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1. INTRODUCTION

In the past four years several authors(lt2p3) have reported ESlerian

hydrodynamic codes for the computation of compressible fluid flows in which

the independent variables are two space dimensions and time.

The present paper describes the generalization of such a code(2Y to

include also the forces due to strength which arise within the material to
resist shear deformation. In choosing the precise mo,!el for such a generali-

zation, it is useful to recall that Eulerian codes have proven to be especially

suited to the description of flows in which material elements undergo extreme

distortion. It is in precisely this area of treating extreme distortions

that Lagrangian codes, despite their success in treating other aspects of
(4,5)

strength-dependent deformation., encounter serious difficulties. In

order, then, to fill the apparent need for a strength code which is capable

of the simple and efficient computation of flows involving large deforma-

tions, the present code development was initiated in 1965.- An informal

status report was given, (6) and the code has subsequently been the subject

of continuing development during the course of a number of applications.

A basic approximation underlying the present method can be mentioned

here. Since the method is expected to have its primary utility in the
treatment of material undergoing large deformations, it is appropriate to

ueglect the small elastic shear strains that may precede the onset of plastic

deformation. More precisely, for a given increment in the total strain, the

deviator part of the strain is assumed to be purely plastic; the remaining

dilatational strain is fully accounted for in the hydrostatic equation of

state. This neglect of elastic shear strains corresponds to a so-celled

rigid-plastic or Levy-von Mises model of the continuum, to be discussed as

Section V. The present appro-ximation does not preclude accounting for the

dependence of the material strength upon the thermodynamic state of the

material or upon the work done against the strength forces (work hardening).

These effects --re also discuszed in Section 5.

1



F

A motivation in the present effort was the desire to compute the

large deformations and the eventual crater size occurring in the hyper-
Velocity impact, and the results of such a calculation are given as Ref. 14.

For completeness, both the .hydrodynamic and strength aspects of the
code are given in the present report, although the hydrodynamic part is
largely a description of the cte wh.ch was reported earlier. (2)

2
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2. BASIC EQUATIONS

In an Eulerian code space is divided into fixed cells through which

the fluid moves. To arrive at exprescions for the rate of change of total

mass, momentum and energy within such a cell, we start with the equations

of motion in the form

at u (Pui)

puD .[ (ai) (2)

DE (3)

Here ai is the stress tensor, which can be regarded as the sum of the bydro-

static stress - 5ijP and a stress deviator tensor sij, i.e.,

a =s -bPj " j (4)

and E is the total energy per gram, kinetic plus internal. Tensor

notation is implied, so that repeated indices denote summations.

- In subsequent sections relations will be given for determining P

from the equation of state of the material and aij from the material

- coastitutive relation.

Expand-Ing the convective derivatives in zqs. 2 - 3, DfODt = Wf/bt +

ui ýf/Bxi, then adding Eq. 1 times uj to Eq. 2, and Eq. . times E to Eq. 3.,
and collecting terms, gives

(Pud c -i . (Put uj) (21)

-t (PE) = g(aij uj) - .-A (p'-iE) (3')

"For the developments to follow it is desirable to replace these

* &differential equations by related integral equations, obtained by

• 3
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jntegratiM, over the cell volume T, and then converting the volume integral

of divergeaces to surface integrals over the cell surfaces. Equations 1,

2', and. 3` then become

L S pT -S puf Pun do 5

Sr j pujdr~ - So aii - So puiuSnide (6)

a~ Sr p1E&T J'8 aipupds - J' pu.1Enids (7)

SI
I
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3. COMPUTATIONAL METHOD

3.1. INTRODUCTION -_ DIVISION INTO PHASES

The purpose of the present section is to describe the ccmputational

method by which the flor configuration is advanced in time. This is done
in general terms, leaving for PART THREE the specification of the computer

program which is used to carry out the actual calculation.

It is convenient to express the integral conservation relations.,
Eqs. 5-7, as finite difference equations over the time step At &-.-A --lso to

decompose the total stress cJ4 into its deviator and hydrostatic components,

according to Eq. 4. This gives. for the increments of total mass (W)

moenta (mud and energy (a) within the cell

,= -at r punids (8)

A(I,= -at JS Pn do + At s sinnids - At Sj (Puiuj)nids (9)

j =(mE) -At S Punids + At sipunids - At S (PuiE~nido (10)

Here the terms on the right are divided into increments due to the pressure
forces on the cell surface (first column).. those due to the stress deviator
forces on the cell surface (second column) and the increments (t1ird column)

due to the flux of mass• momentum or energy through the surface of the cell.

In the computation these three types of contributions are accounted for In
distinct phases. S•cifically, during each time etep all cells are first
updated for pressure effects in Phase 1, the effects of the stress de,;'ators
are next accounted for in Phase 3 and finally the transport effects are
added in Phase 2. In the discussion that followb the calculation of the
terms on the right of Eqs. 8-10 are described sequentially starting with

Phase 1.

Some preliminary definitions will be helpful. Superscript N on a

variable refers to the value of the variable at the beginning of the time

step and superscript (N + 1) denotes the value at the end. In this first

discussion we consider a typical cell in the interior of the grid., saving

until PART3.6 a discussion of the special conditione which are required at

grid boundaries or at the axis of symmetry. For a typical cel 1, denoted



by a value of the index K, the dependent variables for that cell are

written P(K), u(K), v(K), I(K), M(K), representing respectively the pres-

sure, radial and axial components of velocity, the specific internal energy

and the wass for cell K. The adjacent cells above, below, to the right and

left of K will be designated respectively as KA, KB, KR, and XL. Here the

terms above, below, right and left refer to a cross section view of the

cells, in which the left border is the axis of symmetry with z increasing

upward, see Fig. 1. Each cell is, then, the torus obtained by rotating the

rectangle (since Az i Ar in general) about the axis of symmetry. The cells

designated by KAL, KARj, LBL and v•i will be reftrred to in the strain rate

calculation discussed in Section 5.

*

uD+I KA KAR

+ A

I zIA 6 - I

. Fig. 1--Grid layout and a typical cell

6
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. 3.2 PHASE 1- THE EFFECTS OF PRESSURE

3.2.1 Continuity Equation, Eq. 8

No contribution in Phase 1.

3.2.2 Equations of Motion, Eq. 9

a. Axial Motion. In this case, referring to the pressure integral

in Eq. 9, u 3 =v and n3  -1, 0, +1 are the axial components of the unit

normal to the bottom, sides and top of the cell respectively. Equation

9 therefore gives for the Phase 1 contribution

2 2 2 2
1 (mv) Pb n(r2 _ rl) At - P a(r 2

where r 2 and ri are the radii of the outer and inner cell surfaces,

respectively, and Pb' Pa are the pressure on the bottom and top cell faces.

These pressures are obtained from the initial (time N) values of cell pres-

sures by a simple average of the pressures in the adjacent cells.:

pN(K) + PN(KB)
Pb 2

Pa pN(K) + PN(KA)

Making these substitutions gives, for the Phase 1 increment of axial

momentum

A lmV) = (KB) - (A (r 2 r2) ht

b. Radial Motion. To arriveý at the radial equation of motion it

is useful to consider a volume with the full cal1 dimensions Az and Ar

in the z and r direction, but with a small angular dimension &0

instead of 2n, see Fig. 2. Then one can compute the radial motion from

Eq. 9 since that motion corresponds to a fixed direction in space. For

use in Eq. 9, then, u1 = u, and n, = 1, + 1, A6/2, 0, 0 correspond to the

radial components of the unit normals to the inner, and outer surfaces,

the two side surfaces and the top and bottom, respectively.

I - 7
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- IFig. 2--Element of volume for discussion of radial motion

The pressure-integral contribution in Eq. 9 becomes

SAe l(u) P, r1 Ae Az•At - Pr r2 Ae A at + P Ar Az Ae At

where PYj Pr and Ps are the left, right and side face pressures res-

pectively and are defined in terms of time N cell pressures as follows

= PN(K) + ' P(KL)
PI, 2

and P s =(P.C + P r)/2

t PN'(KR) +. P"(KL) + 2P'(K)

#4
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In terms of these cell pressures, and using Ar = -rl the equation

for radial motion b,,omes

A (MU) = P(KN N 'K) - -_r2)A At2r r A

c. Energy Equation, Eq. 10. In computing the Phase 1 energy e-

quxizon we depart somewhat from the standard procedure whiqh is used to
compute the other integrals on the right in Eqs. 7-10. Specifically,

rather than compute the gain in the total cell enargy m(I + 2 + 2))

by integrating the pressure forces on the cell surface, týe original e-

qjation is reformuulated to give a volume integral expresplQn for the gain

in internal energy, the kinetic energy increment having already been fixed

by the precedin~g calculation of the velocity increments. The resulting

equation is preferred because it is a simpler expression for I and be-

cause it has been used in most ef our calculations and has led to satisfactory

results. Starting with the Phase 1 part of Eq. 10,

A(IDmE) is Pun ds

and since cell mass m is constant in Phase 1 'nd E I + uiui one

can write

A1(mi) + ui Al(mu4 ) - s- " u n P ids

f, ' T (Pui)d-T

fP-""d, u, ý-dr."Xui axp

sP BU,- dr U BP u5. d-r
ai TWx7

where P and ui in the last line are average values over the cell volume.

But from the Phase 1 momentum equation

A (mui) - - Js Rid
or

Al(mui) -- .T W- d
i



Ii
so that the last terms on each side of the energy equation cancel andr the resulting expression for the gain in internal energy is

axuit•1(m) = -P f• *• d

the difference form is

m~I- ~pN~(~uN+I2rr2 rl)

where (Bui/axi) is obtained by averaging the time N (pre-Phase 1) and

tima (N+l) values, i.e.,

1 and, for example, the time N value of this divergence is determined from
S~the calculation

"Fr. - (ru) + -
ax r rz

Nuj (r r .- +r Y I (

ah; hr c 2&r r z

in which rc =(r + r2)/2,r r 2 + Ar/2, rL.= rI - Ar/2 are the radii
of cell centers for the central, right and left cells respectively.

This completes the Phase 1 calculation, for a typical cell, of the
momentum and internal energy increments due to the pressure forces on the

cell. The two momentum increments are used to determine the velocity

increments by dividing by cell mass and one has, at the end of Phase I,
values of I(K), u(K), v(K) as updated by Phase 1.

10
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"3.3. PHASE 3 -THE EFFECT OF SHEAR STRESS

3.3.1. Continuity Equation, Eq. 8

No contribution in Phase 3.

3.3.2. Equation of Motion, Eq. 9

a. Axial Motion. The Phase 3 contribution from Eq. 9 is

A3 (mu3 ) At fs e13nids

and for the axial motion

Here si 3 n, is the axial (3) component of the total stress on a surface.

For a torus with rectangular section, si 3 ni on the various faces is

t
S cell top

b
S - cell bottom

5 r outer cell surfacerz

- sr inner cell surfacerz

where zz and rz subscripts denote norsmal and shear stresses at the top,

bottom, right and left surfaces which are indicated by t, b, r and I

respectively. The equation for axial motion is therefore

t b 2 2 V.
A(Mv) =(s -5z) T0~ 2 -rl) at +s n2a t- r fr zA"z 2rz 1•IaZa

b. Radial Motion. For the radial motion consider the element of

mass depicted in Fig. 2. Then in the Phase 3 part of Eq. 9,
A3CMu_) - At fs s:i

we have U

::. ILI °"U
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"7 •• The radial components sani of the stresses on the various faces of the

mass element are

t
s t top of mass elementzr

b
- s b bottomzr

Srr right
rr

- s left

- s8 Aq frontee

- JAG back

The mass of the element is* m&8!/2r where m is the cell mass. Then

AG3(u t b 2 2 r
-- = (Szr- S z)( ) 60 At + srr r 2 he Az.At

a I rl AG At - ss Az tr AG at

or multiplying by 2nA/, the equation for radial motion is
t b 2 2 sr sL

()= 2£ &t [Sr - Szr)(r2 rl rr r 2 Az- rr lz.- seeiz~r)

3.3.3. Energy Equation, Eq. 10

In the Phase 3 term fron Eq. 10,

A 3 (mE) =At j8s ij upids

s ijujni is the work rate per unit surface area, which for the various
faces of the torus, is

(s~ tV t + s t t) cell top-rzz z

b b b b

1 1

v +Sz u) clbta

.I
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""srr vr + srr ur) outer cell surface

(sr v + Sr u ) inner cell surface

where t, b, r, A denote stresses and velocities at the top, bottom, right

and left cell faces respectively. The calculation of these stresses from

the material constitutive relations is discussed in Section 5 and the

interface velocities are determined from a simple average of the time N

velocities in the two cells, e.g.

t (K) vKA)
t = vN(K) 2+ vS(•)

V

2

2

The equation for the Phase 3 change in to.al cell energy is

t t t t b b b b 2 2
A 3(mE) -(s v + s - -u n(r-r Atzz zr zz zr 2 l)

r vr r A A•+s L 2 lzA

+ (Sr + r ur) 2 r Az t- (s v+S u 2r ZAt
rz rr 2 rz rr

This completes the Phase 3 calculation, for a typical cell, of the

momentum and total energy increments due to the deviator stresses acting on

the cell. The two momentim increments are used to determine the velocity

increments by dividing by cell mass. This fixes the Phase 3 change in cell

kinetic energy iuiui so that the internal energy (I) can be calculated

using the updated value of total energy E = I + *uiui . At the end of

Phase 3 one therefore has new values of I(K), u(K), v(K) as updated by

Phase 3.

3.4. PHASE 2 - THE EFFECT. OF TRANSPORT

The purpose of this section is to describe how the transport of mass,

momenti : and energy from cell to cell is accounted for in the code. This

is done by calculating the integrals in the last terms of Eqs. 8 to 10.

The method is that given previously as Ref. 2 and is a continuous analog

of the transport which has been dibcussed in relation to eErlier PIC

codes. (7,8)

13
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" •3.4.. Continuity Equation, Eq. 8

The transport mass is

62(m) At j'spuinid

and is determined for each of the cell faces from

N Nbm i-P uN Ai at

where p is the density of the cell from which the mass moves (donor cell),

Ai is the area of the face and uN is an interpolated value of the velocity

component normal to" Ai representing approximately the velocity at the inter-

face at the end of the time step. For example, considering cell K and the

cell KA above, one has

.-VNK) + vN(KA)1

[.+ v'(IKA) - vN(K) At]
Az

The calculated transport masses are subtracted from the donor cell mass and

added to the acceptor cell mass. This updating is done, however, after the

transport terms have been calculated, so that all of the transport terms

are computed using time N quantities.

3.4.2. Equation of Motion, Eq. 9

a. Axial Motion. The term in Eq. 9 for axial mn•mentum transport is

62 (mu 3)--Atj• (puý u) ni ds.

At each face of the cell the transport specific momentum, u3 , is taken

to be the axial velocity of the cell from which the mass moves (donor cell,

index KD), i.e.

u3 = v '(KD)

Since the various faces of the cell have different donor cells it is

convenient to express the momentum tzransport for each face

B(mv) - vN(l) 5m

14.
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where

N N5m =P UN AI Ai 6t

is the mass which is transported across the interface, as given in the pre-

ceding mass transport calculation. Note that 6(my) and 6m are the momentuma

and mass transports in either the axial or radial directions, depending o

which type of interface is being computed.

b. Radial Motion. Again we have from Eq. 9

A2 (mul) -at .S (pui ul) ni ds

and, by analogy with the axial case, the equation for the transport of

radial motion across an interface is

6(mu) _ Nu(KD)m

N N Nwhere u (KD) is the time N velocity of the donor cell and 6m = -p u_ Ai At

is the mass which is transported across the interface in question, as com-

puted in 3.4.1 above.

3.4.3 Energy Equation, Eq. (10)
-; The Eq. (1) expression for the transport of energy is

A3 (mE) = -At I (puiE) n, ds
3 S

To evaluate this integral, the transported specific energy is taken to be

that of the donor cell RD, i.e.

ED 2I(D+~2

and the total energy which is transported across a given interface is

therefore the product of this specific energy and the associated transport

mass which was computed above in 3.94.1.,

A3 m) -D 6m

Once the mass, momentum and energy transports are known for all faces of

the cell, the cell quantities can be updated for these effects. New cell

15



""-velocities are determined by dividing the new momenta by updated cell mass.

This fixes the new kinetic energy so that the internal energy can be cal-
culated from the known total energy. At the end of Phase 2 one has final

values of u(K), v(K), I(K), M(K) , the cell velocities, specific internal

energy and mass.

3.5. CELL PRESSURES AND TIME STEP FOR NEX CYCLE

New cell pressures, to be used in the next time step, are computed

from an equation of state giving cell pressure as a function of density and

specific internal energy within the cell.' Such an equation of state is the

subject of Section 4.

For stability of the solution the new time-step is taken to be less

than the time for either a sound wave or a mass element to cross a cell.

in most problems the actual time step is some factor, 0.4 to 0.7, of this

minimum transit time.

3.6. SPECIAL FFATURES OF THE COMPUTATION

3.6.1. Grid Boundaries and Axis

Additional specification is required for cells which border the grid

boundaries or axis of symmetry, because necessary quantities are not defined

* for neighbor cells which would be outside the grid.

The code provides for a transmittive boundary at the top and right, an

option of a transmittive or reflective boundary at the bottom and a

reflective boundary at the axis. Boundary conditions for border cells are

then derived by assuming (fictional) neighbors cells outside the grid. For

transmittive boundaries the flow variables are the same in the fictional

cell as in the border cell, and for reflective boundaries the state is

assumed to be the same except that the velocity component normal to the

boundary has opposite sign.

3.6.2. Free Surface Motion

Unless additional provisions were made, the preceding method would

result in a diffusion of the free surface over several cell dimensions. To

a-roid this, a revised calculation is made to determine transport masses at

free surfaces, as described in the next two paragrahso. I
16
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Consider, for example, the ulxward motion of a free surface, from the

cell K which contains it to the empty cell KA above. If the density of the

average cell K is less than the normal and if the specific internal onergy

of both cell K and the cell below are less than that required to bring the

material to its vaporization point, then the transport mass from K to KA is

set to zero. Othqrwise, the mass transported from K to KA is given by

5m = p(K) v(K) A At where A is the area of the interface. This procedure

amounts to requiring that cell K be filled before material is transported

to KA, if the material is condensed. The same procedure is used for the

motion of a free surface into empty cells to the right, left or downward.

A similar cal.ulation is made for a receding free surface, i.e., one

which empties the cells from which it passes. Consider the case similar to

the one above, except that the motion is downward, so that one is concerned

with evaluating the transport mass from K to KB. If either K or KB has

specific internal energy greater than that required to bring the material

to its vaporization point, the normal mass transport calculation is made,

using the donor cell (K) density and an interpolated velocity. But if both

cells are cold, the mass transported is bm - p(KB) v(KB) A At. Here the

use of the generally higher density p(KB) causes a greater transport mass,

making it possible to evacuate free surface cells. In the unmodified

method some residual mass would always be left in an evacuating cell. With

the existing method the cell may overempty, but this is immediately

corrected should the cell mass become negative.

3.6.3. Rezone

A rezone subroutine can be triggered by mass motion out of the right

or top grid boundaries. Four cells are combined into one, starting at the

lower left corner (z - 0, r - 0) of the grid and new cells are added at the

top and right. The total number of cells is held constant, as well as

their shape.

3.6.4. Tracer Points

A system of "tracer points" can be deployed in the-initial material

- configuration and these points are transported with local material velocity

during the computation. While these points do not enter the actual solution

17



"* to the flow equations, their dispositions at various times can give quick

and valuable insight into the meaning of the solution.

3.6.5. Variable Zoning

Although the discussion has proceeded with no special reference to

variable zoning, the current version of OIL-RPM reported in PART THREE is

able to compute problems in which the zone size is variable. If constant

zones are not specified, the cell sizes must be supplied as a part of the

SETUP deck. It is possible to call for variable cell size in one direction
and constant in the other.

The zones must be selected so that the discontinuities in size between

adjacent cells are not excecsive and the aspect ratio of the cells are not

too extreme. It was found that an initially spberical explosion loses its

sý,mmetry in the course of a calculation when the ratio of the cell edge. is

greater than four to one, and that satisfactory symmetry is obtained when

the ratio is two to one. Cell size variations are usually held to less

than 10 percent between adjacent cells. This resulted in good accuracy in

a test problem.

18
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4. EQUATION OF STATE FOR THE CALCULATION OF PRESSURE

Since the flow equations contain the pressure, p, the density, p, and

the specific internal energy, I, it is natural to make use of an equation

of state relating these particular variables. A description of such an

equation p(I, p) developed for hypervelocity impact calculations is given by

Tillotson.(9) His formulation fits Thomas-Fermi data at high pressures

(10 megabars and above), experimental shock-wave measurements at more

moderate shock prersures, and at low density and high energy it describes

a material which behaves in the limit as an ideal gas. This is done by

means of an equation of the form

p = pS(Ip) G(Ip) IP + Ap + •2

where

and

G(I,p) a + b

+1

E0 7

At high internal energy and low density the equation of state has the form

= p = alp + + Ap e( e'(i" 1)2p = PG(Ip l I + 1

Eo •

The equation of state described by Tillotson is used in a slightly

modified form in the current program. The regime in which material is

neither vaporized fully (I < I") nor completely condensed (I > I') is com-

puted by weighting the two expressions above. Specifically, if I' < I < I'

then

(I-I') PS + (I"-I) PG
P M I '

Here I is the energy of the material which Just brings it to the vapor

temperature and I" includes the additional energy to complete the

transition to the vapor state.

19
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This formulation allows materala to condense from the vapor state

into the "dust" state in a continuous manner. By "dust", here, is meant a

state where the internal energy is inadequate to bring material to the

vapor temperature but so expanded that it cannot support pressure.

In the notation above I is used to denote specific internal energy,

as in the other portions of this report. Tiflozson,(9) however, uses E,

and in portions of the program documented in PART THREE, "E" may denote

specific internal energy.

Material is allowed to support tensions (negative pressures) in the

current version of the program. The maximum expansion is specified by

AMDM. If the material is cold (I < I') and 11 < AMDM the pressure is set to

zero. Then the material is thought of as cracked, with the cracks smaller

in ,:e than a cell, or as dust, depending on the density of the material.

AMDM is typically a number like 0.97. For small expansions the expressions

above for pressure reduce approximately to

p - Go Ip + Ap,

where Go is Gruneisen's ratio.

Thus, for aluminum, assuming the first term is negligible, we would

Sfind p = -22.5 kilobars using the value A = 0.75 megabars given by

Tillotson.

A table of constants appropriate for representing a variety of metals

is given in PART THREE. The information for metals is taken from the

Tillotson report and for geologic materials it is taken from a report by

Allen. (10)

Some general remarks can be made regarding the above equation of state.

a. The pressure is continuous in p and I in the various regions and

across transitions between the regions.*

* We are indebted to Caroti of General Electric for pointing out to us an
e•rror in an earlier version. Specifically, isentropes computed from the
equation of state given in Ref. 9 can be discontinuous in pressure at the
condensed-vapor transition. The correction of this error has lead to

¶ * .significantly smoother solutions to several applications of RPM.
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b. No equation of state formulation is ideally suited to all appli-

cations. The present one is especially suited to situations in which

the material experiences a strong shock (say tens of megabars) and

subsequently expands. Examples are the hypervelocity impact problem

and certain ground shock applications. For quite different appli-

cations, other equation of state formulations should. be considered.

For example, problems involving cold highly compressed states

(P/P > 3, not achieved in a single shock) should be computed using
0

an equation of state which is formulated with such states in mind.

Also simpler equations of state may be desired in some cases. An

example is ordinary shock wave hydrodynamics at pressures less than a

megabar, where several simpler forms have been widely used in past

years.

It is expected that other users of OIL-RPM may want to include addi-

tional equations of states. *No special difficulties are envisioned in such

extensions.
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:" 5. CONSTITUTWIE EQUATIONS FOR THE CALCUIATION OF DEVIATOR STRESS

In Section 3.3 the effect of shear stresses on the csalculation of

velocity and internal energy increments (through the conservation equations)

was discussed. The total stress was broken up into an isotropic component

(pressure) and a deviator stress. The calculation of pressures from density

and internal energy was then discussed in Section 4. The finite difference

technique for calculating the deviator stresses from the velocity field

will be the subject of this section. It is based on the rigid-plastic

model relating deviator stress and deviator strain rate discussed in PART

ONE. The motivation for selecting the rigid-plastic model (primarily its

simplicity) among the possible bases for a constitutive equation was also

described there.

5.1. FINITE DIFFERENCE APPROXIMATIONS

Deviator stresses act on each face of a cell to accelerate the mass it

contains, as sketched in Fig. 3. A tabulation of these stresses is g! A

below, and in the table the relation of the current notation to that used

in Section 3, is also indicated. This current notation is consistent with

the FORTRAN symbols used in the program in PART THREE of this rep t.

TABLE 5.1

NOTATION FOR STRESSES ACTING ON A CELL

Area Normal Tangent Hoop

Top SNT .St STT =etzz z

Right SNR-S' STR=rrr

Left SNL S STL SF -
rr zr

Bottom SN, -zz STB SI r

Cross --- Hoop
Section
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SNT

I ~S"

STL STR

0 HOOP

SNL SNR

SN 3

STS

Fig. 3--Deviator stresses used in the Phase 3 calculation

The notation in the table is related to the more formal subscript

notation of PART ONE by the equations

Sli= SS S , S -SS SSl S , 13 rz 22 00 S 3 3  Szz•

The required deviator stresses are computed from the strain rates by

means of the relation

S -y /2T eij
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"indicated in PART ONE, where Y is the yield strength in simple shear,

e ij Cij - 0.e cii/3

and

W -e eij

The strain-rate tensor in cylindrical coordinates is given by the matrix

(gij) 0 u/r 0

1 (U+v) 0 v

where the subscripts r and z denote differentiation with respect to the

subscripted variable. Expressions for 0 and W are obtained by substitution

of the matrix elements into the expressions above.
1 u

MI(u + + v)

W u 2 v 2 2 12 2
2 + (u/r) + (U + v -30r z 2z r

The velocity gradients used in calculating the stresses are deter-

mined in such a way that the velocities of the cells adjoining each inter-

face enter into the calculation in a symmetrical manner. Details of the

differencing are indicated in Table 5.2. The cell size is DRV(I) in the
radial directikn, DZV(J) in the axial direction,

It
2]4

...........



* TABLE 5. 2

CALCUIATION OF VEOCITY GRADIENTS

Top- centered Variables

~u KA- u ~ (u(KR) + u(KAR)) - .(u(KL) + u(KAL))

az DZV(J) 2DRV(I)

ZI] V VK I(v(KR) + v(KAR)) - l(v(KL) + -.(A)
az DZVJ) 6r2DRV(I)

u(~KA) + (K)

DZV(J) = ý(DZ(J+l) + DZ(J)), 2DRV(I) - -ýR(I-l) + DR(I) + -ýDR(I+l)

Right- centered Variables

2:u(A + u(YARi)) - I(u(IBL) + u(KBR-UK
bZ(J 2 a r R) uK

-I_ (v(KA) + v(KAR)) - -I(v(KB) + v(KBR)) v_(K)-()

azDZV(J) Tr DRV(I)

r R(I) + RI+l)

DRV(I) =-!(DR(!) + DR(I+l))., Dzv(J) - Z(J)

Cell- centered Variables

6uu- L ( - u(KB) bu _(R - ý
2DZV(J) Tr_ 2DRV(I)

By v(KA) - v(KB) Bv _v(KR) -v(1a 1)
Tz 2DZV(J) Tr E7RV(I)

2 ]ZV =-ýDZ(J+l) +-DZ(J) + -ýDZ(j-l)

2DRV --ýR(I+l) + DR(I) + -RIl
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and, as suggested by the notation, these may vary from cell to cell.

Expressions for DRV(I) and D1V(J) in terms of cell dimensions DR(I) and

DZ(J) are included in the table. DR(I) and DZ(J) are abbreviated as DR

and DZ in some of the following equations for brevity of notation.

Values for the left and bottom deviator stresses do not have to be

determiped separately since they are calculated as the right and top

deviator strjesses for the cells to the left and below respectively. In

the finite difference notation described in the preceeding paragraphs the

equations of Section 3.3 become

A3 (mv) = 2r•t (SNT - SNB) • R - DR + (ST. r - STL.R9) • •

and

A3 (mu) - 21%t £Rr DR(STr) + DZ(SN -1ý - SNL - OOP.DR.DZ3

where R is the coordinate of the cell center and Rr and R ar• coordinates

of the right and left edges:

Rr =R+- -R, R1 =R--R- R.

To calculate the change in internal energy in a cell It is noted that

Sthe change in its total energy is determined by the stresses acting on its

Sbou-idary, and the change in kinetic energy is determined by the change in

velocity, which in turn is obtained from the momentum equations. The

difference of the changes in total and kinetic energy in the change in inter-

nal energy. The change in internal energy of a cell due to pressure is

accounted for in Phase l, and the change due to the deviator stresses, which

may be thought of as the plastic work., is accounted for in Phase 3. The

SPhase 3 change in internal energy is computed in several parts, viz,

a 3 (mI) =(;.+B) Lt - 2ý [ U~u) a 3U + (P~ 3 v) a3 V3

where

A 2tTR.DR {2(u(K) + u(KA)) • STT + 2(v(K) + v(KA)). SNT

-I.(u(K) + u(KB)).STh3 - I(v(K) + v(KB)) - S-B}

2 _ 2E --- 4-



f r

and. 1B =2n DZ {R (u(K) + u(K)).SNR Rr( ) V(K))

- -(u(K) + u(KL)) SNL - -V(v(K) + v(KL)), STL,

The plastic work done in a single cycle in a single cell is A3 (mI). It is

positive in principle, though not necessarily in the calculation, as a

result of the finite time step. T1he sum of the plastic work done on each

cell in each cycle is accumulated into a grand total which is printed out

at each of the edit times. This is the "plastic work" exhibited in the

edit prints.

It is possible for the change in velocity in a single cycle due to

plastic stresses to be so large that the ve'.ocity profile changes curvature.

This difficulty can be largely corrected by subcycling. Specifically, the

time step for Phase 3, is divided into N steps, where
At 2At A

*A-N 2A , - (N-l) 2~t 2-&t

1 N(N 2t (N-1)N(N+l)' ... N t - N(N+l)

The number of time steps (CYCPH3) is left to the discretion of the user,

but experience has shown that 4 is a good choice.

The problems that the OIL-RPM code has been called upon to calculate

have involved shocks diverging out from either an impact or an explosion.

In either case a very significant improvement is obtained by preventing

the Phase 3 calculation from affecting the flow outside the shock. To do

this the shock has to be located, at least in an approximate manner. This

is done by seeking out the location of the first pressure maximum in each

column of cells. The result is used to update the JFM(I) array, which

gives the J index of the cell with the Pressure Maximum in column I. The

updating of JFM(I) is done in the subroutine CDT which determines the time

step. The JPM(I) have to be halved when rezoning, and that is done in the

subroutine "REZONE."
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5.2. VARIATIONS I1: YIELD STRENGTH

Experiments (ll)(1 4 ave shown that yield strength depends on pressure

and temperature. Although an appropriate set of constitutive equations

fully describing these effects is not available, the calculation of Phase 3

attempts to account for them by allowing the flow stress, Y, to vary ac-

cording to the relation

Y - (YO + Y1• + Y2)(l-!/Eo)

where

PO

I is the specific internal energy and E0 is the energy which raises the

material to the melting point. If either factor is negative the yield

strength is set to zero. This formula is not intended as an accurate

representation of the physical behavior of materials, but was inclnded in

the program so that the imp*ortance of yield strength variations could be

estimated.

Although no formal report has been written, it seems appropriate to

mention here a calculation in uhich the second factor in the expression

above for Y was set equal to unity. The calculation otherwise duplicated

the standard impact crater problem reported in Ref. 14. The effect was to

I -decrease the crater depth at 14 psec from 1.16 to 1.11 cm. At that time

the rate of change of depth is down to li• cm/sec and thus its growth is

essentially terminated. In a second comparison it was found that setting

the first factor to unity made the crater depth at 14 Isec 1.18 cm rather

than the 1.16 cm computed in the standard problem.

* 'To summarize, the effect of yield strength variations can be accounted

for in an approximate manner by choosing appropriate values for YIV Y2 and

E but this does not seem to influence crater size in the first approt!i-

mation. E can be found from handbooks as the internal energy at the

point where the yield strength goes to zero, and this can be taken roughly

as the internal energy at melting in the absence of detailed information.

Y and Y2 can be estimated from the relation, Y - Y0 + acP, which is valid

at low pressures. The value of o is about 0.07 for metals and near unityif , for geological materials.
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