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PLANE WAVES DUE TO COMBINED COMPRESSIVE AND

SHEAR STRESSES IN A HALF-SPACE

by

T.C.T. Ting* and Ning Nan**

ABSTRACT

The plane wave propagation in a half-space due to a uniformly dis-

tributed step load of pressure and shear on the surace was first studied

by Bleich and Nelson. The material in the half-space was assumed to be

elastic-ideally plastic. In this paper, we study the same problem for

a general elastic-plastic meterial. The half-space can be initially

prestressed. The results can be extended to the case in which the loads

on the surface are not necessarily step loads, but with a restricted

relation between the pressure and the shear stresses.
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1. Introduction.

Several investigators have studied the propagation of elastic-plastic

waves of combined stresses for various stress-strain relations and for

various combinations of stress components [1-6]. For general initial

and boundary value problems, analytical solutions are difficult to ob-

tain except for a particular initial and boundary value problem [2] and/or

a particular material property [16]. In [1], Bleich and Nelson obtai?.ed

a closed from solution for the case of plane waves in an elastic-ideally

plastic half-space subject to a step load of pressure and shear on the

surface. In [2], Clifton studied the case of combined longitudinal and

torsional waves in a thin-walled tube due to a step load of tension and

torsion at the end of the tube. The materials considered by Clifton are

general elastic-plastic materials with isotropic work-hardening pro-

perty. In [61, Ting considered the case of two shear waves in an

elastic, linearly work-hardening half-space subject to a series of step

loadings and unloadings.

in the analyses of wave propagation in a thin-walled tube, the

lateral inertia was ignored. While this is a good approximation, care

must be exercised in comparing the theoretical analyses with an experi-

mrntal result. For wave propogation in a half-space, the problem of

lateral inertia does not arise. Thus the results of pressure-shear

waves -,tudied by Bleich and Nelson can be used without reservations for

experimental verifications. Since an elastic-ideally plastic material

is an idealization of real materials, the study of pressure-shears waves

in a half-space of general elastic-plastic materials is desirable.

This is presented in this paper.
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The governing differential equations of the problem, the character-

istics and the eigenvectors are presented in section 2. In section 3,

we obtain the stress paths in the stress space which are used to obtain

simple wave solutions. It is shown by an example that a simple wave

solution can be a solution for the case in which the pressure and the

shear applied at the boundaly are arbitrary with a restricted relation

between the pressure and the siear. The particular case in which the

material is elastic-ideally plastic as considered in [1] is reduced in

section 4, but presented in a form which can be used also when the half-

space is initially prestressed.

2. The Basic Equations.

Let the half-space be bounded by the horizontal plane x 0 of

t:.w cartesian coordinates (xy,z) and extended to infinity on the side

for which x > 0. Let u(x,t) and v(x,t) be the x and y components

of the velocity of any particles which depend only on x and the time

t. The z component of che velocity is assumed to be zero. The equa-

tions of motion for this plane motion is

1 (6)

& ~ v(2)

,%!re p is the mass density of the half-space, and a= ox t =

f'or simplicity. The stress-strain relation for an isotropic work-harden-

ing material is (see [7])

__ _ _ _ _ _ __ _ _ _ _ _ __ _ _ _ _ _



.=l+v + 6f 6% (3)
ii Ei (5) jkkr

where E is Y,ung's modulus, v is Poisson's ratio and X is

a parameter which will be defined shortly. f is the yield condition

which can be written as

f 12q + T = k (4)

where a2 = ayy = az k is the yield stress, and e is a constant

which assumes the value J3 for the von Mises yield condition and the

value 2 for the Tresca yield condition. Applying Eqs. (3) and (4) to

the problem under consideration and rnoticing that C = = 0 andyy zz

xx 1 v()Z=--, 1_ -11 = 7F(5

by the continuity requirement, we obtain

6u 1 1 2v 6a 2 (t;ST"(6)

2v 1 2(-v) a2

6v 16 + 2 6X (8)

where i is the shear modulus and

2 ( a- 2). (9)

X in Eq.() can be expressed in terms of f as (see 17]),
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2e20Q(k) 6f ()kFt 4k2E (10)

where Q(k) characterizes the work-hardening property which can be

determined from the stress-strain curve for a simple tension test. If

E p(a) is the slope of the stress-strain curve for a simple tension test

expressed in terms of the tensile stress a, we have (see [2]),

a(k) E 1 (11)

In the elastic region, E = E and a = 0, while in the ideally plastic
p

region, Ep = 0 and a = -. We shall assume that Ep is a monotonically

decreasing function of k. Then, by Eq.(ll), a(k) is an increasing

function of k.

Equations (1), (2), (6), (7), (8), and (i0) can be written in a

matrix form:

Awt+B w = 0 (12)

where the subscripts x and t denote partial differentiation with

respect to these variables and

P 0 0 0 0 0
2v 0

p 0 0 0 0 o

00 _ 2v 2_(l-v) 0 -sE E

0 0 0 0 2
2

1k
4k E

0 0 s -s 2,r
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0 0 -1 0 0 0 U

0 0 0 0 -10 v

-1 0 0 0 0 0 a

0 0 0 0 00 2

0-1 0 0 0 0 T

0 0 0 0 0 0

Notice that both matrices A and B are symmetric. By letting a-,

we obtain alternate iquations for elastic-ideally plastic materials

considered in [1]. The characteristics c of Eq.(12) are the roots of

the determinant IcA-BI = 0, (see (8]). After expanding the determinant;

we obtain:

c2D(c) = 0 (33)

where

c2 + +

D)c = (s- + ))I+(.) 2 (1l.F)s2 + 4(4'tX 2~ + k2 p7 Ca42( )
2 a( +l) oea(p+l)

c2 = WP is the shear wave speed and P is the parameter introduced by

Bleich and Nelson which is related to Pisson's ratio v by the

ecuation

2( +v ()
l-2v

As V assumes the range (0, i), P has the range (2,). From Eq.

(13), we have either c = 0 or c obtained by the roots of D(c) = 0.
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To see the positions of the roots of D(c) = 0, we rewrite Eq.(14a) in

the form:

2,cC ( .2 2 2 C 2

D(c) ) (c
2  2  2  2 21
C2  2 2 2 2 (14b)

+ k2  2 2 c

e a(p+i) 1  c 2  c2

where c1  is the dilational wave speed and has the value

2
Cl +4C1 ~k(16)

c2

From Eq.(14b), it is easily seen that D(O) > , D(c2) < 0 and

D(±) > 0. Therefore, if _cf +c dencte the roots of D(c) = 0, we

have the relation:

0<c <2 c f- (17)

cf and c correspond, respectively, to the fast wave speed and the

s

slow wave speed.

Two extreme cases can be reduced from Eq.(14b). In the elastic

region, a = 0 and D(c) =0 gives c = c1  and c = c2. In the

ideally plastic region, a = and the roots of Eq.(14b) reduce to the

ones obtained in [1].

Other extreme cases can be reduced from Eq.(14a). We simply

list the results in the following:

(i) When s = O,

cf =c 0< cs-< c2 (18)

S .
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(ii) When =O, and >5,

Cs =C 2  (19)

(iii) When T= O, and P<3

C2 : cf c I , c S :c 2  for s < s* (20a)

cf C c P c2 < c < c2  for s > s* (20b)

where s* is determined by

(e*) = -- (21)e 3-P3

Physically, s* is the value at which the Dlane plastic compressional

wave speed has the same value as c2, ti'e elastic shear wave speed.

Both cf and c are functions of s ant T. If we introduce as

new variable qp by

= k sin p (22a)

then Eqs. (4) and (9) give

S k cosp • (22b)

With this change of variables, cf and c become functions of k

and (p. In the s -'r 'plane, a constant k gives a yield surface while

a constant qp gives a straignt line through the origin. Regarding cf

and c as functions of k and q)) it can be shown that, for 0 < p <
s8



>cf c <c (23)

From Eq.(23), and the information presented in Eqs.(18) to (20), cf

and c have the ranges:s

0 < c 2 , 3 c2 < cf < c I  for P > 3 (24a)O~ s  2. ..

0< C < c2  c2 - < f_< cI  for P < 3 (24b)

The characteristic condition along a characteristics c is obtained

by (8],

dw
ITA = (25)

ddt

where w c + wt  is the total derivative along the characteristics

c and IT is the transpose of the left eigenvector which is obtained

by the equation

£ (cA-B) 0. (26a

In particular, for the characteristics c = 0, Eq.(25) reduces to Eqs.

(7) and (10).

When A and B are symmetric as in the present case, Eq.(26a) can

be written as

(cA-B)= 0 • (26b)

Thus the left eigenvector and the right eigenvector are identical.

For c= + cf or + c, of Eq.(26b) has the solution

9

i*W V -~-



1

= -pcI (27)

0

-Pc

s

where

2 2

22
S2k 2

(P-2) Pc_ + OcsP L2 _k2 )(1-_2) (28b)= 3 s P 1 +l e 2s2aZ c2

20.=1 (2 l
@-2Tc c2 -

2

and 4 can be writeen in simpler forms by eliminating a from the

equation D(c) = 0 where D(c) is expressed in Eq.(14b):

2 2e -c2-2 (29a)

T 2 2 2 2

PsC c -2)(c2-Pe2)

2Tc(C -)

5. 'eneralized Simple Wave Solutions.

Simple wave solutions are particular solutions of Eq.(12) in which

W is a constant vector along a characteristics [9]. Thus, if w is

a constant vector along the c f we have a fast simple wave solution.

10



If w is a constant along the c we have a slow simple wave solution
S

(21. According to the theory of generalized simple waves developed in

(9], in the region where the simple wave solution is valid dw is

proportional to the eigenvector 2. Therefore, by Eq.(27),

du dv dc1 d 2 dT d% (3)
-1 - ---cl - -PC 'E)

Equation (30) is equivalent to five differential equations of the first

order. SJnce 1, ( ind e are functions of the stresses only, these

five equations are not all coupled. In particular, since

da l-da2 dT

-pcI-0 - -Pc

we have, by Eqs.(9) and (28),

2 c2
ds 4- -_k_ (l - 2) c(31a)
dr e 2 s e 4 Ts(p+l)a c2

or, by Eqs.(9) and (29),

(2 2)(302_2c )
ds sc-c 2  2-1
d e e2 2 (C2 _c (lb)

The right hand side of Eq.(31a) or Eq.(31b) is a function of s and

only. Hence Eq.(31a)., or Eq.(31b), is a differential equation 1y

itself. To obtain the stress paths in the (ala 2,T) space for simple

wave solutioi.-, we need, in addition to Eq.(31b), another equation which

can be written, by Eqs.(30) and (29a),

2 2
c -c 2

dT T 2 2 (52)
,, c-c

1'!
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K7 Equations (31b) and (32), when integrated, given two-parameter family

of space curves(for each c, and c ) in the three-dimensional space

(al) T). These space curves can be constructed if we have their

projections on any two planes which are not parallel such as the al7T

and the a2 ~- planes. In view of Eqs.(31b) and (32), we will use the

s"T plane and the a l T plane instead. The reason is obvious.

Equation (31b), when irtegrated, gives only one-parameter family of

curves in the s~T plane. As to the projected curves on the a 'T

plane, we also need only one-parameter family of curves. The second

parameter family of curves can be obtained by translating the first

parameter family of curves in the a 1 -direction. This is clear from

Eqs. (31b) and (32).

Before we illustrate how to construct these curves (or stress paths),

for simple wave solutions, we will present some properties of these

curves in the s',r plane and the al-T plane. First, consider these

curves in the a plane. By Eqs. (32) and (17), we have

da 1~<0o
d'r c=cf

(33)
daI

(d-) > 0
dT c=c

Using Eqs. (32) and (14b), it can be shown that

d oI  da 1
(d?-c=c " (d -ccs - - .(

In other words, the stress paths for the fast simple waves and the slow

simple waves are orthogonal to each other in the 1, T plane. It

12



I,
should be noticed that they are orthogonal in the 01 a plane provided

they intersect each other in the (aI''2 T) space. If a stress path

for the fast simple wave and a stress path for the slow simple wave do

not intersect in the (al,02, ) space, their projections in the aI -

p.Lane are not necessarily orthogonal to each other.

Next, consider the projections of the stress paths in the s-'

plane. From Eqs. (24) and (31a), we have

(d)ccf T- )-- for all P . (35)

For slow waves, ds/dT depends on whether c2 /c 2  is larger or smaller
s 22 2

than P/3. (If P > 3, cs/c 2  is automatically smaller than P/3.) By

Eqs. (2 4)., (3la), and (31b), we have

2~T ds cs
4TO)c= 0 , for -< (36a)
e2- d -c 2

2c
If a P, (this can happen only when P < 3) it is seen by Eqs.

c 2

(24b) and (31b) that

2
dsc

0 < -, for -E (36b)
s c2

In Figs. 1 and 2, we give two examples of stress paths projections

in the a, - T plane and the s - T plane by integrating Eqs. (31b)

and (32) numerically. s in Figs. l(b) and 2(b) has been changed to

(a1-a2) according to Eq. (9). k0  is the initial yield stress. In

Fig. 1, P = 5, which shows a typical example of P > 3 while in Fig. 2,

the value P = 2.25 gives an example of P < 3. In both cases, the

13



von Mises criterion is used and hence = 5. The work-hardening pro-

perty a(k) are chosen differently in Figs. 1 and 2. They are chosen

for illustrative purpose and do not necessarily represent a real material.

In both figures, the solid lines marked by sl'S2'... are the stress

paths for the slow simple waves while the dashed lines marked by

flVf2 ..., are the stress paths for the fast simple waves. The bub-

scripts 1,2,..., have no particular meaning except to identify the

stress paths in the (a1, 2,'T) space. For instance, the curve s3  in

Fig. l(a) and the curve s. in Fig. l(b) represent the same space

curve in the (ala ,'T) space. In Fig. 2(b) the point d on the s-axis

corresponds to the value s* defined in Eq. (21). In fact, s = s*

= 0 is a singularity of Eqs. (31b) and (32). The dotted line in

Fig. 2(b) is the locus of cs/c 2 = P/3. It is seen that Eqs. (33)-(36)

are satisfied by the results obtained in Figs. 1 and 2.

The arrow heads in the figures show the directions along which the

stress state should be changed to insure a continuous plastic flow.

It is apparent, by Eq. (23) and Eqs. (33)-(36), that along these

directions shown by the arrow heads) the wave speeds cf and cs

decrease on the stres paths for the fast simple waves and the slow

simple waves respectively. This is an important requirement for con-

structing a simple wave solution.

In integrating the differential equations, Eqs. (31b) and (32)

initial conditions are required. The initial conditions for the results

obtained in Figs. 1 and 2 are chosen in such a way that Figs. 1 and 2

can be used to construct simple wave solutions for the case in which the

half-space is initially stress free. No new calculations are required

14



if the half-space is initially pre-stressed. By rearranging the curves

in Figs. l(b) and 2(b), Figs. 1 ax 2 can be used for the case in which

the half-space is initially pre-stressea. We will illustrate this later

in this section.

When the half-space is initially stress free, the disturbance

caused by a load on the surface of the half-space will propagate at the

elastic wave speed cI or c2. The response at the wave front, and

possibly a finite region behind the wave front, is elastic and Eqs.

(1), (2), (6), (7), and (8) apply if we let 6x/6t = 0. In particular,

Eq. (7) yields

da2  v

daI 1-v

or, since a1 and a2 are initially zero, we have, making use of

Eq. (15),

a2  - I  
(37)

Therefore, the initial yield limit k is reached when, by Eq. (4),
* 0

(a;2) 2 + T2 = k2 •  
(38)

e0

Equation (38) is the initial yield surface shown in Figs. l(b) and 2(b)

while elimination of a between Eqs. (37) and (38) gives the initial

surface shown in Figs. l(a) and 2(a). In other words, Eq6. (37) and

(38) represent a curve in the (al, a2,T) space and the projections of

this curve in the s - T plane and the a1 - T plane are denoted by

initial yield surface in Figs. 1 and 2. The initial conditions, or the

15
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"starting points", for the stress paths for the fast simple waves shown

in Figs. 1 and 2 are taken on the T-axis and on the curve represented

by Eqs. (37) and (38). The starting points of the stress paths for the

slow simple waves are taken on the curve represented by Eqs. (37) and

(38), and on a curve on the a, - a2  plane in the (ala 2yr) space

which we :ill derive next. This curve is in fact a stress path for

the fast simple waves which lies on the al a '2  plane.

From Eqs. (31b) and (32) we have., for c =c,

- 2

ds = 3 P cf-- (59)
da e2  e c2

When T = 0, s = k and, after solving c2/c 2  from Eq. (13) and

substituting the result into Eq. (39), we obtain

e2 ds 6 for TF 0. (40a)
2 doI  (p+l)a(es/2)+(+)f0a

This is the differential equation for the stress path3 for the fast

simple waves when T = 0. Since a(k) is a given function of k,

a(es/2) is a known function of s and Eq. (40a) can be integrated.

The initial condition is taken from the intersection of the -,urve

represented by Eqs. (37) and (38) with the plane T = 0, which gives:

2 0

- ko  a- (+4)ko "(40b)

Equations (4 0a) and (40b) repreuent a curve on the plane i O. The

starting points of the stress paths for the slow simple waves shown in

Figs. 1 and 2 are taken on the curve represented by Eqs. (37) and (38)

and the curve represented by Eqs. (40a) and (40b).

16



Now, we are in the position to construct simple wave solutions by

using the stress paths obtained in Figs. 1 and 2 for the case when the

half-space is initially stress free. The stress paths shown in Figs. 1

and 2 are for a plastic region. In an elastic region, the stress paths

corresponding to the fast simple waves c = c1 are horizontal lines

parallel to tne a and saxes while the stress paths corresponding

to the slow simple waves c = c2 are vertical lines parallel to the

T-axis. The stress paths for an elastic region are not oriented, i.e.,

the stress state can be changed in either direction. We define an

admissible stress path" by the path which consists of one or more
stress paths in the elastic and/or plastic regions in such a way that

when one moves along the path, the wave speeds are non-.ncreasing.

Thus, for instance, the paths oaij, obg and ode in F.'g. 2 are

admissible stress paths. For each admissible stress path, a simple

wave solution can be constructed. For instance, a simpla wave solution

for the admissible stress path obg is shown in Fig. 3(a) where the

solution corresponds to that of a step load of a -g, T = Tg on the

surface of the half-space. A superscript g denote the value at the

point g in Fig. 2. Since the characteristics c are functions of

the stresses a1, a2, T, and since the stresses are constant along

the characteristics for a simple wave solution, the characteristics are

straight lines as shown in Fig. 5(a). Each point on the stress path

obg corresponds to a characteristic line in the x - t plane. The

position of the point on obg determines the stresses along the

characteristics and also the slope of the characteristics. Thus a1

and T are determined from Fig. 2(a) and a2  is determined from Fig.

2(b) accordingly.

17
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Fig. 3(b) shows another simple wave solution corresponding to the

same stress path obg. The loads on the surface, al(O,t) and T(Ot)

11are not step loads. a (O,t) and T(O~t) however, should be prescribed

in such a way that, as t increasesj a (Ot) and T(Ot) follow the

stress patn obg. Thus, one of them, say al(O,t), can be prescribed

almost arbitrarily, and the other one T(O,t) is obtained by al(Ot)

and the stress path obg. It should be noted that both a1(O,t) and

r(O,t) do not have to be continuous functions of t as shown in Fig.

3(b).

When the half-space is prestressed, the stress paths in the s ~ '

plane remain unchanged while the stress paths in the al ~ T plane need

some modifications. To illustrate this, let us consider the case in

which the half-space is pre-sheared. In Fig. 1, suppose that the pre-

sheared stress is at the point a. An admissible stress path in Fig.

l(b) is abdegh which consists of the stress paths f2 and s.. The

corresponding stress path in Fig. l(a) however, is not ab'd'e'g'h'

since g in Fig. l(b) and g' in Fig. l(a) do not represent the same

point in the (a , ,') space. This can be verified easily as the

ordinates of g' and g are not the same. Similarly, b', d', e'

in Fig. l(a) and b, d, e in Fig. l(b) do not represent the same

points in the (a1, a2 ,T) space. As we explained earlier, the stress

paths obtained in the .L-T plane ,an be used for other initial condi-

tions if we translate the curves in the horizontal direction. Thus we

translate the curves sl, s2' s5, and s4  in Fig. l(a) until their

intersections with f2 give the same ordinates as b, d, e and g

respectively of Fig. l(b). The result of this translation is shown in

18



Fig. 4. Now, abdegh in Fig. l(b) and Fig. 4 represent a continuous

curve in the (aIa 2,T) space, so do abdi and abdegj. They are all

admissible stress paths. For the stress path abdegj, the last segment

gJ corresponds to an elastic unloading. Once we obtain an admissible

stress path, a simple wave solution can be constructed as illustrated

in the previous example, and Figs. 5.

The case when the half-space is pre-compressed can be analysed in

a similar manner. If the half-space is pre-sheared and pre-compressed,

then, in addition to the initial velues of a1 and T, the initial

value of a2  has to be specified. This is so because a2 depends on

how the half-space is pre-sheared and pre-compressed. Again, Figs. 1

and 2 can be used for this case with minor modifications.

4. Ideal Elastic-Plastic Materials.

When the material is elastic-ideally plastic, i.e., a = , the

analysis is greatly simplified. Instead of projecting stress paths on

the s - T plane and the a T plane, only the latter is required.

Moreover, only one stress path for the fast simple waves and the slow

simple waves need to be calculated; the rest are obtained by a transla-

tion of the curve calculated. No modifications are necessary for the

case when the half-space is pre-stressed.

For an ideally elastic-plastic material, the yield condition Eq. (4)

is replaced by Eq. (38) where k is a fixed constant. Thus a2 is

no longer an independent unknown but can be expressed in terms of a1

and 'r. The characteristic equation D(c) = 0 now becomes, by Eqs.

(14b) and (38),

19
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2 22222 222

Therefore, c does not depend on a1. The values of c when T = 0

and T k can be obtained easily from Eq. (41). The result is

cf = c2 , c =c 2 , when T =0 and P > 3 (42a)
5

Cf = co , c = j c2 , when T= 0 and P < 3 (42b)

Cf = Ci , c = 0 , when T= k 0 (42c)

It can be shown that

cf 6c

- (43)

Hence, by Eqs. (42) and (43), cf and c nave the ranges5

0 < C , c c < c <c for P > 3 (44a)

0< cs - c2  c2 <cf <c for P < 3. (44b)

This agrees with the result obtained in [1].

Using Eqs. (38) and (41), the right hand side of Eq. (32) can be

written in terms of a, and T alone. The result is,

da1  + jQ2+162 T2 (k2 -T 2 )
dT 40 ~2 -'2

4eT r-

where

20



4

k2= ° + (+4 e92  2

The + sign in Eq. (45) 1- for the fast simple waves while the - sign

is for the slow simple waves. Equation (45) can be integrated in a

closed form in terms of elliptic integrals. The particular case in

2
which e = 5 was obtained in [1]. In Fig. 5, we show the results of

an integration of Eq. (45) for three cases: P > 3, P = 3, and P < 3.

In each case only one curve for the fast simple waves and the slow

simple waves needs to be calculated. The rest of the curves are obtained

by translation in the O1 -direction of the curve calculated. Again,

the solid lines with arrow heads are the stress paths for the slow

simple waves while the dashed lines with arrow heads are for the fast

simple waves. In addition, the al-axis is also an admissible stress

path which corresponds to a constant wave speed of / 75 c2 . Notice

that Eq. (34) still applies and therefore the stress paths for the

fast simple waves and the slow simple waves are orthogonal to each

other everywhere. Notice also the angle at which the stress paths

intersect the al7axis. The stress paths for the slow simple waves

shown by solid lines intersect the a1laxis at 900 for P > 5, at 450

for P = 3, but never intersect the a -axis for P < 3. On the other

hand, the stress paths for the fast simple waves shown by dasht.-d lines

never intersect the alaxis for P > 5 but intersect the al-axis at

450 for P = 3 and at 90 for P < 3. The stress paths for fast and

slow '" p waves do intezsect the horizontal line - one inter-

sects at 900 and the other is tangent to the line T = k 0

21

......... ~ . *..-



Fig. 5 can be ased for obtaining simple wave solutions regardless

of whether the half-space is initially stress free or not. Any point in

the a, - T plane can be takan as the initially prestressed state aid

an admissible stress path is then determined accordingly. For instance,

if the point a is the initially prestressed state, the path abde is

an admissible stress path. So is the path agh for P > 3 and P = 3

but there is no corresponding path for P < 3 since the solid lines

never intersect the a -axis. If point d in Fig. 5(a) is the initially1m

prestressed state, the stress paths dih and djm are both admissible.

As a last example, suppose that the half-space is initially stressed

beyond the initial yield surface as shown by the point i in Fig. 5(c),

and at t = 0 a step load of a1 is added on the surface f ihe half-

space such that the stress state changes to the point j in Fig. 5(c).

The admissible stress path for this case is igj which shows that the

shear stress will decrease first and increase later even though the

shear stress on the surface of the half-space is kept constant.

Once we have an admissible stress path, a simple wave solution can

be constructed following the examples shown in Figs. 3.

5. Concluding Remarks.

The problem of plane waves of combined pressure and shear stresses

in an ideally elastic-plastic half-space originally studied by Bleich

and Nelson is extended to a general elastic-plastic material. Simple

wave solutions are obtained for the half-space which can be initially

pe-stressed and the loads on the boundary need not be a step load.

The simple wave solutions presented here of course, do not apply to
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general boundary value problems. For general boundary value problems,

a numerical scheme such as the method of characteristics using Eq. (25)

must be used. The simple wave solutions obtained here, such as the one

shown in Fig. 5(b), can be used as a test of the accuracy of the numelil-

cal scheme.

The existence of the fast waves and the slow waves has been verified

experimentally by Lipkin and Clifton (10]. An example in which all the

four wave speeds cl, c2 . cf and c are generated in one test is5

given in Fig. 6. For illustrative purpose, we assume the half-space is

elastic-ideally plastic. The half-space is initially pre-stressed to

the stress state indicated by point a in Fig. 6 (a), and at time t = 0

*the stress stat; at the boundary is changed to the stress sate indicated

by point g in Fig. 6 (a) and maintains at this constant state thereafter.

For this case, the admissible stress path is abdeg. The portion ab

is elastic, with wave speed c1; the portion bd is plastic, with

variable wave speeds cf; the portion de is again elastic, with wave

speed c2; and the last portion eg is plastic, with variable wave

speeds cs. The corresponding simple wave solution is shown in Fig.

6(b).

In the wave propagation of combined stresses, an unexpected un-

loading may occur near the boundary when the stress state at the boundary

suddenly changes from a lower yield surface to a higher yield surface,

[2]. On the other hand, a plastic loading may occur when the stress

state at the boundary suddenly changes from a higher yield stress to a

lower yield stress, such as the path djm in Fig. 5(a). This

phenomenon is not dictated by the fact that the stress state et the
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boundary changes discontinuously. The same phenomenon exists if the

stress state at the bounoary changes continuously. In fact, it is

shown in [11] that more than one elastic and plastic region can be

j generated near the boundary even though the stress state at the boundary

is continuously changing from a lower yield surface to a higher yield

surface and vice versa. This clearly indicates the hidden difficulties

in solving wave propagation of combined stresses by a numerizal scheme.
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