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ELASTIC-PLASTIC DEFORMATION AT FINITE STRAINS 

E. H. Lee 
Stanford University 

Abstract 

In some circumstances, elastic-plastic deformation occurs in which 

both components of strain are finite.  Such situations fall outside the 

scope of classical plasticity theory which assumes either infinitesimal 

strains or plastic-rigid theory for large strains. The present theory 

modifies the kinematics to include finite elastic and plastic strain 

components.  For situations requiring this generalization, dilatational 

influences are usually significant including thermo-mechanical coupling. 

This is introduced through the consideration of two coupled thermodynamic 

systems:  one comprising thermo-elasticity at finite strain and the other 

the irreversible process of dissipation and absorption of plastic work. 

The present paper generalizes a previous theory to permit arbitrary 

deformation histories. 

Introduction 

Fig. 1 shows the stress-strain curve in tension or shear for a 

ductile metal such as aluminum.  Plastic deformation sets in at A , and 

the material work hardens along ABE .  Unloading from B is elastic 

along BC , and the elastic strain at B , CD  in magnitude, Is recov- 

ered on unloading down to zero stress at C .  The remaining strain OC 

is the plastic strain associated with loading to the point B .  The 

magnitude of the elastic strain CD is equal to the yield stress divided 

-3 
by the elastic modulus and is of the order 10  .  Plastic flow can 
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contlnue along BE to strains of the order unity.  Plasticity theory 

incorporates these features by considering two limiting situations 

which cover many practical circumstances.  If strains are large, of 

the order unity, as in many metal-forming problems, the elastic com- 

ponent of strain is considered negligible in comparison and plastic- 

rigid theory is utilized.  Since plasticity is an incremental or flow 

type phenomenon, strain rates based on the velocity field appear in 

the stress-deformation relation, which with the equations of motion 

and boundary conditions determines the velocity field at each Instant 

of time, and hence the total deformation by integration.  Elastic- 

plastic theory has been developed to consider situations in which elas- 

tic and plastic components of strain are of the same order, that is 

-3 
about  10   as stated above, so that infinitesimal strain analysis can 

be used.  There are however situations of plastic flow under high pres- 

sure, such as can occur in explosive forming, in which the elastic and 

plastic components of strain are each finite, so that neither limit 

* 
covered in classical plasticity theory applies [1] .  A theory incorp- 

orating finite strain for both elastic and plastic components is pre- 

sented below, which, in addition to its appropriateness for high 

pressure loading problems, provides a uniformly valid theory encompas- 

sing the two limits covered by classical theory. 

As discussed in the next section, the kinematics of finite strain 

invalidates the usual assumption that the total strain is the sum of 

elastic and plastic components.  This assumption arises in Infinitesimal 

Numbers in square brackets refer to the references at the end of 
the paper. 

•■ 



■ ■■ -. 

strain analysis because of linearity and in the one dimensional case 

depicted in Fig. 1. Finite elastic strains are usually predomlnently 

dilatational, since increase of elastic shear strain components beyond 

the elastic limit (~ lo" ) produces plastic flow.  The finite dilatation 

introduces significant thermo-mechanical coupling effects which must be 

included to provide a satisfactory theory. With plastic flow this 

demands the inclusion of irreversibility. 

Kinematics 

As discussed in [2], the kinematics of elastic-plastic deformation 

can be analysed on the basis of the configurations depicted in Fig. 2. 

Using a single set of rectangular Cartesian coordinates  (x., x?, x.) , 

particles in an undeformed body at a uniform base temperature 6  have 

positions represented by the column vector x .  In the deformed state 

at time  t , following elastic-plastic deformation, they occupy the 

3 
positions x  , according to the mapping 

x3 = xV.t) (1) 

If each element of the body is unstressed and reduced to the base tem- 

2 
perature, the configuration x  results, according to the mapping 

2   2  1 
xZ « x^x'.t) (2) 

If a body is reduced to the uniform base temperature 6  and the surface 

tractions are removed, a residual stress distribution will normally remain 

following non-homogeneous plastic flow.  To remove this the body will 

usually have to be considered dissected into small elements and the cor- 

2 
responding mapping, (2), will be discontinuous. The configuration x 

at uniform base temperature and zero stress comprises the pure plastic 
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deformatlon, since thermal  expansion and elastic  strain components are 

both  zero. 

As discussed  In [2],   local deformation In the neighborhood of each 

particle at time    t    can be conveniently expressed in terms of the 

deformation gradient matrix: 

F = ax^Xj (3) 

For the case when the mapping (2) It continuous and dlfferentlable, the 

1      2 
plastic deformation from x  to x  can be expressed by the deformation 

gradient matrix: 

FP = äx^/BxJ (4) 

2 3 and  the thermo-elastlc deformation from    x      to    x      by: 

Fe = ax^/axj (5) 

The chain rule for partial differentiation then gives the matrix product 

relation: 

F = Fe FP (6) 

In the case of a discontinuous mapping (2), the deformation gradients (4) 

and (5) reduce to matrices of local linear mappings in the limit of small 

material elements, which also satisfy (6) but not the continuity conditions 

for partial derivatives.  The analysis of elastic-plastic deformation is 

not essentially modified by this circumstance. 

The matrix product (6) provides the relation between elastic, plastic 

and total deformation valid for finite strains.  It replaces the usual 

assumption that the total strain is the sum of elastic and plastic compon- 

ents : 



e    p 
€ij " elj  elj (7) 

That the latter Is not valid at finite strain is clear since the plastic 

displacement 

and elastic displacement 

are additive: 

where 

P   2   1 
U  ■ X  - X 

e   3   2 
U  ■ X  - X 

e J. p U = U  + IT 

3   1 
U * X  - X 

(8) 

The finite strain components are non-linear expressions in the displace- 

ments, and hence will not be additive.  Infinitesimal strain components 

are linear in the displacements so that (7) will hold in that case. From 

Fig. 1 it is clear that (7) also holds in that one-component case. 

Nonlinearity is not, however, the most significant feature differ- 

entiating (6) and (7). The matrix product (6) is not in general commuta- 

tive, which corresponds to the fact that trie plastic deformation F  Is 

a functional which represents the past history of plastic flow that has 

already occurred, while the elastic deformation matrix F  is a function 

of the current stress and pre-multiplies Fp . For finite strain the 

elastic and plastic deformations are coupled through (6) in a much more 

involved manner than that corresponding to the addition (7). 

3      2 
The un-stressing process relating the configurations x  and x 

is not uniquely defined since an arbitrary rigid body rotation can be 

2 
superposed on x  and still leave that configuration unstressed. Since 

2 
in general the x  configuration is not continuous, such an arbitrary 

rotation can differ for each element of the body. 

»•«•MWaiiNtfetaä*« 
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Slnce we shall assume that the constitutive relation for elastic- 

plastic deformation contains the deformation history through FP and 

e 
F  only, and does not, for example, include strain gradient or size 

effects, we need consider only homogeneous states of stress and defor- 

mation in formulating the constitutive law.  Unloading f.he surface of 

a body so deformed would then reduce the stresses to zero at uniform 

2 
temperature,   and no questions of a discontinuous  configuration    x 

arise. 

Work Hardening 

Plastic flow is an extremely complicated phenomenon, and a 

theory which attempts to include all its aspects is likely to be pro- 

hibitively difficult to either formulate or apply. We shall therefore 

develop an approach based on the classical theory of Isotropie work 

hardening generalized to include additional features which finite strain 

analysis appears to require. Other features not considered in this 

approach, such as a Bauschinger effect or the localized modification of 

the yield surface due to plastic flow, could be incorporated as they are 

in developments of classical plasticity theory. 

Our analysis will follow the approach to Isotropie work hardening 

ably expounded by Hill ([3] Chap. II) for strain increments with linear 

elastic law.  The system of yield surfaces associated with continued 

work hardening consists of a one parameter family of non-intersecting 

surfaces in stress space.  Plastic flow generating a stress corresponding 

to a point on one of these surfaces, determines that surface as the cur- 

rent yield surface until further plastic flow takes place.  This yield 

surface is independent of the history of loading as long as the stress 

has not previously exceeded this yield value.  The yield condition is 

,    ■  . • ,*«.•- 



found to be effectively Independent of superposed hydrostatic pressure, 

as Is the hardening expressed by the stress-strain relation when stress 

devlator components are plotted. The yield limit as plastic flow develops 

Is found to be a function of the expenditure of work associated with the 

plastic strain.  Since superposed hydrostatic pressure Is found not to 

Influence the yield limit or the work hardening phenomenon, It follows 

that no volume change occurs In plastic deformation, for otherwise the 

superposed hydrostatic pressure would contribute to the work of plastic 

flow and hence Influence plasticity.  This deduction Is found to be In 

good agreement with experiment.  At finite elastic strains, thermo- 

mechanlcal coupling Influences become significant, so that temperature 

variation must be considered In the theory, and thermo-elastlc theory 

utilized for the elastic component of deformation.  For consistency, 

thermo-mechanical coupling Influences must also be Incorporated In the 

plasticity relations. 

To formulate a theory on the basis of the features mentioned above, 

one must separate ehe work stored In elastic strain energy from the total 

work expended In plastic flow.  For the Infinitesimal strain case such 

separation follows at once using (7).  The rate of expenditure of work 

on the material per unit volume Is given by : 

clearly 

* = CTij hi =aij(^j + iij)        (9) 

we - a^ 6^ 
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gives the rate of expenditure of work stored in elastic deformation, 

while 

• P      -P 
W 3 aij eij 

gives the rate of Increase of plastic work which governs the work 

hardening phenomenon. An analogous separation must be achieved when (6) 

replaces (7) for the finite deformation case.  This was effected In [2] 

only for restricted deformations in which principal directions remained 

fixed in the body throughout the deforming process. 

3  1 Consider a body deforming through the configuration x (x ,t)  shown 

in Fig. 2.  The rate of work expended in deforming the material of the 

body, that is the total rate of work less the rate of generation of 

kinetic energy, is given by (see, for example [4] p. 87) 

3 

w 
äV"l ...3 a  -3 dV (10) 

3 3 
where v.  is the particle velocity, and V  the volume In the configura- 

3 
tion x .  It will prove convenient to use matrix notation and write 

T - c^j (U) 

and 
3    3   1 

äv,  öv, ax,, 
= F F  = L (12) 

ävi avi axk 

. 3  . ! . 3 
ax  axk ax. 

F being defined in (3). F represents time differentiation at constant 

x , and hence convected differentiation at a particular particle, since 

the body is at rest in the Initial configuration x .  In order to 

-i .«•»'■t'l.raftUMi NMNt-^ j.j& 
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determine the work expended on a specified element of material, It Is 

convenient to change the variables to Integration over  V.  the body 

configuration In x .  Equation (10) then becomes: 

W tr(T L) det(F) dV 
1 

V 
(13) 

where     "tr" stands  for the trace of the matrix argument   (the sum of 

diagonal  terms)  and    "det"  for determinant.     Det(F)     Is   the Jacobean of 

the  transformation of variables  for the volume  Integral.     Substituting 

(6)   for    F    In (13) and  (12),  and using the product   formula for differen- 

tiation of a matrix product,   (13)  becomes: 

W =  \     tr[T(FeFP -»-FeFP)Fp    Fe    ] det(Fe)det(Fp) dV1    (14) 

Zero volume change In plastic  flow determines; 

det(FP)  =  1 (15) 

and hence W divides Into the two components which will be tentatively 

labeled elastic and plastic work rates: 

■1 

and 

WP = 

= [  tr[TFG Fe ] det(Fe) dV1 
J 1  ~~ ~ 
V 

-1   "I 
tr[TFe FP FP  Fe ] det(Fe) dV 

(16) 

(17) 

According to the kinematics discussed In connection with Fig.   2, 

e    1 F  (x  ,t)     represents  the deformation gradient  associated with elastic strain 

of the plastically deformed body at each  Instant.     Thus   (16) has the form of 

the rate of storage of elastic  strain energy  In an  elastic body taken through 

e     1 the deformation history    F  (x  ,t)   .    However,   care must be exercised In 
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transferring this   interpretation to  the  elastic-plastic case,   since  the 

2 
unstressed state    x      is continuously deforming plastically,  whereas  norm- 

ally  for purely elastic deformation the unstressed state is  a fixed undis- 

torting configuration of the body.     Since the elastic strain energy depends 

on the elastic deformation gradient and  the elastic characteristics  of the 

material,   (16)  might not represent  the  rate  of increase of elastic  strain 

energy if the elastic characteristics  are changing due to the continuing 

plastic  flow.     For example,   the elastic  strain energy could change at con- 

e 
stant F      in that case.    Thus  the  interpretation of  (16)  and  (17) depends 

crucially  on the coupling between elastic  and plastic deformations. 

We have already seen that characteristics of plastic  flow are insen- 

sitive to hydrostatic pressure and  so  to the elastic dilatation.     Corres- 

pondingly,   elastic  characteristics  are  insensitive to plastic  flow.     The 

usual  influence  assumed of plastic   flow  is   on  the yield  limit  with  the 

elastic constants  remaining unchanged.     Hill ([3] p.   24)  states   that appre- 

ciable anisotropy only appears  at   large strains.     Indeed,   stress analysis 

is usually based on standard elastic constants  even though the components 

may have been cold-worked.    Moreover,   to our knowledge,   little  information 

exists  on the modification of elastic  constants due to plastic   flow.     This 

state of affairs  is  consistent with our knowledge of the physical basis of 

plasticity associated with the generation and migration of dislocations. 

Even in a highly plastically deformed material the basic crystal structure 

is retained with disturbance  from the regular  lattice of only a very  small 

proportion of  the atoms.    Thus  the elastic  constants and heat capacity are 

not appreciably  influenced by plastic   flow.     We will therefore  assume  the 

elastic characteristics  to be governed by an invariant  Isotropie  thermo- 

elastic  law. 
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Thus  the  stress    X    in  the configuration    x      will depend only on 

e 
F       and temperature    9   ,   since plastic deformation  and rigid-body  rotation 

of  the unstressed  state    x     ,  will not modify  the  stress  for  an Isotropie 

elastic material with  invariant elastic properties.     The rate of  investment 

of  elastic energy  in  the  thermo-elastic component of  the system will  thus 

be  the same as  that   for a purely elastic body deformed by    F      at  tempera- 

ture    9    from a fixed  undistorted state.     Equation   (16)  thus  represents 

v.he rate of expenditure of  thermo-elastic  energy  invested  in the body 

mechanically.     The  elastic  properties  can be conveniently expressed  in terms 
T e e e    c 

of  the Helmholtz  free  energy per unit mass    ^(C  ,9)   , where    C    = F    F 

(superscript    T    denotes  transpose of  the matrix),   and the stress  and  entropy 

in  the thermo-elastic  system are then given by  ([5]  p.   302 and 309,   or [6] 

p.   199): 

T 
T = 2p    Fe ^- Fe  /det(Fe> (18) 
~        0 ~   9c

e ~ 

Se =   - ^ 
99 (19) 

where    0      is  the  initial density,  and    S       the entropy.    Examples  of  forms ro 

of  the free energy  function    t    are given  in [2]  and [7]. 

It is  interesting  to note that  the lack of coupling between the  laws 

of  elastic and plastic deformation described  above  is also manifest  in 

the  incompressible property of plastic  flow.     For  a change in density  of 

the unstressed state would  imply modified  elastic  characteristics. 

Since  (16)  gives   the rate of elastic working,   (17) must represent  the 

mechanical work being expended in plastic  flow.     This  appears  to exhibit 

e 
involved coupling with  the  elastic deformation    F     ,  but  this  can be  largely 

eliminated as  shown below.     Since we shall be concerned with  stress-strain 
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relations, as mentioned earlier, we can without loss assume homogeneous 

stress and deformation distributions and replace the volume integral in 

(17) by w  , the rate of plastic work per unit undeformed volume. 

-1 "I 
wP = tr(TFe PP FP Fe ) det(Fe) (20) 

2 
It was pointed out in the discussion on kinematics that the state x 

is not uniquely defined since de-stressing can involve arbitrary rotation. 
-1 

"DO 
Analogously with (12), the term F^  F^   represents the velocity gradient 

2 
of plastic flow in x  , and its symmetric part gives the velocity strain, 

2 2 
often loosely called the rate of strain, in x .  When x  is arbitrarily 

rotated, the work associated with this rate of plastic strain can clearly 

be completely changed.  For example, stretch in the direction of a tensile 

stress could become lateral stretch by a 90 rotation of x  , with conse- 

quent drastic modification of the plastic work term.  Since we assume the 

material to be Isotropie, the plastic strain rate tensor will be parallel 

to the stress tensor, and the work relation as it actually takes place will 

2 
be achieved by considering x  to be defined by de-stressing without rota- 

e —e tion.     This  special choice of    F     ,  denoted by    F     ,  will  then be symmetric 

and represent pure stretch in the directions of the principal axes of stress, 

2 
in conformity with the  Isotropie  elastic assumption.     The state    x      is 

then uniquely prescribed.     The availability of this choice  for    F      can be 

seen analytically since  the polar decomposition theorem ([5]  p.52) permits 
e 

any matrix of the form F  to be expressed as: 

Fe = VeRe (21) 
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6 e 
where V  is symmetric and R  a rotation matrix. Thus (6) can be 

written 

?s ?e?p ■ ye5e?p = Ye(Re?p) ■ tetp (22) 

where Fe ■ Ve  and FP = ReFp . 

Since the trace of a product of matrices is not influenced by cyclic 

permutation of the elements as is clear from the subscript representation, 

—2 
(20) can be written for the special choice x  ; 

*P = ^(f" TfVF" > det(f) (23) 

The trace is a scalar invariant of the tensor arguments, so that change of 

axes does not modify its value.  Selecting axes parallel to the directions 

of principal stress,  T and F  become diagonal matrices which are commu- 
-1 

e       e 
tative, so that F  and F    cancel, and (23) reduce? t* 

-1 
wP = tr(T F F ) det(Fe) (24) 

which retains  this  form on a transformation back to the original coordinates, 

This can alternatively be written 

-2 
D ÖVi -e ^ = a^ -z| detd6) (25) 

-2 -2 
where v.  is the velocity of plastic straining in the configuration x . 

Thus the plastic rate of work term takes on the simple form of work done 

by the stress T on the plastic rate of deformation with a scalar coupling 

term to the elastic deijrmation :  det(F ) .  It is now seen that the 

result is identical with that discussed in [2] in which the analysis was 
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limlted to total deformation,throughout the loading,having principal 

directions fixed in the body, for wSich all matrices considered were 

thus diagonal,  so that  the matrix contribution of    F      cancelled directly. 

In retrospect,   since  the rate of total work (13)  and  the rate of 

2 
elastic work (16)  do not depend on the particular choice of    x    ,  nor can 

Q 
the rate of plastic work.  Substituting (21) for F , and permuting the 

elements in the trace, (17) becomes 

WP = f  tr(Ve TVVF FP" R6"1) det (F6)  dV1   (26) 

V 

e 
For Isotropie elastic behavior the rotation R  prior to the pure 

e 
stretch V  in (21) does not affect the stress T which is parallel to 

e             e"1 e 
the pure stretch tensor V .  Thus the V    and V  terms cancel. 

.1         ~ _ 
e   e 

The R , R    terms simply represent rotation of the plastic velocity 

gradient tensor, or equivalently velocity strain since T is symmetric. 

2 
Thus, (26) tells us that, for arbitrary x , we must rotate the plastic 

velocity strain term by the elastic rotation to determine the plastic 

-2 
rate of work, and this is equivalent to making the special selection x 

Having determined the rate of plastic work, we can formulate an 

Isotropie work hardening law analogous to that described by Hill ([3] 

Chap. II). However, since thermal effects can be significant in the present 

study, the influence of varying temperature on the yield limit should be 

included, and we thus need to generalize Prager"s analysis for the rigid- 

plastic case [8].  This was done in [2] for the special ease of principal 

directions fixed in the body. 

The rate of plastic work invested per unit initial volume, (24), can 

be written: 

-1 
wP = tr[(T det T6) F^ ] (27) 
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which corresponds to 

wp =  ti[TFPFP    ] (28) 

0 
in the   Infinitesimal strain case.     det(F )    Is a scalar quantity equal to 

p^/p   ,  which  is   less than unity under hydrostatic pressure.     Since 

2,    2 

'o 

-1 
FPFP       « av^/axj (29) 

2 
and the divergence of    v.     is  zero because of the  incompresslbility of 

plastic   flow, 
-1 

tr(FPFP     )  = 0 (30) 

and thus  T can be replaced by its devlator without modifying (27) or 

(28).  Thus hydrostatic pressure only influences the plastic work through 

the scalar factor det(F ) , which is a term expressing geometrical non- 

linearity associated with reduction in scale of the initially unit volume 

element and hence also of the areas over which the stress acts and the 

velocity through which the forces are working.  As mentioned above, the 

work-hardening produced by plastic flow is not appreciably modified by the 

existence of superposed hydrostatic pressure, and physically it is associ- 

ated with the generation of increased dislocation density.  The production 

of a prescribed dislocation density associated with a prescribed state of 

hardening is likely to require more plastic work under high pressure rather 

than less, since the small coupling existing relates to a slight increase 

of volume due to disturbance of the regular crystal lattice.  To avoid the 

contradiction of less work according to (27) under hydrostatic pressure, 

we suggest that the yield condition for finite elastic strain should take 

the form 

f[T (det ?*)] = c (31) 
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where f takes on one of the usual forms, such as Mises or Tresca, but could 

be a more general function of J- and J_ , the second and third invariants 

of the argument deviator, as discussed in [3]. Note that det(Fe) is a 

scalar multiplier which does not alter the orientation of the tensor argument. 

The yield condition (31) reduces to classical yield conditions in the case of 

infinitesimal elastic strain for which det(F ) can be taken equal to unity. 

The static experiments  carried out  to date  from which the form of  (31)  might 

have been tested,   are not  sufficiently precise   to achieve this  in view of 

e 
the closeness of det(F )  to unity. 

For a work hardening material subject to temperature changes,  c  in 

(31) has been considered to be a function of w  and the temperature 0 

[2].  However, it is known that increasing the temperature increases the 

mobility of dislocations and hence permits the generation of increased dis- 

location density, and so of hardening, with a smaller expenditure of plas- 

tic work.  Hence a functional rather than a function of wp is needed in 

the expression for c  in (31), which represents the hardening, and the 

form 

c = c[  a(9) if  dT.e] (32) 
Jo 

suggests  itself.     The  term    a(9)    will be an increasing function of    9     to 

achieve the desired  temperature - dislocation mobility  influence.     Relation 

(31) with changing    c     according to (32) will yield  the desired set of 

similar yield surfaces when    f    is an Isotropie homogeneous  function of 

its  argument components,   as,   for example,   is  the Mises condition. 

Following Prager  [8]   it  is revealing to write the yield condition 

(31),   (32)   in the  form: 



I 
-17- 

where    Q    stands for 

f(Q)  - c(cp,e) < o 

9 = T(det F6) 

and    cp    represents the functional 

cp ^ J a(9) wp dx 

.t 

c 
0 

(33) 

(34) 

(35) 

The equality sign In (33) denotes plastic flow or neutral loading, and the 

inequality sign, an elastic state.  For continuing plastic flow, differen- 

tiation of (33) with the equality sign gives 

äl Q . i£ ^ . ^ 6 = 0 (36) 

The positive nature of plastic work and its hardening effect determines 

ä£. A > 0 
äcp 9 

so that continued plastic  flow is  associated with 

(37) 

and  this becomes the loading condition.    Note that  in the  isothermal case 

this  simply corresponds  to the usual condition    f    > 0  . 

In order to define the   law governing rate of plastic  flow,   it  is con- 

venient  to work in terms  of  the plastic velocity strain,   often loosely called 

the rate of strain: 

-2        -2 
9v.      Sv. 

ZPZP pP = (? + p5   )/2 » (^ + ^)/2   :  ? = F^F 
-1 

(38) 
öx"    ax^ 

Because    T    is symmetric,   (27)  can be written: 

^  TV- wF = tr[(T det F )  pK] (39) 
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Whereas   this  relation combined with  (35)   and  (36) was sufficient  to 

determine    D       in  the case of one dimensional strain [2],   since only one 

non-zero component remained having introduced  incompressibility,   in gen- 

eral we need  the concept  oi plastic potential  to determine  the several 

components.     This  takes  the  form [8] 

5" -k IMf 5 - ^> (40) 

where k is a function of the current state to be determined.  The term in 

the parentheses gives the rate of loading in analogy with (37), and the 

normality condition of the strain rate components and the yield surface 

according to the tensor term äf/^Q , leads to a maximum rate of work 

principal and a uniqueness of solution argument as for classical plasticity. 

Since the equality sign applies in (33) we can substitute (40) into 

(36), using (39) and obtain: 

af *  sc • 
The scalar quantities  k and (rr Q - r— 9) factorize from the trace 

expression, the latter simplifies by use of Euler's theorem since  f is 

homogeneous in Q , and (41) reduces to 

1 = ^ k a n f (42) 
acp 

where    n    is  the  order of    Q    in    f(Q)   ,   and  (40)  becomes 

This relation  is   equivalent to that  for   isothermal work hardening given by 

Hill  ([3]  p.   38)   and  is  seen not  to be appreciably complicated by  the  inclu- 

sion of  finite  strain,   non-linear elasticity and thermo-mechanical  coupling. 
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The Thermodynamtc  System 

The analysis presented already,  permits  the determination of deforma- 

tion given the stress history apart from the temperature variation.    To 

determine this.thermo-mechanlcal coupling in plastic  flow must be consid- 

ered in addition to that   Included in thethermo-elastic  theory (18)  and 

(19).     The approach follows directly that used  in  the  fixed principal 

directions case [2].     We have seen that the elastic and plastic phenomena 

are only  loosely coupled,   and that  thermo-elastic  properties depend on the 

basic crystal  structure whereas plastic  flow depends  on generation and 

migration of dislocations which  leave most  of  the crystal structure  intact. 

We thus base the thermodynamics  on two Interacting systems  1)    reversible 

thermoelastlcity governed by  (18)  and  (19)  and the corresponding specific 

heat relations and 11)     irreversible plastic  flow,  comprising some dissi- 

pation of the plastic work to heat which appears  as a source in the thermo- 

elastic system and hence  as an Increase in the elastic entropy in adlabatic 

loading.     The randomness  of the dislocation distribution also leads  to an 

Increase in entropy associated with plastic distortion.     A strain energy 

field surrounds each dislocation which absorbs  some of the work of plastic 

flow as the dislocation density grows.    For the specific thermo-mechanical 

coupling process geuerated by plastic flow, we adopt  that measured by 

Taylor and Farren [9]  and Taylor and Quinney [10],   in which temperature 

rise was observed in elastic-plastic tests which exceeded that expected 

from thermo-elastic  theory by an amount equivalent to a heat source equal 

to    YW
P
    per unit  initial volume, where    y    ia  a factor which varies  slowly 

from cbout 0.9 to unity with increasing plastic    flow.     The rest of  the 

plastic work rate,     (1-Y)W
P
 ,   is considered  to be stored in the developing 
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dislocation system.    Thus the  internal energy per unit mass  associated vith 

thermo-elastic deformation,    E     ,   and  that  stored in the dislocation dis- 

tribution    Ep   ,  are,   for adiabatic   loading,  determined by 

and 

p E    = w    + yvv (44) 

p EP =  (1-Y)  wP (45) 

9 
Growth of elastic  entropy    S      arises due  to the mechanical  energy dissi- 

pated  in plastic  flow,  and is  given by 

„     ;e -P (46) epos   = YW
K 

We shall consider    Y    to take on  the constant value 0.9.     These relations 

assume continuous variations  of deformation.     In the case of shock-wave 

loading,   involving discontinuous  changes of stress and strain,  additional 

increase  in entropy occurs over and above  that given by  (46). 

Combination of the contributions developed in this  and  the previous 

section determines  the total stress-deformation relation.     Equation  (18) 

for elastic  strain,   (33)  and  (43)   for plastic  flow and  (19),   (44)  and  (46) 

for the coupling between these components. 

Discussion 

The rather concise structure  of  the theory developed  In  this paper 

arises because of  the comparatively  loose coupling between, the elastic and 

plastic  phenomena.     The coupling needed to achieve simplicity and the reten- 

tion of the basic  structure of classical theory was determined by the 

expression for plastic work rate  (27)  which led to the appropriate yield 

relation  (31).     The introduction of the influence of plastic  flow on elastic 

properties would clearly lead  to a more elaborate theory,  but  fortunately 

• 
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1 

these effects are not dominant. 
■ 

With the present development In mind, It Is Interesting to review the 

presentation by Hill ( [2] Chap. II).  He carefully limits (7) to Incre- 

ments since he Is concerned with finite plastic deformation and inflni- 
■ 

tesimal elastic strains.  His strain increment relation corresponds to 

our velocity strain relation from (12) 

D = (L + LT)/2 (47) 

where 
-1    .   -1 -1 

L = FeFe  + FeFP FP Fe (48) 

Clearly the elastic and plastic velocity strains components 

L6 = FV'1 , LP = FF15"1 (49) 

are not additive to give  the total velocity strain,but  for  infinitesimal 

elastic  strains    F    ~  I   ,   the unit matrix,  and additivity applies  to some 

order of approximation.     For the   fixed principal directions case,   the 

matrices   in (48) are diagonal and  the    F      terms cancel,   leading to additi- 

vity,  as  utilized in [2]. 
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Fig. 1.  Stress-strain curve for a ductile metal 

Fig. 2.  The kinematics of elastic-plastic deformation 
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