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ABSTRACT 

This report is essentially tutorial in nature. Formulas, based 
on the small obstacle and small aperture approximation, are 
derived for the equivalent network and scattering parameters 
for arbitrary discontinuities in single-mode uniform cylindrical 
waveguide. A few examples are presented in order to illus- 
trate the simplicity of this method. 
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SMALL  OBSTACLE  AND APERTURE THEORY 

I.      INTRODUCTION 

The  determination of the scattering parameters  (matrix) or equivalent networks for 
discontinuities in uniform cylindrical waveguide usually requires the evaluation of an extremely 

complex boundary value problem.    In general,  solutions are not easily obtained and four methods 
which lead to approximate solutions are classified as 

(a) The variational method 
(b) The integral equation method 
(c) The equivalent static method 
(d) The transform method. 

The reader is referred to the Waveguide Handbook,   Sec. 3.5,  for a thorough discussion of the 
above methods.    When the discontinuity is "small," however,   it is possible to deal with this class 
of problem in a straightforward and simple fashion.    A small discontinuity is defined as one 
which is located "far" from the waveguide walls and whose dimensions are small compared with 
wavelength.    When these conditions are satisfied,  the scattering of the electromagnetic fields by 
such discontinuities illuminated by a known excitation is,  to a good approximation,   independent 
of the effect of the waveguide walls and depends only on the geometry of the discontinuity and the 
nature of the illumination.    That quantity,  which is solely dependent on discontinuity geometry 

and excitation field,   is the polarizability.    Since the discontinuity is small compared with wave- 

length,  the phase of the excitation field is essentially constant over the entire discontinuity.    The 
polarizability may therefore be determined from static field considerations,  which is a great 

simplification. 
It is the purpose of small obstacle or aperture theory to combine the discontinuity polariz- 

ability with object position in the waveguide structure and the incident mode fields in such a way 
that the scattering matrix and equivalent circuit parameters may be easily determined.    It should 
be noted that not only does this approach provide a simple solution to otherwise complex prob- 
lems,  but also that these solutions are useful in regions where the approximation would not be 

expected to hold. 
The results which are presented below are for arbitrary,  lossless,  symmetric,  and asym- 

metric discontinuities in dominant mode uniform cylindrical waveguide. 



11.     MODAL  ANALYSIS AND THE   REPRESENTATION  OF  FIELDS 
PRODUCED BY  CURRENTS AND DISCONTINUITIES  IN WAVEGUIDES 

The basis for this section can be found in the excellent paper by Marcuvitz and Schwinger. 

Our purpose is to present those results which will lead directly to the small obstacle or aperture 
equations.    Some typical discontinuities are shown below in Fig. l(a-d). 

Fig. 1.    Typical discontinuities in waveguides:   (a) arbitrary obstacle;  (b) transverse 
aperture or obstacle;  (c) longitudinal aperture;  (d) longitudinal obstacle. 

It is a fundamental theorem in electromagnetic field theory that a unique solution for the 
electric and magnetic fields within any region exists provided the tangential component of either 

the electric field  E or magnetic field H  is specified at every point on the surface bounding that 
region (including discontinuity points).    Thus,   in the steady state,  the electromagnetic fields 

within a source-free region are solutions of the homogeneous Maxwell field equations 

V X E = -JWU.H (la) 

V XH = jo)€E (1b) 

where an e**      time dependence is understood,  and  |JL and e   are the permeability and dielectric 
constant of the medium. 

For an obstacle discontinuity such as that shown in Fig. 1(a),  the region of interest is bounded 
by the waveguide walls,  the obstacle surface,  and the far "terminal" surfaces.    A far terminal 
surface (shown by a dashed line) is located at a point sufficiently far from the discontinuity such 
that only dominant mode fields are considered.    The higher-order modes generated,  being eva- 
nescent,  may be considered negligible at that surface.    It then remains to solve Eqs. (1) for the 
electric field in the given region subject to the boundary values of 

n x E      on the guide walls 

n x E      on the terminal surfaces 

H X n       on the obstacle surface (2) 

(n = outward unit normal). 
For the aperture discontinuities shown in Fig. 1,   there are two regions of interest:   first, 

the region bounded by the waveguide walls,  the aperture surface (shown by a dotted line),   and the 
far terminal surfaces;  second,  the corresponding region on the opposite side of the aperture. 
One now solves Eqs. (1) for the magnetic field in each region subject to the boundary values of 

n X E      on the guide walls 

H x n      on the terminal surfaces 

n X E      on the aperture surface      . (3) 



In general,   it  is extremely difficult to solve the boundary value problems for the regions 

illustrated in Fig. 1.    The difficulties arise because the geometrical shapes of these regions are 

perturbed by the presence of the obstacle or aperture discontinuities resulting in nonseparable 

coordinate geometries.    Consequently,   it becomes most convenient to invoke the concept of 

"equivalence" and replace the discontinuity structures by equivalent electric and magnetic sur- 

face current distributions.    This approach leads one to consider the solution of the inhomogeneous 

Maxwell equations 

V x E = -JCJIJLH - M (4a) 

V x H = jweE + J (4b) 

in a discontinuity-free region,  subject to elementary boundary conditions where the fields are 

produced by the electric and magnetic current densities  J and  M.    This region,  a perfectly con- 

ducting cylindrical waveguide of arbitrary but uniform cross section,  is shown below in Fig. 2(a-b) 

3-46-11859 

(symmetry  axis) 

(a) 
-BOUNDARY    CONDITIONS 

(b) 

Fig. 2.    Discontinuity-free region:   (a) transverse view;  (b) longitudinal view. 

A complete representation of the fields for such regions is required so that solutions of the 

inhomogeneous field equations [Eqs. (4)].may be obtained. Separation of the total field solutions 

for E and H into transverse E, and H., and longitudinal E and H components leads to a great 

simplification.    The inhomogeneous field equations yield for transverse fields 

f) E 
-JT = J-Mli + vtvt] • (H, X zo) + (A, x zo) 

-■j;*-*»« Ml +vtvt]- (zoxEt)+(z0xjt) 

and for the longitudinal fields 

z 
E    = -r^- [V.  •   (H. Xz   ) -J   ] 

Z JGL>€    l     t t O ZJ 

Z 

H    - ^-°- [V.  •   (z    x E.) -Ml 
Z        JWU.   l    t o t ZJ 

where U is the unit dyadic, V   = V -z (d/dz) is the transverse gradient operator,  and 

M. = M. - -A- V. x z J t t      jcje      t        o  z 

J+ = J+ -   -r^- V.  X z   M t       t        3OJ|JL     t        o    z 

(5a) 

(5b) 

(f»a) 

(6b) 

(7a) 

(7b) 



The transverse vector field equations [Eqs. (5)] yield the scalar transmission line equations 

if all transverse vector quantities are represented in terms of a complete set of orthonormal 

vector mode functions (eigenfunctions).    The representation is in the form of a linear superposi- 

tion of the complete set of eigenfunctions. 

Et(r) = YJ 
V
;(

Z
> 

e;(p) + Y v;,(z) er(p) (8a) 

i i 

Ht(r) --   YJ l{{*) hj(p) + £ [i'(z) hi"(p) (8b) 

and 

Mt(r) =   YJ V{(Z) h!(p) +   Y v{'(z) h!'(p) (9a) 

St(r) = Y i;(z) e;(p) + Z ii"(z) er(p) (9b) 

i i 

where p  is the cross-sectional vector coordinate,   z  is the longitudinal (symmetry) coordinate, 

i  is,   in general,  a double index,   and   '   denotes E-mode and   "  denotes H-mode.    The longitudi- 

nal field components are written as 

jcucE^r) =   Y ri<z)V
t '   hi Xzo (10a) 

ja;uHz(r) =   £ V!»(z)Vt •   ZQ Xej'      . (10b) 

i 

A few of the more important properties of the eigenfunctions (see Refs. 1 and 2 for more complete 

descriptions) are: 

E-IVTodes:—   The eigenfunction e.'(p) may be derived from a scalar function 

<p .(p) in the following manner 

e.'(p) = -      k, (Ha) 
1 Kti 

where <p .(p) is a solution of 

(Vt
2 +k'f) <p.(p) = 0 (14b) 

subject to the boundary condition <p .(p) = 0 on 1 for k'. ^0;  [dep .(p)/dl] - 0 

on  1   for k'. = 0.    In addition, 
ti 

and 

h!(p) = zo xe!(p) (14c) 

Y!k'^ (p) 
e'.(p) = -j     1 T1    *— (lid) zvH' J cue 



where 

Z! = i/Y.' = K\/UH       ;       *:2 = k2-k'2      . 
I'll' l ti 

H-Modes:—  The eigenfunction h."(p) may be derived from a scalar func- 

tion ipAp) in the following manner 

V+i/\-(p) 
hiW = - -TTT- (12a) 1 kti 

where ip-(ß) is a solution of 

(Vt
2 +k-2)^.(p) = 0 (12b) 

subject to the boundary condition [dip.(p)/dn] = 0 on 1.    In addition, 

ej'(p) = h!'(p) xzo (12c) 

and 

where 

z."k"V<p) h!iw - ~i      V <12d> 

*"2 = k2-k"2 

1 tl 
Z." = i/Y.M = wu/*!' 

The orthogonality properties of the vector and scalar mode functions are 

Ife1--Jda.Jjih1-hJda-ölj (13a) 
S S 

s s 

where <5.. is the Kronecker delta and the asterisk denotes complex conjugate. 

Substitution of Eqs. (8) into Eqs. (5) yields the following generic form for z-dependence of the 

fields for E- or H-modes: 

dV.(z) 

-an =¥iVz) + vi(z) (14a) 

dl.(z) 
- -^- = j^V.tz) + i.(z)      . (14b) 

Since the vector mode functions form a complete orthonormal set,  the source terms v^z) and 

i.(z) may be found by a simple inversion: 

v.(z) = \\   Mt(r) •  h*(p) da (15a) 



i.w-j'p, (r) •   er (p) da      . (15b) 
l 

s' 

Substitution of Eqs. (7) into Eqs. (15) obtains,   after some vector algebra, 

v.(z) = ^ Mt(r) •  h* (p) da + £J   |Z°        ^ z r   1 •  h* (p) da (16a) 

S S 

ffnn   f Z     X V M   (r)l 
Jt(r).  e*(p)da+^       °    j(l^ 

Z e*(p)da      . (16b) 

S S 

The expressions V J    and V M    in the integrand imply that J    and M    are differentiable functions. 

Since there are times when these functions are not differentiable (e.g.,  point sources),  the form 

of the expression is changed by having the V   operate on the mode function which is always well 

behaved.     Utilizing Green's theorem, 

\ \ Vt •   (fA) da = A) f(A •  n) dl = \\ Vtf ■  Ada + \ \ fVt •  Ada (17) 

S C S S 

where 1  is the bounding contour,   n is the unit normal to 1,   J    = 0 on 1,  h. •  n = 0 on 1,  and 

noting that 

zQXVtJz(r).  h*(p) = e*(p) • VtJz(r) (18a) 

zQXVtMz(r) •   e*(p) = -h*(p) •  V^r) (18b) 

the following expressions for v.(z) and i.(z) result: 

J„(r) Vt •   e*(p) 

S S 

Since V   •   e.(p) = jcoeZ.e   .(p) and V   •  h.(p) = jcu|iY.h   .(p) from Eqs. (11) and (12),   Eqs. (19) yield 

CC . CC Jz(r) vt ' ef (p) 

Vi(z) = ^   Mt(r) •  h* (p) da -^ ^  -? JL_1   da (19a) 

S S 

V"> = j j Jt(r)- er(p)da-jj ——JCüV      
da  • (19b) 

v.(z) = ^ M(r) •  h* (p) da + Z* jj J(r) •   e^p) da (20a) 

S S 

i.(z) = jj J(r) •   e* (p) da + Y* jj M(r) •  h*.(p) da       . (20b) 

S S 

The expressions for the modal source functions v. and i. are still general. 

III.   THE  SMALL  OBSTACLE  APPROXIMATION 

Application is now made to the situation where discontinuity dimensions are small compared 

with wavelength.    In this situation,  the currents induced on the obstacle are approximately in 

phase and the predominant effect can be related to static charge distributions which vary accord- 

ing to e*'      (the time dependence of the excitation).    In first-order small obstacle (or aperture) 



theory,  these induced currents depend only on the discontinuity geometry and the excitation;   the 

effect of the higher-order multipoles and of the surrounding waveguide walls is neglected.    One 

obtains for the induced electric and magnetic dipoles,   Q    and Q    ,   respectively, 

Qe(r) = <?   ■   Elo
nc(v) 

Qm(r) = u)H •   H^n°(r) 

(21a) 

(21b) 

where E      (r) and H       (r) are the incident electric and magnetic fields evaluated at the obstacle 

center;   9 and % are the static electric and magnetic polarizability dyadics,   respectively.    In 

addition,   if <5(r) [- ö(p) <5(z)],  the Dirac delta function,   defines the physical extent of the induced 

dipoles,  the equivalent electric and magnetic current dipole elements are given by 

J(r) = J6(r) = jcoQe(r) ö(r) 

M(r) = M<5(r) = ju;Qm(r) ß(r) 

Substitution of Eqs. (22) into Eqs. (20) yields 

v.(z) - v.ö(z) = hf   •   Mö(z) +Z*J •   e*.   ö(z) r l  x io l zio 

i.(z) = i.<5(z) = e*   •   J<5(z) + Y* M •  h*.   <5(z) 
V 1    v IO 1 ZIO   x 

(22a) 

(22b) 

(23a) 

(23b) 

where the subscript  o denotes evaluation of the eigenfunction at the coordinates of the obstacle 

center.    The transmission line equations [Eqs. (14)] may then be written as 

dV.(z) 
-~t- -J^w + vw 

dl.(z) 
 3—  = JK-.Y.V.(Z) + i.ö(z) dz J   l   l   l l 

and yield,   upon integration between z = 0    and z = 0  , 

-[V.((T) -V.(0+)] -- v. 

-fl.(O-) - L(0+)] = i.       . 

The above equations imply the modal equivalent network shown in Fig. 3. 

1,(0") I,(0+) 

(24a) 

(24b) 

(25a) 

(25b) 

z = 0 z = 0 

Fig. 3.    Modal equivalent network. 



The voltages and currents (V. and I ) on the transmission line shown in Fig. 3 are clearly 

given by 

V.(z±) = - i [±v. + Z.i.l e      l 
v 2   l      1 l iJ (26a) 

1.(2*) = - i [±i. + YiV.] e 
=F i K-. z J   l 

(26b) 

The quantities V.(z   ) and I.(z   ) are the scattered voltage and current amplitudes;  the mode gen- 

erators v. and i. are related to the incident voltage and current amplitudes.    The voltage and 

current at any point on the transmission line is given in terms of traveling waves, 

-1K-.Z „       JK.Z 
.T ,   s     ,r inc      J   i     . ,, ret    J I 
V.(z) = V.       e + V.       e 

iv l l 
(27a) 

-lK.Z -.       1K-.Z 
~ . ,   >      ., inc      J   l        ,r ret    J  l 
Z.I.(z) = V.       e - V.       e 

l i* l l 
(27b) 

The normalized incident and reflected waves as defined by the scattering matrix,   ${b =  Sa),   are 

related to the voltage and current in the following manner: 

ai=2 

V.(z) 
+     Z. I.(z) 

V     1    lv (28a) 

\ = i 
V(z) 

(28b) 

One therefore obtains the following for a. and b. for a two-port structure if the incident energy 

at ports 1 and 2 are considered separately: 

V. -i/c.z 

11        *Z. 
(29a) 

-1 JV 
b.. =  — [-v. + Z.i.l e    l 

11     2^i        '        " 

(29b) 

a2i = 

V JKT.Z 
lO        J    1 e (29c) 
Z. 

b2i = 
- 1 -J^z 

2^ 

[v. + Z.i.l e       * 1   l l iJ 
(29d) 

The electromagnetic fields may be concisely described in terms of three-dimensional electric 

and magnetic vector mode fields associated with the i     mode,  having unit voltage and current 

amplitude,   respectively.    This leads to a particularly compact form for the scattering param- 

eters.    These vector mode fields are 

6.(±)(r) = [e.(p) ± ezi(p)] e     i (30a) 



K.(±)(r) = [h.(p) ±hzi(p)] e      [ (30b) 

where e.(p),   e   .(p),  h.(p),  and h   .(p) have been defined previously and the unit current is given 
1 Z1 1 Z1 

in terms of the unit voltage as -Y. for waves traveling in the — z direction and +Y. for waves 

traveling in the +z direction.    The electric and magnetic dipoles  J and  M are then given by (the 

(±) superscript distinguishes between an equivalent dipole excited by a wave from the right or 

left,   respectively) 

J(±) = jweiP   •   g.(*J (31a) 

M(±) = ±jwuY.l   •   K^]      . (31b) 

Thus,  the scattering parameters describing the behavior of a small obstacle (or longitudinal aper- 

ture in the sidewall) of a two-port structure are (note that Z. = Z*   for propagating modes,   and 

£'     '   = &}   ';   K.    ''   = K;      for transversely bounded,   lossless waveguide) 

«H^l^K^.Jl-KW-cZ.6/;'*.?.   6<0
+», (32a, 

*21 ■1 - *? ^^IT ■ * • ^o+) + ^MT ■ * ■ */0
+,i <"*> 

,12 = i - i» [^K«;»* ■ » ■ K<;> + czl6«o-»* ■ t ■ «<;»] (32C, 

szz ■ $ f^«r ■ ■ • <] -«v&" •»• w • «»«" 
The above formulae will yield the scattering parameters for small obstacles,   longitudinal, 

transverse or of arbitrary shape in dominant mode cylindrical waveguide.   The scattering param- 

eters for small longitudinal apertures may also be obtained if one replaces the object obstacle 

polarizabilities  J   and   %, by its dual-aperture polarizabilities   9  and  %.,  which can be shown to 

have values equal to one-quarter the magnetic and electric obstacle polarizabilities.    Thus, 

9 = ■£» (33a) 

% = ±9       . (33b) 

On the other hand,  the scattering parameters for small transverse apertures can be deter- 

mined most easily from the equivalent circuit of a small transverse obstacle of the same shape, 

size,  and location via Babinet's principle.    This approach will be carried out in Sec. IV.    The 

equivalent circuits for small obstacles will now be deduced from the scattering parameters de- 

rived above. 

Any two-port (two-terminal-pair) network,  such as our small obstacle (or aperture) con- 

figurations,  may be represented most generally by either a Pi (admittance formulation) or a Tee 

(impedance formulation) equivalent circuit [see Fig. 4(a-b)]. 

The relationship between the scattering matrix S   and the impedance and admittance matri- 

ces,  2   and   'Ü,  for a circuit is expressed below 

Z = <JT4 = (1 + cS) (1 - cS)"1      . (34) 



y,'z 

K - *,'« y  '      _    y' 
7ZZ    J\z 

o   4 ►  m  ———o 

[3-46 -11861 | 

Z,'l **« *22 "«« 

l\z 

0   O 
(a) (b) 

Fig. 4.    Equivalent circuits:    (a) Pi,   and (b) Tee. 

Thus,   for the Pi and Tee networks shown in Fig. 4(a-b), 

yll      y12 

s22-sH +(1 +S12)    -s14s22 

(35a) 

a** -S->-> + d + s^)    -S..S 11        22 12'        °11°22 
'22~*12 

(35b) 

2s 

'12=     ^ 
12 (35c) 

where 

A    = 1 + s. .  -I-S--, + s . ,s~~ -s._ 
y 11        22        11   22        12 

(35d) 

7 '        —  Z ' Zll       Z12 

Sll-S22 +(1~S12)    -S11S22 (36a) 

z22      Z12 = 

S22"S11 +(1~S12)    -S11S22 (36b) 

2 s 
12 

M2 "     A 
(36c) 

where 

A    = 1 —s.. -S-- +s..s__ -s.^ 
z 11        22        11   22        12 

(36d) 

In the small obstacle (or aperture) limit,   it is easily shown for symmetrical (y'     = y'   ; 

z'     = z'   ) discontinuities that 

Jll      z12      2y; 
(37a) 

12 

'11      y\2      2zi 
(37b) 

12 

10 



For small obstacles,   it follows directly from Eqs. (32),   (35),   and (36) 'hat 

1 
y \1 

It <1-S12> 

"42      (l-s12)-Sl1       • 

Upon substituting Eqs. (30),   (32a),  and (32c) into Eqs. (38),  one obtains 

v.     w_ 1  
•M2 jo; [fxY.hr   .   % • h.    + eZ.e*.    •   if •   e   .   ] J     lr   1   lO lO 1   zio zioJ 

'12      jcu [>iY.h*. J      ir    1   ZIO 
h   .    + eZ.e'.'c   •  9  ■   e.   ] 

ZIO 1    lO LOJ 

(38a) 

(38b) 

(39a) 

(39b) 

IV. THE SMALL APERTURE APPROXIMATION 

The scattering and equivalent network parameters for small apertures in an infinitely thin, 

perfectly conducting screen transverse to the symmetry (longitudinal) axis may be obtained di- 

rectly from the small obstacle results via Babinet's principle,  the bisection theorem,  and the 

duality properties of the Maxwell field equations.    It should be first realized that a transverse 

obstacle may be represented by a shunt equivalent circuit.    This fact  is easily demonstrated by 

an examination of Eqs. (39).    Since the transverse components of the magnetic polarizability 

dyadic and the normal component of the electric polarizability dyadic are zero for an infinitely 

thin obstacle,  it follows that 

7 ' —  7 ' =     z41      z12     2y = 0 
12 

Y' obs T— = 2(y»    -y»   ) = -f- = jw [uY.h*.    • % • h  .    + eZ.e* i \J ii     ^12'      z' J     ir   l  zio zio l  IC Jobs ±x        x"        "12 

Figure 5(a-b) shows the equivalent circuit of a thin transverse obstacle. 

e.   ] 
ioJ 

(40a) 

(40b) 

o— O 

Yob» 

o o 

|3-46-U862| 

z'obs 

o —O 

(a) (b) 

Fig. 5.    Equivalent circuit of thin transverse obstacle: 
(a) admittance description;  (b) impedance description. 

It can be shown5 that the impedance and admittance for the shunt obstacle and aperture are 

related in the following manner: 

Z'   - -J- = !Y' ap      Y' 4     obs c ap 
(41) 

11 



Therefore, 

ap     J  4 l  zio zio     ^   l  IO ioJ ap 
A A 

or,   in terms of the aperture polarizabilities   % and 9 [see Eqs.(33)], 

Z'    = jw [fiY.h*   • )H  •  h.    + cZ.e*.    . ? •  e  .   1 ap     J     ir   l  io io l  zio zioJ 

(42) 

(43) 

The scattering parameters s^ I = |sM |e J and s      ( = |s12 |e J are then defined by 

(44a) 
1 

11 1 + 2Z' ap 

and,   for lossless,   reciprocal discontinuities, 

«2 M       I        |2v2    2^11 
S12 = -(1- 'Slll   )    e (44b) 

All equations derived herein are consistent and exact in the limit of discontinuities of zero 
1 f> extent.    However,   it has been shown  '    that these equations provide useful data even for discon- 

tinuities whose dimensions are significant fractions of a wavelength. 

V.     SELECTED  EXAMPLES 

The following examples are given to illustrate the ease with which the properties of other- 

wise difficult boundary value problems may be obtained using small obstacle (aperture) theory. 

Example 1 

Consider an elliptic aperture in rectangular waveguide with an incident H      mode (see Fig. 6). 

j~3 -46 -11863 | 

Fig. 6.    Elliptic aperture in rectangular waveguide 
with incident H. ~ mode. 

From Eq. (43), 

Z'     = jwuY [%      In     I2 + % ap     J   r    l   xx'   xo' |h     |2] + jcoeZ?     le     |2 

yy   yo zz'  zo' 

12 



where 

'V^JÄ^T      i       e    = h    - 0       ;       Y=-£-       ;        *     ^ x        o ^ab D1"   a z y Wfi 

and,   for an elliptical disk (d   « d.), 

d. 

»..* = £ d? t£      6     1       /    c 
1 ■(«*-) 

*.« = f d»d:?      • 7? T? 6      12 

Therefore, 

*** =  »fjSin^+»„coS
2^,4)Jxx 

Finally, 

Z™ = 3 ap     J  6abA 
, 3 sin   <p ,   ,   . 2        2 

di —;—öTT—v     i2 c    ^ 
In («5H 

.   2^0 sin     a 

Example 2 

Consider a narrow centered strip in rectangular waveguide operating in the dominant H.fl 

mode only (see Fig. 7). 

Fig. 7.    Narrow centered strip in rectangular waveguide 
operating in dominant H1Q mode only. 

From Eq. (40b), 

Y\      = iwixY»     |h     |2+jweZ[y     le     12 + 9     le     |2] '   r      zz'   zo1        J l   xx1   xo1 yy1   yo'   J obs 

where 

Z = Y"1 = füü      ;       e    =   /4 sin ™      ;       h    = -j JL    /X cos ZL2L «r        ' y     vab a z        J  a< vab a 

P       = _)R      = id-Zunit length 
yy ZZ 4   / 6 

13 



Therefore, 

dY'. obs 
.  k2   /7Td2\ /  2 \ o.   2 7TX    ,        .1   /7rd2\ / 2 \ 2 TTX    . = 3 v {—) lib)sin T

(,X
-J; (—] (IF) 

COS
 x dx 

Hence, upon integrating from x = 0 to x = a,  one obtains 

, 2b  /7rd\2 

obs     J X     \2b/ 
g 

REFERENCES 

1. N. Marcuvitz,  Waveguide Handbook,   Radiation Laboratory Series,   M.I.T. 
(McGraw-Hill,   New York,   1951),   Vol.10. 

2. N. Marcuvitz and J. Schwinger, "On the Representation of the Electric and 
Magnetic Fields Produced by Currents and Discontinuities in Waveguides," 
J. Appl. Phys.   22,   806 (1951). 

3. J. A. Stratton,   Electromagnetic Theory (McGraw-Hill,  New York,   1941). 

4. C.G. Montgomery,   R. H. Dicke,   and E. M. Purcell,   Principles of Microwave 
Circuits,  Radiation Laboratory Series,   M.I.T.  (McGraw-Hill, New York, 
1948),   Vol.8. 

5. R. F. Harrington,  Time-Harmonic Electromagnetic Fields (McGraw-Hill, 
New York,   1961). 

6. L. B. Felsen and C. L. Ren,   "Scattering by Obstacles in a Multimode Wave- 
guide," Proc.   IEE 113,   16 (1966). 

14 



UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA - R&D 
(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified) 

I.    ORIGINATING   ACTIVITY   (Corporate author) 

Lincoln Laboratory, M.I.T. 

2a.    REPORT   SECURITY    CLASSIFICATION 

Unclassified 
2b.    GROUP 

None 
3.    REPORT   TITLE 

Small Obstacle and Aperture Theory 

4.    DESCRIPTIVE   NOTES  (Type of report and Inclusive dates) 

Technical Note 

5.    AUTHOR(S)  (Last name,  first name, initial) 

Ruddy, John M. 

6.     REPORT   DATE 

29 August 1968 
7«.    TOTAL   NO.  OF   PAGES 

20 
7b.    NO.  OF   REFS 

6 

8«.    CONTRACT   OR   GRANT   NO. 

AF 19(628)-5167 
b.    PROJECT   NO. 

649L 

9«.    ORIGINATOR'S   REPORT   NUMBER(S) 

Technical Note 1968-32 

9b.    OTHER   REPORT   NO(S)   (Any other numbers that may be 
assigned this report) 

ESD-TR-68-254 

10.     AVAILABILITY/LIMITATION   NOTICES 

This document has been approved for public release and sale; its distribution is unlimited. 

II.    SUPPLEMENTARY   NOTES 

None 

12.    SPONSORING   MILITARY    ACTIVITY 

Air Force Systems Command, USAF 

13.     ABSTRACT 

This report is essentially tutorial in nature.   Formulas, based on the small obstacle and small 
aperture approximation, are derived for the equivalent network and scattering parameters for arbi- 
trary discontinuities in single-mode uniform cylindrical waveguide.   A few examples are presented 
in order to illustrate the simplicity of this method. 

14.    KEY   WORDS 

waveguide theory 
small obstacle 
aperture 

equivalent networks 
electromagnetic fields 

dipoles 
scattering 

15 UNCLASSIFIED 
Security Classification 








