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SUMMARY

-When the convection velocity of the turbulence exceeds the

local speed of sound in the medium the coupling of the panel modes

to the acoustic field becomes very strong. The structural damping

-~ which is usually constant for all modes is overshadowed by the

acoustic damping which increases with frequency. For a boundary

layer of nearly zero pressure gradient the linear theory is still

useful in predicting the panel response and compares well with

experiment.

Using Kirchhoff's theorem the acoustic power radiated from

a turbulent boundary layer was expressed in terms of the cross

spectral density of the pressure field over a rigid-plane surface.

Computation shows that by using this method the acoustic power

level agrees satisfactorily with the measurement.



I. Introduction

A large aircraft in supersonic flight opens new challenges-in

aeroacoustics, the pursuit of which is- vital to advancement in this

field. Problems emerge because subsonic experiences are inadequate

and it becomes increasingly difficult to define a clear-cut analysis

for predicting the response of a panel to a flow field on an aircraft

fuselage. The aerothermoacoustic and-aerothermoelasticity problems

are not part of this investigation. In the present experiment the

wall temperature averages around 550 degrees Rankine and the response

of the panel is linear, no stress deterioration or stiffness change

will occur. Of course, this is a specialized case of nearly zero

pressure gradient where the power spectral-density technique of

generalized harmonic analysis can be used. In the case of larger

pressure gradients (shock wave) a more rigorous approach is required,

since the flow field leads to instability (flutter) Dowell (1966-1967),

Maestrello (1968). It then becomes necessary to use nonlinear plate

theory and convenient to use time rather than frequency domain analysis.

Even with the simplifications of linear analysis and use of the powe-

spectral density technique, the problem is still complicated due to

the necessary inclusion of the pressure resulting from panel motion.

The forcing field terms excluding the pressurization effect include

the pressure over a rigid wall and that produced by panel motion.

The resulting quadratic and inhomogeneity gives rise to a reflection

coefficient which imposes additional boundary conditions.

I
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This last development is contained in a report which will follow by

Maestreilo and McDaid. The present report is concerned with obtaining

radiation -from a turbulen boundary and panel response to it with

emphasis on the coupling of panel modes to the acoustic field which is

predominant when the turbulent convection velocity exceeds the local

speed of sound in-the medium.

These measurements were made on the side wall of the Jet Propulsion

Laboratory 20 inch supersonic wind tunnel. The boundary layer is turbulent

on the side wall from natural transition. The tunnel was well suited for

these measurements partially because the flow conditions are well

documented (Coles 1963) and partially because the statistical measurements

of the pressure and velocity field are well recognized (Laifer 1961,

Kistler and Chen 1962).
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II. Experimental Arrangement and Instrumentation

The flow investigated was the side wall boundary layer

of the JPL 20 inch supersonic wind tunnel. The tunnel is a continuous

flow type utilizing a two dimensional flexible nozzle which provides

for speeds up to Mach number 5. A description of the facility with 4
a range of operating conditions is discussed by Laumann (1967).

4 For a brief description with rarticular emphasis on those features

which are most important for velocity and pressure field measurements

one may consult Laufer (1961) and Kistler-Chen (1962). 4

The experiment was arranged to perform three basic measurements:

mean velocity profile, wall pressure fluctuations-and the response of

a simple panel structure. The side wall window was modified to

accommodate two identical rigid steel plates which supported the

instrumentation required for measurements. One plate contained an

array of holes to mount the pressure transducers, Figure 1. Another

had a cut-out portion in which the test panel was mounted, Figure 2.

The panel was tested with a static pressure differential

loading of 0.06 and 14.0 psi. The operating static pressure of theI: i
test section is always below atmospheric pressure. In the case of

Ii 0.06 psi pressure differential, a chamber of size 8 x 14 x 6.6 inches

was built around the panel to contain the pressure which was kept

equal by interconnecting the chamber with the tunnel by a row of holes

located downstream from the panel, Figures (2) and (3). Tests with the

14 psi differential were run both with and without this cover.

I



Fig.~~ ~ ~ ~ ~ 1.Tasue1onigcniuain



N>

-A
0

I

I

4

U'

Fig. 2. Test panel.

t
~--



6A

Dipacmn 44o

Fi.3 ae arokcvr



7

The boundary layer on the tunnel side wall is turbulent

from a natural transition on a smooth surface. Measurements were

made in the region of zero pressure gradient, as well as under

conditions of shock and boundary layer interaction. The shock was

induced by a 30 wedge mounted outside the boundary layer, off center

and to the same siae where the measurements were made. This was done

to offset the position of the reflected shock from the opposite side.

The position of the shock was determined by observing the displacement

of a line of tufts, and more precisely, by a static pressure survey.

The response of the shock interaction with the panel will be reported

separately.

The velocity profile was measured by a standard technique.

The wall pressure fluctuations were measured by pressure transducers

mounted in the plate shown in Figure 1. The transducers were mounted

on a threaded bracket in order to adjust the alignment within ±.0005 inch.

The alignment was checked with a micrometer at each transducer location

at the tunnel operating pressure. This was the most time consuming

operation of the test. If the flushness is not maintained within the

tolerance the power spectra would assume a different shape in the

lower frequencies.

Two types of pressure transducers were used; one, the

conventional lead zirconate titanate made by Atlantic Research and

the other a capacitance type made by Photocon Corporation with a

sensitive diameter of .060 and .090 inches respectively. This last

type of transducer was used to survey the low frequency part of

the spectrum because it is less sensitive to vibration than theLcrystal type. A monitoring survey of the power spectra and cross
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correlation was made during the test to insure that satisfactory

measurements were recorded on the magnetic tape. In line power

spectral density and cross correlation were obtained with a Hewlett

Packard wave analyzer and with a Boeing built correlator. The output

was recorded on an Ampex FR-1800H 14 channel tape recorder in the

FM mode. The main feature of this recorder is that it has a low

static and dynamic skewness. Four channels were used for simultaneously

recording data for correlation measurements, two channels for the lower

frequencies down to the dynamic range of the recorder, and two channels

for the higher frequencies. The maximum dynamic range was obtained by

splitting each data channel into two tape tracks through phase matched

filters to separate the lower and higher frequencies. A high frequency

sine wave reference tone was recorded on alternating tape tracks

simultaneously with the data for the purpose of correcting time error

between data channels used for digital correlation analysis. This

technique provides a broad band correlation in both frequency and dynamic

range.

The test panel is thin, rectangular, titanium* of size

12 x 6 x .062 inches brazed on all four sides to a 3/4" x 3/4"

titanium frame. The brazing is intended to simulate the clamped

edge condition. The frame and skin assembly was placed in a vacuum

retort using Handy and Harmon braze alloy**.

* Tl-6AL-4V Titanium alloy containing 6% Aluminum, 4% Vanadium

and 90% titanium.

**Braze alloy 70% Ag, 28% Cu, 2% Li.
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The retort was placed in a furnace and raised to a temperature of

14500 F. The panel assembly was bolted into the cut-out portion of

the plate and made flush with it. The panel displacement was

measured with "Photocon" capacitance type displacement transducers

mounted on brackets which could slide along a bar and could be set

precisely by means of a screw mechanism. The transducer mounting

can rotate 3600 to allow correlation along the longitudinal and

lateral axis. In line power spectra and cross-correlation were

taken and then recorded on magnetic tape for 0.06 and 14 psi pressure

differentials. Measurements were repeated with damping tape placed

-1on the outside surface of the panel.*

!2

*Two layers of damping tape with surface density of one layer 0.112 lb/FT2

- - - - -- - -- - ---- ---------- ~4.-~
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III. Measurements and-Disciision

Three basic measurements were made: mean velocity profile, wall

pressure fluctuation, and the displacement response of a simple titanium

panel with clamped edges. Wind tunnels inherently have a certain amount

of interference (vibration and sound propagated up or down stream

through the boundary layer). Commonly the vibration interference can

be bypassed-on the measurement of the wall pressure using a capacitance-

type transducer. In the present test measurements of the wall pressure

-iuctuation were rejected below 800 hz due to acoustic interference.

The tunnel vibration will not alter the dy-amics of the panel,

since it is small compared with that induced by the boundary layer.

The fundamental mode (500 and 600 hz for the unpressurized and pressurized

case), will be effected by the tunnel interference. The effect is 1
predominant on the fundamental mode and is not expected to be larger

than a factor of two.

a) Mean Velocity Profile

The quantities directly measured were the impact pressure,

wall pressure and stagnation temperature. The stagnation temperature

and static pressure are assumed to be constant throughout the

boundary layer. The local static temperature, density and velocities

are obtained from the energy and state equations. Therefore, one

can assume that the properties of the boundary layer closely

approximate the properties of the equilibrium adiabatic flat plate

boundary layer.

Measurements made by Coles (1963) using the above assumption

over a flat plate, estimated an error in momentum thickness 0

of about 2% up to Mach 5. Table 1 lists some of the most pertinent
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flow parameters in a supersonic flow at zero pressure gradient. The

mean velocity profiles at various Mach numbers were reduced to a

constant density form. The method used is based on the work of

Coles (1963) in which he assumed that in the sublayer the

Reynolds number remained unaffected by the compressibility provided

that the density and viscosity are evaluated at mean sublayer

temperature. He proposed a simple generalization of the law of

the wall such that the similarity functions remained the same as

in incompressible flow. The transformed law of the wall is obtained

by adopting the Dorodnitsyn type scaling which produces a lateral

stretch of the coordinate providing an equivalent incompressible

profile. This transformation coincides with the Von Karman

hypothesis that the skin friction can be obtained from the in-

jcompressible relations by evaluating the density and viscosity of
the wall instead of the free stream. An extension of Coles approach

has been recently made by Baronti and Libby (1966) and used by

Watson and Cary (1967).

Their conclusion was that for an adiabatic flow up to Mach 5

the Dorodnitsyn type transformation can be used to represent the

boundary condition such that a universal description of the law of the

wall is obtained, but above Mach 5 their method was not successful.
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From the law of the wall in the logarithmic region-
U = Aln B T f I T (1)

U '
T

whee-(- ~Ue jP dy. (2) ,
eP e dy-(2

and in the laminar sublayer

U = < (3)

S/U U/e =(fl2 f() n Pe dy is the Dorodnitsyn

- & - -f

~variable, U = (-r /p)1 , Cf= skin friction coefficient, p = coefficient

T

of viscosity A = 2.43, B = 7.5 and gf - 10.6. The ratio Ve /u comes

from the assumption due to Donaldson (1952) that the Reynolds number

4associated with the laminar sublayer is invariant. The edge of the

boundary layer was selected at a point where the ratio U/Ue 
= .995. The!e

ratio p/p e is obtained by using Crocco's relationship for the density

profile. The compressible skin friction coefficient Cf is related to

the incompressible Cf by the following:

C = (Peue/pWPW) (/OUe)C f . (4)

The values of Cf, CfV uo/p and T are given in Table 1.

A plot of the law of the wall, Figure 4, using the above
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transformation compares well with the measurements of Laufer

and Klebanoff which were made for an incompressible flow. It can

be seen further that the present data transform for an equivalent

incompressible boundary layer is in close agreement with the

relationship found by Coles, Figure (5), as well as with measure-

ments made by other investigators.

41
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b) Wall Pressure Fluctuation 1

The problem is to obtain an appropriate description of the wall

pressure fluctuation produced by a turbulent boundary layer at near zero

pressure gradient. From a spatial and temporal correlation of the

pressure field an estimate of the response of the structure can be

made.

The structure senses the different components of the pressure

as they are swept past the surface at different velocities. Since the

panel response behaves like a narrow band filter, a meaningful represen-

tation of the field can be obtained with less complexity than would be

required to represent the turbulent flow itself. The convected nature of

the wall pressure fluctuation can be described by a space-time correla-

tion function. The convected feature is not independent of either

spatial or temporal delay on-which they are measured but is contingent

on both. The decoupled equations for a compressible viscous, heat

conducting gas within the framework of the linear theory have three types

of disturbance fields. The predominent ones are the vorticity and the

entropy modes whose phase velocity is the usual convection velocity. The

third type is the acoustic mode in which energy is transported away at

the acoustic wave speed. All three modes are independent except at the

wall because they are imposed on the velocity and temperature (Kovasznay

and Chu 1958).

Laufer (1964) successfully measured the acoustic contribution by

recording the density fluctuations along the Mach wave outside the turbulent

boundary layer using a hot wire anemometer. Wilson (1959) measured the

near and far field of noise radiated by a turbulent boundary layer developed

.
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on a rotating cylinder. Separating the contribution of the acoustic

mode at the wall from the other disturbances is more cumbersome because

the energy radiated away, from the turbulence region represents only a

small fraction of the kinetic energy flux of the turbulence and an even

smaller fraction when compared with viscous dissipation. However, the

wall pressure fluctuation measurement retained the contribution of the acoustic

mode as well, and tile non-zero correlation integral can be interpreted as

energy dissipated acoustically. The sound sources are located away from

the surface of higher order than dipoles whose strength is zero at the

surface. The sources are equivalent to a quadrupole system. The surface,

assumed to be rigid and large, acts as a simple reflector of sound,

Doak (1960), Ffowcs Williams and Lyon (1963), Lyamshev (1961), Powell (1960),

Meecham (1968), and Kraichnan (1957), apart from the fact that a contribution

to the pressure may occur due to the viscous effect, Leehey (1968).

Measurements of the wall pressure fluctuation were made in the

range between 0.8 to 200 KH using the conventional lead zirconate ceramic
z

disk as well as with capacitance transducers with diameters of 0.060

and 0.090 inch respectively. The normalized power spectra, corrected for

attenuation due to the finite size of the transducer (Corcos correction), are

shown in Figure 6. The deviation in the shape at lower frequencies may be

attributed to extraneous interference* which persisted inside the tunnel and to

radiation from the turbulence (this last one is the apparent surface source

originated by the source near the surface). The extraneous interference,

Narrow band spatial correlation measurement for frequency below 0.8 KH
using capacitanceprobe transducer (quite insensitive to vibration)
shows that the decay of the turbulent pressure has superimposed an
acoustic component similar to that shown by Wills (1968).

• I
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however, masks the radiated noise from the turbulence; this is the rea-
son that the frequency spectra have been truncated at 0.8 KH . Lilley

z

and Hodgson (1960) predict that the wall pressure spectral density varies

like the square of the frequency at low frequencies for vanishingly

small Mach numbers. Ffowcs Williams (1965) shows that for finite com-

pressibility the correlation area varies like the square of the Mach

number. The present model of the wall pressure fluctuation retains some

of the features contained in the above comments.

The normalized power spectral density (Fig. 6) is similar to

that obtained from subsonic flow over a flat plate. It peaks at

W6/U e = 2.0, Bull (1967), Serafin (1963), and Hodgson (1962), show

similar behavior (Fig. 7). In contrast for pipe and duct flow the wall

pressure spectral density indicates no predominant peak Corcos (1960),

Maestrello (1965). In flight, measurements made of the wall pressure

fluctuation have a more difficult interpretation because in general there is

an apparent pressure gradient, as well as some roughness. Hodgson's measure-

ment, however, over the glider wing produced the typical rolling off spectrum

at lower frequency while measurement made on the 727 airplane at higher

subsonic Mach number indicates no significant rolling off at the lowest

frequencies, Maestrello (1967). Schloemer (1966) from a set of systematic

measurements points out that the lower frequency part of the spectral density

is sensitive to the pressure gradient. A more extreme case, that is for

separated flow Maestrello (1968) indicates a similar observation.

Figs.(6 and 7)show two main eddy structures, the larger scale, faster

moving, lower frequency size structure scaled with the boundary layer thickness,

and the smaller scale higher frequency, slow moving eddy, scaled with the sub-

layer thickness. This is also born out from the law of the wall by application

of the transform for constant density flow discussed in the previous section.
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Further results show that the ratio of the wall pressure with the

local wall shear stress p'/T w  is nearly independent of Mach number, while

the ratio of the wall pressure with the free stream dynamic pressure

P'I/qe R-i"The results are reported in Figs. (8 and 9). Similar results have

been previously obtained by Kistler and Chen from measurements made in the

same wind tunnel except for about 30% discrepancy in the values of p'. From
the figures the product P /qe X Tw /p' reproduces the well-known results

of the frictional law, the compressible skin friction coefficient decreases

as the Mach number increases at a constant Reynolds number.

The broad band space-time correlation curve for separation in

the stream direction R(Q,O;T) and in the lateral direction R(O,n;T) are

shown in Figs. (10 and 11), obtained at constant spatial separation and at

variable time delay. The cross correlation retained a frequency band-width

from 0.5 KH to in excess of 100 KH with an adequate dynamic range.z z

The longitudinal correlation shows the usual convected feature, slowly

losing its coherence, while with the lateral correlation no convection is

observed except possibly at large separations where the envelope flares out

at small correlation values. The broad band convection velocity corresponds

to U /U = 0.78 at Me = 1.98 and U / = 0.72 at Me = 3.03. It is

interesting to point out that for correlation measurements taken at constant

spatial separation at a slight angle off the flow direction the convection

velocity was slightly greater than the one obtained along the flow direction.

This could possibly be explained as disturbances moving with particular

orientation for the case of supersonic convection, since it is a propagating

wave system. Unfortunately insufficient data was obtained to construct

the wave pattern over the surface.
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From measurements made of the wall pressure fluctuations, plotted

dimensionally in Fig. (6) a model is obtained. The model is of similar form

to that reported by this author earlier (1967 and 1968) for a duct flow

except it takes into consideration a peaked power spectrum, characteristic

of a boundary layer developed over a flat smooth plate at zero pressure

gradient. From the figure the power spectrum P(w) and the normalized

spectrum ir(w) satisfy the following relationships:

2> 22  2iw) 4 -K (wS/U e (5)7r(w) dw - 1 P (w) dw <P2> ::12-r I = A e0 0 nul n

where Al = 4.4 x 10 K 5.78 x 10-2

A2 =7.5 x 10 K2 2.43 x 10

A = -9.3 x 10-2  K3= 1.12
3 -

A4 = -2.5 x 102 K4 = 11.57

The normalized auto correlation is

4 AK
nAn 

(6)R(T) K 2 +Kn e/6)2

The flow considered is semi-frozen, that is with decay in space and time

at constant convection velocity U . From Eq. (6) using Taylor's hypo-

thesis the longitudinal spatial correlation is:

AK
R(9) --I /" n(7

n=l K2 nn (7)

'I I

n k TU_
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From experimental observation the lateral spatial correlation suggests

R(r) e 2 (8)

and the normalized cross correlation

4 -il/a 6  -Inl/a 6 "LA Ke en (9)
Rngln; ) Oe 2 U

where a 50/ CfR0 ' 2 = 0.26.

The longitudinal cross-correlation obtained from Eq. (9) is

plotted in Figure (12). The positive isocorrelation contours are symmetric

about the line VU cT = constant. Negative isocorrelation contours are also

shown. Although the negative correlation coefficients are small compared

to the positive, the negative correlation is extended over a larger

separation distance.

For a maximum correlation with an optimum time delay there exists

a velocity Uc with which the fluctuation patterns are convected down-

stream. For large separation the convection velocity is obtained from

Eq. (9) by:

R(E,) 0 U = max (10)

aT c T

In this region the maximum-maximorum, the envelope exp-lfl/al6 is quasi

tangent to the peak at /Tax/P. For an incompressible flow the wall

pressure correlation is expected to closely satisfy the boundary conditions

derived by Phillips (1955) and Kraichnan (1956), that is, the integral
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Iu

!R(9,q,O)d~dn (i

be zero. The present model, however, takes into account the compressi-

bility effect, and the correlation integral does not vanish.

From the spatial and temporal extension of the wall pressure

field one finds it useful to compute the integral scale. The integrals

are defined:

A (4) = 2 R(E)dg
p
A p(n) = 2JR(Odn (12)

and A (T) = .fR(T)dT
0

Computation and comparison is given in the table:

M U 6 A Wi A (9) U A(T) A(
M /e

e (Ft/sec) (Ft/scec) (Ft) -P 6 6 A(n)

Bull 0.5 542 445 0.036 0.84 0.40 0.49 0.47
Willmarth & "__I
ilmrth 0.19 204 170 0.42 0.44 0.25 0.35* 0.57
Wooldridge________

Present 1.98 1724 1356 0.076 0.85 0.086 0.11 0.11
Experiment 3.03 2100 1558 0.11 0.56 0.073 0.10 0.13

Present Given 0.52 0.086 0.11 0.16
Model

U = 1724, U= 1356, 6 .076
e c

M = 1.98e

The longitudinal scale A(C)/6 is approximately on the order of

the boundary layer thickness except for Bull's result which is one order

*correction applied for revision of data by author.
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of magnitude smaller. The lateral scale is consistently larger than the
J

longitudinal for all the four experimental results. The ratio

A p()/A (n) varies from one tenth for supersonic flows to about one
p p

sixth tenth for the subsonic. It is of interest to point out that the time

integral scale and the ratio of the spatial scales are about equal

A p()/A (n) - U A ( )/6. This is evidence that Taylor's hypothesis is
p p e p

quite valid even though error will occur in the extrapolation of the

power spectrum ir(w) to zero frequency.

The broad band spatial cc .-lation Fig. (13) shows that for small

A spacing the correlation field is nearly isotropic but as the separation

increases the longitudinal correlation becomes negative due to strong

convection while the lateral decays exponentially. Figs. (14 and 15) show

i I the comparison with the measurements and with the model plotted in

terms of the normalized parameter U 9/6U (Eq. 7) using Taylor'se c

hypothesis. Agreement is quite good.

The envelope of the maximum-maximorum is plotted in Fig. (16)

using the equivalent incompressible Reynolds number C fRe to compare

cirrelation made at different Mach numbers. The pattern of the wall pres-

sure confirms that the increases in separation reduces the higher frequency

contribution, the envelope is convex for larger separation. The experimental

results show some scatter, however the Reynolds number dependence is

consistent. The fact that the convection velocity varies with separation

distance is a well-known observation which Favre, Gaviglio and Dumas

(1967) termed celerity. Typical narrow band convection velocity is

'I
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given in Fig. (17). The ratio U (M)/U almost linearly decreases for
c e

large w6/U ratio as indicated in some previous experiments.
e

It is sometimes convenient to work in the frequency domain

rather than in the time domain. From the cross correlation Eq. (9)

one obtains the cross spectral density

-R/i6 -Icia 6 -iW9/U
P(F;iw) - P(w) e e e (13)

0 11W:

and the wave number spectrum

1/a 16 1 Va_______
P()(14)

P(K1 ,K ;W) =P) ll)2 + .L+K)2J [l 2)2 (K)2] (4

as w tends to zero the wave number spectrum varies like U4. Eq. (14)

indicates that the maximum occurs when BP(KI,w)/DK1 = 0, correspondingly

U -w/K 1 max

Fig. (18) shows the longitudinal wave number spectra obtained from

Eq. (14). The contours show the familiar closed loops previously reported

by Bradshaw (1965) in a low speed boundary layer flow. The main difference

being that the flow is considered to be semi-frozen while experimentally one can

clearly see a variation in convection velocity with spatial separation and

time delay.

'I

ii
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c) Panel Response

The panel is excited by a steady convected supersonic turbulent

boundary layer. The panel deflection is small compared to the skin

thickness. It is assumed that the response is linear, stationary and

ergodic, therefore the power spectral technique is employed to compute

the response, i.e., Crocker, Lyon (1957), Jacobs and Lagerquist (1967),

Maestrello (1968), Wilby (1967) and White, Cottis (1968). It is

assumed that the plate motion does not modify the turbulent boundary

layer. However, the forcing function should contain both the pressure

over a rigid wall and that induced by the panel's own motion. In

supersonic flow the pressure induced by the panel motion cannot be

ignored as in the case of low speed flow, because the supersonic

convection velocity excites strong coupling modes to the acoustic field.

The spectrum response is mainly controlled by acoustic damping. The

pressure due to the panel motion is comprised of waves of subsonic

and supersonic velocities. In the subsonic region the damping becomes

purely imaginary, the effect is to increase the effective mass of the

panel which tends to reduce the resonant frequencies as well as the

response, while in the supersonic region the damping is associated with

the energy radiating field.

The equation that describes the pressure on the surface is the

well-known Kirchhoff solution. Neglecting the viscous term and the terms

that are nonlinear in the surface response velocity and taking into account

that surface pressure is twice that of the pressure away from the surface,

and applying separately the real and image of the boundary layer system

from Ffowcs Williams (1966), one can write:

P(x,t) = 2T+ + 2P+ - 2P

(15)

0 = 2T_ - 2P+ - 2P
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where

2  r dy

T± 2iraxT Ti(y' t

P+ mjPi f (Y' t-c)-
W axn r

1 i ,t r dy
V+ ~ ~ [ y, t--]-c

Summing the real and image pressure:

P(E,t) = 2(T+ + T_) -4Pv+ (16)

when the surface is rigid

Prigid(XXt) 2(T+ + T_) (17)

At low speed flow the term involving the pressure due to the panel

motion is usually neglected since the mass is negligible and the acoustic

damping is small. In supersonic flow, the panel radiates sound in the

form of Mach waves, weaker in strength due to inhomogeneity

in the wave number components but with loss factors sometimes exceeding

unity, Maidanik (1966). The measurements made of the displacement spectra

show that the higher frequency modes are heavily damped unlike the panel

excited by subsonic flow. Figure (19) shows the total damping factor of

a 12 x 6 x .062 inch titanium panel with clamped boundaries excited by a

turbulent boundary layer at Me - 3.03. The bandwidth Af is evaluated

at the modal half power point. The dotted line is typical of experimental

damping for a panel excited by low speed flow. The deviation from this

-J
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curve at higher frequencies is attributed to the wave number components

betaming supersonic. The effect of damping tape on the panel is not as

significant as might be expected from the low speed case. I

Typical displacement spectral densities are shown in Figs. (20, 21 and 22)

for a static pressure differential of 0.06 psi and Fig. (23) for a static

differential of 14 psi. For the spectra taken at 0.06 psi the panel
is enclosed in a cavity Fig. (3) while the spectrum taken at 14 psi the

panel radiates into open space. As expected the damping factor is higher

when the panel radiates into open space, Strawderman (1967), Pretlove (1964).

The broad-band displacement space time correlation measured along the panel

centerline in the direction of flow for pressure differentials of .06

and 14 psi are shown in Figs. (24 and 25). For the pressurized panel

the response is mainly due to coincidence. The ratio between the wave velocity
U

in the panel and that of the turbulent convection velocity is -c = 0.73

while for the 0.06 psi presdure differential the broad-band cross

correlation shows that the wave velocity of the panel is far below that49 U

of the turbulent convection velocity of the pressure field, -c = 0.29.
UC

This suggests that the fundamental moce predominates in the latter case,

contribution also results from the modal frequencies of the unpressurized

case being lower.

The contribution of the closed cavity on the motion of the panel is

small when the depth of the cavity is larger than one-half the larger panel

dimension, Pretlove (1964), Dowell-Voss (1963), as in the present test.

The main effect is on the damping rather than the panel resonant frequency,

negligible interaction is expected between the fluid and the plate. In

the case of small cavity depths, however, the principal effects on the



41.

~10.9

'i • 
m=1

10.10 -
-3 Experimental

= 3 - Calculated
m=3

f N

i -4- 10 .n1 _
x = x'=0.5 ft.

y=y'=0.25 ft.
I Me= 3 .03
I Press. Diff. A p=0.6 p.s.i.

.4-DE 10-12

U M=5

d) 
m=3

C
1 

10.13 
M =3

Ii n=3
m=l m7

l Uinn=

01) 
pnI

10.15 -

I I II,

500 1000 1500 2000 2500 3000

Frequency Hz

Fig. 20. Displacement spectral density.



42

0n=1 X =X'=0.5 ft.A
10 Y = Y'= 0.375 ft.

Me= 3.03

Press. dif f. A p=O.0 6 p. s. i.
-Experimental

--Calculated
P4 I M=3

C'4i 10-

I=2

10..1 M=3

io-13

14



jI

43

n=1

0-10X = X'= 0.5 ft.
Y = Y'= 0.25 ft.
Me= 3 .0 3

Press. diff. A p=O.06 p.s.i.V/ith Damping Tape
- Expeimental

m=3Calculted

II

lO-12

SI I'

I 10'
I" I

m=5.; v n=l

". It
4)10-13
u m=lSI n=3 m=3

.2 A I m=7:: { Li :l It; A n'-I
I L III 1:1 I

I I I I' i' 1 II I ,t
S10I 

I I

101

100 500 1000 1500 2000 2500 3000 3500
Frequency Hz

Fig. 22. Displacement spectral density.

AI



44

ro

X=X'= 0.5 ft.
Y=Y'= 0.25 ft.

M#=3.03
Press. diff. A p=14p. s. i.

i Experimental

I ... Calculated

10-) 3-1

10- 12

15-1 I-3

U 1 I -3 1 3-3

I t It 1"

It
II

100 500 1000 1500 2000 2500 3000 3500 4000

Frequency Hz

1Fig. 23. Displacement spectral density.

i



45

Ucp= 450 Ft./sec.

0 
t=

i-2

AT =0 XX'=0.5 ft.
- 1.o AT 71=0 Y=Y'=0.25ft.

* ., -I

Ue = 2100 ft./sec.

:1 - Ap=06 P.s.i.

-1 =3o

-I

i0 3=.0'

!0

0 .576 1.152 1.728 2.304 2.88

, m sec.

Fig. 24. Broad band space time correlation of panel displacement.

'1



46

fundamental and symmetrical modes will be that of an aerodynamic spring,

whereas for the antisymetric modes only the aerodynamic virtual mass

effects exist.

L Fig. (20) shows some alteration in mode shape, for example the

experimental m - 5 n = 1 mode is strongly coupled to the m =3 n =2

mode. This last mode should be zero for an orthogonal system at the

measured position. A similar effect is seen in that the m = 2 n 1

and m = 4 n = 1 are also non-zero.

Fig. (26) shows the data of Fig. (25) replotted on the - U T
p

plane. The isocorrelation contours are inclined at approximately 45 degrees

indicating a convected nature and the decay feature of the correlation

coefficient.

I~ ~
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IV. Analysis of the Panel Response S

The response of linear system to random forcing function is

obtained utilizing Green's functions. The system (panel) is excited by

random pressure such as the turbulent boundary layer, therefore the assembled

average or correlation of the surface displacement is expressed in terms of

the correlation of the pressure field,

St  st' fa Sb oad b

y(x,y,t)y*(x',y',t') dt ° f dtf dxf dyof dx'f dy'
LC 0 0 0

(18)
g (x,y,)l ty ',oto)g* (x' y' , x'o Yo t'o) < f x (XoYo'to) f* (Xo'Yo'tO,) >

where the forcing function for the boundary layer pressure field is given

by Equation (9).

f(xoy,to)f*(X',Y',t') p2

(19)

4 A K e- o- 0 I
~ nn n

K 2 + e ()[x - ]- U [t - t ])2 + (y -Yo ) 2

n T C)[ 0- 0 c o o

It can be shown (Dyer 1958) for a plate with arbitrary boundary conditions,

the Green's function satisfies the classical plate equation and can be

represented by:

C(X,Y)omn(xoYo -amn(t - t o

g(xiytlxoyo t O) = M M y
m,n mn

(20)

sin wmn (t - t)U(t - to)

where U(t -t) 1 where t < t

and U(t -t) = 0 where t > t
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where *m(x,y) are the normalized eigenfunctions, amn is the modal

damping and w mn is the damped resonance frequency. The normal mode satis-

fied the following equation

B(4-in)V4y + mn + D mn 0 (21)
mn at

where B is the bending stiffness, M is the mass per unit area of the

plate, 8 is the viscous damping coefficient and n the loss factor

associated with hysteretic damping.

The modal damping

amn - + - )+ ] (22)
mn TI WmnM

and

2  B r 4  2  (23I r a (23)
mn M mn mn

where r is the eigenvalue of Eq. (21).

Equation (18)involves the product of two doubly infinite sums, the

cross-product of the two modes (m,n) and (p,q) is:



51

41 ON

II

1 4

1 0 0

-co

4.1 4J'

s to

ar ~ ~ crCL+

4.)) -O '-

-I0

0 I

0- I, J 4 +

0 0-oo w -

co X! 0 11
u ~ -o4 -oN

x -z

0' v-0

U) p

-oo -6-



II 52

~iIn

'0
N

NN

o I- N

-) 0 - H
x - x 4

H H 01

+-0 Co
-% + + %

0 +4 C-X N

x 0* Io 0 Io~

3I

.0I +

N 10 -o 01

+ C + N

xx

x 44 14400



53

'0

C14 (-4

(31

~.1 N

r- ----

(124

co +~~ 1
r4 3 +

41)

+ + 04 t

+

0.14
00r

-H cu

iIt co)

00 + + 3c

.4 0

V) I 0 2I

10 0- L.
44 0

r. 44 x

0a -H 41)
w) 41

U) 0

o co 0
4-4

U).

O 4) 0)
E-40



54

IX C

0 0

coo
C-14 t=0

r=

w~ 0
Ix4

C C I

-000

-olco

I to3

0 ~ '.

2 0 04 r

0 .0 + 9

x. a) 3
-o I. S

4 00-

0 0
0~4 443"4-



55

In computing the spectral density one has to specify the eigenfunction
ax0 bYO~~(x,y) and (- --. Only for a simply supported boundary the exact

solution is known, and opportunity has been taken of this solution to carry

out the closed form solution for the response cross spectral density

(appendix b). The simply supported boundaries are not physically realistic; .

one has to consider spring type edges conditioned to allow rotation and

translation constrained.

Yang (1950) used the Ritz method to find the dynamic characteristics

of rectangular plates with continuum spring boundary conditions. More

recently this method has been brought up by Izzo, Baylor, and Robideaus

(1960). The present analysis does not restrict the usage of any particular

method (i.e., Ritz, Galerkin or Rayleigh) for example in the case of the

present experiment the panel boundaries are clamped; Warburton's (1954)

approximation is used in the computation.

The acoustic power radiated by the panel is obtained by the same

i procedure used to compute the acoustic power radiated by the turbulent

boundary layer described in the next section. Using this result expressed in

terms of the panel displacement cross spectral density Y(X;w) rather than

the pressure cross spectral density over the rigid wall P(Q;w) the

radiated power spectral density is given by

2 d _ _ _ _ _ _ 'Ar 2Lc ( sin c - cos c (28)
r 2irc f(X) c c IAl 2

where X x-x' 2

The pressure radiating modes of the flexible panel mounted on an infinite

rigid plane is in phase with panel velocity, the wave motion has supersonic

phase velocity, the energy losses appear as a damping of the panel response.

While the subsonic components (near the plate surface) appear as additional

mass, they are of predominant lower frequency.
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V. Comparison with Measurements

A good comparison is made with calculation for two panel configurations,

one with 0.06 psi pressure differential enclosed in a cavity (Figs. 20, 21

and 22) and the other with 14 psi pressure differential radiating into open

air (Fig. 23). The calculations are based on the analysis discussed in the

previous section which does not account for the additional forcing field, the

pressure induced by panel motion. However, the damping used in the calculation

are those values obtained experimentally. As indicated previously, the damping

is mainly acoustic and thus one can ignore the mechanical damping. The subsonic

component of the velocity is out of phase with panel velocity and therefore no
dissipation of energy occurs. The rise of the virtual mass due to the subsonic

component is small for an air medium and it can be ignored. By making
-am t- i in the Greents function and taking into account the pressure

induced by the panel motion the acoustic damping will be a part of the solution.

This calculation procedure is a result of the present work and will soon be

reported. It is expected that the new method (Maestrello, McDaid) in computing

the response may not differ more than a factor of two (in the present case).

In addition to the case where the plate motion alters the turbulent boundary

layer a perturbation pressure similar to Kuo (1965) in study of the surface

roughness has to be added.

The pressurized panel has lower displacement spectra than the
2 2

unpressurized one. In fact the static loading Nx.2Y + N .2 + AP is
ax 2  y ay2

the contribution of it. The shift in frequency from the pressure of

0.06 to 14 psi is from 475 to 595 he in the fundamental mode. This

is accomplished by a change in static deflection of about 0.07 inch at

the panel center, effectively increasing the stiffness of the panel.
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VI. Sound Radiation from Turbulent Boundary Layer

In the previous chapter an attempt is made to link the forcing field

of the turbulent wall pressure to the response field of a typical panel

structure by means of a statistical method. In a similar fashion utilizing

the temporal and spatial correlation of the wall pressure, separation is

obtained of the acoustic mode, that is the weakest mode within the flow

field, from the vorticity and entropy modes being the stronger by far.

The acoustic power predicted is obtained by imaging techniques where

the properties of the far field noise are connected to the statistical

properties of the boundary layer via near field pressure over the wall.

Powell (1960) showed that a plane rigid surface reflects the sound radiated

by an equivalent quadrupole located in the flow stream above the surface.

The surface imaging pressure field is identical to measurements made of

space-time correlation of the double time derivative of the Reynolds stresses

w.d integrated over the turbulent field (Lighthill results). Where the flow

is over the surface the reflection from the surface could be distorted due to

the action of viscous stress; it has been argued, however, that the normal

stress on the surface is negligible*. With this assumption the problem is

equivalent to that of an image boundary layer in which the acoustic power radiated

per unit volume of turbulence could be related to the correlation area of the

pressure on the surface. Since the surface is rigid no acoustic energy can be

generated but it is generated within the turbulence due to variation of the eddy

strength caused by the fluctuating volume.

Laufer (1961) made the first measurements of sound radiated by a

supersonic turbulent boundary layer, by means of a hot wire annemometer,

*Leehey (1968) recognized that the neglected surface integral in the evaluation
of the wall pressure fluctuation gives rise to oscillatory wall shear stresses.
Leehey's observation came to the author's attention after this manuscript was
written, therefore the results of the implication above are not yet known.
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correlating in space and time outside the boundary layer. The loss of

energy from the turbulence shearing stress by acoustic radiation is very

small, therefore the detection and measurement made by Laufer was quite a

challenge. His results agree qualitatively with the model of the radiation

field as predicted by Phillips at higher Mach numbers.

Wilson (1960) also measured the sound radiated from a subsonic

boundary layer around a rotating cylinder. He placed the rotating cylinder

into a reverberation room; the acoustic pressure radiated from the boundary

layer was obtained after eliminating the mechanical noise of the rotating

mechanism.

Ffowcs Williams and Maidanik (1965) computed the mean square radiated

pressure in terms of surface pressure fluctuations using Lighthill

formalization. Their results well agree with the measurements made by

Laufer.

In formulating the present problem, let us recall some fundamental

flow field equations. Assuming the flow is incompressible, uniform

density p, the pressure p obeys the following relationship

V2 P(X) = - f(x) (29)

the free field solution f = 0 at infinity is given by

1 fi2p(y)
-(1 fdy(Y (30)

V

ort 1 JK7QZP(t) :TufcbenV dy (31)

the surface being infinite rigid and plane an additional boundary condition

is imposed.
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Then 1 V~pZ_
P(x) = -y

W f

V

= fv V )y + f PV dy (32)

IV V

from Gauss's theorem

P(X) = _ __ 7 d (33)
S

The general solution is obtained by adding Equations (31 and 33)

___ 1 _ ap /34P(x) dy - d

V

is the solution of Poisson's equation for the case of a rigid boundary.

If one takes the pressure P at the retarded time jx-yj/c where c is the

propagation velocity, the abcve equation becomes the solution of the in-[lx
homogeneous wave equation. Evaluating anJ one obtains:

Ln Lap ap at = zziL+ a(lx-l) an I -,(!
e (35)

- an\, t- c an a y,t- c

Substituting into (34)

P x, t) -T an- 7 Y

(36)

- 1 n t I I a dS

X an J P '-,)---[J d
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The above equation is the well-known Kirchhoff solution. The volume

integral expresses the contribution of sound from the turbulence, while

the surface integral is the contribution of the sound upon the surface.

By imaging, the two integrals are identical. Three terms appear in

the surface integral, the first gives the contribution of the usual

pressure on the surface, the second describes the radiated pressure

from the apparent sources, and the third term describes the near field

pressure which decays i/r faster than the radiated pressure

r Ix - yl.

Then, the radiated pressure

P(x, t) =---f 'K a(P y t~ d
1- 7c an at c r

r~d
cose ap ( r~ds(37)1

= 4-nc js t- -r

The corresponding pressure correlation

2I
2~x y.t aCsR +Xsn cosbl

16TE~t) 2c2 r2 If ty+ X, t - c

x 'C, t - --Edy dX

at C
where r' = r +X sine cos+

RCos 2) = aos + X sine COSA d d16 2r2  2 -- = (Yc T . d dv (39)6trc 2  J J(Y) aT2 c i- £

h ____________
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From the theory of Fourier transforms one obtains

2 2fS iW . sinO co4
R(x,y; w)= P(X;w) e d dy (40)16 2f~ (X) ()

The power spectral density per unit area of the acoustic pressure

field is obtained by

1./2 2a

1 ( I f 2ay (Y c ja Rx,y;w) = r d6 sin6d L RQx,Z;w)

AS 6=0 =0 0

2 /2 2,i X sine cos4

16 2C3  /1, cos26 sindOdf P(;w)e dX

1_ f __L dX
cP(X;) (sin - cosc (41);.noc ~ c 2~

where P(X;w) is the power spectral density of the pressure field.

The integrand behavior is such that as w1XI/c tends to zero the term

{ } 2/c2, meaning the radiated spectrum will peak higher
IX12

than the near field pressure, a result consistent with Lyamshev (1961).

For turbulent boundary layer a model of P(A;w) is given by

-1I ( 1 I 1ja2 .WE
P(E,n;w) P(w)e e cos

where

P(W)- -- 2 A e-Kn u/U

e n
e
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and

=/ 2 ±n 2

Wilson's experiment is used for comparison with the present analysis

Fig. (27). In order to compute the acoustic power radiated by the

turbulent boundary layer on a rotating cylinder one needs to evaluate

the cross spectral density P( ,w). The model of the turbulent

boundary over a flat plate is adopted for P(Q,w) and Wilson's near

leld pressure spectrum is used since at lower frequencies the near

field power spectrum differs from that over a flat plate. The result-

ing comparison is satisfactory.

For subsonic flow the cross spectral density PQ,w) is

proportional to

11 2p2 U 3 5e e

and the acoustic power is proportional to

3 5
PU M 6

while for Mach wave radiation the cross spectral density P(,W) is

proportional to

p2U3

e

and the acoustic power is proportional to

3 2
PU e6e

In attempting to compute Laufer's Mach wave radiation, a

difficulty is encountered since he measured the intensity at a point
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while this analysis obtains the power per unit area. In the comparison

one would have to account for the Doppler shift - since Laufer's

measurements are in a moving stream along the Mach line. The condition

for Mach wave radiation is such that jMc - MI > 1. This implies that

the comparison has to be made for M > 3.5.e

Phillips has shown that radiated sound arises from eddy Mach

waves which are generated by some wave numbers of the turbulence in

those layers for which the difference between the mean velocity of the

fluid outside and the local eddy velocity is greater than the speed of

sound. This mechanism appears consistent with the present results.

4I
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APPENDIX A

Prove that the displacement cross correlation is even in T

Y (x,y,t) Y (x', y',t')

2 ab mn (x,y) 4 mn (x',y')
2 2 2

21 m n m n Wmn(amn+ W mn) inn

where

nr az

1in ff(z) f(y) 1 21naz

+ An Kn e • dx d dz

K2 + (\)- ( U] uc +/
n U L -c -C j n)
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j Let us define

FC T) = f()fg(x) 1+ 1dx dz~

_Mr 0 G Z- U c(T-Xl 2' (az U 2 T+

-f f(zj'g(xI) 1 dx dz

-M~ 0 ([az U- U(T-X)2

Set XT - X

F (T) Iff(zf~ g (Iu-xJ) 1dX dz

-mir -00 G( AZ UX

then

F 1(-T) Jf (Z)fs(IT-X)1 dX dz

-m 71 O G r az U Xl 2)

H-I ci

F1(-T) = f(zJ(Tx)1dd

-Mir 00 G az + U x12)



Set Z =-z

' /'(1tx\ Idx dZ

-miT - G 4z-+ Ux

= f(Z)fg(ITX1) Idx dZ

mv AJ mu c 12

W. ('T)
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APPENDIX B

The following is the closed form solution of the panel deflection

cross power spectral density (Eq. 24) for simply supported boundaries

without cross modal coupling. From Maestrello (1967) one can obtain the

following cross correlation of the panel displacement.

"-pL 4 mn(xiy) ~nX~'

Y(x,y,t)Y(xiyi,t) = 22 an ) m n(X y

mn m m(a2mn mn n

(1B)

where m Et
-- 7na , 4 (An Kn "' x) n-

In f(z) f(Y) g(x) KUe)2r([az- Uj+ U)

K 112+

+ A nn-1n dx dy dz

K2 +()2[( - Uj- Uc)2+ (n)2] j
C

cos z + z(c-ilcos z + sinlzj)
and f(z) = i azmt

e

cos y + - (sin y-y cos y)

f(y) -ITbylnn21

e

_____ _____ ____
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g(x) e m in w x + nCos C.a ia XI

4)n(X,y) s2 sin sinn (ab) s a b

Imn is an even function of T and Y(x,y,t) Y (x',y',t')

is also even as shown in (appendix a); one can obtain the

auto correlation by setting x = x' and y = y' in (IB).

The displacement cross spectral density is obtained:

iWT
P[Y(xyt)Y (x',y',t'); = f Y(x,y,t)Y (x',y',t) (2B)

From (2B) and integrating with respect to x one obtains:

J b P n mn +
M m,n mn wmn(a2 mn + 2mn

dz /dy( dx f(z)f(y)g(x) e Ccos x (3B)

Simplify the above equation by integrating out the g(x) and

f(z) integrals;
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The g(x) integral reduces to:

f dx e -ax mn(w + a a cosk'mnx)0

2w a
Miii mn + (4mn

(a2 + 2 + w2) 2 -4 2 m 2

and the z integral reduces to:

it ~-Iaz/mi,.a I

2 Jfdz Cjos1+ mnU) z+ Cosl Tu~ zje

0[ c) c)

dz iZ Co 1+ z + Cos 1 ;- I

miT-_lfdzZ in I z+ (zi-la/mnel

+l1fdz sin IZ Cos e Izn~

m l+I+I3+4+I5

1 +5
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where

1 (m1TU wa\(mc 1 + waOG mTU +w
[a ac 1  / +i 1 sin +81

Ii + nna WO 2 ~-a cos + +

fe innU j.T wa) (mncz -waO) (mnU-wa\ a

La mic 1  -a Cos - n + a

-a/c, 1 2 2 2 2~ 2
e II a.O a-ynira1 +______iU+

3 2' \21 a 1  a2( + l waG 2 ~ Uc
a + Mira+waO) a ni 1

SmvUl +iwa -(-2a) (M 7a 1+waO)( m c L) 5 ~mc +

u c ~a 2 +(mura 1+waO )2

(_. 2_imrai+wae) 2) -a/a 1

4 +mva 1+waBG

e a/1 m T a a 2mlua -waOG mUll-wa
1_a_-__ _ 1 1

a4 a2+(mra 1-waO) 2  a,- a2  muia.-waO 6 2 CO c

IMr _W (-2a) (IMna- lwa6) (MTC 1) /n-,a\

a2+(murci~ wa~) 2 
U C

( a2_ m a G 2 1 -a/a
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e5U -ac 1 2 12 - i (mUc+a)

a mirL+we 2] -a
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Finally the f(y) integral reduces to:

nT niT bn -b_I y ~y /odyenvQ2 I n ra 2

c f(y)Jdye Cos y + fe sin y

0

" dy y e COS y 16

-b/a2  rD
e 2cos n7 ~ f- - n

where 1 6 ('1
2221"-

-b/a2  2bni

n r2 + n22
+ b 2

b 2 +i 2
+~ 1 2___2b __2+ 7

The cross spectral density is finally reduced to:

P[Y(x,y,t)Y(x',y',tt );w] = abe2P(w) x2M2

2 Omn ,2 2 2 2 (11+12+13+14+15)16
m,n mn amn + Wmn + W]- 4 mn
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