The Detection of Nonfluctuating Targets in Log-Normal Clutter

S. F. GEORGE

Rudar Analysis - e.f. Radar Divis

October 4, 1968

CO JTENTS

٠,

Abstract	11
BUMMANN	l
INTRODUCTION	1
LOG-NORMAL CLUTTER MODEL	5
DETECTION OF A NONFLUCTUATING SIGNAL IN CLUTTER.	3
DETECTION USING THE SUM OF A PULSES	6
PRODABILITY OF DETECTION RESULTS	8
ACKNOWLEDGMENT	18
REFERENCES	18

١

ABSTRACT

Measurements of sea clutter using high-resolution radar indicate that the clutter-cross-section returns follow a log-normal probability density function more closely than the usually assumed Rayleigh law. This report develops the theory for the detection of a steady signal in log-normal clutter by first using a single pulse and then by using the sum of N pulses integrated noncoherently. Plots of the probability density of the envelope of the signal plus clutter show the function to be bimodal, an unexpected result. Curves are presented for the threshold bias, normalized to the median clutter voltage, versus the probability of false alarm for several values of the standard deviation a and for various values of N. Probability of detection curves are presented for a = 3, 6, and 9 dB, for N = 1, 3, 10, and 30 pulses, and for false alarm probabilities from 10^{-2} to 10^{-8} . The ratio of signal to median clutter required for detection increases markedly as a increases because of the highly skewed clutter density.

Manuscript submitted August 21, 1968.

THE DETECTION OF NONTLUCTUATING TARGETS IN LOG-NORMAL CLUTTER

SUMMARY

Sea clutter measurements made by NRL using a high-resolution radar show that the clutter cross section tends to be log-normally distributed. A study of the log-normal clutter model, therefore, seemed appropriate, and this report presents the results of such a study.

First, a derivation is presented of the log-normal density function required to establish a family of threshold values for false alarm probabilities varying from 10 ± to 10 ± and for selected values of standard deviation 4. Plots of the clutter density show highly skewed tails as a increase a cesulting in greatly increased bias values as compared to the Rayleigh model.

Next, the distribution of the envelope of signal plus clutter for a single pulse is derived. Plots of probability densities show a bimodal function, which is an unexpected result. The bimodal shape holds for all values of signal-to-noise ratio (S-N) and for all values of ... but the dual peaks draw closer together and the dip becomes less pronounced as - increases. Formulas for the probability of detection are given, but these could not be evaluated in closed form, so they were programmed for the NRL CDC 3800 computer,

Then the probabilities of false alarm and detection are developed for the sum of X pulses integrated noncoherently. The general method used is that of the characteristic function, which essentially requires two applications of the Fourier integral. Here again no solution in closed form seemed readily obtainable, so the CDC 3800 was programmed for numerical evaluation, using the fast Fourier transform technique.

Sets of curves are presented for the probability of detection for values of $\omega = 3$, 6, and 9 dB, for $\lambda = 1$, 3, 10, and 30 pulses, and for false alarm probabilities from 10^{-2} to 10^{-6} . The S N required for detection for $\omega = 3$ dB are about the same as those for the Rayleigh model, as would be expected since the log-normal tail for this case compares to the Rayleigh tail. However, as ω increases, the required S N also rises markedly as a result of the increasingly skewed distributions. It should be noted that the S N defined in this report uses the median clutter value for noise and not the usual rms value.

INTRODUCTION

Clutter-cross-section measurements of sea return taken with high-resolution radar show more of a tendency to follow a log-normal probability distribution than the Rayleigh distribution usually assumed. Data reported by NRL (1) using an X-band radar with a 0.02_{-0} sec pulse are plotted in Fig. 1 on probability paper with the clutter cross section a_{\perp} in dB on an arbitrary scale. A log-normal distribution is indicated by these points falling in a straight line. It is seen that the cumulative probability closely fits a line between 5% and 80%. Accurate data at the extremes are difficult to obtain, because thermal noise limits the low a_{\perp} values and the system dynamic range limits the high a_{\perp} values.

Studies made by Miner (2) and Ballard (3) also consider the log-normal description of the sea-clutter cross section and relate the standard deviation of the distribution to the S. F. OLOROP.

Fig. 1 - Probability distribution for the log-normal clutter model, with experimental points for an N-band radar with a $0.02s_{0}$ sec pulse

radar illuminated patch area. Ballard actually set up a log-normal probability model but did not calculate detection curves. The present report follows much of the same theoretical method and extends the model to include the integration of N pulses.

LOG-NORMAL CLUTTER MODEL

If we assume that clutter cross section is log-normally distributed, then the probability density is given by

$$p(\sigma_{v}) = \frac{1}{\sqrt{2\pi}\sigma_{w}} \exp\left[-\frac{1}{2\sigma^{2}} \left(\ln\frac{\sigma_{v}}{\sigma_{m}}\right)^{2}\right], \qquad (1)$$

where a_c is the clutter cross section, a_m is the median value of a_c , and a is the standard deviation of $\ln a_c$ (natural logarithm). Since cross-section values are measures of power, the standard deviation (s.d.) is expressed in "natural units" (4) by the relationship

$$\sigma$$
 (natural units) = (0, 1 ln 10) σ (dB) = 0,2303 σ (dB). (2)

The value of a in Fig. 1 is in dB, and a must be converted into natural units by Eq. (2) for use in Eq. (1).

In Fig. 1 the log-normal probability distribution function is plotted for $\sigma = 3$ dB and $\sigma = 6$ dB. The dashed line is a close fit to the NRL experimental results on sea clutter previously mentioned. For this line, $\sigma = 5.4$ dB. From Ref. 3, a value of $\sigma = 4.7$ dB resulted from a clutter patch size of 3840 sq yd in a sea state 4. From the NRL studies (1), $\sigma = 5.4$ dB corresponds roughly to a clutter patch size of 135 sq yd in sea state 1.*

To determine the probability of false alarm and subsequently the probability density function of a signal plus clutter, Eq. (1) must first be transformed into a voltage-amplitude

[#]In general σ increases directly with sea state and inversely with clutter patch size.

density. If we let v_c be the envelope of the radar echo from the clutter area a_c , then $v_c = a_c^{-1/2}$ or $a_c = kv_c^2$. Using this substitution in Eq. (1) yields

$$p(\mathbf{v}_{c}) = \sqrt{\frac{2}{\pi}} \frac{1}{\sigma v_{c}} \exp\left[-\frac{1}{2\sigma^{2}} \left(2 \ln \frac{v_{c}}{v_{m}}\right)^{2}\right], \quad 0 < v_{c} < \infty,$$
(3)

where v_m is the median value of v_c and a remains the s.d. of $t_0 u_c$. Then, a is still measured according to Eq. (2).

The probability of false alarm for a voltage bias level β is given by

$$P_{FA} = \int_{-\infty}^{\infty} p(v_{c}) dv_{c} = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \exp((-t^{2}) dt, \qquad (4)$$

where $y = \beta |v_{\omega}|$ is the normalized bias level. The integral in Eq. (4) is related to the error function, which is well tabulated.

DETECTION OF A NONFLUCTUATING SIGNAL IN CLUTTER

Let us assume a radar pulse return from a target which is a steady signal of constant amplitude v_{\pm} . The clutter return will be assumed to have the log-normal amplitude density function as given in Eq. (3) and a phase ϕ_{\pm} that is uniformly random over $-\pi_{\pm}\phi_{\pm}$. The analysis can be performed as though the radar were operating as a cw system. If the signal and clutter voltages add linearly prior to envelope detection, then we can assume that the signal plus clutter may be represented by the two components

$$\mathbf{X} = \mathbf{v}_{\mathrm{s}} + \mathbf{v}_{\mathrm{c}} \cos \phi_{\mathrm{c}} \tag{5a}$$

and

$$Y = v_c \sin \phi_c, \tag{5b}$$

where x and Y are the in-phase and quadrature components of the signal plus clutter.

We can define two new variables x' and y' such that their joint probability is that of the clutter alone:

$$X' = V_{s} = v_{c} \cos \phi_{c}$$
 (6a)

and

$$Y' = Y = v_{\perp} \sin \phi_{\perp}. \tag{6b}$$

Then, the relationship between these joint distributions is

$$p(\mathbf{v}_{c},\phi_{c}) \ d\mathbf{v}_{c}d\phi_{c} = \begin{cases} \frac{\partial \mathbf{X}'}{\partial \mathbf{v}_{c}} & \frac{\partial \mathbf{X}'}{\partial \phi_{c}} \\ \frac{\partial \phi_{c}}{\partial \mathbf{v}_{c}} & \frac{\partial \mathbf{Y}'}{\partial \phi_{c}} \end{cases} \mathbf{p}(\mathbf{X}',\mathbf{Y}') \ d\mathbf{X}'d\mathbf{Y}' = \mathbf{v}_{c} \ \mathbf{p}(\mathbf{X}',\mathbf{Y}') \ d\mathbf{X}'d\mathbf{Y}'.$$
(7)

S.F. GEORGE

But since v_c and ϕ_c are independent variables, $p(v_c, \phi_c) dv_c d\phi_c = p(v_c) dv_c p(\phi_c) d\phi_c$ = $p(v_c) dv_c (1/2\pi) d\phi_c$. Hence, from Eqs. (3) and (7) we have

$$p(X',Y') \ dX'dY' = \frac{1}{\pi \ \sqrt[4]{2}\pi} \ \frac{1}{\sigma v_c^2} \exp\left[-\frac{1}{2\sigma^2} \left(2 \ \ln \frac{v_c}{v_m}\right)^2\right] dv_c d\phi_c. \tag{8}$$

From Eqs. (6) this becomes

$$p(X,Y) = \frac{1}{\pi \sqrt{2\pi} \sigma \left[(X - v_s)^2 + Y^2 \right]} \exp \left[-\frac{1}{2\sigma^2} \left(2 \ln \frac{\sqrt{(X - v_s)^2 + Y^2}}{v_m} \right)^2 \right].$$
(9)

Finally, using Eqs. (5) in Eq. (9) yields

$$p(v,\phi) = \frac{v}{\pi \sqrt{2\pi} \sigma (v^2 - 2v v_s \cos \phi + v_s^2)} \exp \left[-\frac{1}{2\sigma^2} \left(2 \ln \frac{\sqrt{v^2 - 2v v_s \cos \phi + v_s^2}}{v_m} \right)^2 \right].$$
(10)

where $v^2 = X^2 + Y^2$, $X = v \cos \phi$, $Y = v \sin \phi$, and the transformation from Eq. (9) to Eq. (10) is analogous to the one used in Eq. (7) with ϕ uniformly random from $-\pi$ to $+\pi$. Now v represents the envelope amplitude of signal plus clutter. The probability density function of v alone is obtained from Eq. (10) by

$$p(\mathbf{v}) = 2 \int_0^{\pi} p(\mathbf{v}, \phi) d\phi.$$
 (11)

Attempts to evaluate Eq. (11) in closed form were not successful, so computer numerical evaluation was employed. However, before illustrating the results, it is more meaningful to transform Eq. (10) into an expression containing a "psuedo" S/N, actually a signal-to-clutter ratio, since v_s is not easily obtained. If we let $r = v_s/v_m$ in Eq. (10) the probability density becomes

$$p(x,\phi) = \frac{x}{r \sqrt{2\pi} \sigma (x^2 - 2xr \cos \phi + r^2)} \exp \left[\frac{-2}{\sigma^2} \left(\ln \sqrt{x^2 - 2xr \cos \phi + r^2}\right)^2\right], \quad (12)$$

where $x = v/v_m$ is now the normalized envelope amplitude of signal plus clutter. Then the probability density function of x is

$$p(\mathbf{x}) = 2 \int_{0}^{\pi} p(\mathbf{x}, \phi) d\phi.$$
 (13)

The probability of detection for a single pulse of a steady signal in log-normal clutter for a normalized bias level y is thus

$$P_{D} = \int_{\gamma}^{\infty} p(x) dx = 2 \int_{\gamma}^{\infty} \int_{0}^{\pi} p(x,\phi) d\phi dx = 1 - 2 \int_{0}^{\gamma} \int_{0}^{\pi} p(x,\phi) d\phi dx.$$
(14)

In Fig. 2 plots of Eq. (3) for various values of σ are compared with the Rayleigh distribution for which the median value has been set equal to v_m . It should be noted that the tail of the Rayleigh distribution falls off about as rapidly as that of the log-normal for $\sigma = 3$ dB, but the tail falls off less rapidly as σ becomes larger in the log-normal distribution. For these larger σ values, then, the bias values for a fixed P_{FA} are expected to be greater for the log-normal than for the Rayleigh distribution. Plots of bias values, obtained from Eq. (4), illustrate in Fig. 3 how rapidly the bias does increase as σ increases.

Fig. 2 - Log-normal probability density for $\sigma = 3$, 6, and 9 dB and the Rayleigh density for the median value v_m

Fig. 3 - Bias levels as a function of false alarm probability with $\sigma = 3, 6, 9, \text{ and } 12$ dB for N = 1, a single pulse of log-normal clutter

S.F. GEORGE

To plot the probability density function in Eq. (13) the integral had to be evaluated numerically, since no closed form solution was found. The CDC 3800 was programmed using Simpson's rule for the integration. Figure 4 shows a family of curves for the probability density of the envelope of signal plus clutter for a = 3 dB and for several values of $r = v_s v_m = S/N$ which has been designated as a voltage S/N. The double hump or bimodal curve is most unusual and surely not predicted. Note that this curve is the envelope distribution and hence assumes linear detection. The values of S/N shown are voltage ratios. Figure 5 shows curves for a = 6 dB. Again the double hump is present but less pronounced. In Fig. 6 by increasing a for a fixed value of r (i.e., S/N) the distributions remain bimodal but the humps tend to converge and the dip becomes less pronounced. Figures 4 and 5 show that as r increases, the curve shapes do not change substantially.

A word of caution is in order regarding the definition of the signal-to-noise ratio $r = S/N = v_s/v_m$. It should be noted that this is not the usual definition of the signal-to-noise ratio, where the noise is taken to be the rms value. Herein the noise (which is clutter) is taken to be the median value. This is a convenient definition to use and, also, one which would have considerable engineering significance, since clutter is frequently expressed in terms of its median value. However, in subsequent parts of this study where N pulses are integrated, care must be exercised in interpreting r. Since the log-normal model yields a two-parameter distribution, its behavior is more difficult to analyze and interpret than the Rayleigh model.

DETECTION USING THE SUM OF N PULSES

The straightforward method of determining the probability density for the sum of N envelope detected pulses, assuming they are independent. is by use of the characteristic

Fig. 4 - Probability densities of a single-pulse signal plus log-normal clutter for $\sigma = 3$ dB and voltage S/N = 0, 2, 4, and 6. Note the double peaks.

6

Fig. 5 - Probability densities of a single-pulse signal plus log-normal clutter for a = 6 dB and voltage S/N = 0, 2, 4, and 6

Fig. 6 - Probability densities of a single-pulse signal plus log-normal clutter for voltage S/N = 2 and n = 3, 6, 9, and 12 dB.

S.F. GEORGE

function. Starting with the probability density of the envelope of signal plus clutter given by Eq. (13), the characteristic function is given by

$$\dot{\phi}(w) = \int_0^\infty p(x) \exp(iwx) dx, \qquad (15)$$

which is the Fourier transform (FT) of p(x), since $x \ge 0$. The characteristic function for the sum of N independent pulses is

$$\phi_N(w) = \{\phi(w)\}^N. \tag{16}$$

It is noted that in general $\phi(w)$ is a complex function. Using the inverse FT of Eq. (16) gives the probability density for the sum of *N* pulses:

$$p_N(x) = \frac{1}{2\pi} - \int_{-\infty}^{\infty} \phi_N(w) \exp(-iwx) dw.$$
 (17)

Plots of Eq. (17) for N = 1, 2, and 5 and for S/N = 2 are shown in Fig. 7. Note that the double hump disappears as N increases. Also the distribution spreads out as N increases and begins to lock more like a normal distribution.

For the sum of *N* pulses, the probability of false alarm is

$$p_N(FA) = \int_{\gamma}^{\infty} p_N(x) dx = 1 - \int_{0}^{\gamma} p_N(x) dx, \qquad (18)$$

where r = 0; and the probability of detection is

$$p_N(\text{Det.}) = 1 + \int_0^1 p_N(x) \, dx,$$
 (19)

where $p_N(x)$ is evaluated for the parameter $r \neq 0$. All attempts to find a closed-form expression for the integral in Eqs. (18) and (19) proved fruitless. Fortunately, the new digital technique known as the fast Fourier transform (FFT) made it possible to evaluate these integrals numerically in a reasonable time.

PROBABILITY OF DETECTION RESULTS

Bias values for $N \approx 3$, 10, and 30 were determined from Eq. (18) by numerical integration for talse alarm probabilities from 10^{-2} to 10^{-8} and for $a \approx 3$, 6, and 9 dB. These are plotted in Figs. 8 through 10. Curves for bias values are repeated in Figs. 11 through 13 with N varied for a fixed a value.

Using these bias values, Eq. (19) is evaluated, giving the probability of detection versus S/N per pulse, in values of P_D from 0.1 to 0.9999. Figures 14 through 17 are for a = 3 dB. A summary of P_D for $P_{FA} = 10^{-6}$ and N = 1, 3, 10, and 30 is presented in Fig. 18. In Figs. 19 through 23 detection curves are given for a = 6 dB, and in Figs. 24 through 28 for a = 9 dB. An inspection of these curves shows that the S/N required for detection increases rapidly as a increases. In fact the S/N in dB appears to increase linearly as a increases, doubling as a goes from 3 to 6 dB and increasing by a factor of 3 as a goes from 3 to 9 dB.

It is interesting to compare the set of curves for $w \approx 3$ dB and $N \geq 1$ (no integration) with those obtained using a Gaussian model. Skolnik (5) shows that the S/N required compares favorably with the results using a log-normal model (Fig. 14) as should be expected for the $w \approx 3$ dB case,

Fig. 7 - Probability densities of a signal plus log-normal clutter for w = 3 dB, voltage S/N = 2, and number of pulses N = 1/2, and 3. Note as N increases the curve looks more like a normal distribution.

Fig.8 - Bias levels for false alarm probabilities from 10^{-2} to 10^{-8} for N = 3 with $\sigma = 3$, 6, and 9 dB

Fig. 9 - Bias levels for false alarm probabilities from 10^{-2} to 10^{-8} for N = 10 with u = 3, 6, and 9 dB

Fig. 10 - Bias levels for false alarm probabilities from 10^{-2} to 10^{-8} for N = 30 with a = 3, 6, and 9 dB

Fig. 13 - Bias levels for false alarm probabilities with the number of pulses integrated, $N = 1, 3, 10, \text{ and } 30 \text{ for } \sigma = 9 \text{ dB}$

Fig. 14 - Probability of detection vs S/N for $P_{FA} = 10^{-2}$ to 10^{-8} with $\sigma = 3$ dB and N = 1

Fig. 15 - Probability of detection vs S/N for $P_{FA} = 10^{-2}$ to 10^{-8} with u = 3 dB and N = 3

Fig. 16 - Probability of detection vs S/N for $P_{FA} = 10^{-2}$ to 10^{-8} with u = 3 dB and N = 10

Fig. 17 - Probability of detection vs S/N for $P_{FA} = 10^{-2}$ to 10^{-8} with $\sigma = 3$ dB and N = 30

S, F, GEORGN

Fig. 18 - Probability of detection vs S/N for N = 1, 3, 10, and 30 with a = 3 dB and $P_{FA} = 10^{-6}$

Fig. 19 - Probability of detection vs S/N for $P_{FA} \approx 10^{-2}$ to 10^{-8} with $\alpha = 6$ dB and N = 1

1

•

Fig. 20 - Probability of detection vs S/N for $P_{FA} = 10^{-2}$ to 10^{-8} with n = 6 dB and N = 3

-

.

Fig. 21 - Probability of detection vs S/N for $P_{FA} = 10^{-2}$ to 10^{-8} with a = 6 dB and N = 10

1

ł

T

Fig. 23 - Probability of detection vs S/N for N = 1, 3, 10, and 30 with $\sigma = 6$ dB and $P_{FA} = 10^{-6}$

.

Fig. 24 - Probability of detection vs S/N for $P_{FA} = 10^{-2}$ to 10^{-8} with $\sigma = 9$ dB and N = 1

Fig. 25 - Probability of detection vs S/N for $P_{FA} = 10^{-2}$ to 10^{-8} with $\sigma \approx 9$ dB and N = 3

Fig. 26 - Probability of detection vs S/N for $P_{FA} = 10^{-2}$ to 10^{-8} with $\sigma = 9$ dB and N = 10

Fig. 27 - Probability of detection vs S/N for $P_{FA} = 10^{-2}$ to 10^{-8} with a = 9 dB and N = 30

Fig. 28 - Probability of detection vs S/N for N = 1, 3, 10, and 30 with $\sigma = 9$ dB and $P_{FA} = 10^{-6}$

ACKNOWLEDGMENT

The author expresses his appreciation to G. V. Trunk of the Radar Analysis Staff for his many valuable discussions during the course of this work and Jon David Wilson of the Radar Analysis Staff for his helpfulness in the programming.

REFERENCES

- 1. Findlay, A.M., "Sea-Clutter Measurement by Radar-Return Sampling," NRL Report 6661, Feb. 12, 1968
- 2. Miner, R.Y., "Review of ASW Radar Sea Clutter," TRW Systems Doc. 7234:1:001 (Confidential Report, Unclassified Title), Feb. 8, 1966
- 3. Ballard, A.H., "Detection of Radar Signals in Log-Normal Sea-Clutter," TRW Systems Doc. 7425-8509-T0-000, May 31, 1966
- 4. Fenton, L.F., "The Sum of Log-Normal Probability Distributions in Scatter Transmission Systems," IRE Trans. on Comm. Systems CS-8, 57-67, Mar. 1960
- 5. Skolnik, M.I., "Introduction to Radar Systems," New York: McGraw-Hill, 1962

1. ORIGINATING ACTIVITY (Corporate author)	na muexing annotation must	be entered when	the overall report is classifie
		20. REPORT	SECURITY CLASSIFICATIO
Naval Research Laboratory		Ur Ur	nclassified
Washington D C 20200		2b. GROUP	
wasnington, D.C. 20390			
3. REPORT TITLE			······································
THE DETECTION OF NONFLUCTU	ATING TARGET	'S IN LOG-	NORMAL CLUT
4. DESCRIPTIVE NOTES (Type of report and inclusive dates	s)		
A final report on one phase of the p. 3. AUTHOR(S) (First name, middle initial, last name)	roblem		
, · · · ·			
Samuel F. George			
6. REPORT DATE	TR. TOTAL NO	D. OF PAGES	7h. NO. OF REFS
October 4, 1968	27	2	5
BE CONTRACT OR GRANT NO.	98. ORIGINAT	OR'S REPORT N	
		I Decomt	704
D. PRUJECT NO.	NR.	L Report 6	070
с.	9b. OTHER AL	PORT NO(S) (An	y other numbers that may be a
d.			
	Depart Naval F Washin	ment of the Research I gton, D.C.	e Navy aboratory 20390
Measurements of sea clutter us clutter-cross-section returns follow closely than the usually assumed Ra	sing high-resolut w a log-normal p ayleigh law. Thi	tion radar probability s report d	indicate that the density function evelops the theor
Measurements of sea clutter us clutter-cross-section returns follow closely than the usually assumed Ra the detection of a steady signal in lo and then by using the sum of N pulse ability density of the envelope of the bimodal, an unexpected result. Cur ized to the median clutter voltage, w values of the standard deviation σ as tion curves are presented for $\sigma = 3$, for false alarm probabilities from 1 required for detection increases ma skewed clutter density.	sing high-resolut w a log-normal payleigh law. Thi og-normal clutte es integrated nor e signal plus clut ves are present versus the proba nd for various va 6, and 9 dB, for 10^{-2} to 10^{-8} . The trkedly as σ incr	tion radar probability s report der r by first acoherently ter show t ed for the f bility of fa alues of \underline{N} . N = 1, 3, he ratio of ceases beca	indicate that the density function evelops the theor using a single pul r. Plots of the pr he function to be threshold bias, no lse alarm for sev Probability of d 10, and 0 pulses signal to median ause of the highly
Measurements of sea clutter us clutter-cross-section returns follow closely than the usually assumed Ra the detection of a steady signal in lo and then by using the sum of N pulse ability dencity of the envelope of the bimodal, an unexpected result. Cur ized to the median clutter voltage, w values of the standard deviation a as tion curves are presented for $a = 3$, for false alarm probabilities from 1 required for detection increases ma skewed clutter density.	sing high-resolut w a log-normal p ayleigh law. Thi og-normal clutte es integrated nor e signal plus clut versus the proba nd for various va 6, and 9 dB, for 10^{-2} to 10^{-8} . Thurkedly as σ incr	tion radar probability s report der r by first m the coherently ter show the bility of fa alues of \underline{N} . N = 1, 3, the ratio of reases becau	indicate that the density function evelops the theor using a single pul- r. Plots of the pr he function to be threshold bias, no lse alarm for se Probability of d 10, and .0 pulses signal to median ause of the highly

14.	KEY WORDS		K A	LINKB		LINKC		
			ROLE	<u> </u>	ROLE	<u>w</u> T	ROLE	w
	High-resolution radar		[1			{
	Sea clutter			1	ł	}		
	Signal detection							
	Log normal distributions	:					}	
	Mothematical analysis							
	Mathematical analysis Dechability distributions				1			{
	Probability distributions							
	Radar largets							
]			
							[
·								
		Í						
		ĺ						
]			Į			
		ł				1		
		1		1				
		j	ļ					
				1				
		[[ĺ	1		[
					}			
]	l		
						[
			1			1		
				Ì	1	1		
		ļ		ļ				
					1			
		[1		1	[1	
	N			1				
			1					
						1		
				1				
			1		[[
								_
	FORM 1473 (BACK)							
- 65		20		P	<u> </u>			
				STREET UNDER COMPANY				

.

.
