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ABSTRACT 

This paper Is motivated by an assumption that many 

problems dealing with arbitrarily related data can be expedited 

on a digital computer by a storage structure which allows rapid 

execution of operations within and between sets of datum names. 

Such a structure should allow any set-theoretic operation with- 

out restricting the type of sets involved, thus allowing opera- 

tions on sets of sets of...; sets of ordered pairs, ordered 

triples, ordered...; sets of variable length n-tuples, n-tuples 

of arbitrary sets; etc., with the assurance that these operations 

will be executed rapidly.  The purpose of a Set-Theoretic Data 

Structure (STDS) is to provide a storage representation for 

arbitrarily related data allowing quick access, minimal storage, 

and excreme flexibility.  This paper will describe an STDS with 

the above properties utilizing a general implementation suitable 

for paging in a mass memory system. 

iii 
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I. INTRODUCTION 

The overall goal, of which this paper is a part, is 

the development of a machine-independent data structure allow- 

ing rapid processing of data related by arbitrary assignment 

such as:  the contents of a telephone book, library files, 

census reports, family lineage, graphic displays, information 

retrieval systems, networks, etc.  Data which are non-intrinsi- 

cally related have to be expressed (stored) in such a way as 

to define the way in which they are related before any data 

structure is applicable.  Since any relation can be expressed 

in set theory as a set of ordered pairs and since set theory 

provides a wealth of operations for dealing with relations, a 

set-theoretic data structure appears worth investigation. 

A Set-Theoretic Data Structure (STDS) is a storage 

representation of sets and set operations such that:  given 

any family of sets  n  and any collection  S  of set operations 

an STDS is any storage representation which is isomorphic to 

n  with  S .  The language used with an STDS may contain any 

set-theoretic expression capable of construction from  n  and 

S    Every stored representation of a set must preserve all 

the properties of that set and every representation of a partic- 

ular set must behave identically under set operations. 

-1 



parts: 

II. GENERAL STORAGE REPRESENTATION 

An STDS is comprised of five structurally independent 

1. a collection of set operations  S . 

2. a set of datum names  0 . 

3. the data:  a collection of datum definitions, one 

for each datum name. 

4. a collection of set names  n . 

5. a collection of set representations, each with a 

name in n • 

The storage representation is shown schematically in Figure 1. 

In order for an STDS to be practical the set operations must 

be executed rapidly.  If any two sets can be well-ordered (a 

linear order with a first element) such that their union pre- 

serves this well-ordering, then the subroutines needed for set 

operations just involve a form of merge or, at worst, a binary 

search of just one of the sets.  It was shown in another paper 

[1] that any set defined over  6  could be so ordered.  Sets 

are represented by blocks of contiguous storage locations with 

n  containing names of all the sets.  The set  S  is the set 

of all datum names, and is represented by a contiguous block 

of storage locations; the address of a location in the  ß-block 

is a datum name and an element of 8 •  The content of a loca- 

tion in the  ß-block is the address of a stored description of 

that datum (see Figure 1).  The contents of the  ß-block and 
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the  n-block are the only pointers needed for the operation of 

an STDS.  The storage representations of the individual sets do 

not contain pointers to other sets, but contain information 

about datum names.  Since each set representation has only one 

pointer associated with it, the set representation can be moved 

throughout storage without affecting its contents or the contents 

of any other set representation — only the one pointer in n 

is affected.  Updating set representations is virtually trivial. 

Elements to be deleted are replaced by the last element in the 

set.  Elements to be added are added to the end of the set re- 

presentation as space allows.  When contiguous locations are no 

longer available a new set is formed and the element in n  that 

referenced the set before it was extended now references a loca- 

tion that indicates that the set is now the union of two set 

representations.  (In a paging structure such sets could be 

kept on the same page.)  This demonstrates two different kinds 

of sets in  n ;  generator sets and composite sets.  Only the 

generator sets have storage representations, the composite sets 

are unions of generator sets, and the generator sets are mutual- 

ly disjoint.  Since no duplication of storage of sets is neces- 

sary and since the set representations are kept to a minimum 

by containing just the elements of the sets and no pointers, 

an STDS is intrinsically a minimal storage representation for 

arbitrarily related data. 



III. OPERATION OF AN STDS 

An STDS relies on set operations to do the work 

usually allocated to pointers or hash-coding as in list 

structures, ring structures, associative structures, and re- 

lational files.  A set operation of S  is represented by a 

subroutine which accesses sets through pointers in n•  Again 

it should be stressed that no pointers exist between sets, 

hence the set operations S  act as the only structural ties 

between sets.  Since S will allow any set-theoretic operation, 

S  will be rich enough that all information between sets may 

be expressed by a set-theoretic expression generated from the 

operation of S .  Any expression establishes which sets are 

to be accessed and which operations are to be performed within 

and between these sets; therefore all pages needed for comple- 

tion of an expression are known before the expression is exe- 

cuted.  Complementing the set operation subroutines are some 

strictly storage manipulation subroutines.  These, however, 

are not reflected in any set-theoretic expression.  These 

routines change storage modes and perform sorts and orderings. 

A fast sort routine has been programmed with execution times 

as a linoar function of the number of words to be sorted.  (On 

an IBM 7090 this sort ordered 1000 words in 0.35 seconds and 

10,000 words in 3.3 seconds.  The nature of this sort is such 

that on an IBM 360/67 it may sort up to 60,000 bytes per 

second.  This routine is presently being programmed.  Another 
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subroutine which is crucial to the operation of an STDS is 

the tau-ordering routine [1].  This routine gives a well- 

ordering which is preserved under union. 



IV. DETAILS OF 3-BLOCK 

The  ß-block may be a section of contiguous* storage 

locations with  3  as the address of the head location.  The o 

first location containing a datum-pointer has the address 

B +1 , and the location of the i-th datum-pointer is  ß +i . o r o 

Let  #ß  represent the total number of datum-pointers, then the 

last address of the  ß-block would be  ß +#ß .  ß  is the set o 

of datum-names or locations of datum-pointers in the  ß-block. 

Since all datum-pointers are located between  ß ♦I  and  ß +#ß . r oo 

let  ß  be the set of integers  (1,2,. ..,#ß} .  Therefore any 

integer  i  such that  l<iw#ß  is the datum-name for the 

i-th datum-pointer.  The i-th datum pointer locates a block of 

storage containing a description of the i-th datum and all the 

generator set names (elements of n) for which the i-th datum 

name is a constituent, (see Figure 1). 

The  ß-block may also be represented by  n  disjoint con- 
tiguous  ßi-blocks such that  ß = ßjU ß2U . • • U ßn • 



V. DETAILS OP  n-BLOCK 

The  n-block is similar to the  3-block with  n o 

and  #ri  as the address of the head location and cardinality 

respectively.  The contents of the n-block are pointers.  These 

pointers are of two types and are distinguished by an integer 

n*  such that  l<n*<*n •  For all lm.i<T\*   ,     i  is the 

name of a generator set, and for all  n*<-i^#n ,  i  is a com- 

posite set.  A generator set has a set representation while a 

composite set does not since it is the union of some generator 

sets.  For  i>ri*  the pointer in  n +i  locates a section of 

storage containing names of generator sets.  For  i< n*  the 

pointer in n +i  locates a section of storage containing all 

composite set names that use  i , and a pointer to the set re- 

presentation of  i .  Since all generator sets are mutually 

disjoint and since only generator sets have a storage represen- 

tation, there is no duplication of storage in an STDS.  Let the 

class of generator sets be G and the class of composition 

sets be  C , then G- {1,..., n*-l}, C ■ {n*,...,*n} , and 

n» 6 oC  (see Figure 1). 



VI.  SET REPRESENTATION 

In order to insure fast execution times for the 

set operations in S , the sets involved must be isomorphic 

to a unique linear representation of their elements. Unique 

is used here to mean unique relative to some predefined well- 

ordering relation, such that independently of how the set is 

presented to a machine the ordering of its elements will 

always be the same.  This well-ordering must be preserved 

under union.  Any ordering satisfying the above conditions 

is adequate for the efficient operation of an STDS [1]. 

Since the set representatives must be isomorphic 

to the sets they represent, every set representation must 

reflect the rank and preserve the order (if any] of the sets 

and their elements.  Let A ■ <a,b,c>, B ■ {a,b,c} , and 

C 3 {c,b,a}j then  B  and  C  must have the same set represen- 

tation while A must have a completely different representa- 

tion.  For simple sets like these, adequate representations 

are trivial«, such is not always the case, however. 



VII. COMPLEXES AND N-TUPLES 

If an STDS is to be general,then it will have to ac- 

commodate more imaginative sets than the ones above.  Let 

W » {a,b,{{c}},<a,{b,d},c>,<<a,b>,c>}  and  V -   {<a,b,c>, 

<{<a,b>,<c,d>},<d,a,>>,{{c}},b} .  In order for set operations 

on these sets to fall within the allotted time bounds, the 

storage representations of  W  and V  must satisfy the well- 

ordering conditions.  Such a representation is not immediately 

obvious.  Two problems arise. 

1. The first problem is machine-oriented in that an 

ordered set in set theory is defined through nesting and re- 

petition of the elements of the set.  For example,the Kura- 

towski definition of ordered pair gives  <a,b> ■ {{a},{a,b}} . 

Since any machine representation will induce an order on the 

elements of a set by their location in storage, this may be 

utilized instead of relying on redundancy of storage.  This 

in turn may present problems in preserving the isomorphism 

between sets and their set representations, since an unordered 

set must have a unique representation and no ordering on its 

elements. 

2. The second problem is much allied with the first 

except that it is more biased towards the foundations of set 

theory.  There seems to be a general lack of precision in set 

theory when ordering beyond a pair is involved.  No set re- 

presentation of ordered triples, ordered quadruples, quintuples, 
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11- 

sextuples, etc. is given save for an arbitrary assignment in 

terms of ordered pairs.  (This problem is discussed by Skolem 

[3].)  For example <a,b,c,d>  has no set equivalent indepen- 

dent of ordered pairs; it is given one of the following as 

its canonical form:  <<a,b>,<c,d>>; <a,<b,<c,d>>>;<a,<<b,c>,d>; 

<<<a,b>,c>,d>; <<a,<b,c>>,d>; or  {<!,a>,<2,b>,<3,c>,<4,d>} . 

Clearly each of these sets has independent stature, and assigning 

one as a canonical form of the other precludes the use of the 

others.  The problem with ordered tuples is compounded in that 

though they are defined as sets they are excluded from meaning- 

ful set operations.  The intersection between quadruples 

<a,b,c,d>  and  <x,b,c,d>  is always empty unless  a»x , and 

even then it depends on which assignment is used.  In another 

paper [1] the definition of a 'complex' is presented which 

preserves the distinction between different nestings of ordered 

pairs, does not require order to be defined by repetition, and 

does not arbitrarily exclude certain sets from being operated 

on by set operations.  The formal definition of a complex is 

given by the following, where  N  is the set of natural numbers. 

DEFINITION OF A COMPLEX:  Any two sets  A  and  B 

form a complex  (A;B)  if and only if 

(IX) (3Y) (X«{A,B}) (Y«{A,B}) [ (Vxe X) (3i«N) 

({{x},i}«Y) & (VyeY)(5jeN)(Zx«X)({{x},j}-y)] 
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This definition is stated in such a way as not to presuppose 

any ordering in  (A;B)  of  A before  B , insuring that a 

complex be an unordered coupling of two sets, each bearing 

a mutual dependence on the other.  The definition states that 

for every element  x  of one of the sets,  X , the other set, 

Y , contains an element containing a natural number and a set 

whose only element is  x ; and that  Y  is such that every 

element of  Y  contains only a natural number and a singleton 

set containing an element of  X  (either  X=A  and  Y=B , or 

X-B  and  Y=A , but not both).  Let  A={a,b,c}, B={{{a},l}, 

{{b},3},{{c}, 963},Hb},6}}  and let  C-{a,b , { {b}, 3}, { {a}, 1}, 

{{d},6}}  then  (A;B) , (B;A)  and  (AnC;BnC)  are complexes, 

while  (A;A), (A;C), (A;BAC)  and  (AnC;B)  are not complexes 

From the definition it should be noticed that if  (A;B)  is a 

complex then  (B;A)  is the same complex and  A^B .  Without 

giving a formal definition here let  xe.A be understood to 

mean that  x  is in the i-th position of the complex  A , then 

a notational schema for a complex is given by: 

DEFINITION SCHEMA:  {x1:*(x,i)}=A  iff  [(Vx)(VieN) 

(xe.A ••"♦• ^(x.i))  &  A  is a complex]. 

These results allow a set-theoretic foundation for the follow- 

ing equivalent notations: 

set {a,b,c} * {a^b1,^} 

ordered pair <a,b> » {a^b2} 
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ordered triple       <a,b,c> « {a^b2^3} 

ordered quadruple   <a,b,c,d> ■ {a1 ,b2 ,c 3 .d1*} 

ordered pairs of ordered pairs 

«a.b>.<c,d» - {{a1.b2}1.{c1,d2}2} 

<a,<b.<c,d>» = {a'^b'.ic1^2}2}2} 

<a,«b.c>.d» = ia'Aih1,^}1,*2}2} 

«<a.b>.c>.d> - {{{a'.b2}1^2}1^2} 

<<a,<b.c»,d> = {{a1,{b1.c2}2}1,d2} 

{<l,a>,<2,b>,<3,c>,<4,d>} « {{1',a2,},{21,b2} , 

{31.c2};{41.d2}} 

and from the beginning of this section, 

H = {al,b1,{{c1}}.{al,(b1.d1}2,c3},{{a1,b2},c1}} 

V = {{a1,b2.c3}.{{{a1,b2},{c1,d2}}.{d1,a2}2},{{c1}}.b1} 

Since for all  a,{a1}={a} , the exponent 1 is optional.  It 

should be stressed that the symbol  'x '  has no meaning apart 

from being enclosed by set brackets.  If A»{a6,b8} , then 

ae6A  and  be8A  are true, but  a
6eA  is meaningless.  For 

examples of set operations between complexes see Figure 2. 
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1.        <a,b,c>0 <x,b,y>   -   {b2} 

2.        <a,b,c>ü<x,y>   «   {a1 .x1 ,b2 ,y2 ,c3} 

3.        {a,b,c}n <a,x,y>   =   <a>   =   {a1}   =   {a} 

4.        U{aX'b2'{xl'c3}3'{y2'd,,}',}   '   {xl,c3}U {y2,dM   =   <x.y.c,d> 

5.        <a,b,z>A <a,y,c> A<x,b,c>   «   <x,y,z> 

6.        <a,b,c,d>  ^  <x,y,c,d>   *   <a,b> 

Figure 2.  Set Operations between Complexes 



VIII. SET OPERATION SUBROUTINES 

The viability of an STDS rests not only on the speed 

of the set operations, but also on their scope.  Table I 

presents some available set operations for constructing ques- 

tions in any way compatible within a parent language.  (For 

those who are not familiar with the set-theoretic definitions 

or are not accustomed to the notation preferred in this mono- 

graph, the definitions are given in the Appendix.)  These sub- 

routines are presented in a format compatible with FORTRAN, 

and with MAD if periods are added as in the examples to follow. 

The argument represented by  C  in the subroutines can be de- 

leted.  This default case assigns a temporary storage block 

whose location is returned in D , as if it were a permanent 

storage location, i.e.,  D = UN(A,B)   Since all subroutines 

operate on the name of a storage block representing a set, then 

for all subroutines that return a name, any degree of nesting 

of these subroutines within subroutines is allowable (see 

examples).  Since the only restriction on a set representation 

is that it be isomorphic to the set and have a predefined well- 

ordering on its elements, there are many storage configurations 

available.  MODE allows a choice of different storage configu- 

rations for non-set-theoretic needs.  Though all the subroutines 

appear to be defined just for sets, they are defined for any 

complex as well.  However, to make use of complexes that are 

not sets since they allow the extension of binary relation 

properties (e.g., domain, image, relative product, restriction, 

etc.) to sets of arbitrary-length n-tuples, further delimiters 

-15- 



16- 

■ust be included.  For example using  'Q*  and an extra 

argument the I-th relative product of A with  B could be 

QRP(I,A,B,C) , and the I-th domain of A could be  QDM(I,A,C) , 

and QELM(I,A,B)  could represent the question "is A an 

I-th element of B ." 



TABLE I 

SOME SET OPERATIONS EXPRESSED AS SUBROUTINES 

The last column contains an executable expression 

of the set-theoretic expression preceding it.  D  is an indirect 

name for the permanent storage with name  C , or for temporary 

storage if the argument C  is deleted  (see text). 

1) UNION 

2) INTERSECTION 

3) SYMMETRIC DIFFERENCE 

4) RELATIVE COMPLEMENT 

5) EXACTLY N elements of  A 

6) DOMAIN of A 

7) RANGE of A 

8) IMAGE of  B under A 

9) CONVERSE IMAGE under A 

10) CONVERSE of  A 

11) RESTRICTION of  A  to  B 

12) RELATIVE PRODUCT of  A  and  B 

13) CARTESIAN PRODUCT of  A and  B 

14) DOMAIN CONCURRENCE of A to  B 

15) RANGE CONCURRENCE of A  to  B 

16) SET CONCURRENCE of A  to  B 

17) CARDINALITY of  A N-#A,(N  is an 
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c . •  AUB D  « .   UN(A,B,C) 

C   « .UA D  > ■   UN(1,A,C) 

c . •   AO B D  > •   IN(A,B,C) 

c • . OA D  • •   IN(1,A.C) 

c • >  A* B D  > .   SD(A.B,C) 

c « >  LA D  • .   SD(1,A,C) 

c . >  A'V'B D  > ■   RL(A,B,C) 

c . i   E  A 
n 

D  > ■  EX(N,A,C) 

c . '  P(A) D  » .   DM(A,C) 

C   i • R(A) D  > .   RG(A,C) 

c • •   A[B1 D   • •   IM(A,B.C) 

C   i .   (B]A D   « •   CM(A,B,C) 

c • ■  A D   • .  CV(A,C) 

c . .  A|B D   • ■   RS(A,B,C) 

c • ■   A/B D   • ■   RP(A,B,C) 

c « .   AxB D   > ■   XP(A,B,C) 

c • •3)(A:B) D   • •   DC(A,B,C) 

c • • JiMUi) D   > •   RC(A,B,C) 

c • • ^(A:B) D   • •   SC(A,B,C) 

int :eger) N   i •  C(A) 



TABLE I (cont'd) 

BOOLEAN OPERATIONS  1=1  if the statement is true. 

1=0  if the statement is false. 

18) A is a subset of  B 

19) A is equal to  B 

20) A and  B  are disjoint 

21) A is equipollent to  B 

22) A xs an element of  B 

= SBS(A,B) 

« EQL(A,B) 

= DSJ(A,B) 

• EQP(A,B) 

» ELM(A,B) 

SPECIAL CONTROL OPERATIONS 

23) SET CONSTRUCTION    C = {A.B.X,...} 

24) MODE of  A   (see text)  N  is an integer 

25) ACCESS DATA in  A  by format  N 

D = S(C,A,B,X, 

N = M(A) 

D = ACC(N,A,C) 

(each format is written in the parent 

language and given an integer name,  N ) 
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IX. SOME APPLICATIONS 

This section will be devoted to examples de- 

monstrating the applicability of set-theoretic questions. 

For a germane reference on computer graphics see Johnson 

[2].  The first two examples are to give some indication of 

execution times.  The two examples were run on an IBM 7090; 

the times may or may not be characteristic of the poten- 

tial speeds in an STDS.  With just two examples no claims 

can be made other than that two examples were run with the 

following results: 

EXAMPLE 1:  Given a population of 24,000 people and 

a file F containing a ten-tuple for each person such 

that each ten-tuple is of the form < age, sex, marital 

status, race, political affiliation, mother tongue, 

employment status, family size, highest school grade 

completed, type of dwelling >, the following four 

questions were asked: 

a. Find the number of married females: 

Answer:  6,015 Time:  0.50 seconds 

b. Find the number of people of Spanish race whose 

mother tongue is not Spanish. 

Answer:  1,352 Time:  0.48 seconds 

c. Find the number of people aged 93 or 94. 

Answer:  46 Time:  0.73 seconds 
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d.  Find the number of males and unmarried females. 

Answer:  17,985 Time:  0.55 seconds 

e# Find the number of males between the ages of 20 

and 40. 

Answer:  588 Time:  0.62 seconds. 

EXAMPLE 2:  Given a population of 3000 people and 

given two collections, A and B, of subsets from this 

population such that: A contains 20 sets of 500 

people, and B contains 500 sets of 20 people.  Find 

the set of people belonging to some set in A , to all 

sets in  A , and to an odd number of sets in A ; 

and similarly for  B . 

Results A-Times        B-Times 

a. people in some set        0.73 sec       0.76 sec 

b. people in all sets        0.48 sec       0.05 sec 

c. people in odd no. of sets  0.76 sec       0.78 sec 

A point to notice is that where every element has to be 

accessed, as in (a) and (c), the times are dependent on 

the total number of elements included  (C(A) « C(B) = 10,000) 

and not the number of sets involved (20 for A and 500 for B). 

Examples three and four are presented with MAD as 

the parent language, therefore all the subroutines names 

must end with a period. 
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EXAMPLE 3:  Let six sets  A,B,C,D,E, and F  be the 

membership lists of six country clubs.  For each male 

resident of Ann Arbor, let there be a datum name in  B 

for a data block containing: person's name, address, 

phone number, credit rating, age, golf handicap, wife's 

name (if any), political affiliation, religious pre- 

ference, and salary.  The set  n  will contain the names 

of the sets, namely:  A(0), B(0), C(0), D(0), E(0), 

F(0) .  This along with the collection  S  of set 

operations allows answering the following questions. 

1) How many members belong to club  A  or  B  but not 

C ? 

2) Find the phone numbers of members in an odd 

number of clubs. 

3) Get addresses of members belonging to one and 

only one club. 

4) Get addresses and phone numbers of people not 

in any club. 

5) Find members of  A  that are not also in  B but 

who may be in  C  only if they are not in  D , or 

in  E  if they are not in  F . 

6) Get the average credit rating of members belonging 

to exactly three clubs. 
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The possible questions may become ridiculously in- 

volved and may interact with any spontaneously constructed 

sets.  For example of the latter, let  X  be the set of 

Ann Arbor males born in Ann Arbor. 

7)  Find the average age of members born in Ann Arbor 

and compare with average age of members not born 

in Ann Arbor. 

The answers to  (1)  through  (7)  formulated in an 

STDS are expressed below, with  N  and  M  representing real 

numbers, and with  BB  for  ß  and  NN  for  n . 

1) N « C.(RL.(UN.(A,B),C)) 

ans : N 

2) ACC.(1,SD.(1,NN),Q) 

ans: Q  Format 1 gives phone numbers (see Table I, 

#25) 

3) ACC.(2,EX.(1,NN),Q) 

ans: Q  Format 2 gives addresses 

4) ACC.(3,RL. (BB,UN.(1,NN)),Q) 

ans. Q  Format 3 gives phone numbers and addresses 

5) RL.(RL.(A,B),UN.(RL.(D,C),RL.(F,E)),Q) 

ans:  Q 

6) ACC.(4,EX. (3,NN),Q) 

N = 0 
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THROUGH LOOP, FOR I « 1,1,1 .G . C.(Q) 

LOOP   N » N ♦ Q{I) 

N = N/C.(Q) 

ans:   N  Format 4 gives credit rating 

7) N = 0 

M = 0 

ACC. (5,X,T) 

THROUGH   L00P1,   FOR   I   «   1,1,I.G.C.(T) 

LOOP1 N   «   N   +   T(I) 

ACC.(5,RL.(BB,X),P) 

THROUGH   L00P2,   FOR   I   -   1,1 ,1 .G.C.(P) 

LOOP2 M   -  M   ♦   P(I) 

N   =   N/C.(T) 

M   »  M/C. (P) 

ans:        N     and    M     are   the   respective   average   ages 

Format     5     gives  ages 

EXAMPLE  4:     Family   lineage  is   easily   expressed   in  an   STDS 

With  just   five   initial   relations   defined over  a  popula- 

tion     U   ,   all   questions  concerning   family  ties  may  be 

expressed. 

Let U     be  a population of people   and   let 

M   = {<x,y>: y   is   the mother  of  x} 

F  ■ {<x,y>: y   is   the   father  of  x} 

S   « {<x,y>: y   is   a   sister  of  x} 

B  = {<x,y>: y   is   a brother  of  x} 
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H ■ {<x,y>:  y is a husband of x} 

Let  X  be any subset of the population U , find 

1) the set  G  of grandfathers of X . 

G ■ FfflFKM) [X]] set notation 

IM. (I^IM. (UN. (F,M) ,X) ,G) in an STDS 

2) the set  GF  of grandfathers of X  on the facher's 

side. 

GF « F[F[X]] set notation 

IM. (F,IM.(F.X),GF) STDS 

3) the set  GM  of grandfathers of X on the mother's 

side 

GM - G ^ GF set notation 

RL.(G,GF,GM) STDS 

4) the set  GR : the grandfather relation over  U . 

GR « (FWM)/F set notation 

RP. (UN. (F,M),F,GR) STDS 

5) the general relation:  P = {<x,y>:  y is a parent of 

x} 

P « F ü M set notation 

UN.(F,M,P) STDS 

6) the genral relation:  Sibling, L. 

L ■ SuB set notation 

UN.(S,B,L) STDS 

7) the general relation:  Children, C. 

C = M U F = T set notation 

CV.(P,C) STDS 
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8) the general relation:  Aunt,  A . 

A » (P/S) ü (P/B/TT) set notation 

UN.(RP.(P,S),RP.(P.RP.(B.CV.(H))),A)   STDS 

9) the general relation: Wife,  W . 

w = H" set notation 

CV.(H,W) STDS 

10) the general relation: Cousin,  K . 

K = P/L/C set notation 

RP.(P,RP.(L,C),K) STDS 

11) the general relation: Half-sibling,  HS . 

HS » P/C ^ (M/M OF/F") set notation 

RL.(RP. fCV. (C),C),IN.(RP.(M,CV.(M)), 

RP.(F,CV.(F))),HS STDS 

12) people in X with no brothers or sisters 

Q « X^P(L) set notation 

RL. (X,DM. (L),Q) STDS 

13) find all relations of X to a set Y such that  Y 

is equal to the image of X . 

Q = {A:(Aen)(Y = A[X]} set notation 

DC.(X,NN,T) STDS 

THROUGH LOOP, FOR I « 1,1,I.G.C.(T) 

B = IM.(T(I),X) 

LOOP  WHENEVER EQL.(Y,B).E.l, UN.(Q,S.(T(I)),Q) 

Many more possibilities are available and might 

be tried by the reader. 
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X.  CONCLUSION 

The purpose of an STDS is to provide a storage 

representation for arbitrarily related data allowing quick 

access, minimal storage, generality, and extreme flexibility, 

With the definition of a complex, a predefined well-or- 

dering, and the operations of set theory, such a storage 

representation can be realized. 



APPENDIX 

SET-THEORETIC DEFINITIONS 

Conventions 

The logical connectives 'and', 'or', 'exclusive-or' 

are represented by  'A'. 'V, '^ ' .  "For all x*, 'for some x', 

•for exactly  n x' will be represented by  'Vx', 'Sx1, ,E(n)!x, 

Parentheses are used for separation, and as usual the concatena- 

tion of parentheses will represent conjunction. 

'A'  will be a set if and only if 

a. it can be represented formally by abstraction 

(i.e., A={x:9(x)}  whe*w  6(x)  is a predicate condition speci- 

fying the allowable elements  'x'); 

b. 'A'  can be represented by  {,}  enclosing the 

specific elements of  'A'. 

Definitions 

The symbol  'e'  means 'is an element of;  xeA 

reads:  nx is an element of  A"'. 

1.  UNION 

a. binary union of two sets A and  B 

A UB ■ (x: (xeA)v(x8B) } 

b. unary union of a family G  of sets 

UG  = {x: CSAeG) (xeA)} 
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c.  indexed union of a set  f(A)  over the family  G 

V>AeGf(A) = {x:CaAeG)(x«f(A))}. 

2. INTERSECTION 

a. binary   intersection  of     A     and     B 

AnB  -   {x: (x«A) (xeB)} 

b. unary intersection of a family  G 

OG  = {x:(VAeG)(xeA)} 

c. indexed intersection of  f(A)  over the family  G 

f\eGf(A) *   {x:(VAeG)(xef(A))} . 

3. SYMMETRIC DIFFERENCE 

a. binary   symmetric  difference   of    A     and     B 

A A B   =   {x:(xeA)A (xeB)}* 

* even though the symbol 'A' 
has two different meanings, 
no confusion is likely 

b. unary symmetric difference of  G 

AG ■ {x:(for an odd number of  AeG)(xeA) } 

c. indexed symmetric difference of  f(A)  over  G 

AAeGf(A) = {x:(for odd no. of AeG)(xef(A))} . 

4. RELATIVE COMPLEMENT 

A ^ B = {x:(xeA)(x^B) } . 

5. EXACTLY  N! 

the set of elements common to exactly  'n'  elements 

of a given set  G  is represented by: 

E G * {x:(E(n)lAeG)(xeA)} . 
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6. DOMAIN  of  a   set     A 

P(A)   »   {x: (3y)(<x,y>«A)}*   . 

*     <x,y>    represents   an  ordered pair 

7. RANGE  of  a   set     A 

R(A)   -   {y:(3x)(<x,y>eA)}   . 

8. IMAGE  of     B     under     A 

A[B]   =   {y:(3xeB)(<x,y>«A)}   . 

9. CONVERSE IMAGE of  B under  A 

[B]A » {x: (Iy«B) (<x,y>eA)} . 

10. CONVERSE of  A 

Ä = {<y,x>: <x,y> eA} . 

11. RESTRICTION 

A|B  »   {<x,y>: (<x,y>eA)(x«B)}   . 

12. RELATIVE   PRODUCT   of     A  and     B 

A/B  =   {<x,y>: (Sz) (<x,z>*V)(<z,y>«B)]   . 

13. CARTESIAN   PRODUCT   of     A     and     B 

AxB  =   {<x,y>:(x«A)(yeB)}   . 

14. DOMAIN CONCURRENCE of X  relative to  A 

3D(X:A) = {B:(BaA)(xcP(B))} . 

15. RANGE CONCURRENCE of X  relative to  A 

^(X:A) = {B:(B«A)(Xc R(B))} . 
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le.  SET CONCURRENCE of  X  relative to  A 

&iX:k)   - {B: (BeA) (Xc B) } . 

17. CARDINALITY of  A 

#A ■ n  iff there are exactly  n  elements 
in  A. 

18. A  is a SUBSET of  B  iff every element of  A  is an 

element of B:  AcB *-► (Vx) (x«A ♦ xeB) . 

19. A  is EQUAL to  B  iff A  is a subset of  B , and 

B  is a subset of  A:  A«B •*■■*■   (Ac B  &  B *» A) . 

20. A  and  B  are DISJOINT iff the intersection of  A 

and  B  is empty:  An B = 0 . 

21. A  is EQUIPOLLENT to  B  .ff  A  and  B  contain the 

same number of elements:  #A = #B . 



GLOSSARY OF SYMBOLS 

Symbol Symbol Definition 

iff if and only if 

= Identity 

^ Conjunction 

v Disjunction 

A Exclusive or 

■»■ Implication (if ... then) 

■*--*■ Equivalence 

Vx Universal quantifier (for all) 

ix Existential quantifier (for some) 

E!x Uniqueness quantifier (for exactly one) 

Ox Odd quantifier (for an odd number of) 

E(n)!x Exact number quantifier 

« Set membership 

9 Empty set 

i Non-membership 

C Set inclusion 

A o B Intersection 

AU B Union 

AA B Symmetric difference 

A^B Relative complement 

<x,y> Ordered pair 

{x:0(x)} Definition by abstraction 

xAy Ordered pair  <x,y>  contained in A 
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GLOSSARY OF SYMBOLS (cont'd) 

Symbol 

UG 

OG 

AG 

E  G n 

AxB 

P(A) 

R(A) 

Ä 

A/B 

A|X 

A[X] 

[X]A 

5D(X) 

Ä(X) 

C(X) 

5(A) 

Symbol Definition 

Union or sum of 6 

Intersection of G 

Symmetric difference of 6 

Elements contained in exactly  n  elements 
of G 

Cartesian product 

Domain of  A 

Range of A 

Converse of  A 

Relative product of A  and  B 

A  restricted to  X 

Image of  X  under A 

Converse-image of X  under A 

Domain concurrence of  X 

Range concurrence of X 

Set concurrence of  X 

Total cardinality of A 
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