
kn MEMORANDUM

RM-5722-PR
OCTOBER 19•18

A FLIGHT PLANNING MODEL FOR

THE MILITARY AIRLIFT COMMAND

J. L. Midler and R. D. Wollmer

Thim re.enrh is supported by the !Unit'!- States Air Forve under Project RAND.--Con.
Irart No. F"416 2 0.6 7 .C.005-monilore•l ), the Di relctrale of Operational Requiremrts
and Development Plan,,. Deputy Chief of Staff. llem.r.rch and Develolpment, liq tSAF.
View,, or coflluinn.s contained in t'ih, Ptudy should not he interpreted as repre•enti.g
the official opinion or policy of the United States Air Force.

DISTRIBUTION S'rATEMENT
This dlocument has been approveii for public releam- and sale; its dimtribution it unlim::cd.

** * .P * &* '**.~f .0 * es



I I

This Rand Memorandum is presented as a competent treatment of the subject,
worthy of publication. The Rand Corporation vouches for the quality of the
research, without necessarily endorsing the opinion-i and cocitutions of the
authors.

Pu~blished by The RAND Corporation

[F



I ~!

PREFACE

This Memorandum, the first in a series, presents an adaptive

model for scheduling cargo flights within the Military Airlift Command

(MAC). It provides the technical details for a pair of mathematical

models developed for this scheduling problem. The models employ an

adaptive technique that copes with the uncertainty associated with

some of MAC's requirements.

The study atrose from a joint RAND/MAC interest in dealing with

the volatility that appears in MAC's flight structure, particularly

that resulting from special assignment airlift missions.

This Memorandum is primarily addressed to operations analysts and a

schedulers in MAC, but should also interest those concerned with long-

run planning of airlift routing and those responsible for procuring

commercial lift both at MAC and in the DOD. Future Memorandums will

provide a nontechnical, user-oriented approach and document the computer

programs for the algorithm described here.

A description of the approach developed here was briefed to the

Commander of MAC and his staff in February 1968.

I
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SUMMARY

This Memorandum describes an analytic approach to flight scheduling

within the Military AirLift Command. The model takes explicit account

of the uncertainty present in the cargo requirements or demands con-

fronting MAC. For computational feasibility, the approach consists of

two related models: (I) a monthly planning model that produces an

initial schedule and (2) a daily model for making periodic changes in

the schedule. They are intended to schedule both the 21st and 22d

Air Forces together and take account of interactions between them.

Both are formulated as two-stage stochastic linear programs. A de-

tailed mathematical description of each model and its physical inter-

pretation is given.

The monthly model determines the number of flights -- channel and

special assignment airlift for each type of aircraft in the MAC fleet.

Excess demands on certain routes are assumed to be met, at least in

part, by additional spot procureme,,t of commercial lift. The flight

assignment is determined by minimizing the expected total system cost,

which consists of operating costs, costs of reallocating aircraft to

different routes, commercial procurement costs, and other penalty costs

of excess demand. The model accounts for limitations on the number of

flying hours aad the carrying capacities of various aircraft in satis-

fying demands.

In the daily model the number of aircraft of each type to st itch

from one route to another and the number of commercial flights on spot

contract to add on the current day are the principal decision variables.

These are determined by balancing operating, procurement and redistri-

bution costs against the expected costs of additional cargo delay. The

current state of the cystem -- the amount of unmoved cargo on various

routes and the position of aircraft throughout the system -- plays a

role in determining these decisions.

These scheduling models represent the first known attempt to im-

plement the general methodology of stochastic linear programming on a

large-scale operating problem. Consequently, a description of two varn-

ants of an algorithm recently deveJ.oped for this class of problems is
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presented. Both versions, which use ideas from convey programming,

make extensive use of linear programming codes for the brunt of the

calculations. The models may thus be soived by augmenting existing

linear programming routines. A computer program for solving a

large system is currently under development.

Although the model is specifically designed for the MAC system,

it is hoped that with appropriate modifications it may be applicable

to other scheduling problems in whichz uncertainty is a factor.

ii

_________________________________________



-vii-

ACKNOWLEDGMENTS

We wish to thank Dr. Roger Wets of the Boeing Scientific Research

Laboratories for helpful discussions. We also wish to thank

Lois Littleton of RAND, who wrote the program described in Sec. V and

-ontributed a number of useful suggestions.



-ix-

CONTENTS

PREFACE ........................................................ iii

S U•MxARY ........................................................ v

ACKNOWLEDGMENTS ................................................ vii

Section
1. INTRODUCTION .............................................. 1

II. PROBLEM STATEMENT ........................................ 2
Description of MAC System .............................. 2
Scheduling Problem ..................................... 3
Basic Approach ......................................... 3

IIl. MATHEMATICAL FORMULATION ................................. 5
Monthly Model ............................................. 5
Daily Scheduling Model .................... .............. 8

4

IV. SOLUTION TECHNIQUES ....................................... 14

Basic Facts from Linear Programming Under Uncertainty 14
Cutting-Plane Method .................................... 15
Gradient Method ........................................ 19

V. NUMERICAL EXAMPLE ........................................ 24

REFERENCES ...................................................... 27

I



-1-

I. INTRODUCTION

This Memorandum provides the technical details of a mathematical

model for scheduling flights in the Military Airlift Command (MAC).

The model takes explicit account of the uncertainty surrounding the

requirements at the time scheduling decisions must be made, as well as

of the various physical constraints on the system. The proposed models

are adaptive in the sense that current information about the state of

the system (cargo levels at various origins, distribution of vehicles

throughout the system) is used periodically in making decisions regarding

changes in the flight schedule.

The approach discussed here consists of two components -- a monthly

and a daily flight planning model. Both are formulated as stochastic

two-stage linear programs, and can be solved by algorithms based upon

standard linear programming calculations. Consequently, the model can

be applied to large-scale systems. This should permit scheduling the

MAC system as a whole rather than the 21st and 22d Air Forces separately,

with transfers of aircraft between them on an ad hoc basis, as is cur-

rently the case.

The Memorand&m is organized as follows. The next section contains

a brief description of the scheduling problem facing MAC and discusses

the overall strategy employed in treating it analytically. This is

followed in Sec. III by a mathematical statement of the monti'l- and

daily models, which are similar in gene~il structure. Section IV con-

tains a discussion of two variants of an algorithm for solving these

models, preceded by a short discussion of pertinent concepts for two-

stage linear programming under uncertainty. In Sec. V we present a

small numerical example for the monthly model.

l
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I I. PROBLEM STATEM7,NT

DESCRIPTION OF MAC SYSTEM

Airlijt missions within MAC are of two basic types: channel

missions and special assignment airlift missions (SAAMS). Channel

missions fly on a regular basis between fixed origins and destinations:

MAC bases in the continental United States, aerial ports of embarkation

(APOEs) and overseas bases, and aerial ports of debarkation (APODs).

For example, flights from Travis Air Force Base to Bangkok are channel

missions. They carry cargo (on a priority basis) and armed services

passenge.rs. They are scheduled in advance for each calendar month,

althougl the schedules (number of flights and departure times) are

changed during the month, often daily, based upcn deviations from

expectcd cargo generation. Many of these flights make intermediate

stops for refueling and crew changes. Channel cargo is shipped into

APOEs for storage until shipped.

SAAMS are flights from points of original cargo generation, such

as factories or warehouses, to points at or near the ultimate consignee.

Such flights arise on an irregular basis, and are scheduled if sufficient

advance notice is provided. The time and place of cargo pickup is

usually specified. Often these flights arise after the beginning of

the month and require a ýemporary diverting of aircraft from channel

missions, since certain SAAMS are designated higher priority than chan-

nel traffic. The users of a SAAN, e.g., a given military organization,

must in effect charter an entire aircraft, although MAC decides what

type of aircraft will be supplied.

MAC is divided into two air forces, the 21st and 22d. The 22d

Air Force comprises APOEs on the West Coast and serves points in Asia.

The 21st comprises APOEs on the East Coast and serves bases in Europe,

the Middle East, and South America, although currently several channels

serve bases in Southeast Asia. MAC Headquarters assigns SAAMS to the

two Air Forces; those originating west (east) of the Mississippi River

are usually assigned to the 22d (2lst) Air Force. Often aircraft

belonging to one Air Force are temporarily assigned to the other Air

Force to meet these demands when the type of aircraft required is in

shert supply.
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SCHEDULING PROBLEM

In carrying out its operations, MAC is faced with random fluctu-

ations in the amount of cargo and passengers to be carried over its

various routes.

There is monthly uncertainty because shippers' forecasts of require-

ments for the month as reported to MAC at various lead times differ

significantly from the actual amount of requirements shipped. Secondly,

the arrount of cargo actually received during a (lay is partly unpredict-

able due to random variability in production schedules for manufactured

items, delays in transit and depot processing, and other factors.

A scheduling problem arises, since demand is not known with cer-

tainty and aircraft differ with respect to their payloads, flying times

and operating costs over different routes. Therefore, aircraft of dif-

ferent types must be assigned to various routes over the monthly planning

period. In addition, MAC can obtain additional lift from commercial

sources on call contracts to handle excessive demands on some routes.

Furthermore, the assignments of aircraft cannot violate constraints

for Llying hours.

As time unfolds and demand becomes known, the scheduler can transfer

those aircraft from routes where demand is less than anticipated to
those where it is higher than expected. Thus, the scheduling problem

is a dynamic one of periodically reassigning capacity to routes in

order to minimize the expected costs of the operation over time.

Assigning insufficient airlift increases both the costs due to delay

and the procurement costs of "emergency" commercial lift; assigning

excess capacity results in an opportunity cost of foregoing service

elsewhere in the system. Since both situations are stochastic, the

best that can be doae is to minimize the cost entailed in these situ-

ations on the average.

BASIC APPROACH

We turn now to an overview of our strategy in treating the sched-

uling problem. Ideally, the problem should be treated as a multiple

period (30 days or longer), sequential decision problem with account

S - ---- ---- --- '



r -4-

being taken of daily demand variation and physical constraints on air-

craft in each of the ensuing periods in the current horizon. Such an

approach is clearly not feasible frt.% a computational standpoint for a

system the size of MAC or even each separate Air Force. Therefore,

broadly following the current procedures at MAC, we break the process

into two parts -- monthly and daily.

A monthly schedule is determined that accounts for uncertainty for

the forthcoming month considered as one aggregate period in which deci-

sions planned in advance may be modified. Although this is far from

ideal, it is superior to ignoring uncertainty and the subsequent oppor-

tunity to remedy its effects. The second-stage decisions, as we shall

see, are "virtual" or fictitious, but are non,.theless important because

they help shape a good first-stage decision, the initial assignments

that serve as the starting point for the daily modifications.

The monthly flLghts are apportioned to the days. For example, if

fifteen flights of a given aircraft are found from the monthly model,

this may be interpreted as one flight per aircraft every two days during

the month if the given aircraft type can fly the mission.

Once the month commences, daily amendments to the number of flights

"schedulud for that particular day are determined by the daily model,

which is also a two-stage optimization. Changes in assignments optimal

for the forthcoming two-day period are determined. They minimize the

sum of costs incurred on the current day, given the amount of cargo on

hand plus the expected value of tomorrow's costs, which depend upon

both the amount of new cargo and the changes made on the first day.

Consecutive decisions of the daily model are thereby chained together

in a recursive fashion with outputs from the model for day t becoming

inputs to the model for day t+l.

rL



III. MATHEMATICAL FORMULATION

In this section we formulate the monthly and daily models as two-

stage linear programs under uncertainty [2], [9] with a random right-

hand side in the second stage. Several of the program's variables

represent numbers of different kinds of flights and consequently must

be integer valued. However, this aspect of the problem is neglected

in order to obtain a program that is computationally solvable, thus

leaving tie user to adopt a rounding scheme. The general form for

problems of this type is the following:

(1) mi {cx + Et[min qyWy = -Tx] subject to Ax - b.

In this problem c, q, and b are known vectors of dimension n1 , n2 , and

mI respectively. A, T, and W are known matrices of dimension m 1 x n1,

m2 x n,, and m2 x n2, respectively. The vectors x and y represent the

first- and second-stage decision vectors. E is a random vector with a

known probability distribution and E(') denotes the expectation with

respect to that distribution.

The problem can be given the following interpretation. Before

the random variable • is observed, one must choose nonnegative values

of x satisfying Ax = b. The immediate cost of this choice is cx. After

x is chosen and the random variable t is observed, nonnegative values

must be chosen for y which satisfy Wy = t - Tx at a cost of qy. The

chosen value of y will, for each observed value of t, be the one which

minimizes qy. Letting Q(x) = Ej(min qyjWy = - Tx], we wish to minimize
- yZ>O

the first-stage cost, cx, plus the expected second-stage cost, Q(x).

The problem can be viewed as a dynamic programming problem with only

two stages, with y a function of the state vector • - Tx. Note that

x does not depend on the observed values of E but only on the distribu-

tion of t, while y does depend on the observed values of E and on the

chosen values of x.

MONTHLY MODEL

In the monthly model the sequence of decisions is the following:

I. The number of flights of each aircraft type in the MAC fleet

I.!
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over each route is assigned before monthly requirements on

each route are known with certainty.

2. After monthly -equirements are observed, some flights assigned

to routes with lower than expected demand ar• switched to

routes with higher than expected demand. Commercial airlift
is also sometimes added to routes with excess demand.

The monthly model has the following structure. The first-stage

constraints state that for each aircraft type the total number of flyl.ng

hours allocated to all routes cannot exceed the total number of flying

hours available of that type. The second-stage constraints are of two

types. The first specifies that the number of flying hours of a given

aircraft type diverted from a particular route to other routes cannot

exceed those initially assigned to it. The second type are demand

balance equations, which state that for each route the total carrying

capacity (that originally assigned, minus that diverted to other routes

plus that diverted from other routes) minus unused carrying capacity

plus unsatisfied demand is equal to total demand for that route.

The objective function consists of the cost of the final flying

program (the initial plus the amended assignments) plus penalty costs

of excess demand or supply. The cost of excess demand is reflected in

both the cost of additional commercial lift plus the extra flying time

consumed in switching aircraft from one route to another. Specifically,
the program is as follows.

Find min Z, x.+,X.jky y 0 such that

A route is a channel or SAAM mission from each APOE. Routes are
assumed to be point-to-point with no intermediate on-load or off-load
of cargo. However, e.g., a trip from Travis to Bangkok via Hickam is
considered a different route from a flight which goes via Guam.

Requirements as used here will mean net requirements from which
capacity of commercial airlift on an annual contract (for which the
frequency of trips and routes is fixed) and any other fixed capability,
such as Air National Guard flights, is subtracted. This has the effect
of merely lowering the mean of the distribution of requirements.

I
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(2) c. .x. + +in (c, - c x ) X k + i~Yj+ ICjY-jl z.

ij ,j ,k/j j

First stage:

(2.1) a. .x.. < Fi, all i
j

Second stage:

(2.2) x a Xijk 0 0, all ij
k'aj "k

(2.3) i bijxi- Lij[b .JJ ') ijk + L b )CLkj + Y+ yj = d., all j,

i i,k/j j i,k/j

where x.. = number of flights of aircraft type i initially as,'igned
to route j during the month;

xijk = number of flights of aircraft type i assigned to route k
using hours made available by canceling route j flights;

+

y. = demand on route j which is satisfied by commercial lift,
J if permitted, or unsatisfied demand if commercial lift

not permitted;

y = unused capacity on route j;

and

aij = number of hours required by aircraft type i for a flight
initially assigned to and flown on route j;

aijk = number of hours required by aircraft type i for a flight
on route k that uses hours made available by canceling

route j flights (aijk z a ik);

bij = the carrying capacity (tons or any other appropriate
measure: of a flight of an aircraft of type i on route j;

F. = the maximum number of flying hours for aircraft of type i
i available during the month;

d. - total demand (tons or any other measure) for route j (a
random variable);

V..
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cj - cost of flight of aircraft type i initially assigned to
and flown on route j (ci. > 0);

c. - cost per flight of aircraft type i assigned to route k from
hours made available by canceling route j flights (ci.k > cik)

c - cost per ton of commercial augmentation on route j, If
- commercial augmentation is not available to carry excess

demand, this may instead represent a shortage cost;

c. - cost of a unit of unused carrying capacity on route j.j

Note that since a flight assigned to and flown on route j takes

a ij hours while a flight flown on route k from hours diverted from
route j takes a ijk hours, such a flight on route k results in the can-

cellation of (aijk/aij) flights on route J. Thus, of the flights ini-

tially assigned to route J, those th t are actually flown number

Ia

ij E_ i Xijk
k ij

This is reflected in expressions (2), (2.2), and (2.3).

The first-stage constraints correspond to Ax = b and the second-

stage constraints to Wy - ý - Tx in expression (I). Notice that the

constraints (2.2) are placed in the second stage despite the fact that

the right-hand side is not a random vector. This is done because the

switching variables x ijk are assumed to be determined after demand

becomes known and thus they depend upon information about the dj. Also,+ J

they are to be chosen simultaneously with the yj and yj to minimize

the overall 5econd-stage cost function.

DAILY SCHEDULING MODEL

Th-e daily scheduling model Ls also a two-stage linear program

under uncertainty. its principal first-stage decision variables are
the number of flights of each type to switch Zrom one route t.o another
in the forthcoming day -- variables that played the role of sec-nnd-

stage recourse variables in the -wonthly model. In addition, the daily

model is couched in terms of unmoved cargo stocked at the various origins

(aerial ports of embarkation) for various lengths of time; the .;rgo has
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not yet been shipped, and subsequently incurs certain delay costs.

Consequently, the amount of cargo in storage for various lengths of

time waiting to be loaded on different aircraft types over the differ-

ent routes constitutes another set of first-stage decision variables.

In the first stage the constraints consist of balance limitations

on the number of flying hours, bounds on switches, capacity restrictions

on shipments, and inventory balance equations for cargo which has been

in the port for over one day -- quantities known with certainty. The

second stage consists of demand equations for newly arriving cargo which

is treated as a random variable. These equations include terms to

account for a possible under- or over-supply of capacity. It will be

assumed that for a given route new cargo has a lower priority (i.e.,

lower penalty or delay cost) than old cargo. The reason for this will

become clear later.

The objective function is again one of cost minimization. In this

case the costs include (1) incremental operating costs resulting from

flight changes, (2) daily commercial procurement, (3) delay costs for

cargo that remains unmoved for various lengths of time, and (4) expected

penalty costs resulting from misallocation of capacity.

To write the daily model, we introduce the follouing notation

(variables ref er to the tth day of the month):

x i =number of flights of aircraft type i previously scheduled
to fly over route J, a known constant;

xijk - number of flights of aircraft type i switched to route k
using hours made available by canceling route j flights;

L W capacity reserved for cargo L days old shipped on aircraft
ii type i over route j ( - 0,1,...,L);

t capacity reserved for cargo I days old shipped cn commer-
hw cial lift of type h over route j;

z = number of flights of commercial lift of type h procured for
route J;

st . amount of cargo i 4ays old remaining to be shipped over
J route j at the end of the day;

H - inventory of cargo L days old for route J for shipment at
the beginning of the day (H0 represents new cargo and is
a random variable);

vi - unused capacity on route j at the end ef the day;

ES

i ;

, Z- J••' nm m• ='- ' • ... •V _ . . . ..
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a.. = number of hours required by aircraft type i scheduled and
'J flown on route j;

aijk = number of hours required by aircraft type i for a flight

on route k using hours made available by canceling route
j flights (a.ijk aik);

b.. - the carrying capacity of aircraft type i over route j;

c. . = cost per flight of aircraft type i scheduled and flown on
route j (c.. e* 0);

ij
c ik = cost per flight of aircraft type i assigned to route k using

hours made available by canceling route j flights (cijk > cij;

F h = cost per flight of commercial lift of type h over route j;

= unit cost per ton of one additional day's delay for cargo

. t e days old which is to be shipped over route j. It is
assumed that V0 = min m ;

q. = unused capacity on route j.

Then the problem for day t can be stated. Find

Min Z,x s z v
ijk'Sj ,zhj 'Yij 'Whj 'vj

such that

(3) cik - cij k))xijk + jj

L ,j ,kij( j j ,1>t

+ A + Emin o os + = Z.

x hjZhj + Em Vn s 00

h,j . j ,j j

First Stage:

(3.1) Z aijk x x.., all i and j

kjaj LJt Li

(3.2) y.. + y.j + bL j aUk. - L bijXikj < bijyXj[ all i and j

1 -1 k~j a ij k~j



IA
.I

(33) 0 allhandj
Ihi hj - Ohj'hj

1>0

(Yij + h + S H all j and £ >0.
i h

Second Stage:

(3.5) s - v. =H. - - all j.
i ii i

Equation (3.1) states, as in the monthly model, that the number

of flying hours switched off a given route and aircraft type cannot

exceed those originally assigned.

The meaning of Eqs. (3.2) and (3.3) is that the total tonnage

loaded of cargo already received plus the amount reserved for new cargo

on a given aircraft type over a given route must be less than the carry-

ing capacity of all aircraft of that type assigned to the route for MAC

and commercial vehicles, respectively. Equations (3.4) state for each

duration of cargo destined for each route, the total tonnage allocated

for MAC aircraft and commercial aircraft plus the amount not moved must

equal the inventory of cargo at the beginning of the day (a known con-

stant for all but newly arriving cargo). We note that the assumption

that newly arrived cargo has lowest penalty cost (mathematically stated,o
y0 = min (yA) for all J) assures that no new cargo will be carried unless

j I .

all old cargo is carried. This assures that for all but newly arrived

cargo, the amount shipped uses all the allotted capacity. If this

assumption were not made, it would be more reasonable to determine the
o 0 1 fYij and w ij simultaneously with the yi. ,w i.(U > 0) as a function of

the actual amount ot new cargo. This would necessitate shifting equa-

tions (3.2) through (3.4) into the second stage, making for a large

linear program for the second stage. The present formulation permits

*I

For routes on which commercial augmentation is not permitted,
the corresponding zh. are omitted.



11!

-12-

the second stage to have a very simple structure which reduces the com-

putational burden in solving it. This matter will be discussed in more

detail below.

Finally, Eq. (3.5) states that for each route the inflow of new

cargo minus the total capacity reserved for shipment of new cargo on

all types of MAC and commercial vehicles is equal to any cargo not

shipped minus any unused capacity.
In addition, we may wish to include constraints that do not satu-

rate the capacity of enroute bases. Let J(p) equal the set of routes

which use base p as an enroute stop for refueling or crew change. For

example, channels from Norton to Saigon via Hickam would be

routes with Hickam as base p. Let ct be the maximum number of flLghtsp
that can be accommodated at base p in a single day. Then these cun-

straints can be expressed as

7 a, iikS (X -j a i k LXikj/ .0 p
I ij

i,j eJ(p) k aj k;'j

Letting H I(t) be the inventory of cargo for route j that is L days

old on day t, and letting quantities in parenthesis show time dependence

of other quantities in a similar way, note that H (t + 1) =s (t), using

A_-I Hit -
the convention that s (0) refers to cargo not shipped on the last day of

the preceding month.

In addition, the quantities xij are updated daily by the relations

xi (t + It) t - iWa ' k + xXikij kij a ij xjk+ X k~j

k-Jj k~j

where the xijk and x kj are the optimal values of the variables as deter-

mined by the model for day t.

In the monthly model there are m (number of individual aircraft

types) constraints in the first stage and (inn + n) in the second stage

(n being the total numner of routes). Assuming five aircraft types

Currently MAC uses the C-124, C-130, C-133, C-135 and C-141.
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and 100 routes, this presents a linear program for the first stage with

five constraints and 600 for the second stage. However, in the second

stage the first mn are of the generalized upper-bound type, to be dis-

cussed later, to which special methods may be applied.

In the daily model there are at most n(2m. + H + L) constraints in ZN

the first stage and n it the second stage, where H is the number of indi-

vidual commercial vehicles and L is the number of duration classes of

old cargo. For H - 3, L - 3, m = 5, n = 100, this yields one first-

stage program with 1600 constraints. The second stage contains 100

equations. While this is within the range of linear programming codes

for "tnird generation" computers, the first-stage problem can be sim-

plified by treating it by decomposition methods where Eq. (3.2) are

the coupling equations and (3.1), (3.3-3.4) are the two disjoint sub-

problems. Again, fur the former subproblem, the majority of the con-

straints (3.1) are of the generalized upper-bound variety.

I,

i.,_:.
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IV, SOLUTION TECHNIQUES

This section describes Iwo alternative computational methods for

solving two-stage linear programs under uncertainty. These methods may

be applied tC, the monthly and daily model. They assume the random vari-

ables have a continuous distribution. Each is a variant of an algorithm

for convex programming, which is required for this type of problem. The

first is a cutting-plane or constraint-generating procedure, while the

second is a gradient method. We outline the steps required for the

general problem exemplified by the monthly model and i.ndicate ce-tain

simplifications that cen be made in the daily model whose second-stage

has a special str--ture. Before proceeding to the algorithms, we review

some salient facts concerning two-stage linear piogramming under uncer-

tainty.

BASIC FACTS FROM LINEAR PROGRAMMING UNDER UNCERTAINTY

As mentioned in Sec. III, both the monthly and daily problems are

special cases of the problem:

(4) Find x 2 0, min Z such that

Z = cx + O(x)

Ax = b

where Q(x) = E minq y= -

Wets [9] has shown that Q(x) is convex in x. Thus the above linear

program under uncertainty iF equivalent to a deterministic convex

pro,& 0 in x. Tie algorithms to be developed focus anLd are based on

certain properties of the funztion Q(x).

One irm portant property (to be proved later in the Constraiat Gen-

eration seition) is that the linear function p(x°) - (-(x°)T)x is a

support fuaction (or tangent plane) to Q(x) at xocK, where rr(xO) is the

expectation of the optimal dual variables and p(x 0 ) is the expectation

"*A linear function lI(x) is a support for convex function z(x) de-
* fined on XcEn at x° if z(x) t H(x) for all xeX and z(x°) = H(x°).
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of the demand terms in the dual objective function. Specifically, let

n(x° 0 ) be an optimal solution to

(5) m rx{ r( • - Tx °) [r- !C q}

Then n(x °) E T(x°,) and p(x°) = E fT,(x °

This property forms the basis for the cutting-plane method.

Another important property [9]1 is that if the distribution of F

is absolutely continuous, Q(x) is differentiable at x 0 cK and has the

gradient -T(x 0 )T, where again rt(x 0 ) is the expected value of the solu-

tion to (5). This property is utilized in the gradient approach de-

veloped by Wets [8).

In general, the -,(x°) and p(x ) cannot be explicitly computed;

consequently, the methods to be described resort to sampling procedures

to estimate these quantities.

Our monthly and daily problems both possess the property of

complete recourse. In other words, each x satisfying Ax = b yields a

feasible program for all possible E in the second-stage constraints

Wy = - Tx. This permits us to eliminate one of the steps in the

algorithms to be described for finding feasibility cuts [7, pp. 31-34].

Moreover, the daily model exhibits simple recourse, i.e., W = [I, -I].

This permits simplification of one major step in the following algorithm.

CUTTING-PLANE METHOD

A cutting-plane algorithm has been developed by Wets and Van Slyke

[7J for solving the general problem. It can be viewed as an application

of Kelley's cutting-plane method [5] to the equivalent convex program.

In this approach the convex function Q(x) appearing in the objec-

tive function is treated as a constrai.nt. The objective function is

replaced by z(x) = cx + 9 and the constraint,

(6) Q(x) 5 8,



considere the first-stage program where 8 is treated as an addi-

tional decision variable. Since the second-stage costs are nonnegative

in our problem, we may consider 9 as a nonnegative variable.

The constraint (6) is represented by a set of support planes

p (r kT)x; i.e., a convex function is represented as tt upper enve-

lope of its supporting planes. Four constraints are generated by solv-

ing the second-stage problem for a fixed x which solves an augmented

first-stage problem. Thus the technique consists of a decomposition

of the overall problem into two linear-programming subproblems. The

method can be viewed, in fact, as a particular case of Benders' par-

titioning method [I] applied to the original problem.

The particular problem that is solved at any iteration, say the
th

k ,is the following:

1. Find x,e > 0, min such that

(7) cx +e

a) Ax b

k k
b) (k T)x + 8 > pk k = 1,S

where S is an index of a subset of previously generated constraints to

be described more fully below.

The constraints (7b) are generated sequentially and have the pro-

perty that for all x satisfying (7a), (x,Q(x)) = (x,G) satisfies (7b).

2. Let (xi,e) be the solution obtained from step I and solve for

Q(R). If Q(R) = e, R solves (4). Otherwise, a constraint of the type

(7b) is generated that is violated by (x,O).

Constraint Generation

For fixed x = x and a given E = •, the second-stage linear program

becomes

(8) Find y 2 0, Q'R,ý) where

Q(x,• = min qy subject to Wy - Tx.
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Let nT(R,ý) be the simplex multipliers corresponding to an optimal

basis in (8). It follows that (i,•)(- TR) Q(R,ý) and T(R,ý)W < q. 3

Thus, n(E,§) is feasible in the following program for all x:

(9) Find r. max w where

n(§ - Tx) = w

aW< q.

Since (9) is dual to (8) for general x, it follows from duality

theory that

Y(R,•)(- Tx) < Q(x,')

for all x. Letting n(i) = En(i,E) and p(i) = Ej[n(x,E)F], it follows

that for all x, (r(i)T)x + Q(x) a P(R). Hence, the following constraint

must be satisfied by all (x,Q(x)):

(10) (n (R)T)x + 0 2 )

Algorithm

All constraints of the type (7b) are of type (10). That is, each
k'k(n ,P ) is equal to some (ri(i),P(x)). Since for every x satisfying

Ax - b, (x,Q(x)) is feasible for (7), it follows that in (7), min i

min z, where min z solves (4). Thus, if (x,§) solves (7) and Q(c' - 0,

cx + Q(R) ' min z and I solves (4).

On the other hand, if Q(0) 0 9, it follows (since ci + Q(i) Ž

min z) that Q(X) > 9. Also (r(i)T)x + Q(x) = P(R) by taking expecta-

tions in the expression rt(x,)(1 - Tx) = Q(x,"). Thus (x,Q) violates

the expression (10).

One problem which arises is that it is possible to generate a large

number of constraints of type (7b). However, in reference [61 it is

shown that all constraints in (7b) that are not tight (i.e., where

equality does not hold) in the optimal solution to (7) may be dropped

from succeeding iterations. Thus, the number of such constraints never

exceeds the number of rows in T. Formally, the algorithm is as follows

with S initially zero in step 1.



-18-

I. Solve for x 0 0, mrn _z such that

cx+ e+ =

Ax= b

(TT T)x+ -s pk k = 1,... ,S.

Let i be the optimal x obtained.

2. If s > 0, delete the constraint in which sk appears, k = 1,
)...,S and renumber those remaining.

3. Sample from the distribution of •. For each point g'(i 1,
... ,n) in the sample, solve for

y > 0,Q(0,• where

Q(R,?)= min qy subject to

Wy = _ TR.

Increase S by I anid let TT s n En(*, f and p5 = a i n(x, where
n is the sample size and n(x, L) are the optimal simplex multipliers

for the sample point Ei.

4. If Q(i) - 6 < 6, where 6 is a predetermined constant or vari-
able, terminate. Otherwise, return to I.

The quantity 6 in step 4 may be chosen by any sensible criteria.
For example, it may be a constant or it could be a small fraction times
the last step I solution (i.e., z(f)).

When the second stage exhibits simple recourse (i.e., the only
second-stage variables are slack variables) as is t.e case in the daily
model, step 3 can be considerably simplified. In this case the sampling
procedure and the need to solve a linear program can be dispensed and the
expected value of the shadow prices calculated explicitly. Specifically,
Wy i -V may be expressed as q- qi . - Tx, i = l...,m2)

and fro.. [8]

En.(xk) = qdF(E - q- d i ..
ýqTixk E.<T.xk

L L. L I.

where F'P) is the cumulative of the distribution of ""

C#
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That is, they are equal to the cost of the i th excess demand times the

probability of its occurrence minus the cost of the excess supply in

the jth equation times the probability of -sts occurrence.

The Second-Stage Problem

The sampling involved in the calculation of Q(R) in step 3 of the

algorithm involves the soluition of many linear programs. The solutio,1

time for this step can greatly be reduced by taking advantage of the

fact that if a basis is optimal for a program and the right-hand side

is changed, that basis will either be optimal or infeasible for the

new right-hand side. Thus, the sequence of programs for the second

stage may be sc'ved as follows. Solve the program for one sample point.

Check each of the other sample points for feasibility with respect to

the optimal basis found. (The Ty vector a.:sociated with this basis is

an optimal one for all sample points that are feasible.) Then solve

the program for some sample point that was infeasible and repeat. This

procedure reduces the number of linear programs from the number of ele-

ments in the sample to the number of optimal bases for the sample points.

After one optimal basis is found, others may of" course be found from this

one by a sequence of dual simplex pivot steps. Hence, each pivot wIll

yield a basis wilose cost -ow Ls nonnegative. It is suggested, then, that

after each iteration, ft. 'bility be checked for the other sample points

which have not been solved 'Lur, rather than wait until the currentI one

being considered is feasible. IZ is also suggested that the optimal

basis be saved from iteration to iteration.

GRADIENT METHOD

In this approach the equivalent convex program is solved by a not,-

linear programming algorithm which utilizes the gradient of the objective

function of (4) at x0 ,

,Vz(xO) =(c - 1-(xO)T)

The method we describe is based upon a variant of the Frank-Wolfe algo-

rithm r4] for convex prograxmming with linear constraints developed by

Wets [8] for stochastic programs. Other gradient methods for convex
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programming such as the Gradient Projection method, Zangwill's convex

simplex mathod [10] or Zoutendijk'a meahod of feasible directions i11]

could be employed as well.

In brief, this method obtains solutions to a sequence of linear

approximations to the given problem of the form

(II) min Vz(x -1 )x
x

subject to

Ax b

x 0,

where x-' 1 is the solution for x to the given problem at the preceding

or (L-l)st iteration. An improved feasible solution x is obtained by

adding to x an improving feasible direction X(x - x-), where x

is the (basic) optimal solution to (II) and X (a scalar) is determined

by solving a one-dimensional optimization problem to be described below.

Several features of this method should be noted. First, the linear

program which is actually solved in the first stage is not augmented

but contains only constraints of the first stage; only the cost func-

tion varies from iteration to iteration. Second, the computational

labor is again split between first and second stages with the expected

values of the shadow prices, which are used in the objective function

of the first-stage problem, generated in a sampling procedure in solving

a set of second-stage programs for a fixed x. Third, since the method

is a gradient approach, it Is self-correcting in the sense that if a

poor approximation to the gradient is generated which leads to a small

improvement in the solution, it is likely to be corrected at later itera-

tions. By contrast, in the cutting-plane approach it is possible that

sampling variations occasionally generate support functions which cut

inside the feasible region and indicate falsely that an optimum has been

reached.
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Algorithm

The exact steps of the algorithm are as follows:

1. (Initialization.) Set iteration count A = 0 and i-0 S i(x-)

= 0 [the sample estimate of the expected value of the optimal multi-

pliers for the second-stage program].

2. (Generate optimal solution to the linearized equivalent convex

program.) Set L = A + I. For 1 1,2,..., solve the linear program

() min (c - A' T)x
x

subject to

Ax= b

x 0.

Denote the optimal solution to (i) by R. For I = 1, go to step 5.

Otherwise go to step 3.

3. (Seek improved direction.) Solve the scalar optimization

problem

(ii) mrin *() = c[(l - X)x-1 + XRY]

+ Ll +

where Q(x) is a sample estimate of Q(x) obtained by solving the second-

stage program for a random sample of f and a fixed x. In (ii) this func-

tion is viewed as a function of the scalar parameter X, which weights

the previous solution with 'he current optimal soluticn tn the linear-

ized prob em. Denote the optimal solution to (ii) by *

I * 1-1 * ISet x =(l - *)x + X*

4. (Test for convergence.) If ),* = 0, terminate with x•1_ as

the optimal solution. Otherwise, set xl = (I - xi)xL + OR" and go

to step 5.
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5. Determine TT. This is accomplished as in step 3 of -he cutting-

plane algorithm by sampling from the distribution of E and solving the

resulting linear programs parametrically in the general case, or expli-

citly calculating .7 for the case of simple recourse. Go to step 2.

Some additional remarks about the algorithm are in order. The

auxiliary minimization problem that is required in step 3 requires a

considerable amount of computation.

An alternative convergence criterion is available at step 4. From

results in [8] an upper bound on the difference between the minimum

value of the objective function A(xO) and the current value z(x 1 ) is

given by

(12) 2 (xL) -L
n

where

h h Rh h)
= 2 (x) + [c -n(xh)T]( -x)

h=l,... ,.

Thus the problem may be terminated when (12) is less than some pre-

specified constant.

In addition, we note that a majority of the constraints in the

second-stage problem of the monthly model, i.e., those of the form

a aijkxijkI a. jxij,

k Yj

and some of the first-stage constraints in the daily model are of a

type known as generalized upper bounds [3]. These are constraints

which appear schematically as

2'I I-.-I I
I l".l_ k
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That is, they are disjoint sums where the right-hand side is a

nonnegative constant. A special algorithm is available for solving

problems of this form, which entails carryi:g a basis where size is

reduced by L, the number of generalized upper-bound constraints.

Finally, as mentioned earlier, some rounding scheme is necessary

to convert the numbers of assigned flights to integers. One scheme

mtght be to first round up solutions whose fractional parts are 0.5

or greater and rcund down those whose fractional parts are less than

0.5. Then, if some flying hour constraint is exceeded, subtract one

from a sufficient number of variables to satisfy that constraint. The

variables to be reduced should be chosen from among those previously

rounded up and may be those whose fractional part is closest to 0.5.

The constraints may be reduced to this form without loss of gener-
ality by dividing each coefficient by the right-hand side and rescaling
the variables.
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V. NUMERICAL EXAMPLE

We conclude with a small-scale numerical example of the solution

of the monthly model. The problem consists uf two aircraft types and

two routes. The data were chosen for convenience. Solutions based on

actual data will be reported in the future.

The data for the problem were as follows:

Flying Hours Carrying Capacity Cost per Flight

Aircraft (round trip) (in tons) (dollars)

Type Route I Route 2 Route 1 Route 2 Route I Route 2

1 24 14 50 75 7200 6000
2 49 29 20 20 7200 4000

Penalty Cost
($ per ton)

Route Excess Demand Excess Supply

1 500 0
2 250 0

In addition, the tt•me to switch between eLther route was 5 hours

for aircraft type I and 7 hours for aircraft type 2. The incremental

costs for these moves were $iO00 and $1500 for these aircraft types,

respectively. It was assumed that 720 hours of flying time were avail-

able for each aircraft type. This can correspond to 3 planes of each

type with .n average utilization of 8 hours per day.

Finally, demand was assumed to be irdependently lognormally dis-

tributed on each route with the following parameters:

The current programs allow only for the lognormal diatribution.
It is a simple matter to add subroutines to generate random samples
from arbitrary distributions whose cumulative distribution function
can be tabulated. The lognormal distribution was chosen for experi-
mental purposes because it produces nonnegative random variables which
are skewed to the right -- characteristics actual demand patterns are
likely to exhibit.

- -- -
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Rou te Ll • !

1 1000 50
2 15oo0 300

The following solution was found using an experimental program for

the cutting-plane version of the algorithm.*

Route

Aircraft
Type 1 2

1 16.5 23.2
2 6.7 0.0

The total cost of the entire program converged after 4 terations

(based upon a termination when the relative decrease in costs fell below

1 percent). Each second-stage program was based upon drawing a sample

of 25 observations so that in effect about 100 linear prograniming prob-

leins were solved during the course of the iterations. Execution time

was ten seconds.

For comparison purposes, a determiaiistic linear program was run

with demand on routes asbumed to be equal to the mean used in the log-

normal case. This yielded the following results:

Route

Aircraft
Type 1 2

1 i8.3 20.0
2 4.2 0.0

The program was written in FORTRAN and employs a small, all-in-
core linear programming subroutine. Currently, the program is being
modified to handle much larger problems and will be described in
future work. A version of the algorithm for the monthly model using
the gradient algorithm was also developed. Preliminary runs indicate
that the gradient method takes considerably longer to run than the
cutting-plane version because of the number of additional programs
that must be solved during the auxiliary minimization problem described
in Sec. IV.

___________________________________________________________________



It should be noted that this solution differs from the ca.se where

the demands are stochastic. It might be supposed that the stochastic

",-rsiot; would aiways assign more aircraft as a hedge against uncer-
Lainty; however, this is not the case even in this simple example --

more flig ts of type I aircraft to route I are made in the determin-

istic version than in the stochastic.

..
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