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PREFACE

This Memorandum continues Project RAND's program of
research into the theory of games and its applications.
It extends reocent work done on n—person games and reported
in RM-5543-PR, RM-5567—PR, and RM-543R-PR.

The result obtained herein, namely, that a large
nonzero—sum n—person game chosen at ''random' is likely
to have a pure strategy equilibrium point, may have impor—
tant implications. Every game has a mixed strategy equili-
brium point, but it is not clear how or why one would ever
use such a solution concept in a real—-world situation. Not
only is an optimal mixed strategy very difficult to compute,
but decisionmakers are reluctant to make operational use
of the notion because it means leaving the decision to
chance. This Memorandum indicates that if the players
have many strategies, a mixed strategy is rarely an optimal
one. Thus many game theory models may take on additional

significance.
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SUMMARY

A ''random" n-person noncooperative game—-the game that
pronibits communication and therefore coalitions among the
n-players—is shown to have a pure strategy solution with
a high probability. A solution of a game is an equilibrium
point or a set of strategies, one for each player, such that
if n — 1 players use their equilibrium strategies then the

n-th player has no reason to deviate from his equilibrium

SIS F-FE R W O S

strategy. It is showu that the probability of a solution
in pure strategies for large random games converges to

1
1 - Py for all n 2 2.
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1. INTRODUCTION

The concept of a solution, or optimal strategy,
frequently used for an n-person noncooperative game is the
equilibrium strategy or equilibrium point. In order to
assure the existence of a solution it is necessary to
introduce mixed strategies. Except for the 2-person zero-
sum game, however, it is generally very difficult to compute
an optimal mixed startegy. Further, the decision-maker is
reluctant to accept the operational notion of a mixed
strategy-

These limitations of mixed strategies lead naturally
to the hope that mixed strategy solutions are rarely
required, or that a game chosen at random will in fact
possess a pure strategy solution. For a 2-person zero-sum
game this hope is not fulfilled; for large matrices in such
games it is almost certain that the solution will be a mixed
strategy, or the chance of a pure strategy solution is
almost negligible.

It was conjectured that the optimal strategy of an
n-person game would have a similar property. The present
paper shows that with respect to solution, the n-person
game is different from the 2-person zero-sum game. It is
shown that the prcbability of a solution in pure strategies

is quite large. in fact converging to

1 - el = 632"




.

fo. large games. Further, this result is the same regard-

less of the number of players, two or more.




2. _GAMES AND TRUNCATIONS

In the normal form of an n-person noncooperative game
the i-th player (i " n) has m; strategies which we label

u; (1 u; £ mi)- A play of a game can be reprssented by

an n-vector U = (ul, Ugs -, un), giving us 1 m; = -
i=1
possible plays. For each play U and each player i there

W

exists a payoff M;(U), representing the payoff to the i-th
player for the play U. There are therefore n- payoffs.
We now define a truncation of a play with respect to

the i-th player to be an n ~ 1 vector

Up = Qs uge oo uy s ug e e u )

A truncation of a play leaves out the i-th player's strategy

or

U= (U,, u,).




3. _EQUILIBRIUM POINT
Nash "1° first introduced the notion of an equilibrium
point, and he shcwed that every game possesses such a point

in mixed strategies. An n-vector of pure strategies

* * * EAR S 11 . .
U = (u. uy, ---, u ) is an equilibrium point in pure
strategies if for each i _n and u; Lomy,
* *
(L) Mi(U ) 2 Mi(Ui' Ui)'

Equivalently, we have, for each i < n,

* *
(2) M (UT) = Max M (UL, ug)-
u._m,

i
*
I1f the above condition is satisfied, U will be referred
to as a pure equilibrium point or PE solution or just PE.
For a 2-person zero-sum game a PE solution is the same as
a saddle-point. We also call a PE point a solution

of the n-person game.




It is well-known that PE solutions are rare for 2-
person zero-sum gamesS. For example, the probability that
a "'random' 2-person zero-sum game has a PE solution is

ml! mzf
This result exhibits the need for mixed strategies. even
if the number of strategies for each player isn't very
large in the 2-person zero-sum game-

It is natural to inquire aktout the need for mixed
strategies in arbitrary n-person games. 1Is it likely that
we can get by with pure strategies? To answer this inquiry
we analyze ''random games."

We define a random n-person _game by the following

properties:
(i) The n— payoffs Mi(U), are independent random
variables.

(ii) For each i, the payoffs Mi(U) have the same

continuous probability distribution.

From the above definition of a random game it follows
that the n payoffs are distinct in such a game. Further.
the probability that a random n-person game has a PE
solution is now well-defined.

Let E(U) be the event that U is a PE sclution of the

game. Define the following probabilities




s, =2 PrlEQU) . s, = 2 priEu))EQWK) ",
174 27 %

Sy = kE priE(UHEWUEW ),

Let Pn(ml’ my, -, mn) be the probability that a
random n-person game, where the n players have my, My, -,
strategies, respectively, has at least one PE solution.

Then
P (m, my, .-, m) = Pr{%/ E(U) |
Then by the so-called method of inclusion and exclusion
- _qyttl
Pn(m17 m21 .o » mn) tgzl ( 1) St'

Since the events are equally-likely, we have that

where N, is the cardinality of the family of all sets which

have t equilibrium points, or

(3) P (m. my, ..., m) = El (-1t Nt




5. EXISTENCE OF t EQUILIBRIUM POINTS

In order to determine Nt we shall derive a condition
that a game have t equilibrium points. Our definition
of equilibrium point and random game yields the following
Theorem 1. A necessary and sufficient condition that

Ul, Uz, cey Ut are t equilibrium points of an n-person

game is that

—
e N

Ui, U5 - U; are distinct for each i _ n.

Proof: Suppose

Then since U1 and U2 are equilibrium points

1 1
Mi(U ) = max Mi(Ui’ ui)

u.<m,
i=my

2 - 2
ui=mi

contradicting the implication that all n- payoffs are
distinct.

Since the U's are n-vectors and the Ui's are (n-1)-
vectors, the theorem states that each pair of U's must
differ in at least two of their n-components in order to be

PE solutions.
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If n = 2, a play of the game can be represented by a
2 2
2

(ut. Et) to be t equilibrium points, then from Theorem 1

2-vector U = (u, f). 1In order for (ol, Fl), (a

it follows that

ol, 02, ceey ut are distinct

and

:Vly Fzy C ey Ft

are distinct.

To compute N . we observe that t distinct a's can be
m
chosen in (t]) ways and t distinct F's can be chosen in
m
(tz) ways, and then the two sets can be paired off in t!

ways. Thus

and
m m _
(4) By(my. my) = t§1 DD e mmy T

This result was first obtained by K. Goldberg., A. J. Goldman
and M. Newman 2 . They also obtained the asymptotic value

of Py(my. my).




7. _EQUILIBRIUM POINTS IN THREE PERSON-GAMES

If n = 3, it is convenient to decompose the set of
© = mymomgy points into mm, sets of the form S;;- Each
member U = (ul, uy, u3) of Sij is such that u; = i, u, = Js
Uz , My- Thus each set Sij contains mq points. Now each
Sij can contain at most one equilibrium point. Therefore
N, can be determined by the following process:

(i) Choose t sets S,

s S, s, -y Sy o f th
i3, 153, rom the

Tele
m;m, sets Sij'
(ii) Choose one member from each of these t sets so
that the t choices are PE points.
Let u(t) be the number of ways of choosing t PE points
satisfying (ii) above—i.e., u(t) is the number of ways of

choosing t equilibrium points from t given sets

S, . , S

i -y S, . - We have then
171

1.3
(5) N, = (

For example, if t = 1, u(l) = mq, and
Np = (mmy)my =

If t = 2, we have

H(2) = mj if i+ .

H(2) = (m3 - l)m3 if i, = 1



e ———
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Let p, represent the number of ways of choosing t

equilibrium points from the t sets Siljl, Sizjz’ Sy Sitjt
given that t — 1 equilibrium points have been chosen from

the t — 1 sets S, . , S. . , ..., S. . Then we have
1y 122 Le-1de—1

By = my and

(6) u(t) = pou(e-1) = Hy -

-
[ o 4
Pt

It is evident that He also represents the number of

ways of choosing the t-th PE from the set 55 j given that
t-t

(t—1) PE points have been chosen from the (t—1) sets

S. ., 8, ., ..., S, . . Hence i, must be bounded as
L1J1 1232 le—tdenr t
follows:

For example, to compute p,, we have

Hp = my if 1) ¢ 15, J; t 3y
Now the weights attached to the first value, m,. is

(m1 - 1)(m2 — 1) while the weights attached to second value

is m; + my — 2. Therefore we have




We can now compute

K(2) = m, ( )
3 MM
. r—S+2

where S = m1 + m, + mg-

Substituting in (5) we get

m.m
Ny = ( % 2) nw(2) = 1&1_%_§_t_g)

To compute My we need to examine four cases

My = mq — 2 if il = i, i and jl, APY j3 distinct,

or if j1 = j2 j3 and il’ 12’ i3 distinct

Hq = mg = 1 if i1 = 12 * i3, jl’ jZ’ j3 distinct
or if j; = j, * j3» iy, iy, i5 distinct
Hq = mg if il’ 12, i3 distinct, jl’ j2’ j3 distinct
2
(my~1) e i o e
My — if i, = i, ¥ iy and j; = j3 * j,

or if j; = j, % jyand i) = iy % i,
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The weights associated with each of the four above

values of kg are, respectively

2m, — 1) (m, - 1)% + 2(m, — D2(m, - 1)
1 2 1 m2
(m1 - 1)(m2 - 1)(m1m2 - m - m2)
2(m1 - l)(m2 - 1)
The sum of the above weights is (mlm2 - 1)(m1m2 - 2).
Using the above weights and values of hy we obtain an

average value of M4 as a function of my, My, Mg- In

particular, if m = m, = my=m, this average value is

2(2m° —Sm+ 1)
m@m + 1) (m* — 2)

“3=m

In terms of the above value of My, we can now evaluate

m

m
Ny = (2 Hu)
3
mm2 -2
=73 Ny,

S~ my) (= S+ 2)
6m3

Hi
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In a similar manner we can compute recursively the

values of Nt and then compute the required probability

-t

t+l
Py (my. my, my) = in (-1) N,

(8) mlmz t uk
y & =

= I (1)t - -
=1 t k=1

It is of interest to determine the asymptotic value
of P3(m1, m,, m3) as the number of strategies increase for
each player. We note that the absolute value of the t-th

term of the series for P3 is

-t _ MM, f A

N . ) — ———
t t k=1 M1M2™3
1 E (mlm2 — k+1)/1k
- ¥ . et S
B S L L
where
m3 - k+1 - Hk - m3 k e m3

Hence we have for k . t . mm,

_ k=1 _ k-1 12 " "7k _ kol
¢ mlmz)(l my ) - mym,m - ¢ mmy

Thus
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t t t

k-1 k-1 Kk k-1
na--Sha -ELh ¢ RS oSS g (- )
k=1 m)my ma k=1 mymomsy k=1 mmy

From the above inequality. it follows that

or

lim Nt e b
ml.mzva‘

Hence we get the asymptotic value of the probability

t+1]
: . 1 -1
Lim Py(my.my.my) = t:‘:‘l Lu 1 -e

ml.mz.m3 b




-15-

We now evaluate the probability of a PE solution in

a random n-perscn game, where the i-th player has my

strategies. In such a game the set of - = mimy ... M

points can be decomposed into mmy e Mo M sets of

the form S, . ... . where each set contains m_ points.
l]. 2 ln_l n

Each member U = (u,. u,s, -.., u ) of S, . ... :

1 2 n iji, 1

such that u; = i}, uy = iy. ..., u | =i ;. and

is

u m_ = m. Thus each set contains m points.

From Theorem 1 it follows that each set S, . ... .
i i i
172 n—1
can contain at most one PE point. Therefore choosing t
equilibrium points from the points is equivalent to
choosing t of the M sets and then choosing one point from
each of these t chosen sets. Again. let u(t) be the number
of ways of choosing t equilibrium points from the t chosen

sets (we emphasize that only one point may be chosen from

each set). Then. w. ' ave

N = Chico)

As in the previous section let He be the number of
ways of choosing t equilibrium points from the t sets
. T,. S. . .. . e, s
i ' P33y dpq 72 iy

S. . ...
) n—1
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given that t - 1 equilibrium points have been chosen from
the t — 1 sets Tyo Toe oo T - 1t follows that
t
(9) u(t) = poopu(e=1) =
t k=1 K

In making the above choices we need to choose the t-th
PE point from the set T  which contains m points. We thus

have the following inequality

(10) m-t+1_u _m

The required probability of a PE point in the random

game is given by

O3 gy ttl ~t
Pn(ml' My, ooy mn) = 2 -1 N,
- t
= 5 e o
t=1 k=1

We may write thic probability as

_ t e
an P oom = I DT (=%
n t=1 k=1
where My is a function of My Moo covw M oo W@

For each M and m we can compute Pn(M,m) by first
7
computing 7# where k _ t. From the definition of e
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Hy Moy
we have z " 1. In order to get —= we note that

Khy = m-1 if il = jp» or iy = jy, ..., or i1 = jn—l .
The weight associated with Ho = m is
(mp - 1) (my=-1) ... (m_; - 1) = D. The weight associated
with 4y = m — 1, is mn — D — 1. We thus get
= _nT—-—D-1

IJ'Z m M_l ’
and

P2, _r-D-1_, _mM-D-1

m m(M-1) mM - m

By My, He

In a similar manner we can compute ' T m and then

obtain | 0f course, the computation of ﬁk becomes more
cumbersome with each value of k.- However, P, has an
asymptotic value given by

Theorem 2. For all n-person games (n > 2)

lim P_(m, my, -, m) = 1~ e 1.

M-=
m-=

Proof: Equation (l1) can be written as




-18-

41 t71 . t
- =1 1 - tl:k_
B, (M,m) t?li?)' =1 & 73 D m
Hence we have
- 1yt t—-1
(12) Pn(M,m)—(l—e1)= ppea)’ [1— -
t=0 ’ i=1l
Now let
t—1 . t My
LoMm) = o (L) T oo
t i=1 Mo ™
It is clear from (10) that for all t,
0¢ xt(M,m) $ 1.
Now for all i < T < M we have
i T
121—ﬁ21—ﬁ'
Hence
. t-1 T
t—-1 i _T _T
izl (1 - ﬁ) > (1 M) > (1 M) for

We also have from (10) that

t <T<M.
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M k-1 t T
E—Zl-—m—>1—a>1-a for k<t <T.

Therefore

1.7 t < T< m.

Substituting the above inequalities in the definition

of 1t(M,m) we have

\ T.T T.T L
e Mm > - -3 for coTom

and t < T <m

2
T T

2 2
T T
2 Q- -w)

Now T is arbitrary but T < M and T < m. Suppose we
2

restrict T so that T3 < M, and T3 < m, then %T < % and

L. 1, and we obtain the inequality

—_— —_

m T
3

Ly » Mm) 213 for t<T<T <M

and & < T < T3 <m .

Oor
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. L2 . .
01— \t(M,m) <F for ¢t < T« T <M

and t < T < T < m .

Returning to (12) we have

T
-1, 12 -)° .
P — (=D L D @ Zz G- onm )|

t
_%e + I ) —(51)— 1 - xt(M.m)]l
t>T )

The second term represents the ''tail" of a converging

alternating series, hence there exists ¢ > 0 such that

t
2 -(;—.1)—— (1= Mm)] Ot

t>T
giving us
-1 Z 5
IPn(M,m) - (1 —-e )' < ge + 5.

25
Let T > —f, then

Pn(M,m) - (1 - e_l)l <28,
which proves the theorem. It is of interest to note that

Theorem 2 requires only that two of the n players sets of

strategies be infinite.
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