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PLANE WAVES DUE TO COMBINED (OMPRESSIVE AND
SHEAR STRESSES IN A HALF-SPACE
by
T.C.T. Ting* and Ning Nan¥*

ABSTRACT

The plane wave propagation in a half-space due to a uniformly dis-
tributed step load of pressure and shear on the surface was first studied
by Bleich and Nelson. The material in the half-space was assumed to be
elastic-ideally plastic. In this paper, we study the same problem for
a general elastic-plastic meterial. The half-space can be initially
prestressed. The results can be extended to the case in which the loads
on the surface are not necessarily step loads, but with a restricted

relation between the pressure gnd the shear stresses.

Associate Professor of Applied Mechanics, Dept. of Materials Engineering,
University of Illinois at Chicago Circle, Chicago, Illinois, 60680;
Visiting at Stanford University, Dept. of Applied Mechanics, Stanford,
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1. Introduction.

Several investigators have studied the propagation of elastic-plastic
waves of combined stresses for various stress-strain relations and for
various combinations of stress components [1-6]. For general initial
and boundary value problems, analytical solutions are difficult to ob-
tain except for a particular initisl and boundary value problem [2] and/or
a particular material property [1,6]. In [1], Bleich and Nelson obtained
a ciosed from solution for the case cf plane waves in an elastic-ideally
piastic half-space subject to a step load of pressure and shear on the
surface. In [2], Clifton studied the case of combined longitudinal and
torsicnal waves in a thin-walled tube due to a step load of tension and
torsion at the end of the tube. The materials considered by Clifton are
general elastic-plastic materials with isotropic work-hardening pro-
perty. In [6], Ting considered the case of two shear waves in an
elastic, linearly work-hardening half-space stbject to a series of step
loadings and unloadings.

In the analyses of wave propagation in a thin-walled tube, the
lateral inertia was ignored. While this is a good approximation, care
mist be exercised in comparing the theoretical analyses with an experi-
mental result. Por wave propogation in a half-space, the problem of
lateral inertia does not arise. Thus the results of pressure-shear
wveves studied by Bleich and Nelson can be used without reservations for
experimental verifications. Since an elastic-ideally plastic material
is an idealization of real materigls, the study of pressure-shears waves

in a half-space of general elastic-plastic materials is desirable.

This is presented in this paper.
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The governing differertial equations of the problem, the character-
istics and the eigenvectors are presented in section 2. In section 3,
we obtain the stress paths in the stress space which are used to obtain
simple wave solutions. It is shown by an example that a simple wave
solution can be a solution for the case in which the pressure and the
shear applied at the boundaly are arbitrary with a restricted relation
betwaz2n the pressure and the shear. The particular case in which the
material is elastic-ideally plastic as considered in [1] is reduced in
section 4, buh presented in a form which can be used also when the half-

space is initially prestressed.

?.  The Basic Equations.

Let the half-space be bounded by the horizontal plane x = 0 of
tne cartésian coordinates (x,y,z) and extended to infinity on the side
for which x > 0. Let u(x,t) and v(x,t) be the x and y components
of the velocity of any particles which depend only oun x and the time
t. The 2z component of the velocity is assumed to be zero. The equa-

tions of motion for this plane motion is

dg

Ealls 5 (1)
or v -
il Ry (2)

Jhere p o is the mess density of the half-space, and Oy 20,0 T =71

XX Xy

tor simplicity. The stress-strain relation for an igotropic work-harden-

ing material is (see [7])
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de da
ij 1ty iy v of O\
St = "F St iy ckk+5oij 3t (3)

where E is Young's modulus, v is ©Poisson's ratio and M is
a paranmeter which will be defined shortly. f is the yield condition

which can be written as

0.0, 2

f=(9)+'r=k

where o. =0 _ =06_, k 1is the yield stress, and 6 is a constant
2 Yy 22

which assumes the value V@? for the von Mises yield condition and the

value 2 for the Tresca yield condition. Applying Egs. (3) and (U4) to

the problem under consideration, and noticing that € __ = ezz = 0 and
de oe
du XX 1 9v pi
i e b (5)

by the continuity requirement, we obtain

u_ 191 2y 9, ) (6)
x " ES ~EJt 3t
O__gy_a“1+2§1-v} 9, & 1)
S TTES E ot °3t

aV . 1 BT a)» )
ox g ot T2t ¥ (8)
where u 1s the shear modulus and
2
s = 02 (01 0'2). (9)

A in Eq.(3) can be expressed in terms of f as (see [7]),
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-

(10)

where a(k) characterizes the work-hardening property which can be
determined from the stress-strain curve for a simple tension test. If
E%(o) is the slope of the stress-strain curve for a simple tension test

expressed in terms of the tensile stress o, we have (see [2]),

E

a(k) = Epjgﬁ -1 (11)

In the elastic region, Ep =E and Q= 0, while in the ideally plastic
region, Ep =0 and @ = co. We shall assume that Ep is a monotonically
decreasing function of k. Then, by Eq.(11), a(k) is an increasing
function of k.

Equations (1), (2), (6), (7), (8), and (10) can be written in a

matrix form:

Ax+B

¥, =0 (12)

W
~x
where the subscripts x and t denote partial differentiation with

respect to these variables and

p O 0 0 0 0
0 »p (0] 0 0 0
1 2v
A e 0 0 7 " E 0 [
=T 2y 2(1-v
0O O B E 0 -s
00 O 0 % ot
2
00 s s or GHKE
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0O 0 -1 0 0O u
0 0 0 0-10 v
-1 0 0 0 0 O 01
.§= z:
0O 0 0 0 0O o]
2
01 0 0 0 O T
0 0 00 0 O A
i | |

Notice that both matrices A and B are symmetric. By letting O -,
we obtain alternate :quations for elastic-ideally plastic materials
considered in [1]. The characteristics ¢ of Eq.(12) are the roots of

the determinant Icg-gl = 0, (see [8]). After expanding the determinant,

we obtain:
¢®d(c) = 0 (13)
where
2 2 2
Be) = ()" + Moy L
2 2] a(ﬁ'*‘;.) (lll'a.)
2 2
'(%")2[(11"%)82 + ﬂ,%ib'—z L4 E15“—-(-‘3—ﬂl}+{s:2+L‘—}z‘--(ﬁ’f&)}
2 : 0 “o(p+1) 6“a(p+1)

2
c2 = H/p is the shear wave speed and P 1is the parameter introduced by

Bleich and Nelson which is related to Prisson's ratio v by the

ecuation

B=ﬁ3.-i_"l (15)

1-2v

As Vv assumes the range (O, %), B has the range (2,). From Eq.

(13), ve bave either c¢c = 0 or c¢ obtained by the roots of D(ec) = 0.
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To see the positions of the roots of D(¢) = 0, we rewrite Eq.(14a) in

the form:
2,07 3 © hr? o2 P ci\
D(ec) = s (c—2 -l)(_g;—z' -1) + T2 (:2 -3
2 2 2 2 "2 (14b)
e
12K° o2 2 cf
o (F -U(F - 3)
8% (p+1) ¢y ¢,
where cl is the dilational wave speed and has the value
c2
L _ Bk
3-5 (16)
2

From Eq.(14b), it is easily seen that D(0) > 0, D(c2) <0 and

D(cy) > 0. Therefore, if ¢, Fc_ dencle the roots of D(c) =0, we

have the relation:
0<c

<c¢c,<c

1/

5 Sy (17)

s f

cf and cS correspond, respectively, to the fast wave speed and the
slow wave speed.
Two extreme cases can be reduced from Eq.{1lb). In the elastic

region, 0 =0 and D(c) = 0 gives c = ¢y and ¢ =c¢ In the

o
ideally plastic region, @& = » and the roots of Eq.{1lb) reduce to the
ones obtained in [1].

Other extreme cases can be reduced from Eq.(14a). We simply
list the results in the following:

(1) When s =0,

0<c¢c <ec (18)




(i1) When T =10, and B >3,

j% c,Se,Se , e =, (19)
(iii) When T =0, and B <3

c_=¢c¢, for s<s¥ (20a)

- B *
o=y [5 0 Se Se, for s2s (20b)
where s* is determined by
2s¥ g
Q=——) = . 21

Physically, s* 1is the value at which the -lane plastic compressional
wave speed has the same value as Cos trre elastic shear wave speed.
Both cf and cS are functions of s ant T. If we introduce a

new variable @ by
T =ksin 9 (22a)
then Eqs. (4) and (9) give
s = g k cos @ . (22v)

With this change of variables, Co and cg become functions of k

and Q. In the s ~ T mlane, a constant Xk gives a yield surface while

a constant @ gives a straignt line through the origin. Regarding o

and cs as functions of k and ¢, it can be shown that, for 0 <@ < g,
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acf acs acf Bcs
$'>O, &)‘<O, 5;—<0, 5k—<0. (23)
From Eq.(23), and the information presented in Eqs.(18) to (20), cp
and cg have the ranges:
B
0<e Sc, s J; e, < Co Se, for B>3 (2ha)
0<e Seyy, eySce,Sey  for B3 (2hv)

The characteristic condition along a characteristics ¢ is obtained

by (81,

£ (25)

%] &
1}
(@]

ay
at t
¢ and g? is the transpose of the left eigenvector £ which is obtained

where =x.c + ¥, 1s the total derivative along the characteristics

by the equation
4 (cA-B) =0 . (26a)

In particular, for the characteristics ¢ = 0, Eq.(25) reduces to Egs.
(7) and (10).
When A and B are symmetric as in the present case, Eg.(26a) can

be written as
(cA-B), =0 . (26b)

Thus the left eigenvector and the right eigenvector are identical.

For e¢=tc, or tc, % of Eq.(26b) has the solution

f -—

Y

a T m e e e . - £




¥
1
4= | -pc¥ (27)
¢
-pc
[
where
c2 L N 2 02
T _sB By Bk e, 2
t=-s35 " mw g 223 (28s)
5 6 s c
o = {B-2) pcT . pesB (1 + ﬁ_lﬁ_)(l_f.?. (28b)
- 5 s L"T ' B+l 2 2 c2
2
1l ,c
® = 3o (25 - 1)
; 2

¥ and ¢ can be writeen in simpler forms by eliminating O from the

equation D(c) = O where D(c) is expressed in Eq.(14b):

2 2
s ¢ -c2
t=7%53 (292)
c“-cy
ps(cz-cg)(ca-ﬁcg)
o = . (29b)

273(02-ci)

3. ienerglized Simple Wave Solutions.

Simple wave solutions are particular solutions of Eq.(12) in which
W 1s a constant vector along a characteristics [9]. Thus, if w is

a congstant vector along the c¢_, we have a tast simple wave solution.

f
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If w 1is a constant along the cS we have a slow simple wave solution
E [2]. According to the theory of generalized simple waves developed in

[9], in the region where the simple wave solution is valid, dw 1is

proportional to the eigenvector g. Therefore, by Eq.(27),

dn _ _ _ar
. L.zt (50)
Equation (30) is equivalent to five differential equations of the first

order. Since ¥, & ind @ are functions of the stresses only, these

five equations are not all coupled. In particular, since

dol-d02 ar

-pc¥-® ~ -pc

2

o 2

| we have, by Egs.(9) and (28),

2 2
CLRR R S (51a)

v 25 ghrs(prl)a c©

or, by Egs.(9) and (29),

S(ca-cg)(502-ﬁcg)
5 5 3 y (31p)
e (c -]

E ds _
. art 92

The right hand side of Eq.(3la) or Eq.(31b) is a function of s and

T only. Hence Eq.(3la), or Eq.(31b), is a differential equation ty
itself. To obtain the stress paths in the (01,02,7) space for simple

wave solution., we need, in addition to Eq.(51b), another equation which

§ can be written, by Egs.(30) and (29a),
2
do c -C
l_s 2
ar 1t 2 2 ° (32)
> c -C
1
}
i 11
e e - - e g - LR N vl




Equations (31b) and (32), when integrated, given two-parameter family

of space curves(for each q and cs) in the three-dimensional space

e (ol,ca,T)- These space curves can be constructed if we have their

: projections on any two planes which are not parallel such as the oi~T

;. and the 0,~7 planes. In view of Egs.(31b) and (32), we will use the

é' s~T plane and the ol~ T plane instead. The reason is obvious.

g: Equation (31b), when irtegrated, gives only one-parameter family of
curves in the s~T plane. As to the projected curves on the ol'“T

» plane, we also need only one-parameter family of curves. The second

’; parameter family of curves can be ottained by translating the first

\ parameter family of curves in the ol~direction- This is clear from

L Fas. (31b) and (32).

Before we illustrate how to construct these curves (or stress paths),

L for simple wave solutions, we will present some properties of these

8 curves in the s~7 plane and the o.~7T plane. First, consider these

1
7 curves in the 0,1 plane. By Egs. (32) and (17), we have
do
(7 )eme, < ©
f
(33)
do
1
- (dT ¢=¢ >0
Using Egs. (32) and (14b), it can be shown that
do do
: 1 R Y = -
(dT c=c, (dT e=c_ =1 (3k)

In other words, the stress paths for the fast simple waves and the slow

simple waves are orthogonal to each other in the 9y ~ T plane. It

12
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should be noticed that they are orthogonal in the 9 ~ T plane provided
they intersect each other in the (ol,ce,f) space. If a stress path
for the fast simple wave and a stress path for the slow simple wave do
not intersect in the (01,02,7) space, their projections in the ol ~T
p.ane are not necessarily orthogonal to eech other.

Next, consider the projections of the stress paths in the st

plane. From Egs. (24) and (31a), we have

as k
(3o S~ forall B . (35)
f 67s

For slow waves, ds/dx depends on whether ci/cg is larger or smaller
than B/5. (zf B > 3, ci/cg is automatically smaller than B/S.) By

Egs. (24), (31a), and (31b), we have

2
Lt ds °s _ 3
"2 S(GF)ese S05 for —5< 3 (362.)
s s ey
2
° g
¥ 525 (this can happen only when B < 3) it is seen by Egs.
c
2
(24¥b) and (31b) that
02
ds s s B
02 (F)yee S35 for — >3 (36b)
s c5

In Figs. 1 and 2, we give two examples of stress paths projections
in the o0, ~ 7 plane and the s ~ 7 plane by integrating Eqgs. (31b)
and (32) numerically. s in Figs. 1(b) and 2(b) has been changed to
(01-02) according to Eq. (9). k, 1is the initial yield stress. In
Fig. 1, B = 5, which shows a typical example of B >3 while in Fig. 2,

the value P = 2.25 gives an example of P < 3. In both cases, the




von Mises criterion is used and hence 92 = 3. The work-hardening pro-
perty 0(k) are chosen differently in Figs. 1 and 2. They are chosen
for illustrative purpose and do not necessarily represent a real material.
In both figures, the solid lines marked by sl,sa,..., are the stress
paths for the slow simple waves while the dashed lines marked by
fl’fe”'°’ are the stress paths for the fast simple waves. The sub-
seripts 1,2,..., have no particular meaning except to identify the
stress paths in the (ol,ag,T) space. For instance, the curve s5 in
Fig. 1(a) and the curve S5 in Fig. 1(b) represent the same space

curve in the (01,02,7) space. In Fig. 2(b) the point d on the s-axis
corresponds to the value s* defined in Eq. {21). In fact, s = s¥,

T =0 is a singularity of Eqs. (31b) and (32). The dotted line in

Fig. 2(b) is the locus of ci/cg = B/3. It is seen that Egqs. (33)-(36)
are satisfied by the results obtained in Figs. 1 and 2.

The arrow heads in the figures show the directions along which the
stress state should be changed to insure a continuous plastic flow.

It is apparent, by Eq. (23) and Egs. (33)-(36), that along these
directions shown by the arrow heads, the wave speeds Ceo and cs
decrease on the stress paths for the fast simple waves and the slow
simple waves respectively. This is an important requirement for con-
structing a simple wave solution.

In integrating the differential equations, Egs. (31b) and (32)
initial conditions are required. The initial conditions for the results
obtained in Figs. 1 and 2 are chosen in such a way that Figs. 1 and 2
can be used to construct simple wave solutions for the case in which the

hglf-space is initially stress free. No new calculations are required

L
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if the half-space is initially pre-stressed. By rearranging the curves

in Figs. 1(b) and 2(b), Figs. 1 and 2 can be used for the case in which

the half-space is initially pre-stressea- We will illustrate this later
in this section.

When the half-space is initially stress free, the disturbance
caused by a load on the surface of the half-space will propagate at the
elastic wave speed ¢y or c2. The response at the wave front, and
possibly a finite region behind the wave front, is elastic and Egs.

(1), (2), (6), (1), and (8) apply if we let O\/dt = O. 1In particular,
Eq. (7) yields
%

%2 _ v
do, 1-v

'—l

or, since oy and Oy are initially zero, we have, making use of

Eq. (15),

o, = Ei% o) (37)

w

Therefore, the initial yield limit k, is reached when, by Eg. (4),

g, -0,

2
(L52) #2202 (38)

Equation (38) is the initial yield surface shown in Figs. 1(b) and 2(b)

while elimination of o. between Egs. (37) and (38) gives the initial

2
surface shown in Figs. 1{a) and 2{(a). In other words, Egs. (37) and
(38) represent a curve in the (01,02,7) space and the projections of

this curve in the s ~ T plane and the ol ~ T plane are denoted by

initial yield surface in Figs. 1 and 2. The initial conditions, or the

15




"starting points", for ihe stress paths for the fast simple waves shown
in Figs. 1 and 2 are taken on the T-axis and on the curve represented
by Egs. (37) and (38). The starting points of the stress paths for the
slov simple waves are taken on the curve represented by Egs. (37) and
(38), and on a curve on the o, ~ g

1l 2

which we will derive next. This curve is in fact a stress path for

plane in the (cl,oe,r) space

the fest simple waves which lies on the oy ~ 0, plane.

From Egs. (31b) and (32) we have, for ¢ = c_,

2
& _ 5 _ B °t
do, .2 2 2° (39)
1 6 6™ ¢,
2
6 . 2,2
When T =0, ? s = k and, after solving c_‘,/c2 from Eq. (13) and
substituting the result into Eq. (39), we obtain
2
8~ ds__ 6 _
2 4, ~ (F1)a(6s/2)+(pHh) for T=0. (k0a)

This is the differential equation for the stress paths for the fast
simple waves when T = 0. Since (k) is a given function of k,
a(6s/2) is a known function of s and Eq. {(40a) can be integrated.
The initial condition is taken from the intersection of the :urve

represented by Eqs. (37) and (28) with the plane 7 = 0, which gives:

s = % k o, = g (B+h)ko . (40v)

Equations (40a) and (40b) represenl a curve on the plane 1 = U. The
starting points of the stress paths for the slow simple waves shown in
Figs. 1 and 2 are taken on the curve represented by Eas. (37) and (38)

and the curve represented by Eqs. (40a) and (L4Ob).

16
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Now, we are in the pogition to construct simple wave solutions by
using the stress paths obtained in Figs. 1 and 2 for the case when the
half-space is initially stress free. The stress paths shown in Figs. 1
and 2 are for a plastic region. In an elastic region, the stress paths

corresponding to the fast simple waves c¢ = ¢ are horizontal lines

1
parallel to tne Gl and swvaxes while the stress paths corresponding
to the slow simple waves ¢ = N are vertical lines parallel to the

Tvaxis. The stress paths for an elastic region are not oriented, i.e.,
the stress state can be changed in either direction. We define an
"admissible stress path” by the path which consists of one or more
stress paths in the elastic and/or plastic regions in such a way that
when one moves along the path, the wave speeds are non-.ncreasing.
Thus, for instance, the paths oaij, obg and ode in F'g. 2 are
admissible stress paths. For each admissible stress path, a simple
wave solution can be constructed. For instance, a simplz wave solution
for the admissible stress path obg is shown in Fig. 3(a) where the

g on the

solution corresponds to that of a step load of gy = o%, T=7
surface of the half-space. A superscript g denote the value at the
point g in Fig. 2. Since the characteristics ¢ are functions of
the stresses Ul’ 02, T, and since the stresses are constant slong
the characteristics for a simple wave solution, the characteristics are
straight lines as shown in Fig. 3(a). Each point on the stress path
obg corresponds to a characteristic line in the x ~t plane. The
position of the point on obg determines the stresses along the
characteristics and also the slope of the characteristics. Thus o

1

and T are determined from Fig. 2(a) and o, is determined from Fig.

2
2(b) accordingly.
17




Fig. 3(b) shows another simple wave solution corresponding to the
same stress path obg. The loads on the surface, ol(O,t) and T(O,t)
are not step loads. ol(o,t) and T(0,t) however, should be prescribed
in such a way that, as t increases, cl(O,t) end 7(0,t) follow the
stress pata obg. Thus, one of them, say ol(O,t), can be prescribed
almost arbitrarily, and the other one 7(0,t) is obtained by ol(O,t)

and the stress path obg. It should be noted that both o 0,t) and

1 {
7(0,t) do not have to be continuous functions of t as shown in Fig.
3(b).

When the half-space is prestressed, the stress paths in the s~ 7
plane remain unchanged while the stress paths in the oy~ T plane need
some modifications. To illustrate this, let us consider the case in
which the half-space is pre-sheared. In Fig. 1, suppose that the pre-
sheared stress is at the point ea. An admissible stress path in Fig.
1(b) is abdegh which consists of the stress paths f2 and 8), * The
corresponding stress path in Fig. 1{a) however, is not ab'd'e'g'n’
since g in Fig. 1(%) and g' 1in Fig. 1(a) do not represent the same
point in the (01,02,T) space. This can be verified easily as the
ordinates of g' and g are not the same. Similarly, b', d', e
in Fig. 1(a) and b, 4, e in Fig. 1(b) do not represent the same
points in the (ol,oe,T) space. As we explained earlier, the stress
paths obtained in the GL”T plane can be used for other initial condi-
tions if we translate the curves in the horizontal direction. Thus we
translate the curves s, s, 557 and s, in Fig. 1(a) until their
intersections with f

5 give the same ordinates as b, d, e and g

respectively of Fig. 1(b). The result of this translation is shown in

18
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Fig. 4. Now, abdegh in Fig. 1(b) and Fig. 4 represent a continuous
curve 1 the (01,02,7) space, so do abdi and abdegj. They are all
admissible stress paths. For the stress path abdeg), the last segment
gJ corresponds to an elastic unloading. Once we obtain an admissible
stress path, a simple wave solution can be constructed as illustrated
in the previous example, and Figs. 3.

The case when the half-space is pre-compressed can be analysed in
a similar manner. If the half-space is pre-shesgred and pre-compressed,
then, in addition to the initial valuves of cl and T, the initial
value of o

2 2

how the half-space is pre-sheared and pre-compressed. Again, Figs. 1

has to be specified. This is so because o, depends on

and 2 can be used for this case with minor modifications.

4. Idesl Elastic-Plastic Materials.

When the material is elastic-ideally plastic, i.e., @ = ©, the
analysis is greatly simplified. Instead of projecting stress paths on

the s ~ T plane and the o, ~ T plane, only the latter is required.

1
Moreover, only one stress path for the fast simple waves and the slow
simple waves need to be calculated; the rest are obtained by a transla-
tion of the curve calculated. No modifications are necessary for the
case when‘the half-space is pre-stressed.

For an ideally elastic-plastic material, the yield condition Eq. (%)
is replaced by Eq. (38) where k, 1is a fixed constant. Thus o, is
no longer an independent unknown but can be expressed in terms of o

and 7. The characteristic equation D(c) = O now becomes, by Egs.

(14v) and (38),

19
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(kca)—'re)(ca-cg (302-ﬁc§) + 62T2c2(c2-ci =0 . (¥1)

Therefore, c¢ does not depend on o The values of ¢ when T =20

1

end T = k_ can be obtained easily from Eq. (41). The result is

- /E = - (4
Co= [5Cs c = ¢y when T =0 and B >3 (42a)
’B ()
= = |- = 2b
cf 02 s cs 3 02 s when =0 and B<3 \ )
cp=¢) s c = 0, when T = k, - (k2c)

Bcf Bcs
S <0, St >0 . (,-1-3)
Hence, by Eqs. (42) and (43), ¢ ¢ 8nd c_ nave the ranges
O<csgc2, /gcgf_cfS_cl for B >3 (4ha)
Oscssgce, cef_cfScl for B < 3. (4hv)

This agrees with the result obtained in [1].

Using Egs. (38) and {41), the right hand side of Eg. (32) can be

written in terms of Gl and T alone. The result is,

do Q + ,/Q2+169272(k§-12

1
hor / ki -12

dar =

where

20




Q= (g3 + (B 6% - (p3))e°

The + sign in Eq. (45) i3 for the fast simple waves while the - sign
is for the slow simple waves. Equation (45) can be integrated in a
closed form in terms of elliptic integrals. The particular case in
which 92 = 3 was obtained in [1]. In Fig. 5, we show the results of
an integration of Eq. (45) for three cases: B >3, B =3, and B < 3.
Tn each case only one curve for the fast simple waves and the slow

simple waves needs to be calculated. The rest of the curves are obtained

by translation in the olvdirection of the curve calculated. Again,
tne solid lines with arrow heads are the stress paths for the slow
simple waves while the dashed lines with arrow heads are for the fast
simple waves. In addition, thne civaxis is also an admissible stress
path which corresponds to a constant wave speed of ¢ﬁ5ﬁ§ 02- Notice
that Eq. (34) still applies and therefore the stress paths for the
fast simple waves and the slow simple waves are orthogonal to each
other everywhere. Notice also the angle at which the stress paths

intersect the o.,~axis. The stress paths for the slow simple waves

1
shown by solid lines intersect the oi~axis at 90o for B >5, at hSo
for B =3, but never intersect the oi~axis for B < 3. On the other

hend, the gtress paths for the fast simple waves shown by dashed lines
never intersect the cI~axis for B >5 but intersect the ol~axis at
hSo for B=3 and at 90° for B < 3. The stress paths for fast and
slow simple waves Go intersect the horizontgl line 7 = ko; one inter-
sects at 90o and the other is tangent to the line 7 = ko'
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Fig. 5 can be used for obtaining simple wave solutions regardless
of whether the half-space is initially stress free or not. Any point in
the oy~ T plane can be taran as the initially prestressed state a»xd
an admissible stress path is then determined accordingly. For instance,
if the point a 1is the initially prestressed state, the path abde is
an admissible stress path. So is the path agh for B >3 and B =3
but there is no corresponding path for P < 3 since the solid lines
never intersect the oivaxis- If point 4 in Fig. 5(a) is the initially
prestressed state, the stress paths dih and djm are both admissible.
As a last example, suppose that the half-space is initially stressed
beyond the initial yield surface as shown by the point i in Fig. 5(c),
and at t =0 a step load of oy is added on the surface rf ithe half-
space such that the stress state changes to the point Jj in Pig. 5(c).
The admissible stress path for this case is igj which shows that the
shear stress will decrease first and increase later even though the
shear stress on the surface of the half-space is kept constant.

Once we have an admissible stress path, a simple wave solution can

be constructed following the examples shown in Figs. 3.

5. Concluding Remarks.

The problem of plane waves of combined pressure and shear stresses
in an ideally elastic-plastic half-space originally studied by Bleich
and Nelson is extended to a general elastic-plastic maverial. Simple
wave solutions are obtained for the half-space which can be initially
pre-stressed and the loads on the boundary need not be a step load.

The simple wave solutions presented here of course, do not apply to
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general boundary value problems. For general boundary value problems,
a numerical scheme such as the method of characteristics using Eq. (25)
must be used. The simple wave solutions obtained here, such as the one
shown in Fig. 5(b), can be used as a test of the accuracy of the numeii-
cal scheme.

The existence of the fast waves and the slow waves has been verified
experimentally by Lipkin and Clifton [10]. An example in which all the

four wave speeds c¢., C

1 and cs are generated in one test is

2’ C¢

given in Fig. 6. PFor illustrative purpose, we assume the half-space is

s

elastic-ideally plastic. The half-space is initially pre-stressed to

; the stress state indicated by point a in Fig. 6(a), and at time t =0

L R s

the stress stat: at the boundary is changed to the stress sate indicated
by point g in Fig. 6(a) and maintains at this constant state thereafter.
For this case, the admissible stress path is abdeg. The portion ab

is elastic, with wave speed Cy; the portion bd is plastic, with
variable wave speeds cf; the portion de is again elastic, with wave

; speed Cns and the last portion eg is plastic, with variable wave

] speeds cs. The corresponding simple wave solution is shown in Fig.

i 6(b).

In the wave propagation of combined stresses, an unexpected un-
loading may occur near the boundary when the stress state at the boundary
suddenly changes from a lower yield surface to a higher yield surface,

1 [2]. On the other hand, a plastic loading may occur when the stress
state at the boundary suddenly changes from a higher yield stress to a

lower yleld stress, such as the path djm in Fig. 5(a). This

' phenomenon is not dictated by the fact that the stress state ot the

2>
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boundary changes discontinuously. The same phenomenon exists if the
stress state at the bounaary changes continuously. In fact, it is

shown in [11] that more than one elastic and plastic region can be
generated rear the boundary even though the stress state at the boundary
is continuously changing from a lower yield surface to a higher yield
surface and vice versa. This clearly indicates the hidden difficulties

in solving wave propagetion of combined stresses by a numerizal scheme.
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