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PREFACE 

This report Is part of RAMD's continuing interest in the geo- 

physical effects produced by nuclear explosions.    Previous work 

(RM-4225, RM-4388, RM-4494, RM-4858, RM-4946, RM-5616)    has been con- 

cerned with the geomagnetic effects produced by such explosions.    The 

present study is the start of an investigation of some aspects of the 

acoustic effects.    This work was sponsored by the United States Air 

Force and the Advanced Research Projects Agency. 
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SUMMARY 

A complete asymptotic analysis Is carried out for the flow field 

produced by the Instantaneous release of energy, at a point on the 

ground,  in an isothermal atmosphere.    A double integral representa- 

tion of the flow is constructed from Laplace-Hankel transforms of 

the linearized equations.    An asymptotic approximation to the 

integral is obtained by two successive applications of the method 

of stationary phase.    It is found that there are three principal 

groups of dispersive waves behind the spherical acoustic front.    One 

of these groups is contained in a high frequency band, and the other 

two in a low frequency band.    The spatial domain of the low frequency 

waves is cut off by a front (caustic), the location of which is 

calculated.    Some characteristics of the flow are discussed. 
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I.  INTRODUCTION 

The problem of waves in a stratified atmosphere has received 

much attention and many different cases have been considered (cf 

Bibliography) . The case which is analyzed here is one for which a 

complete asymptotic analysis can be carried out and an overall view 

of the resulting wave motion obtained. The principal simplification 

is that the waves are small disturbances to an isothermal atmosphere. 

The problem worked out in detail is the flow field produced by the 

instantaneous release of energy at a point in the ground plane (the 

analysis is easily extended to cases of energy release at a point 

above the ground) . This case does not seem to have been discussed 

previously, although similar problems for monochromatic waves have 

been discussed.^ ' 

The basic method used for obtaining the asymptotic approximation 

is the repeated application of the method of stationary phase. The 

kinematic aspects of the groups of waves produced could have been 
(2) 

based on the dispersion relation and the considerations of Whithanr ' 
O) 

and Lighthill.x ' But, it turned out to be more convenient for this 

paper to base ell the calculations on the Fourier integrals derived 

by Lap lace-Hankel transforms of the linearized equations.  In any 

case there are three principal groups of waves, one in a high fre- 

quency band and two in a low frequency band. The spatial domain of 

the low frequency waves is cut off by a front (caustic) . This 

phenomena was first noted by Mowbray and RarityN ' in their study of 

dispersive waves in an incompressible stratified fluid. A similar 

phenomenon appears in the pattern of waves around a moving ship. 

In Section II the basic equations are given and the lineariza- 

tion is carried out in suitable dimensionless units. The basic 

small parameter is shown to be the ratio of the energy released to 

the Internal energy in a volume of scale height dimensions.  In 

addition, due to the exponential decay of density, there is an ex- 

ponential growth of disturbances unfavorable for the validity of the 

theory. However, there should still be a considerable range in which 

the approximation is quantitatively correct as well as qualitatively 

instructive. 
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In Section III the application of Laplace transform In time and 

Hankel transform with respect to cylindrical radius enables an 

integral representation of the exact solution to be obtained.    In 

Section IV it is shown how the acoustic spherical wave front is con- 

tained in the representation.    Non-linear effects are probably most 

Important in describing the amplification of the front into a shock 

wave and its subsequent propagation.    However,  the main residual 

disturbance is a system of dispersive waves behind the front.    By 

studying the double    integral representation,  it is seen that a 

cylindrical ground wave exists in addition to propagating waves in 

low and high frequency bands.    Section V studies these propagating 

dispersive groups and presents the final description of the flow as 

well as some numerical results. 



II.     BASIC EQUATIONS 

We consider motion In an Isothermal atmosphere above a ground 

plane produced by Instantaneous energy release at a point on the 

ground,  the origin In Fig.  2.1.    The equilibrium atmosphere Is thus 

characterized by the usual exponential distributions with scale 

height h. 

P P 

4f      4r      4 
P ,  p , T    - sea level (z - 0) pressure, density, temperature, 

* 
RT *       f * h - scale height - — .    Note that c    " VY c   where c    - Isentroplc 

_   o o 

sound speed = vvRT , c = gravity wave speed ■ 7gh. The dimension- 
o 

less equations of motion, continuity, momentum, entropy for a perfect 

gas are 

U+ dlv pq - 0 (2.2) 

|l+^q-.l-VP-ik (2.3) 

(1^+ q-V) 2- - i- e 6(x)6(y)6(z)6(t)   . (2.4) 

Here lengths have been referred to the scale height h, velocities to 
•k It 1c It 

c  , times to h/c , pressure to P , and density to p .    The basic 

parameter of the problem Is 

c -   -rr-jr2- (2.5) 
hJP 



Flg. 2.1 - Co-ordlMt« system, vlth origin at tha point 
of enargy ralaaaa. 



. 
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where Q    ■ energy released at t » 0;  e roughly measures  the energy 
o 

release compared to the Internal energy stored In a scale height 

volume.    The initial conditions at t = 0 are 

P » p - e"Z,  q - 0, (2.6a) 

the boundary conditions at z = 0 is 

q - 0. (2.6b) 
z 

ACOUSTIC EXPANSION 

The acoustic expansion is based on c « 1 and represents the 

flow as small changes superimposed on the ambient state: 

q - e u + ...,    u - (u,w) (2.7) 

where u * radial component 

w = vertical component 

P - e"Z {1 + cp + ...} (2.8) 

P - e 
z {1 + »a + ...} . (2.9) 

The equations of order e that result from (2.2, 2.3, 2.4) are thus, 

for the case of axial symmetry, 

at + u+-+w    -w-0 r- J*'+y1 (2.10) t       r      r        z ' 

ut --^Pr (2.11) 

wk - . i p   + £ia (2.12) 
t Y   z       Y 

Pt - V at + (v-l)w - ^ ^f1 6(z)6(t)   . (2.13) 



The initial and boundary conditions for the perturbations are 

p - a ■ u - 0    at    t - 0- (2.14) 

w-Oatz-O, t>0 (2.15) 

and the main wave motion is assumed outgoing. The characteristic 

surfaces of the system (2 «10 ,-13) are given by 

«t " 0» ^ ' a* " ar ■ 0 (2-16) 

where 0(r,z,t) » const, on a characteristic surface in (r,z,t) space. 

The first factor in (2-16) represents possible discontinuity surfaces 

along fixed cylinders r(z) in space while the second shows the 

possibility of a spherical acoustic front (the sound speed is con- 

stant everywhere in this model). 
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III. FORMAL SOLITIIONS 

A formal Integral representation of the solution is constructed 

by a combination of Laplace and Hankel transformation. Let 

p" -st * 
g(s) =■  e  g(t) dt    (Laplace transform) (3.1) 

so that the system (2.10,13) has ft " s* wlth the zero inltlal 

conditions. 

sor + ü +-4-w -w-0                          (3.2) 
r  r   z 

8Ü   +^Pr - 0 (3.3) 

^5+ 8w + ^ (?z - p)  - 0                        (3.4) 

- ysa + (Y-l)w + 8? - J- £&- 6(z). (3.5) 
2n  r 

Using the Hankel transforms 

f(r) - J F(u)) Jv((«r)u)du), ?((«) - J f(r) Jv(u)r)rdrjv > (- lj) 

o 0 

(3.6) 

note that 

OB CO 

JjSl - J 6(u,) Jo(<«:)udu,.   6<«0 - J f^- Jo(u*)rdr - ^ . 
o o 

(3.7) 

we intend to use the usual inversion formula 
i » 

g(t) - l/2TTi J  e8t i(s)ds . 
-i CD 
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Thus, let 

00 

(a,w,p) - J (R.W.P) Jo(kr) kdk (3.8) 

00 

Ü = J U(k) ^(kr) kdk . (3.9) 

The choices In (3.8,9) are made consistent with the overall symmetry 

of the equations and Insure that lim ru - 0, so that the behavior 

at the axis of symmetry Is regular.  Using the properties of J , 

J., etc. the basic system, (3.2,5) becomes 

dW 
sR + kU + ^-W-O 

dz 

sU - - P ■ 0 
V 

(3.10) 

(3.11) 

- R + sw + - (Ir - p) - o 
Y        y   dz 

Y sR + (Y-l)W + sP 
2TT fi(z) . 

(3.12) 

(3.13) 

This system Is linear and second order with respect to z, so that 

there are two basic roots V,, \ot  for solutions of the form 

(R^jWjP) ~ e z. The characteristic determinant from (3.10,-13) 

Is 

s k X-l 0 

0 s 0 -k/Y 

I 
Y 

0 8 fc-v 
Ys 0 Y-l 3 

(3.14) 

and the characteristic equation Is 
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(\-l)2 + (\-l)   - {s2 + k2 (1 + -^j)] " 0  . (3.15) 
Y +s 

The basic roots are 

Xl 2 " 2 V 4 +8Z+ k2(1 + -fh  ' (3'16) 
* Y  8 

For deflnlteness the contours in the 0 plane is at first chosen 

so that Re ,/"'> 0 in (3.16). 

In order to formulate "jump" conditions it is most convenient 

to eliminate (R,U) from the system (3.10-13) and obtain 

Y^.w+(^+8)p.l_6(z) (3.17) 

{Y
2
S
2
 + (Y-l)} W + YS (;£ - P) + sP - j^ 6(0 .      (3.18) 

Integration of (3.17) from (0- to 0+) yields the jump conditions 

Since the solution should vanish ahead of the acoustic wave front 
n—T WT +z    >  t) only the root X- of (3.16) need be considered and we 

write 

X - ^ - ^(8,k;Y) where k* "7 |- + a2 + k2(l + ^r ) ,    (3. 20) 

and 

S2 -3C4 
Y 
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2 2 
Note that 0 < 0 < %; <Y ■ 1»*$  ß ■ .22) for realistic values of 

\. Since W » 0, for z * 0-, the Jump condition (3.19) provides the 

boundary conditions for W as z -• 0+ and the solution for W is 

W(z;s,k) " 2^^Z •"**" • (3.21) 

It follows from (3.17), for z > 0, that 

2-Y . 
1  "2v+ ^ P(z;8;k) - i- -p 5-8 . (3.22) 
ZTT
 S

Z
 + k2 

Applying the double inversion of Laplace and Hankel transforms, we 

obtain a formal representation of the perturbation pressure field 

00 

e"^p(r,z,t)  - 5^   J J0(kr) F(k;z,t) kdk (3.23) 

where 

'<*•>*>*> ■ sli f8e8t"n4(8,k)z ^h^i8 d8 •     <3-24> 
-i« 8 + k 

The integration of (3.24) is regarded as carried out first, for a 

fixed real k. This integration over s is carried out, at first, 

along a path parallel to the imaginary axis to the right of all 

singularities in the ® plane, so that the initial conditions are 

satisfied. The (s) plane is cut suitably so that Re(^) > 0 on the 

contour. 

The pressure field is the main quantity of interest but all the 

other quantities easily follow from the system (3.10-13). 
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IV. APPROXIMATE AND ASYMPTOTIC EVALUATIONS 

In this note tht main Interest is centered on the dispersive 

waves behind the acoustic front. This is the main disturbance which 

contains eventually most of the energy put in at t * 0. 

However, first, a crude approximation valid near the acoustic 

wave front cones from considering large (k,s) in (3.23), to obtain 

2    2 ,1» ..        a»    -z Ja +k 
p(r,z,t) i e^2 -Ar- f      ■ e8td8  f    *   /,    g       J (kr)kdk .    (4.1) 

4TT4i J-i» '        VsW 0 

The second Integral is a special case of an Integral evaluated in 

Watson's Bessel  functions. 

jo    -ays +k «-»»A +z 

f   e J (kr)kdk - e (4.2) 

o     Ja +k Jr +z 

so that (4.1)  is 

P(r,z.t) - 2^   2rtJ      s e ^      'ds (4.3) 
-i« 

where K = Jr +z    - spherical radius.    According to the usual inter- 

pretation the Integral in (4.3)   is the derivative of a delta function, 

or 

p(r.Z.t) *    e*z JL6'(t-R) (4.4) 

6'(t-R) is the acoustic version of the compression followed by an 

expansion tnat is felt near the wave front. The intensity is 
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doubled, due to the ground plane, over that of a point source In free 

space. Further, the factor e  represents the amplification of the 

waves proportional to p (z)  , according to the usual local energy 

considerations. 

Asymptotic Integration of (3.23,24) which Is valid In the main 

wave zone for large (r,t) can be carried out by repeated applica- 

tions of the method of stationary phase coupled with the use of an 

asymptotic representation of J . 

In order to give definite meaning to the Integral the follow- 

ing plan Is adopted. The @ plane Is suitably cut and the Integral 

of (3.24) for F(k;z,t) Is expressed as an Integral along segments 

of the Imaginary axis (s-luu) . That Is, It Is expressed as a Fourier 

Integral over the frequencies (»which, for a given k, can propagate. 

In doing this, the residues at certain poles (due to presence of the 

ground), have to be evaluated. Next, In the real double Integrals, 

(<ju,k), the order of Integration Is changed, since the stationary 

phase approximation can more easily be carried out In the k-lntegral. 

However, this can only be done If the asymptotic approximation for 

J Is used. After this Is completed, the answer Is expressed as a 

Fourier Integral. This Integral Is again of such a form that the 

method of stationary phase can be used and Its qualitative features 

are easily discussed. (See 5.) In addition some quantitative re- 

sults are also presented. Some details of the procedure Just out- 

lined are now given. 

First note that the exponent In (3.24) 

n(8,k) - 7 f*4 + (k + k2)82 + t1*1} (4'5) 

can be written as 

I» - J {O.    y ^(k)) (s2 + a.2(k))] (4.6) 

so that the  Integrand has branch points at s - + l(u., + luu   where 
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a)2 (k) - i [(i + k2 + 2mh + (i + k2 - 29k)^ ]       (4.7) 

^(k) - ^ [a + k2 + 20k)^ - (i + k2 - 2Bk)^ ]       (4.8) 

UJ« is a lower cut-off frequency, u) an upper cut-off frequency. 

(See Fig. 4.1) In addition, the Integrand of (3.24) has poles at 

s ■ + lk( and an essential singularity (due to \i in  the exponent) 

at the origin. Ic can be verified that the Integrand Is one-valued 

In the entire plane with barriers as shown, If the principal branches 

of the angles associated with each branch point are chosen as shown 

In Fig. 4.2. The picture Is drawn for a given k and Is qualitatively 

the same for all k. Note the arguments of \i, at the various points 

on the Imaginary axis. 

arg M-A - arg M^ - arg ^ - arg uH - TT/2 (4.9) 

arg ^ - arg p^ - arg u^, - arg HG - - TT/2 . (4.10) 

The application of Cauchy's theorem enables the Integral of F on the 

original path to be expressed as Integrals on segments of the 

Imaginary axis as shown, plus (2TT1) X (sum of the residues) at the 

poles (s = + Ik). This Is true since the Integral on a large circle 

In the left half plane vanishes (Re(s) < 0). Also, the essential 

singularity at the origin Is outside the contour used for Cauchy's 

theorem, and thus does not contribute a residue. Thus 

•(ki2,t) - ( L       Res) + F1 + F2 + F3 + F4 + F5 + F6 
8" +lk 

(4.11) 
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Fig. 4.1 - Location of ttw cutoff frequencies, given by 
Eqs. 4.7 end 4.8, which arise from the change 
in the order of integration of Eq. 4.1. 
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where 

F^k) 
-        i(^t-n z)   (r=%+ In) -L. J      e 24   s      , d(U 

^2(k) 
2    2 

ID -k 
(4.12) 

F2(k) 1 
2TTi 

^2 Kwt+u^) (^- 1^) 
e '      - 

a» 2    2 uT-k 
uu du' (4.13) 

and n = 1(1.  on   1  »  etc. 

^ ^y^2-^)^2-^ i/^-^^^+eV       (4.i4) 

F5(k) 1     f^   ^^    ^ - i^ 
1 ■' üü diu 2ni J 2      2 uT- k 

(4.15) 

F6(k) 
- a 

=  2lTl J 
-uu 

l(«»t-|A5E)     ~-l-   i*5 

' 2,2 
uu - k 

uu d<JU (4.16) 

Noting that n- ■ - li-   these Integrals can be combined to 

wwiirf  T5{<T7
+
'^ -00    uu -k 

dou ' 2-V 1(^-^2)      2_Y l^+^zs 
' ^ - ("27 - i^)« ~    ) 

hH > Vk) • (4.17) 

The  Integration Is carried out In (4.17)   only over those frequencies 

IH    ' '"oW which can propagate as waves.     In a similar way, 
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1    r"1    u, du)      r 2-Y U^-^z)       2-Y iC^t+^z) , 

k - I» 
-U,l 

(4.18) 

Thus, all these Integrals can be combined to a Fourier integral on 

only those frequencies which can propagate. 

IP*      u, du;    r 2-Y 1(^-^,2)       2-Y iCut+^zK 
F1+F2+F3+VP5+P6 * 2^ J   ^2j Vlfi + ^l)e " ^ " ^l>e ) 

|u)| < v |H > «,2 ( (4>w) 

Further, the residue at s = + ik is easily calculated: 

2 2   2-Y 2 
(/(Ik) -^ - P - (^)Z) 

2-^ 
o Y   "  5v "   ikt 

Res (s - + ik) = ~ e   ^1 e~    . (4.20) 

Thus 

2-Y 
r"        2-Y    2Y 
^   Res ----e  <6T  cos kt . (4.21) 

s- +ik 

The pressure field is calculated by applying the Hankel transform to 

(4.19) and (4.21) as in (3.23). The part produced by the residue 

at the poles (4.21) is called the ground wave P and thus has the 
G 

representation 
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2-V 

e'^ PG = ^ ^ e   2V  J Jo(kr) cos kt k dk .     (4.22) 

The Integral in (4.22) is divergent, but can be interpreted as 

It I 8in kt Jo(kr> dk = - ^y/2 • (4-23> 

Then, 

2-Y 
-kz 1     .2-Y,     '    2Y Z    . „   _„ 

6 PG - 2^ ^  e | ^2^3/2 I <4-24) 

(4.24)  represents a cylindrical wave, which exists only behind the 

spherical front.     It is an exact solution to the original equations 

as  given in Lamb^ ^(p.  548).    The wave  is excited from the axis 

(r=0)  by the vertical passage of the spherical acoustic wave.    The 

remainder of the pressure field comes  from the Hankel transform of 

(4.19).    The order of integration is changed and the integral is broken 

up into low and    high frequency bands   (cf. Fig. 3.1) 

p " PG + PI + PII (4*25) 

-fc« IP* ip80    Vkr>k  f 2-Y 1<««1M) 

-0 ^(«0      -w 

(T7 " ^  e } dk (4.26) 
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-W If" 1      p"   Jo(kr)k r 2-V ^"«-U!«) 

I.IH      kl^> 

2-V iCiot+^z) 2-Y J-V-l-TM-.^/    N 

- (^7 - ^i)e }dk • (4-27) 

Here 

U) 

k^«)  -  H/-22 

from (4.14).    These  integrals can be expressed as Integrals over 

positive frequencies  in low and high frequency bands. 

a 
e"^ZpI " n Im J    i*ii>it Gi(u'>duu (4-28> 

e'^pjj ■ ^ Im f iuelU,t G^^dw (4.29) 

where 

J (kr)k 

dk 
k -uu* 

i   r    u r 2-Y ^i      2-Y ^i*} 

(4.30) 

i   r1 Jo(kr)k r 2-Y "^i2    2-Y ^i85 •> 

o 

(4.31) 
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The asymptotic formula 

/-5-. .       f Ikr-i J       -Ikr + i ?% 

(A. 32) 

is now used in (4.30, 4.31) . This approximation is very good for r 

large except for those k near zero (in G ). But for k close to 

zero the integrand is small anyway so that the approximation of (4.32) 

is probably excellent. The apparent singularity at (r-0) in (4.32) 

in fact disappears from the answer later. Thus, 

iMk)   ia^-k) 

1  (2n)3/2^k
J
(u)) k

2^2 l 2V    1 

2 ia2(k)     ia2(-k) ^ 
- (Äji- i^)(e Z   +e Z   ) }      (4. 

k^u)) 

II 3/2^     2 2  L("2^ + ^l5 (e     + e     ) 
11  (2TT)

J/Z
^  i  UT-IT  L ^Y    1 

33) 

2 ta2(k)  l02(-k) . 
' ( 27" ^l^6     +e     > } *      (^-34) 

Here 

ai(k) = kr - ^(k)« - J sign k   ai(-k) = - kr - ^z + J 

(4.35) 

a2(k) ■ kr + g.^ - j Sign k    Ö2(-k) = - kr + pi z + ^ 
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u1 - J /(02-«B2)k2 - u)2(% - u)2)    =   i/u)2(a)2-«  - (u)2-82)k2  . 

(4.36) 

Note that 

;II 

(4.37) 

dk '      W      [(B2-^2)^^^)]^ U)'        ^1      <oinGT 

2 
d Ul f4:-uJ2)fB2-U)2) 
 5- = - UD  tt      MH r^  < 0, always. (4.38) 

dkZ [(6  -ti) )kZ + U) (tu^)]',/Z 

Now,  the method of stationary phase  (Ref.  6,  p.  395)   is applied to 

the integrals  in (4.33)  and (4.34) with the rapidly oscillating ex- 

ponents 01   ,(+ k) .    The main contribution comes from wave numbers 

where 0'(k )   = 0  (main group).    Details of  the calculation are s 
shown only for G_.    The point of stationary phase  in (Jl.(k)   is given 

by 

d^l      r 
lit'7- (4-39> 

dp, 
Since -~ > 0  in G    ,  only QAk), 02(-k)  -  - ^.(k)  have stationary 

points and contribute  the dominant  terms  to  the answer.    Thus 

9 

or 
2 /Z-k 

S ^   uj^-a^   /2 Q2      2 
V u) -6 cos cp 
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Here v is the pole angle in physical space, r ■ Rsin cp, z = Rcos cp. 

According to (4.40), a stationary point occurs in G- only for those 

frequencies u> > 6 cos cp. According to the method, the integrand is 

evaluated at the stationary point except for the exponent which is 

approximated as 

(k-k )2 

(^(k) - 0^) + —jS— aj(kg) (4.41) 

(subscript s denotes quantities evaluated at the stationary point). 

Due to the rapid oscillation away from k-k , the limits of Integra- 
8 

tlon can be extended to » without introducing a significant error. 

Note  the formulas 

,2    2 . ^DC^) (4.42) 
0"-B Kur-tTcos cp) 

where 

D(u),cp) - (u»2-e2)2co82cp + (i-B2)«)2 eln2«p > 0 (4.43) 

u. - cos cp /    ^{^\-^> (4.44) 
u) -B    cos tp 

«l. -»/^TT   X2-B2co82cp - J - 02i   . (4.45) 
9 -iw 

For G T,  the only stationary points occur in CLW  and Ql.(-k).    Thus, 

the stationary phase approximation yields, 

1-3/2,-     fe-211-^^ V J' ^ G 
(2n)J/^     ^-^ 

(4.46) 
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^II^^TTV -r72iIm{^+Ve   2i.f«2        l8dk}- 
(2TT)      ,/F     UJ -k8 ^ 

(4.47) 

The integrals in (4.46),  (4.47)  are 

2 

f>-k-) '"U * -f, el ?J(.i«. »!•. - - 2ui; > 0, 
^ 

-» ^  l,,  28' 

Using the expressions at the stationary point tabulated above, we 

obtain for (4.46, 4.47) 

2    2 2. - JS^^coT^ 
GI      2IT R D(oü,q)) Z1 lm ll 2Y        ^S'6 J 

(4.48) 

2 2   2   , -ii/S^ßW^" 
'II        2T« D(u),cp) Zl Re tC 2Y + ^s^6 

(4.49) 

Thus, the pressure in the far field can be written as integrals over 

the important frequency bands  (cf. 4.28, 4.29): 

)■ 



R cosqi 

(JjX . V.1C«-«) } d01 (4.50) 

-w    ~ cosine f'»(»2-e2K»2-»v r,^       ,,t<«-ai) 

♦ (^. tayc***) ] d„       (4.51, 

where 

i j ' 

n(a),cp)  -  /   UgS I  (u)2-B2co82<p)   . (4.52) 
Y     (3 -uO 

The representation (4.50, 4.51)  shows spherical waves with a spherical 

phase and group velocity depending on angle cp.    These integrals can 

again be approximated by the method of stationary phase.    Details 

are given in the next section. 



V. ASYMPTOTIC PRESSURE FIELD. NUMERICAL RESULTS 

In this section, we shall examine some of the properties of the 

pressure field given by (4.50) and (4.51). The field has been ex- 

pressed In terms of Integrals of the form 

Jf(a,, coscp) e1^^) du, (5.1) 

over two bands of propagating frequencies, with 0(wtcp) given by 

(4.52). For large R and t, the exponentials are rapidly oscillating 

and the method of stationary phase can be applied to these Integrals. 

The points of stationary phase, if any, are given by 

t j. dfi  n ._ „ 
R + H^-O. (5.2) 

The existence and number of stationary points in each frequency band 

is best Illustrated graphically. 

We first consider the high frequency band, ^ < «u < ». In 

Fig. 5.1, we have plotted n('«,9) vs u) for a typical value of cp. 

The function fJ is a monotonically increasing function of u), start- 

ing out as T^'V for tu near % and asymptotically approaching u» 

as u) -• oo. The derivative -j— decreases continuously from • to 1 
dfl 

as u, increases from %  to •. Since TJ > 0, it is clear that only 

the exponential with the minus sign can have a stationary point. 

It is also clear from the above discussion that there will be a 

single stationary point in this frequency range for all t/R such 

that 1 < t/R < •, i.e., for all points behind the spherical front. 

For the low frequency band, 8 cos < i" < 8, the situation is 

somewhat different, as can be seen from Pig. 5.2. The function n 

increases monotonically with w in this band, starting out as 

yiu-p cos cp" for u, near 8 cos cp and approaching • as      when w 



n 

ut 

Flg. 5.1 - High frequency breach of Che function 0(u),(p) 
(Eq. 4.52)  for cp - 60°.    For e given u), the slope 
of the curve is the velue of t/R for which the 
phese is stetionery et thet frequency. 



a 

w 

Fig. 5.2 - Low fra^uancy branch of tha function CKw,?) 
(Iq. 4.52) for <p - 60°.   For a gvan w, tha ilopa 
of tha curva is tlw valua of t/R for which tha 
phasa is stationary at that fraquaney.   Iota axis- 
tanca of inflactlon point, at which tha slopa 
has its oinioum valua. 
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approaches 8. It is clear that the function has an Inflection 

point U) in this frequency range.  The derivative — decreases from 
00 to some minimum value as i») increases from B cos cp to uu , and then 

increases again to » as uu increases from uu to 6. For any given cp, 

the minimum value of — represents the minimum value r£  t/R, or the 

maximum value of R/t, for which a stationary point exists (again 

only for the exponential with the minus sign). For values of R/t 

greater than the maximum, there are no stationary points for the 

given cp, whereas for values smaller than the maximum there are 

clearly two stationary points.  At the maximum value of R/t, the 

two stationary points coincide. 

This situation is identical to that which arises in the case of 

incompressible flow in a density stratified liquid considered by 
(4) 

Mowbray and R£rityN  . The physical consequences are the same as 

for the incompressible case: the locus in physical space of the 

double points of stationary phase defines a front, or "caustic," 

representing the onset of the disturbance. Between the caustic and 

the spherical front, the low frequency part of the disturbance is 

exponentially small, and the main contribution comes from the high 

frequency band. 

For the purposes of calculating the location of the front, it 

is convenient to use the variables 

c-l 

D-f 
(5.3) 

where r = R sin cp is  the cylindrical radius and z = R cos   cp is  the 

altitude.    In terms of these variables, a line of constant phase 

5 = u) - — n can be written 

_^_ c2 ^2 a X-li! (5.4) 

es-<n (M^n 

while  the condition for stationary phase  (5.2)  becomes 
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P2*K'f\,AC
2-^.l. (5.5) 

(a).$)(0^.a)z)     (i-uj*) 

For a given value of the parameter ♦, which corresponds to a 

particular value of the phase at a given time, (5.4) and (5.5) are 

parametric equations for a line In the (£,TT)-plane along which the 

particular phase is stationary. Each point on such a line corres- 

ponds to a different value of tu, the point of stationary phase. A 

line of constant and stationary phase Intersects the locus of double 

stationary points in a cusp. The condition for a cusp is 

^ - 12 - 0 (5 6) dou  duu  u * K:3'  ' 

Applying this to (5.5), we can obtain 4 as a funct? n of uu along the 

front. Equations (5.4) and (5.S) then provide a one to one mapping 

from (1,(1)) to (C'H). The wave front obtained in this manner is shown 

in Fig. 5.3, where we have also plotted a few lines of constant $ 

for the purposes of illustration. 

The co-ordinates (C'H) of any point on the front are the hori- 

zontal and vertical components, respectively, of the velocity of the 

front at that point.  The point moving along the ground has a velocity 
it it 

Q/t  - 2B ■ .9c . The maximum vertical velocity is .26c , and occurs 

at an angle of about 32 with the horizontal.  (Every point on the 

front moves radially outward from the origin. ) 

As just indicated, each point on the caustic is associated with 

a given angle cp in physical space, given by cp = tan" T\/Q.    Associated 

with this point on the caustic is also the frequency u) of the double 

point of stationary phase. This is the first frequency (in the low 

frequency band) to arrive at a given cp, after which the signal splits 

into two frequency components, one of which increases with time 

towards B and the other of which decreases towards B cos cp. In 

Fig. 5.4, we plot in polar co-ordinates the frequc tcv tu as a 
6 

function of the pole angle cp. 
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Couttlc 

'/t 

Fig.  5.3  - Location of the caustic  in (r/t, z/t)  space.    The 
dashed lines are lines of stationary phase along 
vhich the phase  is constant at any Instant. 
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flg. 5.4 - Angular fraqutncy at tte caustic, In units 
of c*/h( as a function of tha pola angls «p. 
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In light of the above discussion, it is now possible to 

describe briefly the frequency-time history of the signal at any 

location. Thß first disturbance to arrive at any location (R,cp) is 

the acoustic spherical front, containing the very high frequencies. 

As time progresses, the principal frequency in this part of the dis- 

turbance decreases asymptotically towards w = ^. Some time after 

the passage of the spherical front, the caustic arrives, carrying 

the frequency associated with the angle cp ( Fig. 5.4). As dis- 

cussed above, this part of the signal then splits into two frequen- 

cies, one tending toward 6 and the other toward 0 cos cp as time 

progresses. Thus, at any location, the signal consists asymptotically 

of the three frequencies 'i, 8, and 8 cos (p. This information is 

summarized in Fig. 5.5, which is a polar graph of the various 

groups. Each dashed line represents the location in (R/t, 9)  space 

of a group of a given frequency. The solid line is the caustic, 

which appears as the envelope of the low frequency oand. Outside 

of the caustic, only the high frequency band is present, where;s 

inside of the caustic both bands clearly contribute to the signal. 
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o.i       0.2/    yo.3 
a) - .40 .39 

0.5 \  0.6 \   10.7  | 0.1 

.35   .33  :29 .26 .: 

1.0 

JO 
.22  .15 

Pig. 5.5 - Location in (R/t,cp) space of groups of a given 
frequency. The solid l-'ne 's the  caustic, which 
appears as the envelope or thf low freauencv band. 
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