAM to generate (hopefully) interesting

consequences from a finite set of pseudo-disjunctions

(PSD's). It embodies four processes called reduction,

expansion, digression, and contradiction, which it applies

to the set of PSD's to generate new ones and then eli-

minate or simplify whichever of these it can. PSD's

are allowed to remain in the set only if they can not

be reduced by reduction or deleted by contradiction,

while expansion and digression serve to generate new

PSD's for the set. (For details, see Section II of

[1].) Our experience with SAM in exploring various

theories has shown us that no single detailed procedure

performs optimally in all cases. The basic design of

AUTO-LOGIC has been adequate for all of our work, b'it

we have found it convenient to modify certain parts of

the algorithms each time our research takes a new tack.

In making improvements to AUTO-LOGIC, therefore, the

tendency has been to add on options whose strength of

application is under the control of the user. The two

principal additions to AUTO-LOGIC during the period co-

vered by this report were multiple digression and

extended expansion, which we now describe.

Multiple Digression

Digression is an attempt to use the strategy of

temporarily complicating a proof in order to gain some

later simplification. More specifically, digression as

we have implemented it In SAM uses an equality b=c to

expand a formula P by replacing an instance of the "sim-

pler" term c in P with the appropriate instance of b.

(Recall that AUTO-LOGIC orders equalities in such a way

that the "size" of the right-hand side is less than

that of the left.) When the result of this digression

is brought up from the list of expansions, its pro-

genitors, in particular the equality b=c, are not used

in reducing it. If no other PSD's reduce the digression,

it is deleted. If some reduction by a PSD other than

b=c is possible, the digression is kept and the main

algorithm continues as usual.

We were able to improve on this process by intro-

ducing a technique which we call multiple digression.

PSD's produced in the manner indicated above become

"one-step" digressions; for any n, if no PSD on the

list of reductions (other than progenitors) can reduce

a given n-step digression which has been brought up

from the list of expansions, then, using each equality

on the list of reductions, the digression procedure

above is applied to the n-step digression and n+l-step

digressions are generated. The original n-?tep dig-

ression is then deleted. On the other hand, if some

reduction by a PSD other than an immediate predecessor

is possible, the n-step digression is kept and the main

algorithm takes over. In our implementation of it, mul-

tiple digression is quite flexible in that the user can

specify the maximum number of digression steps AUTO-

LOGIC is to use (including none at all). This number

must be chosen judiciously; in our experimentation

with SAM we have come across many examples of interesting

PSD's which in all likelihood would not have been gen-

erated without multiple digression, but it is clear that

the process can consume a great deal of computer time

and storage soace if given too much latitude.

Extended Expansion

Most digressions lead nowhere, but some prove very

fruitful. In hopes of achieving greater selectivity,

we have extended multiple digression to a more general

procedure which we call extended expansion. Roughly

speaking, extended expansion attempts to apply matching

and digression discriminated to certain parts of for-

mulae, leaving other parts unaltered. Given a formula

P, an equality b=c, and a set S of equalities (the

"digression set"), extended expansion tries to construct

sequences Q-) .Q? »• • • »Qm
0^ formulae satisfying

(1) QT is P.

(ii) Q^+i is obtained from Q. by applying a

(one-step) digression using an equality

from S to some term of Q^ .

(iii) Qi+i ^as a term which is "closer" to matching

b than any term of Q-j .

(iv) Qm contains a term which matches b. If such ^m

a sequence is found, Qm is expanded (in the

usual sense) by b=c; otherwise, no PSD is

generated. In practice, the user must set

an upper limit on m to keep extended ex-

pansion from consuming too much time.

Our current definition of "closer" in (iii) in-

volves a concept of "level in b" (where b is the left

hand side of our given equality). Occurrences cf sub-

terms of b are assigned levels in b as follows:

1. b has a level 0 in b.

2. If g(t,,...,t) has level n in b, then each t-j

has level n+1 in b. It t is any term which

matches a subterm of b of level n in b, we

then say that t matches b at 1evel n. Terms

of a formula Q matching b at a level n which

is less than or equal to the level at which any other

terms of Q match b are called least-level matches of b

in Q, and n is called the b-level of Q. The lower the

b-level of a formula, the "closer" it is to containing

a matching term for b. In applying rule (ii) above, ex-

tended expansion restricts digression to those terms of

Qj which contain a least-level match of b. The net effect

of this procedure, if it is successful, is to construct

a matching term for b within the given formula P, How-

ever implemented, a capability tor this sort of manipu-

lation is important for much of the work we have been

doing recently, particularly our work with logical cir-

cuit design.

Skolemization of Equalities

In addition to experimenting with multiple dig-

ression and extended expansion, we have made an improve-

ment in the way in which AUTO-LOGIC handles proof by

contradiction. There are two modes of operation for

AUTO-LOGIC; in the positive mode AUTO-LOGIC generates

new theorems from an initial set of PSD's, whereas in

the negative mode the user has a particular formula A

in mind which he would like to prove to be a consequence

of the original set of PSD's. In this latter mode the

original list is augmented by the PSD's representing the

logical negation of A and it is hoped that AUTO-LOGIC

will obtain FAL as a consequence of this augmented set.

We have noticed that when using the negative mode

of operation one is much more likely to be successful

if A is not a simple equality. For example, we may

have defined a relation R(X,Y) in some algebraic theory

and now wish to show that the transitive law

R(X,Y) AND R(Y,Z) IMP R(Y,Z)

holds. The logical negation of this law involves in-

troducing three new constants X2J8, Y20, and Z20 satisfying

1. NOT((R(X20,Y20) AND R(Y20.Z20)) IMP R(X20,Z20))

Since 1. is not in PSD form, SAM Skolemizes it

into the logically equivalent

2. R(X20,Y20) AND R(Y20,Z20) AND N0T(R(X20,Z20))

which is added to the list of reductions as three

separate PSD's

R(X20.Y20), R(Y20,Z20), and NOT(R(X20,Z20))

The chances of AUTO-LOGIC obtaining FAL in this

case are very good (provided that the transitity of

R does indeed follow from the original axioms).

The reason for this is that AUTO-LOGIC can easily

expand each of the separate PSD's with PSD's on

the list of reductions, thereby obtaining further

consequences involving X20, Y20. and Z20 in terms

of the relation R and whatever is used in defining it.

On the other hand, we might attempt to show that a

certain function S(X,Y) is commutative. If AUTO-LOGIC

tried to work with the formula

3. NOT(S(X20,Y20)=S(Y20,X2{;))

the chance of expansions or digressions involving

X20 and Y20 being generated would be slight, and

thus a contradiction would probably not be obtained.

Loosely speaking, SAM generally does not have much

motivation to work with negated simple equalities

like 3. which involve only constants.

Analysis of the earlier example concerning the

transitive law suggests a way by which the necessary

motivation can be introduced. Suppose N0T(B*=C*) is the

logical negation of B=C (where B* is the formula B with

all variables changed into constants of the appropriate

sort, similarly for C*). If we wish to use the negative

mode to prove B=C from the original list of PSD's, we

add the three PSD's B*=k1, C*=k2, and N0T(k1=k2), where

k-j and k« are new constants of the appropriate sort,

instead of the single PSD N0T(B*=C*). (Of course, if

B* is already a constant, we do not introduce k^ and simi

larly for C*.) This procedure gives AUTO-LOGIC a much

better chance of obtaining expansions and digressions

involving the constants and terms of B* and C*.

Our method of breaking down negated equalities is

applicable not only to the case cited, but also to any

instance in which the Skolemization of the logical nega-

tion of the formula leads to a PSD of the form N0T(B*=C*).

For example, the proposition

R(2.y) TMP (D{Z,C(Y,X))=C(D{Z,Y),X))

has a logical negation expressed by the PSD's: R(Z20,X20),

D(Z2|8,C(Y20,X20))=D20,C(D(Z20,Y20),X20)=C20, and

Not(D20=C20).

This modification in the Skolemization of equalities

has been implemented in SAM, and has been found to increase

greatly the power and ranye of application of the negative

mode of operation.

SECTION II

CONTROL, INPUT/OUTPUT

The Front End.

Our work with SAM has necessitated the creation of

numerous control and debugging routines which now provide

the user with an extensive repertory of interactive

techniques. There are, for example, routines for creating

and manipulating formula libraries, changing weight

functions, setting program parameters, and outputting

diagnostic information. Until recently, however, these

routines were inaccessible to anyone unfamiliar with

the inner workings of SAM. The functions which they

perform have turned out to be important for the operation

of SAM, so for the sake of non-programming users (and

our own convenience) we have implemented a comprehensive

control package which will, we hope, greatly facilitate

their use. This "front end" as we call it, will also

permit remote users without a CRT to operate SAM in a

fairly natural manner.

SAM's front end is basically an interpreter for a

simple command language. Commands are entered from the

user's Teletype and have the general format: VERB

(SWITCHES) TONAME [CONDITIONS] FROMNAME. At present.

VERB can be any of 19 imperatives. Depending on which

of these is used, modification of the desired action can

be specified by one of 14 available switches. If the verb

calls for movement of formulae of formula libraries, origin

and destination are specified by FROMNAME and TONAME. The

action of a command can be limited to those formulae in a

list or library meeting certain conditions by inserting the

conditions between square brackets when typing in the command

Tiiese conditions may be anything expressible as an arithmetic

or Boolean relationship among the nine quantities in the

"analysis" of a formula.* Thus, the condition [NUM 5 200

AND DEP>-5] is intelligible to the interpreter and would

indicate that the command in which it appeared was to be

applied only to formulae with numbers^200 and at a depth

greater than 5 from *:he axioms. The list of verbs includes

several entries which allow the user to initiate and control

routine housekeeping procedures. These permit

♦Each formula considered by AUTO-LOGIC has attached to
it several data words in which the following items are stored
formula number, contradiction bit (set if formula is a
consequence of the logical negation of something we are
trying to prove), heredity bit (if set in a given formula,
will also be set in each of that formula's descendents),
heredity depth (depth from a formula in which heredity bit
was set originally), formula numbers of major and minor
antecedents, type (0 if reduction, 1 if expansion, n+1
if n-step digression), weight, and depth from axioms. This
information constitutes the analysis of a formula.

10

formulae to be assembled into libraries, input, output,

saved on the disc, gotten from the disc, appended to or

deleted from other formula lists, and displayed on a CRT.

Formerly, most of these things could only be accomplished by

painstaking manipulation via the PDP-6 debugging language,

DDT.

Another great convenience afforded by the front end is

the ease with which program parameters may be set and saved.

About 30 of the most important of these have been collected

into a single file which is read by the main program; tne

front end provides easy access to this file. Among the

items saved in the parameter file are: upper and lower

windows (used for throwing away PSD's with weights outside

a desired range), maximum number of steps for multiple

digression, instantiation and matching timers, tables of

special symbols, lists of associative and commutative

functions, and sort structure. The user can thus save

his job at the end of a session at the Teletype by saving

the parameter file along with his formula lists, sparing

himself the necessity of resetting all the parameters when

he goes back to work again. We have also found it con-

venient to regard the weighting function as a set of para-

meters. Specifically, we now consider the following factors

in computing a weight for a formula; length (number of

symbols in formula), number of disjuncts, variable density

11

(number of symbols present divided by number of variables),

symbol density (number of symbols present divided by

number of representatives from a specified set of symbols),

and all of the analysis items. The weighting function may

be any linear combination (with integer coefficients) of

non-negative inteper powers of these factors, input from

the user's Teletype via the front end in the form

coeff-] (namei**exp,)

coeff (name **exp)
n n n

where each name.,- is one of the abovementioned weighting

factors. Coefficients and exponents are saved in the

parameter file for referencing each time a formula needs

to be weighted. (The command REWEIGHT, with appropriate

arguments, will cause new weights to be computed for a

specified collection of formulae after the weighting

function has been changed. This means that the user can

have SAM explore a theory stage by stage, giving precedence

to different types of formulae at each new step. We

have found this flexibility most helpful in our experi-

mentation.)

12

The front end also embodies a few routines which

"pre-massage" formulae for AUTO-LOGIC. Skolemization

need no longer be done with paper and pencil but instead

is accomplished automatically during an INPUT command.

Formulae typed in after this command is given are trans-

formed into PSD's by a routine based on the algorithm

in [1], pp.4-6. Use of the switch (NEG) with the INPUT

command causes subsequently typed formulae to be negated

and Skolemized with all variables replaced by terms of

the appropriate sort. This is useful in setting up

proofs by contradiction, as explained in Section I of

this report. (A positive copy of the original formula

is kept for later use should a contradiction be obtained.)

These two features can frequently save the user a great

deal of bothersome computation, and at the very least

help improve the appearance of formulae input to SAM

by allowing them to be cast in a form more natural to

mathematicians. For this latter purpose, the front end

recognizes formula symbols consisting of more than one

letter (so a particular group homomorphism in an

algebraic theory might be denoted HOM instead of H or HI).

There is also a facility whereby certain functions can

be declared infix and interpreted as such when formulae

are input or output.

Below we give some examples of commands which can

13

bii typed to the front end:

OUTPUT (HIS) SAVFIL [NUM £200 AND DEP>5]

(creates ASCII disc file, SAVFIL, containing copy of
PSL s from list of reductions satisfying the condition;
presence of (HIS) switch indicates that command will
also be applied to all descendents of these PSD's on
either the list of reductions or the list of expansions.)

REMOVE (HIS) [NUM v3] LR

(removes from list of reductions and list of expansions
all PSD's, along with their descendents, satisfying the
condition.)

SAVE FILNAM

(creates three ASCII disc files: FILNAM.LR, FILNAM.LE,
and FILNAM.PAM containing copies of current list of
reductions, list of expansions, and parameter file infor-
mation, respectively.)

TYPE PAMSAM SORTS

(outputs current sort formula on Teletype.)

INPUT (NEG) LR [NUM ■ 3] LIBRARY

(inputs to list of reductions at LOW pointer the PSD's
obtained by Skolemizing the logical negation of formula
#3 in ASCII disc file LIBRARY.)

Work continues on the implementation of routines

which will mediate between the mathematical symbolism

of the experimenter and the algorithms of AUTO-LOGIC.

It is safe to say that much of this would not be feasible

without SNOBOL, the string-processing language in which

the front end was wrttten. Because of the flexibility of

SNOBOL coding, we will be able to build new features into

it with a minimum of bother; the present version of the

front end should therefore be considered a preliminary one.

14

A complete user's manual for SAM, including a detailed

description of the front end, will be written in the n^ar

future and included in our next report.

Drum Input/Output

One of the main problems encountered in attempting to

improve the efficiency of SAM has been that of handling

and storing the large numbers of PSD's generated by the

expansion process. In the development of SAM V and VI,

we have endeavored to solve this problem on two levels.

Internally, the use of "windows" and sophisticated

formula-weighting techniques helps to weed out unimportant

formulae before they can overwhelm SAM's storage facilities

Frequently, though, this is not enough, since many

theories tend to generate great quantities of PSD's

which should not be discarded right away. In SAM

VI procedures to store formulae externally on the million-

word drum have been implemented.

The drum I/O routine divides the list ot expansions

into three parts. The first part is a large drum file

(DRMBIG) which contains all PSD's with weights in excess

of a computed value. During the generation process,

PSD's of this or larger weight are added directly to the

end of DRMBIG. The second part is a small drum file

(DRMNXT) which contains all the PSD's of weight less than

15

the computed value that are not in core. The third

part is the in-core list of expansions (LE). When

SAM is operating new expansions are either appended

to DRMBIG or melded into LE. If LE becomes empty a

number of PSD's are moved from DRMNXT to LE. If DRMNXT

is exhausted, DRMBIG is sorted and a new LE and DRMNXT

are created. The sorting process is also used to reorder

DRMBIG whenever the operator desires to change the

weighting function.

Space Allocation

The I/O capabilities have been further extended by

allowing the user to make maximum use of the internal I/O

routines to do housekeeping and create temporary files

at the user's direction. This feature requires a

dynamic allocation of I/O buffers. The SNOBOL coding

which has been added also requires dynamic storage. To

solve these demands for space allocation a general

dynamic space allocator has been written which has calls

to: get new space, extend existing space, return space

(even if not allocated), and clean up space. Internal

logic has also been added to SAM to control the size

of the core image as a function of the state of the problem

that SAM is working on. This is necessary to prevent

unstable situations where the core would be extended

16

to the limit.

Auxiliary I/O Capabilities

Work continues on the development of more sophisticated

I/O techniques for SAM. During this reporting period

we experimented with the hardware and software components

of what will eventually oecome a system for voice control

of the CRT display. SAM already has routines which, in

effect, permit augmentation of the standard CRT character

set by tables of special symbols (Greek letters,

mathematical punctuation, etc.); these are being improved

upon, as are the routines which enable the user to

output formulae with special symbols to the plotter.

SNOBOL

Well before actually writing the front end, we

realized that we would need some sort of string processing

language for building new I/O capabilities into SAM.

SNOBOL, developed by Farber, Griswold, and Poalnsky at

Bell Telephone Laboratories, seemed to meet our

requirements, so a compiler for it was written and

tested. We have continually improved our implementation

of SNOBOL since then, and it now provides many features

not available in SN0B0L3, the original Bell Labs version.

A complete (but slightly outdated) description of our

17

version of SNOBOL may be found in Section III of [3]

18

SECTION III

APPLIED MATHEMATICS AND SAM

By October 1966, we were for the most part satisfied

with SAM's performance in handling theories which admit

a simple, natural axiomatization. A group, for example,

can be described by means of three short equalities

and SAM proved itself capable of generating all interesting

consequences of them in the space of a few minutes.

Experimentation with modular lattice theory (which cul-

minated in the proof of SAM's Lemma) demonstrated SAM's

proficiency with somewhat larger axiom sets consisting

mostly of simple equalities. These successes convinced

us that our AUTO-LOGIC algorithms were basically sound

and efficient, and that we had implemented them properly

in SAM. Further major improvements could be motivated

only by results obtained from the investigation of more

complicated systems. Bearing in mind our original

concept of SAM as a tool for anyone who does mathematical

work, we decided to experiment with the sort of mathematics

that finds widespread application in the physical sciences.

In particular, we wanted to attempt a fairly sub-

19

stantial axiomatic description and investigation of linear

algebra. Our immediate goal was to discover a set of axioms

which would describe not just one vector space (in a

manner analogous to our much-belabored three-axiom

treatment of group theory), but an entire universe of

vector spaces, all over the same field. For concretness

we considered our ground field to be the complex numbers,

but since our axiomatization could convey no topological

information, it actually described any field of degree 2

over a distinguished subfield. Fortunately, we had already

gleaned a good deal of information from previous work

with fields, begun late in 1965, and were aware of some

of the difficulties we would encounter in exploring linear

algebra. Our original axiomatic description of a field

had involved a great many pseudo-disjunctions--propositions

of the form: (not P]) or (not P2) or... or (not Pn) or

Q, logically equivalent to: (P] and Pp an(^ ••• an^ pn^

implies Q--which created difficulties previously unnoticed

in the investigation of simpler theories. The tendency

was for SAM to be swamped by the many trivial results

obtained from combinations of the axioms, a problem which

persisted despite improvements in the pseudo-disjunct

algorithms and the great increase in formula storage space

made possibly by our acquistion of a million-word drum

in the spring of 1966. Our first foray into linear algebra

20

involved a 36-axiom representation which was basically

an extension of the system of 20 axioms we had used to

investigate fields. Again, complicated pseudo-disjuncts ,

arising mostly from the need to identify variables as

vectors or scalars, or whatever, predominated over

equalities and SAM failed to produce anything of much

interest despite the improvements we had made in it.

Further development of SAM encouraged us to make another

try, this time with a somewhat more ambitious theory

employing a cleverer sort structure. Our axiomatic rep-

resentation, however, was still a "straightforward"

one which relied heavily on the use of disjuncts, and

the same old problems recurred.

In January of 1967, we tried a different approach

to the problem of representation. It was observed that

all but one of the disjuncts in our axioms (that one

being the disjunct forbidding divisors of zero in the

scalar field) served to place variables in the spaces

to which they belonged. Disjuncts like these can be

eliminated by an elaborate variable sort procedure,

but only a rudimentary sort theory was implemented in

SAM V, then the current SAM program. Roger Haydock

discovered that the same results could be obtained by

representing the theory in terms of a powerful but rather

non-intuitive logical function having little to do with

21

linear algebra specifically. Details and examples

may be found in [2], pp. 13-17, but the basic idea

was to define a three-argument function A which applies

an operator (first argument) to an element of a space

(secono argument) to take its value in the space named

by the third argument. Thus, if J is an operator on

a space, K a vector in the domain of J, and W the range

space of J, we may read A(J,K,W) as "the results of

applying J to K to obtain a vector in W." This enabled

us to sort variables and identify what would normally

be functions automatically from context. In our new

representation of the theory which we called "elementary

generalized graded algebra" (EGGA) only 17 separate

axioms were required, a net reduction of 19 over the

previous "straightforward" representation. Practically

all of the new axioms were equalities and contained no

multiple disjuncts--thus making them quite palatable to

SAM--but they also tended to be quite long and complicated

in appearance. (See [3], pp. 30-33, for a complete

list of axioms for EGGA.)

This seemingly artifical construction bypassed all

the weaknesses of SAM which had held back development

previously. With the advent of the representation which

it permitted, the elementary sort capability already

incorporated in SAM became genuinely useful. Interesting

22

results appeared almost immediately and a number of

unsuspected bugs were eliminated from the coding. In

addition to directing us along new avenues in our search

for ways to improve SAM, our experience with more soph-

isticated algebraic systems encouraged us to believe

that SAM might one day prove useful in performing the

complicated symbolic manipulations required by contem-

porary physics.

SECTION IV

BOOLEAN MANIPULATION AND CIRCUIT DESIGN

In July of 1967, we began to study the feasibility

of applying SAM to some of the computational problems

which arise in the design of complex logical switching

circuitry. Roughly speaking, every logical circuit has

an algebraic representation in terms of Boolean primitives

("and" "or" "not") and truth-valued variables.* Computa-

tion of logically equivalent representations in effect

"redesigns" one's original circuit by producing others

which will do the same job, but in a different way. For-

mally, a logical circuit with inputs X], X2....t Xn and

outputs Ei, E2. ..., Em can be represented by the equations

G] " H^ (Xj , .. ., Xn)

Gr
= Hr(Xi,

Fl^l'

» ^n »^1 »^9 » • • • » G»._l) 'n*ul'u2

• •» Xp(G-j, ...» GyJ

r-1

'm Fm(Xl' • • Xn'6l' • • > Gr)

*We did not consider circuits which involve a time delay.

where the F^-'s and Hj's are Boolean functions.

(The Gj's represent the possibility of an intermediate

or final output of a circuit being used in more than one

place. The inductive nature of their definition elimi-

nates ambiguities due to feedback.)

These expressions can be written down immediately

once we know how the circuit is supposed to behave. Now

the problem is to optimize our representation in some

sense or another. We might, for instance, insist that

our circuit be made up solely of certain predefined

logical elements (representable by Boolean functions as

"subclrcuits" in the same manner as the big circuit),

and that it use as few of these as possible. Additional

requirements, e. g., that such and such a circuit ele-

ment be "nested" only so and so many levels deep, may

also be Imposed in practice. Computations can thus

become quite Intricate, and numerous attempts have

been made to perform them by machine. A precise,

efficient, and universally applicable algorithm for

optimizing circuit representations with respect to

criteria which may change from time to time would be

difficult to devise, so a more open-ended approach may

be useful, the sort of approach which is embodied in

SAM.

Our experience with SAM has always been that it

25

excelled at Boolean algebra and similar theories; in

this case, the symbolic calculations associated with

circuit design seemed like natural ones for SAM to handle

Here, our goal was different from that of our previous

experimentation in that we were not interested in ex-

ploring the development of a theory from a collection

of axioms. We wished rather to be able to input a

system of complex logical formulae to SAM and have it

produce a system equivalent in function to the given one

but "better" in terms of previously selected design

goals. In outline, our procedure was as follows: We

first gave SAM a short, simple axiom set for Boolean

algebra and allowed it to generate a sizeable list of

reductions therefrom. (Since we were not worried about

logical independence of the axioms, we felt free to

throw in a few useful but hard-to-derive formulae in

order to facilitate computation. Our axiom set also

included the definitions of whatever circuit elements

we wanted to work with.) This list of reductions was

then edited by deleting all obviously cumbersome and

useless conspquences of the axioms, and saved in the

usual manner. We next selected the criteria by which

the circuit representations were to be manipulated

and modified SAM's weighting function accordingly,

so that it would assign the lowest weights to those

26

formulae which came closest to meeting the criteria.

SAM, with its new weighting function, was saved as a

dump file. To do our computations, we could then

bring SAM into core, read in the previously saved list

of reductions and append to it the formulae to be

massaged via the "INSERT" command.

We investigated several different types of mani-

pulative problems this way, with varying degrees of

success. Where the goal was merely to simplify the

original representation as much as possible, SAM

generally performed quite well. Work on the more general

problem of changing the original representation into an

equivalent representation made up entirely of specified

circuit elements and then reducing the total weight

of the system (weight being some function of the number

of times each component is used) yielded results of a

more ambiguous character, but on the whole we were

encouraged.

In one experiment, we gave SAM the definitions

X nand Y = not (X and Y)

N3(X,Y,Z) = not (X and Y and Z)

and allowed it to generate theorems about the functions

nand and N3. We next inserted a representation of an

"adder" circuit with inputs X-j^.X^ and outputs E], Eo,

namely

27

E] = (X] and X2) or (X2 and X3) or (X3 and X])

E2 = X] xor X2 xor X3

(where xor denotes the "exclusive" or: X xor Y =

(X or Y) and (not(X and Y))). SAM was given a weight-

ing function which caused it to compute E-) and E2 in

3
terms of not, nand, and N , and then simplify the re-

sulting expressions as much as possible. SAM's final

simplification looked like

E] = N3{x1 nand X2, X2 nand X3, X3 nand X])

E2 = ((Gi nand G2) nand (not X3)) nand N3{G1,G2,X3)

where

G-] = (not X]) nand X2

G2 = (not X2) nand X]

A few minutes of paper-and-penci1 computation shows that

this is not a particularly easy problem. We tried others

of an even more difficult nature, but with less success.

Whatever the immediate results it produced, all of this

experimentation was helpful to us in that it motivated

the improvements we made to the expansion and digression

procedures in AUTO-LOGIC. We hope that our efforts will

one day make SAM into a genuinely useful tool for doing the

sort of open-ended symbol manipulation discussed here.

28

BIBLIOGRAPHY

[1] "CRT-Aided Semi-Automated Mathematics" by
J. H. Bennett, W. B. Easton, J. R. Guard, and
L. G. Settle. Final Report No.AFCRL-67-0167.
January 1967. (Contract No. AF 19(628)-3250)

[2] "CRT-Aided Semi-Automated Mathematics" Semi
annual Report covering period: 1 October 1966
through 31 March 1967. (Contract No. AF
F19628-67-C-0100)

[3] "CRT-Aided Semi-Automated Mathematics" Semi
annual Report covering period: 1 June 1967
through 30 November 1967. (Contract No. AF
F19628-67-C-0100-P001)

29

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D
(Security r/u.< M/irolion o/ lille, hody of nbsl'O'-t and induing nnnnialiun mm/ br entnrrl ukrn thi tn trail report i> i lasxififd)

I. ORICINATINU »CTiV(TY fCorpiirulr author)

Applied Logic Corporation, One Palmer Square
Princeton, X'evv Jersey 08540

CRT-Aided Semi-Automated Matheinatics

la. REPORT SECURITY CLASSIFICATION

Unclassified
Tfc OROUP

* DCSCRiRTivc NOTES (Typr of report aid inriustvt dates)

Final Scientific Report 1 October 1966 through 31 May 1968
t. AUTHORTS« (Last name, first name, initial)

Bennett, James H. Haydock, Roger
Guard, James R. Oglesby, Francis C.

Paschke, William L.
Settle, Larry G,

•■ REPORT DATE
July 1968

7a TOTAL NO. OF PASES
31

TE NO. Or REFS
3

i& CONTRACT OR GRANT NO.

AF F19628-67-C-0100
ft. PROJECT NO.

r. TASK

d.

AR PA Orde
700

So. ORIGINATOR'S REPORT NUMBERlV

Final Report

»ft. OTHER REPORT HOS) (Any other numbers that may br
assigned this report)

10. AVAILAtlLITY LIMITATION NOTICt*

11. SUPPLEMENTARY NOTES Prepared for
Hq. , AFCRL, OAR(CRB)
United States Air Force
L. G. Hanscom Field, Bedford, Mas

12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency

II. ABSTRACT

Thw report describes the status of the sixth in a series of six
experiments in semi-automated mathematics. This effort extended from
1 October 1966 through 31 May 1968. These experiments culminated in
large complex computer programs which allow a mathematician to prove
mathematical theorems on a man-machine basis. SAM VI, the sixth pro-
gram, uses a cathode ray tube as the principal interface between the mathe-
matician and a high speed digital computer. An elaborate language and logi-
cal capability has been implemented in SAM VI. These include I/O lang-
uages for experessing mathematical statementsin a form suitable for both
the mathematician and the machine to recognize and handle with ease and
convenience, a language fur expressing and handling sorts and range of sym-
bols, and auto-logic algorithm and matching routine. The latter con-
stitute the capability for handling, automatically, logic with equality. This
capability is particularly useful at an intermediate state of the proof
when it is desired to have the machine try to verify automatically a given
Uurtion of the prnnf ,
00 F0"M 1473 l'W 1 JAN «• "

Unclassified
Security < lassidianon

Unclassified
Security Claisificanon

KCV wonot
ROLt HOLE ROLE

Man-machine mathematics

Semi-automated mathematics

Mathematical displays on CRT

1NSTBUCTI0NS

1. ORIGINATING ACTIVITY: Enter the name and addrraa
of the contractor, aubcontraclor, grantee, Department of
Dtfenae activity or other organiiation I corporate author)
iaaaing the report.
2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all aecurity claaaification of the report. Indicate whether
"Reatricted Data" ia included. Marking ia to be in accord-
ance with appropriate aecnrity regulationa.
26. CROUP: Automatic downgradina ia apecified in DoO
Directive 5200.10 and Armed Forcea industrial Manual.
Enter the group number. Alao, «dien applicable, ehow that
optional markinga have been used (or Croup S and Croup 4
as authoritad.
S. REPORT TITLE: Enter the complete report title in all
capital letters. Titlea in all casea should oe unclsssified.
If s meaningful title cannot be selected without clsssifics-
lion, show title clsssificstion in all capitala in parentheaia
immediately following the title.

DESCRIPTIVE NOTES: If sppropriste, enter the type of
a., interim, progress, summsrv, snnusl, or finsl.

CiV the inclusive dates when a apecitic reporting period ia
report

covered.
5. AUTHOR(S): Enter the nsme<s) of suthot<s) ss shown on
or in the report. Enter Isst nsme, first nsme, middle initisl.
If militsry, show rsnk snd farsach of service. The nsme of
the principal suthor is snabsolute minimum requirement.

6. REPORT DATE: Enter the dste of the report ss dsy,
month, yesr, or month, yesr. If more then one dste sppesrs
on the report, use dste of publication.
7a. TOTAL NUMBER OF PACES; The lotsl psge count
should follow normst ps|instion procedures, i.e., enter the
number of pages contsining infoimshon.

7b. NUMBER OF REFERENCES: Enter the totsl number of
references cited in the renort,
8a. CONTRACT OR GRANT NUMBER: If sppropriste, enter
the spplicsble number of the contract or grant under which
the report waa written.
8b, 8c, t 8rf. PROJECT NUMBER: Enter the appropriate
military department identification, auch aa project number,
aubproject number, ayatem numbers, tssk number, etc,

9a. ORIGINATOR'S REPORT NUMBER(S): Enter the offi-
cisl report number by which the document will be identified
and controlled by the originating activity. Thia number must
be unique to this report.
9b. OTHER REPORT NUMBER«): If the report hss been
assigned sny other report numbers Itilktr by the originator
or by the sponsor), slso enter this numberis).

10. AVAILABILITY/LIMITATION NOTICES: Enter sny liim-
tations on further disseminstion of the report, other tksn thosr
imposed by security clsssificstion, using stsndsrd ststements
such ss:

(I)

(2)

(3)

"Quslified requesters msy obtain copies of this
report from DOC."
"Foreign announcement and diaaemination of thia
report by DDC ia not authorized."
"U. S. Government agenciea may obtain copiea of
thia report directly from DDC. Other qualified DDC
users shsll request through

(4) "U. S. militsry sgencies msy obtsin copies of this
report directly from DDC. Other quslified users
shsll request through

(5) "All distribution of this report is controlled. Qusli-
fied DDC users shsll request through

If the report hss been furnished to ihe Office of Technics!
Services, Oepsrtment of Commerce, for salr tu the public, indi-
cate thia fact and enter the price, if known.

11. SUPPLEMENTARY NOTES: Uae lor additional explsns-
lory notea.

12. SPONSORING MILITARY ACTIVITY: Enter the namr of
the departmental project office or laboratory sponsoring /pay-
ing for) ihr reaearch and development. Includr address.

13. ABSTRACT: F.nter an abstract giving s brief and factual
aummary of the documem indicative of ihe report, even
though it may also appear elaewhere in the body of thr tech-
nical report. If additional apace ia required, a conlinualion
aheet shall be attached.

It ia highly deairable that the abatraci of cUssified re-
ports be unclsssified. Esch paragraph of the abstract ahall
end with an indication of the military aecurity claaaification
of the information in the paragraph, represented am (TS), IS)
(C). or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from ISO to ?2S words.

14. KEY WORDS: Key words sre technically meaningful terms
or abort phraaea that characterize a report and may be used as
indei entries for cstsloging the report. Key words must be
selected so thst no security clsssificstion is required. Identi-
fiers, such ss equipment model desicnstion, trsdr nan-, mili-
tsry project code name, grographic location, may br used as
key words but will be followed by an indication of technical
contnt. The assignment of links, rules, and weights is
optional.

Unclassified
Security Classification

