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SUMMARY

‘Wnen the convection velocity of the turbulence exceeds the
local speed of sound in the medium the coupling of the panel modes
to the acoustic field becomes very strong. The structural damping
which is usually constant for all modes is overshadowed by the
acoustic damping which increases with frequency. For a boundary
layer of nearly zero pressure gradient the linear theory is still
useful in predicting the panel response and compares well with

experiment.

Using Kirchhoff's theorem the acoustic power radiated from
a turbulent boundary layer was expressed in terms of the cross
spectral density of the pressure field over a rigid plane surface.
Computation shows that by using this method the acoustic power

level agrees satisfactorily with the measurement.
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I. Introduction

A large aircraft in supersonic flight opens new challenges in
aervacoustics, the pursuit of which is vital to advancement in this
field. Problems emerge because subsonic experiences are inadequate
and it becomes increasingly difficuit to define a clear-cut analysis
for predicting the response of a panel to a flow field on an aircraft
fuselage. The aerothermoacoustic and aerothermoelasticity problems
are not part of this investigation. In the present experiment the
wall temperature averages around 550 degrees Rankine and the response
of the panel is linear, no stress deterioration or stiffness change
will occur. Of course, this is a specialized case of nearly zero
pressure gradient where the power spectral -density .technique of
generalized harmonic analysis can be used. In the case of larger
pressure gradients (shock wave) a more rigorous approach is required,
since the flow field leads to instability (flutter) Dowell (1966-1967),
Maestrello (1968). It then becomes necessary to use nonlinear plate
theory and convenient to use time rather than frequency domain analysis.
Even with the simplifications of linear analysis and use of the power
spectral density technique, the problem is still complicated due to
the necessary inclusion of the pressure resulting from panel motion.
The forcing field terms excluding the pressurization effect include
the pressure over a rigid wall and that produced by panel motion,
The resulting quadratic and inhomogeneity gives rise to a reflection

coefficient which imposes additional boundary conditions.
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This last development is contained in a report which will follow by
Maestrello and McDaid. The present report is concerned with obtaining
radiation from a turbulen boundary and panel response to it with
emphasis on the coupling of panel modes to the acoustic field which is
predominant when the turbulent convection velocity exceeds the local

speed of sound in -the medium.

These measurements were made on the side wall of the Jet Propulsion
Laboratory 20 inch supersonic wind tunnel. The boundary layer is turbulent
on the side wall from natural transition. The tunnel was well suited for
these measurements partially because the flow conditions are well
documented (Coles 1963) and partially because the statistical measurements
of the pressure and velocity field are well recognized (Laufer 1461,

Kistler and Chen 1962).
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loading of 0.06 and 14.0 psi. The operating static pressure of the

test section is always below atmospheric pressure., 1In the case of

% II. Exgerimenta; Arrangement and Instrumentation . iéég
i The flow investigated was the side wall boundary layer °;§i
5 o3
§ of the JPL 20- inch supersonic wind tunnel. The tunnel is a continuous i;
% flow type utilizing a two dimensional flexible nozzle which provides '%1
“i for speeds up to Mach number 5. A description of the facility with E{
ig a range of operating conditions is discussed by Laumann (1967). Ag
ié For a brief description with rarticular emphasis on those features :i
g} which are most important for velecity and pressure field measurements 3
?; one may consult Laufer (1961) and Kistler-Chen (1962). ?f
Aé% The experiment was arranged to perform three basic measurements: :Zi
E* mean velocity profile, wall pressure fluctuations- and the response of —é
Agé a simple panel structure. The side wall window was modified to y‘é
%} accommodate two identical rigid steel plates which supported the :%
E; instrumentation required for measurements. One plate contained an ﬂé
?} array of holes to mount the pressure transducers, Figure 1. Another %
é% had a cut-out portion in which the test panel was mounted, Figure 2, §
iif . The panel was tested with a static pressure differential %

g

i

L

3

¥ 0.06 psi pressure differential, a chamber of size 8 x 14 x 6.6 inches

X
* T

was built around the panel to contain the pressure which was kept
equal by ianterconnecting the chamber with the tunnel by a row of holes
located downstream from the panel, Figures (2) and (3). Tests with the

B 14 psi differential were run both with and without this cover.
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Transducer mounting configuration.

Fig. 1.

. B A % A e b S i s s




T o SR R0 T ST R . ml a We s o™ e s - ga s - B . .
P e x AT v ey e s L L A ) [ T s aa

. LY A . v - e om -~ e et e e - . TSR e T, ST R S T W E s L w TG ek
, - . P b el e
A . P
. . R . . o - ” - .
= ' et 2 < < 2 R O T B S - " a “r. el -
¥
¥
«
« . -
. . : eI TR B
3 i 4 u(mul
otv A . v’ . . \:z.w O
. . . < e f e e s ..;u,.ﬂm“uwa;....c.,.ni
T !
.
T
e
4
)
. -
4 —
LI g Y
BT TR <
PR
3]
' [=9)
} &~
% H
3 j
N [Val =
.
.
[« o~
.
&0
ord
[42)
i
)
¢
«
+
i
:
i
e
o
. B . - . . . Y . +

Ionmsle e eT 0 ot SR SONSVTATOWHMEY SeMenmese SOOI S AL VAR MY IOSTVRN 2SN s S 8 T O 90Ty T el o TR LITT




pa—t

-~

i

TR AT RN

&gr&tza\c o m el

- P Td A - -

-2
N
e
[-
"
<
L]
E
[
L
2
o
-2

»,

,.gD

Panel airlock cover.

Fig. 3.

S ae, ke N

o wb

OVl 7208

R

Ao g £ it

R RIS 21 N YR A




P

R yvyild

an emris

BRNPRERSUNPE At

B,

L

The boundary layer on the tunnel side wall is turbulent
from a natural transition on a smooth surface. Measurements were
made in the region of zero pressure gradient, as well as under
conditions of shock and boundary layer interaction. The shock was
induced by a 30° wadge mounted outside the boundary layer, off center
and to the same side where the measurements were made. This was done
to offset the positicn of the reflected shock from the opposite side.
The position of the shock was determined by observing the displacement
of a line of tufts, and more precisely, by a static pressure survey.
The response of the shock interaction with the panel will be reported
separately.

The velocity profile was measured by a standard technique.
The wall pressure fluctuations were measured by pressure transducers
mounted in the plate shown in Figure 1. The transducers were mounted
on a threaded bracket in order to adjust the alignment within *.0005 inch.
The alignment was checked with a micrometer at each transducer location
at the tunnel operating pressure. This was the most time consuming
operation of the test. If the flushness is not maintained within the
tolerance the power spectra would assume a different shape in the
lower frequencies.

Two types of pressure transducers were used; one, the
conventional lead zirconate titanate made by Atlantic Research and
the other a capacitance type made by Photocon Corporation with a
sensitive diameter of .060 and .090 inches respectively. This last
type of transcucer was used to survey the low frequency part of
the spectrum because it is less sensitive to vibration than the

crystal type. A monitoring survey of the power spectra and cross
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correlation was made during the test to insure that satisfactory
measurements were recorded on the magnetic tape. In line power
specsral density and cross correlation were obtalned with a Hewlett
Packard wave analyzer and with a Boeing built correlator. The output
was recorded on an Ampex FR-1800H 14 channel tape recorder in the
FM mode. The main feature of this recorder is that it has a jow
static and dynamic skewness. Four channels were used for simultaneously
recording data for correlation measurements, two channels for the lower
frequencies down to the dynamic range of the recorder, and two channels
for the higher frequencies. The maximum dynamie range was obtained by
splitting each data channel into two tape tracks through phase matched
filters to separate the lower and higher frequencies. A high frequency
sine wave reference tone was recorded on alternating tape tracks
simultaneously with the data for the purpose of correcting time error
between data channels used for digital correlation analysis. This
technique provides a broad band correlation in both frequency and dynamic
range.
The test panel is thin, rectangular, titanium* of size

12 x 6 x .062 inches brazed on all four sides to a 3/4" x 3/4"

titanium frame. The brazing is intended to simulate the clamped

edge condition. The frame and skin assembly was placed in a vacuum

retort using Handy and Harmon braze alloy**.

* T1-6AL-4V Titanium alloy containing 6% Aluminum, 4% Vanadium
and 907 titanium.

**Braze alloy 70% Ag, 28% Cu, 2% Li.
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The retort was placed in a furnace and raised to a temperature of
) 1450°F. The panel assembly was bolted into the cut-out portion of

the plate and made flush with it. The panel displacement was
measured with '"Photocon" capacitance type displacement transducers
¢ mounted on brackets which could slide along a bar and could be set
precisely by means of a screw mechanism. The transducer mounting
can rotate 360° to allow correlation along the longitudinal and
lateral axis. 1In line power spectra and cross-correlation were
taken and then recorded on magnetic tape for 0.06 and 14 psi pressure
) differentials. Measurements were repeated with damping tape placed

on the outside surface of the panel.*

" *Two layers of damping tape with surface density of one layer 0.112 lb/FTZ.
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I1I, Measuremeptsuand‘Discuésion

Three basic measuvements were made: mean velocity profile, wall

pressure fluctuation, énd the displacement response of a simple titanium

panel with clamped edges. Wind tunnels inherently have a certain amount

of interference (vibration and sound propagated up or down stream

;h:ough-the boundary layer). Commonly the vibration interference can

be bypassed on the measurement of the wall pressure using a capacitance-
type transducer. In the present test measurements of the wall pressure

fiuctuation were rejected below 800 hz due to acoustic interference.

The tunnel vibration will not alter the dy-umics of the panel,

since it is small compared with that induced by the boundary layer.

The fundamental mode (500 and 600 hz for the unpressurized and pressurized

case), will be effected by the tunnel interference. The effect is

predominant on the fundamental mode and is not expected to be larger

than a factor of two.

a) Mean Velocity Profile

The quantities directly measured were the impact pressure,
wall pressure and stagnation temperature. The stagnation temparature
and static pressure are assumed to be constant throughout the
boundary layer. The local static temperature, density and velocities
are obtained from the energy and state equations. Theréfore, one
can assume that the properties of the boundary layer closely
approximate the properties of the equilibrium adiabatic flat plate
boundary layer.

Measurements made by Coles (1963) using the above assumption
over a flat plate, estimated an error in momentum thickness ©

of about 2% up to Mach 5. Table 1 lists some of the most pertinent

AW
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flow parameters in a supersonic flow at zero pressure gradient. The
%Q}i mean velocity profiles at various Mach numbers were reduced to a
constant density form. The method used is based on the work of

Coles (1963) in which he assumed that in the sublayer the

A

Reynolds number remained unaffected by the compressibility provided

that the density and viscosity are evaluated at mean sublayer

ATy o th

temperature. He proposed a simple generalization of the law of

oA L4

the wall such that the similarity functions remained the same as

Koy

in incompressible flow. The transformed law of the wall is obtained

;

by adopting the Dorodnitsyn type scaling which produces a lateral

stretch of the coordinate providing an equivalent incompressible

R 4 S i i

profile. This transformation coincides with the Von Karman
hypothesis that the skin friction can be obtained from the in-
compressible relations by evaluating the density and viscosity of

the wall instead of the free stream. An extension of Coles approach

s gty o

TTIRT

! has been recently made by Baronti and Libby (1966) and used by

\ Watson and Cary (1967). .
Their conclusion was that for an adiabatic flow up to Mach 5

the Dorodnitsyn type transformation can be used to represent the

TTRTTRY

boundary condition such that a universal description of the law of the

wall is obtained, but above Mach 5 their method was not successful,

e b e e e —



R e AN

13

R

e

5 QN 9P LR

PR
. <

= a1
-

From the law of the wall in the logarithmic region

P____:Alnsé; g 2628 1)

U,

?

- y .

where E =(S§_)li (ue (_PE.) f f. dy. (2) -
2 = v P P

n e/ J, e v

L o= 3 0<E <k 3
U

S - D, y
ﬁ/ﬁT = U/Ue = (Cf/2)4f(§) and ./. p/pe dy 1is the Dorodnitsyn
0

- — - 1
variable, UT = (Tm/p){, Cf = skin friction coefficient, p = coefficient

of viscosity A = 2.43, B= 7.5 and Ef = 10,6, The ratio uec/u comes

from the assumption due to Donaldson (1952) that the Reynolds number

| associated with the laminar sublayer is invariant. The edge of the

4 . boundary layer was selected at a point where the ratio U/Ue = ,995, The
ratio p/pe is obtained by using Crocco's relationship for the density

« profile. The compressible skin friction coefficient Cf is related to

B3 the incompressible C. by the following:

f

(':f = (pu /o k) (ﬁ/oue)Cf- (4)

The values of Cf, Ef, ueolﬁ and T are given in Table 1.

- A plot of the law of the wall, Figure 4, using the above

[Pp—
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transformation compares well with the measurements of Laufer
and Klebanoff which were made for an incompressible flow. It can
be seen further that the present data transform for an equivalent
incompressible boundary layer is in close agreement with the
relationship found by Coles, Figure (5), as well as with measure-

ments made by other investigators.
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b) Wall Pressure Fluctuation

The problem is to obtain an appropriate description of the wall
pressure fluctuation produced by a turbulent boundary layer at near zero
pressure gradient. From a spatial and temporal correlation of the
pressure field an estimate of the response of the structure can be
made.

The structure senses the different components of the pressure
as they are swept past the surface at different velocities. Simnce the
panel response behaves like a narrow band filter, a meaningful represen-
tation of the field can be obtaired with less complexity than would be
required to represent the turbulent flow itself. The convected nature of
the wall pressure fluctuation can be described by a space-time correla-
tion function. The convected feature is not independent of either
spatial or temporal delay on which they are measured but is contingent
on both, The decoupled equations for a compressible viscous, heat
conducting gas within the framework of the linear theory have three types
of disturbance fields. The predominent ones are the vorticity and the
entropy modes whose phase velocity is the usual convection velocity. The
third type is the acoustic mode in which energy is transported away at
the acoustic wave speed., All three modes are independent except at the
wall because they are imposed on the velocity and temperature (Kovasznay
and Chu 1958).

Laufer (1964) successfully measured the acoustic contribution by
recording the density fluctuations along the Mach wave outside the turbulent
boundary layer using a hot wire anemometer., Wilson (1959) measured the

near and far field of noise radiated by a turbulent boundary layer developed

auch - IR e
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on a rotating cylinder. Separating the contribution of the acoustic

mode at the wall from the other disturbances is more cumbersome because

the energy radiated away from the turbulence region represents only a

small fraction of the kinetic energy flux of the turbulence and an even

smaller fraction when compared with viscous dissipation. However, the

wall pressure fluctuation measurement retained the contribution of the acoustic

mode as well, and the non-zero correlation integral can be interpreted as

energy dissipated acoustically. The sound sources are located away from

the surface of higher order than dipoles whose strength is zero at the

surface. The sources are equivalent to a quadrupole system. The surface,

agsumed to be rigid and large, acts as a simple reflector of sound,

Doak (1960), Ffowcs Williams and Lyon (1963), Lyamshev (1961), Powell (1960),

Meecham (1968), and Kraichnan (1957), apart from the fact that a contribution

to the pressure may occur due to the viscous effect, Leehey (1968).
Measurements of the wall pressure fluctuation were made in the

range between 0.8 to 200 KHZ using the conventional lead zirconate ceramic

disk as well as with capacitance transducers with diameters of 0.060

and 0.090 inch respectively. The normalized power spectra, corrected for

attenuation due to the finite size of the transducer (Corcos correction), are

shown in Figure 6. The deviation in the shape at lower frequencies may be

attributed to extraneous interference* which persisted inside the tunnel and to

radiation from the turbulence (this last one is the apparent surface source

originated by the source near the surface). The extraneous interference,

*
Narrow band spatial correlation measurement for frequency below 0.8 KH

using capacitanceprohe transducer (quite insensitive to vibration)
shows that the decay of the turbulent pressure has superimposed an
acoustic component similar to that shown by Wills (1968).
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however, masks the radiated noise from the turbulence; this is the rea-
son that the frequency spectra have been truncated at 0.8 KHZ. Lilley
and Hodgson (1960) predict that the wall pressure spectral density varies
like the square of the frequency at low frequencies for vanishingly

small Mach numbers. Ffowcs Williams (1965) shows that for finite com~

pressibility the correlation area varies like the square of the Mach

number. The present model of the wall pressure fluctuation retains some
of the features contained in the above comments.

The normalized power spectral density (Fig. 6) is similar to
that obtained from subsonic flow over a flat plate. It peaks at
wé/Ue ~ 2.0, Bull {1967), Serafin (1963), and Hodgson (1962), show

similar behavior (Fig. 7). 1In contrast for pipe and duct flow the wall

pressure spectral density indicates no predominant peak Corcos (1960),

s

Maestrello (1965). In flight, measurements made of the wall pressure

g

fluctuation have a more difficult interpretation because in general there is

an apparent pressure gradient, as well as some roughness. Hodgson's measure-

Gyt ety s pip———

ment, however, over the glider wing produced the typical rolling off spectrum
i at lower frequency while measurement made on the 727 airplane at higher .
subsonic Mach number indicates no significant rolling off at the lowest

frequencies, Maestrello (1967). Schloemer (1966) from a set of systematic

pidonr sy

measurements points out that the lower frequency part of the spectral density

is sensitive to the pressure gradient. A more extreme case, that is for

separated flow Maestrello (1968) indicates a similar observation. ;

Figs.(6 and 7)show two main eddy structures, the larger scale, faster

moving, lower frequency size structure scaled with the boundary layer thickness,

and the smaller scale higher frequency, slow moving eddy, scaled with the sub- .

layer thickness. This is also born out from the law of the wall by application

b At

‘ of the transform for constant density flow discussed in the previous section.
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Further results show that the ratio of the wall pressure with the
local wall shear stress p'/rw is nearly independent of Mach number, while
the ratio of the wall pressure with the free stream dynamic pressure
p'/qe ;'ng. The results are reported in Figs. (8 and 9). Similar results have
been previously obtained by Kistler and Chen from measurements made in the
same wind tunnel except for about 307% discrepancy in the values of p'. From
the figures the product p'/qe x Tw/p' reproduces the well-known results
of the frictional law, the compressible skin friction coefficient decreases
as the Mach number increases at a constant Reynolds number.

The broad band space~time correlation curve for separation in
the stream direction R(£,0;1) and in the lateral direction R(O,n;t) are
shown in Figs. (10 and 11), obtained at constant spatial separation and at
variable time delay. The cross correlation retained a frequency band-width
from 0.5 KHZ to in excess of 100 KHZ with an adequate dynamic range.

The longitudinal correlation shows the usual convected feature, slowly

losing its coherence, while with the lateral correlation no convection is
observed except possibly at large separations where the envelope flares out
at small correlation values. The broad band convection velocity corresponds
to Uc/Ue = 0.78 at M, = 1.98 and Uc/Ue = 0.72 at M, = 3.03. Itis
interesting to point out that for correlation measurements taken at constant
spatial separation at a slight angle off the flow direction the convection
velocity was slightly greater than the one obtained along the flow direction.
This could possibly be explained as disturbances moving with particular

orientation for the case of supersonic convection, since it is a propagating

wave system. Unfortunately insufficient data was obtained to construct

the wave pattern over the surface.
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From measurements made cf the wall pressure fluctuatjons, plotted
dimensionally in Fig. (6) a model is obtained. The model is of similar form
to that reported by this author earlier (1967 and 1968) for a duct flow
except it takes into consideration a peaked power spectrum, characteristic
of a boundary layer developed over a flat smooth plate at zero pressure
gradient., From the figure the power spectrum P(w) and the normalized

spectrum 7(w) satisfy the following relationships:

- N (@)U 4 XK (w§/U)  (5)
2. . 2, e _ n e
fn(m)dm =] fP(m)dm = <P“> ~12-;w, = z Ane
n=1
0 0
rs
-2 -2
where Al = 4,4 x 10 Kl = 5.78 x 10
A, = 7.5 x 10°2 K. = 2.43 x 107}
2 2
~2 _ .
Ay = -9.3 x 10 Ky = 1.12
A, = -2.5 x 1072 K, = 11.57
4 4

The normalized auto correlation is

4 AK

nn
R(D = > = . (6)

2
nel Kn + (TUe/G)

The flow considered is semi-frozen, that is with decay in space and time
at constant convection velocity U,. From Eq. (6) using Taylor's hypo-
thesis the longitudinal spatial correlation is: .

4

_ n n
REE) = . (w )2 Q)
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From experimental observation the lateral spatial correlation suggests

"n/azé
R(n) = e (8)

and the normalized cross correlation

4 -IEI/°1<5 -inl/aza
AnKn e e
R(E,n37) = ) (9)
AN AN 2
n=1 Kn + T (¢-u =
c

The longitudinal cross—-correlation obtained from Eq. (9) is
plotted in Figure (12). The positive isocorrelation contours are symmetric
about the line §/Ucr = constant. Negative isocoxrrelation contours are also
shown. Although the negative correlation coefficients are small compared
to the positive, the negative correlation is extended over a larger

separation distance.
For a maximum correlation with an optimum time delay there exists
a velocity Uc with which the fluctuation patterns are convected down-

stream. For large separation the convection velocity is obtained from

Eq. (9) by:

12
dR(E,T) _ _ max
-_8—‘1',__ =0 Uc = T (10)

In this region the maximum-maximorum, the envelope exp-]El/ald is quasi
tangent to the peak at Emax/T' For an incompressible flow the wall
pressure correlation is expected to closely satisfy the boundary conditions

derived by Phillips (1955) and Kraichnan (1956), that is, the integral
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b
- Z
J[ rgn,0 dean (1) .
- b
2:
be zero, The present model, however, takes into account the compressi- i P
bility effect, and the correlation integral does not vanish. E g
Lo
From the spatial and temporal extension of the wall pressure i;
H
field one finds it useful to compute the integral scale. The integrals ;
are defined:
o
A_(8) = 2/ R(E)dE
P ™
A_(n) = 2/ R(n)dn (12) :
P O :
and A (1) = 2/ R(1)dT 3
J(0 { (1) |

Computation and comparison is given in the rable:

#
v U s | A A luam| A
Mol (Ft/Bec) | (Ft/Sec)| (Fty | B |-B ep P "
$ 3 § A (n)
P o
Bull 0.5 542 445 10.036 | 0.84 |0.40 | 0.49 | 0.47
Willmarth &
oo lduidge | 019 204 170 }0.42 | 0.44 |0.25 | 0.35%| 0.57
Present 1.98 1724 1356 |0.076 | 0.85 |o0.086 | 0.11 | 0.11
Experiment | . 44 2100 1558 |0.11 | 0.56 |0.073 | 0.10 | 0.13
Present Given 0.52 0.086 0.11 0.16
Model
U, = 1724, U_ = 1356, § = .076
M = 1,98 3
e R

The longitudinal scale A(§)/§ 1is approximately on the order of

the boundary layer thickness except for Bull's result which is one order ]

*correction applied for revision of data by author.
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Fig. 16. Envelope of correlation maximum in the direction of flow.
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of magnitude smaller. The lateral scale is consistently larger than the
longitudinal for all the four experimental results. The ratio

Ap(E)/Ap(n) varies from one tenth for supersonic flows to about one

sixth tenth for the subsonic. It is of int.cest to point out that the time
integral scale and the ratio of the spatial scales are about equal
Ap(i)/Ap(n) ::UEAP(T)/G. This is evidence that Taylor's hypothesis is
quite valid even though error will occur in the extrapolation of the

power spectrum w{w) to zero frequency.

The broad band spatial cc :lation Fig. (13) shows that for small
spacing the correlation field is nearly isotropic but as the separation
increases the longitudinal correlation becomes negative due to strong
convection while the lateral decays exponentially. ¥Figs. (14 and 15) show
the comparison with the measurements and with the model plotted in
terms of the normalized parameter UeE/BUc (Eq. 7) using Taylor's
hypothesis. Agreement is quite good.

The envelope of the maximum-maximorum is plotted in Fig. (16)

-—

using the equivalent incompressible Reynclds number EfRe

c¢rrrelation made at different Mach numbers. The pattern of the wall pres-

to compare

sure confirms that the increases in separation reduces the higher frequency
contribution, the envelope is convex for larger separation. The experimental
results show some scatter, however the Reynolds number dependence is
consistent. The fact that the convection velocity varies with separation
distance is a well-known observation which Favre, Gaviglio and Dumas

(1967) termed celerity. Typical narrow band convection velocity is
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given in Fig. (17). The ratio Uc(w)/Ue almost linearly decreases for
large w&/Ue ratio as indicated in some previous experiments.

It 1is sometimes convenlent to work in the frequency domain
rather than in the time domain. From the cross correlation Eq. (9)

one obtains the cross spectral density

-l&j/a_ 6 —|n|/u26 -1wg /U,
P(E,n;iw) = P(w) e le e (13)

02X wsl+=

and the wave number spectrum

1/a16

] 1/a26
7 7 @ 2 2
(1/a,0)% + (-- + xl) (1/a,8)% + (k)

(14)

P(Kl,Kz;w) = P(w) [ 5

4]
c

as w tends to zero the wave number spectrum varies like UA. Eq. (14)
indicates that the maximum occurs when SP(Kl,m)/aKl = 0, correspondingly
Uc = —w/KI max’

Fig. (18) shows the longitudinal wave number spectra obtained from
Eq. (14). The contours show the familiar closed loops previously reported
by Bradshaw (1965) in a low speed boundary layer flow. The main difference
being that the flow is considered to be semi-~frozen while experimentally one can

clearly see a variation in convection velocity with spatial separation and

tine delay.
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c) Panel Response

The panel is excited by a steady convected supersonic turbulent
boundary layer. The panel deflection is small compared to the skin
thickness. It is assumed that the response is linear, stationary and
ergodic, therefore the power spectral technique is employed to compute
the response, i.e., Crocker, Lyon (1957), Jacobs and Lagerquist (1967),
Maestrello (1968), Wilby (1967) and White, Cottis (1968). It is
assumed that the plate motion does not modify the turbulent boundary
layer. However, the forcing function should contain both the pressure
over a rigid wall and that induced by the panel's own motion. In
supersonic flow the pressure induced by the panel motion cannot be
ignored as in the case of low speed flow, because the supersonic
convection velocity excites strong coupling modes to the acoustic field.
The spectrum response is mainly controlled by acoustic damping. The
pressure due to the panel motion is comprised of waves of subsonic
and supersonic velocities. In the subsonic region the damping becomes
purely imaginary, the effect is to increase the effective mass of the
panel which tends to reduce the resonant frequencies as well as the
response, while in the supersonic region the damping is associated with
the energy radiating field.

The equation that describes the pressure on the surface is the
well-known Kirchhoff solution. Neglecting the viscous term and the terms
that are rnonlinear in the surface response velocity and taking into account
that surface pressure is twice that of the pressure away from the surface,
and applying separately the real and image of the boundary layer system

from Ffowes Williams (1966), one can write:

P(x,t)
0

2TI + 2P, -~ 2P l
(15)

2T. - 2P, ~ 2P,

~mwd

Yoy
Y I

VPN i

¥

X e ey

aaa s N

1 v

§ e vy A s e o

e ewe e o - e



A s W A 2t et et AN et 8 o = i

Bt s e

38

vhere
edi [ oD 3
I WAL X
Summing the real and image pressure:
P(x,t) = 2(T + T)) - 4P (16)
when the surface is rigid
Prigia®ot) = 2(T, + 1) an

At low spead flow the term involving the pressure due to the panel

motion is usually neglected since the mass is negligible and the acoustic
damping is small. In supersonic flow, the panel radiates scund in the
form of Mach waves, weaker in strength due to inhomogeneity

in the wave number components but with loss factors sometimes exceeding
unity, Maidanik (1966). The measurements made of the displacement spectra
show that the higher frequency modes are heavily damped unlike the panel
excited by subsonic flow. Figure (19) shows the total damping factor cof
al2 x 6 x .062 inch titanium panel with clamped boundaries excited by a
turbulent boundary layer at Me = 3.03. The bandwidth Af is evaluated
at the modal half power point. The dotted line is typical of experimental

damping for a panel excited by low speed flow. The deviation from this
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curve at higher frequencies is attributed to the wave number components
becoming supersonic, The effect of damping tape on the panel is not as

significant as might be expected from the low speed case.

Typical displacement spectral densities are shown in Figs. (20, 21 and 22)

for a static pressure differential of 0.06 psi and Fig. (23) for a static

s
L L A

differential of 14 psi. TFor the spectra taken at 0.06 psi the panel

is enclosed in a cavity Fig. (3) while the spectrum taken at 14 psi the

P

¥

panel radiates into open space. As expected the damping factor is higher

when the panel radiates into open space, Strawderman (1967), Pretlove (1964).
The broad~band displacement space time correlation measured along the panel
centerline in the direction of flow for pressure differentials of .06

and 14 psi are shown in Figs. {24 and 25). For the pressurized panel

the response is mainly due to coincidence. The ratio between the wave velocity

e i e A g P NG A e e L L S A XA Tt
~
S ATt b A Pt S, el 1 titer, K, P

in the panel and that of the turbulent convection velocity is ;EB = 0.73
3
i é while for the 0.06 psi prevsure differential the broad-band cro:s
K E correlation shows that the wave velocity of the panal is far below that
: % of the turbulent convection velocity of the pressure field, ;22 = 0.29. é
g % This suggests that the fundamettal mole predominates in the 1a;ier case, ;

i contribution also results from the modal frequencies of the unpressurized

case being lower.

The contribution of the closed cavity on the motion of the panel is

small when the depth of the cavity is larger than one-half the larger panel

dimension, Pretlove (1964), Dowell-Voss (1963), as in the present test.
The main effect 1s on the damping rather than the panel resonant frequency,

negligible interaction is expected between the fluid and the plate. In ¥

~

the case of small cavity depths, however, the principal effects on the
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Fig. 24. Broad band space time correlation of panel displacement.
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fundamental and symmetrical modes will be that of an aerodynamic spring,
whereas for the antisymmetric modes only the aerodynamic virtual mass
effects exist.

Fig. (20) shows some alteration in mode shape, for example the
experimental m =5 n =1 mode is strongly coupled to the m=3 n =2
mode. This last mode should be zero for an orthogonal system at the
measured position. A similar effect is seen in that the m=2 n =1
and m=4 n =1 are also non-zero.

Fig. (26) shows the data of Fig. (25) replotted on the ¢ - Uc T

p
plane. The isocorrelation contours are inclined at approximately 45 degrees

indicating a convected nature and the decay feature of the correlation

coefficient.
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IV. Analysis of the Panel Response

. The response of linear system to random forcing function is § ;”E
obtained utilizing Green's functions. The system (panel) is excited by . e

random pressure such as the turbulent boundary layer, therefore the assembled

R DI

average or correlation of the surface displacement is expressed in terms of

the correlation of the pressure field,

At oA it S WAL S

. A

t t' a b a b
Yooy oGy ey = [ ae, [ e[ e ey [ e[ ey

o
g(x,y,t|xo,yo,to)8*(x',Y',t'|xé,Y$,t;)<f(xo>yo,to)f*(xé,Yé,t;)>

(18)

where the forcing function for the boundary layer pressure field is given

by Equation (9).

—3

f(x ,y st )f*(xosyo,to) =

(19)
- - L - - 1
s |x, xol/alée ly,~yil/a,8
nn

X
i=1 2 U 2 2 2
. K+ (xg =z 1 -0 [t =€ D"+ (y, -vy)

It can be shown (Dyer 1958) for a plate with arbitrary boundary conditions,

MM

the Green's function satisfies the classical plate equation and can be

represented by:

¢mn(x,Y)¢ (x ,y) -a_ (t - to)

N

mn ‘“0’’o
g(xsy’tlxo9yoato) = © M e oo
m,n mn
(20)
. sin wmn(t - to)U(t - to)
where U(t - to) =1 where t <t -

and U(t -t ) =0 where t >t
o o
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where émn(x’y) are the normalized eigenfunctions, an is the modal
damping and @on is the damped resonance frequency. The normal mode satis-

fied the following equation

2
4 3 b aYmn
B(l-in)v 'y + M—I8 4 g =0 (21)
mn at2 oT

where B is the bending stiffness, M 1s the mass per unit area of the
plate, 8 1is the viscous damping coefficient and n the loss factor
asgociated with hysteretic damping.

The modal damping
w %
a -ﬂ‘-[(1+ ng +n2) -1] (22)
mn n w M
mn

w2 =274 _ a2 (23)
mn M mn mn

and

where T 1is the eigenvalue of Eq. (21).
Equation (18)involves the product of two doubly infinite sums, the

cross-product of the two modes (m,n) and (p,q) 1is:
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In computing the spectral density one has to specify the eigenfunction
¢(x,y) and ¢(§g§u %;;9. Only for a simply supported boundary the exact
solution is known, and opportunity has been taken of this solution to carry
out the closed form solution for the response cross spectral density
(appendix b). The simply supported boundaries are not physically realistic;
ocne has to consider spring type edges conditioned to allow rotation and
translation constrained.

Yang (1950) used the Ritz method to find the dynamic characteristics
of rectangular plates with continuum spring boundary conditions. More
recently this method has been brought up by Izzo, Baylor, and Robideaus
(1960). The present analysis does not restrict the usage of any particular
method (i.e., Ritz, Galerkin or Rayleigh) for example in the case of the
present experiment the panel boundaries are clamped; Warburton's (1954)
approximation is used in the computation.

The acoustic power radiated by the panel is obtained by the same
procedure used to compute the acoustic power radiated by the turbulent
boundary layer described in the next section. Using this result expressed in
terms of the panel displacement cross spectral density Y(A;w) rather than

the pressure cross spectral density over the rigid wall P(A;w) the

radiated power spectral density is given by

P (w) = QJ&L _[
T 2n¢ S(L)

di
Y(s0) { (sin QJCAL)/QJELL - cos MEM- — (28)

2
12l

where )\ = /(x—x')2 - (y--y')2 .
~ o o
The pressure radiating modes of the flexible panel mounted on an infinite
rigid plane is in phase with panel velocity, the wave motion has supersonic
phase velocity, the energy losses appear as a damping of the panel response.
While the subsonic components (near the plate surface) appear as additional

mass, they are of predcuinant lower frequency.
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V. Comparison with Measurements

A good comparison is made with calculation for two panel configurations, ¢
one with 0.06 psi pressure differential enclosed in a cavity (Figs. 20, 21
and 22) and the other with 14 psi pressure differential radiating into open
air (Fig. 23). The calculations are based on the analysis discussed in the
previous section which does not account for the additional forcing field, the
pressure induced by panel motion. However, the damping used in the calculation
are those values obtained experimentally. As indicated previously, the damping
is mainly acoustic and thus one can ignore the mechanical damping. The subsonic
component of the velocity is out of phase with panel velocity and therefore no i
dissipation of energy occurs. The rise of the virtual mass due to the subsonic
component is small for an air medium and it can be ignored. By making
e-amn(t-to) = 1 in the Green's function and taking into account the pressure

induced by the panel motion the acoustic damping will be a part of the solution.

This calculation procedure is a result of the present work and will socon be

reported. It is expected that the new method (Maestrello, McDaid) in computing
the response may not differ more than a factor of two (in the present case).

In addition to the case where the plate motion alters the turbulent boundary

E N e T e i

layer a perturbation pressure similar to Kuo (1965) in study of the surface

roughness has to be added,

The pressurized panel has lower displacement spectra than the

2 2 :
unpressurized one. In fact the static loading Nx §~§-+ Ny §~%-+ AP is
X oy !

the contribution of it. The shift in freyuency from the pressure of
0.06 to 14 psi is from 475 to 595 ki in the fundamental mode. This i
is accomplished by a change in static deflection of about 0.07 inch at .

the panel center, effectively increasing the stiffness of the panel.
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T

VI. Sound Radiation from Turbulent Boundary Layer

In the previous chapter an attempt is made to link the forcing field ?%
of the turbulent wall pressure to the response field of a typical panel lf
structure by meens of a statistical method. In a similar fashion utilizing .

the temporal and spatial correlation of the wall pressure, separation is

obtained of the acoustic mode, that is the weakest mcde within the flow

field, from the vorticity and entropy modes being the stronger by far.

The acoustic power predicted is obtained by imaging techniques where

|
l the properties of the far field noise are conriected to the statistical 3
[
properties of the boundary layer via near field pressure over the wall.
" Powell (1960) showed that a plane rigid surface reflects the sound radiated

by an equivalent quadrupole located in the flow stream above the surface.

o Ly Y
N Y IS W TR R WO oA S

The surface imaging pressure field is identical to measurements made of

space-time correlation of the double time derivative of the Reynolds stresses

N

Sodameds g

: and integrated over the turbulent field (Lighthill results). Where the flow

is over the surface the reflection from the surface could be distorted due to

N

N

the action of viscous stress; it has been argued, however, that the normal

stress on the surface is negligible*, With this assumption the problem is

} equivalent to that of an image boundary layer in which the acoustic power radiated

per unit volume of turbulence could be related to the correlation area of the

pressure on the surface. Since the surface is rigid no acoustic energy can be
generated but it is generated within the turbulence due to variation of the eddy :
5 strength caused by the fluctuating volume.

Laufer (1961) made the first measurements of sound radiated by a

supersonic turbulent boundary layer, by means of a hot wire annemometer,

*Leehey (1968) recognized that the neglected surface integral in the evaluation

of the wall pressure fluctuation gives rise to oscillatory wall shear stresses. A
Leehey's observation came to the author's attention after this manuscript was 3
written, therefore the results of the implication above are not yet known. :
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correlating in space and time outside the boundary layer. The loss cf !

energy from the turbulence shearing stress by acoustic radiation is very

small, therefore the detection and measurement made by Laufer was quite a

challenge. His results agree qualitatively with the model of the radiation .

field as pradicted by Phillips at higher Mach numbers.

Wilson (1960) also measured the sound radiated from a subsonic

boundary layer around a rotating cylinder. He placed the rotating cylinder

into a reverberation room; the acoustic pressure radiated from the boundary

layer was obtained after eliminating the mechanical noise of the rotating

mechanism.

Ffowcs Williams and Maidanik (1965) computed the mean square radiated

pressure in terms of surface pressure fluctuations using Lighthill

R A, AN otk i e aten e e

formalization. Their results well agree with the measurements made by

Laufer.

In formulating the present problem, let us recall some fundamental

flow field equations. Assuming the flow is incompressible, uniform

density p, the pressure p obeys the following relationship

v p(x) = ~ £(x)

the free field solution f = 0 at infinity is given by

p(x)

2
1 fvep(¥)
'H/Tffm !
v
or

3

v

the surface being infinite rigid and plane an additional boundary

is imposed.

o ¥ e

S a e e

(29) {

(30) |

(31)

condition




Then

v . (PV 1 )dy (32)
X~y ~

Lt}
-
«.\.h.\
/-—\

E
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&
2
< \

from Gauss's theorem

[+%]

1 1 @P ) 1
T f[T_J o " P (Eﬂ)]‘*ﬁ o
8

The general solution is obtained by adding Equations (31 and 33)

s -2 f £ p o (.1
P(x) = 4 f %=y L f[x-v Tx—y| an ~ ;n (i;\g—zl)] Q@ (36)
N

is the solution of Poisson's equation for the case of a rigid boundary.

»E '

i If one takes the pressure P at the retarded time |x-y|/c where c is the
G

Et; propagation velocity, the ebcve equation becomes the solution of the in-
et rapl*

331’ homogeneous wave equation. Evaluating l_g—i] one obtains:

X aplx _lap 2P 3t a(1xX])

2 o0 an T3t 3([gyl) ~ on EP4

RN ~ t = -

""l c (35)
- Joof, o bz} Do oadzaD oee( (XD

g; an \L» c ¢ dn A CAM c

AR
RN

Substituting into (34)

L
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The above equation is the well-known Kirchhoff solution. The volume
integral expresses the contribution of sound from the turbulence, while
the surface integral is the contribution of the sound upon the surface.
By imaging, the two integrals are identical. Thrce terms appear in

the surface integral, the first gives the contribution of the usual
pressure on the surface, the second descrihes the radiated pressure
from the apparent sources, and the third term describes the near field

pressure which decays 1/r faster than the radiated pressure

r

lx - 3l

Then, the radiated pressure

= -2 f 3r 3P r\ ds
P(i’ t) 47!(:‘/- on at(}’! t - Z) -_;
S

(37)
=cos 6 f 3P ¢ - z)g_S_
b4ac t Ys c r
S
The corresponding pressure correlation
cosze )y
R(r’,z,:)=—-2—2—2f f .a_;y_*_')vt_r-f-}\sinecosé
l6n¢'r Sg&) S{y) ~ c
(38)

3P 1)
at \I» £~ Jdy dd

»

~

where r' = r + ) sing cosé

R(ﬁ’ ,2'; 1) =

#
Londlil 2]
o 10
= »n
a3
<@
(2]
N
w Y
~
>
~
w »
7~
N’
QL QL
-~
N

2
\_sin® é)
P(g\_, 1= SRR g) 4y (39)
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From the theory of Fourier transforms one obtaius
m2 c0526 iw _%. siné cosé
R(f‘,z;w)z — 9‘[ f P(?:.;w) e d) dz (40)
“J s Jsy

The power spectral density per unit area of the acoustic pressure

field is obtained by

7/2 2n

a L - = s
5 P(y,uw) = " _[ay R(x,y50) [ f r2do sinddé 3y R(Z,y;50)

iw A siné cos

8=0 $=0 S(2)

87oc ¢ IA'

dA
1 / > (si @A —1—!- cos 2L} > (41)
(Asw)
S()) ~

where P()\;w) is the power spectral demsity of the pressure field.

The integrand behavior is such that as w|A|/c tends to zero the term

{ } | 12 ::wzlcz, meaning the radiated spectrum will peak higher
A

than the near field pressure, a result consistent with Lyamshev (1961).

For turbulent boundary layer a model of P(&;w) is given by

-lel/a, ~|nla
P(&,n;0) = P(w)e 1 e 2 cos %5
c

where

iy

-K_w8/U
P(w) = Gz A e n e

o=

2 c
—_— f f cos 6 smededéf P(l;we di
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and

Wilson's experiment is used for comparison with the present analysis
Fig. (27). 1In order to compute the acoustic power radiated by the
turbulent boundary layer on a rotating cylinder one needs to evaluate
the cross spectral density P(l,w). The model of the turbulent
buundary over a flat plate is adopted for P(},w) and Wilsoen's near
1leld pressure spectrum is used since at lower frequencies the near
field power spectrum differs from that over a flat plate. The result-
ing comparison is satisfactory.

For subsonic flow the cross spectral density P(},w) 1is

proportional to

223
Mep Ued

and the acoustic power is proportional to

3,5
pUeMe(S

while for Mach wave radiation the cross spectral demsity P(},w) is

proportioral to

2.3
o] Ueé

and the acoustic power is proportional to

3.2
pUeG .

In attempting to compute Laufer's Mach wave radiation, a

difficulty is encountered since he measured the intensity at a point
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while this analysis obtains the power per unit area. In the compariscn
M

one would have to account for the Doppler shift (f - ) since Laufer's
c

measurements are in a moving stream along the Mach line. The condition
for Mach wave radiation is such that |Mc - M| > 1. This implies that
the comparison has to be made for Me > 3.5.

Phillips has shown that radiated sound arises from eddy Mach
waves which are generated by some wave numbers of the turbulence in
those layers for which the difference between the mean velocity of the
fluid outside and the local eddy velocity is greater than the speed of

sound. This mechanism appears consistent with the present results.
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APPENDIX A

Prove that the displacement cross correlation is even in

Y (%,y,t) Y (x',y',t")

abp? Z O GOY) O (3"
= 2

2 mn
A\ w a + w
mM n mn mn( mn mn)

where

az

'nTCtl

T

my nw [
I = : An K e
mn £(z2) ff(y) fg(X)E 2 - TREV]S 2
e N - ) ([é-z— - Uct]"‘ U@)ﬁ(}ﬂ) ]

-ma L 0 o) 's-l'r'
c

az
mao
1

+ n_n dx|dyjdz
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Let us define

mu mm

mm L
Py (D) =ff<z>fg(x) 4 + . e dz
G ([az - U ('c-x)] 2) G([lz_ -U (T+x)] 2)
-mxn [o] - o c

mn @

‘f f(zfg(lxl) X dx dz
~m7 o G([gg_ - Uc(r-x)] 2)
mn

Set X = 17 - x

mm L

Fl(r) -f f(zy g (!‘r—xl) 1 > dX dz
-mm = G([_a_._g - ch] )
mm

then

mn ®
Fl(-r) =[f(z)‘/'g(|r-xl) 1 dX dz
-mn 7T G az - UX 2
(B
Set x = - X

mn ©
Fl(—r) = ff(zl/.g(lr-xl) 1 dx dz
-mm - o ([ az + ch]Z)
mn

4 S b s
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Fl(_T)
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=f f(-Z)fg (Ir—xl) L dx d2

= Fl('r)
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APPENDIX B

The follcowing is the closed form solution of the panel deflection
cross power spectral density (Eq. 24) for simply supported boundaries
without cross medal coupling. From Maestrello (1967) one can obtain the

following cross correlation of the panel displacement.

3 0 (x,y) ¢ (x',y")
Y (x,y,t)(x L,y ,t%) = abp ma mn 1
2.2 ) 2 2 mn
2t M mn mn(a + w
m,n mn mn
(1B)
where
ma nn ©
4 ALK
Lon ‘/f(Z) £ 3(")2 RIS ) )
K™+ e ( az - U T+ U x) +(gz) ]
o 0 n=1 n —— - c c
-m7 Uc mn n#
+ Ar_1( Kn dx} dy} d=z
2 2 2
K2 +(6Ue) [([az - U ‘r]— U x) +(_bx)j|
n \— —— c c
Uc mw nn -

cos z + ﬁ;(—iz|cos z + sin|z]|)

and £(z) = l(az/m"a1|
e
cos y + f:(sin y-y cos y)
£(y) = Iby/n"azl
e

e e et

e i v v




-a x W
g(x) = e sin w__ x + =B cog u x]
mn a mn

-2 mEX nay

I 1s an even function of 1 and Y(x,y,t) Y (x',y’,t")
is also even as shown in (appendix a); one can obtain the
auto correlation by setting x = x' and y =y' in (1B).

The displacement cross spectral density is obtained:

]

P[Y(x,y,t)Y (x',y',t"); w] = ‘-2-%- / Y(x,y,t)Y (x',y',t") eimdr

-00

From (2B) and integrating with respect to x one obtains:

2 ¢ (x»}')CP (X',y')

PIY(x,y,£)Y (x',y',t")50] = abZP(tg)x z: mn 77 x
b M mn W (a + )
31 mn mn mn

mn anr @

-imaz/anc
fdz /dy/ dx f(z)E(y)gx) | e cos wx
(S 0 0

Simplify the above equation by integrating out the g(x) and

f(z) integrals;

(2B)

(3B)

,
. o grmmom
C B et st G

e



70

The g(x) integral reduces to:

® -a_x
me w X “mn w X
dx e sin( un )+ a cos( mn )
mn
o

and the z integral reduces to:

" -|az/mia; |
1 wa wa
Zj;dz cos( 1+ anc) z + cos( 1l - anc)z e

mn -|az/mna; |
-1 1 wa wa
2 n‘“‘/;dz |z| cos(l+muc)z+cos(l—mnuc) zle

nn

-|az/mna; |
1 fdz sin |z| cos (maz )e
+ —— maU
my o] c

=[11+12+I3+I4+15]
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where

-afu

1

e lmnu ] mtl + wa mna, + wab mnl + wa
1 c 1l c
Il: 3 711 - @ cos —-1-]-———-4- sin--'U
a” + (mna + mae)J z c

~a/e

e lmml ] mﬂUc-wa (m
12 = 2 ) 5 J -3 COo8 0 +

a - (mzral-wae c

ml-wae anmea
sin{——1+ a
U
c

U
c

wab Y’ nalU +wa
cos —_—1

-a/ °‘1 2.2 2
e (mml+
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Finally the £(y) integral reduces to:
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The cross spectral density is finally reduced to:
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