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ABSTRACT

This paper is motivated by an assumption that many
problems dealing with arbitrarily related data can be expedited
on a digital computer by a storage structure which allows rapid
execution of operations within and between sets of datum names.
Such a structure should allow any set-theoretic operation with-
out restricting the type of sets involved, thus allowing opera-
tions on sets of sets of...; sets of ordered pairs, ordered
triples, ordered...; sets of variable length n-tuples, n-tuples
of arbitrary sts; etc., with the assurance that these operations
will be executed rapidly. The purpose of a Set-Theoretic Data
Structure (STDS) is to provide a storage representation for
arbitrarily related data allowing quick access, minimal storage,
and exireme flexibility. This paper will describe an STDS with
the above properties utilizing a general implementation suitable

for paging in a mass memory system.
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I. INTRODUCTION

The overall goal, of which this paper is a part, is
the development of a machine-independent data structure allow-
ing rapid processing of data related by arbitrary assignment
such as: the contents of a telephone book, library files,
census reports, family lineage, graphic displays, information
retrieval systems, networks, etc., Data which are non-intrinsi-
cally related have to be expressed (stored) in such a way as
to define the way in which they are related before any data
structure is applicable. Since any relation can be expressed
in set theory as a set of ordered pairs and since set theory
provides a wealth of operations for i1ealing with relations, a
set-theoretic data structure appears worth investigation.

A Set-Theoretic Data Structure (STDS) is a storage
representation of sets and set operations such that: given
any family of sets n and any collection S of set operations
an STDS is any storage representation which is isomorphic to
n with S . The language used with an STDS may contain any
set-theoretic expression capable of construction from n and
S . Every stored representation of a set must preserve all
the properties of that set and every representation of a partic-

ular set must behave identically under set operations.



II. GENERAL STORAGE REPRESENTATION

An STDS is comprised of five structurally independent

parts:

1, a collection of set operations S .

2. a set of datum names 8

3. the data: a collectionr of datum definitions, one
for each datum name.

4. a collection of set names n

S. a collection of set representations, each with a

name in n .

The storage representation is shown schematically in Figure 1.
In order for an STDS to be practical the set operations must
be executed rapidly. If any two sets can be well-ordered (a
linear order with a first element) such that their union pre-
serves this well-ordering, then the subroutines needed for set
operations just involve a form of merge or, at worst, a binary
search of just one of the sets. It was shown in another paper
[1] that any set defined over B8 could be so ordered. Sets
are represented by blocks of contiguous storage locations with
n containing names of all the sets. The set B 1is the set
of all datum names, and is represented by a contiguous block
of storage locations; the address of a location in the B-block
is a datum name and an element of B . The content of a loca-
tion in the B-block is the address of a stored description of

that datum (see Figure 1). The contents of the g-block and
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the n-block are the only pointers needed for the oparation of
an STDS. The sbrage representations of the individual sets do
not contain pointers to other sets, but contain information
about datum names. Since each set representation has only one
pointer associated with it, the set representation can be moved
throughout storage without affecting its contents or the contents
of any other set representation — only the one pointer in n

is affected. Updating set representations is virtually trivial.
Elements to be deleted are replaced by the last element in the
set. Elements to be added are added to the end of the set re-
presentation as space allows. When contiguous locations are no
longer available a new set is formed and the element in n that
rvreferenced the set before it was extended now references a ‘loca-
tion that indicates that the set is now the union of two set
representations. (In a paging structure such sets could be

kept on the same page.) This demonstrates two different kinds
of sets in n : generator sets and composite sets. Only the
generator sets have storage representations, the composite sets
are unions of generator sets, and the generator sets are mutual-
ly disjoint. Since no duplication of storage of sets is neces-
sary and since the set representations are kept to a minimum

by containing just the elements of the sets and no pointers,

an STDS is intrinsically a minimal storage representation for

arbitrarily related data.



III. OPERATION OF AN STDS

An STDS relies on set operations to do the work
usually allocated to pointers or hash-coding as in list
structures, ring structures, associative structures, and re-
lational files. A set operation of S is represented by a
subroutine which accesses sets through pointers in n. Again
it should be stressed that no pointers exist between sets,
hence the set operations S act as the only structural ties
between sets. Since S will allow any set-theoretic operation,
S will be rich enough that all information between sets may
be expressed by a set-theoretic expression generated from the
operatiomof S . Any expression establishes which sets are
to be accessed and which operations are to be performed within
and between these sets; therefore all pages needed for comple-
tion of an expression are known before the expression is exe-
cuted. Complementing the set operation subroutines are some
strictly storage manipulation subroutines. These, however,
are not reflected in any set-theoretic expression. These
routines change storage modes and perform sorts and orderings.
A fast sort routine has been programmed with execution times
as a lincar function of the number of words to be sorted. (On
an IBM 7090 this sort ordered 1000 words in 0.35 seconds and
10,000 words in 3.3 seconds. The nature of this sort is such
that on an IBM 360/67 it may sort up to 60,000 bytes per

second. This routine is presently being programmed. Another
Sda
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subroutine which is crucial to the operation of an STDS is
the tau-ordering routine [1]. This routine gives a well-

ordering which is preserved under union.



IV. DETAILS OF B-BLOCK

The B-block may be a section of contiguous* storage
locations with Bo as the address of the head location. The
first location containing a datum-pointer has the address
B°+1 ,» and the location of the i-th datum-pointer is B°+i :
Let #B represent the total number of datum-pointers, then the
last address of the B-block would be B°+#B . B 1is the set
of datum-names or locations of datum-pointers in the B-block.
Since all datum-pointers are located between B°+1 and B°+#B .
let B be the set of integers {1,2..,#8} . Therefore any
integer i such that 1<i<#8 is the datum-name for the
i-th datum-pointer. The i-th datum-pointer locates a block of
storage containing a description of the i-th datum and all the
generator set names (elements of n) for which the i-th datum

name is a constituent, (see Figure 1).

* The B-block may also be represented by n disjoint con-

tiguous Bi-blocks such that g = 8, U BzU oo U Bn 4

-7-



V. DETAILS OF n-BLOCK

The n-block is similar to the B-block with N,
and #n as the address of the head location and cardinality
respectively. The contents of the n-block are pointers. These
pointers are of two types and are distinguished by an integer
n* such that 1l<n*g#n . For all 1lgi<n* , i 1is the
name of a generator set, and for all n*<i<#n, i 1is a com-
posite set. A generator set has a set representation while a
composite set does not since it is the union of some generator
sets. For i>»n* the pointer in n°+i locates a section of
storage containing names of generator sets. For i< n* the
pointer in n°+i locates a section of storage containing all
composite set names that use i , and a pointer to the set re-
presentation of i . Since all generator sets are mutually
disjoint and since only generator sets have a storage represen-
tation, there is no duplication of storage in an STDS. Let the
class of generator sets be G and the class of composition
sets be C , then 6= {1,..., n*-1}, C = {n*,...,#n} , and

n= GvuC (see Figure 1).



VI. SET REPRESENTATION

In order to insure fast execution times for the
set operations in S , the sets involved must be isomorphic
to a unique linear representation of their elements. Unique
is used here to mean unique relative to some predefined well-
ordering relation, such that independently of how the set is
presented to a machine the ordering of its elements will
always be the same. This well-ordering must be preserved
under union. Any ordering satisfying the above conditions
is adequate for the efficient operation of an STDS [1].

Since the set representatives must be isomorphic
to the sets they represent, every set representation must
reflect the rank and preserve the order (if any) of the sets
and their elements. Let A = <a,b,c>, B = {a,b,c} , and
C = {c,b,a} ; then B and C must have the same set represen-
tation while A must have a completely different representa-
tion. For simple sets like these, adequate representations

are trivialy; such is not always the case, however.



VII. COMPLEXES AND N-TUPLES

If an STDS is to be general,then it will have to ac-
commodate more imaginative sets than the ones above. Let
W= {a,b,{{c}},<a,{b,d},c>,<<a,b>,c>} and V = {<a,b,c>,
<{<a,b>,<c,d>},<d,a,>>,{{c}},b} . In order for set operations
on these sets to fall within the allotted time bounds, the
storage representations of W and V must satisfy the well-
ordering conditions. Such a representation is not immediately

obvious. Two problems arise.

1. The first problem is machine-oriented in that an
ordered set in set theory is defined through nesting and re-
petition of the elements of the set. For example, the Kura-
towski definition of ordered pair gives <a,b> = {{a},{a,b}}
Since any machine representation will induce an order on the
elements of a set by their location in storage, this may be
utilized instead of relying on redundancy of storage. This
in turn may present problems in preserving the isomorphism
between sets and their set representations, since an unordered
set must have a unique representation and no ordering on its
elements.

2. The second problem is much allied with the first
except that it is more biased towards the foundations of set
theory. There seems to be a general lack of precision in set
theory when ordering beyond a pair is involved. No set re-
presentation of ordered triples, ordered quadruples, quintuples,

-10-
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sextuples, etc. is given save for an arbitrary assignment in
terms of ordered pairs. (This problem is discussed by Skolem
[3).) For example <a,b,c,d> has no set equivalent indepen-
dent of ordered pairs; it is given one of the following as

its canonical form: <<a,b>,<c,d>>; <a,<b,<c,d>>>;<a,<<b,c>,d>;

<<<a,b>,c>,d>; <<a,<b,c>>,d>; or {<1,a>,<2,b>,<3,c>,<4,d>} .

Clearly each of these sets has independent stature,and assigning
one as a canonical form of the other precludes the use of the
others. The problem with ordered tuples is compounded in that
though they are defined as sets they are excluded from meaning-
ful set operations. The intersection between quadruples
<a,b,c,d> and <x,b,c,d> is always empty unless a=x , and
even then it depends on which assignment is used. In another
paper [1] the definition of a 'complex' is presented which
preserves the distinction between different nestings of ordered
pairs, does not require order to be defined by repetition, and
does not arbitrarily exclude certain sets from being operated
on by set operations. The formal definition of a complex is

given by the following, where N is the set of natural numbers.

DEFINITION OF A COMPLEX: Any two sets A and B
form a complex (A;B) if and only if
(X) AY) (Xe{A,B}) (Ye{A,B}) [(¥xe X) (TieN)
({{x},i}eY) & (¥yeY) (FjeN) (IxeX) ({{x},jl=y)]
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This definition is stated in such a way as not to presuppose
any ordering in (A;B) of A before B , insuring that a
complex be an unordered coupling of two sets, each bearing

a mutual dependence on the other. The definition states that
for every element. x of one of the sets, X , the other set,

Y , contains an element containing a natural number and a set
whose only element is x ; and that Y is such that every
element of Y contains only a natural number and a singleton
set containing an element of X (either X=A and Y=B , or
X=B and Y=A , but not both). Let A={a,b,c},. B={{{a},1},
{{v},3},{{c}, 963},{{b},6}} and 1et cC={a,b,{{b},3},{{a},1},
{{d},6}} then (A;B) , (B;A) and (ANC;BNC) are complexes,
while (A;A), (A;C), (A;BNnC) and (A NC;B) are not complexes.
From the definition it should be noticed that if (A;B) is a
complex then (B;A) is the same complex and A¢B . Without
giving a formdl definition here let xeiA be understood to
mean that x is in the i-th position of the complex A , then

a notational schema for a complex is given by:

DEFINITION SCHEMA: {xi:W(x,i)}=A iff [(Vx)(VieN)

(xeiA ++ ¥(x,i)) & A 1is a complex].

These results allow a set-theoretic foundation for the follow-

ing equivalent notations:

set {a,b,c} = {a!,b!,c!}

ordered pair <a,b> = {a!,b?}
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ordered triple <a,b,c> = {a!,b?,c?}

ordered quadruple <a,b,c,d> = {a',b?,c?,d"}

ordered pairs of ordered pairs
<<a,b>,<c,d>> = {{a!,b2}!,{c!,d2}?}
<a,<b,<c,d>>> = {a!,{b?,{c?,d?}2}?}
<a,<<b,c>,d>> = {a!,{{b?,c?}?!,d2}?}
<<<a,b>,c>,d> = {{{a!,b2}!,c?}!,d?}
<<a,<b,c>>,d> = {{a!,{b!,c?}2}}!,d?}

{<1,a>,<2,b>,<3,c>,<4,d>} = {{1',a2,},{2!,p%} ,
{3',c2};{4t,d2}}

and from the beginning of this section,

W= {a',b}, {{c?}},{a},(b?,d%}%,c},{{a’,b?},c!}}
v = {{a’,b?,c*},{{{a',b2},{c?,d?}},{d?,a?}?},{{c'}},b!}

Since for all a,{a'}={a} , the exponent 1 is optional. It
should be stressed that the symbol 'xi' has no meaning apart
from being enclosed by set brackes. If A={a®,b®} , then

ag A and be,A are true, but abeA is meaningless. For

examples of set operations between complexes see Figure 2.



<aopr>n <x.b,y>

<a,b,c>V <x,y> =

{a,b,c}N <a,x,y>

Utat,b?,{x!,c?}

<8,b,z>A <a,y,c>

<a,b,c,d> Vv <x,y

Figure 2.

-14-

= {b?}

{al,x',b%,y%,c%}

= <a> = {a'} = {a}

3, {y%,d"}"*} = {x!,c’}U {y?,d"} =

A <x,b,c> = <x,y,z>

,¢c,d> = <a,b>

Set Operations between Complexes.

<x,y,c,d>



VIII. SET OPERATION SUBROUTINES

The viability of an STDS rests not only on the speed
of the set operations, but also on their scope. Table I
presents some available set operations for constructing ques-
tions in any way compatible within a parent language. (For
those who are not familiar with the set-theoretic definitions
or are not accustomed to the notation preferred in this mono-
graph, the definitions are given in the Appendix.) These sub-
routines are presented in a format compatible with FORTRAN,
and with MAD if periods are added as in the examples to follow.
The argument represented by C in the subroutines can be de-
leted. This default case assigns a temporary storage block
whose location is returned in D , as if it were a permanent
storage location, i.e., D = UN(A,B) . Since all subroutines
operate on the name of a storage block representing a set, then
for all subroutines that return a name, any degree\of nesting
of these subroutines within subroutines is allowable (see
examples). Since the only restriction on a set representation
is that it be isomorphic to the set and have a predefined well-
ordering on its elements, there are many storage configurations
available. MODE allows a choice of different storage configu-
rations for non-set-theoretic needs. Though all the subroutines
appear to be defined just for sets, they are defined for any
complex as well. However, to make use of complexes that are
not sets since they allow the extension of binary relation
properties (e.g., domain, image, relative product, restriction,

etc.) to sets of arbitrary-length n-tuples, further delimiters
-15-



-16-

must be included. For example using 'Q' and an extra
argument the I-th relative product of A with B could be
QRP(I,A,B,C) , and the I-th domain of A could be QDM(I,A,C) ,

and QELM(I,A,B) could represent the question "is A an

I-th element of B ."




TABLE I

SOME SET OPERATIONS EXPRESSED AS SUBROUTINES

The last column contains an executable expression
of the set-theoretic expression preceding it. D is an indirect
name for the permanent storage with name C , or for temporary

storage if the argument C is deleted (see text).

1) UNION C=AQB D = UN(A,B,C)

c =Ua D = UN(1,A,C)
2) INTERSECTION C =ANnB D = IN(A,B,C)

C =NA D = IN(1,A,C)
3) SYMMETRIC DIFFERENCE C=AaB D = SD(A,B,C)

C = AA D = SD(1,A,C)
4) RELATIVE COMPLEMENT C = AVB D = RL(A,B,C)
S) EXACTLY N elements of A C = EnA D = EX(N,A,C)
6) DOMAIN of A C = D(A) D = DM(A,C)
7) RANGE of A C = R(A) D = RG(A,C)
8) IMAGE of B wunder A C = A[B] D = IM(A,B,C)
9) CONVERSE IMAGE under A C = [B]A D = CM(A,B,C)
10) CONVERSE of A C=R D = CV(A,C)
11) RESTRICTION of A to B C = A|B D = RS(A,B,C)
12) RELATIVE PRODUCT of A and B C = A/B D = RP(A,B,C)
13) CARTESIAN PRODUCT of A and B C = AxB D = XP(A,B,C)
14) DOMAIN CONCURRENCE of A to B C =T(A:B) D = DC(A,B,C)
15) RANGE CONCURRENCE of A to B C = R(A:B) D = RC(A,B,C)
16) SET CONCURRENCE of A to B C =@(A:B) D = SC(A,B,C)
17) CARDINALITY of A N=#A,(N is an integer) N = C(A)

7-



TABLE I (cont'd)

BOOLEAN OPERATIONS 1I=1 if the statement is true.

I=0 if the statement is false.

18) A 1is a subset of B I = SBS(A,B)

19) A is equal to B I = EQL(A,B)

20) A and B are disjoint I = DSJ(A,B)

21) A is equipollent to B I = EQP(A,B)

22) A i3 an element of B I = ELM(A,B)
SPECIAL CONTROL OPERATIONS

23) SET CONSTRUCTION C = {A,B,X,...} D = S(C,A,B,X,...

24) MODE of A (see text) N is an integer N = M(A)
25) ACCESS DATA in A by format N D = ACC(N,A,C)
(each format is written in the parent

language and given an integer name, N )

-18-



IX. SOME APPLICATIONS

This section will be devoted to examples de-
monstrating the applicability of set-theoretic questions.
For a germane reference on computer graphics see Johnson
[2). The first two examples are to give some incication of
execution times. The two examples were run on an IBM 7090;
the times may or may not be characteristic of the poten-
tial speeds in an STDS. With just two examples no claims
can be made other than that two examples were run with the

following results:

EXAMPLE 1: Given a population of 24,000 people and

a file F containing a ten-tuple for each person such
that each ten-tuple is of the form < age, sex, marital
status, race, political affiliation, mother tongue,
employment status, family size, highest school grade
completed, type of dwelling >, the following four

questions were asked:

a. Find the number of married females:
Answer: 6,015 Time: 0.50 seconds

b. Find the number of people of Spanish race whose
mother tongue is not Spanish.
Answer: 1,352 Time: 0.48 seconds

c. Find the number of people aged 93 or 94.

Answer: 46 Time: 0.73 seconds

-19-
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d. Find the number of males and unmarried females.
Answer: 17,985 Time: 0.55 seconds

¢ Find the number of males between the ages of 20
and 40.

Answer: 588 Time: 0.62 seconds.

EXAMPLE 2: Given a population of 3000 people and
given two collections, A and B, of subsets from this
population such that: A contains 20 sets of 500
people, and B contains 500 sets of 20 people. Find
the set of people belonging to some set in A , to all

sets in A , and to an odd number of sets in . A ;

and similarly for B .

Results A-Times B-Times
a. people in some set 0.73 sec 0.76 sec
b. people in all sets 0.48 sec 0.05 sec
c. people in odd no. of sets 0.76 sec 0.78 sec

A point to notice is that where every element has to be

accessed, as in (a) and (c), the times are dependent on

the total number of elements included (&E(A) = §(B) = 10,000)

and not the number of sets involved (20 for A and 500 for B).
Examples three and four are presented with MAD as

the parent language, therefore all the subroutines names

must end with a period.
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EXAMPLE 3: Let six sets A,B,C,D,E, and F be the
membership lists of six country clubs. For each male
resident of Ann Arbor, let there be a datum name in 8
for a data block containing: person's name, address,
phone number, credit rating, age, golf handicap, wife's
name (if any), political affiliation, religious pre-
ference, and salary. The set n will contain the names
of the sets, namely: A(O0), B(0), C(0), D(0), E(O0),

F(O) . This along with the collection S of set

operations allows answering the following questions.

1) How many members belong to club A or B but not
c?

2) Find the phone numbers of members in an odd
number of clubs.

3) Get addresses of members belonging to one and
only one club.

4) Get addresses and phone numbers of people not
in any club.

5) Find members of A that are not also in B but
who may be in C only if they are not in D , or
in E if they are not in F .

6) Get the average credit rating of members belonging

to exactly three clubs.
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The possible questions may become ridiculously in-

volved and may interact with any spontaneously constructed

sets. For example of the latter, let X be the set of

Ann Arbor males born in Ann Arbor.

7)

STDS are

numbers,

1)

2)

3)

4)

5)

6)

Find the average age of members born in Ann Arbor
and compare with average age of members not born

in Ann Arbor.

The answers to (1) through (7) formulated in an
expressed below, with N and M representing real

and with BB for B and NN for n .

N = C.(RL.(UN.(A,B),C))

ans: N

ACC.(1,SD.(1,NN),Q)

ans: Q Format 1 gives phone numbers (see Table I,
#25)

ACC.(2,EX.(1,NN),Q)

ans: Q Format 2 gives addresses

ACC.(3,RL.(BB,UN.(1,NN)),Q)

ans. Q Format 3 gives phone numbers and addresses

RL. (RL.(A,B),UN.(RL.(D,C),RL.(F,E)),Q)

ans: Q

ACC. (4,EX.(3,NN),Q)

N =20
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THROUGH LOOP, FOR I = 1,1,I.G.C.(Q)
LooP N =N+ Q(I)
N = N/C.(Q)
ans: N Format 4 gives credit rating
7) N=20
M =0
ACC. (5,X,T)
THROUGH LOOP1, FOR I = 1,1,I.G.C.(T)
LOOP1 N = N+ T(I)
ACC. (5,RL. (BB,X),P)
THROUGH LOOP2, FOR I = 1,1,I.G.C.(P)
LOOP2 M =M+ P(I)
N = N/C.(T)
M = M/C.(P)
ans: N and M are the respective average ages

Format 5 gives ages

EXAMPLE 4: Family lineage is easily expressed in an STDS.
With just five initial relations defined over a popula-
tion U , all questions concerning family ties may be

expressed.

Let U be a population of people and let
M = {<x,y>: y is the mother of x}

F = {<x,y>: y is the father of x}

w
n

{<x,y>: y is a sister of x!}

B = {<x,y>: y is a brother of x}
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Let
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2)

3)

4)

5)

6)

7)
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{<x,y>: y is a husband of x}

X be any subset of the population U , find

the set G of grandfathers of X .

G = F[(FUM) [X]]

IM. (RIM. (UN. (F,M),X),G)

the set GF of grandfathers of X

side.
GF = F[F[X]]

IM. (F, IM. (F,X),GF)

set notation
in an STDS

the father's

set notation

STDS

the set GM of grandfathers of X on the mother's

side

GM = G ~ GF
RL. (G,GF,GM)
the set GR
GR = (FuM)/F
RP. (UN. (F,M),F,GR)
the general relation:
x}

P = FUM

UN. (F,M,P)

the genral relation:
L = SyB

UN. (S,B,L)

the general relation:

C=MUF =P

Cv.(pr,C)

the grandfather relation

P = {<x,y>:

Sibling, L.

Children, C.

set notation
STDS

over U

set notation

STDS

y is a parent of

set notation

STDS

set notation

STDS

set notation

STDS




8)

9)

10)

11)

12)

13)

LoOP
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the general relation: Aunt, A .

A = (P/S)y (P/B/ﬁ) set notation

UN. (RP.(P,S),RP.(P,RP.(B,CV.(H))),A) STDS

the general relation: Wife, W

W=H set notation

CV.(H,W) STDS

the general relation: Cousin, K .

K = P/L/C set notation

RP.(P,RP.(L,C),K) STDS

the general relation: Half-sibling, HS

HS = P/C~(M/MAF/F) set notation

RL.(RP.(CV.(C),C),IN.(RP.(M,CV.(M)),
RP.(F,CV.(F))),HS STDS

people in X with no brothers or sisters

Q = XAvD(L) set notation

RL. (X,DM. (L),Q) STDS

find all relations of X to a set Y such that Y

is equal to the image of X

Q = {A:(Aen)(Y = A[X]} set notation

DC. (X,NN,T) STDS

THROUGH LOOP, FOR I = 1,1,1.G.C.(T)

B = IM.(T(I),X)

WHENEVER EQL.(Y,B).E.1, UN.(Q,S.(T(I)),Q)

Many more possibilities are available and might

be tried by the reader.
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X. CONCLUSION
The purpose of an STDS is to provide a storage
representation for arbitrarily related data allowing quick
access, minimal storage, generality, and extreme flexibility.
With the definition of a complex, a predefined well-or-
dering, and the operations of set theory, such a storage

representation can be realized.




APPENDIX

SET-THEORETIC DEFINITIONS

Conventions

The logical connectives 'and', 'or', 'exclusive-or'
are represented by 'aA', 'v', '4'. 'For all x', 'for some x',
'for exactly n x' will be represented by '¥x', 'Ix', 'E(n)!x'.
Parentheses are used for separation, and as usual the concatena-
tion of parentheses will represent conjunction.

'A' will be a set if and only if

a. it can be represented formaly by abstraction
(i.e., A={x:8(x)} wheu.c 6(x) is a predicate condition speci-
fying the allowable elements 'x');

b. 'A' can be represented by {,} enclosing the

specific elements of 'A'.

Definitions

The symbol 'e' means 'is an element of'; xeA

reads: "x is an element of A'".

1. UNION
a. binary union of two sets A and B
AUB = {x:(xeA)v(xeB)!}
b. wunary union of a family G of sets

UG = {x:(TAeG) (xeA)}
-27-
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c. indexed union of a set f(A) over the family G

U, f(A) = {x:3AeG)(xef(A))}.

AeG

2. INTERSECTION
a. binary intersection of A and B
AnB = {x:(xeA) éxeB)}
b. wunary intersection of a family G
NG = {x:(YAeG) (xeA)}
c. indexed intersection of f(A) over the family G

rkecf(A) = {x:(VAeG) (xef(A))}

3. SYMMETRIC DIFFERENCE
a. binary symmetric difference of A and B
AaB = {x:(xeA)a (xeB)}*

* even though the symbol 'a'
has two different meanings,
no confusion is likely

b. unary symmetric difference of G
AG = {x:(for an odd number of AeG) (xeA)}

c. indexed symmetric difference of f(A) over G

AAer(A) = {x:(for odd no. of AeG)(xef(A))}

4. RELATIVE COMPLEMENT

A~V B = {x:(xeA)(xgB)} .

5. EXACTLY N!
the set of elements common to exactly 'n' elements
of a given set G is represented by:

EG = {x:(E(n)!AeG) (xeA)} .
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6. DOMAIN of a set A
D(A) = {x:(Ty) (<x,y>eA)}*

* <x,y> vrepresents an ordered pair

7. RANGE of a set A

R(A) = {y:(@x)(<x,y>eA)}

8. IMAGE of B wunder A

A[B]) = {y:(IxeB) (<x,y>eA)}

9. CONVERSE IMAGE of B under A
[BJA = {x:(3yeB) (<x,y>eA)} .

10. CONVERSE of A

A = {<y,x>: <x,y> eA}

11. RESTRICTION

A|B = {<x,y>:(<x,y>eA)(xeB)} .

12. RELATIVE PRODUCT of A and B

A/B = {<x,y>:(@z)(<x,z>@)(<z,y>eB)]

13. CARTESIAN PRODUCT of A and B

AxB = {<x,y>:(xeA) (yeB)}

14. DOMAIN CONCURRENCE of X relative to A

T(X:A) = {B:(BeA)(xe D(B))}

15. RANGE CONCURRENCE of X relative to A

JR(X:A) = {B:(BeA) (Xe R(B))}



e L Uit

16.

17.

18.

19.

20.

21.
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SET CONCURRENCE of X relative to A

& (X:A) = {B:(BeA)(Xe B)}

CARDINALITY of A

#A = n iff there are exactly n elements
in A.

A is a SUBSET of B iff every element of A is an

element of B: AeB «+ (Vx)(xeA -+ xeB)

A is EQUAL to B iff A is a subset of B , and

B is a subset of A: A=B «+ (A€B & B®A)

A and B are DISJOINT iff the intersection of A

and B is empty: AnB = ¢

A is EQUIPOLLENT to B “ff A and B contain the

same number of elements: #A = #B



GLOSSARY OF SYMBOLS

Symbol Symbol Definition

iff if and only if

= Identity

A Conjunction

v Disjunction

a Exclusive or

»> Implication (if ... then)

> Equivalence

¥x Universal quantifier (for all)

ix Existential quantifier (for some)
Elx Uniqueness quantifier (for exactly one)
Ox 0dd quuntifier (for an odd number of)
E(n)!x Exact number quantifier

e Set membership

) Empty set

¢ Non-membership

c Set inclusion

An B Intersection

AV B Union

Aa B Symmetric difference

AVB Relative complement

<x,y> Ordered pair

{x:06(x)} Definition by abstraction

xAy Ordered pair <x,y> contained in A

-31-



GLOSSARY OF SYMBOLS (cont'd)

Symbol Symbol Definition

Ue Union or sum of G

Ne Intersection of G

AG Symmetric difference of G
EnG Elements contained in exactly n elements

of G

AxB Cartesian product

D(A) Domain of A

R(A) Range of A

A Converse of A

A/B Relative product of A and B
AlX A restricted to X

A[X] Image of X under A

[X]A Converse-image of X under A
0(X) Domain concurrence of X

R(X) Range concurrence of X
G (X) Set concurrence of X

£ (A) Total cardinality of A

-32-
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