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1. INTRODUCTION

- In the past four years several authors(l’2’3 ) have reported Eulerian

hydrodyrnamic codes for the computation of compressible fluid flows in which
the independent variables are two space dimensions and time.

T
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The present paper describes the generalization of such a codetz)' to
include also the forces due to strength which arise within the material to
resist shear deformation. In choosing the precise mo?el for such a generali. -
zation, it is useftil to recall that Eulerian coldes have proven to be especially
suited to the description of flows in which material elements undergo extreme
distortion. It is in precisely this area of treating extreme distortions
that Lagrangian cod;zs, despite their success in treating other aspects of
strength-dependent deformation, (4,5) encounter serious difficulties, In
order, then, to fill the apparent need for a strength code which is capsble
of the simple and efficient computation of flows involving large deforma-
tions, the present code development was initiated in 1965.  An informal
status report was given, (6) and the code has subsequently been the subject
of continuing development duringAthe course of & number of applications. -
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- A basic approximation underlying the present method can be mentioned
here. Since the method is expected to have its primary utility in the
treatment of material undergoing large deformations, it is appropriate to
neglect the small elastic shear sirains that may preceae the onset of plastic
derformation. More precisely, for a given increment in the total strain, the

i devietor part of the strain is assumed to be purely plastic; the remaining
dilatational strain is fully accounted for in the hydrostatic equation of
state. This neglect of elastic shear strains corresponds to a so-celled
rigid-plastic or Levy-von Mises model of the continuum, to be discussed as
Section V. The present approximation does not preclude accounting for the
dependence of the material strength upon the thermodynamic state of the
material or upon the work done against the strength forces (work hardening). -

- These eflects sre alsc discusced in Section 5.
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A motivation {n thc present effort was the desire to compute the
large deformations and the eventual crater size occurring in the hyper-
velocity impact, and the results of such a calculation are given as Ref. 1k,

For completeness, both the hydrodynamic and strength aspects of the
code are given in the present report, although the hydrodynamic part is
largely a description of the ccde which was reported earlier, (2)
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2. BASIC EQUATIONS

In an Eulerian code space is divided into fixed cells thzﬁugh which .
the fluid moves. To arrive at exprescions for the rate of change of total

mass, momentum and energy within such a cell, we etart with the equations
cf motion in the form

*P_ .3
Du
J_ d._
DE _ 3.
P Bt a; (044 ud) (3)
Here Oy is the stress tensor, which can be regarded as the sum of the hydro-
static stress - 81 JP and & siress deviator tensor 8, 3 i.e.,
cri‘1 = 13:'_J - 8131’ . (4)
s 14
. and E 48 the total energy per gram, kinetic plus internal. Tensor

notetion is implied, so that repeated indices denote summations.

In subsequent sections relations will be given for determining P
from the equation of state of the material and 31.1 from the material
coustitutive relation.

Expandiog the convective derivatives in rys. 2 - 3, If/Dt = 3f/at +

u, af/axi, then adding Eq. 1 times uy to Eq. 2, and Eq..l times E to Eq. 3,
and collecting terms, gives

3. = .0 CE

3 (puj) , %34 B, (bui ua) (2%
3 3 8. (o

3t (pE) 83;;(0’13 ud) - 'a'a'('i' (PliE) (31

For the developments to follow it is desirable to replace these
differential equations by related integral equations, obtained by




a.ntegra.tine over the cell volume 7, and then converting the volume integral
of divergencea to surface integrals over the cell surfaces. Equations 1,
. 2', .and 3" then become

= f-r paT = J' pu,n,ds (%)
$e Jn pugte = Iy oggmyte - Jg oupapngae ©
--%;-‘[‘.r pEAT o Is cidudnids I pu,En,ds (N
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3. COMPUTATIONAL METHOD

3.1. INTRODUCTION —- DIVISION INTO PHASES

The purpose of the present section is to describe the computational
method by which the flow configuration is advanced in time. This is done
in general terms, leaving for PART THREE the specification of the computer
program which is used to carry cut the actual calculation.

It is convenient to express the integral comservation relationms,
Egs. 5-7, as finite difference equations over the time step At end algo to
decampose the total stress o 3 into fts deviator and hydrostatic components,
according to Eq. 4. This gives, for the increments of total mass (m),
monenta (mu,) and energy (mE) within the cell

An = . - At .!'s pu,n,ds (8)
B(w,) = -8% [ Pods + 4% Iy s, nds - 8t [ (puyu,)n,as (9)
B(xE) = -6t [ Pun.ds + 8t [ s, jangde - 86 [ (puE)n,ds  (10)

Here the terms on the right are divided into increments due to the pressure
forces on the celi surface (first column), those due to the stress deviator

forces on the cell surface (second column) and the increments {tbhird column)

due to \the flux of mass, momentwm or energy through the surface of the cell.
In the computation these three types of contributions are accounted for in
distinct phases. Sr.cifically, during each time step all cells are first
updated for pressure effects in Phase 1, the effects of the stress deviators
are next accounted for in Phase 3 and finally the transport effects are
added in Phase 2. In the discussion that follows the calculation of the

terms on the right of Eqs. 8-10 are described sequentially starting with
Phase 1.

Saxne preliminary definitions will be helpful. Superscript Non a
varisble refers to the value of the variable at the beginning of the time
step and supers_cript (K + 1) denctes the value at the end. In this first
discussion we consider a typical cell in the interior of the grid, saving
until PART!3.6 a discussion of the special conditionc which are required &t
grid boundaries or at the axis of symmetry. For a typical cell, denoted

P
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by & value of the index K, the dependent variables for that cell are
written P(K), u(K), v(K), I(K), M(K), representing respectively the pres-
sure, radial and axial components of velocity, the specific internal energy
and the wass for cell K. The adjacent cells above, below, to the right and
left of K will be designated respectively as KA, KB, KR, and KL. Here the
terms above, below, right and left refer to a cross section view of the
c.ells, in which the left border is the axis of symmetry with z increasing
upward, see Fig. 1. Each cell 1s, then, the torus obtained by rotating the
rectangle (since Az # Ar in general) about the axis of symmetry. The cells
designated by KAL, KAR, LBL and XEiti will be referred to in the strain rate
calculation discussed in Section 5.
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~ Fig. 1--Grid layout and a typical cell
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3.2 PHASE 1 — THE EFFECTS OF PRESSURE

3.2.1 Continuity Equation, Eq. 8
No contribution in Phase 1.

3.2.2 Equations of Motion, Eq.

a. Axial Motion. In this case, referring to the pressure integral
in Eq. 9, u3 = v and n3 = -1, 0, +1 are the axial components of the unit
normal to the bottom, sides and top of the cell respectively. Equation
9 therefore gives for the Phase 1 contribution

2 2 2 2
Al(mv) = P n(r2 - rl) bt - P 1'[(1‘2 - rl) At

where r, and r, are the radii of the outer and imner cell surfaces,
respectively, and Pb’ Pa are the pressure on the bottom and top cell faces.
These pressures are obtained from the initial (time N) values of cell pres-

sures by a simple average of the pressures in the adjacent cells:

PY(K) + PN(kB)
P =
~ b 2

P, = P(K) + P'(KA)

Making these substitutions gives, for the Phase 1 increment of axial
momentum

Al(mV) = [PN(KB) .2 PN(KA)] r(rg‘- ri) bt

bt. Radial Motion. T¢ arriv. at the radial equatior of motion it
is useful to consider a volume with the full c221 dimensions Az &nd Ar
in the z and r direction, but with a small angular dimensicn A®
instead of 2n, see Fig. 2. Then one can compute the radiai motion from

EqQ. 9 since that motion corresponds to a fixed direction in space. For
use in Eq. 9, them, w = u, and n, =1, + 1, 46/2, 0, O correspond to the
radial componeants of the unit normals to the imner, and outer surfaces,
the two side surfaces and the top and bottom, respectively.

-




B = x>

Fig. 2--Element of voluue for discussion of radial motion
The pressure-integral contribution in Eq. 9 becomes

A8
= Al(mu) =P, r) A0 Az At - P_ T, A8 AZ At + P_ AT AZ A At

vhere P!,’ Pr and p, are the left, right and side face pressures res-

pectively and are defined in terms of time N cell pressures as follows

P

_ )« P
2

Pe

. PN(KL; P xR)

PB = (P!’ + Pr)/2

_PR) + Pi(KL) + 2PN(K)

)
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In terms of these cell pressures, and using Ar = Iy = Ty, the equation
for radial motion b.oomes '

by
2) AZ At

N -
Al(mu) = al (KL) 5 P_(KR) on (rlJz

c¢. Energy Equation, Eq. 10. In computing the Phase 1 energy e-
qetion we depart somewhat from the standard procedure whigh is used to
compute the othex.! integrals on the right in Egs. 7-10. Specifically,
rather than compute the gain in the total cell erergy .m(I + ‘}(ua + va))

by integrating the pressure forces on the cell surface, the originai e-

quation is reformu]_.a}'ted to give a volume integral expresgion for the gain

in internal energy, the kinetic energy increment having already teen fixed

by the precedinyg calculation of the velocity increments. The resulting
equation is preferred because it is a simpler expression for I and be-

cause it has been used in most of our calculations and has led to satisfactory
results. Starting with the ‘Phase 1 part of Eq. 10,

{ = -
Al\mE) = j‘s Pu,n, ds

and since cell mass m 18 constant in Phase 1 nd E= I + wu,, one
can write '

Al(mI) +u, Al(mui) - Is Pu,n ds

i

- j‘T 5%; (Pui)d'r

1. 3P
2 - P—dT-I U, = dr
I ax:L i.axi
u
1 3P
=Pl vl

vhere P and uy in the last line are average values over the cell volune,

But from the Phase 1 momentum equation

Al(mi) = - Is Pnids
or
3P
< Al(mui) = - J‘T 33—‘; dr

9
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s0 that the last texrms on each side of the energy equation cancel and
the resulting expression for the gain in internal energy is
. aui
Al(mI) = =P J‘l‘ 'g;‘-; dr

the difference form is

au, \V1E
mAl = At PN(K) (—a—;i) n(rg - ri) Az
. i

where (aui/bxi)N#" is obtained by averaging the time N (pre-Phase 1) and
tine (N+1) values, i.e.,

N -] + | —
(aui) . ax 5 Ax N

ox 4 2

and, for example, the time N value of this divergence is determined from
the calculation

ou \
1,13 IO
ox r or (ru) + 0z

u\' 5 [r ) -y M) V(ka) - vN(xs)
(—6;;} " ;c 2hr * 2z

in which r, = (r; + 1,)/2, r.=r,+ brf2, r,.= r, - Or/2 are the radii
of cell centers for the central, right and left cells respectively.

This completes the Phase 1 calculation, for & typical cell, of the
momentum and internal energy increments due to the pressure forces on the
cell. The two momentum in-rements are used to determine the velocity
increments by dividing by ceil mass and one has, at the end of Phase 1,
values of I(K), u(K), v(K) as updated by Phase 1.

10
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3.3. PHASE 3 — THE EFFECT OF SHEAR STRESS

3.3.1. Continuity Equation, Eq. 8

No contribution in Phase 3,

3.3.2. Equation of Motion, Eq. 9

~ a, Axial Motion. The Phase 3 contribution from Eq. 9 is
A3(mu3) = At ‘[‘8 ei3nids
and for the axial motion

\13=V

Here s,.n, is the axial (3) component of the total stress on a surface.

i3'1i
For a torus with rectangular section, 813n1 on the various faces 1is
st cell to
22 P
s.b cell bottom
T Pzz
\
siz outer cell surface
- sﬁ z inner cell surface
where 2z and rz subscripts denote normal and shear stresses at the top, -

bottom, right and lef*: surfaces which are indicated by t, b, r and £
respectively. The equation for axial motion is therefore

' t b 2 2 r L
A3(mv) = (szz - szz) n(r, - l) At + 8 2nr, AZ ‘At - 8/, 2nr, Az At

b. Radial Motion., For the radial motion consider the element of
mass depicted in Fig. 2. Then in the Phase 3 part of Eq. 9,

A3(mu1) = At Is silnids

ulnu‘

we have

13 241y

Hhar e o A AR A VA VR SRR AP S s Ry EL e




ik i st sl " T T ol i R 2 LSt R L R A EAPL STt Liecy REIRER SR
<

The radial camponents s 1184 of the stresses on the various faces of the

mass el_ement are

s:r top of mass element

b
-8 2r bottom

r
srr right

L
- 8. left

200
- see front

~%00
- 86 8 back

The mass of the element is mA8/2n where m is the cell mass. Then

AS _ ¢t b 2 2 Tr
= 53(mu) = (szr - tszr)(r2 - l) A9 At + 5. T, 88 AZ At
\
L T
- srr rl A6 At - x;ee AZ AT A0 AL

oy multiplying by 2n/A9, the equation for radial motion is

)

t b 2 2 r L
A3(:nu) = 24 At [%(szr - szr)(r2 - 1)+ 8. Tp B2~ 8, T AZ~ 8 eAzar]

3.3.3. Energy Equation, Eq. 10

In the Phase 3 term from Eq. 10,

A3(mE) = At Is sijujnids R

8 Ju:)n:L is tke work rate per unit surface area, which for the various

faces of the torus, is

(ssz +szru) cell top

P P, g b) cell bottom

-(s,, v +8,,u

b anr et

o v s ek more

AR X PRI e




T
u ) outer cell surface

+ s ul') inner cell surface

vhere t, b, v, £ denote stresses and velocities at the top, bottom, right
and left cell faces respectively. The calculation of these stressecs from
the material constitutive relations is discussed in Secpion 5 and the

interface velocities are Getermined from a simple average of the time N .

WP iRl 3 SARIE L dute T GRS SRR co ol 20 0 TP AL Al AN AT AP Ay N 3.5
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velocities in the two cells, e.g.

i . b )+ v(a)
: 2

SR AR £ RHAE I A

& o U+ (k)
2

v g Wy

The equation for the Phase 3 change in tolal cell energy is

t t t t P b b
A3(mE) (szzv +85 U =8 _V =8

b 2 2
2r zz zr u’) "(re - rl) bt

DG Tt
ah e s mmedee veka

r r r .r 2 2 J A /
: 2 +srru)2ur26zAt-(srzv +e=srru):21tr1

+
”~
w0
<

4z A

This completes the Phase 3 calculation, for a typical cell, of the
momentun and total energy increments due to the deviator stresses acting on

hitlhy RASR
RIS LT IR oy

the cell. The two momentum increments are used to determine the velocity '
increments by dividing by cell mass. This fixes the Phase 3 change in cell
kinetic energy %uiui so that the internal energy (I) can be calculated
using the updated value of total energy E =1 + t'uiui . At the end of

{ Phase 3 one therefore has new values of I{K), u(K), v(K) as updated by

’ Phase 3.

3.4. PHASE 2 — THE EFFECT- OF TRANSPORT

The purpose of this section is to describe how the transport of mass,
moment'm and energy from cell to cell is accounted for in the code. This
is done by calculating the integrals in the last terms of Eqs. 8 to 10.
The method is that given previously as Ref. 2 and is a continuous analog

of the transport which has been discussed in relation to etrlier PIC
codes.(7’8) .
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3.4.1. Continuity Equation, Eq. 8

The transport mass 1is
by(m) = - Bt Is pu,n,ds

and is determined for each of the cell faces from

am--pNu’;Aim-.

vhere p is the density of the cell from which the mass moves (donor cell),
Ai is the area of the face and ulz is an interpolated value of the velocity

component normal to A " representing approximately the velocity at the inter-

face at the end of the time step. For example, considering cell K and the
cell KA above, cne has

N oo 3V(K) « Y(Kka))
V1 Nixa) -
[1+ V(xa "’(K)At]
Az

The calculated transport masses are subtracted from the donor cell mass and
added to the acceptor cell mass. This updating is done, however, after the
transport terms have been calculated, so that all of the transport terms
are computed using time N quantities.

3.4.2. Equation of Motion, Eq. 9

a. Axial Motion. The term in Bq 9 for axial mcrzentum transport is

bylmag) = - 8t [ (pug u;) n, ds .

At each face of the cell the tramsport specific momentum, u3, is taken
to be the axial velocity of the cell from which the mass moves (donor cell,
index KD), i.e.

uy = vﬁ(KD) .

Since the various faces of the cell have different donor cells it 1s
convenient to express the momentum t:ansport for each face

8(mv) = VV(KD) &m

14
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where

bm = -pl\I uiN Ai 4t

is the mass which is transported across the interface, as given in the pre-
ceding mass transport calculation. Note that 6(mv) and 6m are the momentum

and mass transports in either the axial or radial directions, depending on
which type of interface is being computed.

b. Radial Motion. Again we have from Eq. 9

Ae(mul) = -5t ‘fs (pui ul) n; ds

and, by analogy with the axial case, the equation for the transport of
radial motion across an interface is

-

6(mu) = uN(KD) 6m

Where uN(KD) is the time N velocity of the donor cell and ém = .-pN uiNAi At
is the mass which is transported across the interface in question, as com=

imted in 3.k.1 above.

3.4.3 Energy Equation, Eq. (10)

The Eq. (1) expression for the transport of energy is

A3(mE) = At J‘s (puiE) n, ds .

To evaluate this integral, the transported specific energy is taken to be
that of the donor cell KD, i.e.

] 2
Ej = ™ (kp) +%_; (1N(KD)) "+ (vN(KD))2

~—

and the total energy which is transported across a given interface 1is

therefore the product of this specific energy and the associated transport
mass vhich was computed above in 3.k.l.,

A3(mE) = E, 6m

Once the mass, momentum and energy transports are known for all faces of
the cell, the cell quantities can be updated for these effects. New cell

15
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. . velocities are determined by dividing the new momenta by updated cell mass;
This fixes the new kinetic energy so that the internal energy can be cal-
culated from the known total energy. At the end of Phase 2 one has finasl
values of u(K), v(K), I(K), M(K), the cell velocities, specific internal
energy and mass.

3¢5. CELL PRESSURES AND TIME STEP FOR NEXT CYCLE

_New cell pressures, t0 be used in the next time step, are computed
_from an equation of state giving 'cell pressure as a function of density and
specific internal energy within the celi.’ Such an equation of state is the
subJect of Section 4.

For stability of the solution the new time-step is taker to be less
than the time for either a sound wave or a mess element to cross a cell.
in most problems the actual time step is some factor, O.4 to 0.7, of this

- minimum transit time.

3.6. SPECIAL FFATURES OF THE COMPUTATION

3.6.1. Grid Boundaries and Axis

. 3 Additional specification is require\d for cells which border the grid

boundaries or axis of symmetry, because necessary quantities are not defined
for neighbor cells which would be outside the grid.

The code provides for a transmittive boundary at the top and right, an
option of a transmittive or reflective boundary at the botiom and a
reflective boundary at the axis. Boundary conditions for border cells are
then derived by assuming (fictional) neighbors cells outside the grid. For
transmittive boundaries the flow variables are the same in the fictional
cell as in the border cell, and for reflective boundaries the state is
assumed to be the same except that the velocity component normal to the
boundary has opposite sign.

3.6.2. Free Surface Motion

Unless additional provisions were made, the preceding method would
result in a diffusion of the free surface over several cell dimensions. To
- avoid this, a revised calculation is made to determine transport masses at
free surfaces, as described in the next two paragraphs.

r
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Consider, for example, the upard motion of & free surface, frcm the .
cell K which contains it to the empty cell KA above. If the density of the
average cell K is less than the normal and if the specific internsl cnergy
of both cell K and the cell below are less than that required to bring the
material to its vaporization point, then the transport mass from X to KA is
set to zero. Othaqrwise, the mass transported from K to KA is given by
6m = p(K) v(K) A At where A is the area of the interface. This procedure
amounts to requiring that cell K be fllled before material is transported
+o KA, if the material is ccondensed. The same procedure is used for the
motion of a free surface into empty cells to the right, left or downward.

A similar cal.ulation is made for a receding free surface, i.e., oOne
which empties the cells from which it passes. Consider the case similar to
the one above, except that the motion is downward, so that one is concerned
with evaluating thg transport mass from K to KB If either K or KB bhas
specific internsl energy greater than that required to bring the material
to its vaporization point, the normal mass transport calculation is made,
using the donor cell (K) density and an iriterpolated velocity. But if both
cells are cold, the mass transported is &m = p(KB) v(KB) A At. Here the
use of the generall); higher density p(KB) causes & greater transport mass,
making it possible to evacuate free surface cells. In the unmcdified
method some residual mass would always be left in an evacuating cell. With
the existing method %he cell may overempty, but this is immediately
corrected should the cell mass become negative. . -

3.6.3. Rezone

A rezone subroutine can be triggered by mass motion out of the right
or top grid boundaries. Four cells are combined into one, starting at the .
lower left corner {z = 0, r = 0) of the grid and new cells are added at the
top and right. The total number of cells is held constant, &s well as
their shape.

3.6.4. Tracer Points

A system of "tracer points" can be deployed in the initial material
configuration and these points are transported with local mmterial velocity
during the computation. While these points do not enter the actual solution

17
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to the flow equations, their dispositions at various times can give quick
and valuable insight into the meaning of the solutioa.

3.6.5. Variable Zoning

Although the discussion has proceeded with no special reference to
variable zoning, the current version of OIL~RPM reported in PART THREE is
able to compute problems in which the zone size is variable. If constant
zones are not specified, the cell sizes must be supplied as a part of the
SETUP deck. It is possible to call for variable cell size in one direction
and constant in the other.

The zones must be selected so that the discontinulties in size between
adjacent cells are not excecsive and the aspect ratio of the cells are not
too extreme. It was found that an initially spberical explosion loses its
symmetry in the course of & calculation when the ratio 6f the cell edges 1s
greater than four to one, and that satisfactory symmetry is obtained when
the ratio is two to cne. Cell size variations are usually held to less
than 10 percent between adjacent cells. This resulted in good accuracy in

a test problem.
\
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4, PQUATION OF STATE FOR THE CALCULATION OF PRESSURE

Since the flow equations contain the pressure, p, the density, §, and
the specific internal energy, I, it is natural to make use of an equation
of state relating these particular variabies. A description of such an
equation p(I,p) developsd for hypervelocity impact calculations is given by
Tillotson.(g) His formulation fits Thomas-Fermi data at high pressures
(10 megabars and above ), experimental shockewave measurements at more
moderate shock precrsures, and at low density and high energy it describes
a material which behaves in the limit as an ideal gas. This is done by
means of an equation of the form

P = pg(T,p) = 6(L,p) To + Au + B,

where
N-‘T].“ l) 1]’9/‘—‘0
and ‘
6(I,p) = a + Ib .
+ 1
2
Eo’ﬂ

At high internal energy and low density the equation of state has the form

1 1 2
P = pg(I,p) = alp + ;—Tblp— + Ap e'B(‘n -1 e'“(ﬂ - 1)
+1
2

Eg T

The equation of state described by Tillotson is used in a slightly

modified form in the curreat program. The regime in which material is
neither vaporized fully (I < I’’) ncr enmpletely condensed (I > I’) is com=
puted by weighting the two expressions above. Specifically, if I’ <I <I”
then .

(1-1') pg + (1"-1) p,
p= 1’ -1

Here I’ is the energy of the material which Just brings it to the vapor
temperature and I' 1includes the additional energy to complete the
transition to the vapor state. )

19
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This forumulation allows material to condense from the vapor state
into the "dust" state in a continucus manner. By "dust", here, is meant a
state where the internal energy is insdequate to bring material to the
vapor temperature but so expanded that it cannot support pressure.

In the notation above I is used to denote specific internal energy,
as in the other portions of this report. TiJJOtson,(9) however, uses E,
end in portions of the program documented in PART THREE, "E" may denocte
specific internal energy.

Material is allowed to support tensions (negative pressures) in the
current version of the program. The maximum expansion is specified by
AMDM. If the material is cold (I < I’) and 7| < AMDM the pressure is set to
zero. Then the material is thought of as cracked, with the cracks smaller
in ..:e than a cell, or as dust, depending on the density of the material.
AMDM 1s typicelly a number like 0.97. For small expansions the expressions
above for pressure reduce approximately to

p= GO Ip + Ap ,

where G. is Gruneisen's ratio. \

. o 3

. Thus, for aluminum, assuming the first term is negligible, we would
. - find p = -22.5 kiiobars using the value A = 0.T5 megabars given by

- Tillotson.

A table of constants appropriate for representing a variety of metals
is given in PART THREE. The information for metals is taken from the
Tillotson report and for geologic materials it is taken from a report by

Some general remarks can be made regarding the above equation of state.
a. The pressure is continuous in p and I in the various regions and

across transitions between the regions.¥*

* Ye are indebted to Caroti of General Electric for pointing out to us an
N error in an earlier version. Specifically, isentropes computed from the
equation of state given in Ref. 9 can be discoatinuous in pressure at the
condensed-vapor transition. The correction of this error has lead to
significantly smoother solutions to several applications of RFM.
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. . b. No equation of state formulation is ideally suited to all appli-
cations. The present one is especially suited 40 situations in which
the material experiences a strong shock (say tens of megabars) and

1 subsequently expands. Examples are the hypervelocity impact problem

and certain ground shock aprlications. For quite different appli-

cations, other equation of state formulations should be considered.

For example, problems involving cold highly compressed states

A (p/po > 3, not achieved in a single shock) should be computed using

an egquation of state which is formulated with such states in mind.

S v

Also simpler equations of state may be desired in some cases. An

- example is ordinary shock wave hydrodynamics at pressures less than a
megabar, where several simpler forms have been widely used in past
g years.

It is expected that other users of OIL-RPM may want to inciude addi-

tional equations of states. No special difficulties are envisioned in such
extensions.
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L . 5+ CONSTITUTIVE EQUATIONS FOR THE CALCULATION OF DEVIATOR STRESS

In Section 3.3 the effect of shear stresses on the cslcuiation of

] velocity and internal energy increments (through the conservation equations)
was discussed. The total stress was broken up into an isotropic component
(pressure) and a deviator stress. The calculation of pressures from density
and internal energy was then discussed in Section 4. The finite difference
technique for calculating the deviator stresses from the velocity field
will be the subject of this section. It is based on the rigid-plastic
model relating deviator stress and deviator strain rate discussed in PART
ONE. The motivation for selecting the rigid-plastic\model (primarily its
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simplicity) among the possible bases for a constitutive equation was also
described there.

5.1. FINITE DIFFERENCE APPROXIMATIONS

£ aa Rt F o P St R B

Deviator stresses act oﬁ each face of a cell to accelerate the mass it
4 contains, as sketched in Fig. 3. A tabulation of these stresses is gi .
g belovw, and irn the table the relation of the current notation to that used

s in Section 3, it also indicated. This current notetion is consistent with

3 - the FORTRAN symbols used in the program in PART THREE of this rep -t.
IR TABLE 5.1
; - NOTATION FOR STRESSES ACTING ON A CELL
E Area Normal Tangent Hoop
] t s
% Top SNT Szz STT Szr .
¢
B Right snm:-s"rr sm:s;r -
3 2 ~

Left SNL = S SIL = S, -

b

Bottom | SNB = Szz STB = g:r ---

Cross - e Hoop

Section]
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SNT

A STL

SNL
L — e

HOOP
©

SNS

ST8

‘ STR

Fig. 3--Deviator stresses used in the Phase 3 calculaticn

The notation in the table is related to the more formal subscript

notation of PART ONE by the equations

S.. =5_ ,

13 rz

S,, =85

33

k44

The required deviator stresses are computed from the strain rates by

means of the relation

Si.] = y/a?ﬁ ei,']

23




indicated in PART ONE, where Y is the yield strength in simple shea;:,

e“-e“-ea“, e-cu/3

and

w.ei,j ei‘1 .

The strain-rate tensor in cylindrical coordinates is given by the matrix

1
u, o} -é(uz«t»vr
v (‘1,1) - 0 u/r 0
1
2(uz+vr ) ° Ve

where the subscripts r and z denote differentiation with respect to the
subscripted variable. Expressions for 6 and W are Jobtained by substitution

of the matrix elements into the expressions above.

1 u
9-§(ur+-1-.+vz)

2 2 2 1 2 2
W=u+v + (u/r) +§(uz+vr) - 30° .

The velocity gradients used in calculating the stresses are deter-
mined in such a way that the velocities of the cells adjoining each inter-
face enter into the calculation in a symmetrical manner. Detaiis of the

differencing are indicated in Table 5.2. The cell size is DRV(I) in the
radial éirectica, DZV(J) in the axial direction,

%




TABLE 5.2
CALCULATION OF VELOCITY GRADIENTS

Top-centered Variables

%(u(KR) + u(KAR)) - -Jg(u(KL) + u(KAL))

du _ u(XA) - u(K du _ 5
3z ~  Dzv(J or 2DRV(1)
1 1
= ) - = .
v _ V(KA) - v(K _@_zi("(m: + v(KAR)) - 3(v(KL) + v(KAL))
dz Dzv(J dr 2DRV(I)
u_ u(ka) + o(¥)
r 2R(I

pZvV(J) = %(Dz(Ju) + Dz(J)), 2DRV(I) = %‘nk(l-l) + DR(I) + %‘DR(I+1)

Right-centered Variables

1 1 \
=(u(Ka) + u(KAR)) - =(u(KBL) + u(KBR;) .
d 2 2 d KR) - u(K
i Dz (J) o .DRVZISu
: oy BV(EA) + v(kAR)) - S(v(kB) + v(iER)) oy _ vli®) = v(K)
2 dz DZV(J) ar DRV(I)
- u _ u(K) + u(kr)
r R(I) + R(I+1)

DRV(I) = $(DR(I) + DR(1+1)), Dzv(J) = D2(J)

Cell-centered Variables

du _ u(xA) - u(kB) 2u _ u(KR) - u?KL)
dz 2pZv(J) dr 2DRV(I
dv _ v(kA) - v(KB) ov _ v(KR) - v(KL)
dz 2pzv(J) dr 2DRV(I)

u _ uk
. )
' 2 DZV = %Dz(Jﬂ) +D2(J) + -]é'DZ(J-l)
' : 20RV = -12-'DR(I+1) + DR(I) + -%03(1-1)
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and, as suggested by the nctation, these may vary from cell to cell.
Expressions for DRV(I) and DZV(J) in terms of cell dimensions DR(I) end
DZ(J) are included in the table. DR(I) and IZ(J) are abbreviated as DR
and DZ in some of the following equations for brevity of notation.

Values for the left and bottom deviator stresses do not have to be
determiped ceparately since they are calculated as the right and top
deviator sisesses for the cells to the left and below resvectively. 1In
the finite difference notation described in the preceeding peragraphs the
equations of Section 3.3 become

by(mv) = 2nst [(SNT - SNB) « R.- DR + (STR.F' - sTL-R%) . 2]
and )
by(mu) = 2rat [R® + DR(STT-ST™) + DZ(SNR-K - SNL-R®) - HOOP.DR-DZ]
where R is the coordinate of the cell center and B* and R‘ are cccrdinates
of the right and left edges:

Rr=R+-]2=DR, & =R - %R .

To calculate the change in internal energy in a cell it is noted that
the change in its total energy is determined by the stresses acting on its
touadary, and the change in kinetic energy is determined by the change in
velocity, which in turn is obtained from the momentum equations. The

differeace of the changes in total and kinetic energy in the change in inter-

nal energy. The change in internal energy cf a cell due to pressure is

accounted for in Phase 1, and the change due to the deviator stresses, which

may be thought of as the plastic work, is accounted for in Phase 3. The
Pbase 3 change in internal emergy is computed in several parts, viz,

A3(mI) = (A+B) Lt - [(w—%%u) A3u + (W%ABV) A3v]
where

A = 208 {3(ulk) + u(kA)) « 577 + L(v(K) + v(xn))- swT

- 3(u(K) + u(KB))+ST8 - L(v(x) + v(£3)) - )
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and

B=2n D2 {%R" « (u(KR) + u(K))*SNR + -’5 R" (v(KR) + v(K))*STR

=

- F ) + () st - FRhv(x) + v())- st

The plastic work done in a single cycle in a single cell is AS(mI). It is
positive in principle, though not necessarily in the calculation, as &

: result of the finite time step. The sum of the plastic work dune on each
2 . cell in each cycle is accumulated into a grand total which is printed out
g at each of the edit times. This is the "plastic work" exhibited in the

| edit prints.

phcibivel i 2 g

i XA

It is possible for the change in velocity in a single cycle due to

plastic stresses t0 be sO large that the ve ocity profile changes curvature,
This difficulty can be largely corrected by subcycling. Specifically, the
time step for Phase 3, is divided into N steps, where

TWTIC AT

t 24t - 2at o 20t
¥ b =Ny »  Got = (1) rgpTy e b3

The number of time steps (CYCPH3) is left to the discretion of the user,
but experience has shown that 4 is a good choice. -

The problems that the OIL-RPM code has been called upon to0 calculate
have involved shocks diverging out from either an impact or an expliosion.
In either case a very significant improvement is obtained by preventing
the Phase 3 calculation from affecting the flow outsice the shock. To do
this thé shock has to be located, at least in an approximate manner. This
- is done by seeking out the location of the first pressure maximum in each
column of cells. The result is used to update the JPM(I) array, which
gives the J index of the cell with the Pressure Maximum in column I. The
updating of JPM(I) is done in the subroutine CDT which determines the time
step. The JPM(I) have to be halved when rezoning, and that is done ia the
subroutine "REZONE."
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5+2. VARIATIONS I’ YIELD STRENGTH

Experiments (u)(lalmve shown that yield strength depends on pressure
and temperature. Although an appropriate set of constitutive equations
fully deseribing these effects is not available, the ;ﬁlculation of Phase 3
attempts to account for them by allowing the flaw stress, Y, to vary ac-
cording to the relation

Y= (Yy+ Yo+ ¥2)(1-7/8,)

where

o}
B = ],
W po

I is the specific internsl energy aand Eo is the energy which raises the
material to the melting point. If either factor is negative the yield
strength is set to zero. This formula 1s not intended as an accurate
representation of the physical behavior of materials, but was incliuded in
the program so that the imécrtance of yleld strength variations could be
estimated.

Although no formel report has been written, it seems appropriate to
mention here a calculation in which the second factor in the expression
above for Y was set equal to unity. The calculation otherwise duplicated
the standard impact crater problem reported in Ref. 14. The effect was to
decrease the crater depth at 14 psec from 1l.16 to 1.11 cm. At that time
the rate o change of depth 1s down to 10 cm/sec and thus its growth is
essentially terminated. In a second comparison it was found that setting
the first factor to unity made the crater depth at 1k usec 1.18 cm rather
than the 1.16 cm computed in the standard problem.

“To summarize, the eifect of yield strength variations can be accounted
for in an approximate manner by choosing appropriate values for Yl’ Y2 and
Eo, but this does not seem to influence crater size in the first approri-
mation. Eo can be found from handbocks as the internal energy at the
point where the yield strength goes to zero, and this can be taken roughly
as the internal energy at melting in the absence of detailed informati.on.

Y, and Y2 can be estimated from the relation, Y = Yb + P, which is valid

1
at low pressures. The value of o is about 0.07 for metals and near unity

for geological materials.
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