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1. INTRODUCTION

-- Equations for the motion of a continuous medium capable of supporting(z-)(2)
shear stresses are reported by a number of authors, but the complete

zet does not appear to have been published in a form suitable for solution

by Eulerian hydrodyns-ic codes. Specifically, the Eulerian equations of
motion for a compressible medium acted upon by a general stress tensor are

required. In this volume the equations of motion are discussed starting

from the principles of mass, mcmentum and energy conservation for finite

masses. From these the differential equations of motion 'Are derive'., The

constitutive equations relating stress and strain are required to complete

the mathematical description.

It is also shown that the difference equations for hydrodynamic codes

can be conveniently obtained from the integral form of the conservation laws.
This is more convenient for a particular\coordinate system than using the

general method of tensor analysis and covariant differentiation, which tends

to be awkward when deriving equations of motion in a specific curvilinear

coordinate system.

The nature of a medium is specified by its equation of state, which

is used to calculate the pressure from the density and specific internal

energy, and a tensor constitutive equation relating deviator stresses, de-

viator strains and their rates., Constitutive equations for the shear stresses

are discussed and the appropriate forms for elastic., elastic-plastic and

rigid-plastic solids as vell as for viscous fluids are presented. -.
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2. A USEFUL RELATION

Before proceeding to discuss the specific conservation laws, it will

prove useful to formulate an iiutegral relation connecting the Eulerian and

Lagrangian descriptions of fluid motion. This relation

.~f Hdv = f Hdv - f uin, Hds()t ~Dt

expresses the physical notion that the rate of change of an integral over

a volume fixed in space M) is the difference of two terms, a Lagrangian

derivative (taken with respect to the moving element of mass contained in

nV) ad a rate associated with mass transport out of V.

To prove this relation consider the volume integral

Jt f H(t) dv

over the volume V containing a fixed element of mass. In an interval At

the change of J can be written

IAJ a,-(t+At) H(t+At) dv -f H(t) dv

which, to the first order in At, can be expressed as

tT H)- (t) d+ t (t) d

By reference to Fig. (where Sis the surface bounding V, ni denotes

the i component of the outward drawn normal, and the u, are the compcnezts

of the velocity vector) it can be observed that the thickness of the voluw.-

swept out by S in time At is uini At.

Tensor notation is used throughout this report, so that in this ex-
pression fmation over repeated indices is to be understood. The text by
Brillouin~y gives a good discussion of the physics and mathematics appro-
priate here.
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Fig. l--_lllustrating the motion of the volume
[ Vand the volume it sweeps out

S~Then the expression aboove for AJ becomes

A J' H(t)(uiniat) dS +Atfvi(t) dv

*If in the integral over 7 shovn above., is replaced by its instantaneous

Scounterpart, V., which is fixed in space, then the time derivative can be

S~taken outside the integral. When that is done and the resulting equation

I. •

is diidedbFig..1-lusrtn the exotsion oor the chne ofJwliwa s rete

as and 1h iswn itbswepseou

] A .fH(t)(nit dS H t (t) dv vn d1

If .•.;.i in theI integral over V hi bvVi elce~ t ntnaeu

HereHt)d a fit)d fun d

Dt At
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1 . denotes the derivative of J as the mass in V moves along with the fluid.

Special cases of interest are those in which the integral on the left of

Eq. 1 denotes the mass, momentum and energy within a fixed element of volume,

and will be discussed in the next paragraphs.

3. CONSERVATION OF MASS

If we put for H the density, p, of the fluid, then the firsz in-

tegral on the right of Eq. 1 becomes the change of mass in V, which vanishes

since V is defined to contain a fixed element of mass. Thus we find

%tA dv f 0 un dv (2)

and applying Gauss' theorem
Y FP ni dS Fi,i dv (3)

JS Fi
we find

f [+ (pu5),i] dv 0

and, sibce the volume V is arbitrary,

+ (Pu)d a 0 (4)

A compact notation is obtained with the convective derivative:

(5)
Dt at L i x

The final form of the mass equation is, 4 r t.-i- current notation:

D +u 1 0 (6)SDt ,i

L... CONSERVATION OF MOMENTUM

To calculate the momentum of a finite volume, we require unit v.ctors

having a fixed direction, D, in space. The components of these vectors may.,

of course, vary from point to point in a curvilinear coordinate system.
J
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. Letting bi denote the components of such a vector, the D-compc1ent of

momentum of the mass. in V is given by

f pui bi dv

The rate of change of momentum, by Newton's law, is equal to the component

in the fixed direction, .D, of the surface tractions over ', i.e.

D f pui bi dv - aij b, n dS

where a is the total stress tensor, the force per unit aree in • is

ai F3 and the component of force in the direction of b is Fi bi
CF,, n, b The general relation of Eq. 1 then becomes

f f pu, b, dv- fT n b dS (7)

V S
where the two integrals have been combined by putting

T ij " °'1 " Pi uj (8)

Applying Gauss' theorem we find, as before,

Wt- (pui bi) (Ti- bhi),1 (9)

which is similar to Eq. X.96 of Ref. 2. In rec1Pngular coordinates this
becomes, after combining with Eq. 6

Dui j(10)

5. CONSERVATION OF ENERGY

The energy equation is obtained by a process similar to those

followed above. The total energy per unit mass is

-~~~ Em It +lju 3 (

.1
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I .where I denotes the internal energy per unit mass, Since the rate of

change of the total energy within V must equal the rate at which work is

done by the surface tractioas we can write

+D ( uj u,)dv =f ai, uan, dS (12)
Dt

I Phtting pE for H in Eq. 1 we obtain the energy equation

_ [pE dv f[ ( -i' ) ui nj ds (13)

I which, by the same arguments as before, leads to the result

= (pE) t "aiJU-PE-li (i4)

This can be combined with the momentum equation to obtain

SDI 1.Z (15)P Ut-• *= 'i u j, i

which is just the first law of thermodynamics in hydrodynamic notation.

6. THE FINITE DIFFERENCE EQUATIONS

The integral relations of Eqs. 2, 7 and 13 can be used to write out

directly the flow equations in finite difference form. This approach seems

natural since it sgigests a finite difference scheme in which the conservation

f mass, momentum and energy are naturally assured, and a physical interpre-

tation of each step in the irumerical computation is possible. An appropriate

control volur. for flow with axial symmetry is sketches. in Fig. 2. It

consists of half a toroid of rectangular section. The choice of a half ring

allows for a rigorous determination of the momentum equation for radial velo-

cities, but for the other equations a complete toroid would do just as weli.

If the integrands in Eq. 2 for mass conservation are taken to be

constant and V is the half-ring of Fig. 2, then the surface integral vani-

shes over S and S in view of the zero angular velocity, but the in-
3 4

tegral over the other four surfaces is finite.
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r+Ar r

Surface Number Components of n- (n , n 3 )

pkzsLIel to
(r) (o•) (z.)

1 -1 0 0

2 1 0 0

3 0 -1 0
4 0 1 0

5 ~0 -
6 01

deriving the Eulelian finite difference equations in cylindri-
cal coord2nates is illustrated in the sketch.

.1

4.
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Then Eq. 2 becomes

2 6

1 5

In thi.s and subsequent equations we specialize the notation, u., in view of

the cylindrical geometry, to

U u, u 2 -0, -. V (17)

Eq. 16 is the mass transport equation used in the finite difference scheme,

except for replacement of the time derivetive by a .finite difference.

The radial momentum equation is obtained by means of Eq. 7 in which

bi is the unit vector in the (fixed) x direction. Then, with a the

azimuth angle to the x-axis,

i bl b cos , b 2 -sing,b 3 .O (b8)0

2

In view of the symmetry several components of T vanish, viz.

(Ti1  1

(Ti)= k Ta o (19)

T31  30

and the integral equation is

u cos 0 dv= (T1 j cos - T2  4in e) n dS

As before, it is assumed that p and u are constant in V and is

constant on each of the faces of the cell. Carrying out the integrals, we

find, upon multiplication by it,

- (puV) 2ar rTl 2 - T Ar Az + T1 S ' (2r).
1 .rr~)

For the momentum equation in the axial direction we pat for bi

b -0, b 2 -0, bl

8
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which, with Eq. 7, leads to

a. (Pv•) 21t rT3 1  2 Az + T3 3 16 (21)
1 5

The finite-difference energy equation follows by carrying out the

integrals of Eq. 13 over V, leading to

2
) 2a {r[al - pE) u + a31 v3 A ).z

6+ [C13 U+ (a33 pE) v I (r•jAr) Ar} (22)

In summary, we have four equatione for the conservation of mass, two

components of momentum and the energy. By means of Eq. 27 we define A1

through A6 , and in addition we put m for pV to obtain the equations in

their most compact form. These equations are essentially those used in the

computer program, except for the finite time step.

2 6
'a -PaAI -pvAj (23)

{1

[(L-) Ta12 - PIE)u + °aT v] A(2

at 31

6
+-°03 u + (a3 - pE) v] AI (26)

The surfaces referred to are illustrated in Fig. 2, and the value of A on

the ia surface is denoted by A,.
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A,- 21 r Az, A:2 2n (reAr) Az

A A3 A A4 =2n Ar Az (2T)

ý5 6A5 A6 u2•T(r@jr)•r

7. DIFFERENTIAL EQUATIONS FOR FLOW WITH CYLINDRICAT  O4E.1'Y

For completeness the flow equations in differential form which are

obtained by passing to the limit of vanishing Ar and Az are noted below.

at F Br "

- + 8(T -r (BT)
I(u -~ 1( 11r) + =1, T22  (29)

at r- br az r

a(pv) 1 B(T13r) +T30
at r ar a

= { t(a1 1  PE) u + a(r
at r ar 31zV

~{L 3 iii (a 3 -E v} (31)

8. ISOTROPIC AND DEVIATOR COMPONENTS OF STRESS AND STRAIN

The stresses aij can be separated into two parts, a pressure (iso-

tropic) component p, which Is the average of the principal stresses, and a

deviator component, SU, which results from subtracting out the pressure

term from the total stress. Thus we can write

a -ij 6P6 +1 Sj (32)

and it follows that

p -- (33)

and

sii ao (34)
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* The negative sign preceeding the pressure in Eq. 32 is required to conform

with the usual conventions that pressure is positive for material in com-

pression and stresses are positive for material in tension.

In a similar manner the velocity gradient can be resolved into a

rotation, a compression and a distortion. To accomplish this the strvAin-

rate tensor c. 1  is defined a. the symmetric component of the gradient of

the velocity field

6ij "(ij + Uj,i) (35)
and the skew part

wil *•(ui,, " uj,i) (36)

of the tensor ui, j defines the vorticity. The commas in these expressions

denote differentiation in the sense of tensor analysis. Since the flows of
interest in this report have-.axial symmetry., the matrix of strain-rates is
noted below for that special, case:

BU 0 J(aLu + 1V

(Ci•)= o r 0 (3T)

.O- + Lt) 0z bl

The strain rate can, in turn, be broken up into an isotropic part involving

the rate of change of density and a deviator part obtained by subtracting

out this isotropic ,omponent. Specifically,

ei ai " *Ckk 6ij (38)

A relation between strain-rate and density is obtained by combining Eqs. 6
and 35:

Cii u1, it V- -- (39)Spflt VDt

I



The pressure is determined by the equation of state, p(Ep). A general

discussion of current information on the equation of state is given by
(3)Brush and a specific empirical fit to the existing data is described

by Tillotson.i(

To complete the description of the flow a specific relation between

stress and straia,.s needed. A general form of such an equation is displayed

and discussed below to place the particular equations used to formulate

the OIL-RPM code in context. Subsequently, it will be specialized to des-

cribe the rigid-plastic model used in the computer program.

An equation of the form

1 "
+ b S(40)

relating strain-rate, stress-rate and stress includes the description of

classical viscosity, elasticity, and the Prandtl-Reuss equations of plastic

flow as special cases. Here b and p are scalars, but not necessarily

constants. The dots denote differentiation following a set of axes fixed

in the material. Thus, special provisionhas to be made in the derivatives

if there is rotation or translation of the material.

If p - = and b - 1/2pv the equations describe classical viscosity

with v the kinematic viscosity and pv the dynamic viscosity of the

material. The full equations are then the Navier-Stokes equations if the

additional requirement is made that the density he held constant, as in

incompressible flow.

Elasticity is described by putting b 0 0, and in that case p is

the rigidity modulus of the material, which is one of the two LaIm constants.

A second elastic constant is included in the equation of state of the material,

which for moderate internal energy, I, and near-normal density is approximated

by p = A(p/p 0-l), where A is the bulk modulus in the notation of this

report. The other Lam& coefficient is expressible in terms of A and

by A-b.

12



-7 -- -V

The Prandtl-Reuss equations for an elastic-plastic medium with a

von Mises yield criterion are discussed by Hill,(5) Thomas(6) and numerous

other authors on plasticity. If, in a&dition to Eq. 40, we require the

Yon Mises yield criterion

iJ siJ 2Y2  (41)

where Y is the yield stress in pure shear, we obtain an explicit expres-

sion for b,

b ij iJ (42)

which completes the specification of the medium., except for the possibility

that the deformation is elastic. In that case b - 0. At each step in

the calculation the deformation has to be tested to see whether the new

stress is elastic, i.e. if

Sij sij < 2Y2 (43)

or plastic, which is the case when the inequality is violated, as in Eq. 41.

The full Prandtl-Reuss equations have to account for material rotation

by means of additional terms which were originally described by Jaunann

(see Prager for a discussionj and are described by Thomas on p. 88.

In our notation

wherej ist ij +Skjwki Sii ns kj j '(4)

Swhere wj is given by Eq. 36 and Bt denotes an ordinary time derivative

in fixed axes.

The rigid-plastic model constitutes an important simplification which

is useful when the strains are large compared to the value at yield, as for

the "near field" in hypervelocity impact. In this approximation the elastic

portion So of the total strain is set to zero, resulting in the con-

stitutive relation

i b Sb (45)

13
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This may be thought of as an approximation in which p is very large. in

this limit of an infinite modulus of rigidity it is said that the material

is described by a "rigid-plastic" model. Setting p equal to infinity

eleminates the need for calculating the Jaumenn terms, in Eq. 44, and allowsLth-e stresses to be calculated directly from the strain-rate. To do this

Eq. 45 is multiplied by itself, with the result

= b 2

ij ij is ij

Accounting for the von Mises condition, Eq. 41, we have

Y (46)
k1 k

14
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