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PREFACE

The study presented in this Memorandum is part of the RAND Cost
Analysis Department's continuing development of cost analysis method-
ology. Specifically, the study was undertaken to examine the problems
and issues involved in calculating prediction intervals for estimates
that are sums of individually derived estimates and to explore the

practical implications of these issues for cost analysis.
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SUMMARY

This Memorandum sets forth methods for calculating prediction
intervals for total estimates that are sums of individually derived
estimates. Special attention is given to the problem encountered
when the variances of each of the individually derived estimates
cannot be assumed to be equal. This problem is essentially identical
to the well-known Behren-Fisher problem except that here the context
is one of deriving a "t-ratio" for summed means rather than for the
difference between means. As a consequence, the prediction interval
for the case with unequal variances is based on a statistic with an
approximate t-distribution, and the interval itself must be viewed
as an approximation. However, for purposes of practical application,
the approximate nature of these intervals should cause no difficulty
and they can be viewed as reasonably accurate representations of the
true intervals.

Section I contains the introduction. Section II describes the
standard techniques for calculating prediction intervals for indi-
vidual estimates, and Section III shows the development of the formula

for calculating the prediction interval for summed estimates when the

variances of the individual estimates can be assumed equal. Section IV

addresses the problem of deriving prediction intervals vhen the assump-

tion of equal variance is inappropriate. sSection V contains examples
and discussion for each of the cases considered in the preceding

sections.
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I, INTRODUCTION

With the increased application of system and program analysis to
decision problems, the development and use of statistically derived
cost estimating relationships (CERs) in these analyses is also tecoming

more common. One advantage of using statistical techniques in develop-

ing CERs is that, in the process of deriving the relationships, useful

information about the reliability of the CER can also be generated.

The coefficient of determination (or correlation coefficient), the
standard error, the "t' statistics for each of the coefficients and
other similar information help the user determine how much confidence

to place in a given CER as an estimating tool.

R DYV

In addition, when it is necessary to use CERs to estimate costs for

e

a specific system with given characteristics, it is also possible to

-

make probabilistic statements about the potential magnitude of error
associated with that estimate. Such statements are usually made in :
the form of prediction intervals, delineated by lower and upper bounds

on either side of the estimate, with an average probability that the

actual system cost will lie within that interval. There are, of course,

many sources of uncertainty associated with such estimates that are not

taken into consideration in prediction interval calculations. An

example of one is the uncertainty associated with extrapolation, and

the judgment that must be made as to whether the relationship is valid .
outside the range of the sample, Nevertheless, prediction interval

statements, when properly understood, are useful tools in systems

analysis.
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In practice, although what is ultimately sought are estimates of
total cost, it is often desirable or necessary to develop the CERs for
separate subcomponents or subelements which are then summed, This need
can arise for various reasons: analytically, it is useful to examine
the different life cycle phases separately, and therefore to develop
separate estimates for R&D, investment and operation costs; empirically,
it becomes necessary to disaggregate when different subcomponents of
cost, such as R&D, engineering, and production materials, relate to

different variables or react to the same variables differently.
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11, PREDICTION INTERVALS FOR SINGLE ESTIMATES

Agsume the following array of observations on cost and a corre-

sponding set of characteristics:

Yy Ky Kyp c 0 Ky GRLo ., @) (1)
where vy = the ith observation on the cost varjable,
xij = the corresponding ith observation on each of the
p characteristics,
n = number of observations,

and the following hypothesis

= X
Yy bo + b1 X0 +. ..+ bp ip + z, (2)

where xij = observable nonrandom variables (j=1, . . ., P),
b, = unknown coefficients (j=0, . . ., p), and

z, = unobservable independent normal random variables
with zero expected value and a constant and

unknown variance; i.e., z -N(0,02).

i
With these assumptions

E(y1|x1) =b o +b x4 ..+ bpx1P (3)

where X, = the vector (xll' Xigr + + o xip)' and

bj = the unknown coefficients of Eq. (2).

For the sake of brevity, let

E(y lx) = u, (4)

A -
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so that the CER derived by the method of least squares may be denoted

L=
-
]

o
+
o
*
+
+
o>
x

(5)

where E(ﬁi) =By by hypothesis and

. Bj = the estimated parameters of Eq. (3) chosen so

: n

i as to minimize ¥ (y1 - ﬁi)z.
i=]1

From the hypothesis and the use of the method of least squares it

follows that

"

Q»
¢

tad

(6)

™|
[
o]

*
i.e., Eq. (6) has a chi-square distribution with r degrees of freedom,

where r = n-(p+l) and

~ 2

r

n
Gznz

i=1

It also follows that

y, = By ~N(O,1) )
ac

- R £ ;
. since E(y1 - ut) = (0 and .202 - vnr(y1 - ut).

*Kendall, M, G, and A, Stuart, The Advanced Theory of Statistics,
Fol. 2, Harper Publishing Co., New York, p. 83.
* -
*1bid., p. 363, vhere a? = [1 + 2+ x'a”lx], A equals (n-1) times

the covariance matrix of the variables X, (i=1, ., . . n) and (j=l, . . ., P),

and x' equals [(xil - ;1), . e (xlp - xp)].
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Dividing Eq. (6) by its degrees of freedom, taking the square root
of this variable and dividing it into Eq. (7) results in a variable with
a t distribution with r degrees of freedom:

(y; - 1)

S Sl W (8)

ca

The probability statement for the prediction interval based on

this t statistic is

P(-t <t < ta/z) =1 -« 9)

a/2

where o is the level of significance or average probability that tr
will lie outside the interval ['ta/2’ ta/2]'

Rewriting Eq. (9) by substituting Eq. (8) gives

-

y -8
- i i = -
P( t/2 < _ < ta/2) l1-a (10)
oa
so that
P(i, - Gat,,, <y, <i +8at ,)=1-a (11)

and the prediction interval for {i, at the a level of significance is

ﬁt ¥ty da (12)

B cimt e,
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I1I, SUMMED TOTALS WITH EQUAL VARIANCES

Now we will consider the case where a prediction interval is desired
for a total cost estimate which is the sum of m subelements and the

variances for each of these m elements are equal. Let

M= T 0, (13)

and

Y, = Ly (14)
175 Tk

where the subscript k (k=1, . . ., m) has been added to indicate that
the ﬁlk and Yik are values for the kth subelement of the total and that
there are now m sets of hypotheses such as that for Eq., (2) and m
conditional means estimated from m distinct CERs, such as that shown
in Eq. (5).

Aspuming that the distributions of the conditional means, By

are independent, the following is a normally distributed random

*
variable with zero mean and unit variance.

*The assumption that the distributions are independent will be
maintained throughout the development of prediction interval formulas.
While there is evidence that in practice there will be a tendency toward
negative correlation in the types of problems for which these prediction
interval formulas are likely to be used, this will be treated as essen-
tially an ad hoc problem in this Memorandum. Since the observed sample
residuals for each of the m subelement CERs are hypothesized to be drawn
from a normally distributed population, it is possible to test the as-
sumption of independence by testing for correlation between the sets
of residuals (see p. 14). Thus, it is possible to assess the applica-
bility of the assumption in each case. Further, in instances where
the negative correlation is pronounced, its effect should be adverse
enough on the results of the regression analysis to discourage the use
of the related CERs.

—— - e e o s s -
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Y, .M
i i (15)
2 2
Lo a
Adding the subscript "k" to Eq. (6) to indicate that it corresponds
to the kth component of the summed total gives
.2
r, ©
k 'k 2
~ . 16
— xtk (16)
c
k
Summing the expression in Eq. (16) over the m subelements gives
22
m Jr
T k "k,
kel | =2 (n
%
Since by assumption the variances o, are equal, Eq. (17) becomes
m
-1—2 L (r, 6&) (18)
0 k=l
which because of the assumption of independence has a chi-square
distribution with r(-E rk) degrees of freedom, Similarly, Eq. (15)
becomes
Y, - M
i i (19)
2
o I
’\' v
Dividing Eq. (18) by its degrees of freedom, taking the square
root and dividing into Eq. (19) gives
—

B

———— -
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which has a "t" distribution with r degrees of freedom.
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(¥, - i) ()

(md)¥ (o,

a2 ¥
8,)

The corresponding prediction interval is:

miz

Er

k

(20)

(21)




1V. SUMMED TOTAL WITH UNEQUAL VARIANCES

If the unknown variances in the denominator of Eq. (17) are not

equal, then the sum is a linear combination of chi-squares rather than

the sum of multiples of a chi-square, and therefore, no longer a chi-

square. Consequently, even though Eq. (15) still has a normal distri-

bution with zero mean and unit variance, the ratio shown in Eq. (20)

will no longer have a 't"

distribution and standard techaniques for
deriving prediction intervals are no longer valid. It is possible,

however, to develop approximate prediction interval formulas based on s

i

statistic which has the approximate distribution required. The basic

procedure is to define a variable which has the same first moment as

S mena el

the chi-square divided by its degrees of freedom and to estimate the
degrees of freedom for which this variable has approximately a chi-square
distribution by matching the second monents.* Thie variable then can be
used in developing a variable which, in turn, has approximately a ''t"
distribution.

Since the variable in Eq, (15) has a normal distribution with

zero mean and unit variance, it follows that

U=y, - ) ~u(o, Ec: :ﬁ, (22)

T T v ———

This technique was worked out for the two-variance case by
B, L. Welch ("The Significance of the Difference Between Two Means
When the Population Variances are Unequal,"” Biometrika, No. 29, 1938,
P. 350) and is described by M. G. Kendall and A, Stuart in The Advanced

Thcorf of Statistics, Vol, 2, Harper Publishing Co,, New Yor:, I§EI.
PP. .
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Define a new variable 92 and its eastimated value 52 as follows:

1 2.2 I
6 E % A (23) i
!
and i
~2 a2 2
e-Ekak (24)
then

e (25)

Since E(&i) = ci, it follows that E(é) = 0;

so that

a2 2
E|5]= & =1, (26)
0 3 '
Matching the second moments:
ld
a2 2
var 25 = var E! = % (27)
) T
and solving for the degrees of freedom gives
94 .
TR e——— (28) :
LIS
. . .
. N e . . e perve ety
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Using © and 5, to estimate the degrees of freedom:

k
£ = ——— (29)
T§, aklrk
§2
Since the first two moments of = with r degrees of freedom, as defined
2 6
in Eq. (28), match those of 25 with r degrees of freedom as defined in
X

Eq. (18), the variable % as defined in Eq, (25) has approximately a
t distribution with f degrees of freedom. Thug, the approximate

prediction intervals for ﬁi may be expressed as

M, tt £ a? : (30)
1~ "a/2 k “k
26
where talz has t = . 84 Ly degrees of freedom.
k k ki'k




-12-
V. EXAMPLE

This section contains an example of the use of formulas presented
in the preceding sections, highlighting the significant features of
the prediction interval approximation described in Section IV. Modi-
fied data on direct base maintenance personnel, taken from RM-4748-PR,
are used in the example.* The RM presents CERs for Organizational
Maintenance Manhours (ODM), Field Maintenance Manhours (FDM), the sum
of ODM and FDM (0 + FDM), Communications-Armament-Electronics Mainte-
nance Manhours (CAE) and Total Maintenance Manhours (TDM), the sum of
ODM, FDM, and CAE.

For the example, these same CERs were recalculated, dropping the
one classified data point. The data required for the calculation of
the prediction intervals, based on these results, are shown in Table 1.
Lines 1, 2, and 4 represent subcomponents which would normally be added
together in an analysis of total costs and comprise the type of summed
total of central interest in this Memorandum. However, CERs for the
subtotal of ODM and FDM as well as the total sum of ODM, FDM, and CAE
were also calculated in the referenced Memorandum, as indicated on
lines 3 and 5, respectively, of Table 1. As a consequence, it is
possible not only to compare the difference between the results for
the summed totals, with and without the assumption of constant variance,
but also to compare the difference between intervals for the summed

individual estimates and the direct estimate of the summed total.

—_—

Dienemann, P, F., and G, C, Sumner, Estimating Aircraft Base
Maintenance Personnel, RM-4748.PR, The RAND Corporation, October 1965,
The data used are on maintenance manhours per flying hour for fighter
aircraft as shown on pp. 24.33,
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Table 1
DATA FOR PREDICTION INTERVAL CALCULATION
Sample | Coefficient of | Standard | Number of |Degrees of
Mean Determination Errer Obgervations Freedom
< 2
1. ODM 13,556 .923 .922 9 6
2, FDM 12,333 ,958 . 735 9 6
3. (O+F)DM|25,889 .986 .890 9 5
4. CAE 7.111 .808 2,345 9 7
5. Total 33,000 .962 2,488 9 5

|
|
'i
|
i
|
!
o
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To test the assumption of the independence of the distributions
of the conditional means, simple regressions were run on the observed
residuals of each of the pairwise combinations: the residuals of the
ODM regression were run against the residuals of the FDM regression,

etc, The resulting simple correlations are tabulated below:

Residuals on Simple
Variables Correlations
ODM and FDM -.042
ODM and CAE .149
FDM and CAE .321

Since the residual values are assumed to be normally distributed, the
hypothesis that distributions are independent can be tested with the
hypothesis that the correlations are zero. The critical value for
this test at the five-percent level of significance is .798 for 7 de-
grees of freedom.* None of the sample correlations are greater than
this value, so the hypo*hesis of independence cannot be rejected,

In deciding whether or not the assumption of equal variance is
appropriate one may either: (1) test for equality of variance and use
the approximation only if the hypothesis of equal variance must be
rejected; or (2) make no attempt to bring in the assumption of equality,
and use approximation of Section III regardless of the values of the
sample variances. As the example will illustrate, the difference in

the results will be slight when the sample variances are nearly equal,

*

Dixon, W, J., and F, J, Massey, Introduction to Statistical
Anll%lil, McGraw-Hill Book Company, Inc,, New York, I§5§, Table 30-a,
P. .
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regardless of which technique for calculating the intervals is used.

However, because of the basic weakness of variance tests with small

samples, the first approach is not recommended for small sample cases.
For purposes of illustration, however, tests will be performed

on the variances in our example regardless of the small sample gize

and prediction interval results using both techniques will be presented.

Considering the case for the sum of ODM and FDM first, the null

hypothesis 1s var(ODM) = var(FDM) and the test statistic is:

a2

[+
oDM _ .850

62 .51‘0 - 1.57 .
FDM

The critical F value at the 5-percent level of significance is 4.39.
Thus, the null hypothesis is not rejected,

Congider next the sum of ODM, FDM, and CAE. In a case with more
than two subelements, the hypothesis of equal variance may be tested
by testing for equality between the largest sample variance and the
smallest, In our example, the null hypothesis for the assumption
that var(ODM) = var(FDM) = var(CAE) is simply var(CAE) = var(FDM) and

the test statistic is:

2
2

Qr

CAE = 5,499 _
.5 = 10-2

é.

so that the null hypothegis is rejected,
On the basis of these tests, it appears that the assumption of
equality of variance {s warranted for the sum of ODM and FDM but not

for the sum of ODM, FDM, and CAE, However, Table 2 shows the calculated

— s
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prediction intervals for each sum under both assumptions. To facilitate
comparisons, all “predicted" values were calculated using the sauple
mean value of each of the independent variables, Because of the
properties of the least-squares estimating relationships, the pre-
dicted values are, therefore, equal to the corresponding mean value

of each of the dependent variables, In addition to calculating the

five cases for which CERs exist, prediction intervals were calculated
for three additional combinations. These are shown in lines 6, 7, and

8 of Table 2.

Perhaps the most dominant feature of the intervals for the summed
totals in Table 2 is that the approximation is always somewhat more
conservative but that the results are not strikingly different, How-
ever, several additional general observations can be iade, When the
assumption of equality appears warranted because of the near equality
of the sample variances, the interval for the summed total is, approx-

imately, t /2 times the square root of the number of subelements

a
squared times their weighted average variance. When the assumption
of equality is not warranted, the worst case for the approximation
occurs if there ig significant disparity in both the sample variances
and the number of degrees of freedom in each sample.

As hinted in the results of Table 2, the number of degrees of
freedom in the smallest sample sets the lower limit for the degrees
of freedom for the approximation, The limits of the degrees of freedom
for the approximation formula may be expressed as min L% <t s E Tr
As the disparity in the sample variances increases the lower limit is

approached. Thus, in line 3, where the difference in the sample vari-

ances is about 57 percent, there is & reduction of degrees of freedom




-18-

of 25 percent, from 12 to 9. 1In line 6, however, the difference is
over 600 percent and the reduction in the degrees of freedom'is from
13 to the lower limit, 6, which in this case is about a 50 percent
reduction,
In comparing the results of the intervals for the summed total

with the intervals for the direct estimates, it can be seen that the

i summed total intervals may be either larger (line 3) or smaller (line
5). It is difficult to establish definitive generalizations as to
which total will have the smallest prediction interval, but one inter-
esting fact is that the existence of intervals of unacceptable size
on a subelement will not necessarily produce unacceptable results for
the summed total, The intervals for CAE (line 3) are almost as large
as the estimate for CAE. However, the intervals for the summed total
(line 5) are only about 20 percent on either side of the estimate.
This difference is due to the fact that CAE is a small percentage of
the total and that the intervals (and sample variances) for the other
elements are relatively small, This demonstrates that it is possible
to develop statistically acceptable estimates of total cost, as
measured by the prediction intexrvals, by subcomponent, even when it
is not possible to derive strong estimating relationships for every
subelement in the total, Thug, it is not always necessary or desirable
to discard useful information about subelement cogts by aggregating to
higher levels when difficulty is encountered in individual sublement

CERs.

f e ———— - —— — e g em————— e s ——_— e s

—




DOCUMENT CONTROL DATA

DDC 1

| ORIGINATING ACTIVITY 20. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED
THE RAND CORPQRATION 2b. GROUP .
3. REPORT TITLE
PREDICTION INTERVALS FOR SUMMED TOTALS
4. AUTHOR(S) (Lost nome, first noms, initial)
Dei Rossi, J. A.
S. REPORT DATE 60. TOTAL No. OF PAGES 6b.No. OF REFS. . :
October 1968 27 --- k
7. CONTRACT OR GRQT No. |8. ORIGINATOR'S REPORT No. 3 5
F44620=C-0045 RM~5806-PR {
9a. AVAILABILITY / LIMITATION NOTICES 9b. SPONSORING AGENCY ’ '
:

United States Air Force,
Project RAND f.

10. ABSTRACT )
i L XN U e i
Methods, for calculating prediction inter-
vals for total estimates that are sums of
individually derived estimates. Special
attention is given to the problem encoun-
tered when the variances of each of the
individually derived estimates cannot be
assumed to be equal. This problem is
essentially identical to the well-known
Behren-Fisher problem except that here
the context is one of deriving a "t-ratio"
for summed means_ rether than for the dif-
ference between wmeans. Thue, For the
case of unequal variances, the prediction
interval is based on a statistic with an
approximate t-distribution and the inter-
val itself must be viewed as an approxi-
mation.—This should cause no difficulty,
however, sinte such interyals can be view-
ed as reasonably “mecurate representations
of the true intervals. Examples are given
for each of the cases considered.
-

Il. KEY WORDS

Cost estimating relationships
Statistical methods and processes
Cost analysis

Sl

e A e

D

b e e emn o e mee o e aees s
P i e o el et




