AP 6738 S0F

MEMORANDUM

RM-5722-PR
OCTOBER 1848

A FLIGHT PLANNING MODEL FOR
THE MILITARY AIRLIFT COMMAND

J. L Midler and R. D. Wollmer

This rescarch is supported by the United Statex Air Foree under Project RAND. -Con.
tract No. F11620.67-C.0045~monitored by the Directorate of Operational Res

uiremer s
and Development Plans, Deputy Chief of Staff, Reseereh and Development, ?‘lq USAF.
Views or conclusions contained in this study should not he interpreted as representing
the official opinion or policy of the Linited States Air Force.

DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is unliméed.

24 L1 D gnsn

1700 A 1% 3° o $EWID HON (0

LEEEYRLY T TR

LI 22 X



e W Ay

Mo ow

v kA s

o rarr o —

o rnhve ey

.

g
S AR NN S o

This Rand Memorandum is presented as a competent treatment of the subject,
worthy of publication. The Rand Corporation vouches for the quality of the
rn::rch. without necessarily endorsing the opinions and conciusions of the
authors.

Published by The RAND Corporation

R A IO ARG 5 AUMAD5 1, QN AT EREL I e 3% Kyl K -

N




- r———— - [ ;e EE e - >

-iii-

PREFACE

This Memorandum, the first in a series, presents an adaptive
modal for scheduling rcargo flights within the Military Airlift Command
(MAC). It provides the technical details for a pair of mathematical
models developed for chis scheduliing problem. The models employ an
adaptive technique that copes with the uncertainty associated with
some of MAC's rcquirements.

The study arose from a joint RAND/MAC interest in dealing with
the volatility that appears in MAC's flight structure, particularly
that resulting from special agsignment airlift missions.

This Memorandum is primarily addresséd to operations analysts and
schedulers in MAC, but should also interest those concerned with long-
run planning of airlift routing and those responsible for procuring
commercial 1ift both at MAC and ir the DOD. Future Memorandums will
provide a nontechnical, user-criented approach and document the computer
programs for the algorithm described here.

A description of the approach -developed here was briefed to the
Commander of MAC and his staff in February 1968.
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SUMMARY

This Memorandum describes an analytic approach to flight scheduling
within the Military Airi{ift Command. The model takes explicit account
of the uncertainty present in the cargo requirements or demands con-
fronting MAC. For computational feasibility, the approach consists of
two related models: (1) a monthly planning model that produces an
initial schedule and (2) a daily model for making periodic changes in
the schedule. They are intended to schedule both the 2lst and 22d
Air Forces together and take account of interacticns between them.

Both are formulated as two-stage stochastic linear programs. A de-
tailed mathematical description of each model and its physical inter-
pretation is given.

The monthly model determines the number of flights -- channel and
special assignment airlift for each type of aircraft in the MAC flzet.
Excess demands on certain routes are assumed to be met, at least in
part, by additional spot procureme.:t of commercial lift. The flignht
assignment is determined by minimizing the expected total system cost,
which consists of operating costs, costs of reallocating aircraft to
differant routes, commercial procurement costs, and other peaalty costs
of excess demand. The model accounts for limitations on the number of
flying hours aad the carryiag capacities of various aircraft in satis-
fying demands.

In the daily model the number of aircraft of each type tc svitch
from one route to another and the number of commercial flights on spot
contract to add on the current day are the principal decisicn variables,
These are determined by balancing operating, procurement and redistri-
bution costs against the expected costs of additional cargo dzlay. The
current state of the cystem -- the amount of unmoved cargo on various
routes and the position of aircraft throughout the system -- plays a
role in determining these decisions.

These scheduling models represent the first known attempt to im-
plement the general methodology of stochastic linear programming on a
large-scale operating problem. Consequently, a description of two vari-

ants of an algorithm recently developed for this class of problems is
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presented. Both versions, which use ideas from convex programming,
make extensive use of linear programming codes for the brunt of the
calculations. The models may thus be soived by augmenting existing
linear programming routines. A computer program for solving a
large system is currently under development.

Although the model is specifically designed for the MAC system,
It is hoped that with appropriate modifications it may be applicable

to other scheduling problems ia which uncertainty is a factor.
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I. INTRODUCTION

This Memorandum provides the technical details of a mathematical
model for scheduling flights in the Military Airlift Command (MAC).

The model takes explicit account of the uncertainty surrounding the
requirements at the time scheduling decisions must be made, as well as

of the various physical constraints on the system. The proposed models
are adaptive in the sense that current information about the state of

the system (cargo levels at various origins, distribution of vehicles
throughout the system) is used periodically in making decisions regarding
changes in the flight schedule.

The approach discussed here consists of two components -- a monthly
and a daily flight planning modei. Both are formulated as stochastic
two-stage linear programs, and can be solved by algorithms based upon
standard linear programming calculations. Consequently, the model can
be applied to large-scale systems. This snould permit scheduling the
MAC system as a whole rather than the 21st and 22d Air Forces separately,
with transfers of aircraft between them on an ad hoc basis, as is cur-
rently the case.

The Memorand.m is organized as follows. The next section contains
a brief description of the scheduling problem facing MAC and discusses
the overall strategy employed in treating it analytically. This is
followed in Sec. III by a mathematical statement of the monthl- and
daily models, which are similar in gene. il structure. Section IV con-
tains a discussion cf two variants of an algorithm for solving these
models, preceded by a short discussion of pertinent concepts for two-
stage linear programming under uncertainty. In Sec. V we present a

small numerical example for the monthly model.
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II., PROBLEM STATEMUNT

—

DESCRIPTION OF MAC SYSTEM

Airlitt missions within MAC are of two basic types: channel

missions and special sssignment airlift missions (SAAMS). Channel

missions fly on a regular basis betwecn fixed origins and destinations:
MAC bases in the continental United States, aerial ports cf embarkation
(APOSs) and overseas bases, and aerial ports of debarkation (APODs).
For example, flights from Travis Air Force Base to Bangkok are channel
missions. They carry cargo (on a priority basis) and armed services
passengers. They are scheduled in advance for each calendar month,
althougl. the schedules (number of flights and departure times) are
changed during the month, often daily, based upcn deviations from
expectcd cargo generation. Many of these flights make intermediate
stops for refueling and crew changes. Channel cargo is shipped into
APOEs for storage until shipped.

SAAMS are flights from points of original cargo generation, such

as factories or warehouses, to points at or near the ultimate consignee.

Such flights arise on an irregular basis, and are scheduled if sufficient

advance notice is provided. The time and place of cargo pickup is
usually specified. Often these flights arise after the beginning of
the month and require a Lemporary diverting of aircraft from channel
missions, since certain SAAMS are designated higher priority than chan-
nel traffic. The users of a SAAM, e.g., a given military organization,
must in effect charter an entire aircraft, although MAC decides what
type of aircraft will be supplied.

MAC is divided into two air forces, the 2lst and 22d. The 22d
Air Force comprises APOEs on the West Coast and serves points in Asia.
The 21lst comprises APOEs on the East Coast and serves bases in Europe,
the Middle East, and South America, although currently several channels
serve bases in Southeast Asia. MAC Headquarters assigns SAAMS to the
two Air Forces; those originating west (east) of the Mississippi River
are usually assigned to the 22d (2ist) Air Force., Often aircraft
belonging to one Air Force are temporarily assigned to the other Air

Force to meet these demands when the type of aircraft required is in

shert supply.
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SCHEDULING PROBLEM

In carrying out its operations, MAC is faced with random fluctu-
ations in the amount of cargo and passengers toc be carried over its
various routes,

There is monthly uncertainty because shippers' forecasts of require-
ments for the month as reported to MAC at various lead times differ
significantly from the actual amount of requirements shipped. Secondly,
the amount of carge actually received during a day is partly unpredict-
able due to random variability in production schedules for manufactured
items, delays in transit and depot processing, and other factors.

A scheduling problem arises, since demand is not known with cer-
tainty and aircraft differ with respect to their payloads, flying times
and operating costs over different routes. Therefore, aircraft of dif-
ferent types must be assigned to various routes over the monthly planning
period. In addition, MAC can obtain additional lift from commercial
sources on call contracts to handle excessive demands on some routes.
Furthermore, the assignments of aircraft cannot violate constraints
for flying hours.

As time unfolds and demand becomes known, the scheduler can transfer
those aircraft from routes where demand is less than anticipated to
those where it is higher than expected. Thus, the scheduling problem
is a dynamic one of periodically reassigning capacity to routes in
order to minimize the expected costs of the operation over time.
Assigning insufficient airlift increases both the costs due to delay
and the procurement costs of "emergency" commercial 1lift; assigning
excess capacity results in an opportunity cost of foregoing service
elsewhere in the system. Since both situations are stochastic, the
best that can be douse is to minimize the cost entailed in these situ-

ations on the average.

BASIC APPROACH

We turn now to an overview of our strategy in treating the sched-
uling probiem. Ideally, the problem should be treated as a multiple

period (30 days or longer), sequentjal decision problem with account
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being taken of daily demand variation and physical constraints on air-
craft in each of the ensuing periods in the current horizon. Such an
approach is clearly not feasible frc.\ a computational standpoint for a
system the size of MAC or even each separate Air Force. Therefore,
broadly following the current procedures at MAC, we break the process
into two parts -- monthly and daily.

A monthly schedule is determined that accounts for uncertainty for
the forthcoming month considered as one aggregate period in which deci-
sions planned in advance may be modified. Although this is far from
ideal, it is superior to ignoring uncertainty and the subsequent oppor-
tunity to remedy its effects. The second-stage decisions, as we shall
see, are "virtual" or fictitious, but are non:theless important because
they help shape a good first-stage decision, the initial assignments
that serve as the starting point for the daily modifications.

The monthly flights are apportioned to the days. For example, if
fifteen flights of a given aircraft are found from the monthly model,
this may be interpreted as one flight per aircraft every two days during
the month if the given aircraft type can fly the mission.

Once the month commences, daily amendments to the number of flights
scheduled for that particulszr day are determined by the daily model,
which is also a two-stage optimization. Changes in assignments optimal
for the forthcoming two-day period are determined. They minimize the
sum of costs incurred on the current day, given the amount of cargo on
hand plus the expected value of tomorrow's costs, which depend upon
both the amount of new cargo and the changes made on the first day.
Consecutive decisions of the daily model are thereby chained together
in a recursive fashion with outputs from the model for day t becoming

inputs to the model for day t+l.
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ITI. MATHEMATICAL FORMULATION

In this section we formulate the monthly and daily models as two-
stage linear programs under uncertainty [2], [9] with a random right-
hand side in the second stage. Several of the program's variables
represent numbers of different kincs of flights and consequently must
be integer valued. However, this aspect of the problem is neglected
in order to obtain a program that is computationally solvable, thus
leaving ti-e user to adont a rounding scheme. The general fomm for
problems of this type is the following:

m min {cx + ngmin qy [Wy = € - Tx]} subject to Ax = b.

x20 y20

In this problem c, ¢q, and b are known vectors of dimension nl, Ny, and

m respectively. A, T, and W are known matrices of dimension m, 1’

m, X, and m, X 0, respectively. The vectors x and y represent the

Xxn
2
first- and second-stage decision vectors. £ is a random vector with a
known probability distribution and E(+) denotes the expectation with
respect to that distribution.
The problem can be given the following interpretation. Before

the random variable £ is observed, one must choose nonnegative values

of x satisfying Ax = b. The immediate cost of this choice is cx. After
x is chosen and the raadom variable £ is observed, nonnegative values
must be chosen for y which satisfy Wy = & - Tx at a cost of qy. The

chosen value of y will, for ecch observed value of €, be the one which

minimizes qy. Letting Q(x) = Eaﬁmin qy [Wy = € - Tx}, we wish to minimize

y=0
the first-stage cost, cx, plus the expected second-stage cost, Q(x).

The problem can be viewed as a dynamic programming problem with only
two stages, with y a function of the state vector £ - Tx. Note that
x does not depend on the observed values of £ but only on the distribu-
tion of &, while y does depend on the observed values of E and on the

chosen values of x.

MONTHLY MCDEL
In the monthly model the sequence of decisions is the following:

1. The number of flights of each aircraft type in the MAC fleet

b




* ki
over each route 1is assigned before monthly requirements on

each route are known with certainty.

2. After monthly vequirements are observed, some flights assigned
o routes with lower than expected demand are switched to
routes with higher than expected demand, Commercial airlift

is also sometimes added to routes with excess demand.

The monthly model has the following structure. The first-stage
constraints state that for each aircraft type the total number of flying
hours allocated to all routes cannot exceed the total number of flying
hours available of that type. The second-stage constraints are of two
types. The first specifies that the number of flying hours of a given
aircraft type diverted from a particular route to other routes cannot
exceed those initially assigned to it. The second type are demand
balance equaticns, which state that for each route the total carrying
capacity (that originally assigned, minus that diverted to other routes
plus that diverted from other routes) minus unused carrying capacity
plus unsatisfied demand is equal to total demand for that route,.

The objective func*ion consists of the cost of the final flying
program (the initial plus the amended assignments) plus penalty costs
of excess demand or supply. The cost of excess demand is reflected in
both the cost of additional commercial 1ift plus the extra flying time
consumed in switching aircraft from one route to another. Specifically,

the program is as follows.

: . + -
Find min Z, xij’xijk’yj’yj : 0 such that

*

A route is a channel or SAAM mission from each APOE. Rcutes are
assumed to be point-to-point with no intermediate on-load or off-load
of cargo. However, e.g., a trip from Travis to Bangkok via Hickam is

considered a different route from a flight which goes via Guam.
%k
Requirements as used here will mean net requirements trom which

capacity of commercial airlift on an annual contract (for which the
frequency of trips and routes is fixed) and any other fixed capability,
such as Air National Guard flights, is subtracted. This has the effect
cf merely lowering the mean of the distribution of requirements.
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i - _i.lﬁ) Z++z--}=z‘
(2) E:cijxij + E{mxn[ }: (ci'k clj 2 X; 5k + c5Y; + ijj]
L,j

i,j,kfj j j

First stage:

(2.1) E:a..x.. <F., all i .
13705 i
i

Second stage:

3ijk
(2.2) X.. - Z X... 20, all i,j
ij ai. ijk
k4

a,.
. ...1_1}5) z + -
(2.3) Zbijxij Z [blj( aij ] xi.jk + bijxikj + yj yj d.

i L,k# i,k#j

where Xis = number of flights of aircraft type i initially asrigned
J to route j during the month;

Xisp = number of flights of aircraft type i assigned to route k
J using hours made available by canceling route j flights;
y; = demand on route j which is satisfied by commercial lift,

if permitted, or unsatisfied demand if commercial lift
not permitted;

y} = unused capacity on route j;
and

ai, = numcter of hours required by aircraft type i for 2 flight
] initially assigned to and flown on route j;

aijk = number of hcurs required by aircraft type i for a flight
on route k that uses hours made availcble by canceling
route j flights (aijk P aik);

bi‘ = the carrying capacity (tons or any other appropriate
J measure, of a flight of an aircraft of type i on route j;

F, = the maximum number of flying hours for aircraft of type i
available during the month;

d, = total demand (tons or any other measure) for route j (a
random variable);

all j,
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c;; = cost of flight of aircraft type i initially assigned to
J .
and flown on route j (cij 2 0);

cijk = cost per flight of aircraft type i assigned to route k from
hours made available by canceling route j flights (cijk > cik);

¢, = cost per ton of commercial augmentation on route j. If
commercial augmentation is not available to carry excess
demand, this may instead represent a shortage cost;

c¢. = cost of a unit of unused carrying capacity on route j.

Note that since a flight assigned to and flown on route j takes
a].j hours while a flight flown on route k from hours diverted from
route j takes aijk hours, such a flight on route k results in the can-

cellation of (a /aij) flights on route j. Thus, of the flights ini-

ijk
tially assigned to route j, those th-t are actually flown number

zaijk
X, - x .
ij aij ijk

k#j
This is reflected in expressions (2), (2.2), and (2.3).

The first-stage constraints correspond to Ax = b and the second-
stage constraints to Wy = £ - Tx in expression (1). Notice that the
constraints (2.2) are placed in the second stage despite the fact that
the right-hand side is not a random vector. This is done because the
switching variables xijk are assumed to be determined after demand

becomes known and thus they depend upon information about the d Also,

- i’
they are to be chosen simultaneously with the y; and yj to minimize

the overall second-stage cost function.

DAILY SCHEDULING MODEL

The daily scheduling model 1s also a two-stage linear program
under uncertainty. 1iIts principal first-stage decision variables are
the number of flights of each type to switch Zrom one route tuv another
in the forthcoming day -- variables that played the role of second-
stage recourse variables in the monthly model. In addition, the daily
model is couched in terms of unmcved cargo stocked at the various origins

(aerial ports of embarkation) for various lengths of time; the .argo has
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not yet been shipped, and subsequently incurs certain delay costs.

o e e

Consequently, the amount of cargo in storage for various lengths of

time waiting to be loaded on different aircraft types over the differ-

NREY Y o

ent routes constitutes another set of first-stage decision variables.
In the first stage the constraints consist of balance iimitations E
on the number of flying hours, bounds on switches, capacity restrictions
on shipments, and inventory balance equations for cargo which has been
in the port for over one day -- quantities known with certainty. The
second stage consists of demand equations for newly arriving cargo which
is treated as a random variable. These equations include terms to
account for a possible under- or over-supply of capacity. It will be
assumed that for a given route new cargu has a lower priority (i.e.,
lower penalty or delay cost) than old cargo. The reason for this will
become clear later.
The objective function is again one of cost minimization. In this
case the costs include (1) incremental operating costs resulting from
flight changes, (2) daily commercial procurement, (3) delay cests for
cargo that remains unmoved for various lengths of time, and (4) expected
penalty costs resulting from misallocation of capacity.
To write the daily model, we introduce the following notation

(variables ref>r to the tth day of the month):

x,, = number of flights of aircraft type i previously scheduled

1] to fly over route j, a known constant;
xijk = number of flights of aircraft type i switched to route k
using hours made available by canceling route j flights;
yfj = capacity reserved for cargo j days old shipped on aircraft
type i over route j (g = 0,1,...,L);
wz, = capacity reserved for cargo £ days old shipped cn commer-

cial 1lift of type h over route j;

z, , = number of flights of commercial lift of type h procured for
oute j;

L = amount of cargo § days old remaining to be shipped over
] route j at the end of the day;
£
3

= inventory of cargo £ days old for rouic j for shipment at
the beginning of the day (H represents new cargo and is
a random variable);

<
L]

unused capacity on route j at the end cf the day;

e o = s o
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a.. = number of hours required by aircraft type i scheduled and
H flown on route j;
aijk = number of hours required by aircraft type i for a flight

on route k using hours made available by canceling route
j flights (aijkz aik);

= the carrying capacity of aircraft type i over route j;

1)
.. = cost per flight of aircraft type i scheduled and flown on
1] route j (c.. » 0);
1]
c,., = cost per flight of aircraft type i assigned to route k using
1jk hours made available by canceling route j flights (cijk 2 cij);
ehj = cost per flight of commercial 1ift of type h over route j;

V@ = unit cost per ton of one additional day's delay for cargo
J ¢ days old which is to be shipped over route j. It is
assumed that VQ = min y@;
J 2 ]

q. = unused capacity on route j.

Then the problem for day t can be stated. Find

S

. L
Min Z’xijk’sj’zhj’yij’whj’vj =20

such that

a L 2
E : - i + >
(3) (Lijk cij ; k?)xijk Yjsj

i,j,k#j ij j 440
IS T oo }5 }
+ 8 .z . + E{mi ! v.S: t Vot =2
). ny%ny TR L5 45
h,j 37303 J
First Stage:
a,
3.1 z Lik s x. ., all i and j
ijic ij

kA °ij

-
a R .
i - < b, .x, d

Z (bij " k)xijk L Pij®ikj S Ppj¥iye @bt ioand

£ 0
+

(3.2) Zyij +y?,
>0 k<j ij k#j
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£ o ] 3
(3.3) whj + whj = “1i%hj < 0, all h and j %
2>0 %
i
< 4 Zz L _ .2 i
. + + s, = H,, 11 d >0. 5
(344) L7Yij Yoy * 85 ; all j and ¢ ;
1 h 1
Second Stage:
o ) \ o E; o .
(3.5) sj - vj = Hj - L.yij - whj’ all j.
i h

Equation (3.1) states, as in the monthly model, that the number
of flying nours switched off a given route and aircraft type cannot
exceed those originally assigﬁed-

The meaning of Eqs. (3.2) and (3.3) is that the total tonnage
loaded of cargo already received plus the amount reserved for new cargo
on a given aircraft type over a given routez must be less than the carry-
ing capacity of all aircraft of that type assigned to the route for MAC
and commercial vehicles, respectively.* Equations (3.4) state for each
duration of cargo destined for each route, the total tonnage allocated
for MAC aircraft and commercial aircraft plus the amount not moved must
equal the inventery of cargo at the beginning of the day (a known con-
stant for all but newly arriving cargo). We note that the assumption
that newly arrived cargo has lowest penalty cost (mathematically stated,

£
y? = min (yj) for all i} assures that no new cargo will be carried unless
£

all old cargo is carried. This assures that for all but newly arrived
cargo, the amount shipped uses all the allotted capacity. If this
assumption were not made, it would bz more reasonable to determine the
o L

yﬁj j’wij(z > 0) as a functicn of
the actual amount ot new cargo. This would necessitate shifting equa-

and w:j simultaneously with the yf

tions (3.2) through (3.4) into the second stage, making for a large

linear program for the second stage. The present formulation permits . '

g —————————

For routes on which commercial augmentation is not permitted,
the corresponding z, . are omitted.
3
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the second stage to have a very simple structire which reduces the com-
putational burden in solving it. This matter wiil be discussed in more
detail below.

Finally, Eq. (3.3) states that for each route the inflow of new
cargo minus the total capacity reserved for shipment of new cargo on
all types of MAC and commercial vehicles is equal to any cargo not

shipped minus any unused capacity.

In addition, we may wish to include constraints that do not satu-
rate the capacity of enroute bases. Let J(p) equal the set of routes
which use base p as an enroute stop for refueling or crew change. For
example, channels from Norton to Saigon via Hickam would be
routes with Hickam as base p. Let ap be the maximum number of flights
that can be accommodated at base p in a single day. Then these cun-

straints can be expressed as

Z ("Lj' za—i:fxijk' Z"ij)s‘"p‘
i,jeJ(p) k#j k#j

e e o

Letting Hf(t) be the inventory of cargo for route j that is £ days
old on day t, and letting quantities in parenthesis show time dependence
2 £-1
t+ 1) =8
glE* D=3

the convention that s"l(o) refers to cargo not shipped on the last day of

of other quantities in a similar way, note that H (t), using
the preceding month.

In addition, the quantities x . are updated daily by the relations

ij

. ) 214k
xij(t + 1) xij(t) z a xljk + inkj s
kfy kA

where the X{jK and x.ij are the optimal values of the variables as deter-
mined by the model for day t.

In the monthly model there are m (number of individual aircraft
types) constraints in the first stage and (mn + n) in the second stage

: *
(n being the total numoer of routes). Assuming five aircraft types

*
Currently MAC uses the C-124, C-130, C-~133, C-135 and C-141.

= At i
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and 100 routes, this presents a linear program for the first stage with
five constraints and 600 for the second stage. However, in the second

stage the first mn are of the generalized upper-bound type, to be dis-

cussed later, to which special methods may be applied.

In the daily model there are at most n{2m + H + L) consiraints in
the first stage and n iu the second stage, where H is the number of indi-
vidual commercial vehicles and L is the number of duration classes of
old cargo. For H= 3, L =3, m=5, n= 100, this yields one first-
stage program with 1600 constraints. The second stage contains 100
equations. While this is within the range of linear programming ccdes
for "third generation" computers, the first-stage problem can be sim-
plified by treating it by decomposition methods where Eq. (3.2) are
the coupling equations and (3.1), (3.3-3.4) are the two disjoint sub-
problems. Again, fur the former subproblem, the majority of the con-

straints (3.1) are of the generalized upper-bound variety.
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IV, SCLUTION TECHNIQUES

This section describes *wo alternative computational methods for
solving two-stage linear programs under uncertainty. These methods mry
be applied te the monthly and daily model. They assume the random vari-
ables have a continuous distribution. Each is a variant of an algorithm
for convex programming, which is required for this type of problem. The
first Ls a cutting-plane or constraint-generating procedure, while the
second is a gradient method. We outline the steps required for the
general problem exemplified by the monthly model and indicate ce»tain
simplifications that cen be made in the daily model whos~2 second-stage
has a special str..ture. Before proceeding to the algorithms, we review

some salient facts concerning two-stage linear programming under uncer-

tainty.

BASIC FACTS FROM LINEAR PROGRAMMING UNDER UNCERTAINTY

As mentioned in Sec. ILI, both the monthly and daily problems are

special cases of the problem:

(4) Find x 20, min Z such that
Z = cx + 0(x)
Ax = b

!

where Q(x) = E ;;8 qQ.y=§&- Tx] .
Wets [9] has shown that Q(x) is convex in x. Thus the above linear
program under uncertainty is equivalent to a deterministic convex
prog- m in x. The algorithms to be developed focus aud are based on
certarn properties of the function Q(x).

One important property (to be proved later in the Constraiat Gen-
eration section) is that the linear function p(xo) - (ﬂ(xo)17x° is a
support fuaction™ (or tangent plane) to Q{x) at x%¢K, where n(x°) is the

cxpectation of the optimal dual variables and p(xo) is the expectation

“A linear function H(x) is a support for coavex function z(x) de-
fincd on XcE® at x0 if z(x) 2 H(x) for all xeX and z(x®) = H(x0).

YRS P e




of the demand terms in the dual objective function. Specifically, let

n(x°,€) be an optimal solution to

(5) ““:"{n(g - XO) |t < q} :

R G YR ., IO RN WIRT I RS TP TR R

Then n(x%) = Egﬂ(xo,g) and p(x°) = EE{n(x°,§)§}.

This property forms the basis for the cutting-plane method.

Another important property [9] is that if the distribution of £
is absolutely continuous, Q(x) is differentiable at xoeK and has the
gradient -n(xo)T,where again n(xo) is the expected value of the solu-
tion to (5). This property is utilized in the gradient approach de-
veloped by Wets [81].

In general, the -(x°) and p(xo) cannot be explicitly computed;
consequently, the methods to be described resort to sampling procedures
to estimate these quantities.

Our monthly and dailv problems both possess the property of

complete recourse. In other words, each x satisfying Ax = b yields a

feasible program for all possible £ in the second-stage constraints

Wy = £ - Tx. This permits us to eliminate one of the steps in the
algorithms to be described for finding feasibility cuts [7, pp. 31-34].
Moreover, the daily model exhibits simple recourse, i.e., W = (1, -1].

This permits simplification of one major step in the following algorithm.

CUTTING-PLANE METHOD

A cutting-plane algorithm has been developed by Wets and Van Slyke
[7) for solving the general problem. It can be viewed as an application
of Kelley's cutting-plane method [5] to the equivalent convex program.

In this appreach the convex function Q(x) appearing in the objec-
tive function is treated as a constraint. The objective function is

replaced by z(x) = cx + 2 and the constraint,

(6) Q(x) < 8,




considere the first-stage program where 8 is treated as an addi-
tional decision variable. Since the second-stage costs are nonnegative
in our problem, we may consider & as a nonnegative variable.

The constraint (6) is represented by a set of support planes
pk - (nkT)x; i.e., a convex function is represented as tt upper enve-
lope of its supporting planes. Four constraints are generated by solv-
ing the second-stage problem for a fixed x which solves an augmented
first-stage problem. Thus the technique consists of a decomposition
of the overall problem into two linear-programming subproblems. The
method can be viewed, in fact, as a particular case of Benders' par-
titioning method [1] applied to the original problem.

The particular problem that is solved at any iteration, say the

kth, is the following:

1. Find x,8 2 0, min z such that

¢)) cx + @ =7
a) Ax =b
b) (FDx + § 2 p*, k=1,...,8,

where S is an index of a subset of previously generated constraints to
be described more fully below.
The constraints (7b) are generated sequentially and have the pro-

perty that for all x satisfying (7a), (x,Q(x)) = (x,8) satisfies (7b).

2. Let (x,8) be the solution obtained from step 1 and solve for
Q(x). If Q(X) = 6, % solves (4). Otherwise, a constraint of the type
(7b) is generated that is violated by (X,6).

Constraint Generation

For fixed x = X and a given € = ¥, the second-stage linear program

becomes

(3) Find y 290, 0{x,8} where

Q(x,%) = min qy subject to Wy = T . Tx.




b i i Boit

-17-

Let n(i,é) be the simplex multipliers corresponding to an optimal
basis in (8). It follows that n(ﬁ,g)(§ - Tx) = Q(%,£€) and %, HW < q.

Thus, n(x,§) is feasible in the following program for all x:

) Pl d e

€)) Find n. max w where
ng - Tx) = w

W S q-

Since (9) is dual to (8) for genmeral x, it follows from duality
theory that

n(%,8) (- Tx) S Q(x,E)

for all x. Letting m(%) = E.n(%,§) and p(X) = E_["(x,8)£], it follows
> =
that for all x, (m(X)T)x + Q(») 2 p(X). Hence, the following constraint

must be satisfied by all (x,Q(x)):
(10) m(x)T)x + 8 2 p(x).

Algorithm

All constraints of the type (7b) are of type (10). That is, each
(nk,ok) 18 equal to some (n(X),p(X)). Since for every x catisfyin
Ax = b, (x,Q(x)) is feasible for (7), it follows that in (7), min
min z, where min z solves (4). Thus, if (x,8) solves (7) and Q(x) - 8,
cXx + Q(X) S min z and % solves (4).

On the other hand, if Q(X) # @, it follows (since ck + Q(X) 2
min z) that Q(x) > 8. Also (n(X)T)X + Q(X) = p(X) by taking expecta-
tions in the expression ﬂ(i,g)(é - Tx) = Q(;,E). Thus (§,5) violates

the expression (10).

g
z s

One problem which arises is that it is possible to generate a large
number of constraints of type (7b). However, in reference [6] it is
shown that all constraints in (7b) that are not tight (i.e., where
equality does not hold) in the optimal solution to (7) may be dropped
from succeeding iterations, Thus, the number of such constraints never
exceeds the number of rows in T. Formally, the algorithm is as follows

with S initially zero in step 1.
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, l. Solve for x = 0, min Z such that
! cx+ 6=73%
Ax = b
: (nkT)x+e-sk=pk k=1,...,8.

Let x be the optimal x obtained.

mepny

2. If s" >0, delete the constraint in which sk appears, k = 1,

ol bl b M D el o oW R r g AN £

.»8 and renumber those remaining.

3. Sample from the distribution of €. For each point gl(i =1

b

.»n) in the sample, solve for

gi
K
i]
4
|

y 2 0,Q(x,®)  where

Q(%,E") = min gy subject to

Wy = §i - Tk.

Increase S by 1 aud let 1 = n-IZn(i EL) and ps =n EE n(x e ) where

n is the sample size and n(x,E ) are the optimal simplex multipliers

for the sample point E

4. If Q(X) - 8 < &, where § is a predetermined constant or vari-
able, terminate. Otherwise, return to 1.

The quantity § in step 4 may be chosen by any sensible criteria.

For example, it may be a constant or it could be a small fraction times
the last step 1 solution (i.e., z(X)).

When the second stage exhibits simple recourse (i.e., the only
second-stage variables are slack variables) as is *.e case in the daily
model, step 3 can be considerably simplified. In this case the sampling
procedure and the need to solve a linear program can be dispensed and the
expected value of the shadow prlces calculated explicitly. Specifically,
Wy = gL - Tx may be expressed as q q - T%x, i= 1,...,m2,
and from [8]

E'ni (xk)

+ -
- q J' dF(g) - q] f ) (), L= l,...m,
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That is, they are equal to the cost of the ith excess demand times the
probability of its occurrence minus the cost of the excess supply in

the Lth equation times the probability of »ts occurrence.

The Second-Stage Problem

The sampling involved in the calculation of Q(X) in step 3 of the
algorithm involves the solution of many linear programs. The solution
time for this step can greatly be reduced by taking advantage of the
fact that if a basis is optimal for a program and the rignt-hand side
is changed, that basis will either be optimal or infeasible for the
new right-hand side. Thus, the sequence of programs for the second
stage may be sc'ved as follows. Solve the program for one sample point.
Check each of the other sample points for feasibility with respect to
the optimal basis found. (The w vector azsociated with this basis is
an optimal one for all sample points that are feasible.) Then solve
the program for some sample point that was infeasible and repeat. This
procedure reduces the number of linear programs from the number of ele-
ments in the sample to the number of optimal bases for the sample points.
After onc optimal basis is found, others may of course be found from this
one by a sequence of dual simplex plvot steps. Hence, each pivot will
yield a basis whose coct vow L8 nonnegative. It is suggested, then, that
after each iteration, fe. "bllity be checked for the other sample points
which have not been sclved ‘or, rather than wait until the current one

being considered is feasible. I: Ls also suggested that the optimal

basis be saved from iteration to ireration.

GRADIENT METHOD

In this approach the equivalent convex program is solved by a nou-
linear programming algorithm which utilizes the gradient of the cbjective

function of (4) at x©°,
g2z(x%) = (c - n(xO)T) .

The method we describe is based upon a variant of the Frank-Wolfe algo-
rithm [4] for convex programming with linear constraints developed by

Wets [8] for stochastic programs. Cther gradient methods for convex

ety

!
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programming such as the Gradient Projection method, Zangwill's convex
simplex mathod [10] or Zoutendiik's method of feasible directions [11]
could be employed as well.

In brief, this method obtains solutions to a sequence of linear

approximations to the given problem of the form

(11) min V:(xz-l)x
X
subject to
Ax = b
x20,

where xz-l is the solution for x to the given problem at the preceding
or (£-1)st iteration. An improved feasible solution xz is obtained by
adding to x!'.1 an improving feasible direction ),.(>"c‘e - xz-l), where iz
is the (basic) optimal solution to (11) and A (a scalar) is determined
by solving a one-dimensional optimization problem to be described below.
Several features of this method should be noted. First, the linear
program which is actually solved in the first stage is not augmented
but contains only constraints of the first stage; only the cost func-
tion varies from iteration to iteration. Second, the computational
labor is again split between first and second stages with the expected
values of the shadow prices, which are used in the objective function
of the first-stage problem, generated in a sampling procedure in solving
a set of second-stage programs for a fixed x. Third, since the method
is a gradient approach, it is self-correcting in the sense that if a
poor approximation to the gradient is generated which leads to a small
improvement in the solution, it is likely to be corrected at later itera-
tions. By contrast, in the cutting-plane approach it is possible that
sampling variations occasionally generate support functions which cut
inside the feasible region and indicate falsely that an optimum has been

reached.




-21-

Algorithm
The exact steps of the algorithm are as follows:

1. (Initialization.) Set iteration count £ = 0 and ﬁ£~0 = ﬁ(xz~0)
= 0 [the sample estimate of the expected value of the optimal multi-

pliers for the second-stage program].

2. (Generate optimal solution to the linearized equivalent convex

program.) Set £ = ¢+ 1. For £ =1,2,..., solve the linear program

(1) min (e - 7 lT)x
b4

subject to

x 20,

Denote the optimal solution to (i) by #t. For 4 = l, go to step 5.
Otherwise go to step 3.

3. (Seek improved direction.) Solve the scalar optimization
problem

(iD) min ) = c[(1 - L+
0 <l

+La - et Rt

where Q(x) is a sample estimate of Q(x) obtained by solving the second-
stage program for a random sample of £ and a fixed x. In (ii) this func-
tion is viewed as a function of the scalar parameter ), which weights

the previous solution with *he current optimal soluticn tn the linear-

ized prob.em. Denote the optimal solution to (ii) by X*-
set xf = (1 - Mt 4 RE

4. (Test for couvergence.) If k* = 0, terminate with xs"1 as

the optimal solution. Otherwise, set xf = (1 - )‘*)x£~1 + x*i£ and go
to step 5.

€ wessaiindtd deit h b i Arcen
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5. Determine ﬁz. This is accomplished as in step 3 of *he cutting-
plane algorithm by sampling from the distribution of € and solving the
resulting linear programs parametrically in the general case, or expli-
citly calculating ﬁz for the case of simple recourse. Go to step 2.

Some additional remarks about the algorithm are in order. The
auxiliary minimization problem that is required in step 3 requires a

considerable amount of computation.

An alternative convergence criterion is available at step 4. From
results in [8)] an upper bound on the difference between the minimum

value of the objective function Z(x°) and the current value z(x*) is

given by
(12) sty -1,
n
where
L= min 26N+ [e - nGMTIE" - K

h=1,...,4

Thus the problem may be terminated when (12) is less than some pre-
specified constant.
In addition, we note that a majority of the constraints in the

second-stage problem of the monthly model, i.e., those of the form

z It I R
kj

and some of the first-stage coustraints in the daily model are of a
type known as generalized upper bounds [3]. These are constraints

which appear schematically as

1 1---1 <b
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That is, they are disjoint sums where the right-hand cide is a
nonnegative constant.* A special algorithm is available for solving
problems of this form, which entails carryi. g a basis where size is
reduced by L, the number of generalized upper-bound constraints.
Finally, as mentioned earlier, some rounding scheme is necessary
to convert the numbers of assigned flights to integers. One scheme
might be to first round up solutions whose fractional parts are 0.5
or greater and rcund down those whose fractional parts are less than
0.5. Then, if some flying hour constraint is exceeded, subtract one
from a sufficient number of variables to satisfy that constraint. The
variables to be reduced should be chosen from among those previously

rounded up and may be those whose fractional part is closest to 0.5.

%
The constraints may be reduced tn this form without loss of gener-

ality by dividing each coefficient by the right-hand side and rescaling
the variables.

N
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T

V. NUMERICAL EXAMPLE

We conclude with a small-scale numerical example of the solution

Potivan T -

of the monthly model. The problem consists uf two aircraft types and

4 two routes.

The data were chosan for convenience. Solutions based on

actual data will be reported in the future.

3 The data for the problem were as follows:
: Flying Hours Carrying Capacity Cost per Flight
; Alrcraft (round trip) (in tons) (doliars)
2 Type Route 1 | Route 2 | Route 1 | Route 2 | Route 1 | Route 2
E 1 24 14 50 75 7200 6000
! 2 49 29 20 20 7200 4000
i
3
; Penalty Cost
z ($§ per ton)
Route | Excess Demand | Excess Supply
1 500 0
2 250 0
In addition, the tf{me to switch between erther route was 5 hours
for aircraft type 1 and 7 hours for aircraft type 2. The incremental

costs for these moves were $1000 and $1500 for these aircraft types,

respectively. It was assumed that 720 hours of flying time were avail-

able for each aircraft type. This can correspond to 3 planes of each

type with «n average utilization of 8 hours per day.
Finally, demand was assumed to be irdependertly lognurmally dis-
*

tributed on each route with the following parameters:

*
The current programs allow only for the lognormal distribution.

It is a simple matter to add subroutines to generate random samples
from arbitrary distributions whose cumulative distribution function
can be tabulated. The lognormal distribution was chosen for experi-
mental purposes because it produces nonnegative random variables which
are skewed to the right -- characteristics actual demand patterns are
likely to exhibit.
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Route [ c
1 1000 50
2 1500 ; 300

The following solution was found using an experimental pregram for

the cutting-plane version of the algorithm.*

Route
Aircraft
Type 1 2
1 16.5 23.2
2 6.7 c.0

The total cost of the entire program converged after 4 terations
(based upon a termination when the relative decrease in costs fell belcw
1 percent). Each second-stage program was based upon drawing a sample
of 25 observations so that in effect about 100 lipear programming prob-
lens were solved during the course of the iterations. Execution time
was ten seconds.

For comparison purposes, a determiuistic linear program was run
with demand on routes assumed to be equal to the mean used in the log-

normal case. This yielded the following results:

Route
Aircraft
Type 1 2
1 i8.3 20.0
2 4.2 0.0

*

The program was written in FORTRAN and employs a small, all-in-
core linear programming subroutine. Currently, the program is being
modified to handle much larger problems and will be described in
future work. A version of the algorithm for the monthly model using
the gradient algorithm was also developed. Preliminary runs indicate
that the gradient method takes considerably longer to run than the
cutting-plane version because of the number of additional programs
that must be solved during the auxiliary minimization problem described
in Sec. 1IV.
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It should be noted that this solution differs frem the caue where
the demands are stochastic. It might be supposed that the stochastic
version would aiways assign more aircraft as a hedge against uncer-
tainty; however, this is not the case even in this simple example --
more flig ts of type L aircraft to route I are made in the determin-

istic version than in the stochastic.
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