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ABSTRACT

Lidar (laser radar) data obtained at Hamilton AFB, California,

' under conditions of low ceiling and visibility are analyzed by hand and
by clectronic computer to cxplore the operational utility of lidar in
determining cloud ceiling and visibility for aircraft landing operations.

Hand analyses of the data show the ability of the lidar to describe

the spatial configuration of the low-cloud structure along the landing-

approach path. The problems inherent in evaluating lidar observations

B

are discussed, and initial approaches to quantitative solutions by
computer are presented. It is demonstrated that operationally useful
information on the ceiling and visibility conditions contained in the
hand analyses can be presented by digitizing the lidar data and sub-

Jjecting these data to computer analysis.
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I  INTRODUCTION

On 8 and 9 January 1368, the SR1 Mark V pulsed ruby lidar was
activated at Hamilton AFB, California, in order to explore the opera-
tional utility of the lidar in cloud ceiling and visibility determina-
tion for aircraft landing operations. Because of a unique location of
the airfield on the western edge of san Pablo Bay (see Fig. 1), the
aircraft landing operations are confronted with a difficult meteoro-
logical problem. San Pablo Bay with its relatively cold water is a
notorious source of fog and low stratus, particularly in winter. The

landing-~approach glide path begins over the marshes and open water of

HAMILTON AFB

WEATHER OBSERVATION SITE
{Location of LIDAR during tests
Approximate direction of fire
was 100°-120?)

JOO"

TOUCHOOWN )
POINT

SAN PABLO BAY —»
SCALE 1in. 2100011,

FIG.1 LOCATION OF SRI LIDAR AT HAMILTON AFB RELATIVE
TO TOUCHDOWN POINT AND TO SAN PABLO BAY




the Bay, an arca ch.oracterizea by low ceiling and visibility, and extends
six miles, with a 2.5-degree slope, to the point of touchdown. The Air
Weather Service observing stiation and a rotating-beam ceilometer are
located near touchdown--i.e., as near as possitle to the area of deterio-
rating ceiling and visibility conditions (see Fig. 1). However, cven

at this forward location, ceiling and visibility conditions are often
quite different from those encountered by incoming aircraft over the

marshes and open water.

At the request of the base commander and the weather squadron
commander, SRI considered the application of lidar to their special
problem of remotely measuring ceiling and visibility along the landing
approach path. The field experiment could not involve a large-scale
ceffort, and therefore the collected data are incomplete in many respects.
Consequently, analyses and discussions of the data presented in this

report must be considered exploratory.

The manner in which the lidar data were collected and analyzed is
discussed in Sec. II. Results of the hand analyses are presented in
Sec. III. Computer techniques to numerically process lidar data related

to cloud ceiling and visibility are discussed in Sec. IV.

The potential application of lidar to remote measurements of
ceiling conditions is considered promising, particularly in view of

the future availability of higher-performance lidars.




I1 METHOD OF OBSERVATION AND DATA ANALYSIS

The SRI Mark V pulsed ruby lidar, details of which are given in

Table I, was transported to Hamilton AFB and was placed next to the

Table 1

CHARACTERISTICS OF SRI MARK V RUBY LIDAR

Transmitter
{ Laser 6X 3/8-~inch ruby crystal, Brewster-angle
one end, planar one end, uncoated
g Q-switch Rotating prism and saturable dye
i Wavelength 6943 R
Pulse length 15 us
;
Peak power output 18 Mw
' Pulse energy output 0.27 Joule
Ortics 6-inch Newtonian reflector telescope
Beamwidth Approximately 0.3 mrad
PRF Two per minute
Receiver
Detector photomultiplier 14-stage RCA type 7265
Optics 6~inch Newtonian reflector telescope
with adjustable field stop
Field of view 0.2 to 0.9 mrad '
; Bandpass Approximately 17 A
{
3




weather obscerving station and the rotating-beam ceilometer. Dat:
related to cloud ceiling and visibility were collected by firing at a
pulsce rate frequency of one or iwo pulses per minute out across the
Bay. parallel to the aircraft glide path (see Fig. 1). The elevation
angle of the dirccetion of firing was varied from zero to 65 degrees
without change of azimuth., All data were obtained under the actual
weather conditions that create the operational problems. The weathcr
conditions that prevailed during the period of lidar operation are
glven ain Table II.  Lidar observations were made during the afternoon

and cvvening of 8 January and during the forenoon of 9 January.
Table I1

WEATHER CONDITIONS DURING LIDAR OBSERVATIONS AT HAMILTON AFB, CALIFORNLIA

Weather Conditions 8 January 1968 9 January 1968
Cloud ceiling 700-800 ft 100-500 ft
Prevailing visibility 1-1 2 to 2-172 mi 14 to 1/2 mi
Obstruction to visibility Fog, occasional Fog, light drizzle

light rain
Temperature 37°-38°F 39°-40 F

Eoch lida:r firing was separately recorded by photographing the
trace of received signal power vs. slant range (often called the back-
scatter signature) as it appeared on the oscilloscope (A scope’).
Interpretation of the recorded data is best explained with the aid of

the lidar cquation which can be written in the form

R
A
P o(r) - P ST Lo (R)T (R) exp [- 2 | c(R')dR" (1)

r T T2 F1eo' Ml P ‘ J

R [o]
where
P - Power collected (at a given instant) by the primary
v

receliver optics from atmospheric backscatter of laser

energy




R = Rangc
P_ = Power transmitted into the atmusphere
¢ = Velocity of light

T = Pulse duration (seconds)

Ar = LEffective receiver area
Slso(n) = Volume backscatter coefficient
TC(R) - Beam convergence factor

Volume extinction coefficient

c(R)

The above formulation assumes a constant energy density across
the beam, randomly distributed scatterers within the effective scattering
volume, and Bouquer's law of attenuation. When the beam convergence
factor, TC. is e¢xcluded, Eq. (1) is valid only at ranges beyond the
point where the diverging transmitted beam of the non-coaxial lidar
system is fully encompassed by the diverging receiver field of view.
By including TE, Eq. (1) can describe the behavior of the lidar return
signal at close-in range. TC varies between O (before beam interception)
and 1 (at full beam convergence) and is a tunction of the specific lidar

system used.

Figure 2 shows examples of lidar data obtained at three elevation
angles. The received signal power (related to Pr) on a logarithmic
scale is recorded vs. slant range (R) on a linear scale. The use of
a logarithmic video amplifier in the receiver is almost essential in
order to compress the wide dynamic range of the detector (typically
four or more orders of magnitude) and to enable the received signal to
be displayed on a single oscilloscope trace without loss of detailed
information. The sweep speed of the oscilloscope in Fig. 2(b) and
2(c) is twice as fast (1 microsccond per division with a maximum re-
corded range of 1.5 km) as that in Fig. 2(a) (2 microseconds per division
with a maximum recorded range of 3.0 km) in order to show the significant
lidar "echoes’ detected at the higher elevation angles in more detail.

At close-1n ranges (up to about 100 m) wherc¢ the beam convergence factor
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Tc dominates, the receiver output increases rapidly from zero as the
diverging transmitted beam gradually merges with the diverging receiver
field of view. The point of full team convergence normally lies near
the peak of the curve--i.e., near the point of maximum signal amplitude
at the bottom of the photograph. In Fig. 2(a), the receiver output
reaches a maximum near the point of full beam convergence at a range of
100 to 120 m, after which it falls as the distance to the fog particles

producing the backscatter increases.

If large inhomogeneities such as cloud layers are present along
the path, the strength of the return signal may suddenly increase and/or
decrease as shown in Fig. 2(b) and 2(c). In the present experiment,
a rapid incrcase in received power followed by a decrease is considered
as an echo related to a cloud layer, while a single rapid decrease
[Fig. 2(b)] is related to a level of large change in the transmitted
signal attenuation. This large change in attenuation can arise from
either a rapid increase or a rapid decrease in the optical density of
the fog or clouds. Layers and levels observed by the lidar during one

complete "'scan” from the horizontal to the near vertical are analyzed




and related to the low cloud structure and the cloud ceiling as measured

by the ccilometer.

Recorded data of received signal power vs. range obtained along
the horizontal line of sight can be related to horizontal visibility
while those obtained at low elevation angles [Fig. 2(a)] can be related
to slant visibility. However, for correct application to visibility,
the lidar data need to be processed numerically to extract the volume
extinction coefficient, =(R), which is fundamental to the determination
of visibility. Because of the limited scope of the Hamilton AFB experi-
ment, the transfer characteristics of the receiver optics (including
photomultiplier, logarithmic amplifier, and oscilloscope) could not be
determined with the required accuracy. Therefore, values of received
signal power could not be reliably transformed into absolute values of
Pr(R)' Furthermore, examination of the lidar data after the experiment
revealed that the very large backscatter signal from the fog at close-
in range tended to saturate the receiver. This receiver saturation,
in turn, caused a time-dependent discharge of photons (“after pulsing’)
which invalidates any computations based on the slope of the backscatter
curves obtained at low elevation. In view of these difficulties no
worthwhile analysis of lidar data in terms of horizontal and/or slant

visibility is presented.
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IIT LIDAR OBSERVATIONS RELATED TO CLOUD CEILING

A. Hand Analysis of Available Data

Figures 3, 4, and 5 present the spatial distribution of the low-
level cloud layers as observed with the lidar in the direction of Sun
Pablo Bay during three separate time periods on 8 January 1968. The
spatial distributions are obtained by firing the lidar at successive
elevation angles from a maximum of 65 degrees down to the horizontal
and analyzing along cach direction of firing all echoes related to
cloud layers and to levels of optical density change. Llayers are
indicated by solid bars and levels by solid triangles. Representative
samples of individual lidar shots accompany cach figure. Also indicated
in cach figure is the available surface-weather observation for the
time closest to the period of the lidar data. Observed cloud-ceiling
height (in hundreds of feet) is given by the ceilometer. Observed
horizontal visibility is the so-called prevailing visibility defined as
“the greatest visibility that is attained or surpassed throughout at

least half of the horizon circle, not necessarily continuous.”

Figures 3 through 5 show that under the prevailing weather conditions
the lidar is capable of describing the low-cloud structure from the obser-
vation site out to a distance of 0.8 to 1.2 km (1/2 to 3/4 mi). This
relatively limited range is due to the large attenuation of the lidar
pulse energy along the slant paths through the fog at low elevation.
During the evening, when the reported horizontal visibility increases
from 1-1 2 to 2-1'2 miles, the range of lidar cloud-detection reaches
the maximum of 3 4 mile. The c¢loud-ceiling height measured at the
observation site by the rotating-beam ceilometer corresponds to the
height of the lowest layer of lidar echoes obtained at high elevation

angle.

Figure 3 shows a marked diffcrence in the cloud structure between
clevation angles larger and less than about 35 degrees. This difference

probably arises from the fact that at high elevation angle the low-cloud
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echoes are detected at close range, with a subsequent loss of resolution
in the recorded lidar trace (see sample of individual lidar shot at
65 degrees clevation). Under such conditions a change in the sweep

speed of the "A scope’ must be used to "magnify”’ the lidar trace.

Figures 4 and 5 show that higher-level cloud layers are detected
only at the high elevation angles, where the path length through the
lower clouds and the fog is minimum. The ceilometer detected higher
cloud layvers only during the time period of Fig. 5 when the ceiling

was hroken.

Figures 6 and 7 illustrate the capability of the SRI ruby lidar

to remotely monitor cloud-ceiling variations at a point distant from

miles

RANGE
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300 41000~
434 =
o .g—o-—af\a-, s
.
€ -4 800 |
| z
<12 = 200 )
b —_—— XXX, 600 W
o ./ X ey e Ry o ey X =X x
2 x —x=x /‘/‘\,,x X=x—x—X =X i
T X X=Yo=X
1. 100 SURFACE WEATHER OBSERVATION -] 400
=V AT LIDAR SITE
LOCAL TIME CEILING VISBY OBSTRUCTIONJ o
15:56 1Y) V\W2mi.  FOG 20
. 0 1 A 1 S N 1 1 i | 1 S S 1
0 | 2 3 4 5 6 1 8 9 0 (1 12 13
15:54PM TIME —— minutes 16:07PM

FIG. 6 TIME VARIATION OF LOW-CLOUD STRUCTURE MONITORED BY LIDAR AT
12 TO 3 4 MILE FROM THE LIDAR SITE AT HAMILTON AFB DURING
AFTERNOON OF 8 JANUARY 1968

the obscervation site. Figure 6 shows a 12-minute time section of the
low-level c¢loud structure over the Bay at points approximately 1/2 to

3 4 mile from the lidar site (14 degrees elevation angle) during the

13
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afternoon of 8 January. The time period corresponds to that of Fig. 3.
The levels of signal increase, peak signal return, and signal decrease
monitored at time intervals of about 30 seconds are indicated and joined
by straight-linc scgments to portray the time variation of a 100-meter-
thick low-cloud layer. Practically no change with time is evident.
Conditions atl tne remote locations are nearly identical to those “over-
hcad” at the observation site, the height of the peak signal return

being nearly identical to the ceiling height given by the ceilometer.
Figure 7 shows the low-cloud configuration as recorded with the lidar

at a poin' about 1 4 mile from the observation site (30 degrees elevation
angle) during a time period of 3 to 1 minutes. The data are part of the
scerics analyzed in Fig. 3 and were obtained on the evening of 8 January.
The surtface weather observation before and after the period of lidar
observations 1s indicated. The lowest cloud layer detected by the lidar
(indicated in Fig. 7 by aurrows) closely corresponds to the 800-ft (244 m)
ceiling measured by the ceilometer. On two occasions (22:33.5 LST and
22:34 LST) the lidar data show the upper (1500 ft) cloud layer detected
by the ceilometer at 21:58 LST. Thus, the density variations in the
lower c¢louds apparent from the lidar data are recorded by the ceilometer

also.

During the morning of 9 January, very low ceiling and visibility
prevailed. Up to 11:57 LST the sky cover remained overcast, with the
cloud base varying between 400 ft (122 m) and 500 ft (152 m). The
prevailing horizontal visibility remained around 12 mile (0.8 km) in
light drizzle and fog (see Table II). At 11:57 LST, clouds became
broken. Figure 8 illustrates some typical lidar backscatter profiles
obtained throughout the morning at 30 degrees elevation. The rapid
decrease in return signal amplitude observed at a height near 150 m
(192 ft) at 11:53 LST must be interpreted as due to a rapid increase
1n optical density, since this height corresponds to that of the cloud
ceiling measured by the cetlometer at the lidar site. Furthermore,

*
at 11:50 LST an airborne weather observer reported a 400-ft (140-m)

L 3
Capt. R. H. Hedenberg, Commander, Det. 9, 35th Weather SQ., Hamilton AFB.

15




11:53LST 11:58 LST 12:09LST

HEIGHT —km
Ol
HEIGHT — km

o__
RECEIVED POWERl
(LOG. SCALE)

—» HEIGHT OF CEILOMETER ECHO AT
LIDAR SITE

FI3. 8 SAMPLES OF LIDAR DATA OBTAINED AT 30 DEGREES ELEVATION
AT HAMILTON AFB ON 9 JANUARY 1968

cloud ceiling at 1 mile from touchdovn and indicated that clouds ex-
tended vertically to at least 2000 ft (610 m). Near 12 o'clock noon,
however, this dense lower layer became transparent, as evident by the
appearance of a cloud echo near 360 m in the lidar profile of 11:58 LST.
The higher-level cloud layer was also detected by the ceilometer at

the lidar site and was firs' reported in the surface weather observation

at 11:57 LST.

Figure 9 shows the spatial extent of the significant layers and
levels detected by the lidar shortly after noon. The lowest-altitude
signals correspond to the 400-ft broken-cloud layer indicated by the
ceilometer. Agreement between ceilometer and lidar data extends to

1200 ft.
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B. Discussion

The data samples analyzed in Figs. 3 through 9 demonstrate the
advantages and limitations of the lidar in the description of the low-
level cloud structure under adverse weather conditions. Because of
its pulsed nature, the lidar can provide a vertical density profile
through the low-level clouds and, furthermore, because of its ability
to operate under variable elevation and azimuth, can accurately describe
the spatial distribution of the cloud ceiling. A most useful feature of
the lidar is its ability to monitor the cloud-ceiling conditions at a
location that is remotely situated with respect to the lidar site.

Under the weather conditions that prevailed during the Hamilton AFB
experiment, the lidar could accurately monitor the cloud ceiling at a

point 1.2 to 3 4 mile from touchdown point.

A replacement of the ceilometer by a lidar would greatly expand
the range of information on cloud-ceiling height and low-cloud structure
that could be obtained. On the other hand, the lidar data show a high
spatial correlation with the spot information provided by the ceilometer.
Under the conditions of fog and drizzle that prevailed during the ex-
periment, the ceilometer reading appeared equally valid for locations
up to 1’2 to 3 4 mile away. With the experimental lidar used, it was
disappointing that the maximum range at which the low clouds could be
accurately described remained well below the 1l-mile mark. During the
conditions of fog and light rain or light drizzle that prevailed during
the experiment, the long slant paths at elevation angles below 10 to 15
degrees rapidly attenuated the ruby lidar pulse energy down to the noise
level. Improvement in the range of cloud-mapping capability can be
expected in the future by further narrowing the transmitted lidar beam

"nd by introducing higher-power output.
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IV COMPUTER TECHNIQUES FOR ANALYZING LIDAR DATA
*
RELATED TO CLOUD CEILING AND VISIBILITY

This section describes methods of producing computer-analyzed
¢ross scctions of atmospheric optical parameters from an input of
digitized lidar data. Because of the above-mentioned instrumental
uncertaintics with respect to receiver transfer characteristics and
overloading, results of the numerical analyscs must be evaluated in
terms of relative variations rather than absolute values--i.e., appli-

cation is to cloud c¢eiling rather than to visibility.

A Computer Analysis of Data Sample

In order to digitize the recorded lidar data, Polaroid prints of
the oscilloscope-displayed lidar signatures, such as shown in Fig. 2,
are projected with a magnification of 5 power onto a screen of a scaling
machine (digitizer) that records on IBM cards the (X, Y) coordinates of
a movable crosshair. The operator records (X, Y) values of all in-
flection points on a lidar recorded signature that, when joined by
straight lines, provide a digitized representation of the signature.
The (X, Y) representation of each lidar signature thus obtained consti-
tutes the input for a computer program, which, by use of the digitizer
calibration and the beam elevation angle, converts the (X, Y) values
into a matrix of oscilloscope deflection (output voltage) of the data
points and a matrix of position of the data points. Such output data
from multiple laser firings obtained as the lidar scans from the hori-
zontal t? the near vertical are then fed into a grid-point-analysis

program. This program assigns a value of the dependent variable (in this

.Pnri ot the work reported on in this section was supported by stanford
Research Institute (sce Acknowledgments) and SRI Project 7165, (See
Ref. 1. References are listed at the end of the report).

+

Developed by Mr. R. L. Mancuso of the Aerophysics laboratory.
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case, oscilloscope deflection in volts) to cach grid point of a pre-
determined grid in the vertical plane of observation. Values to 1in-
dividual grid points are assigned on the basis of the five data points
nearest to the grid point with the aid of a distance-weighting factor
as well as a vector weight defined in the radial direction (which gives
more weight to data from a single lidar profile) or in the horizontal
direction (which gives weight to existing conditions of horizontal

stratification).

Figure 10(a) shows the results of this type of computer analysis
using the lidar data observed during the evening of 8 January 1968
(22:22-22:31 LST). The analysis is prepared from the data of 18 in-
dividual lidar profiles obtained at elevation angles ranging from zero
to 60 degrees. In Fig. 10 and in all subsequent figures, coordinate
axes and isopleths are drawn by hand. In order to supply as much input
data as possible to the grid-point-~analysis program, data points inter-
mediate to the inflections were obtained by linear interpclation within
the computer program. Minimum distance between signature data points
was 25 m. The oscilloscope-deflection analysis of Fig. 10(a) providcs
a field that is representative of atmospheric scattering activity. The
layer of maximum scattering activity at a height of 250 to 275 m 1s
related to the level of low clouds shown in the hand analysis of the

same date in Fig. 5.

It is possible to transform the voltage f:reld of Fig. 10(a) into
a parameter field more representative of atmospheric conditions and
perhaps, in the case of ideal data, into a field of extinction coei-
ficients from which the meteorological range or the 'visibility' along
any given path (such as along an aircraft landing approach path) may
be inferred. Referring to Eq. (1), the lidar equation, a convenient

range-corrected quantity, in dB notation, can be defined as:

.

2

P(R)R2 BIBO(R)Ta(R)Tc(R)
2
a

S(R) = 10 log ——3 = 10 log (2)
P(R )R B. . (RT

180 o (Ro)Tc(Ro)
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where Ro 15 a4 retoerence range on each lidar trace and
R
. f / /
TX(R) = exp - | J(R ) dR

«

o

is the one-way atmospheric transmission over the range R. All other
terms arc as defined previously. Again using the lidar data observed
during the evening of 8 January, a grid-point analysis of S(R) was
obtained in the tollowing manner. From a relative calibration of the
nonlincar response of the Mark V oruby lidar receiver (including photo-
multiplier, logarithmic amplificr and oscilloscope) estimated to be
valid for the conditions of the Hamilton AFB experiment, a polynomial
operator was defined by means of which the computer transforms the
output-voltage field of Fig. 10(a) into a field of relative light
lPr(R)) 1incident on the primary receiver optics. Using the first data
point on cach of the 18 lidar observations as the reference range RO,
Fig. 10(b) shows the computer output of the s-function field thus
obtained. Large increases and decreases with height correspond to c¢loud
layers. A comparison with the qualitative analysis of the samce data
shown 1in Fig. 5 clcarly indicates the practicability of this computer-

produced paramceter field for cloud-ceiling determination.

The derivative of S(R) over the region of full beam convergence

(TC = 1) may be expressed as:

ds 1 dp
3R - 4.34 E aR 8.7c (3)

where the subscript 180 and the range-dependence notation (R) have been
omitted. A closed-form solution for the optical parameters B and ¢
requires additional information on the scattering properties of the
atmosphere or on a backscatter-extinction relation. When the backscatter
coefficient, g, is 1independent of range, as is the case in a homogencous
scattering medium, the extinction coefficient between deflection points
of S(R) 1s given by:

R

B 8.7

al

I>|P
=2 14}
=
-~
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Figure 1l(a) presents a computer output of the grid-point analysis
of 2 over the complcete ficld of Fig. 10. Negative values (shaded) and
large positive valuces (unshaded) represent areas where the received
lidar signal sharply increases and decreases, respectively. Beyond
the range of {ull beam convergence, these arcas correspond to areas of
non-constant backscatter and allow inferences as to the levels of low-
cloud layers analyzed in Fig. 5. Thus, the stratus clouds are clearly
indicated in this computer analysis of the signature slope, even though
the initial assumption of a constant B is obviously unreal. The presence
of horizontally-cxtensive higher clouds is suggested by the arecas of
negative values (signal increase) at 500 m. The hand analysis of Fig.
5 shows these clouds only in the high-elevation lidar data. Thus, the
computer is capable of analyzing small changes in signature slope that

¢escape the eye.

A anlution to Ey. (3) for the optical parameters B and 2 is possible
when the existing relation between these quantities is known. Ponn;
using the data of Barteneva,s and Curcio and Knestrick® have shown that

a relation such as

= constant = k2 (3)

[=% Fel
=1
jo B §=]
alw

is valid within 20 to 30 percent for extinction coefficients between
0.01 km_l and 1.0 km-1 when employing a broad spectral source. JAssuming
such a relation to be valid for the conditions of this experiment, sub-
stitution of Eq. (3) into Eq. (3) yields a first-order nonlinear dit-

ferential equation:

dc ds 2
= . 2 e -cCc. 3% :-0
ar - Y1 @R €y
where C1 =1 41.34 k2 and C2 = 2 k2. The transform T, = 1 ¢ reduces this

ditferential equation to the lincar form:

a ds .,

—— - — . N = 6

dR Cl dR L2 0 (6)
23
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for which t(he solution may be written as:

€, S(R) C,S(R") /

¢(R) ¢ C. -G I e dR (7)

R

where CI 1s the constant of integration. The derivative of S(R), which
is formed by straight line segments between digitized lidar-signaturc
inflcetion points, is not unique at these points--i.e., S(R) is a piece-
wisce ditfervntiable function. Thus, in addition to the requirement
ot a boundary value, the integration constant CI must be re-evaluated
for ¢ach s(R) linc segment. solution for multiple traces requires a
boundary valuc for cach trace or corrcection and or assumptions on lidar
variable paramcters between traces. The method used in the analysis of
the present lidar data was to obtain a boundary value of extinction
coetficient from the slope technique for part of a signature for which
the backscatter was thought to be constant with range. Solution was
then taken along this trace in the direction of the lidar. Boundary
values of 7 at the initial data point (range Ro) for cach additional
trace were derived assuming unity transmission of the lidar energy to
these data points and the initial value of ¢ from the trace containing
the boundary point. Extinction coefficients were then evaluated for
each data point in the field. A value of 1.4 was assigned to the constant
k2. Such a value probably underestimates the attenuation of the lidar
energy and thus increases the probability of a valid solution at regions
of large signal variations along the lidar signature. The validity of
the solution field is determined by re-deriving the S functions from

the right-hand term of Eq. (2) from evaluated quantities.

Figure 11(b) presents the grid-point analyses of the o field
obtained. As in the previous computer analyses, the level of the low
clouds is clearly shown by large values and large vertical gradients
ot z. By comparison with Fig. 10(b), 1t is clear that some of the
attenuation c¢ffect has been removed from the data field. However, the
non-horizontal 1sopleths indicate that additional attenuation should be

accounted for by employing a smaller value of k2 or a larger value of

the boundary extinction coefficient. Further experimentation along
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these lines was not considered justiticd because ot the limi.ed quantity
ard quality ot the data. The real merit of & derived o-field is that
transmission along any line segment detined by two points in the field

may be evaluated and thus slant-range visibilities inferred.
B. Discussion

Figures 10 and 11 show the operational feasibility of describing
the spatial distribution of cloud ceiling and low-cloud structurce with
a lidar-electronic computcer combination. The results shown are not
considered optimum since they depend on several assumptions that may
be relaxed or alterced through further investigations. The primary
uncertainty is the validity ot the assumed P-c relation, which cnables
the solution of Eq. (3). It 1s suggested that in future experiments
ot the type described in this report, the neodymium laser be uscd boe-
cause of 1its broader spectral energy (200 A) in comparison to that of
the ruby laser. The broad spectral characteristic gives more validity
to assuming a B-C relation (Twomey and Howell, Rel. 3). Also nccessary
is some further research in the numerical application of Eq. (7). ‘ltor
example, various boundary values can be evaluated by using a complcetely
calibrated lidar or by using an extinction cocfticient derived tronm
the return of the lidar cnergy from a ground-based target of known

reflectivity (Allen et al., Ref. 6)
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V' CONCLUSIONS AND RECOMMENDATIONS

This study covers a limited experiment in the use of lidar for the
detormination of ceiling and visibility. The conditions during the
experiment, although ideal from a metcorological point of view, were by
no means optimum in terms of equipment or experimental procedures. For
cxample, the use of the neodymium version of the Mark V lidar, capuble
of firing every 4 to 5 seconds would have been preferable; also more
complete calibration and reference-measurement procedures are desirable.
However, the results demonstrate a real potential of lidar for use

in operational determinations of aircratt landing visibility conditions.

It is evident that the lidar can obtain cloud ceiling, even when
the cloud base 1s diffuse, at locations distant from the point of
observation. At Hamilton AFB it was possible to obtain detailed infor-
mation on the cloud conditions at locations along the approach path,
where, because of the marshes and open water, conventional ceilometers

could not be operated.

The possibility of processing lidar observations to obtain quanti-
tative data on the extinction coefficient--i.e., the optical parameter
significant to "visibility"” determinations--has been explored with
indications that operationally useful computer-produced analyses are
feasible. The objective determination of a cross section showing a
field of values that are related to atmospheric scattering activity
and that portray conditions of low-cloud ceiling and reduced horizontal
visibility is considered to be a major advance in this problem area,
and one that offers hope of eventually being able to infer "slant

visibility" for aircraft landing operations.

It is obvious, however, that much remains to be done. For simple
graphical description of the cloud base, further work is necessary on
the physical interpretation of inflections on the lidar signature, and
also on the technique of processing and displaying data. The conversion
of lidar observations to digital form for computer processing, and the

computational solutions themselves also need further development.
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Progress in both these arcas would involve additional experimental
and development programs. The programs should be geared toward obtaining
optimum techniques of data processing and display that can lead to the

design of practical instrumentation for routine operational use.
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