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PREFACE

The study presented in this Memorandum is part of the RAND Cost

Analysis Department's continuing development of cost analysis method-

ology. Specifically, the study was undertaken to examine the problems

and issues involved in calculating prediction intervals for estimates

that are sums of individually derived estimates and to explore the

practical implications of these issues for cost analysis.

S... . " '-



_v-

SUM4ARY

This Memorandum sets forth methods for calculating prediction

intervals for total estimates that are sums of individually derived

estimates. Special attention is given to the problem encountered

when the variances of each of the individually derived estimates

cannot be assumed to be equal. This problem is essentially identical

to the well-known Behren-Fisher problem except that here the context

is one of deriving a "t-ratio" for summed means rather than for the

difference between means. As a consequence, the prediction interval

for the case with unequal variances is based on a statistic with an

approximate t-distribution, and the interval itself must be viewed

as an approximation. However, for purposes of practical application,

the approximate nature of these intervals should cause no difficulty

and they can be viewed as reasonably accurate representations of the

true intervals.

Section I contains the introduction. Section II describes the

standard techniques for calculating prediction intervals for indi-

vidual estimates, and Section III shows the development of the formula

for calculating the prediction interval for summed estimates when the

variances of the individual estimates can be assumed equal. Section IV

addresses the problem of deriving prediction intervals when the assump-

tion of equal variance is inappropriate. Section V contains examples

and discussion for each of the cases considered in the preceding

sections.
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I. INTRODUCTION

With the increased application of system and program analysis to

decision problems, the development and use of statistically derived

cost estimating relationships (CERs) in these analyses is also becoming

more common. One advantage of using statistical techniques in develop-

ing CERs is that, in the process of deriving the relationships, useful

information about the reliability of the CER can also be generated.

The coefficient of determination (or correlation coefficient), the

standard error, the "t" statistics for each of the coefficients and

other similar information help the user determine how much confidence

to place in a given CER as an estimating tool.

In addition, when it is necessary to use CERs to estimate costs for

a specific system with given characteristics, it is also possible to

make probabilistic statements about the potential magnitude of error

associated with that estimate. Such statements are usually made in

the form of prediction intervals, delineated by lower and upper bounds

on either side of the estimate, with an average probability that the

actual system cost will lie within that interval. There are, of course,

many sources of uncertainty associated with such estimates that are not

taken into consideration in prediction interval calculations. An

example of one is the uncertainty associated with extrapolation, and

the judgment that must be made as to whether the relationship is valid

outside the range of the sample. Nevertheless, prediction interval

statements, when properly understood, are useful tools in systems

analysis.
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In practice, although what is ultimately sought are estimates of

total cost, it is often desirable or necessary to develop the CERs for

separate subcomponents or subelements which are then summed. This need I
can arise for various reasons: analytically, it is useful to examine

the different life cycle phases separately, and therefore to develop

separate estimates for R&D, investment and operation costs; empirically,

it becomes necessary to disaggregate when different subcomponents of

cost, such as R&D, engineering, and production materials, relate to

different variables or react to the same variables differently.

0I
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II. PREDICTION INTERVALS FOR SINGLE ESTIMATES

Assume the following array of observations on cost and a corre-

sponding set of characteristics:

Y i X il x 12 " . ip (l. .. ,n)()

where yi = the ith observation on the cost variable,

xij - the corresponding ith observation on each of the

p characteristics,

n - number of observations,

and the following hypothesis

Y = b + b xi + . + b x + z (2)o Xl "" p ip

where x j - observable nonrandom variables (Jl, .. . p),

bj = unknown coefficients (J-O, . . .. p), and

zi = unobservable independent normal random variables

with zero expected value and a constant and

unknown variance; i.e., z - N(O,a 2).

With these assumptions

E(y~lx 1 ) - b + bI x l +. . +bpxp (3)

where xI = the vector (xil, x 1 2 , .*. .. xi), and

bj = the unknown coefficients of Eq. (2).

For the sake of brevity, let

E(yii) i (4)

imi -i
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so that the CER derived by the method of least squares may be denoted

"as xl + •+ g (5x
a s 0 + x ij + " p x ip ( 5)

where E(a d) - P by hypothesis and

bj = the estimated parameters of Eq. (3) chosen so

n 2
as to minimize E (y ad

From the hypothesis and the use of the method of least squares it

follows that

2

ra
ro •o r (6)

i.e., Eq. (6) has a chi-square distribution with r degrees of freedom,

where r n-(p+l) and

2 n (y " )2

i-I r

It also follows that

Yi -at - N(O,1) (7)

since E(yi - t) -0 and a2a2 - var(yi -

*Kendall, M. G. and A. Stuart, The Advanced Theory of Statistics,
Fol. 2, Harper Publishing Co., New York, p. 83.

*Ibid., p. 363, where a2 a [( I n+ xA-l, A equals (n-I) timesn

the covariance matrix of the variables xi, (i-I, ... n) and (J-1, .0. ),

and x' equals [(xl -xi) . . . (Xi - xp)].
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Dividing Eq. (6) by its degrees of freedom, taking the square root

of this variable and dividing it into Eq. (7) results in a variable with

a t distribution with r degrees of freedom:

(yi -
(8)tr &a f

The probability statement for the prediction interval based on

this t statistic is

P(-to/2 < tr t &/2) (9)

where a is the level of significance or average probability that tr
r

will lie outside the interval i-t a/ 2 , tc,/2].

Rewriting Eq. (9) by substituting Eq. (8) gives

p(.t cz/2 < Yi i < t a/2, - a' (10)
&a

so that

P(jt - &at a/2 (<1)

and the prediction interval for i at the a' level of significance is

S-I(12)
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III. SUMMED TOTALS WITH EQUAL VARIANCES

Now we will consider the case where a prediction interval is desired

for a total cost estimate which is the sum of m subelements and the

variances for each of these m elements are equal. Let

m
M m E ik (13)

i-

and
m

Y m E Y ik (14)
ini

where the subscript k (k-l, . ., m) has been added to indicate that

the aik and Yik are values for the kth subelement of the total and that

there are now m sets of hypotheses such as that for Eq. (2) and m

conditional means estimated from m distinct CERs, such as that shown

in Eq. (5).

Assuming that the distributions of the conditional means, pik'

are independent, the following is a normally distributed random

variable with zero mean and unit variance.

The assumption that the distributions are independent will be

maintained throughout the development of prediction interval formulas.

While there is evidence that in practice there will be a tendency toward

negative correlation in the types of problems for which these prediction

interval formulas are likely to be used, this will be treated as essen-

tially an ad hoc problem in this Memorandum. Since the observed sample
residuals for each of the m subelement CERa are hypothesized to be drawn

from a normally distributed population, it is possible to test the as-
sumption of independence by testing for correlation between the sets
of residuals (see p. 14). Thus, it is possible to assess the applica-
bility of the assumption in each case. Further, in instances where
the negative correlation is pronounced, its effect should be adverse
enough on the results of the regression analysis to discourage the use
of the related CERs.

f ,
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i M 
(15)

Adding the subscript "k" to Eq. (6) to indicate that it corresponds

to the k th component of the summed total gives

2
rkk _ 2 (16)2- - rk
'7k

Summing the expression in Eq. (16) over the m subelements gives

Si'kcT
E- 2 1 (17)

akI

Since by assumption the variances ak are equal, Eq. (17) becomes

1 A2
2 M (rk k) (18)

a k =i

which because of the assumption of independence has a chi-square

distribution with r(-E rk) degrees of freedom. Similarly, Eq. (15)

bec omes

Y i i, M (19)

Dividing Eq. (18) by its degrees of freedom, taking the square

root and dividing into Eq. (19) gives
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t = (Y1 " Hi) (r)½ (20)

which has a "t" distribution with r degrees of freedom.

The corresponding prediction interval is:

i ta/2[ Er k Ok (21)

4
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IV. SUMlED TOTAL WITH UNEQUAL VAR IANCES

If the unknown variances in the denominator of Eq. (17) are not

equal, then the sum is a linear combination of chi-squares rather than

the sum of multiples of a chi-square, and therefore, no longer a chi-

square. Consequently, even though Eq. (15) still has a normal distri-

bution with zero mean and unit variance, the ratio shown in Eq. (20)

will no longer have a "t" distribution and standard techniques for

deriving prediction intervals are no longer valid. It is possible,

however, to develop approximate prediction interval formulas based on a

statistic which has the approximate distribution required. The basic

procedure is to define a variable which has the same first moment as

the chi-square divided by its degrees of freedom and to estimate the

degrees of freedom for which this variable has approximately a chi-square

distribution by matching the second moments. This variable then can be

used in developing a variable which, in turn, has approximately a "t"

distribution.

Since the variable in Eq. (15) has a normal distribution with

zero mean and unit variance, it follows that

U- (Y -K) -I o 3 (22)

This technique was worked out for the two-variance came by
B. L. Welch ("The Significance of the Difference Between Two Means
When the Population Variances are Unequal," liometrika, No. 29, 1938,
p. 350) and is described by N. G. Kendall and A. Stuart in The Advanced
Theor of Statistics, Vol. 2, Harper Publishing Co., New York, 1961,
pp. 146-147.
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Define a new variable 62 and its estimated value e2 as follows:

2 2e E (?3)

and

E-2 2 (24)

then

S -"e2 (25)

Since E(^ ) 2, it follows that E(9) 8;

so that

E (2 - E (26)

Matching the second moments:

var ( 7 varIt I = (27)
~o2) r

and solving for the degrees of freedom gives

04
(28)

"k/r

~ Ic k

g • 9
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Using a and to estimate the degrees of freedom:

ý14
r = 4 ,(29)

S %k a/lrrk

Since the first two moments of - with r degrees of freedom, as defined

X2 02
in Eq. (28), match those of r with r degrees of freedom as defined in

Eq. (18), the variable r as defined in Eq. (25) has approximately a

t distribution with r degrees of freedom. Thus, the approximate

prediction intervals fori may be expressed as

-4
where t has r degrees of freedom.

o' /2 .4 4r
k 'k a/rk

ka
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V. EXAMPLE

This section contains an example of the use of formulas presented

in the preceding sections, highlighting the significant features of

the prediction interval approximation described in Section IV. Modi-

fied data on direct base maintenance personnel, taken from RM-4748-PR,

are used in the example. The RM presents CERs for Organizational

Maintenance Manhours (ODM), Field Maintenance Manhours (FDM), the sum

of ODM and FDM (0 + FDM), Communications-Armament-Electronics Mainte-

nance Manhours (CAE) and Total Maintenance Manhours (TDM), the sum of

ODM, FDM, and CAE.

For the example, these same CERs were recalculated, dropping the

one classified data point. The data required for the calculation of

the prediction intervals, based on these results, are shown in Table 1.

Lines 1, 2, and 4 represent subcomponents which would normally be added

together in an analysis of total costs and comprise the type of summed

total of central interest in this Memorandum. However, CERs for the

subtotal of ODM and FDM as well as the total sum of ODM, FDM, and CAE

were also calculated in the referenced Memorandum, as indicated on

lines 3 and 5, respectively, of Table 1. As a consequence, it is

possible not only to compare the difference between the results for

the summed totals, with and without the assumption of constant variance,

but also to compare the difference between intervals for the summed

individual estimates and the direct estimate of the summed total.

Dienemann, P. F., and G. C. Sumner, Estimating Aircraft Base
Maintenance Personnel, DM-4748-PR, The RAND Corporation, October 1965.
The data used are on maintenance manhours per flying hour for fighter
aircraft as shown on pp. 24-33.

S•. •
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Table 1

DATA FOR PREDICTION INTERVAL CALCULATION

Sample Coefficient of Standard Number of Degrees of
Mean Determination Error Observations Freedom

Item (7k) (R2) (ok) (nk) (rk)

1. ODM 13.556 .923 .922 9 6

2. FDM 12.333 .958 .735 9 6

3. (O+F)DM 25.889 .986 .890 9 5

4. CAE 7.111 .808 2.345 9 7

5. Total 33.000 .962 2.488 9 5

• !
a • ,l a a• -
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To test the assumption of the independence of the distributions

of the conditional means, simple regressions were run on the observed

residuals of each of the pairwise combinations: the residuals of the

ODM regression were run against the residuals of the FDM regression,

etc. The resulting simple correlations are tabulated below:

Residuals on Simple

Variables Correlations

ODM and FDM -. 043

ODM and CAE .149

FDM and CAE .321

Since the residual values are assumed to be normally distributed, the

hypothesis that distributions are independent can be tested with the

hypothesis that the correlations are zero. The critical value for

this test at the five-percent level of significance is .798 for 7 de-

grees of freedom. None of the sample correlations are greater than

this value, so the hypothesis of independence cannot be rejected.

In deciding whether or not the assumption of equal variance is

appropriate one may either: (1) test for equality of variance and use

the approximation only if the hypothesis of equal variance must be

rejected; or (2) make no attempt to bring in the assumption of equality,

and use approximation of Section III regardless of the values of the

sample variances. As the example will illustrate, the difference in

the results will be slight when the sample variances are nearly equal,

,
Dixon, W. J., and F. J. Massey, Introduction to Statistical

Analysis, McGraw-Hill Book Company, Inc., New York, 1959, Table 30-a,
p. 468.
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regardless of which technique for calculating the intervals is used.

However, because of the basic weakness of variance tests with small

samples, the first approach is not recommended for small sample cases.

For purposes of illustration, however, tests will be performed

on the variances in our example regardless of the small sample size

and prediction interval results using both techniques will be presented.

Considering the case for the sum of ODM and FDM first, the null

hypothesis is var(ODM) a var(FDM) and the test statistic is:

.2a ODM .850-ODH- = 1.57
A2 .540
aFDM

The critical F value at the 5-percent level of significance is 4.39.

Thus, the null hypothesis is not rejected.

Consider next the sum of ODM, FDM, and CAE. In a case with more

than two subelements, the hypothesis of equal variance may be tested

by testing for equality between the largest sample variance and the

smallest. In our example, the null hypothesis for the assumption

that var(OlDM) - var(FDM) = var(CAE) is simply var(CAE) - var(FDM) and

the test statistic is:

2 CAE .5.499

6 FDM

so that the null hypothesis is rejected.

On the basis of these tests, it appears that the assumption of

equality of variance is warranted for the sum of O1D4 and FDM but not

for the sum of ODM, FDM, and CAE. However, Table 2 shows the calculated
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prediction intervals for each sum under both assumptions. To facilitate

comparisons, all "predicted" values were calculated using the sample

mean value of each of the independent variables. Because of the

properties of the least-squares estimating relationships, the pre-

dicted values are, therefore, equal to the corresponding mean value

of each of the dependent variables. In addition to calculating the

five cases for which CERs exist, prediction intervals were calculated

for three additional combinations. These are shown in lines 6, 7, and

8 of Table 2.

Perhaps the most dominant feature of the intervals for the summed

totals in Table 2 is that the approximation is always somewhat more

conservative but that the results are not strikingly different. How-

ever, several additional general observations can be made. When the

assumption of equality appears warranted because of the near equality

of the sample variances, the interval for the summed total is, approx-

imately, t / 2 times the square root of the number of subelements

squared times their weighted average variance. When the assumption

of equality is not warranted, the worst case for the approximation

occurs if there is significant disparity in both the sample variances

and the number of degrees of freedom in each sample.

As hinted in the results of Table 2, the number of degrees of

freedom in the smallest sample sets the lower limit for the degrees

of freedom for the approximation. The limits of the degrees of freedom

for the approximation formula may be expressed as min rk s 9 1 r
k k k*

As the disparity in the sample variances increases the lower limit is

approached. Thus, in line 3, where the difference in the sample vari-

ances is about 57 percent, there is a reduction of degrees of freedom

S. .. . I T _ • .. .. . I S • . •- • T• .. . . .. .. .. . . . . . .. ..
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of 25 percent, from 12 to 9. In line 6, however, the difference is

over 600 percent and the reduction in the degrees of freedom is from

13 to the lower limit, 6, which in this case is about a 50 percent

reduction.

In comparing the results of the intervals for the summed total

with the intervals for the direct estimates, it can be seen that the

summed total intervals may be either larger (line 3) or smaller (line

5). It is difficult to establish definitive generalizations as to

which total will have the smallest prediction interval, but one inter-

esting fact is that the existence of intervals of unacceptable size

on a subelement will not necessarily produce unacceptable results for

the summed total. The intervals for CAE (line 3) are almost as large

as the estimate for CAE. However, the inteitvala for the summed total

(line 5) are only about 20 percent on either side of the estimate.

This difference is due to the fact that CAE is a small percentage of

the total and that the intervals (and sample variances) for the other

elements are relatively small. This demonstrates that it is possible

to develop statistically acceptable estimates of total cost, as

measured by the prediction intervals, by subcomponent, even when it

is not possible to derive strong estimating relationships for every

subelement in the total. Thus, it is not always necessary or desirable

to discard useful information about subelement costs by aggregating to

higher levels when difficulty is encountered in individual sublement

CERs.

• , K•
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