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AN EULERIAN METHOD FOR CALCULATING STRENGI‘H.
DEPENDENY DEFORMATION

by
J+ K. Dienes, M. W. Evens, L. J. Hageman,
. Q\ -
W. E. Johnson, and J. M. Walsh ‘
.
PART ONE
\\ .
A DERIVATION FOR THE FLOW BEQUATICNS FOR
i STRENGTH DEPENDENT DEFORMATION
-~ ‘by
Je. K. Dienes . -
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1. INIRODUCTION

~- " Equations for the motion of a continuous medium capeble of supporting
shear stresses are reported by a number of authors, (x)(2) but the complete
sel does not appesar to have been published in a form suitable for solution
by Eulerian nydrodynamic codes. Specifically, the Eulerian equations of
motion for a compressible medium acted upon by a general stress tensor are

required. In this volume the equations of moticn are discussed starting
from the principles of mass, mcmentum and energy conservation for finite
masses. From these the differential equations of motion ure derived, ‘'he
constitutive equations relating stress and strain are regquired to complete
the mathematical description.

It is also shown that the difference egquations for hydrodynamic codes
can be conveniently obtained from the integral form of the conservation laws.
This is more convenient for a particular\coordinate syetem than using the
general method of tensor analysis and covariant differentiation, wnich teads
t0 be avkward when deriving equations of motion in a specific curvilinear
coordinate system.

The nature of a medium is specified by its equation of state, which
is used to calculate the pressure from the density and specific intern;ﬂ.
energy, and a tensor consuitutive equation relating deviator stresses, de-
viator strzins and their rates. Constitutive equations for the shear stresses
are discussed and the appropriste forms for elastic, elastic-plastic and -
rigid-plastic sclids &s vell as for viscous fluids are presente.d. T
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2. A USEFUL RELATION

Before proceeding to discuss the specific comservation laws, it will
prove useful to formulate an ilutegral relation connecting the Eulerian and
Lagrangian descriptions of fluid motion. This relation

- = D -
= ./'\7 Hdv thw’/ Hav f_é un, Hds (1)

expresses the physical notion that the rate of change of an integral over
a volume fixed in space (V) is the difference of two terms, a Lagrangian
derivative (taken with respect to the moving element of mass contained in
V) and a rate associated with mass transport out of V.

To prove this relation consider the volume integral

3(t) -f_ H(t) av
\'

<

over the volume V containing a fixed el\ement of magss. In an interval At
the change of J can be written

J = H dv - H d
’ ./\:r(wt) (erae) dv [‘Kt) (6] av

which, to the first order in At, can be expressed as

b= H(t) a At fzt)d .
./\;r(tmt)-"i(t) v ./;i(t) (0 av

By reference to Fig. " (where S is the surface bounding V, n, denotes

the 1 component of the outward drawn normal, and the ui are the compcnects

of the velocity vector) it can be observed that the thickness of the volume:
- *
swept out by S in time At 1is u, n, At.

*Tensor notation is used throughout this report, so that in this ex-
pression ??ynation over repeated indices is to be understood. The text by
Brillouin gives a good discussion of the physics and mathematics appro-
priate here.
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Fig. 1--Illustrating the motion of the volume
V and the volume it sweeps out
A
Then the expression avove for AJ becomes -

a7 = [ B(t)(un,at) a5 + at [ H(t) dv .

- o | -

S v
If. in the integral over V shovn above, V 1s replaced by its instantaneous
countexrpars, v, vwhich is fixed in space, then the time derivative can be
taken outside the integrai. When that is done and the resulting equation
is divided by At, the expression for the change of J which was writien
as Bq. 1 is obtained: i

- -2 ( -
Bt_/:v 2(t) av Dtj_;; H(t) dv fguini HS .

Here
oy _ AJ
Dt lm At
5t-0
3

ATt
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denotes the derivative of J as the mass in V moves along with the fluid.
Special cases of interest are those in which the integral on the left of

Eq. 1 denotes the mass, momentum and energy within a fixed element of volume,
and wili be discussed in the next paragrsphs.

3. CONSERVATION OF MASS

If we put for H the density, p, of the fluid, then the first in- "
tegral on the right of Eq. 1 becames the change of mass in V, which vanishes :

since V 1s defined to contain a fixed element cf mass. Thus we f£ind

) - - )
-az‘/% p dv '/"§ 0 uini dv (?) ,

] ) and applying Gauss' theorem
y . F, n, dS = F, , dv . (3)
) ./; 1% j;, 1,1

we find .
j% (6 + (puy) Jave=o
\

T

e e n

and, since the volume V 1is arbitrary,

P+ (pui)’i =0 (&) ‘

A compact notation is obtained with the convective derivative:

D 3 . T ey
AR RO (5)

The final form of the mass equation is, *r t.¢ current notation:

B Dp
= Dt tPYy,1 = O (6)
I.,  CGNSERVATION OF MOMENTUM

To calculate the momentum of & finite volume we require unit vectors

having a fixed direction, D, in space. The components Of these vectors may,
of course, vary from point to point in a curvilinear coordinate system.




Letting bi denote the components of such a vector, the D-compeaent of

momentum of the mass. in V is given by

_/’\7 pu, b, dv

The rate of change of momentum, by Newton's law, is equal to the component
in the fixed direction, D, of the surface tractions over 3, i.e,

D
-ﬁt—fvpuibidv-./_'goiabindds

[e—

where ci 3 is the total stress teunsor, the force ver unit aree in T 1s *
i
oy 3 nJ = Fi and the component of force in the direction of bi is Fi bi .
-2 = ciJ n, bi' The general relation of Eq. 1 then becomes i
2 I 3 '
: at[v D\libidvs‘["rijnjbids\ (1 y
2 L. . v S -
- - 3
1 § vhere the two integrals have been combined by putting :
. ' :
Z‘ . T1g " %1y " Y Y ®
- Applying Gauss' theorem we find, as before,
£ (pu, b,) = (T,, 1) (9)
at P s i3 1,3
,L which is similar to Eq. X.96 of Ref. 2. In rectengular coordinates this
becomes, afier combining with Eq. 6
L Dy,
u P Dt " %13,4 - (20)
z 5« CONSERVATION OF ENERGY
] The energy equation i1s obtained by a process similar to those
followed above. The total epergy per unit mass is
i E=1+dy (1)
"
‘ 5




DML
arimros € Mbibgarss dmotusosnt

R SRRt

PO M09

Wb b

T, Fen

B

(4%

whnere I denotes the internal energy per unit mass. Since the rate of
change of the total energy within V must equal the rate at which work is
done by the surface tractioas we can write

Dt D(I + &uJ uJ) av =/:§ Oyy 4y By 4S (12)

Putting pE for H 1in Eq. 1 we obtain the energy equation

o lcv

t._/—‘:, pE dv = x (°13'°E513) u n, as (13)

which, by the same arguments as before, leads to the result

2 (pE) = 5= (o, ,u,-pEu,] (%)
t axi i3 i

This can be combined with the momentum equation to obtain

- DI _
P Dt = %1y Yy,1 (15)

which is Just the first law of thermodynamics in hydrodynemic notation.

6. THE FINITE DIFFERENCE EQUATIONS \

The integral relations of Eqs. 2, 7 and 13 can be used to write out
directly the fiow equations in finite difference form. This approach seems
natural since it sugéests a finite difference scheme in which the conservation

f mass, momentum and energy are naturaliy assured, and a physical interpre- ~
tation of each step in the fumerical canputation is possible. An appropriate
control volur: for flow with axial symmetry is sketchked in Fig. 2. It
consists of half a toroid of rectengular section. The choice of a half ring
allows for a rigorous determination of the momentum equation for radial velo~"
cities, but for the other equations a complete toroid would dc just as vell.

If the integrands in Eq. 2 for mass conservation are taken to be
constant and V is the helf-ring of Fig. 2, then the surface integral vani-
shes over 83 and Su in viev of the zero angular velocity, but the in-
tegral over the other four surfaces is finite.

pramen RN




B it e e S T e R el e Sl S T A - -
¥

+ 22
i
Az 4
} —f At o
y -
i |
rdAr r !
Surface Number Components of 1 = (0,5 n,, n3)
\
parallel to
Ar) (0) (z)
1l -1 0 0
2 1 ] ¢
Y3 0 -1 0]
4 0 0
b] 0 ¢ -1
) n 1

Figs 2--The shape of an element of volume, iﬁ appropriate for
deriving the Euleiian finite difference equations in cylindri-
cal coordinates is illustrated in the sketch.
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Then Eq. 2 becomes
' . 2 6 _
pV=eo2n {pru | 8z +pv | (r+gar) Ar} (16)
1 2

In this and subsequent equations we specialize the notation, U, in view of
the cylindrical geometry, to

ul-u,ueuo,usuv (17)

-~

Eq. 16 is the mass transport equation used in the finite difference scheme,
except for replacement of the time derivetive by a finite difference.

The radial momentum equation is obtained by means of Eq. 7 in vwhich

b, is the wit vector in the (fixed) x direction. Then, with ¢ the

azimuth angle to the x-axis,

b, = cos 8, by = -~ sing, b3 =0 (18);
In view of the symmetry several components of Ti 3 vaniéh, viz. -
Tll 0 \ Tl3
(m)=1 0o 1y o (19)
\ T © T33
and the integral equation ie
-g? Vpu cos @ dv = '§(le cose-ng sin @) anS

As before, it is assumed that p and u are constant in V and Ti 3 is
constant on each of the faces of the cell. Carrying cut the integrals, we
find, upon multiplication by =,

2 6 :
-g; (pu¥) = 2n {r'ru Il bz ~ Ty, Ar Az + Tyq iS Ar(rtiAr)} (29).

For the momentum equation in the axial direction we put for bi

'bl-O, b280, ’0301




. which, with Eq. 7, leads to

\ 2 6
& (v V) = 2 {ory) || b2+ Ty | (ren) bxf (21)

The finite-difference energy equation follows by carrying out the
integrals of Eq. 13 over V, leading to

3 2
7(37)-2:({1{0 -pE)u-’-cxsl vl | az

1
+ [013 u+ (033 - pE) v |5 (r+gar) Ar} . (22)

In summary, we have four equatione for the conservation of mass, two

components of mowentum and the energy. By means of Eq. 27 we define Al

: through Ag, and in addition ve put m for pV to obtain the equations in

their most compact form. These equations are essentially those used ian the

computer program, except for the finite time step.

2. g ol A

(23)
1 ). p
ot I - oA, +—T13AIS (24)
_L__). T Al + T 16 ‘ . (25)
3t 33t ’
: ({oy; = PE) u+ a3 V] All -
3 6
» *Loyg u (g = o) VAL (26)

The surfaces referred to are illustrated in Fig. 2, and the value of A on

the i— surface is denoted by Ai’
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A = 2n r Az, A, = 21 (r+ar) Az
A3 = A, = 2n Ar Az (21)
‘AS =Ag = 2n (r+jar) Ar

T. DIFFERENTIAL EQUATIONS FOR FLOW WITH CYLINDRICAT SYMMETRY

For completeness the flow equations in differential form which are
obtained by passing to the limit of vanishing Ar end Az are noted below.

p iagpurz o(pv
=T ar ~ éz _

3t (28)
3(pu) o 1 3(Tyr) + %13 - Te2 (29)
ot r- or 2 r '
(pv) a(T,,r) aT
aatv = % —-3-.(3:: - + —333 . (30)
3 oE 13 {[( E) u+
3t " 7 ar (L(Oq)" PE) u+ oz V] r}
+ & {aut (aggm08) v} (31)

8. ISOTROPIC AND DEVIATOR CCMPONENTS OF STRESS AND STRAIN

The stresses @, y can be separated into two parts, a pressure {iso-
tropic) component P, which 1s the average of the principel stresses, and a
deviator component, Si 8§ which results from sui:tracting out the pressure
term from the total stress. Thus we can write

Ogq == Pyt 5, g (32)
and 1t follows that
p=- %aii (33)
and .
84y = O (3%)

10
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~ The negative sign preceeding the pressure in Eq. 32 is required to conform
with the usual conventions that pressure is ypositive for material in com-
pression and stresses are positive for material in tension.

In & gimilar manner the velocity gradient can be resolved into a
rotation, a compression and a distortion. To accomplish this the struin-

rate tensor c.’ is defined as the symmetric component of the gredient of
the velocity field

= +
€137 By 5t 0y ) (35)
gnd the skew part ‘
] wyy = Bl -y, ) (36)
of the tensor u, 3 defines the vorticity. The commas in these expressions
. b4
. denote differentiation in the sense of tensor enalysis. Since the flows of
interest in this report have .axial symmetry, the matrix of strain-rates is
- noted below for that special case:
[ o ¥+
o ar \ 9z or
u
(e )=¢ 0 - 0 (37)
QU , 9V 0 g

The strain rate can, in turn, be brocken up into an isotropic part involving
the rate of change of density and a deviator part obtained by subtracting
out this isotropic ~omponent. Specifically,

e1 " 15" ¥k b3y - (38)
A relation between strain-rate anéd density is obtained by combining Egs. 6
and 35:
iDp 1DV
‘ €44 Y,1 " P D" VI (39)

'
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The pressure is determined by the equation of state, p(E,p). A general
discussion of current information on the equation of state is ,given by

Brush(3) and a specific empirical fit tc the existing data 1s described
by Tillotson.(h)

To complete the description of the flow & specific relation between
stress and strai}p‘gs needed. A general form of such an equation is displayed
and discussed beglow to place the particular equations used to formulate
the OIL-RPM code in context. Subsequently, it will be specialized to des-
cribe the rigid-plastic¢ model used in the computer program.

An equation of the form

eij-% s“+bsi.j (40)
relating strain-rate, stress-rate and stress includes the description of
classical viscosit_ye elasticity, &nd the Prandtl-Reuss equations of plastic
flow as special cases. Here b and pu are scalars, but not necessarily
constants. The dots denote differentiation following a set of axes fixed

in the material. Thus, special provisiox}.,has to0 be made in the derivatives '
if there is rotation or translation of the material.

If y=o and b= 1/2v the equations describe classical viscosity
with v the kinematic viscosity and pv the dynamic viscosity of tke
material. The full equations are then the Navier-Stokes equations if the
additional requirement is made that the density he held constant, as in
incompressible flow.

Elasticity is described by putting b = O, and in that case , is
the rigidity modulus of the material, which is one of the two Lamé constants.
A second elastic constant is included in the equation of state of the material,
which for moderate internal energy, I, and near-normal density is approximeted
by p= A(p/p -1), where A 1s the bulk modulus in the notation of this
report. The other Lamé coefficient is expressible in terms of A and g
by A=A - 3.
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The Prandtl-Reuss equations for an elastic-plastic medium with a
von Mises yield criterion are discussed by Hill, (5) Thoms(G) and numerous
other authors on plusticity. If, in aadition to Eq. 4Q, we require the
von Mises yield criterion

w 2¥2 (41)

vwhere Y 1s the yleld stress in pure shear, we obtain an explicit expres-
sion for b,

Sg4 845

b= —al i (42)

which completes the specification of the medium, except for the possibility
that the deformation is elastic. In that case b = O. At each step in

the calculation the deformation has to be tested to see whether the nevw
stress 1s elastic, i.e. 1if

< 2y (43)

or plastic, which is the case when the inequality is violated,' as in Eq. 41.

A}

Sy4 5

The full Prandtl-Reuss equations have to account for material rotation
by means of additional terms which were originally described by Jaumann

(7) for a discussion), and are described by Thoms(é) on p. 88.
In owr notation

(see Prager

Sg5™ % Sqg " Sy et * Sqx Wy ) ()

where w, 3 is given by Eq. 36 and 3, denotes an ordinary time derivative
in fixed axes.

~

The rigid-plastic model constitutes an important simplification which
is useful vhen the strains are large compared to the value at yleld, as for
the "near fieid" in hypervelocity impact. In this approximation the elastic

portion’ S, J/a; of the total strain is set t0 zero, resulting in the con-
stitutive relation

«?:1.1 =b 5, ’ (45}

13
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This may be thought of as an approximation in which p is very isrge. In
ithis limit of an infinite modulus of rigidity it is said that the material
is described by & "rigid-plastic” model. Setting u equal to infinity
eleminates the need for calculating the Jaumenn terms, in Eq. 44, and allows
the stresses to be calculated directly from the strain-rate. To do this

2q. 45 1s multiplied by itself, with the result

b2

éi'J éiJ= siJ si‘j

hccounting for the von Mises condition, Eq. 41, we have

J2Y
___eiJ

S5 (16)

—
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